S

Lz

PROGRAMMING

& INTERFACING
THE 6502,

WITH EXPERIMENTS

BY MARVIN L. DE JONG

1§ BLACHSBUIRGE corpus sovonmoy seres ™
B i gl B L WS 1 a s g A e AL e (e R e

The Blacksburg Continuing Education™ Series

The Blacksburg Continuing Education Series™ of books provide a Laboratory—or experiment-
oriented approach to electronic topics. Present and forthcoming titles in this series include:

Advanced 6502 Interfacing

Analog Instrumentation Fundamentals

Apple Assembly Language

Apple Interfacing

Basic Business Software

BASIC Programmer’s Notebook

Circiut Design Programs for the Apple Il

Circuit Design Programs for the TRS-80

Computer Assisted Home Energy Management

Design of Active Filters, With Experiments

Design of Op-Amp Circuits, With Experiments

Design of Phase-Locked Loop Circuits, With Experiments
Design of Transistor Circuits, With Experiments
B0B0/8085 Software Design (2 Volumes)

8085A Cookbook

Electronic Music Circuits

555 Timer Applications Sourcebook, With Experiments
Guide to CMOS Basics, Circuits, & Experiments

How to Program and Interface the 6800

Introduction to Electronic Speech Synthesis

Introduction to FORTH

Microcomputer—Analog Converter Software and Hardware Interfacing
Microcomputer Data-Base Management

Microcomputer Design and Maintenance

Microcomputer Interfacing With the 8255 PPI Chip

NCR Basic Electronics Course, With Experiments

NCR EDP Concepts Course

PET Interfacing

Programming and Interfacing the 6502, With Experiments
Real Time Control With the TRS-80

16-Bit Microprocessors

6502 Software Design -
6801, 68701, and 6803 Microcomputer Programming and Interfacing
The 68000: Principles and Programming

6809 Microcomputer Programming & Interfacing, With Experiments
STD Bus Interfacing |

TEA: An 8080/8085 Co-Resident Editor/Assembler

TRS-80 Assembly Language Made Simple

TRS-BO Color Computer Interfacing

TRS-80 Interfacing (2 Volumes)

TRS-80 More Than BASIC

® 9 9 0 9 900 0 00 009 0 0O 0 OO 0 0O OO0 O 00 0O OO 0O O e PO BSOS

In most cases, these books provide both text material and experiments, which permit one to
demonstrate and explore the concepts that are covered in the book. These books remain among
the very few that provide step-by-step instructions concerning how to learn basic electronic con-
cepts, wire actual circuits, test microcomputer interfaces, and program computers based on popu-
lar microprocessor chips. We have found that the books are very useful to the electronic novice
who desires to join the “electronics revolution,” with minimum time and effort.

Jonathan A. Titus, Christopher A. Titus, and David G. Larsen
"The Blacksburg Group”

Bug symbol trademark Nanotran, Inc., Blacksburg, VA 24060

Programming &
Interfacing the 6502,
With Experiments

by
Marvin L. De Jong

Howard W. Sams & Co., Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

Copyright © 1980 by Marvin L. De Jong

FIRST EDITION
FIFTH PRINTING-1983

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with
respect to the use of the information contained herein.
While every precaution has been taken in the
preparation of this book, the publisher assumes no
responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-21651-5
Library of Congress Catalog Card Number: 79-67130

Printed in the United States of America.

Preface

It is interesting that most of us have a completely different feel-
ing toward learning something that involves a physical skill than
the feeling we have when we approach an intellectual challenge. I
have observed people trying to learn to water ski, for example, en-
during failure after failure before finally coming up out of the
water to experience the exhilaration of a successtul first run. The
entire process seems to provoke very little frustration or aggravation.
On the other hand, the world is full of books that purport to make
learning something easy, and most of us are easily frustrated and
angered when we cannot understand something involving our
intellects the very first time we try. Perhaps we are too vain, but I
think the real problem is our unrealistic attitude toward learning.

All of this leads up to my hope that you will not give up easily
if you want to learn to program the 6502. Be patient with yourself,
and try to see if you can enjoy the process as much as the product.
Although I have made a serious attempt to explain concepts so that
newcomers to the field of 6502 assembly language programming can
easily understand them, no one can subtract from the efforts (and
enjoyment) required of the student. This is not a novel. It is a chal-
lenge to you, the reader, to see if you can acquire a new and exciting
skill.

Moreover, I would like to emphasize the importance of obtaining
“hands-on” experience. Current theories of learning emphasize the
importance of concrete experiences before the ability to think ab-
stractly is acquired. This is the principal reason for including ex-
periments in the book. The experiments, or demonstrations, as many
might more properly be called, are intended to give you the prac-
tice and concrete experiences required for the challenge of writing
your own microcomputer programs, a task that requires abstract
thinking.

MarviN L. DE Joxe

This book is dedicated to technology that is compatible with nature.

Acknowledgments

I give my editor in the Blacksburg group special thanks for
making many excellent suggestions that led to a much improved
manuscript. I am very appreciative of the interest and aid I re-
ceived from both Rockwell International and Synertek. Their mar-
keting and engineering staffs were always prompt and friendly when
I had questions or needed documentation.

I thank my wife, Donna, for typing the manuscript, and my son,
Jeff, and my daughters, Jane and Mary, for their interest in the
project.

Finally, I would like to thank my dog and my cat. Their complete
and obvious lack of concern gave me a perspective I needed for
writing this book.

Contents

PART I-PROGRAMMING THE 6502

CHAPTER 1

INTRODUCTION TO MICROCOMPUTERS
Objectives—Introduction—What Is a Mlcrocomputer?—The 6502 \11-
croprocessor—Introduction to Experiments—Experiments 1 Through 3

CHAPTER 2

WRITING AND EXECUTING SIMPLE

ProcraMs UsiNG DATA TRANSFER INSTRUCTIONS
Objectives — Introduction — Microcomputer Instructlons—Addressmg
Modes—The Microcomputer Program—A Simple Program—Writing
a Program—Loading and Executing a Program—The BRK Instruc-
tion—The Single-Step Mode—Introduction to the Experiments—Ex-
periments 1 Through 7

CHAPTER 3

SimpLE INpPUT/OuTPUT TECHNIQUES
Objectives—Inrtoduction—Input/Output Ports— I/O Ports and Data
Direction Registers—I/O Port Symbols—Input/Output Programming
—JMP Instruction—INC and DEC Instructions—INX, INY, DEX,
and DEY Instructions—Introduction to the Experiments—Experi-
ments 1 Through 8

11

CHAPTER 4

LocicaL. OPERATIONS . . 67
Objectives— Intnoductlon—Loglcal Operatlons—AND ORA and EOR
Instructions—Programs to Demonstrate ORA, AND, and EOR In-
structions—Using ORA, AND, and EOR Instructions to Control
Bit Values—Other Uses of Logical Operations—Introduction to the
Experiments—Experiments 1 Through 6

CHAPTER 5

ARITHMETIC OPERATIONS . . . B] |
Objectives—Introduction—6502 Processor Status Register—Flag
Modification Instructions—ADC Instruction—Multibyte Addition—
Decimal Addition—Twos Complement Arithmetic—Signed Number
Arithmetic—Signed Arithmetic and Overflow Status Bit—Experiments
1 Through 5

CHAPTER 6

BranNcuEs aANp Loors . . . 100
Objectives— Introductlon—Branch Instructlons——Modlfymg the Proces-
sor Status Register—Branching—Comparison Instructions—Bit Test
Instruction—ASCII to Hexadecimal Conversion—Using Branch In-
structions for Time Delays—Introduction to the Experiments—
Experiments 1 Through 6

CHAPTER 7

REGISTER-SHIFT INSTRUCTIONS . . . 120
Objectives—Introduction—Getting Acquamted Wlth Reglster Shlft
Instructions—A 4-Bit Multiplication Program—An 8-Bit Multiplica-
tion Program—Hex to ASCII—Decimal to Hexadecimal—Hexadeci-
mal to Decimal—Experiments 1 Through 8

CHAPTER 8

INDEXED ADDRESSING . . . 139
Objectives—Introduction— Ab%olute Indexed Addressmg—Zero Page
Indexed Addressing—Data Tables—Code Conversion Programs—Mul-
tiple-Byte Arithmetic—Indirect Addressing—Indirect Indexed Ad-
dressing Mode—A Simple Monitor—Indexed Indirect Addressing—
Introduction to the Experiments—Experiments 1 Through 7

CHAPTER 9

SUBROUTINES, THE STACK, AND INTERRUPTS .
Objectives—Introduction—Subroutines—The Stack—Nested Subrou—
tines—Use of the Stack for Storage—Interrupts—Experiments 1
Through 7

CHAPTER 10

INTERVAL TIMERS .
Ob]ect1ves——Introductlon—6530 Interval T1mer—6532 Interval Tlmer
—6522 Interval Timers—Using T2 Timer as a Counter—Using T1
Timer—Precision Timing Program—Using T1 Timer to Implement
Frequency Counter—Making Music Using T1 Timer—Experiments
1 Through 8

ParT II—INTERFACING THE 6502

INTRODUCTION TO PART II

CHAPTER 11

ADDRESS IDECODING

Objectives—Introduction— Address Decodmg—Address Decodmg for
R/W Memory—I/O Port Address Decoding—Address Decoding Cir-
cuit for 6522 Interface—6502 Instructions and Device Select Pulses—
Introduction to the Experiments—Experiments 1 Through 5

CHAPTER 12

CoNTROL SIGNALS, OUTPUT PORTS, AND APPLICATIONS
Ob]ectlves—lntroductnon Clock Slgnals (IN), &, (OUT), and
®, (OUT)—R/W Control Signal—-Using Control Sngnals for an Out-
put Port—Memory-Mapped, Latched Hexadecimal Display—Memory-
Mapped Digital-to-Analog Converter and an Application to Music
Synthesis—Other Control Pins on 6502—Experiments 1 Through 5

CHAPTER 13

DaTta Bus, BUFFERING, AND APPLICATIONS . .
Ob]echves—lntroduchon—Why Buffer"’—Memory-Mapped Analog-
to-Digital Converter—An ASCII Keyboard Input Port—Experiments
1 Through 5

172

. 210

. 249

. 254

282

. 304

CHAPTER 14

APPLICATIONS«36
Introduction—Digital-Analog and Analog-Digital Conversion Using
the KIM-1—-Employing the KIM-1 Microcomputer as a Timer and
Data Logging Module—Employing the KIM-1 as a Precision Keyer
and Automatic Message Sender—Catching Bugs With Lights: A Pro-
gram Debugging Aid—Lunar Occultation of a Star

APPENDIX A

DecmmAL, BiNARY, AND HExADECIMAL NUMBER SYSTEMS . . 360
Objectives — Introduction — Numbers — Decimal Numbers — Binary
Numbers—Bits, Bytes, and Nibbles—Hexadecimal Numbers—Exer-
cises—Exercise Answers

APPENDIX B

INsTRUCTION SET SUMMARY37
APPENDIX C

MicrocompuTER TECHNICAL DATA 373
APPENDIX D

PiN CoNFIGURATIONS OF FREQUENTLY Usep SN7400-Series CHips 403

APPENDIX E

PNy ConrFicuraTiONs OF 811.S97 408

INbEX41

PART |

Programming the 6502

CHAPTER 1

Introduction to
Microcomputers

OBJECTIVES

At the completion of this chapter you should be able to:

Identify the major components of a microcomputer and describe
their function. These include the microprocessor, R/ W memory,
ROM, peripheral interface adapters, keyboard, display, and
monitor.

Understand the READ and WRITE operations.

Describe the function of registers in the microprocessor, in par-
ticular the accumulator.

Define addressing and decoding.

Understand the concept of memory space, memory blocks, and
pages.

Examine and modify the contents of a memory location using
the keyboard and display.

INTRODUCTION

The power and versatility of microcomputers become evident
when one makes a list of some of the applications in which they
are currently being used.

¢ Traffic Controllers ® Music Synthesizers ® Solar Panel Orienta-
tion Controllers ® Cash Registers ® Chess Challengers ® Scientific
Instruments ® Automobile Ignition Systems ® Video Games ® In-
dustrial Controllers ® Biomedical Instruments ® Computer As-

sisted Instruction Devices ® Speech Recognizers ® Office Machines
® On-Line Data Processors ® Word Processing Systems ® Video
Tape Recorders ® Process Controllers ® RTTY and Morse Code
to ASCII Converters ® Surveying Instruments ® Indoor Environ-
mental Controllers ® Home Security Systems

The preceding list is just a beginning. It appears that there will be
an almost endless variety of applications. Programming and inter-
facing a microcomputer are creative, challenging, and rewarding
endeavors. This book is intended to make you a part of these ex-
citing developments by combining your study of the subject with
active “hands-on” experience.

The specific microprocessor chosen for study in this book is the
6502. It was first manufactured by MOS Technology, Inc., Valley
Forge Corporate Center, 950 Rittenhouse Road, Norristown, PA
19401. MOS Technology is now owned by Commodore Business
Machines, Inc., 3330 Scott Boulevard, Santa Clara, CA 95050. The
6502 microprocessor is also manufactured by Rockwell Interna-
tional, Microelectronic Devices Division, P.O. Box 3669, Anaheim,
CA 92803, and it is manufactured by Synertek® Systems Corpora-
tion, 150 South Wolfe Road, Sunnyvale, CA 94086. The 6502 is
currently the most widely manufactured microprocessor,! and sev-
eral other companies will soon be added to the list of those that
manufacture the 6502.

Although the contents of this book are applicable to any 6502-
based microcomputer system, particular emphasis is placed on three
of the most popular microcomputer systems. These are the KIM-1
manufactured by MOS Technology for Commodore Business Ma-
chines, the SYM-1 manufactured by Synertek Systems Corporation,
and the AIM 65 manufactured by Rockwell International. Photo-
graphs of these systems are shown in Figs. 1-1, 1-2, and 1-3. These
three systems were chosen because of their popularity and the fact
that their edge connectors are compatible. Thus, the experiments we
describe may be performed on any of these three systems.

Other small computers that use the 6502 microprocessor and that
you may wish to use as a laboratory tool in connection with this
book include the PET, Apple II, JOLT, Puzzle, OSI Challenger,
and others. A firm that handles mail orders and that specialize in
6502 products is:

Micro Technology Unlimited
P.O. Box 12106

2806 Hillsborough Street
Raleigh, NC 27605

1Libes, Sol, “BYTE News,” BYTE, 4, February 1979, p. 64.

12

Courtesy Rockwell International
Fig. 1-1. AIM 65 Microcomputer.

Johnson Computer

P.O. Box 523

Medina, OH 44256
RNB Enterprises, Inc. Seawell Marketing, Inc.
2967 West Fairmount Avenue P.O. Box 17006
Phoenix, AZ 85017 Seattle, WA 98107

WHAT IS A MICROCOMPUTER?

We will define a microcomputer as any computer system that
uses one of the popular microprocessors as its principal processing
unit. Popular microprocessors include the 6502, 8080A, 8085, 6800,
780, and the 1802. These microprocessors are typically 40-pin inte-
grated-circuit chips mounted in a dual-in-line package (DIP).

The terms microprocessor and microcomputer are frequently
used interchangeably. We will take microprocessor to mean one of

13

Courtesy Synertek

Fig. 1-2. SYM-1 Microcomputer

the integrated circuits mentioned above, while a microcomputer is
a system of components including as a minimum:

® A microprocessor such as the 6502.

® A clock circuit (1-MHz crystal in the case of the KIM-1)

¢ Semiconductor Read/Write (R/W) memory, sometimes called
RAM which is an acronym for Random Access Memory

¢ Decoding circuitry

¢ Input/Output ports based on the 6520, 6522, 6530, 6532, or
other interface integrated circuits.

The components of a microcomputer system are connected by three
sets of wires or printed-circuit conductors called buses. These are:

¢ The control bus—variable number of lines
¢ The bidirectional data bus—eight lines designated D7-D0
® The address bus—16 lines designated A15-A0.

Each of the conductors in a bus is called a line. Fig. 1-4 is a block
diagram of the KIM-1 system that illustrates some of the components
and connections mentioned previously. In addition to these com-
ponents, the diagram shows that the KIM-1 also has a keypad and
a display. Most prototyping systems (microcomputers designed to

14

Fig. 1-3. KIM-1 Microcomputer.

test and develop new programs and designs) such as the AIM 65,
SYM-1, and KIM-1 have keyboards and displays for interfacing with
human beings.

Other features that may be included in a microcomputer include
cassette tape interface, ASCII keyboard interface, teletypewriter
interface, CRT or oscilloscope output, line printer, floppy-disc mem-
ory, multichannel A/D and D/A converters, arithmetic logic units,
high-level language (BASIC, FORTRAN, PASCAL, etc.) inter-
preters in ROM, speech-input circuits, etc. It is ironic that some-
times the microprocessor is one of the cheapest ($10.00-$15.00)
components in the system. The fact that $15.00 integrated circuits
are surrounded by several thousand dollars worth of peripheral

15

Fig. 14. Block disgram

APPLICATION CONNECTOR

3 g
2 v

m = M 8U oy N

& = = 08y

I=} =] o

< S 18y
28 ovd o1y
£y 17 L
vov waf | ey
sy a8 7y
agy wa] v
18v et | gy
88y ava e 1y
o _ o8 ey

-

o0 “EZ osdfL] ey
190 194% oty
280 wd ety
£80 cad [l oy
va fly
540 9y
980 Sty
180
1%
20
wY

0 %

m
mnumTwu—I*z*a4567r -
HEBEEBERHEEEEEEEEEENE
HEEHEHEEHHEEEEHEEBEEEE
= zaoxe — 2T DN 2 g o0~ 2 >

YOIJINNOD NOISNY X3

16

vee g

(ABO-AB1S)

(DBO DB7}

u1
MPS 6502

XTAL
RIW
SYNC
IRQ

Lo

o

-

087 561
DB 77

vee
7
2|

=

PBS

PB7

D85 75—

DB4 7]

083 [z

DB2 —

DBI 371
DBO -

5 8
e =
vz
MPS
6530002

PB4

AB8

ABS —
ABS |
AB4 m
AB3 7
AB2 B

=
£

PB2
PA6
PA4

RS

PAO

n PA7
75| P80

19

21

77] P83

5] P81
% P
3

i

m PAl

2

ey
= w1

<

37

3 01
7] ROY

TAPE &
TELETYPE

2

KEYBOARD & DISPLAY

RST

02

RIW
RAMR/W
Ko

KS

K7

CONTROL
LOGIC

K6

of KIM-1 Microcomputer.

Courtesy Commodore Business Machines, Inc.

17

equipment is a tribute to the power and versatility of the micro-
processor.

Some of the components in the microcomputer will be discussed
at this point because an understanding of their basic functions is
essential for learning how to program a microcomputer.

THE 6502 MICROPROCESSOR

Sixteen pins on the 6502 are dedicated to addressing; that is, they
control the two possible logic levels on each of the 16 lines that
form the address bus. Refer to Fig. 1-4 to identify pin numbers. The
logic levels are called “zero” and “one” although electrically they
are voltage levels. The address pins on the 6502, AB15, AB14, AB13,
..., ABO in Fig. 1-4, determine a 16-bit binary number called the
address of a memory location (defined in the next section). The
address names and orders memory locations.

Since there are 2'® unique 16-bit binary numbers, the 6502 is
capable of addressing 65,536 memory locations. The 16-bit address
is frequently divided into two bytes, a high-order byte or address
high (ADH), and a low-order byte or address low (ADL). In turn,
each of these bytes may be represented by two hexadecimal digits,
0-9 and A-F. The entire address is represented by four hexadecimal
digits. In this book, all hexadecimal numbers will have a “$” prefix.
Thus, $A9F4 is an example of an address. Readers who are un-
familiar with binary and hexadecimal numbers are urged to study
Appendix A first.

Eight pins on the 6502 are connected to the data bus of the micro-
computer. Refer again to Fig. 1-4 for details. The READ/WRITE
or R/W pin on the 6502 is connected to a line of the control bus
called the R/W line. Introducing these pins allows us to define two
important operations of the microprocessor.

A READ operation (the R/W line is at logic one) causes eight
bits of information (usually called data) to be transferred over the
data bus, from the memory location specified by the address on the
address bus to an 8-bit register in the microprocessor.

A WRITE operation (the R/W line is at logic zero) causes eight
bits of information to be transferred from an 8-bit register in the
microprocessor to a memory location specified by the address on the
address bus. The words “load” and “store” are sometimes used
synonymously with the words “read” and “write,” respectively.

Because data are moved in one direction by a read or load opera-
tion and in the other direction by a write or store operation, the data
bus is said to be bidirectional. Furthermore, since data are trans-
ferred as 8-bit binary numbers, that is, one byte at a time, the
6502 is called an 8-bit microprocessor.

A register is an 8-bit storage location in the microprocessor. It is
used to store data upon which the microprocessor is to operate. The
contents of a register may also control the operation of the micro-
processor itself. The most commonly used register as far as the pro-
grammer is concerned is the accumulator. Other registers in the
6502 include the index registers, X and Y; the processor status regis-
ter, P; the stack pointer, SP; and a pair of registers called the pro-
gram counter high, PCH, and the program counter low, PCL. The
X and Y registers are used like the accumulator, but in addition they
may serve another purpose to be discussed in Chapter 8. The pro-
gram counter will be described in Chapter 2, the status register
in Chapter 6, and the stack pointer in Chapter 9.

Memory

There are four kinds of memory locations:

® RAM-—RAM is an acronym for Random Access Memory. It is
more precise to call it Read/Write or R/W memory.

¢ ROM—ROM is an acronym for Read Only Memory.

¢ Input/Output Ports—These include the so-called data direction
registers (DDR) that determine whether a port will be used to
input data or output data. See Chapter 3.

¢ Interval Timers—One or more bytes of data stored at these lo-
cations determine the length of a time interval. See Chapter 10.

An R/W memory location consists of eight ordered bistable semi-
conductor devices, each capable of storing one bit of a binary num-
ber. Many such devices are located on a single integrated-circuit
chip. For example, the R/W memory chips on the KIM-1 have 1024,
such devices on each chip. The 2114 R/W memory integrated cir-
cuits on the AIM 65 and SYM-1 have 4096;, such devices. Each
memory location stores one byte of data. The data bits are ordered
D7, D6, D5, . . ., DO, from the most-significant bit to the least-
significant bit. One state of the bistable memory device corresponds
to the bit being zero, while the other state corresponds to a bit being
one. The byte of data stored at any location may be displayed in
hexadecimal using the microcomputer output.

The microcomputer can read the data at an R/W location and it
can write data to an R/W location. Data in an R/W location is lost
when power to the microcomputer is removed. In contrast, data at
an ROM location is permanent, but the microprocessor can only
read the contents of an ROM location: it cannot write to that loca-
tion. The purpose of having ROM locations is to store frequently
used programs and data that the user does not want to be altered,
either because of power failure or for other reasons.

In 6502-based systems the Input/Output ports are separate inte-
grated circuits usually called interface adapters. Examples include

19

the 6530 and the 6532. These chips not only contain the I/O ports
and corresponding DDR, but may have additional R/W or ROM
locations as well as interval timers. Chapters 3 and 10 will cover
these topics in more detail.

Addressing and Decoding

The address of a memory location is a 16-bit number which names
and orders the location in memory space. Each R/W location, ROM
location, I/O port, DDR, and interval timer has a 16-bit address.
The address space of a microprocessor is the total of all memory
locations which the microprocessor is capable of addressing. As
pointed out above, the 6502 has 65,536 possible locations in its ad-
dress space.

The microcomputer keyboard can be used to enter an address
in hexadecimal. The address is then displayed by the microcomputer
display output. Usually the byte of data stored at that location ap-
pears in the two hexadecimal display digits on the right of the ad-
dress display.

The microprocessor performs all of the addressing operations in
small systems. (Larger systems may use DMA, an acronym for
Direct Memory Access, where peripheral devices control the address
bus.) The process of activating a particular memory location when
the microprocessor places its address on the address bus is called
decoding. Frequently, much of the decoding is accomplished on
the memory chips. The R/W memory chips on the KIM-1, AIM 65,
and SYM-1 decode the lowest 10 address lines, A9-A0. Lines Al5-
A10 are decoded by other integrated circuits. Lines A15-A12 are not
decoded at all on the KIM-1. Address decoding will be considered
in more detail in Chapter 11.

Address Space

It is convenient to divide the address space into blocks. The
smallest block size is called a page and consists of 256;, memory
locations. Table 1-1 shows how the address space is divided into
pages. It is seen from the diagram that the high-order address byte
(ADH) is the page number, while the ADL byte gives the memory
location within a page.

The next larger block size after a page is a unit of 1024,, locations
which is usually referred to as 1K of memory. Recall that 210 =
1024;,. This means that 10 address bits uniquely specify each loca-
tion in a 1K block. This leaves six address bits, A15-A10, to “name”
a 1K block. Six address bits can name 2% or 64,, blocks; thus there
are 64 1K blocks of memory in the address space, and bits A15-A10
determine the number of the block. (It might be added that memory

20

Table 1-1. Dividing Address Space Into Pages

Address High

Address Low

ADH ADL Address
(Binary) (Hexadecimal)

00000000 00000000 $0000
00000000 00000001 $0001

. . . PAGE ZERO
00000000 111111 $00FF
00000001 00000000 $0100
00000001 00000001 $0101

. . . PAGE ONE
00000001 IRRRRRRR $01FF
1n 00000000 $FFO0
11111 00000001 $FFO1

. . PAGE 255,¢
11111111 IRRRRRARI $FFFF

is usually sold in K units. For example, 4K, 8K, 16K and sometimes
32K bytes of memory are on a single printed-circuit board.)

The largest block size that will be discussed in this context is the
8K block consisting of 8 X 1024 locations. Each 8K block has 8192,
locations. Since 8192 =213, the remaining address bits A15-A13

are used to “name” each 8K block. Table 1-2 shows how the address

Table 1-2. Dividing Address Space Into 8K Blocks

Al5 Al4 A13 Block Name Hexadecimal Addresses
0 0 0 8K0 $0000-$1FFF
0 0 1 8K1 $2000-$3FFF
0 1 0 8K2 $4000-$5FFF
0 1 1 8K3 $6000-$7FFF
1 0 0 8K4 $8000-$9FFF
1 0 1 8K5 $A000-$BFFF
1 1 0 8K6 $C000-$DFFF
1 1 1 8K7 $E000-$FFFF

21

space is divided into 8K blocks. The 8K blocks are named and or-
dered by a block name, such as 8KO for the lowest 8K block and
8K7 for the highest 8K block.

The KIM-1 microcomputer uses only the 8KO block of address
space, and not all of the 8KO0 block is filled. An off-the-shelf KIM-1,
AIM 65, or SYM-1 comes with 1K R/W memory located in the low-
est four pages of the address space; that is, hex addresses $0000 to
$03FF. The KIM-1 has eight pages of ROM which contain its
monitor program. A memory map of this system is given in Fig.
1-5. Memory maps of the AIM 65 and SYM-1 are given in Figs. 1-6

' —
AVAILABLE| TFFF
FOR
EXPANSION
"K" | PAGE V/\[/\ 2000
e X 17FF
e KM 1FFF /| 64 ByTE KIM RAM
KT gg ROM / ram | LEL
28 [9530002 009 /7| 6530002 1;5‘;
100 , .
| % KIM B GaBYIE | T78F { APPLICATION
K6 | 25 ROM % RAM
24 | 8930003 g0 6530003 | 760
23 17FF 177F
22 1700 110 &
K5 |21 = TIMER KIN 110
20 o 6530002 [o
13 13FF AR e | 13F
By S| meR APPLICATION
16 ~] 8530003 | 170
15 1700
14 DECODED
K3 | 13 FOR 4K
12 EXPANSION
1
10
K2
RE / OFF |
1 STACK
BF POINTER
ki | INITIALIZED
> 00FF
| I —
E 00EE 17 BYTES
ko | 2 RESERVED
Pl o] B
Lo PAGE 0

Courtesy Commodore Business Machines, Inc.
Fig. 1-5. KIM-1 memory map.

22

FFFF

FF80

FF800
UNUSED
£000

DFFF
(FUTURE)
€000

UNUSED
B00O

AFFF

AC00

A800

A600

A400

A000

| (FUTURE
————————— 8FFF

8000

UNUSED

1000
OFFF

03FF
0000

—_— e — e

SYSTEM RAM ECHO LOCATIONS> SY6532 ECHO LOCATIONS

(INTERRUPT VECTORS)

FUTURE ADDITION OF ASSEMBLER/EDITOR ROM

FUTURE ADDITION OF 8K BASIC ROM

SY6522 VIA #3 (U29) (PAGE 4-25)

SY6522 VIA #2 (U28) (PAGE 4-24)

SYSTEM RAM-SY6532 (U27) (PAGES 4-21 THRU 4-23)

SYSTEM 1/0-5Y6532 (U27) (PAGE 4-20)

SY6522 VIA #1 (U25) (PAGE 4-19)

FUTURE EXPANSION OF 4K SUPERMON MONITOR

4 K SUPERMON
MONITOR

(ON ROM) 1K X 8
u18,u19

1K x 8
U16.,U17

1K X 8
U14.U15

PAGE ZERO

Fig. 1-6. SYM-1 memory map.

OFFF
0C00
OBFF

0800
07FF

0400
03FF
02FF

01FF

WRITE PROTECTABLE

WRITE PROTECTABLE

WRITE PROTECTABLE

OOFF] USED BY SUPERMON
00F8 J MONITOR (FEE FF =
0000 MEMORY POINTER)

Courtesy Synertek

and 1-7. You can see that these two systems have more ROM space
for their more elaborate monitor programs.

Monitor

The monitor is a program stored in ROM. The computer begins
to execute this program when power is supplied and/or when a
reset button on the microcomputer is pressed. The monitors of the
KIM-1, SYM-1, and AIM 65 differ widely in their capabilities, but
they have in common the following features:

23

PAGE 1 & 2 REQUIRED FOR
AIM 65 OPERATION

0000 USER RAM
0000 QOFF | PAGE O/ (1) | EXCEPT AS NOTED
1K X 8 RAM 01001 sTAcK (2) RESERVED FOR STACK
03FF (217,218) 01FF AND AIM 65
0400 [1k » g RAM 1 SYSTEM
orre | @1212) ON BOARD OPTIONAL
080 RAM EXPANSION
01 1K >z(s§7RAM — USER AVAILABLE
ogFF | @820
0C00 | 1K x 8 RAM
(22.23)
%Eg 1000-9FFF OFF BOARD
BY DECODING ADDRESS LINES
(A0-A15)
TFFF USER
3000 | AVAILABLE S8 DECODED AND ROUTED
EXPANSION TO J3 EXPANSION CONNECTOR
ADDRESSES
8FFF
9000 .
€59 DECODED AND ROUTED TO J3
9FFF
AOOO[AIM 65
/0 AND
AFFF RAM
BOOO[™ BASIC ROM
OPTION
BFFF| __(226) |
C000[BASIC ROM
OPTION
CFFF {225)
TES: (1) PAGE 0 AND 1 REQUIRED AIM 65
D000 [assempLer Rom| "OTE (M OPERATION 0
0"ZT2'?N (2) SEE DETAILED MEMORY MAP FOR
DFFF (224) PAGE 0 USER RESTRICTIONS
E000 [NITOR ROM (3) SEE DETAILED MEMORY MAP FOR
23 PAGE 1 USER RESTRICTIONS
1311 IR
FOOOT yoNiToR RoM
222)
FFFF

NOTE: (3) ADDRESSES 1000-9FFF
AVAILABLE FOR USER
OFF-BOARD EXPANSION

Courtesy Rockwell Internationatl
Fig. 1-7. AIM 65 memory map.

¢ They allow the user to address any location with the keyboard,
and to display the address and the contents of that location.

e They allow the user to modify the contents of any R/W memory
location with data that is input from the keyboard.

e They allow the user to transfer control of the microprocessor
from the monitor to the user’s program.

¢ They allow the user to interface the microcomputer with a cas-
sette tape recorder for the purpose of storing programs.

You may wish to compare and contrast the remaining features of the
monitors using the manufacturers’ literature before deciding on a
purchase. For the purposes of this book, it is the preceding features
that are important.

INTRODUCTION TO THE EXPERIMENTS

The experiments in this chapter are designed to acquaint you with
some of the concepts that were introduced. You will also become
familiar with your microcomputer. Before starting the experiments
consult your user’s guide to make the necessary power connections.
Also read the sections in that manual that describe how to display
and modify the contents of any memory location. The three micro-
computer systems require different keystrokes to accomplish this
operation, and there is not sufficient space here to warrant including
the instructions for each of the different microcomputers.

EXPERIMENT NO. 1
Step 1

Apply power to your microcomputer and press the RESET button.
The display should light. If it does not, check your connections with
the instructions in your user’s manual.

Step 2

Examine the contents of the location whose address is $0000. You
will have to press the “0” key at least four times, once for each of
the hexadecimal digits that represent the address of this location.
What data are found in this location?
Step 3

Enter the hexadecimal number $55 in location with address $0000.

Step 4

Now examine and modify the contents of $03FF; that is, load $33
into the location whose address is $03FF.

Step 5
Return and examine the contents of $0000. What do you find there?

(You should find that the number $55 is still there.)

Step 6

Remove the power supply connections to your microcomputer
or turn the power off. Turn it back on again, then examine the con-
tents of locations $0000 and $03FF. What do you find?

(You will not find $55 in $0000 or $33 in $03FF because removing
power to an R/W memory location destroys the contents of that lo-
cation.)

EXPERIMENT NO. 2
Step 1

Using the memory map for your microcomputer (see Figs. 1-5,
1-6, and 1-7), identify an ROM location.

($1800 is an ROM location in the KIM-1, $8030 is an ROM location
in the SYM-1, and $F947 is an ROM location in the AIM 65.)
Step 2

Examine the locations given above for your microcomputer. What

byte of data do you find there?

(You should find a $A9 in the location mentioned.)

Step 3

Remove power, then examine the ROM location again. What do
you observe?

(You should observe that the data are unchanged by a loss of
power.)

Step 4

Using the same ROM location, attempt to modify the data at
that address by writing a $FF to it. What do you observe?

(You should not be able to modify the contents of any ROM lo-
cation.)

26

EXPERIMENT NO. 3
Step 1

Examine the contents of location $13FF. What is the byte of data
found at this location?

Step 2

Modify the contents of $13FF; that is, load some hexadecimal
number such as $99 into this location. What do you observe?

(You should observe that you are unable to load any data into this
location because it contains no memory device. Off-the-shelf KIM-1s,
AIM 65s, and SYM-1s have no memory devices at this location.)

27

CHAPTER 2

Writing and Executing
Simple Programs
Using Data Transfer
Instructions

OBJECTIVES
At the completion of this chapter you should be able to:

e Understand the terms: instruction, op code, mnemonic, pro-
gram, assemble, load, execute, program counter, labels, and
symbols.

¢ Use the following addressing modes: immediate, absolute, zero
page, and implied.

e Use these instructions: LDA, STA, LDX, STX, LDY, STY, TAX,
TAY, TXA, TYA, and BRK. See Table 2-1 for a summary.

® Write, assemble, load, and execute short programs using the
data transfer instructions and the BRK instruction.

e Use the single-step mode for executing a program.

INTRODUCTION

You are urged to learn as many of the 6502 instructions as possible.
Although you will find that you can begin to write programs with
only a few instructions, fast and efficient programs for complex
tasks require a thorough understanding of the entire 6502 instruction
set and the various addressing modes. Some instructions and ad-

28

Table 2-1. Summary of Instructions and Op Codes
Introduced in Chapter 2

Addressing Mode
Instruction Description Immediate | Absolute | Zero-Page | Implied

LDA Load Accumulator with A9 AD A5
Memory

STA Store Accumulator in Memory 8D 85

LDX Load X Register with Memory A2 AE A6

STX Store X Register in Memory 8E 86

LDY Load Y Register with Memory AO AC A4

STY Store Y Register in Memory 8C 84

TAX Transfer Accumulator to X AA
Register

XA Transfer X Register to 8A
Accumulator

TYA Transfer Y Register to 98
Accumulator ’

TAY Transfer Accumulator to Y A8
Register

BRK Force Interrupt 00

dressing modes are more efficient than others. More efficient pro-
grams generally run faster and take fewer memory locations for
storage of the program. It is the program that controls all of the
activity of a microcomputer.

Before describing instructions in detail, it might be worthwhile
to give the reader an overview of the 6502 instruction capabilities.
In other words, what can the 6502 do? A listing of the 6502 instruc-
tions by categories, with simple descriptions of each one, is given
in Table 2-2. A cursory examination of this table indicates that the
6502 can transfer information from a memory location to an in-
ternal register and vice versa; it can do simple arithmetic operations;
it can perform a variety of logical operations; it can test for certain
conditions and branch to another part of the program depending on
the outcome of the test (the branch and test instructions); the 6502
can shift the contents of memory locations and registers; and it can
perform a variety of other operations, including doing nothing (the
NOP instruction). The reader is not expected to fully comprehend
the instruction set at this time. The purpose of this book is to pro-
vide an in-depth understanding of the instructions as we progress
through the various chapters that explain and illustrate the instruc-
tions with a variety of programs.

MICROCOMPUTER INSTRUCTIONS

The basic elements of microcomputer programs are the instruc-
tions. A microcomputer instruction is a set of one, two, or three

29

Table 2-2. 6502 Instructions by Categories

LDA
LDX
LDY
TAX

TAY

ADC

AND
EOR

DEC
DEX
DEY
ASL
ROL

CMP

BIT

BCC
BEQ

BVC

CcLC
CLD
cu

CLv

JMP
JSR
BRK

PHA
PHP
XS

NOP

Data Transfer Instructions

Load Accumulator with Memory STA Store Accumulator in Memory
Load X Register with Memory STX Store X Register in Memory
Load Y Register with Memory STY Store Y Register in Memory
Transfer Accumulator to X TXA Transfer X Register to
Register Accumulator

Transfer Accumulator to Y TYA Transfer Y Register to
Register Accumulator

Arithmetic Operation Instructions
Add Memory to Accumulator SBC Subtract Memory from
with Carry Accumulator with Borrow
Logical Operation Instructions

AND Memory with Accumulator ORA OR Memory with Accumulator
EXCLUSIVE-OR Memory with
Accumulator

Shift and Modify Instructions

Decrement Memory by One INC Increment Memory by One
Decrement X Register by One INX Increment X Register by One
Decrement Y Register by One INY Increment Y Register by One
Shift Left One Bit LSR Shift Right One Bit
Rotate Left One Bit ROR Rotate Right One Bit

Test Instructions
Compare Memory and CPX Compare Memory and X Register
Accumulator CPY Compare Memory and Y Register

Test Bits in Memory with
Accumulator

Branch Instructions

Branch on Carry Clear BCS Branch on Carry Set
Branch on Result Zero BNE Branch on Result Not Zero
Branch on Result Minus BPL Branch on Result Plus
Branch on Overflow Clear BVS Branch on Overflow Set

Modify Processor Status Register Instructions

Clear Carry Flag SEC Set Carry Flag
Clear Decimal Mode SED Set Decimal Mode
Clear Interrupt Flag SEl Set Interrupt Flag

Clear Overflow Flag
Jump Instructions

Jump to New Location RTS Return from Subroutine
Jump to Subroutine RTI Return from Interrupt Routine
Jump to Interrupt Routine

Stack Operation Instructions

Push Accumulator on Stack PLA Pull Accumulator from Stack
Push P Register on Stack PLP Pull P Register from Stack
Transfer X Register to Stack TSX Transfer Stack Pointer to X
Pointer Register

Do Nothing Instruction
No Operation

30

bytes which, when read into the microprocessor in the correct
sequence, causes it to carry out a specific operation. Three simple
examples are:

¢ Load a byte of data from the memory location with the ad-
dress ADH-ADL into the accumulator.

® Store the contents of the accumulator in a memory location
whose address is ADH-ADL.

o Add the byte of data stored at the memory location whose ad-
dress is ADH-ADL to the byte of data in the accumulator.

The first byte of an instruction determines the specific operation
to be carried out by the computer. In the three previous examples,
the second byte specifies the low-order byte of the address (ADL)
and the third byte specifies the high-order byte of the address
(ADH) of the location where the microprocessor is to find the data.

The particular instructions to which the 6502 responds are called
its instruction set. The 6502 instruction set is summarized in Table
2-3. This particular form of the instruction set is used extensively.
The 6502 is capable of carrying out 56 different operations, some of
which may be done in as many as eight different ways called ad-
dressing modes.

Since the first byte of an instruction determines the nature of
the operation as well as the addressing mode, it is these 8-bit
numbers that the user must know in order to program the micro-
processor. Because 8-bit numbers are difficult to remember and
recognize, one seldom sees the binary representation of instructions.
Instead, they are most often represented in a hexadecimal format.
The hexadecimal equivalent of the first byte of an instruction will
be called the operation code or op code. Furthermore, as an aid in
programming, each instruction is given a mnemonic which is an
abbreviated name suggestive of the operation to be performed. Two
other descriptions of instructions are commonly used. One is the
logical expression and the other is an English language description.
The four ways of describing an instruction are illustrated in Ex-
ample 1 for three different instructions.

Example 1: lllustration of Four Ways of Describing an Instruction

Mnemonic Logical Expression Op Code Description

LDA M- A AD Load the accumulator, A,
with a byte from memory,
M.

STA A->M 8D Store the contents of the
accumulator, A, in mem-
ory, M.

ADC A+M+C>A 6D Add the byte in memory

to the contents of the ac-
cumulator. Add the carry;
result into A.

31

Te

Table 2-3. 6502 Instruction Set Summary

INSTRUCTIONS IMMEDIATE | ABSOLUTE | ZERO PAGE | ACCUM IMPLIED | (IND,X) | (IND).Y |2 PAGE. X [ABS. X ABS,Y | RELATIVE | INDIRECT | Z PAGE,Y E:?,E?s"“'““‘

MNEMONIC DPERATION OP[n | # JOP| n | #|OP[n|#]OP{n|#]OP|n|#|OP|n|w|OP|n|w|OP|n|a|OP|n|w|OP|n| u|OP[n]w]|OP|n| #|OP n "L?/ﬁ.‘aaof;g

ADC A+M+C—-A (@(N]69]| 2|2 |6D| 4|3 |65 3|2 61 6|2]|71| 5|2 75| af2 (7D a{3[79] 4|3 NV....2cC| AaDC
AND AAM—~A MJ29| 2|2 |2D| 43|25/ 32 21 6|2(31) 5|2 135|4)2 |30 43 39|43 N« ++ .+ +2+| AND
ASL c{—9-0 OE| 63 |06| 5|2 JoA| 21 662 |1€| 7|3 N.....zcCc|laAasL
BCC BRANCHONC =0 (2) 0|22 « + s s s« s s |l BCC
BCS BRANCHONC = 1 (2) BO| 2| 2 e s s s e+ o]l BCS
BEQ BRANCHONZ =1 (2) FO| 2| 2 + s s s e e s | BEQ
BT AAM 2c| 432432 MMge « + = 2| BIT
BMI BRANCHONN = 1 (2) 0|22 N X
BNE BRANCHONZ = 0 (2 ool 2] 2 e e e e e e . ol BNE
BPL BRANCHONN = 0 (2) 0] 2]2 e e e e e e el BRPL
BRK BREAK 00|71 e+ o1 « 1« ¢ BRK
BvVC BRANCHONV = 0 (2 50|22 N X T
BVS BRANCHONV = 1 (2) 70|22 i e v e e o] BYS
cLC 0~-C 1821 e s s s s .0l CLC
cLD 0-0 08| 2|1 e+« e« 0> CLD
[0~ 5821 e e a0l Ccun
cLv 0-v 88| 2| 1 R I AR
CMP A-M c9| 2|2 |co|4|3]cs|3]2 ci6|2|o1fs]|2|os{4]|2|oD| 4|3|D9fa] 3 N.....2cCc|lcCmp
CPX X-M E0| 2|2 |ec|a|3|Ea|3 |2 N.....2c|lcepx
cPY Y-M Col 2| 2|cc| 4] 3[csa[3] 2 N.....z2clcpyY
DEC M-1-M CE| 6 [3]|C6| 5| 2 D6| 6| 2|0E| 7|3 « e+ s+ 2. DEC
DEX X-1-X CA|l 2|1 Neo+ooo2.]DEX
DEY Y-y 88| 2|1 N.++o+.2.|DEY
EOR A¥YM-—-A (1y[49| 2| 2 |4D| 4 | 3]a5| 31 2 41/ 612151 | 5| 2|55(4|2|5D0| 4 (35943 N.:+:+0++2+| EOR
I'NC M+ 1-M EE| 6 [3]|E6| 5|2 F6[6 | 2 |FE| 7 (3 Ne..+.+ o2+l INC
1N X X+ 1-=X e8| 2|1 e e e e e Z o] INX
INY Y-y csl2|1 N+ o+ oo Z«]INY
IJMP JUMP TO NEW LOC 4|33 6C| 5|3 N T
JSR JUMPSUB 2016 |3 e « e e o e e sl USSR
LDA M-~ A (1) |AS9! 2| 2 JAD| 4 [3|AS| 3|2 A1l 6|2yB1|5|2|B5|4|2|BDj4[3]B3| 4|3 N+ e+ e+« 2| LDA

(4

IF iN DECIMAL MODE. Z FLAG IS INVALID
ACCUMULATORMUST BE CHECKED FOR ZERO RESULT

MEMORY PER STACK POINTER

L M=X) |az]| 2| 2 |ae A6 se|af2|N- - Z2-]LDX
L M-—-Y 1) Jao] 2| 2 |AC| 4 A4 B4 4| 2|BC| 4 N o« o oo Z o LODY
L o~ @¥-cC 4 3|46 2 56| 6| 2|se| 7 0+« .+ ¢+ 2C|LSR
N NO OPERATION EA e e e e o] NOP
o AVM=A 09| 2| 2 |op 05 15| 4| 2|0f4 Ne+«+ooZ2:] ORA
P A~ Ms §-1-8 48| 3 e e o s ool PHA
P P=Ms S-1-8 08| 3 « e v s e s s sl PHP
PLA S+1-8 Ms—~A 68| 4 Ne-+coz:]PLA
PLP S+1=8S Ms =P 28| 4 (RESTORED) PLP
ROL [a-c- %| 6 2 2 36| 6| 2|37 N:-++-2C|lROL
ROR - 9 663 fes| s |2 2 6] 2]€| 7 N- -+ -2c| ROR
RTH RTRN INT 40 (RESTORED) RTI
RTS RTAN SUB 60 N I
sBC A-M_-T-aA o |es| 2|2 Jeo ES Fs| 4| 2|Fp| o NVe.---2@ sBC
SEC 1-C 38 B XX
SED 1-D 8 i1 ... sED
S E ! =1 78 . . - - 1. | sE
STA A=M 80| 4| 3|85 95| 4| 2]e0|s e e e i dlsTA
ST x X=-M BE 86 olal2le - o oo oo sTx
sTY Y-M 8C 3|64 9| af2 e e e e sTY
TAX A=X AA| 2 N+ ez T1TAX
TAY A-Y a8l 2 Nz]TAY
Tsx s~X BA| 2 NeoooozdT8x
TXA X=A BA| 2 N - e e vz |l TXxA
TXS x-~5 9a| 2 N R T
TYa YA 9| 2 N2 TYA

(1) ADD110"N" IF PAGE BOUNDARY 1S CROSSED X INDEX X ADD M, MEMORYBIT7

DD 2T0 N IF BRANGH OCCURS T0 DIFFERENT PAGE romeey o swerer M MeworveiTe

(33 CARRY NOT = BORROW M MEMORY PER EFFECTIVE ADDRESS vV OR # NO.BYTES

v

EXCLUSIVE OR

15

Courtesy Rockwell International

ADDRESSING MODES

Study the instruction set summary in Table 2-3. The first column
gives the instruction mnemonic, the second gives the logical ex-
pression, and the remaining 13 columns list the op codes for the
various addressing modes. In addition to the op code, the 13 columns
list the number of clock cycles, N, that each instruction requires for
execution. The cycle time of the 6502 is typically 1 microsecond,
so the total length of time required to execute an instruction is N
microseconds. The number of bytes (#) in each instruction is
also given.)

The names of the various addressing modes are found at the
heading of each column, for example IMMEDIATE, ABSOLUTE,
ZERO-PAGE, etc. Addressing modes are one of the more confusing
concepts for the beginner, and only a simplified explanation is
given at this point. Very briefly, the addressing mode is related
to where and how the microprocessor locates the data upon which
it operates.

Suppose we are dealing with the LDA instruction which is “load
a byte of data from memory into the accumulator.” Where does the
microprocessor get the byte upon which it is to operate?

¢ In the ABSOLUTE mode, the second and third bytes of the in-
struction specify the address of the memory location where the
data is located. Assume the data is in location $1703. Then the
complete LDA instruction is specified by the three hexadecimal
numbers, AD 03 17.

¢ In the ZERO-PAGE mode, the second byte of the instruction
specifies the low-order byte of the address in page zero (first 256
addresses) where the data is located. Suppose the data is in
location $003F. Then the complete LDA instruction is specified
by the two hexadecimal numbers, A5 3F.

¢ In the IMMEDIATE mode, the second byte of the instruction
is the data. Assume we want to load the accumulator with the
value $7F. The complete LDA instruction is specified by the
two hexadecimal numbers, A9 7F.

Each addressing mode requires a unique op code, even though the
same instruction is involved. This can be seen from the preceding
explanation where the LDA instruction had op codes of $AD, $A5,
and $A9, depending on the addressing mode. Refer to Table 2-3
and notice that the LDA instruction had a total of eight op codes,
one for each of its eight addressing modes.

When, in the process of executing a program, the microprocessor
reads the op code, it decodes or interprets that unique bit pattern
to determine the nature of the instruction and the addressing mode.

34

The meaning of the remaining bytes of the instruction are also de-
termined at the same time. If it reads an op code of $AD, it knows
that there will be two more bytes in the instruction, and that they
will be the ADL and ADH of the location of the data to be loaded
into the accumulator. You can more fully understand the instruction
decoding process carried out by the 6502 if you study Butterfield’s!
op-code chart (Chart 2-1). Sometimes this format is more useful
than the standard chart shown in Table 2-3.

Not all instructions have the same set of addressing modes. For
example, the TAX instruction does not have any of the addressing
modes described above for the LDA instruction. The TAX instruc-
tion, when executed by the microprocessor, transfers the contents
of the accumulator to the X register. These registers are internal to
the 6502, hence they have no address. The op code contains all the
necessary information for the instruction to be executed, since no
addressing information is required. This addressing mode is called
implied addressing, since the instruction itself implies both the
source and destination of the data. All instructions using the im-
plied addressing mode are single byte instructions. Other addressing
modes will be covered in subsequent chapters.

THE MICROCOMPUTER PROGRAM

A microcomputer program is an ordered set of instructions de-
signed to accomplish an objective. Some examples of program ob-
jectives are:

e Multiply two 8-bit numbers.

® Measure the time interval between successive logic-zero to
logic-one transitions at an input port.

e Convert serial data on a telephone line to a printed output on a
teletypewriter.

¢ With appropriate sensors in the left-turn lanes and side streets,
control a traffic light to optimize the flow of traffic through a
busy intersection.

* Produce a digital representation of an analog voltage level using
an analog-to-digital converter, display the result using bed-to-
seven-segment display decoders, and up-date the result every
five seconds.

® Execute commands and instructions in FORTRAN. Such a
program is called an interpreter.

Clearly, the objectives of some programs are very simple and can
be accomplished with a few instructions, while others require long

1Butterfield, Jim, “6502 Op-Codes,” 6502 User Notes, No. 13 1979, p. 6.

35

9¢

Chart 2-1. 6502 Op Codes Arranged in Logical Order

IMM ZPAG ZX ZY ABS AX AY IMM ZPAG ZX ABS AX
2 2 2 2 3 3 3 2 2 2 3 3
ASL 06 16 OE 1E BIT 24 2¢
ROL 26 36 2E 3E STY 84 94 8C
LSR 46 56 4E 5E LDY AO A4 B4 AC BC
ROR 66 76 6E 7E cPY co c4 cc
STX 86 9 8E cPX £0 E4 EC
LDX A2 A6 B6 AE BE -
DEC cé D6 CE DE Misc. -0, -4, -C
INC E6 F6 EE FE
Op Code Ends in -2, -6, or -E
IMM ZPAG ZX (LX) (Y ABS AX AY BPL 10 BMI 30
2 2 2 2 2 3 3 3 BVC 50 | Bvs 70
orA | 09 05 15 ol 1 o 1D 19 ::: ;g ::; ig
AND | 29 25 35 21 31 2D 3D 39
EOR 49 45 55 41 51 4D 5D 59 Branches -0
ADC | 69 65 75 61 7 6D 7D 79
STA 85 95 81 9 8D 9D 99
WA | A9 A5 BS Al Bl AD BD B9 ABS _ (IND)
cMP | co cs D5 1 DI o DD D9 ISR 20
SBC E9 E5 F5 El Fi ED FD F9 IMP | 4C 6C
Op Code Ends in -1, -5, -9, or -D Jumps
Single-Byte Op Codes -0, -8, -A
0. 1- 2. 3 4 5. - 7- 8 9- A B- c D- E- F
0 BRK RTI RTS
-8 PHP CLC PP SEC PHA CLI PLA SEl DEY TYA TAY CLV INY CLD . INX SED
A | ASL-A ROL-A LSR-A ROR-A TXA TXS TAX TSX DEX NOP

Courtesy 6502 User Notes. © 1979 E. C. Rehnke

sophisticated programs. The first example above can be implemented
with 10 to 15 instructions using about 30 bytes of memory, while
the last objective may require more than 8K bytes of memory for
the program.

The instructions are stored in memory and are ordered by their
addresses. In the 6502, there is a pair of registers known as the
program counter. They insure that the instructions are performed in
the proper sequence. The program counter contains the address
of the next byte of the program to be read. After each byte of a
program has been read from memory, the program counter is incre-
mented by one to point to the memory address at which the com-
puter will find the next program byte. Exceptions to this occur
only in the case of subroutines and interrupts. These topics will be
covered in Chapter 9.

A SIMPLE PROGRAM

An illustration will help at this point. Suppose the object of a
program is to transfer the contents of the location whose address is
$0300 to the memory location whose address is $02FF. A program
to accomplish this is shown in Example 2. The program requires
six bytes of memory, its starting address is $0200, and it requires
only two instructions. The LDA instruction is contained in the first
three bytes of the program, and the STA instruction is contained
in the last three bytes.

Example 2: A Simple Data Transfer Program

Location Contents Comments
0200 AD Fetch the contents of the location whose
0201 00 address is $0300 and place them in the accumulator.
0202 a3
0203 8D Store the contents of the accumulator in the
0204 FF memory location whose address is $02FF.
0205 02

If the program counter in the 6502 is initialized to $0200, the
starting address of the program, then the 6502 will execute the
program. As far as the 6502 is concerned, the actual location of the
program or its starting point makes no difference. However, it is
absolutely necessary that each byte of an instruction, and the in-
structions themselves, be in the proper order.

The activity on the address and data buses of the microcomputer
during the execution of the program in Example 2 may be described
by referring once again to Example 2 and also Figs. 2-1 and 2-2.
Assume that the microprocessor system clock is running at 1 mega-
hertz, or each clock cycle takes 1 microsecond. (Detailed timing
considerations will be discussed in Chapter 12.)

37

ACCUMULATOR)
HEEEEEEE
7% i

5 4 3 2 1

(Y INDEX REGISTER STACK POINTER

IIIIlIZLlLOIIIIIIIILOI

7 6 5 4 3 7 6 5 4 3 2 1
PROCESSOR STATUS

X INDEX REGISTER REGISTOR-P REGISTER
LT T T T T T] [wfv] [efofife]e]
7 6 5 4 3 2 10 7 6 5 4 3 2 1 0
PROGRAM COUNTER HIGH-PCH PROGRAM COUNTER LOW-PCL

HEEEEEEE L EEEENEEE
7 6 5 4 3 2 1 0

\15141312111098

= >~ g
[_ ADDRESS BUS DATA| |BUS
CLOCK
\
Rw MEMORY| [1/0 PORTS
AND DDR
ROM MEMORY] | AND TIMERS
Fig. 2-1. Model of 6502 Microprocessor.
 CYCLEL CYCLE 2 CYCLE3 CYCLE4
OP-CODE FETCH FETCH ADL FETCH ADH FETCH DATA
6502
CLOCK
%—sozoo ! 30201 } 30202 % $0300 f;ggms
L | \ | _{DATA
AD C
| $ — $00 | $03 i~ CONTENTS OF 0300~ gl

Fig. 2-2. Activity on Address Bus and Data Bus by clock cycles during LDA instruction.

38

During the first clock cycle, the contents of the program counter
(PCH-PCL = $0200) are placed on the address bus, and the
6502 reads the op code on the data bus. The program counter
is incremented to $0201.

During the second clock cycle, the contents of the program
counter, now $0201, are placed on the address bus, the ADL
($00) is fetched from location $0201 and appears on the data
bus, the op code is interpreted by the microprocessor, and the
program counter is incremented.

During the third clock cycle, the contents of the program
counter ($0202) appear on the address bus and the ADH ($03)
is fetched from location $0202. The program counter is incre-
mented again.

During the fourth clock cycle, the ADH-ADL = $0300 appears
on the address bus. The byte of data in location $0300 is placed
on the data bus, and is clocked into the 6502 at the conclusion
of this cycle.

During the fifth clock cycle, the contents of the program
counter, now $0203, are placed on the address bus, the next
op code ($8D) is read from location $0203, the program
counter is incremented, and the previous instruction is imple-
mented in the microprocessor. This last step means the byte of
data read during the fourth clock cycle is moved into the
accumulator.

During the sixth clock cycle, $0204 appears on the address bus
to fetch the ADL ($FF) of the destination location. The op
code fetched during the fifth cycle is interpreted, and the pro-
gram counter is incremented again.

During the seventh clock cycle, $0205 appears on the address
bus to fetch the ADH ($02) of the destination location. The
program counter is incremented.

During the eighth clock cycle, the ADH-ADL = $02FF is on
the address bus, the microprocessor places the contents of the
accumulator on the data bus, and the control lines clock the
data into location $02FF.

This completes the program of Example 2, amounting to eight
clock cycles or 8 microseconds. Note from Table 2-3 that both the
LDA and STA instructions require four cycles in the absolute ad-
dressing mode, which checks with our analysis above. To find the
time necessary for an instruction to be executed, multiply the num-
ber of clock cycles, N, from Table 2-3 by the clock period (as we
multiplied 8 clock cycles times 1 microsecond to obtain 8 microsec-
onds in this example). The length of a program is the sum of the
time intervals required for each of the instructions.

39

WRITING A PROGRAM

As a matter of fact, programs are not written in the form illus-
trated in Example 2. The procedure for writing a program is out-
lined as follows:

e Have the objective clearly in mind and, if necessary, flowchart
the steps required to achieve the objective.

e Write an assembly language version of the program using labels
for addresses, mnemonics for instructions, and symbols for ad-
dresses of memory locations that store data.

e Translate the program into hexadecimal machine language.

These ideas will be illustrated shortly. For the moment we will con-
centrate on the assembly language program which will be arranged
in four columns.

e The address of the first byte of any instruction may have a
name called a label. Labels are found in the first column.

¢ The second column contains the instruction mnemonic.

e The third column is the operand. It is empty if a single byte
instruction is involved. It may be a byte of data if the immedi-
ate addressing mode is used. It may be a symbol for a location
where a byte of data is found. It may be a label, symbolizing
a program address.

® The fourth column contains comments that interpret or clarify
the instruction.

To illustrate, consider the program in Example 2 whose object was
the transfer of a byte of data from location $0300 to location $02FF.
Let address $0300 be represented by the symbol LOCI, and let
address $02FF be represented by the symbol LOC2. The choice of
symbols is up to the programmer. Assume that the starting address
of the program is represented by the label START. Then the as-
sembly language version of this program is shown in Example 3.
The third column is called the operand column because it is either
the data to be operated upon, or it is the location of the data to be
used in an operation.

(Do not be overly concerned if you cannot comprehend all of
these facts at once. It will require several examples and perhaps a
re-reading before you begin to feel comfortable with these new
concepts.)

Example 3: Assembly Language Data Transfer Program

Label Mnemonic Operand Comments
START LDA LOC1 Load the data at LOC1 into A.
STA LOC2 Store the contents of A at LOC2.

Step three in writing a program consists of translating the labels,
mnemonics, and symbols into their hexadecimal equivalents. This
translation is called a machine language program because it is in
the form used to load it into the microprocessor. The machine lan-
guage version is usually placed directly to the left of the assembly
language version. The completed program with which we have been
working is given in Example 4.

Some microcomputers have programs that convert mnemonics
entered on keyboards to machine language. Such programs are
called assemblers. Some assemblers have extensive error detection
techniques programmed into them, and they will handle symbol
tables, labels, and branch calculations. Others, like the one in the
AIM 65 monitor, simply convert mnemonics to op codes and enter
the program into memory.

Example 4: Completed Data Transfer Program Using Absolute Addressing

Location Instruction Label Mnemonic Operand Comments
0200 AD 00 03 START LDA LOC1 Load the contents of
$0300 into A.
0203 8D FF 02 STA LOC2 Store the contents of A
at $02FF.

Shortly we will describe several programs that perform data
transfers, using several of the addressing modes previously men-
tioned. Before that, we note that the instructions, op codes, and
addressing modes of all of the instructions introduced in this chapter
are itemized in Table 2-1. Also, refer again to the form of the pro-
gram in Example 4, which is the form of all of the programs in
this book. While the form of programs varies from book to book, no
confusion is likely to occur with the form we have adopted. You may
think that the address skips two locations, from $0200 to $0203.
Actually, location $0200 stores the $AD, location $0201 stores the
$00, and location $0202 stores the $03. The entire instruction is
on a single line. The label refers to the first byte of the instruction,
and the remaining bytes of the instruction must be stored at im-
mediately subsequent locations in memory. In the examples that fol-
low, the headings used to identify the columns in Example 4 will be
omitted. However, the columns in subsequent examples will contain
the corresponding information.

The program given in Example 5 illustrates the LDA instruction
in the immediate addressing mode. The assembly language version
will contain the byte of data whenever immediate addressing is
used, and in Example 5 observe that the data byte “$00” appears
in the first instruction. After the program has executed, both loca-
tions $0300 and $0301 will contain $00.

11

Example 5: Data Transfer Program lllustrating Immediate Addressing
Object: Store $00 in locations $0300 and $0301.

0208 A9 00 START LDA $00 Load A (immediate) with $00.
020A 8D 00 03 STA MEMI1 Store the contents of A in location $0300.
020D 8D 01 03 STA MEM2 Store the contents of A in location $0301.

In Example 6 the immediate addressing mode is used for the LDA
instruction, while the zero-page addressing mode is used for the
STA instruction. The advantage of using page zero of memory for
storing data is that zero-page addressing requires only two instruc-
tion bytes in the program, compared to the three bytes required
in the absolute addressing mode, and zero-page addressing requires
one less clock cycle than absolute addressing.

Example 6: Data Transfer Program Using Zero-Page Addressing Mode
Object: Store $FF in locations $0000 and $003F.

0212 A9 FF ORIGIN LDA $FF Load A with $FF (immediate mode).
0214 85 00 STA LOZ1 Store A in zero-page location $0000.
0216 85 3F STA 1022 Store A in $003F (zero-page mode).

Example 7 illustrates a data transfer using the X register, and
Example 8 illustrates a data transfer using the Y register. The LDX
instruction uses the zero-page addressing mode, while the LDY
instruction uses the immediate addressing mode. In long programs
with many symbols, the program is usually preceded by a symbol
table in which the symbols are related to the addresses they
symbolize. Although the length of the programs in Examples 7 and
8 does not warrant a symbol table, we have included them to il-
lustrate the point.

Example 7: Data Transfer Program Using the X Register

Object: Transfer the contents of location $0000 to location $03FF without using the
accumulator.

$0000 = LOZ

$03FF = MEM

021A A6 00 START LDX LOZ Load the X register with the contents
of location $0000.

021C 8E FF 03 STX MEM Store X in $03FF.

Example 8: Data Transfer Program Using the Y Register

Object: Load locations $0000 to $0002 with $7F without using the X register or the
accumulator.

$0000 = HERE

$0001 = THERE

$0002 = LOCT

0221 AO 7F BEGIN LDY $7F Load the Y register with $7F.
0223 84 00 STY HERE Store Y in $0000.

0225 84 01 STY THERE Store Y in $0001.

0227 84 02 STY LOCT Store Y in $0002.

42

PROGRAM NAME PAGE OF

PROGRAMMER DATE
INSTRUCTION
ADDRESS Bl B2 B3 LABEL MNEMONIC OPERAND COMMENTS

Fig. 2-3. Sample programming form.

A programming form is of considerable help in writing programs.
One possible form is shown in Fig. 2-3.

LOADING AND EXECUTING A PROGRAM

Once a program has been written in assembly language and trans-
lated into machine language, it is ready to be loaded into the
microcomputer. This means that, beginning with the starting ad-
dress of the program, the program bytes are stored in successive
locations in memory. In the case of the KIM-1, AIM 65, and SYM-1
this is accomplished with the keyboard and the display. All micro-
computers with monitors will have some means of loading and
executing a program.

To execute the program, the program counter must be initialized
to be identical to the address of the first byte in the program. In
the SYM-1, KIM-1, and AIM 65, the monitors have the ability to
initialize the program counter to the correct value. Consult your
user’s manual for the proper initialization procedure.

THE BRK INSTRUCTION

Since the 6502 does not have a HALT instruction, another tech-
nique is used to end the demonstration programs that we will use.
The last instruction in the program will be a single-byte instruction
called BRK. BRK has an op code of $00. Its effect is described as
follows:

¢ Upon reading and decoding the BRK instruction, the micro-
processor reads a location symbolized by IRQL to get the low-

43

order byte for the program counter and the next location,
IRQH, to get the high-order byte for the program counter.

e The program continues execution with these new values in the
program counter, that is, at the instruction whose address is
PCH-PCL.

In the KIM-1, the addresses for IRQL and IRQH are $17FE and
$17FF, respectively. In these locations you must load $00 and $1C,
respectively. The address $1C00 is an address in the KIM-1 monitor.
Therefore, upon reading and executing the BRK instruction, the
KIM-1 will continue its execution in the monitor. This prevents
the microcomputer from wandering off to perform “nonsense” in-
structions that are generated as patterns of binary digits when the
power is applied to the computer. The SYM-1 and AIM 65 operate
in a similar way except that IRQL and IRQH are preloaded by the
RESET button, and the user need not load these locations himself.
Example 9 illustrates how our first program, the one given in Ex-
ample 4, is modified to include the BRK instruction.

Example 9: Data Transfer Program Illustrating the BRK Instruction
Object: Transfer the contents of location $0300 to location $02FF. End the program
with a BRK instruction.

$02FF = LOC2

$0300 = LOC1

$17FE = IRQL; KIM-1 users load with $00.

$17FF = IRQH; KIM-1 users load with $1C.

0200 AD 00 03 START LDA LOCI1

0203 8D FF 02 STA 10C2

0206 00 BRK Break to the monitor.

The reason for using a BRK instruction as opposed to a jump to
the monitor instruction is that all of the important registers in the
6502 are saved when the BRK to the monitor instruction is used.
The AIM 65, SYM-1, and KIM-1 all give the user the ability to
examine these registers after a BRK instruction. Each system has a

Table 2-4. Addresses of Locations Where the Monitor
Stores 6502 Registers

Monitor Storage Locations

Register Name Symbol KIM-1 AIM 65 SYM-1
Program Counter Low PCL $00EF $A425 $A659
Program Counter High PCH $00F0 $A426 $A65A
Accumulator A $00F3 $A421 $A65D
X Register X $00F5 $A422 $A65E
Y Register Y $00F4 $A423 $A65F
Processor Status P $00F1 $A420 $A65C
Stack Pointer SP $00F2 $A424 $A65B

different means of displaying the registers, so the user is referred
to the respective system manual for details. Table 2-4 lists the ad-
dresses of the locations where these registers are saved.

THE SINGLE-STEP MODE

The monitors and control circuitry of the KIM-1, SYM-1, and
the AIM 65 microcomputer systems allow the user to execute a
program one instruction at a time. This feature is very useful in
debugging programs, because the user can examine the effect of
each instruction as it is executed. The user may also examine the
contents of each of the 6502 registers after an instruction has been
executed, because in the single-step mode, the monitor stores the reg-
isters in the locations shown in Table 2-4. Each of the three systems
mentioned has a somewhat different technique of implementing the
single-step mode; the user is referred to the appropriate system
manual for details.

INTRODUCTION TO THE EXPERIMENTS

The purpose of the experiments in this chapter is to teach you to
load and execute simple programs. You will also examine the con-
tents of the locations which are modified by the data transfer in-
structions, and you will be asked to write simple programs. KIM-1
users should refer again to the Single-Step Mode section to set up
the IRQH and IRQL locations before they begin.

EXPERIMENT NO. 1
Step 1

Load the program of Example 4 into memory. For convenience
we list the program.

0200 AD 00 03 START LDA LOC1
0203 8D FF 02 STA LOC2
0206 00 BRK

Step 2

Put $00 in location $02FF. Refer to your user manuals if you do
not remember how to examine and modify the contents of a location.
Step 3

Put $33 in location $0300.
Step 4

Initialize the program counter to $0200 using your manual in-
structions, then execute the program.

Step 5

After the program has been executed, the display will light. Now
examine the contents of locations $02FF and $0300. What do you
observe in each location?

(We observed a $33 in both locations $02FF and $0300, indicating
that the program had transferred the contents of location $0300
to location $02FF. Recall that location $02FF contained $00 before
the program was executed.)

EXPERIMENT NO. 2
Step 1

Load the program given in Example 5. A listing is given below
for convenience.

0208 A9 00 START LDA $00
020A 8D 00 03 STA MEMI
020D 8D 01 03 STA MEM2
0210 00 BRK

Step 2
Put any nonzero value in locations $0300 and $0301.
Step 3

Run the program, then examine the contents of locations $0300
and $0301. What data are there?

(If the program was entered correctly you should find $00 in both
locations.)

Step 4

Change the second byte of the program to $7F, then rerun the
program. What do you observe in locations $0300 and $0301?

(Since the first instruction is an LDA in the immediate mode, $7F

is first transferred to the accumulator and then loaded into locations
$0300 and $0301.)

46

EXPERIMENT NO. 3
Step 1
Load the program given in Example 6. A listing is provided here.

0212 A9 FF ORIGIN LDA $FF

0214 85 00 STA LOZ1
0216 85 JF STA LOZ2
0218 00 BRK

Step 2

Execute the program and examine locations $0000 and $003F.
What data are stored in these locations?

(You should find $FF in both of these zero-page locations.)

Step 3

Change the byte at $0213 to $00. Run the program again. Predict
what data you will find at locations $0000 and $003F.

(You should find $00 in these locations.)

EXPERIMENT NO. 4
Step 1
Put $FF in location $0000.

Step 2

Load the program listed in Example 7. Omit the BRK command
at location $021F. Put anything at location $021F except $00. Run
the program, then describe what happens. A listing is as follows.

021A A6 00 START LDX LOZ
021C 8E FF 03 STX MEM
021F 00 BRK

(We observed on the KIM-1 and AIM 65 that the display remained
dark, and we could not tell when or if the program executed

properly.)

Step 3

Press the reser key. Examine location $03FF. Did the program
work?

(We found that the program had worked.)

47

Step 4

Insert the BRK instruction at location $021F and run the program
again.

EXPERIMENT NO. 5
Step 1

Load the program in Example 8. A listing is provided. Execute
the program.

0221 AO 7F BEGIN LDY $7F

0223 84 00 STY HERE
0225 84 01 STY THERE
0227 84 02 STY LOCT
0229 00 BRK

Step 2
Examine locations $0000 to $0002. What do you find there?

(If the program works vou should find $7F in all three locations.)

Step 3

Single-step through the program to make sure you understand
the single-step mode of your microcomputer.

EXPERIMENT NO. 6
Step 1
Write a program to load the accumulator with the contents of
location $0000, the X register with the contents of location $0200,
and the Y register with the contents of location $0300. Locate your
program from location $022A upward. End your program with a
BRK instruction.

(Your program should look something like this:

022A A5 00 START LDA MEMZ
022C AE 00 02 LDX LOC
022F AC 00 03 LDY STG
0232 00 BRK)

Step 2

Load location $0000 with $11, location $0200 with $22, and loca-
tion $0300 with $33.

Step 3

Execute the program, and then examine the registers using the
monitor program in your microcomputer. Refer to Table 2-4 for
the addresses of the locations where the registers are stored.

Step 4

Use your monitor to modify the accumulator, X register, and Y
register locations so that they are all loaded with $00.

Step 5

Start the program again using the single-step mode. Examine
the contents of each register after each step in the program. You
should observe that each register changes after the instruction in
which it is modified is executed. Experience gained in “following a
register” through a program will be useful in debugging programs.

EXPERIMENT NO. 7
Step 1

Write a program to load the accumulator with $00, and then
transfer this information to both the X register and Y register.

(Your program should look like this:

0233 LDA $00
TAX
TAY
BRK

You can fill in the remaining addresses and op codes. Run the
program and examine the registers to see if your program works.)

49

CHAPTER 3

Simple Input/Output
Techniques

OBJECTIVES
At the completion of this chapter you should be able to:

® Understand the operation of memory mapped I/O ports.

e Use a data direction register to program an I/O port to either
input or output data.

e Use the INC, DEC, JMP, INX, INY, DEX, and DEY instruc-
tions. See Table 3-1 for a summary.

® Write programs with loops.

INTRODUCTION

The input/output operations of a microcomputer are fundamental
to any useful application. Some examples of the function of an input
port in a microcomputer system are:

® A key depression produces a voltage level on an input pin
corresponding to a binary zero. Software then inputs this volt-
age, determines which key on a hexadecimal keyboard has been
pressed, and converts the key value to its hexadecimal equiva-
lent.

e If the temperature exceeds a given value, a thermostat produces
a voltage level on an input pin corresponding to a binary one.
A program reads the input pin to test the temperature.

Two examples of the function of an output port are the following.

50

Table 3-1. Summary of Instructions and Op Codes
Introduced in Chapter 3

Addressing Mode
Instruction Description Absolute | Zero-Page | Implied | Indirect
INC Increment Memory by One EE E6
DEC Decrement Memory by One CE Cé
INX Increment X Register by One E8
DEX Decrement X Register by Cne CA
INY Increment Y Register by One Ccs
DEY Decrement Y Register by One 88
JMP Jump to New Location 4C 6C

¢ Light the appropriate segments in a seven-segment LED display
to indicate a hexadecimal digit.

¢ Turn a heating element off if a thermostat indicates a tempera-
ture above a given value.

The task of connecting electronic or mechanical devices to the
I/0O ports of a microcomputer is often called interfacing, although
this term also refers to the process of interconnecting the various
components of a microcomputer. Clearly, interfacing requires some
experience with electronics, and the interested reader is referred
to books in the Blacksburg Continuing Education Series, especially
the NCR Basic Electronics Course and Logic and Memory Ex-
periments (two volumes) published by Howard W. Sams & Co., Inc.,,
Indianapolis, IN 46268. Programming a microcomputer, including
the I/O operations, requires little, if any, background in electronics,
but any programmer would find such a background extremely usetul.

INPUT/OUTPUT PORTS

The purpose of an input port is to provide information for the
computer from the outside world. This is usually accomplished by
an external device, a photocell for example, controlling the voltage
level at one to eight pins on an integrated circuit. Typically a voltage
of near 5 volts corresponds to a binary one, while a voltage of near
zero volts corresponds to a binary zero. This integrated circuit is
connected to the data bus and the address bus of the microcomputer.
When the address of the input port is placed on the address bus by
the 6502, then the input port integrated circuit controls the logic
levels on the data bus, and the 6502 READS the binary number
represented by the voltage levels at the input port. These integrated
circuits are sometimes called “interface adapters.”

This mode of operation, in which input ports act like any other
memory device in the sense that they supply data to the 6502 only

51

when they are addressed, is called memory mapped input. As far
as the 6502 is concerned, an input port is simply another location in
memory, and it might just as well be a ROM or R/W memory lo-
cation because the microprocessor does not know the difference.

The purpose of an output port is to provide information from the
microcomputer to the outside world. An integrated circuit is con-
nected to the data bus and the address bus, like the case of the
input port. This integrated circuit has one to eight pins that may be
connected to external devices, a relay for example. The 6502
WRITES data to an output port by placing the address of the output
port integrated circuit on the address bus, while simultaneously
placing the byte of data intended for the output port on the data
bus. This data byte is usually stored in the integrated circuit that
acts as the output port, and it determines the voltage levels on the
output pins of this integrated circuit. A binary zero produces a
voltage level near 0 volts, while a binary one produces a voltage
level near 5 volts, perhaps with enough current capability to close
a relay for example.

This mode of operation, in which output ports act like R/W
memory devices in the sense that a byte of data can be written to
them only when they are addressed by the 6502, is called memory
mapped output. Again, the 6502 does not know whether it is writing
data to an R/W location or an output port; only the programmer
knows this.

To summarize, an input/output port is a location in memory that
can be used to transfer data either from the microprocessor to an
external device or from an external device to the microprocessor.
All the data transfer instructions described in Chapter 2 and all the
instructions you will learn in this and subsequent chapters may be
used either to read the data at an input port or to write data to an
output port. For example, an LDA INPUT instruction might be used
to read an input port where INPUT is a symbol for the address of
the port. A STA OUTPUT instruction might be used to write data
to an output port, where OUTPUT is a symbol for the address of
the port. Examples of I/O external devices include:

¢ Keypads and keyboards

® Transistors that drive LEDs, relays, speakers, or other electro-
mechanical devices

Integrated circuits, a 7490 decade counter for example
Mechanical switches

Phototransistors or photoresistors

Hexadecimal displays.

The 6502 uses memory mapped I/ O exclusively as compared to the
8080A which uses a special mode called accumulator I/O in addition

52

to memory mapped I/O. To reiterate, corresponding to each I/O
port is a set of pins, terminals, or connectors on the microcomputer
where the data are made available. The data are actually voltage
levels or current levels at a series of pins. A voltage of 5 volts cor-
responds to an I/O port data bit being a one, and a voltage of 0
volts corresponds to an I/O port data bit being a zero. The two
possible voltage levels are referred to in a variety of ways in com-
puter literature. These include +5 V or 0 V, high or low, V... or Gnd,
H or L, and logic one or logic zero. We prefer using the logic one
and logic zero description of voltage levels at an I/O port. Finally,
an I/O port normally consists of eight bits with their corresponding
pins, in other words one byte of data, but only one, two, three, or
even five bits may be used for interfacing purposes. For a more

extensive discussion of input/output port interfacing, see Chapters
11, 12, and 13.

1/O PORTS AND DATA DIRECTION REGISTERS

Input/output ports are implemented with integrated circuits
connected to the 6502 by the address bus, data bus, and control
bus. Refer to Fig. 3-1 for a number of details. In 6502 systems such
as the AIM 65, SYM-1, and KIM-1, the integrated circuits used for
I/O ports are so-called family chips such as the 6520, 6522, 6530,

T0 6502 T0 6502

= N

ADDRESS BUS

BIDIRECTIONAL DATA BUS

DECODING

CIRCUITRY
PORT A PORT B
DIRECTION DIRECTION
REGISTER v PADD PBDD REGISTER
LI T[T = HHEEEREEEE
PORT A l l PORT B
REGISTER PBD REGISTER
L | I]H———HHIITI

'

Y Y

PA7 PAG PAS PA4 PA3 PA2 PAL PAQ

PB7 PB4 PBS PB4 PB3 PB2 PBI PBO

Fig. 3-1. Block diagram of 6530 and 6522 1/O Ports. *See text.

53

and 6532 which not only perform I/O functions but also have
interval timers, R/W, or ROM locations on the chips. Although
these various chips differ considerably in their capabilities, they
have in common the ability to implement two I/O ports, each of
which may be programmed as either an input port or an output
port. In fact, each of the pins of a port may be either an input pin
or an output pin, independent of the other pins in the same port.

Corresponding to each pin or bit of an I/O port, is a bit in a data
direction register (DDR) which is also a location in memory.
These registers are located on the same integrated circuits that con-
tain the I/O ports. See Fig. 3-1 for a simplified model of the 1/O
port and DDR structure of the 6530 and the 6522 interface adapters.
The bit value in the DDR determines whether the corresponding
I/O bit will be an input bit or an output bit. A bit value of zero in
the DDR makes the corresponding port bit an input bit, whereas
a bit value of one in the DDR makes the corresponding port bit an
output bit. A data direction register also consists of eight bits or
one byte, and the microprocessor can read or write to a DDR just
as if it were a regular R/W memory location.

Not all integrated circuits used as input ports or output ports
are programmable, that is. may be programmed to be either an input
port or an output port. In Part II of this book we will illustrate
how to interface other integrated circuits that are designed to be
either input ports or output ports, but not both. Most 6502 family
interface adapter chips are programmable, but in some cases other
integrated circuits make less expensive I/O ports.

I/O PORT SYMBOLS

On the KIM-1, SYM-1, and AIM 65 microcomputers, the 1/O
ports are accessed at an edge connector called the applications
connector. In the remainder of this book, the two I/O ports which
are accessed at this 22/44 pin connector will be called Port A and
Port B. Refer again to Fig. 3-1. The pin connections for the two I/O
ports are identical in the three microcomputers: KIM-1, SYM-1,
and AIM 65. See Table 3-2 for pin identification. The individual
pins of Port A will be referred to as PA7, PAS,, PAO, while those
of Port B will be PB7-PB0. PB6 is not available for the user on either
the KIM-1 or the SYM-1 microcomputers. The address of Port A
will be symbolized by PAD, an acronym for Port A Data, and the
address of Port B will be symbolized by PBD. In the SYM-1 and
AIM 65 literature, these ports are named ORA and ORB, but no
confusion is likely to occur. The corresponding data direction regis-
ters will be symbolized by PADD, an acronym for Port A Data
Direction, and PBDD. The data direction registers are called DDRA

54

Table 3-2. Port A and Port B Pin Assignments
on the Applications Connector

Port A = PAD Pin Port B = PBD Pin
PA7 8 PB7 15
PA6 7 PB6* 17
PA5 6 PB5 16
PA4 5 PB4 13
PA3 2 PB3 12
PA2 3 PB2 1
PA1 4 PB1 10
PAO 14 PBO 9

*PB6 is not available on KIM-1 or SYM-1, but is available on AIM 65.

and DDRB in SYM-1 and AIM 65 literature. A summary of the loca-
tions in memory of the ports and their DDR are given in Table 3-3.
Let us illustrate some of the points mentioned. If a $FF is stored
in PADD. then all the bits in the DDR are ones, and all eight pins
of PAD are output pins, making it an 8-bit output port. If $00 is
stored in PADD, then all eight pins are input pins and PAD is an
8-bit input port. If $83 is stored in PADD, then pins PA7, PAl, and
PAO are output pins, while PA6-PA2 are input pins. A system reset
pulse clears the DDR (sets all bits to zero) and all the pins are
input pins. The system may be reset by pressing the RESET button
or key, or by a power-up condition. The task of the programmer is
to know which pins are supposed to act as outputs and, after reset,
to initialize the DDR by programming these registers accordingly.

Table 3-3. 1/O Port and Data Direction Register Addresses

KIM-1 SYM-1 AIM 65
Port A = PAD $1700 $A001 $A001
DDRA = PADD $1701 $A003 $A003
PORTB = PBD $1702 $A000 $A000
DDRB = PBDD $1703 $A002 $A002

INPUT/OUTPUT PROGRAMMING

In this section we list some programs that relate to the ideas
mentioned above. Note that the program comments take on a
different character than in the previous chapter. The comments do
not always describe the instruction, but rather they may suggest the
purpose or reason for the instruction. It will be assumed that you
have become familiar with the instructions so no further descrip-
tions are necessary. You should study the programs carefully to
see how some simple I/O operations are performed.

55

Example 1: Program to Make Port A an Output Port

Object: Make Port A an output port and set pins PA7, PAS, and PAQ at logic one.
The diagram illustrates the desired configuration.
PA7 PA6 PA5 PA4 PA3 PA2 PAl1 PAO
PADD 1 1 1 1 1 1 1 1 = $FF
DATA 1 1 0 0 0 0 0 1=3%C1

0200 A9 FF START LDA $FF Set the DDR for Port A so that
0202 8D 01 17 STA PADD all the pins are outputs.

0205 A9 C1 LDA $C1 Set pins PA7, PA6, and PAO
0207 8D 00 17 STA PAD to logic one, others at logic zero.
020A 00 BRK

Example 2: Program to Make Port B an Input Port

Object: Make Port B an input port and read the port, storing its contents in location

$0000.
0200 A9 00 START LDA $00 Initialize Port B to be an
0202 8D 03 17 STA PBDD input port by clearing DDR.
0205 AD 02 17 LDA PBD Read the port.
0208 85 00 STA LOZ Store port data in LOZ.
020A 00 BRK

Example 3: Program to Read Port B and Store its Contents in Port A
Object: Read Port B and load its contents into Port A which will be an output port.

0200 A9 FF START LDA $FF Initialize Port A to be
0202 8D 01 17 STA PADD an output port.

0205 AD 02 17 LDA PBD Get data from Port B.
0208 8D 00 17 STA PAD Transfer to Port A.
0208 00 BRK

Example 4: Program to lllustrate a Loop

Object: Continuously read Port B and store its contents into Port A.

0200 A9 FF START LDA $FF

0202 8D 01 17 STA PADD

0205 AD 02 17 HERE LDA PBD Get data from Port B.

0208 8D 00 17 STA PAD Store it in Port A.

020B 4C 05 02 JMP HERE Reset program counter to $0205.

Note that in Example 1 the KIM-1 addresses for Port A and the
Port A DDR were used. SYM-1 users and AIM 65 users must change
these addresses to conform with Table 3-3. The program in this
example is not of any particular use other than as a demonstration
of how to set up the Port A data direction register so that Port A
is an output port. In that connection, it is very important because
setting up the data direction registers for the I/O ports is one of the
first initialization steps in any program. You will see the first two
instructions in the program of Example 1 in many subsequent pro-
grams in this book.

The first two instructions in Example 2 may be omitted if the
system monitor loads a $00 into the DDR, or if it leaves the DDR
unaltered after a system RESET. Unless you know the state of the

56

DDRs, it is good practice to initialize the DDR with your program.
The next two instructions in Example 2 might be part of a larger
program to read a keyboard connected to Port B, and to store the
keyboard data in a zero-page location. It is a bit unfortunate that
both the KIM-1 and the SYM-1 use PB6 for other purposes and,
consequently, it is not available to the user. Thus, Port B is really
a 7-bit port.

The program in Example 3 simply reads Port B and writes it to
Port A. This kind of program might be used in a keyboard-video
monitor input/output system. If Port B represents the keyboard, and
Port A is the output to the video monitor, then whenever a key is
read, the character would appear on the screen so the operator can
see what has been typed. Note that PBDD was not initialized to $00
in Example 3, as it was assumed that the system RESET or the
monitor cleared this register.

The program in Example 4 is essentially the same as the program
in Example 3, except that the JMP instruction causes the program to
continuously read Port B and output the result to Port A. Although
this program has no particular use at this point, it does illustrate
a program loop and the JMP instruction, which we now describe.

JMP INSTRUCTION

The JMP instruction used in Example 4 has the effect of resetting
the program counter to the value labeled HERE. The program will
repeat the LDA PBD, STA PAD, and JMP HERE instructions,
continuously and forever, unless the reseT key is depressed or power
is removed. A program or a portion of a program which repeats itself
one or more times is called a loop. The three instructions just men-
tioned form a loop in the program of Example 4. The JMP instruc-
tion may be used to reset the program counter to any 16-bit num-
ber. Note that in the absolute addressing mode, as used in Example
4, the low-order byte of the program counter (PCL) is the second
byte of the JMP instruction while the high-order byte of the program
counter (PCH) is the third byte.

The JMP instruction has one other addressing mode called
indirect. In this mode, the second and third bytes of the instruction
form an address ADH-ADL whose contents contain PCL, while
PCH is found at ADH-ADL + 1. The indirect JMP instruction is
illustrated with the modification of Example 4 shown in Example 5.

In Example 5, THERE = $0003 and in this location should be
stored the ADL of HERE. That is, in location $0003 put $05, the
address low of HERE. In $0004 put $02, the address high of HERE.
The indirect addressing mode is indicated by putting parentheses
around the operand portion of the instruction. Any available location

57

Example 5: Program to lllustrate JMP Instruction in Its Indirect Addressing Mode
Object: Continuously read Port B and store its contents in Port A.

$0003 = THERE; Load with $05, the ADL of HERE.
$0004; Load with $02, the ADH of HERE.

$A000 = PBD; AIM 65 or SYM-1 address.

$A001 = PAD; AIM 65 or SYM-1 address.

$A002 = PBDD; Port B DDR, AIM 65 or SYM-1 address.
$A003 = PADD; Port A DDR, AIM 65 or SYM-1 address.

0200 A9 FF START LDA $FF

0202 8D 03 A0 STA PADD

0205 AD 00 A0 HERE LDA PBD

0208 8D 01 AO STA PAD

020B 6C 03 00 JMP (THERE) Indirect JMP instruction. See Text.

may be used to store the new value of the program counter in the
indirect mode. Refer again to Table 3-1 for a description and the
op codes of the JMP instruction. To summarize:

¢ In the absolute mode, the second and third bytes of the JMP
instruction are the new values of the PCL and PCH, respec-
tively.

e In the indirect mode, the second and third bytes of the JMP
instruction are the ADL and the ADH of a location which
contains the new PCL. PCH is in (ADH,ADL + 1).

INC AND DEC INSTRUCTIONS

The I/0 techniques learned so far will be used to illustrate two
other instructions, INC and DEC, described in Table 3-1. The
logical expressions for the INC and DEC instructions are M + 1 -
M, and M — 1~ M, respectively. Simply stated, the INC instruc-
tion increments the contents of a memory location by one, whereas
the DEC instruction decrements the contents of a memory location
by one. In the zero-page addressing mode, the second byte of either
instruction is the page-zero ADL of the memory location to be modi-
fied. In the absolute mode, the second and third bytes are the ADL
and the ADH of the location to be modified.

As an example of the application of these instructions, suppose
that a logic zero at PAO turns a device (a heater, for example) on,
while a logic one turns the same device off. Suppose further that
PAO has been programmed to be an output pin by loading $01 in
PADD, and that PAQ is currently in the logic-one state. Then the
instruction DEC PAD turns the device on and the instruction INC
PAD will turn it off. Remember that the “address,” PAD, corresponds
to an output port, and not a ROM or R/W memory location.

Some programs which will demonstrate the use of the INC and
DEC instructions follow.

58

Example 6: Program to Demonstrate the INC Instruction

Object: Apply successive increments to Port A which is programmed to be an output

port.
0200 A9 FF START LDA $FF Initialize Port A to be
0202 8D 01 17 STA PADD an output port.
0205 8D 00 17 STA PAD Begin with $FF in Port A.
0208 EE 00 17 HERE INC PAD Increment Port A.
020B 4C 08 02 JMP HERE Loop to continuously increment.

Example 7: Program to Toggle an Output Pin ON and OFF
Object: Toggle (switch on and off) pin PAO. Start with PAO at logic one.

0200 A9 01 START LDA $01 Make PAQ an output pin by loading
0202 8D 01 17 STA PADD one in bit zero of the DDR.

0205 8D 00 17 STA PAD Initialize PAO to logic one.

0208 CE 00 17 DEC PAD Decrement PAD.

020B EE 00 17 INC PAD Increment PAD.

020E 00 BRK

If the Port A pins are used to light LEDs (see the experiments
at the end of this chapter), then the program in Example 6 will
demonstrate successively all binary numbers from zero to 255 on the
LED:s. Other instructions may be used to accomplish the same effect,
but the INC or DEC instructions are very efficient ways to incre-
ment or decrement a memory location. The program in Example
7 produces a 6-microsecond negative-going one-shot pulse at pin
PAO of Port A. A pulse such as this might be used to trigger an
oscilloscope or start a counter. A series of pulses may be produced
by replacing the BRK instruction with a JMP HERE instruction
where HERE = $0208.

INX, INY, DEX, AND DEY INSTRUCTIONS

There are four instructions that increment or decrement the X
and Y index registers. They are introduced here because of their
similarity to the INC and DEC instructions. Their mnemonics,
descriptions, and op codes are given in Table 3-1. These instructions
use the implied addressing mode. For example, when the INX
instruction is used, it is implied that the data to be operated upon
(incremented in this case) are in the 8-bit X register. No other
information about the location of the data is necessary, and, there-

Example 8: Program to Demonstrate the INX Instruction

Object: Successively decrement the X index register. Store the result in output Port A.

0200 A2 FF START LDX $FF Initialize index register to $FF.
0202 8E 01 17 STX PADD Make Port A an output port.
0205 8E 00 17 BACK STX PAD Ovutput the X register to Port A.
0208 CA DEX Decrement the X register.

0209 4C 05 02 JMP BACK Loop to successively decrement.

59

fore, in the implied mode, only single-byte instructions are necessary.
The program in Example 8 on the preceding page illustrates one of
these instructions.

INTRODUCTION TO THE EXPERIMENTS

The experiments in this and subsequent chapters will make ex-
tensive use of the I/O Ports on the KIM-1, SYM-1, and AIM 65.
However, it should be noted that most of these experiments may be
simulated using R/W memory locations rather than the 1/O Ports
if you do not want to breadboard the 1/O circuit described below.
We recommend the use of the I/O circuit, involving switches and
output LEDs, because the experiments and demonstrations become
much more vivid and realistic with the use of this circuit.

The 1/O interface circuit is shown in Fig. 3-2. Note that Port B,
symbolized by PBD in the examples, is controlled by eight switches.
This port will be used as an input port, and the switches PB7-PBO
determine the number that the computer reads with an LDA PBD
instruction. There are several important points to note in connection
with the Port B input switches.

® Do not try to use Port B as an output port by writing $FF in
its data direction register, PBDD. The switches connected to
Port B are tied to ground in the logic-zero position, the position
indicated in Fig. 3-2. Damage to the integrated circuits on the
microcomputer boards may occur if you make Port B an output
port with the switches in the logic-zero position. It is also good
practice to leave the switches in the logic-one position when
they are not being used.

e The PBO switch is electronically “debounced.” Several experi-
ments require debounced switches.

e The PBO0 switch may also be used to produce an interrupt signal.
See Chapter 9 for details regarding interrupts.

¢ An Input/Output circuit that can be used to perform the experi-
ments in this book with the Apple II microcomputer has been
described in “Programming and Interfacing the Apple, With
Experiments,” COMPUTE!, January 1981, page 61.

e Neither the KIM-1 or the SYM-1 makes pin PB6 available to
the user. If you have one of these systems you may wish to
spot glue the PB6 switch in the logic-one position.

Port A is used as an output port, and the logic levels on the Port
A pins are indicated by the status of the Port A LED:s. If the logic
level is one, the corresponding LED will be lit. In order for Port

60

2{ooq siyi ui suswadxa ul pasn preoq Q) Joj wesBeip pnup) ‘Z-¢ ‘Biy

-SYM- v +5V KIM-SYM-AIM
KIM-SYM-AIM 14T +5V o +5 14T

APPLICATION
CONNECTOR s oS - | 3 CONNECTOR
1 2 PAD (1) 7] 9

> Go— > -
1]
D’ i 4 _PAl ,

! : s | |

| T > |

‘ :>—5 ——| >0 PA Ge—m 7:;Llsoo

i i
> » 8§ PM3 | U GND ;

{ +5V o i

! 4700 s ! |
PRI 10_PA4 69 | o % % b3 % % 2 % :

: PB2 '
‘D 13 [: 2P N . @
! 741504 P o I] 12>
]

| 7 1

| 14‘$i’§3 LN D
| 2 PAG oo @
>4 .

i 3 1a par P87 |
o— > oo 15>

741504 Y oo
" a0

9

A, symbolized by PAD in the examples, to operate the LEDs, it
must be configured as an output port by writing $FF to the Port A
data direction register, symbolized by PADD in the examples and
experiments.

If you have some electronics experience, then you may wish to
breadboard the circuit in Fig. 3-2. A ribbon cable from the applica-
tion connector pins given in Fig. 3-2 to a DIP connector (the entire
cable assembly is called a DIP JUMPER) that plugs into a Proto-
board or Superstrip will work nicely. The integrated circuits,
switches, resistors, and LEDs may be mounted on the Protoboard
or Superstrip.

It may be worth pointing out once more that most of the experi-
ments can be performed using R/W memory locations rather than
the I/O ports and the circuit of Fig. 3-2. For persons having little or
no electronics experience we suggest using R/W locations $03FE for
Port A, and $03FF for Port B. Use the monitor to preload $03FF with
the Port B data before running .the program that goes with the
experiment.

In the experiments that follow, KIM-1, AIM 65, and SYM-1 users
should employ the addresses for PAD, PADD, PBD, and PBDD
given in Table 3-3. Note that with the I/O board connected to the
applications connector, all the LEDs will light when the micro-
computer system is RESET. The reason for this is that a RESET
makes all the pins inputs, and as inputs they act like logic-one volt-
age levels for the LED TTL drivers. This is an important considera-
tion for “power-up” procedures, but is of little concern here.

EXPERIMENT NO. 1

Step 1
Load the program in Example 1.

0200 A9 FF START LDA $FF Set the DDR for Port A so that
0202 8D 01 17 STA PADD all the pins are outputs.
0205 A9 Ci LDA $C1 Set pins PA7, PA6, and PAQ
0207 8D 00 17 STA PAD to logic one, others to logic zero.
020A 00 BRK

Step 2

Execute the program and observe the effect on the LEDs. Which
LED:s on the I/O board glow?

62

(The PA7, PA6, and PAO LEDs should glow.)

Step 3

Change the program byte at $0206 to $55 and run the program
again. Which LEDs glow?

(The PAS6, PA4, PA2, and PAQ LEDs should glow.)

Step 4

Experiment with various values for the program byte at $0206.
What would you need at this location to turn all of the LEDs off?

(A $00 in location $0206 would turn the LEDs off.)

EXPERIMENT NO. 2
Step 1
Load the program in Example 2.

0200 A9 00 START LDA $00 Initialize Port B to be an
0202 8D 03 17 STA PBDD input port by clearing DDR.
0205 AD 02 17 LDA PBD Read the port.
0208 85 00 STA LOZ Store port data in LOZ.
020A 00 BRK

Step 2

Set the input switches at Port B to logic one. Execute the pro-
gram.
Step 3

Examine the contents of location $0000. Does it reflect values of
the switch settings? Remember that you may not have control
over PB6.
Step 4

Experiment with different switch settings, checking location $0000
after each run of the program to confirm your switch settings.

63

Step 1

EXPERIMENT NO. 3

Load the program in Example 3.

0200
0202
0205
0208
0208

Step 2

A9 FF
8D 01 17
AD 02 17
8D 00 17
00

START

LDA $FF
STA PADD
LDA PBD
STA PAD
BRK

Initialize Port A to be
an output port.

Get data from Port B.
Transfer to Port A.

Set the switches on the I/O board to any desired value. Execute
the program.

Step 3

Campare the LEDs with the switch settings.

Step 1

EXPERIMENT NO. 4

Load and execute the program in Example 4.

0200
0202
0205
0208
0208

Step 2

A9 FF

8D 0117
AD 02 17
8D 00 17
4C 05 02

START

HERE

LDA $FF
STA PADD
LDA PBD
STA PAD
JMP HERE

Get data from Port B.
Store it in Port A.
Reset program counter to $0205.

Vary the settings of the input switches at Port B while the pro-

gram is running. Explain your results.

(The LEDs will follow the switch settings because the program is
in a loop that inputs the switch settings and outputs them to the

LEDs.)

Step 1

EXPERIMENT NO. 5

Load and execute the program in Example 6. Describe what
you observe.

0200
0202
0205
0208
0208

A9 FF

8D 01 17
8D 00 17
EE 00 17
4C 08 02

START

HERE

LDA $FF
STA PADD
STA PAD
INC PAD
JMP HERE

Initialize Port A to be

an output port.

Begin with $FF in Port A.
Increment Port A.

Loop to continuously increment.

(All the LEDs appear to glow. The reason is that they are being
turned on and off so rapidly that the eye does not perceive them
switching.)

Step 2

Starting with the first instruction, single-step through the pro-
gram, paying close attention to the LEDs on the I/O board and the
instructions as they are executed. Note how the loop works by ob-
serving the program counter. Explain your observations.

(When the program is single stepped the user can observe that the
Port A LEDs are actually “counting” in binary. The reason is that
the binary number in Port A is continually keing incremented by
the INC instruction.)

EXPERIMENT NO. 6
Step 1

Load the program in Example 7, replacing the BRK statement
by a JMP HERE instruction, namely 4C 08 02. A listing follows:

0200 A9 01 START LDA $01 Make PAO an output pin by
0202 8D 01 17 STA PADD loading a one in bit zero of its DDR.
0205 8D 00 17 STA PAD Initialize PAO to logic one.
0208 CE 00 17 HERE DEC PAD Decrement PAD.
020B EE 00 17 INC PAD Increment PAD.
020E 4C 08 02 JMP HERE
Step 2

Execute the program and describe what you observe. Why does
this happen? Would you expect to observe this behavior based upon
your understanding of the program? Can you observe any changes
at the PAO LED as the program is executing? Why not?

(All the LEDs appear to glow continuously, but the PAG LED is
actually being toggled. The eye cannot perceive its off state whose
duration is only six microseconds.)

Step 3

Can you suggest a method that could be used to observe the be-
havior at PAQ? There are several that may be used.

(The single-step mode is probably the easiest to implement. Place
the program in the single-step mode and again run the program.)
Step 4

Is it possible to observe any change at the PAO LED in the

single-step mode? When do the changes take place? Is this reason-
able?

EXPERIMENT NO. 7

Step 1
Load and execute the program in Example 8.
0200 A2 FF START LDX $FF Initialize the X register to $FF.
0202 8E 01 17 STX PADD Make Port A an output port.
0205 8E 00 17 BACK STX PAD X into Port A.
0208 CA DEX Decrement X.
0209 4C 05 02 JMP BACK
Step 2

Describe and explain the effect you expect to observe on the Port
A LEDs? Do you observe this effect?

Step 3

Single step this program and compare its effect on the Port A
LEDs with the results of the program in Example 6.

(The program of Example 6 starts counting from $00 and goes up.
This program counts backward. The counting can only be observed
in the single-step mode.)

EXPERIMENT NO. 8
Step 1
Write a program to toggle pin PAQ. Use the Y register and the
DEY instruction. Initialize PAQ to logic one before the toggle
operation starts. Put the toggle operation in a loop.
Step 2

Load, execute, and single step your program to test your success.
(One possible answer is the following program.)

0200 A0 01 START LDY $01 Initialize PAO to be output

0202 8C 01 17 STY PADD pin.

0205 8C 00 17 THERE STY PAD Set PAO to logic one.

0208 88 DEY Decrement the Y register.

0209 4C 05 02 JMP THERE Loop to continuously decrement.

66

CHAPTER 4

Logical Operations

OBJECTIVES
At the completion of this chapter you should be able to:

e Understand and use the AND, ORA, and EOR instructions. See
Table 4-1 for a summary.

e Understand the concept of masking.

e Perform complementation with the EOR instruction.

® Be able to set individual bits in a memory location to either
binary one or binary zero.

INTRODUCTION

Because he works with logic circuits and is familiar with digital
techniques, the experienced logic-circuit designer will immediately
recognize the importance of the logical operations. He is aware that
logical operations are involved in such diverse designs as digital
bathroom scales and cruise missiles. However, the beginner fre-
quently wonders how the logical instructions will be used. We can
only promise that the answers will become obvious as we proceed.
Once the skills with the fundamentals are obtained, then potential
applications begin to appear.

One historical note: The logical operations originate in an area
of mathematics called Boolean algebra. George Boole was a 19th
century mathematician who could not possibly have anticipated the
widespread use of his work in symbolic logic. The moral should
be obvious.

67

Table 4-1. Summary of Instructions and Op Codes
Introduced in Chapter 4

Addressing Mode

Instruction Description Immediate | Absolute | Zero-Page
AND AND Memory with Accumulator 29 2D 25
ORA OR Memory with Accumulator 09 oD 05
EOR EXCLUSIVE-OR Memory with 49 4D 45

Accumulator

LOGICAL OPERATIONS

There are four logical operations that we will use. To describe
them, let A and B stand for 1-bit binary numbers. The four logical

operations are:

¢ The AND operation, symbolized by A-B.* A-B is read “A and B.”
The or operation, symbolized by A+B.* A+B is read “A or B.”
The Exclusive or (EOR) operation, symbolized by A @ B.*
A ® B is read “A e-or B” or “A x-or B.”

The COMPLEMENT (or inversion) operation, symbolized by
A. That is, the complement of A is A. A is read “not A.”

Table 4-2 summarizes the operations with truth tables, and it gives
all the possible combinations of the operations for 1-bit numbers.
Fig. 4-1 gives the logic design symbols for each operation. The
Exclusive-or function in Fig. 4-1 is not a special gate because it
can be implemented with axps and ors; that is, A® B = (A-B) +
(A-B).

A and B need not be 1-bit binary numbers. An 8-bit microcom-
puter operates on eight bits simultaneously. Any 8-bit logical opera-

Table 4-2. Summary of Logical Operations

AND OR EOR Complement

A+B A A

1 0
1

>

o—-—-o0o0-~—-0 |0
>

>

OBOD, _o_|o
O =0 =

>
]
>
®
>
]

coo -~
ol =|
([
- O

+
1
1
1
0
1
1
1
0

QO —=—00 — —
O—- O~ 00— 0 —
OO0 - —-00 — —
OO0 —=- =00 — —

(1T T |
oo o -

®The symbols A , V, and ¥ frequently replace ¢, 4+, and @, respectively. The
dot () is sometimes understood; that is, AB = A-B. -

68

A A
—_ A
B) AeB @;B
Fig. 4-1. Logic symbols for the AND, OR,

EOR, and COMPLEMENT operations. ;E ' :

COMPLEMENT
(INVERT)

tion can be performed by doing the single-bit operation on cor-
responding bits. If the eight bits of A are represented by A7, A6,

A5, . .., A0, the eight bits of B by B7, B6, B5 . . ., BO, and if the
answer to A-B is C, then the operation A-B = C is realized by

A7 -B7T=C7

A6 - B6 =C6

A5-B5=C5

A0 - BO=CO0

Table 4-3 gives 8-bit examples for all four operations. It also sug-
gests that the work is easier to do if the operation is arranged so
that the binary numbers are placed one under the other. Table 4-3
also expresses the numbers and the results of the operations in hexa-
decimal. It is worthwhile to familiarize yourself with the operations
and results in hexadecimal since this is the form that will be used
in programs. The experiments at the end of this chapter will provide
additional practice. The operations may be summarized as follows:

¢ The result of an AND is one only if both bits are one.

¢ The result of an or is zero only if both bits are zero.

e The result of an EoRr is zero if the bits are alike; otherwise it

is one.
® The complement of a one is zero and vice versa.

Table 4-3. Examples of 8-Bit Logical Operations

AND OR EOR
A = 1100 1100 = $CC +A=11001100=$CC ® A = 1100 1100 = $CC
"B = 1010 1010 = $AA B = 1010 1010 = $AA B = 1010 1010 = $AA
C = 1000 1000 = $88 C = 1110 1110 = $EE C = 0110 0110 = $66

Complement
A = 1100 1100 = $CC

A = 0011 0011 = $33

69

The preceding four statements are easy to remember, and with them
truth tables such as the ones in Table 4-2 can be constructed.

Before turning to the 6502 logical instructions, we note that
the instruction set does not include a COMPLEMENT operation.
To produce the complement of an 8-bit number, the Exclusive or
operation (EOR) is performed with the number to be complemented
and an 8-bit binary number having a one in every bit; that is, $FF.
See Example 1. The result

A @ $FF = A,

illustrated in Example 1, is general. It will be used to produce the
complement of a number.

Example 1: Complementing an 8-Bit Number Using Exlusive OR Operation
Let A = 1100 1100 = $CC. Then

® A = 1100 1100 = $CC and A = 1100 1100 = $CC
1111 1111 = $FF

A @ $FF = 0011 0011 = $33 A = 0011 0011 = $33
showing that in this case A @ $FF = A

AND, ORA, AND EOR INSTRUCTIONS

e The AND instruction forms the logical ANp operation with a
byte of data from memory and the contents of the accumulator.
The result is stored in the accumulator. Symbolically A-M - A.

¢ The ORA instruction forms the logical or operation with a
byte of data from memory and the contents of the accumulator.
The result is stored in the accumulator. Symbolically A+M - A.

e The EOR instruction forms the Exclusive or operation with a
byte of data from memory and the contents of the accumulator.
The result is stored in the accumulator. Symbolically A &
M- A

A variety of addressing modes are available for these instructions,
including immediate, absolute, and zero-page. These modes were
described in Chapter 2; you may want to review that material before
proceeding to study the programs.

PROGRAMS TO DEMONSTRATE ORA, AND,
AND EOR INSTRUCTIONS

In Examples 2, 3, and 4 we list programs that will demonstrate
each of the three instructions, ORA, AND, and EOR. The two
numbers to be used in the operations are stored at addresses $0000
and $0001. The result of the logical operation is stored in Port A
so you can see the result on the Port A LEDs. It would be equally

70

suitable to store the result in location $0003, which could then be
examined after executing the program to find the result of the
operation. These three programs will be used in the experiments to
see what happens when specific binary numbers are anped, ored,
Eored, and complemented.

Example 2: Program to Demonstrate the ORA Instruction

Object: Find R+S and output the result to Port A.

$0000 = R

$0001 = S

$A001 = PAD

$A003 = PADD

0200 A9 FF START LDA $FF Set up Port A to be

0202 8D 03 A0 STA PADD an output port.

0205 A5 00 LDA R Get the first number.

0207 05 01 ORA S OR it with the second number.
0209 8D 01 A0 STA PAD Output the result to Port A.
020C 00 BRK Finish.

Example 3: Program to Demonstrate the AND Instruction

Object: Find R*S and output the result to Port A.

$0000 = R

$0001 = S

$¢P86 = PAD

% = PADD

0200 A9 FF START LDA $FF

0202 8D 01 17 STA PADD

0205 A5 00 LDA R Get the first number.

0207 25 01 AND § AND it with the second number,
0209 8D 00 17 STA PAD then output the result to Port A,
020C 00 BRK Finish.

Example 4: Program to Demonstrate the EOR Instruction

Object: Find R @ S and output the result to Port A.

$0000 = R

$0001 =S

$1700 = PAD

$1701 = PADD

0200 A9 FF START LDA $FF

0202 8D 01 17 STA PADD

0205 ‘A5 00 LDA R Get the first number.

0207 45 01 EOR S EOR it with the second number.
0209 8D 00 17 STA PAD Output the result to Port A.
020C 00 BRK Finish.

USING ORA, AND, AND EOR INSTRUCTIONS
TO CONTROL BIT VALUES

The logical operation instructions are frequently used to change
specific bits in a memory location. These techniques are used quite
frequently in programs. To illustrate, suppose that we wish to

n

change PAO (bit zero of Port A) to be an output pin, leaving all
the other pins of Port A unaffected as far as their input/output
status is concerned. Recall from Chapter 3 that the I/O status of a
pin is determined by the corresponding bit value in the DDR. If
PADD is the Port A DDR, then our task is to set bit zero of PADD
to one, leaving the others unaffected. This may be accomplished
by oring PADD with 0000 0001 = $01. Note that 0 + X = X where
X is any bit value. Thus, oring with a zero leaves the corresponding
bit unchanged. On the other hand 1+ X =1 where X is any bit
value. Thus, oring a bit with a one insures that a one will appear in
that bit. Example 5 illustrates how bit six of a number may be set
to a binary one using the or operation. In the experiments we will
use a program to demonstrate these ideas.

Example 5: Setting a Bit to a Binary One with the OR Operation

Given the 8-bit binary number 1001 1010 = $9A, modify it to have a one in bit six,
but leave the other bits unchanged.

Solution: This may be accomplished by ORing the given number with the binary
number 0100 0000 = $40, since

1001 1010 = $9A
+ 0100 0000 = $40
= 1101 1010 = $DA

How can you set bit seven to binary one? Bit five? Bit four?

The anD operation is used to clear a bit to binary zero. Suppose
we wish to clear bit seven to zero in the binary number 1100 1010 =
$CA. This is accomplished by anping the given number with a num-
ber having a zero in the specified bit and binary ones in all the
other bits. For the case under consideration the appropriate number
is 0111 1111 = $7F. See Example 6 for details. Further practice in
clearing bits will be given in the experiments.

Example 6: Clearing a Bit to Zero with the AND Operation

Show that bit seven in $CA may be cleared (set equal to zero) without affecting the
other bit values by ANDing with $7F.

Solution: 1100 1010 = $CA
0111 1111 = $7F

= 0100 1010 = $4A

How would you clear bit six? Bit five? Bit four?

The process of clearing one or more bits of a given number, leav-
ing the other bits unchanged, is called masking. The cleared bits
are said to be masked. For example, to mask the low-order nibble
of an 8-bit number, it is axped with $F0 = 1111 0000. Masking the
high-order nibble requires an AND operation with $0F = 0000 1111.

72

How would you mask the odd numbered bits of an 8-bit binary
number?

To change a bit to its complement, that is, change a binary zero
to a binary one and vice versa, perform an Exclusive-or operation
with ones in the bit positions to be changed. Given the number
1100 0101 = $C5, the lowest four bits can be changed to have
opposite bit values by forming an Exclusive-or with 0000 1111 =
$0F. Try this, using the truth table in Table 4-2. The program in
Example 4 will be used to demonstrate this in the experiments at
the end of this chapter.

OTHER USES OF LOGICAL OPERATIONS

As another example of how the logical operation instructions
might be used, suppose that a microcomputer is operating a business
security system consisting of:

® A smoke detector that produces a logic one on PB7 (pin seven
of Port B) if it detects smoke.

® A touch sensitive detector on the safe produces a logic zero
on PB2 if the safe is touched.

® A switch connected to PB5 to disable the security system during
opening hours.

The programs listed in Examples 7 through 9 illustrate how the Port
B pins might be tested to check the detectors and control the system.
Note that these programs are illustrative examples. A microproc-
essor based security system would have a much more complex
program, including as segments some of the programs illustrated
here.

Several of the ideas mentioned in the previous section are illus-
trated with the programs in Examples 7 and 8. For example, in the
fourth instruction in the program in Example 7 the concept of
masking is used to mask all of the bits of Port B except bit seven,
since that is the one connected to the smoke detector. In the pro-
gram in Example 8, the EOR $FF instruction complements the
touch sensitive detector bit (and all the other bits) to produce a
logic one when PB2 is at logic zero. Next, all the other bits except

Example 7: Program to Test the Logic Level of Bit Seven of an Input Port

Object: Make PA7 (pin seven of Port A) logic one if the smoke detector is on, other~
wise output a logic zero to PA7.

0220 A9 FF BEGIN LDA $FF Load the Port A data direction

0222 8D 03 A0 STA PADD register to make Port A an output port.
0225 AD 00 A0 HERE LDA PBD Read Port B, then AND the contents
0228 29 80 AND $80 of Port B with $80 to mask all except
022A 8D 01 A0 STA PAD bit seven. Output result to Port A.
022D 4C 25 02 JMP HERE Loop to read Port B continuously.

73

Example 8: Program to Test the Logic Level of Bit Two of an Input Port

Object: Continue the program above, but also make PA2 equal to logic one if the safe
is touched; that is, if PB2 is at logic zero.

0220 A9 FF BEGIN LDA $FF

0222 8D 03 A0 STA PADD

0225 AD 00 AO HERE LDA PBD

0228 29 80 AND $80 Mask bits zero through six.

022A 8D 01 A0 STA PAD Output smoke detector level to Port A.
022D AD 00 AO LDA PBD Read Port B again, then complement its
0230 49 FF EOR $FF contents by an Exclusive-OR with $FF.
0232 29 04 AND $04 Mask all bits except bit two.

0234 0D 01 AO ORA PAD OR the safe bit with the existing

0237 8D 01 A0 STA PAD contents of Port A. Result into Port A.
023A 4C 25 02 JMP HERE Loop to read the smoke detector and

the safe inputs continuously.

bit two are masked by the AND $04 instruction, isolating the logic
value of bit two, the touch sensitive detector input. If this bit is a
one, then the next ORA PAD will set bit two of PAD to logic one
without affecting the other bits. In other words, a bit has been
set using an ORA instruction as described in the previous section.
The STA PAD instruction outputs both the smoke detector infor-
mation and the touch sensitive detector information to Port A. All
of this logic is placed in a loop by the JMP HERE instruction.

Before proceeding, you are urged to study the programs until
you understand each step. It is educational to “follow the accumu-
lator.” To illustrate, consider the program in Example 8, and assume
that PB7 is at logic one (the smoke detector is on) and PB2 is at
logic zero (the safe has been touched). The program should cause
both PA7 and PA2 of Port A to be at logic one. Starting at HERE
in the program, list the contents of the accumulator after the com-
pletion of each instruction, as shown in Table 4-4.

The program in Example 9 continues with the same theme. We
would like the security system to be able to be disabled, for example

Table 4-4. Trace of the Accumulator Through
the Program of Example 8

Step | Label | Accumulator Comments

HERE | TXXX XOXX | PB7 is at logic one, PB2 is at logic zero. X = don‘t care.
1000 0000 | Result of the AND with 1000 0000 = $80.
1000 0000 | Result into Port A, turning PA7 on.

1XXX XOXX | PBD into the accumulator again.

OXXX X1XX | Result of EOR with $FF. All the bits are complemented.
0000 0100 | Result of AND with $04. .
1000 0100 [Result of ORA with PAD containing 1000 0000.
1000 0100 | Result into Port A, turning PA7 and PA2 on.

XXXX XXXX | Program jumps to HERE to read Port B again.

VONOCOGAEWN —

74

if the alarms have already sounded or something in the system is
being repaired. Recall from our specifications that PB5 (pin five of
Port B) is used to implement this function. A logic zero on PB5
disables the security system, and a logic one enables it. The inter-
esting feature of this program is the use of the indirect jump in-
struction. Refer to the program and note that as long as PB5 is at
logic zero, the JMP instruction will restart the program at $0200
because the contents of locations $0000 and $0001 are $00 and $02,
respectively. But if PB5 is at logic one, then $20 is stored at the
location whose address is $0000, and the program will jump to
BEGIN. There may be more efficient ways of accomplishing our
objective, but our purpose of illustrating several instructions has
been achieved.

There are several other bit tests that are important in many appli-
cations. For example, in an event counter we may wish to test
whether an input port bit received a negative pulse, that is, a logic
one to logic-zero to logic-one transition. Or we may be interested
in whether or not an input bit has changed its state. Programs such
as this make use of branch instructions, and illustrations will be
postponed until Chapter 6.

Example 9: Using an Indirect Jump Instruction to Control the Security System

Object: Read PBS5 to see if the system should be disabled. A logic zero on PB5 disables
it, and a logic one enables it.

$0000 = LOZ; contains the ADL for the indirect jump instruction.

$0001 = HIZ; contains the ADH for the indirect jump instruction.

0200 A9 00 ORIGIN LDA $00 Store $00 in Port A to start all
0202 8D 01 AO STA PAD the outputs at logic zero.
0205 A9 FF LDA $FF Initialize Port A to be an output
0207 8D 03 A0 STA PADD port by putting $FF into its DDR.
020A A9 02 LDA $02 Initialize indirect JMP by putting
020C 85 01 STA HIZ PCH of $02 in location $0001.
020E AD 00 AO HERE LDA PBD Read Port B to get PB5 value.
0211 29 20 AND $20 Mask all but bit five.
0213 85 00 STA LOZ Result into $0000 which will contain
0215 6C 00 00 JMP (LOZ) PCL for indirect JMP.

. . (Dotted locations are ‘“don‘t care’

values.)

0220 AD 00 A0 BEGIN LDA PBD Check smoke detector.
0223 29 80 AND $80 Mask bits zero through six.
0225 8D 01 A0 STA PAD Result into Port A.
0228 AD 00 AO LDA PBD Now get result from the safe.
022B 49 FF EOR $FF Complement it.
022D 29 04 AND $04 Mask all bits except bit two.
022F 0D 01 A0 ORA PAD OR the safe bit with the existing
0232 8D 01 AO STA PAD contents of Port A, then output the result.
0235 4C OE 02 JMP HERE

75

INTRODUCTION TO THE EXPERIMENTS

Most of these experiments make use of the I/O board. If you do
not want to use this board, then store the results of the operations
in any available memory location, to be examined when the program
is finished. KIM-1 users should always begin the experiments by
loading locations $17FE and $17FF with numbers $00 and $1C,
respectively. Also, always make sure the single-step mode is not
being used, unless you are specifically requested to use it.

EXPERIMENT NO. 1

Step 1
Load the program described in Example 2.
0200 A9 FF START LDA $FF Set up Port A to be
0202 8D 03 A0 STA PADD an output port.
0205 A5 00 LDA R Get the first number.
0207 05 01 ORA § OR it with the second number.
0209 8D 01 A0 STA PAD Output the result to Port A,
020C 00 BRK Finish.
Step 2

The numbers to be ored are put into locations $0000 and $0001.
We will use the program to learn some facts about the or operation.
For each pair of numbers given below, write the result obtained
from oring them. Express the result in hexadecimal.

$00 + $FO=__ $00 + $55—=__ . .
$00 + $OF = $00 + $FF=___

What do you conclude is the result of oring any number with $00?

$FF + $34=_ $FF + $C5 = _
What do you conclude is the result of oring any number with $FF.

$7F + $80=__ $33+$CC=__
$A1 +$5E=__ $SEE +$11=_

The last four problems involve oring a number with its complement.
What do you conclude is the result of oring a number with its
complement?

76

EXPERIMENT NO. 2
Step 1

In this experiment we will experiment with setting bits to binary
one. Load the following program. Leave the blank byte unchanged
until STEP 2.

0200 A9 FF START LDA $FF
0202 8D 01 17 STA PADD
0205 A9 00 LDA $00
0207 8D 00 17 STA PAD Initialize Port A to $00.
020A A9 ___ LDA ___ Load A with a byte.
020C 0D 00 17 ORA PAD OR it with Port A’s contents.
020F 8D 00 17 STA PAD
0212 00 BRK Finish.
Step 2

Put a number in the blank byte, location $020B, that will set bit
zero of Port A to logic one. Run the program to test your answer.
What numbers must be loaded into the blank byte at location $020B
to set the following bits to logic one? Fill in the following blanks
with the correct hexadecimal numbers.

Bit Number Byte Bit Number Byte Bit Numbers Byte

1 - 4 3,1
2 . 6 7,0
3 7 6,3

EXPERIMENT NO. 3
Step 1
Load the program described in Example 3. The numbers to be

Aanped are put in locations $0000 and $0001. The result of the anp
operation appears at Port A.

0200 A9 FF START LDA $FF
0202 8D 01 17 STA PADD
0205 A5 00 LDA R Get the first number.
0207 25 01 AND S AND it with the second number,
0209 8D 00 17 STA PAD then output the result to Port A.
020C 00 BRK Finish.

Step 2

For each pair of numbers given below, write the result obtained
by anping them.

$00 - $FF=____ $00 - $37=__
$00 - $7F = ___ 300 - $00=__

What do you conclude is the result of aNping a number with $00?

77

$FF - $11=_ $FF - $5C=____

What do you conclude is the result of ANDing a number with $FF?

$OF - $88=__ $FO - $88=_.
Can you describe the effect of an aAND operation with $0F? $FO0?

EXPERIMENT NO. 4

Step 1
Load this program. The blank byte will be filled in STEP 2.
0200 A9 FF START LDA $FF
0202 8D 03 A0 STA PADD
0205 8D 01 A0 STA PAD Set all the bits of Port A to logic
0208 A9 ___ LDA __ one.
020A 2D 01 A0 AND PAD AND with Contents of Port A.
020D 8D 01 AO STA PAD
0210 00 BRK
Step 2 ,

What number must you load in the blank byte, location $0209, to
clear the following bits to logic zero? Fill in the blanks with hexa-
decimal numbers.

Bit Number Byte Bit Number Byte Bit Numbers Byte

0 - 5 . 7,6,5,4
1 - 6 - 32,10
9 7 - 7,5,3,1

Either find your answers using hand calculations and test your
logic with the program, or use the program to find the answer.

EXPERIMENT NO. 5
Step 1
Load the program described in Example 4. The numbers to be

EoRed are stored in locations $0000 and $0001. The result is stored in
Port A.

0200 A9 FF START LDA $FF

0202 8D 01 17 STA PADD

0205 A5 00 LDA R Get the first number.

0207 45 01 EOR S EOR it with the second number.
0209 8D 00 17 STA PAD Output the result to Port A.
020C 00 BRK Finish.

78

Step 2

Proceeding as in the previous experiments, use the program to
find the following answers in hexadecimal.

$FF © $00=__ SFFo $C8=____
$FF & $55=____ $FF © $81=_

Compare your answers with the complements of the numbers $00,
$55, $C8, and $81. What do you conclude is the result of roring a
number with $FF?

$C3e$3C=___ BAS® $5A=__
$44@ $BB=____ $820 $7D=___

The numbers to be eored in the last four problems are complements
of each other. What do you conclude is the result of Eoring a num-
ber with its complement?

$01 © $0F =__ $80 ©® $OF =___
$02 ® $OF=__ $40 © $OF =___

From this last result, explain how you can change the bit value of
a particular bit; that is, how can you complement any specific bit
or group of bits (up to eight bits).

EXPERIMENT NO. 6
Step 1
The program listed below toggles PAO (pin zero of Port A) using
the EOR instruction. It illustrates how a specific bit, bit zero in
this case, may be switched in its logic value. Load the following
program.

0200 A9 FF BEGIN LDA $FF Initialize the Port A

0202 8D 01 17 STA PADD DDR.

0205 8D 00 17 STA PAD Initialize all LEDs to glow.
0208 A9 01 HERE LDA $01 Bit zero in A set to one.
020A 4D 00 17 EOR PAD EOR with contents of PAD.
020D 8D 00 17 STA PAD Result into PAD.

0210 4C 08 02 JMP HERE Loop to toggle PAO.

79

Step 2
Execute the program. What do you observe? What can you do to
see PAO toggle?

Step 3

Single step the program if you want to see the PA0O LED toggle.
At the same time, prepare a table similar to the one in Table 4-4,
tracing the contents of the accumulator. At what instruction does
the PAO LED change its state? What effect does the EOR PAD
instruction have on the other bits of PAD?

You have obtained a good deal of practice with the logical opera-
tions if you have completed the previous experiments. You may
wish to experiment with the programs in Examples 7 through 9,
the security system program. These programs were written so the
ASK I/0O board switches simulate the smoke detector, touch sensi-
tive detector, and system-disable inputs, while the Port A LEDs
simulate the output conditions. You might also try to write programs
to prove these_Boolean Algebra_Theorems: A & B = (A-B) + (A-
B), A+B=A"-B, and A-B = A+B.

80

CHAPTER 5

Arithmetic Operations

OBJECTIVES
At the completion of this chapter you should be able to:

® Understand some of the functions of the processor status reg-
ister.

e Use the ADC, SBC, CLC, SEC, CLD, and SED instructions to
add and subtract binary or decimal numbers. See Table 5-1
for a summary of these instructions.

® Do multibyte addition and subtraction.

¢ Understand and use twos complement arithmetic.

® Do elementary signed number arithmetic.

INTRODUCTION

Probably the least surprising fact about a microprocessor is that
it performs some arithmetic operations. In this age of electronic
calculators, one of the most surprising facts to the beginner is that
microprocessors do not have multiply and divide instructions. In
Chapter 7 we will see that short programs can be written to perform
these operations; for the present, however, we will concentrate
on addition and subtraction. In this chapter, “+” will mean “add.”
No confusion with the “or” operation described in the previous
chapter is likely to occur because the intended operation will be
clear from its context.

6502 PROCESSOR STATUS REGISTER

Several of the 6502 internal registers have already been men-
tioned. A complete model of the 6502 register structure is shown

Table 5-1. Summary of Instructions and Op Codes
Introduced in Chapter 5

Addressing Mode
Instruction Description Immediate | Absolute | Zero-Page| Implied
ADC Add Memory to Accumulator 69 6D 65
with Carry
SBC Subtract Memory from Accu- E9 ED ES
mulator with Borrow
CLC Clear the Carry Flag 18
SEC Set the Carry Flag 38
CLD Clear the Decimal Mode Flag D8
SED Set the Decimal Mode Flag F8
PROGRAMMING MODEL R6500
7 0
A ACCUMULATOR
1 0
Y INDEX REGISTER Y
1 0
X INDEX REGISTER X
15] 0
PCH PCL PROGRAM COUNTER
1 0
S STACK POINTER

I 0
Oumnnnoof: i

CARRY

ZERO

INTERRUPT DISABLE
DECIMAL MODE
BREAK COMMAND
UNUSED

OVERFLOW
NEGATIVE

Courtesy Rockwell International
Fig. 5-1. Model of 6502 internal register structure.

82

in Fig. 5-1. The register of the greatest interest in the next few
chapters will be the processor status register, symbolized by P.

Each bit of the P register is called a status bit, and each bit has
its own identity, independent of the other status bits in the register.
The status bits are frequently called condition codes or flags because
they act as signals for certain conditions. We make the following
definitions:

e If the carry flag is set, then there is a one in bit zero, the carry
bit, of the P register.

e If the carry flag is clear, then there is a zero in bit zero, the
carry bit, of the P register.

Similar definitions apply to other bits (or flags) of the P register.
The carry idea is related to addition, as a recollection of elementary
arithmetic will suggest. That it is also related to subtraction will
become clear in the subsequent discussion.

FLAG MODIFICATION INSTRUCTIONS

Refer again to Table 5-1 for a summary of the CLC, SEC, CLD,
and SED instructions. These single-byte instructions use implied ad-
dressing because their only effect is to change flags in the P register.
No address is needed after the op code since the processor knows
the P register is an internal register. Table 5-2 gives some additional
information about the flag modification instructions. The circum-
stances under which these instructions are used will become ap-
parent from the examples and programs. More details connected
with the P register will be given in Chapter 6.

Table 5-2. Descriptions of CLC, SEC, CLD, and SED Instructions

Mnemonic OP Code Operation Logical Description

CLC 18 Clear the Carry Flag SEEEEOEED
0

SEC 38 Set the Carry Flag [T T T [T ¢
1
CLD D8 Clear the Decimal Mode Flag e LI T o] T 1¢]
o

-

-

SED F8 Set the Decimal Mode Flag

ADC INSTRUCTION

The truth table in Table 5-3 summarizes the binary addition
operation for single-bit numbers. The sum of two single-bit num-
bers produces a result, R, and a carry, C. C is zero unless two
binary ones were added. The carry, C, must be added to the next
most significant bit in multibit operations such as the 8-bit opera-
tions performed by the 6502. Refer to Fig. 5-2 for a pictorial repre-
sentation of an 8-bit addition that demonstrates the “carry” concept.
Observe that the carry from the seventh bit is what appears in the
carry flag. If there is a carry, then the carry flag in the processor
status register is set to one. If there is no carry, then the C flag in
the P register is cleared. The ADC (add with carry) instruction
is described as follows.

1 3] + [E] + 8]

488 B
4.8 8 B

é"E+E+a
B E-E

=] 2] + [E] + [8]
EIIE+E+E
éu.+.+§

&

BIT ZERO OF THE PROCESSOR STATUS REGISTER - THE CARRY FLAG

Fig. 5-2. Diagram of an 8-bit binary addition, A+B =R with Carry.

e The ADC instruction adds the contents of a memory location,
the contents of the accumulator, and the carry flag. The result
is stored in the accumulator. The carry flag is added as a one
or as a zero.

e Symbolically the ADC instruction is written A+ M+ C - A,
where A and M contain 8-bit numbers but C is a 1-bit number.

e If the result of the addition operation exceeds $FF =255,
then the carry flag is set; otherwise it is cleared.

In the examples that follow, the status of the carry flag after the
operation is indicated to the right of the result. Example 1 illustrates
how two binary numbers are added. A program to add these same
two numbers is given in Example 2.

In Example 2, the carry flag was cleared prior to the ADC in-
struction because the state of the carry flag is generally unknown.
It is always good practice to clear this flag before doing additions.

84

Table 5-3. Truth Table for Binary Addition (R is Result, C is Carry)

A+B=R

0+0=0[C]=0
0+1=1[C]=0
1+0=1[C]=0
1+1=0[C]=1

——o0oo0o|>»
-0 =0 |w
o—-—-0|®
—o0oo|0

Example 1: Adding Two Binary Numbers with a Cleared Carry Flag
Add $85 and $21. Carry flag is clear.
Solution: |, $85 = 1000 0101 A

+ $21 = 0010 0001 M

0= 0 C
$A6 = 1010 0110 A[C] =0
Example 2: Program to Add Two Binary Numbers

Object: Add the two binary numbers represented by $85 and $21.

0200 D8 START CLD Clear the decimal flag to do the addition
0201 18 CLC in the binary mode. Clear carry flag.
0202 A9 85 LDA $85 Put $85 into the accumulator.

0204 69 21 ADC $21 Add $21.

0206 85 00 STA MEM Store the result in MEM = $0000.

0208 00 BRK Finish.

The result of the additiou is stored in location $0000. It can be
examined to see if the correct answer, $A6, was obtained. Example
3 is another illustration of a binary addition. It introduces a new
complication. Observe that the answer to Example 3 should be
$153, not $53. In this example, the carry flag indicated that the
answer exceeded or overflowed the range of numbers that can be
represented by eight bits. More than one byte is necessary to repre-
sent the answer. All is not lost, however, because the carry bit can
be obtained and stored in a second byte. The program in Example
4 illustrates this. It is a simple modification of the program in Ex-
ample 2. The numbers added are those from Example 3.

Example 3: Adding Two Binary Numbers that Cause an Overflow
Add $93 and $CO. Carry flag is clear.

Solution: + $93 = 1001 0011 A
+ $CO = 1100 0000 M
0= 0 C

$53 0101 0011 A[C] =1

In Example 4 observe that the complete answer is now contained
in two bytes, located at addresses $0000 and $0001 that contain the
least-significant byte of the sum and the most-significant byte of the
sum, respectively. That is, location $0000 should contain $53 and

85

Example 4: Program to Add Two Binary Numbers and Save the Carry Bit
Object: Add $93 to $CO and save any carry from this sum in location $0001.

0200 D8 START CLD Clear the decimal flag.

0201 18 CLC Clear the carry flag.

0202 A9 93 LDA $93 Put $93 into A.

0204 69 CO ADC $CO Add $Co0.

0206 85 00 STA SUMLO Store the result in SUMLO = $0000.
0208 A9 00 LDA $00 Put $00 into A.

020A 69 00 ADC $00 Add $00 and the carry from the previous
020C 85 01 STA SUMHI addition. Store in SUMHI = $0001.
020E 00 BRK Finish.

location $0001 should contain $01, giving $0153 as the correct
answer. The program in Example 4 hints at our next problem, add-
ing numbers that cannot be represented by a single byte.

MULTIBYTE ADDITION

In the event that the numbers to be added require more than one
byte to represent them, or if the answer cannot be represented with
a single byte, then so-called “multibyte arithmetic” is required.
If two bytes are used to represent a number, we call this double-
precision arithmetic. If three bytes are used to represent each num-
ber in an arithmetic operation, then we speak of triple-precision
arithmetic. In Example 5, we illustrate a double-precision addition
by adding $1234 to $05D2. The low-order bytes of the two numbers
to be added are $34 and $D2, while the high-order bytes are $12
and $05. The low-order bytes are added first. Any carry from this
addition is added to the sum of the high-order bytes. The program
in Example 6 illustrates how double-precision arithmetic is done on
the microcomputer. Again, it is absolutely essential that the double-
precision addition be carried out in the order low-order byte first,
high-order byte second, because any carry from the first addition
must be included in the second.

Example 5: Adding Two-Byte Numbers
Add $1234 and $05D2. Carry flag is clear.

Solution: $12 = 0001 0010 A + $34 = 0011 0100 A
+ $05 = 0000 0101 M $D2 = 1101 0010 M
1 1 C (from $34+4$D2) 0 0o C

$18 = 0001 1000 A[C]=0 $06 = 0000 0110 A [C] =

Thus, $1234 + $05D2 = $1806.

Example 6: Program to Add Two Two-Byte Numbers

Obiject: Perform a double-precision addition using the memory assignments given here;
that is, the numbers to be added are stored in these locations:
$0301 = HI1; high-order byte of number one
$0300 = LO1; low-order byte of number one

86

$0303 = HI2; high-order byte of number two
$0302 = LO2; low-order byte of number two
$0305 = SHI; high-order byte of the sum
$0304 = SLO; low-order byte of the sum

0200 D8 START CLD Clear decimal mode.

0201 18 CLC Clear carry flag.

0202 AD 00 03 LDA LO1 Get low-order byte of Number 1.

0205 6D 02 03 ADC LO2 Add low-order byte of Number 2.

0208 8D 04 03 STA SLO Result into low-order byte of sum.

020B AD 01 03 LDA HN Get high-order byte of Number 1.

020E 6D 03 03 ADC HI2 Add high-order byte of Number 2 and carry,
0211 8D 05 03 STA SHI if any, from previous sum. Result

0214 00 BRK into high-order byte of sum. Finish.

DECIMAL ADDITION

The 6502 is also capable of adding decimal (base-ten) numbers.
This is a useful feature because there are instances in which input
and output data are decimal numbers. The most obvious situation
is when human beings must input data to the microcomputer or read
the output of the microcomputer. However, there are less obvious
situations, such as when a decade counter is interfaced to a micro-
computer, providing data in a binary-coded-decimal (bed) repre-
sentation, which must then be operated upon with decimal arith-
metic instructions. Other interfacing problems also require decimal
operations, since numerous instruments output data in the bed form.

In the decimal mode, each digit is represented by four bits. The
conversion scheme is shown in Table 5-4. Since each decimal digit
requires four bits, a single byte of data represents two decimal digits;
that is, a two-digit number. Thus, the numbers 0 to 99 are repre-
sented by a single byte in memory. If we were to add 48 to 43 and
output the result to Port A, then since 48 + 43 = 91, the answer ap-
pearing at Port A would be 1001 0001 because the bed represen-
tation of nine is 1001 and the bed representation of one is 0001.
Refer to Table 5-4 to convert other numbers. If 48 were in some
memory location, its binary representation would be 0100 1000,
while 43 would be 0100 0011.

If the microcomputer is going to add two decimal numbers to
obtain a decimal sum, then the decimal mode flag must be set with
the SED instruction before the addition is carried out. In the decimal
mode. the carry flag is set if the sum exceeds 99; otherwise it is
cleared. The carry bit can be saved in exactly the same way illus-
trated in Example 4, and double-precision decimal arithmetic is
accomplished in exactly the same way that we illustrated in Example
6, except that the decimal mode flag must be set.

A program to illustrate the decimal mode by adding 43 to 48 is
shown in Example 7. Note that it is exactly like the program in

87

Table 5-4. Binary Representation (BCD) of Decimal Digits

Decimal Digit

Binary Code (BCD)

o

VONOOLAEWN—

0000
0001
0010
0011
0100
0101
0110
o
1000
1001

Example 2, except the decimal mode flag is set by the first instruc-
tion. Of course, other numbers can be added with the same pro-
gram, provided the locations in the program that contain the num-
bers to be added are changed. The curious reader is sure to try
some hexadecimal numbers like $CD + $3F in the decimal mode,
just to see what happens.

0200
0201
0202
0204
0206
0208

Example 7: Program to Add Two Decimal Numbers
Object: Add the decimal numbers 43 and 48.

F8 START
18

A9 43

69 48

85 00

00

SED

CLC

LDA 43
ADC 48
STA SUM
BRK

Set the decimal mode flag.
Clear the carry flag.

Put 43 into A.

Add 48.

Result into SUM = $0000.
Finish.

To summarize the use of the carry flag:

® The carry flag should be cleared with a CLC instruction prior
to doing a sum, unless the state of the carry flag is known.

¢ The carry flag will be set if the result of a binary sum exceeds
$FF = 255; otherwise it will be cleared.

¢ The carry flag will be set if the result of a decimal sum exceeds

99; otherwise it will be cleared.

¢ The carry flag can be used to implement double-precision sums,
either in the binary mode or the decimal mode, in the event that
the numbers to be added or the sum cannot be represented by
a single byte.

TWOS-COMPLEMENT ARITHMETIC

Microprocessors and other integrated circuits that handle digital
information neither subtract nor recognize plus and minus signs.
To understand how subtraction is performed and signed numbers

are handled, an understanding of twos-complement arithmetic is
necessary. The purpose of this section is to provide the background
information for subtraction and signed-number arithmetic, topics
that are covered in the next several sections. The ideas presented
here will also be useful in Chapter 6 when relative addressing and
branching are introduced.

Recall from elementary arithmetic that three numbers are involved
in subtraction: the minuend, the subtrahend, and the difference.
The subtrahend, s, is subtracted from the minuend, m, to form the
difference, d. We can express this in this way,

m—s=d (1)

Although most of us do not subtract using the technique that fol-
lows, it is possible to subtract by adding the negative of the subtra-
hend. This can be expressed as follows,

m—s=m+ (—s)=d (2)

For example, § —5=8+ (—5) =3.

On the computer, subtraction is performed with this technique,
namely adding the “negative” of the subtrahend to the minuend.

What is the negative of a binary number? For that matter, what
is the negative of any number? Mathematicians define the negative
of a number as that number which when added to the number, gives
zero. For example 5+ (—5) =0, so (—5) is the negative of +5. To
summarize, a negative number, (—m) has the property that

m+ (—m) =0 (3)

In dealing with binary numbers in a computer, there is no way
of indicating a “—” sign to inform the computer that the number
is a negative number. However, it is possible to discover a relation-
ship between binary numbers that is identical to Equation 3, and
that can be used to define the “negative” of a binary number. We
now prove this.

Suppose M is an 8-bit binary number. You can easily verify with
a few examples that

M + M = $FF (4)

For example, if M = 1100 0101 = $C5, then M = 0011 1010 = $3A,
and M + M = 1111 1111 = $FF. This works every time. Since add-
ing one to $FF gives $00 (with a one in the carry flag), we can also
state that

M+(M+1)=0 (5)

This last equation fits the definition of a negative number perfectly,
and it requires no minus sign. Note that Equation 5 has exactly the

89

same form as Equation 3. In words, our conclusion is, the “negative”
of an 8-bit binary number is found by complementing the number
and adding one.

If M is an 8-bit binary number, then its negatlve is (M+1).
The number (M + 1) is not called the * ‘negative” of M in computer
language. Rather, it is called the twos-complement of M. But re-
member, it has all the properties of a negative number, and, there-
fore, it can be used in subtraction operations.

Recall that to subtract a number we may add the negative of the
number. To subtract an 8-bit binary number M from another 8-bit
binary number A, we can add the twos-complement of M, namely
(M + 1). In symbols,

A-M=A+(M+1) (6)

Direct subtraction in a microprocessor, as the left-hand side of
Equation 6 indicates, is difficult to implement. On the other hand,
complementation of M followed by adding one, as the right-hand
side of Equation 6 indicates, is relatively simple. Microprocessors
implement subtraction by performing the right-hand side of Equa-
tion 6; that is, the computer reads the data from memory, comple-
ments it, adds it to the accumulator, then adds one to get the final
result. Example 8 will help to illustrate these ideas.

Carefully study Example 8. Note that the addition operation is

Example 8: Subtraction by Twos-Complement Addition
Subtract $33 from $83 using twos-complement arithmetic.

Solution: Step T—Complement $33.
$33 = 0011 0011, so $33 = 1100 1100 = $CC
Step 2—Add 1 to $33.
$CC + 1 = $CD
Step 3—Add $CD to $83.
$83 = 1000 0011 A
$CD = 1100 1101 M + 1

$50 = 0101 0000 A |[C] =1

identical to all the previous examples in this chapter. A sharp ob-
server would also see that Step 2 in Example 8 would not be neces-
sary if the carry flag had been set prior to the entire subtraction
process. That is, to add M + 1 we could set the carry flag and then
simply add M. Since the microprocessor already uses the carry flag
to perform the addition operation, it is convenient to use it to form
the twos-complement. If the carry flag, C, is set, then (M + C) is
the twos-complement of M. Then our subtraction problem, A — M,
may be expressed as

A-M=A+ (M+C) (7)

90

Study Equation 7 carefully. If C is set, as it should be if the
subtraction operation is to work, then C is zero. But if C is zero, then
Equation 7 could just as well be written as follows,

A-M—-C=A+(M+C) (8)

Refer to the instruction set summary and observe that Equation 8 is
the equivalent of the SBC instruction. We have arrived. If C is set,
then Equation 8 gives A — M. If C is cleared, then Equation 8
gives A — M with a one borrowed from it.

The SBC instruction may now be summarized as follows:

e The SBC instruction subtracts the contents of a memory loca-
tion from the contents of the accumulator. The complement of
the carry flag, C, is also subtracted from the accumulator. The
result is stored in the accumulator.

e Symbolically the SBC instruction is written A — M — C > A.

e If the result of the subtraction is less than zero in either the
decimal mode or the binary mode, then the carry flag is cleared.

In a subtraction operation the carry flag serves the purpose of indi-
cating a borrow. It may be helpful to think of the complement of
the carry flag as a borrow flag.

Another example will help to illustrate these ideas. In Example
9 we subtract $62 from $AF, and in Example 10 we give a program
to perform the same subtraction. In the program note that the carry
flag is set. If we think of C as the borrow flag, then the borrow flag
was cleared prior to the subtraction operation.

Example 9: Demonstration of Carry Flag in Twos-Compl t Subtracti
Subtract $62 from $AF. Carry flag is set.
Solution: Step 1—Complement $62.
$62 = 0110 0010, so $62 = 1001 1101 = $9D
Step 2—Add $9D to $AF with carry.
$AF = 1010 1111 A
$9D = 1001 1101 M
1 C

$4D = 0100 1101 A [C] =1
Example 10: Program to Subtract Two Numbers

Object: Subtract $62 from $AF using the binary mode.

0200 D8 START CLD Clear the decimal mode flag.

0201 38 SEC Set the carry (or clear the borrow) flag.
0202 A9 AF LDA $AF Minuend into A.

0204 E9 62 SBC $62 Subtract subtrahend.

0206 85 00 STA DIFF Difference into DIFF = $0000.

0208 00 BRK Finish.

Our last example in this section is a program to perform a double-
precision, decimal mode subtraction. This program is given in Ex-

ample 11. Compare this program to the double-precision, binary
mode addition program given in Example 6. In Example 11 we set
the decimal mode flag and we set the carry flag before doing the
subtraction, while in Example 6 we cleared the decimal mode flag
and cleared the carry flag before doing the addition. Both pro-
grams are easily extended to handle three or more bytes.

Example 11: Program to Subtract Two Two-Byte Numbers in the Decimal Mode

Object: Perform a double-precision subtraction in the decimal mode using the follow-
ing memory assignments.

$0300 = LOM; low-order byte of the minuend
$0301 = HIM; high-order byte of the minuend
$0302 = LOS; low-order byte of the subtrahend
$0303 = HIS; high-order byte of the subtrahend
$0304 = LOD; low-order byte of the difference
$0305 = HID; high-order byte of the difference

0200 F8 START SED Set the decimal mode flag.

0201 38 SEC Set the carry (clear the borrow) flag.
0202 AD 00 03 LDA LOM Low-order byte of the minuend into A.
0205 ED 02 03 SBC LOS Subtract subtrahend, low-order byte.
0208 8D 04 03 STA LOD Result into low-order byte of difference.
020B AD 01 03 LDA HIM Get high-order byte of the minuend.
020E ED 03 03 SBC HIS Minus the subtrahend and borrow, if any.
0211 8D 05 03 STA HID Result into difference, high-order byte.
0214 00 BRK Finish.

SIGNED NUMBER ARITHMETIC

In the previous section we showed that the 8-bit number (M + 1)
may be regarded as the “negative” of the 8-bit number M. The
number (M + 1), called the twos-complement of M, has all the
mathematical properties of negative numbers. For example, you
know that in decimal arithmetic +0 = —0 = 0, that is, zero is neither
minus nor plus. Is this true in the twos-complement arithmetic of
binary numbers? Note that the complement of $00 is $FF, and
$FF + 1 = $00, so the twos-complement (negative) of zero is zero
as in the case of decimal numbers.

These and other facts have led the computer industry to adopt
the following conventions for 8-bit signed binary numbers:

¢ 8-bit binary numbers represent the decimal integers from —128
to +127. Refer to Table 5-5 to observe the pattern of integers,
binary numbers, and hexadecimal numbers.

® Bit seven is called the “sign bit.” A one in bit seven indicates
a negative number. A zero in bit seven indicates a positive
number. Refer again to Table 5-5 to observe this pattern.

With regard to signed hexadecimal representations,

92

Table 5-5. Twos Complement Representations of
Numbers from —128 to +127

Number Twos Complement Hexadecimal

+127 o111 1111 $7F
+5 0000 0101 $05
+4 0000 0100 $04
+3 0000 0011 $03
+2 0000 0010 $02
+1 0000 0001 $01

0 " 0000 0000 $00

-1 1111 111 $FF
-2 1111 1110 $FE
-3 1111 1101 $FD
—4 1111 1100 $FC
-5 1111 101 $FB

R .
—128 1000 0000 $80

® The numbers $00 to $7F represent the non-negative integers
from zero to 127.

® The numbers $80 to $FF represent the negative integers from
—128 to —1.

Table 5-6 gives the decimal integers corresponding to any hexa-
decimal number between $00 and $FF.

To handle numbers greater than +127 and less than —128, two
or more bytes are used, but bit seven in the most significant byte
remains as the sign bit. Thus, a 16-bit signed number could have
values between +32767 and —32768.

Refer again to the P register model in Fig. 5-1. When any opera-
tion produces a one in bit seven, then the N flag of the P register is
set. Thus, when an add or subtract operation sets the N flag, a
negative result is indicated. On the other hand, if an add or subtract
operation clears the N flag, a positive result is indicated. An N
symbolizes negative. You will learn that the N flag has uses other
than indicating the signs of binary numbers.

SIGNED ARITHMETIC AND OVERFLOW STATUS BIT

We begin with some examples of signed arithmetic. As in the
case of ordinary addition and subtraction, the carry flag should be
cleared before an addition and it should be set before a subtraction.

93

Table 5-6. Hexadecimal Equivalents of Signed Decimal Integers

Least Significant Hex Digit

] 1 2 3 4 5 6 7 8 9 A B Cc D E F

0 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

= |2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
-n'-" 3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
x |4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
T |5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
1|6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
“E 7 112 113 114 115 116 17 118 19 120 121 122 123 124 125 126 127
E 8 —128 [—127 |—126 |—125 |—124 |—123 |—122 |—121 |—120 |—119 |—118 |[—117 |—116 [—115 |—114 |—113
w |9 —112 (=111 | —110 [—109 |—108 |—107 |—106 |—105 | —104 | —103 |[—102 |[—101 |—100 —99 | —98 | —97
§ A —96 —95 | —94 | —93 —92 | —9 -9 —89 | —88 | —87 | —86 | —85 | —84 —83 | —82 | —81
= |B —80 -79 | =78 | =77 =76 | =75 | —74 =73 =72 | =N —70 | —69 | —68 —67 | —66 | —65
Cc —64 —63 | —62 | —61 —60 | —59 | —58 | —57 | —56 | —55 —54 | =53 | —52 —51 —50 | —49

D —48 —47 | —46 | —45 —44 | —43 | —42 —41 —40 | —39 | —38 | —37 | —36 —35 | —34 | —33

E —-32 =31 —30 | —29 | —28 | —27 | —26 —25 | —24 | —23 —-22 | —21 —20 —19 | —18 | —17

F —16 —15| —14 | —13 =12 | -1 —10 -9 —8 -7 —6 -5 —4 -3 —2 =1

Example 12: Adding Two Signed Numbers
Add +12 and —7. Carry flag is cleared.
Solution: + +12 = 0000 1100 = $0C A
+ —7=1111 1001 = $F9 M
0 0 0 C

+5 = 0000 0101 = $05 A[C] =1

Example 13: Subtracting Two Signed Numbers

Subtract —7 from —12. Carry flag is set. Recall that subtraction is implemented by
adding the compl t of the ber and the carry flag.
—12=1111 0100 = $F4 A
+6 = 0000 0110 = $06 M
1 1 1 C

=5=1111 1011 =$FB A [C]=0

Solution:

+
+

Refer to Table 5-6 to study these examples. You can obtain the
hexadecimal representations of the signed integers from this table,
and you can convert the hexadecimal numbers to binary num-
bers. In Example 13 the logic one in bit seven of the result indi-
cates that the answer is negative in twos-complement form. To
put the answer in a representation which is more easily recognized,
form the twos-complement of the answer and use bit seven to
inform the user that the answer is negative. The complement of
1111 1011 is 0000 0100. Adding one to form the twos-comple-
ment gives 0000 0101 = 5. The N flag was a logic one so the answer
is —5. The N flag can be tested, as you will see later, to determine
if the middle horizontal segment in a seven-segment digit should
be lit, indicating a minus sign.

The carry bit has no meaning when signed (seven data bits, plus
a sign bit) operations are performed. Remember that signed opera-
tions use values in the range of —128 to +127. Thus, when +127
and +127 are added, the result is 254 or 1111 1110. If we consider
this result to be a signed number, it turns out to be negative (bit
seven = logic one). This is incorrect. The entire 8-bit number repre-
sents the result, and the sign bit must be ignored. In this case, an
overflow condition exists since the sum “overflowed” into the sign
bit, giving an erroneous result. When the addition of two signed
numbers exceeds +127, 0111 1111, the overflow status bit, V, is set
to a logic one. Remember, the V flag is present as bit six in the
P register.

Overflow may also occur when the sum of two negative numbers
is less than —128. The microprocessor also recognizes this situation
and sets the overflow flag. Overflow may occur when a negative
number is subtracted from a positive number giving an answer
greater than +127, or when a positive number is subtracted from a
negative number giving an answer less than —128. The overflow flag

95

will be set if any of these overflow conditions occurs; otherwise it
will be cleared. Overflow cannot occur when a positive number is
added to a negative number, a positive number is subtracted from
another positive number, or when a negative number is subtracted
from another negative number.

To the programmer using signed arithmetic, the overflow flag has
the same meaning as the carry flag in ordinary arithmetic. The pro-
grammer who is not using signed arithmetic may ignore the over-
flow flag and the sign in bit seven. Finally, the overflow flag may
be cleared with the CLV instruction, op code BS.

Since the overflow flag does not directly enter a sum or difference
like the carry flag does, signed arithmetic programs require branch
instructions to inform the user of an overflow or to correct for the
result. Branch instructions will be introduced in Chapter 6.

EXPERIMENT NO. 1
Step 1

Load and execute the program in Example 2. What answer is
found at the address $0000?

0200 D8 START CLD Clear the decimal flag.
0201 18 CLC Clear the carry flag.
0202 A9 85 LDA $85 $85 into A.

0204 69 21 ADC $21 Add $21.

0206 85 00 STA MEM Sum into location $0000.
0208 00 BRK

(After the program has run you should find $A6 in location $0000.)

Step 2

What answer would you get if the carry flag had not been cleared
before the program was executed? Try this by exchapging the CLC
instruction for an SEC instruction in the preceding listing.

Step 3
Use the program to add the following numbers:
$7F + $80=_____ $33+8CC=______
$A1 +$5E=___ $EE + $11=__

These four problems involve adding a number to its complement.
What do you conclude is the result of adding a number to its com-
plement if the carry flag is cleared? If the carry flag is set?

96

Step 4

How could you modify the program to add two numbers located
at addresses $0001 and $0002?

(Change the immediate addressing modes of the LDA and ADC
instructions to their zero-page modes. Reference location $0001 with
the LDA instruction and reference location $0002 with the ADC
instruction.)

EXPERIMENT NO. 2
Step 1
Load the program in Example 6.

Object: Perform a double-precision addition using the memory assignments given here;
that is, the numbers to be added are stored in these locations:

$0301 = HI1; high-order byte of number one
$0300 = LO1; low-order byte of number one
$0303 = HI2; high-order byte of number two
$0302 = LO2; low-order byte of number two
$0305 = SHI; high-order byte of the sum

$0304 = SLO; low-order byte of the sum

0200 D8 START CLD Clear decimal mode.

0201 18 CLC Clear carry flag.

0202 AD 00 03 LDA LO1 Get low-order byte of Number 1.

0205 6D 02 03 ADC LO2 Add low-order byte of Number 2.

0208 8D 04 03 STA SLO Result into low-order byte of sum.

0208 AD 01 03 LDA HI Get high-order byte of Number 1.

020E 6D 03 03 ADC HI2 Add high-order byte of Number 2 and carry,
0211 8D 05 03 STA SHI if any, from previous sum. Result

0214 00 BRK into high-order byte of sum. Finish.

Step 2

Use this program to add $1234 to $05D2. Where should these
numbers be stored? Where will the answer be? What is it?

Step 3

Single step the program while it is adding the numbers in step
2, noting the contents of the processor status register after each
instruction. What is the status of the carry flag after the CLC in-
struction? After the first ADC instruction? After the second ADC
instruction? Note that the carry flag is bit zero of the P register. If
the carry flag is clear, then the number in the P register is even.
If the carry flag is set, then the number in the P register is odd.

97

EXPERIMENT NO. 3
Step 1
Load the following program. It is intended to add the contents
of location $0000 to the contents of $0001. The result is loaded into
Port A, an output port, so the answer can be observed on the Port A
LEDs on the I/O board. We use the PA7 (bit seven of Port A)
LED as the sign of the result in the sense that + = OFF, — = ON.

0200 A9 FF ORIGIN LDA $FF Put $FF in the Port A DDR.
0202 8D 01 17 STA PADD

0205 D8 CLD Clear decimal mode flag.
0206 18 AGN CcLC Clear carry flag.

0207 A5 00 LDA LOZ1 Get addend from LOZ1.
0209 25 01 ADC LOZ2 Add contents of LOZ2.
020B 8D 00 17 STA PAD Result into Port A,

020E 4C 06 02 JMP AGN Loop to add again.

Load the program using the op codes. Do not use an assembler.

Step 2

Put $22 in location $0000. Enter $20 in location $0001. Run the
program. What do you expect to observe on the Port A LEDs?

(You should observe a $42 = 0100 0010. Do you get this answer?)

Step 3

There is a bug in the program since it does not give the correct
answer. We obtained a $20 at Port A, which is clearly not the sum
of $22 and $20. Start the program over and use the single-step
mode. Examine the contents of the accumulator after each instruc-
tion is executed. Compare this to what you know should be in the
accumulator. Where is the bug? Correct the program.

(Instruction ADC has an op code of $65, not $25.)

Step 4

Add the following numbers by changing the contents of locations
$0000 and $0001. The numbers are in base ten, and must be con-
verted to hexadecimal. Negative numbers must be converted to their
twos-complement representation using Table 5-6. In each case try to
indicate the state of the Port A LEDs before doing the problem. Re-
member, the PA7 LED is the sign indicator. Write down the sum
and the status of the overflow bit, bit six of the P register.

98

6+2=__. _ 120+8=___

6+(-2)=___ 120+ (-8)=___

6+ (-8)=___ -120+ (-9) =
Remember that negative answers are in twos-complement form. Use

Table 5-6 to convert back to a decimal number before filling in the
blank.

EXPERIMENT NO. 4
Step 1
Write a program to do signed binary subtraction. The program
in Experiment No. 3 is a good starting point. Then repeat the
problems in Step 4 of Experiment 3, assuming they are subtraction
problems instead of addition problems. Be sure to write down the

status of the overflow bit after each operation. Use the PA7 LED
to indicate the sign of the result.

EXPERIMENT NO. 5
Step 1

Try writing a program to do signed arithmetic in the decimal
mode.

99

CHAPTER 6

Branches and Loops

OBJECTIVES
At the completion of this chapter you should be able to:

¢ Use the branch instructions BCC, BCS, BEQ, BNE, BMI, BPL,
BVS, and BVC. See Table 6-1 for a summary.

e Understand and use the compare instructions CMP, CPX, and
CPY.

e Use the BIT test instruction.

e Write programs that test for pulses and logic transitions at
input ports.

INTRODUCTION

The ability of the microprocessor to “make decisions” based on
external or internal conditions makes it the powerful tool that it is.
Although each decision is admittedly simple (for example, if the
logic level on an input pin is one, change an output pin to logic zero;
otherwise leave it unchanged), a set of decisions can be used to
monitor or control complex operations. This chapter deals with the
decision making instructions. We will begin by describing all of
the instructions given in Table 6-1 in the order branch instructions,
comparison instructions, and the bit test instruction. Then we will
describe a number of programs that make use of these instructions.

BRANCH INSTRUCTIONS

The branch instructions test the values of specific bits in the proc-
essor status register (P register). If the value or condition tested

100

Table 6-1. Summary of Instructions Introduced in Chapter 6

Addressing Mode

Instruction Description Immediate | Absolute | Zero-Page | Relative
BCC Branch on Carry Clear 90
BCS Branch on Carry Set BO
BEQ Branch on Result Zero FO
BNE Branch on Result not Zero DO
BMI Branch on Negative Result 30
BPL Branch on Non-Negative

Result 10
BVS Branch on Overflow Set 70
BvC Branch on Overflow Clear 50
CMP Compare Memory and Ac-

cumulator c9 cD [of}
CPX Compare Memory and X Reg-

ister EO EC E4
CPY Compare Memory and Y Reg-

ister co CcC C4
BIT Test Bits in Memory with

Accumulator 2C 24

is met, the program counter is altered, causing the program to jump
to an instruction other than the one following the branch instruction.
If the condition tested is not met, the program continues in sequence.
The branch instructions are

e BCS—Branch on Carry Set: The branch occurs if the carry flag
(bit zero of the P register) is set (C=1).
e BCC—Branch on Carry Clear: The branch occurs if the carry
flag is clear (C =0).
e BEQ—Branch on Result Equal Zero: The branch occurs if the
zero flag (bit one of the P register) is set (Z=1).

4 3

7.6 5 2 10
[NTV] [B]of[i]z]¢

BIT NUMBER
PROCESSOR STATUS REGISTER "P~

CARRY 1 = CARRY

ZERO 1 = RESULT ZERO
INTERRUPT DISABLE 1 = DISABLE
DECIMAL MODE 1 = DECIMAL

BREAK COMMAND

NOT USED

OVERFLOW 1 = OVERFLOW
NEGATIVE 1 = NEGATIVE

Fig. 6-1. Processor Status Register model.

101

* BNE—Branch on Result Not Equal Zero: The branch occurs
if the zero flag is clear (Z =0).

e BMI—Branch on Minus: The branch occurs if the negative flag
(bit seven of the P register) is set (N =1).

e BPL—Branch on Plus: The branch occurs if the negative flag is
clear (N =0).

e BVS—Branch on Overflow Set: The branch occurs if the over-
flow flag (bit six of the P register) is set (V =1).

e BVC—Branch on Overflow Clear: The branch occurs if the over-
flow flag is clear (V =0).

The processor status register (P register) is illustrated in Fig. 6-1.
Before describing the flow of a program during a branch, we review
how some of the flags in the P register are set and cleared.

MODIFYING THE PROCESSOR STATUS REGISTER

The execution of some of the instructions in the 6502 instruction
set may cause the contents of the processor status register to be
modified. For example, in Chapter 5 we learned that the ADC
instruction will result in the N flag being cleared if the sum has a
zero in bit seven, and it will result in the C flag being set if the ad-
dition produces a carry. If the result of the ADC instruction were
$00, then the Z flag would be set; otherwise it would be cleared.

These examples serve to illustrate the fact that the flags in the
P register are set or cleared by the outcomes of various instructions.
The instruction set summary in Table 2-3 indicates the flags or
condition codes which each instruction modifies. Two examples will
clarify this further. Refer to the Condition Code column of the
instruction set summary in Table 2-3.

® How does the LDA instruction modify the P register? Referring
to the instruction set summary, it is seen that the LDA instruc-
tion affects both the N flag and the Z flag. The checks (/) in
the N and Z columns indicate this fact. If the byte transferred
from memory to the accumulator has a one in bit seven, then
the N flag will be set; otherwise it will be cleared. If the byte
transferred is zero, then the Z flag will be set; otherwise it
will be cleared.

¢ How does the DEC instruction modify the P register? The DEC
instruction modifies the N and Z flags. If the DEC instruction
produces a zero in a memory location, then the Z flag will be
set; otherwise it will be cleared. If as a result of the DEC in-
struction a memory location has a one placed in bit seven, then
the N flag will be set; otherwise it will be cleared.

102

It should be clear that during the course of a program the flags
are constantly changing. Consequently, the programmer cannot test
the effect of an LDA instruction on the Z flag with a BEQ instruc-
tion unless the BEQ instruction immediately follows the LDA in-
struction in the program, or he is absolutely sure that no intervening
instructions affected the Z flag.

BRANCHING

Fig. 6-2 flowcharts the branch instruction sequence. Let us discuss
it in terms of a particular example, say the “branch on plus” BPL
instruction. In a program, the BPL instruction would be written:

0230 10 07
0232 __ ___

BPL OFFSET
NEXT INSTRUCTION

where we have chosen an arbitrary location for the instruction. The
BPL op code is $10, and we have also arbitrarily chosen a value of
$07 for OFFSET. The second byte of the instruction, OFFSET, is

FETCH
BRANCH
INSTRUCTION
— OFFSET
s ves |PROGRAM COUNTER PROGRAM COUNTER
CONDITION PROGRAM COUNTER PROGRAM COUNTER
MET? + +
ONE OFFSET
NO
+OFFSET
PROGRAM COUNTER
PROGRANLCOUNTER
ONE
FETCH
NEXT
INSTRUCTION

Fig. 6-2. Flowchart of Branch Instruction.

103

also referred to in Fig. 6-2. What happens when the program reaches
the BPL instruction is described as follows.

e If the N flag is one, corresponding to a negative result, then
the condition tested is not met, and program execution will
continue with the NEXT INSTRUCTION in the program se-
quence.

e If the N flag is zero, corresponding to a positive result, then
the condition tested is met, and program execution will con-
tinue at the instruction located at PROGRAM COUNTER +
OFFSET.

Thus, if the N flag is one, the program will continue with the in-
struction located at $0232, but if the N flag is zero, the program will
continue with the instruction located at $0232 + $07 = $0239.

There are three important points to be made at this time: refer
both to the preceding example being discussed and Fig. 6-2.

e OFFSET is interpreted by the microprocessor as a twos-comple-
ment number. It therefore may be positive, zero, or negative.
That is the reason the “OFFSET arrows” in Fig. 6-2 go both
ways.

e The first reference to the program counter in Fig. 6-2 refers to
the second byte of the branch instruction. In this example, this
is $0231.

® Because the 6502 program counter is incremented during the
time that it is reading the second byte of the branch instruction,
the OFFSET will actually be added to the value of the pro-
gram counter for the instruction following the branch instruc-
tion. In the example, this gives $0232 + $07 = $0239 as the new
value of the program counter if the branch condition is met.

The offset is always relative to the location of the op code that
follows the branch instruction. This use of the word “relative” is
the reason that the addressing mode of the branch instructions is
called relative addressing.

Example 1: Calculation of a Forward Branch

A branch instruction is stored in locations $AF25 and $AF26. The branch offset is
$34. What is the location of the next instruction that will be executed by the micro-
processor?

Solution: If the branch condition is not met, then the next instruction in the normal
program sequence will be executed. It is located in memory immediately above the
branch instruction, so its op code will be in location $AF27. If the branch condition is
met, then the next instruction to be executed will be in $AF27 + $34 = $AF5B.

A simple rule to find small offsets in the forward direction is to
count bytes 0, 1, 2, . . . in hexadecimal beginning with the location
of the instruction following the branch instruction and ending with

104

Example 2: Calculation of a Backward Branch Offset

A branch instruction is stored in locations $AF25 and $AF26. If the branch condition
is met, it is desired that the program branch backward to an instruction whose op code
is in $AF20. What offset should be used with the branch instruction?

Solution: The offset is relative to location $AF27. Therefore, OFFSET = $AF20 —
$AF27 = —7 = $F9 in twos-complement notation. The twos-complement conversion
may be facilitated with Table 5-6.

the location of the op code to be executed, if the branch condition
is met. For backward branches, start counting 0, FF, FE, FD, . . .
backward from the op code following the branch instruction to the
op code to be executed, if the branch condition is met.

COMPARISON INSTRUCTIONS

The CMP, CPX, and CPY instructions are used to compare two
numbers to see which, if either, is the larger. None of the 6502 reg-
isters other than the processor status register are changed, nor are
any memory locations altered by the comparison instructions. Their
only effect is to set or clear flags in the P register, based upon the
result of the comparison operation. We describe the CMP instruc-
tion in detail.

® CMP—Compare the contents of the accumulator with the con-
tents of a memory location: symbolically, A — M.

e If A =M, then C is set; otherwise it is cleared.

e If A =M, then Z is set; otherwise it is cleared.

e If the operation A — M leaves a one in bit seven of the result,
then N is set; otherwise it is cleared.

Even though the operation is symbolized as a subtraction, the actual
operation is “invisible,” since no result, other than the changed flags,
is observed.

The CPX and CPY instructions are identical to the CMP instruc-
tion in all respects, except that they compare the X and Y registers
with the contents of a memory location. Replace the accumulator in

Example 3: lllustration of a CMP Operation
Assume $CF is in the accumulator, A, and $3E is in the memory location, M. What
flags will be set by the CMP instruction?
Solution: Since $CF == $3E, the C flag will be set. Since $CF == $3E, the Z flag will
be cleared. Since $CF — $3E — $81, the result of the subtraction has a one in bit
seven, and the N flag will be set.

Example 4: lllustration of a CPX Operation
Assume the X register contains $80 and M contains $A0. What flags will be set by the
CPX instruction?
Solution: Since $80 < $A0, the C flag will be cleared. Since $80 5= $A0, the Z flag
will be cleared. Since $80 — $A0 — $EO, the result of the subtraction has a one in
bit seven; therefore, the N flag will be sef.

105

the description of the CMP instruction with the X register, and you
have a description of the CPX instruction. Likewise, the contents of
the Y register may be compared to a memory location. Two com-
parison operations are illustrated in Examples 3 and 4.

BIT TEST INSTRUCTION

The BIT instruction is another test instruction that affects only
the P register. It transfers bits seven and six of the memory location
that it references to the corresponding bits in the P register. It also
forms a logical anp between the contents of the accumulator, A,
and the memory location, M, which it references. If the result of the
AND operation is zero, then the Z flag is set; otherwise it is cleared.
The logical description of the BIT instruction is A-M, M;~N, and
Mg~ V. As in the case of the comparison instructions, the result of
aNping the contents of the accumulator with the contents of a mem-
ory location (A-M) is “invisible.” In fact, the AND operation caused
by the BIT instruction serves only to set or clear the Z (zero) flag.
The notation M;— N and M4V means that bit seven of the memory
location referenced by the BIT instruction is transferred to the N
flag of the P register, and bit six of the same memory location is
transferred to the V flag of the P register. Example 5 illustrates how
a bit test works.

Ex le 5: Explanation of a BIT Test

P

If A contains $02 and M contains $43, how will the flags in the P register be changed
by a BIT instruction that references M?

Solution: A*M = $02, so the result of the AND operation is not zero. The Z flag will
be cleared. Since $43 = 0100 0011, M; = 0 and M, = 1. Therefore, the N flag will
be cleared and the V flag will be set.

The program examples that follow illustrate the use of the com-
parison and bit test instructions. Flowcharts are used to show some
of the steps. The reader should study carefully the programs, pro-
gram comments, and the flowcharts to become familiar with the in-
structions introduced in this chapter.

The first program example is given in Example 6. It detects nega-
tive pulses on pin PBO (bit zero of Port B) and counts these pulses.
A flowchart of the program, starting with the instruction labeled
BACK, is shown in Fig. 6-3. Two branch instructions are used in
this program; both of them are backward branches. Referring to the
flowchart and the program, observe that the program will stay in
the first loop as long as the voltage level at pin PBO is at logic one.
As soon as the logic level changes to zero, the program proceeds to
the next loop. Thus, the first part of the program detects a logic-one
to logic-zero transition. The program loops in the second loop as

106

Fig. 6-3. Flowchart for Example 6. Train of
negative pul will be counted and the
answer stored in Port A.

X=X+1

OUTPUT X
PORT A

long as the voltage level at pin PBO0 is at logic zero. It emerges from
the loop to increment X and store this new value of X in Port A
after a complete negative pulse has occurred. It then jumps back
to BACK to wait for the next negative pulse. The two mask opera-
tions (AND $01) were used to ensure that only bit zero of Port B
entered the decision making process.

Example 6: Program to Detect and Count Negative Pulses
Object: Write a program to count negative pulses on pin PBO of Port B. The pulses
consist of transitions from logic one, to logic zero, and back to logic one. The
X register will be used to count the pulses, and the result will be stored in
Port A, an output port.

0200 A2 00 BEGIN LDX $00 Initialize X to zero.

0202 A9 FF LDA $FF Set data direction register of Port A
0204 8D 03 A0 STA PADD so it is an output port.

0207 AD 00 A0 BACK LDA PBD Read Port B.

020A 29 01 AND $01 Mask all bits except PBO.

020C DO F9 BNE BACK Branch backwards $F9 = —7 bytes if
020E AD 00 AO LOOP LDA PBD PBO £ 0; otherwise read Port B.
0211 29 01 AND $01 Mask all bits except PBO.

0213 FO F9 BEQ LOOP If PBO = 0, branch back to LOOP.
0215 E8 INX Pulse detected, increment X.

0216 8E 01 A0 STX PAD Result into Port A.

0219 4C 07 02 JMP BACK Return to count more pulses.

107

For what can the program in Example 6 be used? Its application
to event counting, for example, nuclear disintegrations, arrival ol
customers in a queue, or other events, and frequency counting
should be obvious. A more elaborate procedure than the INX in-
struction and X register storage would be necessary to keep track
of the number of pulses, but the most important ingredients are
there. The ability of two loops in the program to detect logic level
transitions could also be used in event timing. If a phototransistor
or photoresistor circuit produced a negative transition at pin PB0
when the light was interrupted, then the first loop in the program
in Example 6 could be used to hold the timer until the light was
interrupted, the timing could begin at this transition, and the timing
could end when the interruption ceased; or, both loops could be
used to detect a negative pulse, after which timing would begin.
Any application that involves detecting logic level transitions and
carrying out some function as a result can use the ideas in this
program.

A similar program, but one that makes use of pin PB7 of Port B,
will illustrate some simplification in programming and several of
the other instructions introduced in this chapter. This program is
given in Example 7. It detects and counts positive pulses on pin
seven of Port B, PB7. The BIT instruction is used to set or clear
the N flag depending on the logic level on PB7. The BPL and BMI
instructions produce the required branches. The program loops in
the BACK loop until PB7 goes to logic one. It loops in the LOOP
loop until PB7 goes back to logic zero when the positive pulse is
complete. Then the pulse is counted by the INX instruction. Note
also that the BPL and BMI instructions have nothing to do with
arithmetic operations in this example.

Example 7: Program to Detect and Count Positive Pulses

Object: Count positive pulses at pin PB7 of Port B.

0300 A2 00 BEGIN LDX $00 Initialize X to zero.

0302 A9 FF LDA $FF Set data direction register

0304 8D 03 AO STA PADD of Port A to output condition.
0307 2C 00 A0 BACK BIT PBD Test bit seven of Port B.

030A 10 FB BPL BACK If bit seven is zero, branch back.
030C 2C 00 A0 LOOP BIT PBD Test bit seven again.

030F 30 FB BMI LOOP If PB7 = 1, branch to LOOP.
0311 E8 INX Count pulse.

0312 8E 01 AO STX PAD Result of count into Port A.

0315 4C 07 03 JMP BACK Return to count pulses.

ASCIl TO HEXADECIMAL CONVERSION

One of the most common ways of communicating with the micro-
computer is by means of an ASCII-encoded keyboard. The ASCII

108

is a binary code used to represent upper-case and lower-case alpha-
betic characters, numerals, punctuation marks, and other symbols
and control codes. For example, when the “A” key on an ASCII
keyboard is pressed, a 0100 0001 appears at its output, representing
an upper case “A.” If we assume that the keyboard output is an-
other location in memory, as it would be in any memory mapped
I/0 system such as that on the 6502, then the hexadecimal value
for “A,” a $41, would appear in the memory location of the keyboard.

With this background, consider the following problem. Assume
a key representing one of the 16 hexadecimal characters, 0-9 and
A-F, is pressed. Its ASCII representation appears in a certain mem-
ory location. Convert the contents of this location into the binary
(or hexadecimal) number it represents. Store it in the low-order
nibble of another location. The program in Example 8 will do this.
Refer to Table 6-2 for the ASCII representations of the hexadecimal
characters. Refer also to Fig. 6-4 to see a flowchart of the program.
Note that for numbers less than $0A, the numerical value may be
obtained from the ASCII value by subtracting $30, while for ASCII
numbers larger than $41 the numerical value may be obtained trom
the ASCII number by subtracting $37.

Most of the details of the program in Example 8 are illustrated
by the flowchart in Fig. 6-4, but additional comments may be neces-
sary. Observe that a CMP instruction was used. The only type of
branch not explicitly covered in the flowchart is the BCS OVER.
At that point in the program, the conversion for the hex numerals

Table 6-2. ASCIl Representations of Hexadecimal Characters

AsCIl
Hexadecimal Representation Numerical Value
Character (Hexadecimal) (Binary) (Hexadecimal)
0 30 0000 0000 $00
1 31 0000 0001 $01
2 32 0000 0010 $02
3 33 0000 0011 $03
4 34 0000 0100 $04
5 35 0000 0101 $05
6 36 0000 0110 $06
7 37 0000 0111 $07
8 38 0000 1000 $08
9 39 0000 1001 $09
A a4 0000 1010 $0A
B 42 0000 1011 $0B
c 43 0000 1100 $0C
D 44 0000 1101 $0D
E 45 0000 1110 $OE
F 46 0000 1111 $OF

109

A>

A—13$30—-A

A—$37 - A

OUTPUT
NIBBLE

Fig. 6-4. Flowchart of program to
convert Hex ASCII character to
Hex Nibble.

zero through nine has been completed. If the program continued
in sequence, the conversion for the numerals A-F would follow,
ruining the previous result. Some means to jump around this con-
version is necessary. A JMP OVER instruction could have been
used where the BCS OVER instruction is. However, since the carry

Example 8: ASCHl to Hexadecimal Conversion

Object: Change hex character represented in ASCIl to hex number, and store this
number in the low-order nibble of Port A. Read the ASCIl character from
$0300.

0230
0231
0233
0236
0239

023B
023D
023E
0240
0242
0244
0247

110

D8
A9
8D
AD
c9

BO
38
E9
BO
E9
8D
00

FF
03 A0
00 03
40

05

30
02
37
01 A0

ORIGIN

ARND
OVER

CLb

LDA $FF
STA PADD
LDA ASCI
CMP $40

BCS ARND
SEC

SBC $30
BCS OVER
SBC $37
STA PAD
BRK

Clear decimal mode.

Make Port A an output port by
loading $FF into its DDR.

Get ASCII from $0300.

Compare it with $40. If it is

larger, then it represents a numeral
A-F. Branch to subtract $37.

Clear borrow flag.

For numerals 1-9, subtract $30.
Jump to store result in PAD.

Result into Port A.

flag will be set after the subtraction, we used a BCS instead. The
advantage of this is that the program may be relocated in memory
with no changes in the program bytes. With a JMP instruction, the
address following the JMP instruction would have to be changed
to relocate the program. It is good programming practice to make
programs relocatable whenever possible. Relocatable programs are
easy for other programmers to add to their microcomputer systems
because they can place the program in any available memory loca-
tions with no programming changes. Such programs are also easier
to put on PROMs, programmable read-only memory chips.

USING BRANCH INSTRUCTIONS FOR TIME DELAYS

Another use of branch instructions is to form delay loops or timing
loops. For example, in data logging applications it may be required
that a specific interval elapse between the times at which the points
are to be logged. A delay loop may be used to provide this interval.
Consider the following set of instructions:

LDX $10
LOOP DEX
BNE LOOP.

A flowchart of this loop is given in Fig. 6-5. Note that the program
repeats the DEX and BNE instructions until X = 0; then it will
proceed to the instruction following the BNE instruction.

To calculate the time required to execute the delay loop, we refer
to the instruction set summary in Table 2-3 that lists the number of

X=N
Y
Fig. 6-5. Simple delay loop. N is number X=X —1
chosen by the programmer to determine =T
time interval for delay.

<>

YES

m

clock cycles for each instruction. Our cycle account proceeds as
follows:

¢ LDX instruction—2 cycles.

e DEX instruction—2 cycles each time, $10 times = 32,, cycles.

® BNE instruction—3 cycles each time the branch is taken, $0F
times = 454 cycles.

® BNE instruction—2 cycles when the branch is not taken, $01
times = 2 cycles.

¢ Total time of loop = 2 + 32 4+ 45 4+ 2 = 81 cycles.

For a clock cycle of one microsecond, the loop will take 81 micro-
seconds. If NX is the number loaded into the X register, then the
loop time in clock cycles is (SNX + 1). Remember, NX must be
converted to hexadecimal before using it in a program. If T is the
required number of clock cycles, and if (T —1) is a multiple of
five, then NX may be chosen to produce the exact interval that is
desired. In all other cases, the time interval will be an approximation
to the interval desired.

To create longer delays, delay loops may be nested. The program
in Example 9 illustrates this technique. A flowchart is shown in
Fig. 6-6. After each delay the number at Port A will be incremented
so that the programmer may have a visible effect of the various
delays if the Port A output pins operate LEDs. In this program, if
NX is the number loaded into the X register and NY is the number
loaded into the Y register, then the total delay time in the program
in Example 9 is,

NX(5NY + 6) +1

clock cycles. Note that if NY is 199,, then NX controls the number
of one millisecond (approximately) intervals. The error, assuming
the clock frequency is 1 megahertz, is (NX + 1) microseconds. In
Chapter 10, we will see that interval timers are much easier to use
for delay loops and timing intervals.

Example 9: Nested Delay Loop Program

Object: Demonstrate the delay produced by a delay loop nested in another delay loop.
After each delay increment Port A. Start with $FF in Port A,

0250 A9 FF BEGIN LDA $FF Initialize Port A data direction
0252 8D 03 A0 STA PADD register.

0255 8D 01 A0 STA PAD

0258 A2 FF BACK LDX $FF Set delay of X loop.
025A AO FF LOOPX LDY $FF Set delay of Y loop.
025C 88 LOOPY DEY Decrement Y.

025D DO FD BNE LOOPY Branch back if Y 54 0.
025F CA DEX Decrement X.

0260 DO F8 BNE LOOPX Branch back if X £ 0.
0262 EE 01 AO INC PAD Increment Port A.
0265 4C 58 02 JMP BACK Repeat entire process.

12

Fig. 6-6. Nested delay loop flowchart.

The last program to illustrate the instructions introduced in this
chapter is a utility program to convert negative hexadecimal num-
bers into their twos-complement representations. A hexadecimal
number is entered in Port B by means of the switches connected to
the Port B pins. If the number is a negative number, PB7 is set to
logic one; otherwise it is set to logic zero. The program converts
negative numbers to their twos-complement representations, and
outputs the result to the LEDs connected to the Port A outputs.
Positive numbers will also be written to Port A. Bit six of Port B
is masked because it has different values in the AIM 65, SYM-1,
and KIM-1 microcomputers. You can refer to Table 5-6 to check
your answers. The program is given in Example 10.

113

Example 10: Program to Convert a Negative Number to
Its Twos-C I t Repr tati

P

Obiject: Convert a negative number input at Port B to its twos-complement represen-
tation. Output the result to the Port A LEDs.

0270 A9 FF START LDA $FF Set up data direction register
0272 8D 03 AO STA PADD for Port A.

0275 AD 00 AO HERE LDA PBD Read Port B.

0278 29 BF AND $BF Mask bit six.

027A 10 05 BPL BRNCH If positive, branch to output.
027C 49 FF EOR $FF Perform complement

027E 38 SEC Set carry flag to add one to
027F 69 80 ADC $80 get twos-complement. Also add
0281 8D 01 A0 BRNCH STA PAD a one in bit seven. Result in PAD.
0284 4C 75 02 JMP HERE Return to get other numbers.

INTRODUCTION TO THE EXPERIMENTS

The experiments make use of the I/O board introduced in a
previous chapter. All the experiments make use of the programs
previously listed in this chapter, and these were written in terms of
the SYM-1 and AIM 65 I/O port addresses. KIM-1 owners must
make the appropriate changes. The branch instructions are among
the most important for the potential user to understand. The pro-
grams and experiments should be studied carefully.

EXPERIMENT NO. 1

Step 1
Load the program in Example 6.
0200 A2 00 BEGIN LDX $00 Initialize X to zero.
0202 A9 FF LDA $FF Set data direction register of Port A
0204 8D 03 AO STA PADD so it is an output port.
0207 AD 00 AO BACK LDA PBD Read Port B.
020A 29 01 AND $01 Mask all bits except PBO.
020C DO F9 BNE BACK Branch backwards $F9 = —7 bytes if
020E AD 00 AO LOOP LDA PBD PBO £ 0; otherwise read Port B.
0211 29 01 AND $01 Mask all bits except PBO.
0213 FO F9 BEQ LOOP If PBO = 0, branch back to LOOP.
0215 E8 INX Pulse detected, increment X.
0216 8E 01 AC STX PAD Result into Port A.
0219 4C 07 02 JMP BACK Return to count more pulses.
Step 2

Place the PBO switch in the logic-one position (up).

Step 3
Run the program. Toggle PBO off and on. What do you observe?

114

(We observed that the PAO0 LED lighted after one toggle.)

Step 4
Continue to toggle PB0. What do you observe?

[We observed that the LEDs at Port A count (in binary) the num-
ber of times PB0O was toggled from logic one to logic zero and back
to logic one.]

Step 5

How would you modify the program to count positive pulses in-
stead of negative pulses?

(Exchange the BNE and BEQ instructions to count positive pulses
instead of negative pulses. Try this change and toggle PBO0.)

Step 6
What is the shortest single pulse which the program will detect?

(If a negative pulse occurred after the first LDA PBD instruction,
and if it were of such a duration that it returned to logic one before
the completion of the same LDA instruction at the beginning of
the second loop, then it would be missed. Thus, if it were shorter
than the LDA, AND, and BNE instruction, then it might be missed.
This amounts to nine clock cycles. If a clock cycle is 1 microsecond,
then we may conservatively estimate the minimum detectable pulse
width as 10 microseconds.)

EXPERIMENT NO. 2

Step 1
Load the program in Example 7.

0300 A2 00 BEGIN LDX $00 Initialize X to zero.
0302 A9 FF LDA $FF Set data direction register
0304 8D 03 A0 STA PADD of Port A to output condition.
0307 2C 00 AO BACK BIT PBD Test bit seven of Port B.
030A 10 FB BPL BACK If bit seven is zero, branch back.
030C 2C 00 A0 LOOP BIT PBD Test bit seven again.
030F 30 FB BMI LOOP If PB7= 1, branch to LOOP.
0311 E8 INX Count pulse.
0312 8E 01 A0 STX PAD Result of count into Port A.
0315 4C 07 03 JMP BACK Return to count pulses.

115

Step 2
Place the PB7 switch in the logic-zero position.

Step 3

Run the program. What do you expect to observe on the Port A
LED:s if PB7 is switched to logic one?

(Offhand, one would expect to see a zero in Port A because the
program should be in the second loop, waiting for a logic-one to
logic-zero transition.)

Step 4
Switch PB7 to logic one. What do you observe at Port AP

[We observed a five (in binary) at Port A. You may not observe
an identical result.]

Step 5

Switch PB7 back to logic zero, completing the positive pulse. What
do you observe at Port A?

(We observed a six at Port A. You may not get the same answer.
The explanation of these results lies in the fact that the switch on
PBO has been electronically “debounced.” The PB7 switch is not
debounced, and the mechanical bouncing of the switch produces
several pulses when only one is intended. For some applications
debouncing is not necessary, for others it is very important. De-
bouncing can also be done with a suitable delay loop in the program,
but this will increase the minimum detectable pulse width. As a
challenge you may want to experiment with delay loops in this
experiment until you have solved the switch bounce problem.)

Step 6
Construct a flowchart for this program.

EXPERIMENT NO. 3
Step 1
Load the program in Example 8.

116

0230 D8 ORIGIN CLD Clear decimal mode.

0231 A9 FF LDA $FF Make Port A an output port by
0233 8D 03 A0 STA PADD loading $FF into its DDR.
0236 AD 00 03 LDA ASCI Get ASCII from $0300.
0239 C9 40 CMP $40 Compare it with $40. If it
0238 BO 05 BCS ARND is larger, then it represents a
023D 38 SEC numeral A-F. Subtract $37.
023E E9 37 SBC $30 Otherwise, subtract $30.
0240 BO 02 BCS OVER Jump to output result.
0242 E9 30 ARND SBC $37
0244 8D 01 A0 OVER STA PAD Result into Port A.
0247 00 BRK

Step 2

Put an ASCII representation ($30-$39 or $41-$46) for a hexa-
decimal numeral (0-9 or A-F) in location $0300. (See Table 6-2.)

Step 3

Run the program. The corresponding hexadecimal number should
appear at Port A in a binary representation. Try several numbers,
some for hex numbers 0-9 and others for hex numerals A-F.

Step 4

What happens if you have an ASCII character other than one
which represents 0-9 or A-F in location $0300? How could you
“trap” this error or inform the user an input error has been made?

(You might start by comparing the number input by the keyboard
with $30 and $46, because if it is outside this range then it is not
an ASCII character for a hexadecimal numeral. This is a challenging
problem; good luck with it.)

EXPERIMENT NO. 4

Step 1

Load and execute the program in Example 9.
0250 A9 FF BEGIN LDA $FF Initialize Port A data direction
0252 8D 03 A0 STA PADD register.
0255 8D 01 A0 STA PAD
0258 A2 FF BACK LDX $FF Set delay of X loop.
025A AO FF LOOPX LDY $FF Set delay of Y loop.
025C 88 LOOPY DEY Decrement Y.
025D DO FD BNE LOOPY Branch back if Y 5 0.
025F CA DEX Decrement X.
0260 DO F8 BNE LOOPX Branch back if X 5% 0.
0262 EE 01 AOQ INC PAD Increment Port A.
0265 4C 58 02 JMP BACK Repeat entire process.

117

Step 2
What do you observe at Port A?

(We observed that the Port A LEDs count upward in binary. The
delay loops allow enough time to see the counting take place.)

Step 3
Change the program byte at $0259 to $01. What do you observe?

(We observed that the low-order LEDs blinked too quickly to see
them in their off state.)

Step 4
Change the program byte at $025B to $01. What do you observe?

(We observed that all the LEDs blinked too fast for the eye to
perceive.)

Step 5

Experiment with different values in $0259 and $025B to vary the
time of the loop. Calculate the delays first, then confirm them using
the formulas in the text.

EXPERIMENT NO. 5
Step 1

Write a program that loops until any logic transition occurs at
PB7. Output the transitions detected to Port A. The following pro-
gram segment will serve as a hint.

START LDY PBD Read Port B.
LOoOP TYA Transfer Y to A.
EOR PBD
BPL LOOP
INX
STX PAD
JMP START

Step 2

Be sure to include statements to initialize Port A to be an output
port.

118

Step 3

Test your program using the PB7 input switch. How many tran-
sitions does it detect for one switch change?

EXPERIMENT NO. 6
Step 1

Using the program in Example 10, find the twos complement
representations of the following decimal numbers. Enter the sign
in bit seven of Port B, convert these numbers to binary, then run
the program. Check your answers by hand computations. —1, —5,
—10, —13, —28, —35, —47.

119

CHAPTER 7

Register-Shift
Instructions

OBJECTIVES
At the completion of this chapter you should be able to:

e Understand and use the ASL, LSR, ROL, and ROR instructions.
See Table 7-1 for a summary of these instructions.

® Multiply 4-bit and 8-bit numbers.

e Qutput the contents of the accumulator as two ASCII char-
acters.

¢ Convert a two-digit base-ten number to its hexadecimal equiva-
lent.

® Convert a two-digit hexadecimal number to its base-ten equiva-
lent.

INTRODUCTION

With the addition of the register-shift instructions to the collection
of instructions already learned, you can begin to write more com-
plex programs. In fact, after these instructions are learned, you have
the ability to use the great majority of instructions in the 6502 in-
struction set. The complexity of the programs in the latter part of
this chapter will begin to reflect this. The need to have the ability
to shift bits left or right in a memory location is less obvious than
the need for arithmetic and logical operations. We can only promise
that the value of these instructions will become obvious as we
proceed.

120

Table 7-1. Summary of Instructions Ir;troduced in Chapter 7

Addressing Mode
Instruction Description Absolute Zero-Page Accumulator
ASL Shift Left One Bit OE 06 OA
ROL Rotate Left One Bit 2E 26 2A
LSR Shift Right One Bit 4E 46 4A
ROR Rotate Right One Bit 6E 66 6A

GETTING ACQUAINTED WITH REGISTER-SHIFT INSTRUCTIONS

The effect of the ASL, LSR, ROL, and ROR instructions is as
easily demonstrated as it is explained. We shall define each instruc-
tion and then give a short program that will demonstrate the effect
of each instruction, using the LEDs at Port A. Diagrams illustrating
the effect of each instruction on the contents of the memory location
upon which it operates are shown in Fig. 7-1. We begin with the
definitions.

® ASL—Arithmetic Shift Left: Each bit in the memory location
or register upon which this instruction operates is shifted to

the left. That is, bit zero becomes bit one, bit one becomes bit
two, . . ., bit six becomes bit seven, and bit seven becomes the
carry flag. A zero is shifted into bit zero.

e LSR—Logical Shift Right: This instruction is similar to the ASL
instruction, except the bits are shifted right. A zero is shifted
into bit seven, and bit zero is shifted into the carry flag.

® ROL—Rotate One Bit Left: The contents of the memory loca-
tion or register upon which this instruction operates are shifted
to the left as in the ASL instruction, except that the carry flag
is shifted into bit zero. Since bit seven is shifted into the carry
flag, successive ROL instructions simply rotate the bits left.
A succession of nine ROL instructions will leave the contents of
the location and the carry flag unchanged.

® ROR—Rotate One Bit Right: The ROR instruction is exactly like
the ROL instruction, except the bits are rotated right. Bit zero
goes into the carry flag, and the carry flag is moved into bit
seven.

These definitions should be studied in conjunction with Fig. 7-1.

A program to demonstrate each of these instructions using the
single-step mode of the microcomputer is provided in Example 1.
This program will demonstrate all four register-shift instructions
by replacing the byte represented by a blank in Example 1 with
the appropriate instruction, as follows:

121

ASL C 7065 43]2]1 0 ~—0

ROL__ 1, 7 lels|al3l2]1]o0
0 716543121710 | C LSR
A
ilels|alalz|1]o ¢ |—ROR

Fig. 7-1. Diagrams of Register-Shift Instructions.

ASL—Op Code $0E
LSR—Op Code $4E
ROL—-Op Code $2E
ROR—-Op Code $6E

Referring to the demonstration program in Example 1, assume that
the ASL instruction is to be demonstrated, and that its op code has
been entered as the byte at location $020D. The program reads the
data at Port B. Suppose the Port B input switches are set to $01.
Then, after execution of the STA PAD instruction, the PA0 LED
will be lit. The ASL PAD instruction will cause a zero to be shifted
into bit zero of Port A, while the one that was originally in bit zero
is shifted into bit one, lighting the PA1 LED. The program repeat-
edly jumps to this ASL PAD instruction, causing the light to shift
from PAO to PA1, to PA2, . . ., and finally into the PA7 LED. The

122

next time the ASL PAD instruction is executed, the logic one will
be shifted into the carry flag, and all the LEDs will go out. Repeat-
ing this same demonstration with precisely the same conditions but
using an ROL instruction will make the PAO LED light again after
nine ROL instructions. Of course, the program is to be executed in
the single-step mode, or all of these events will happen too quickly
for the eye to perceive. Changing the data that is input at Port B
changes the effects observed, but not the basic ideas. Try rotating
or shifting a $F in the high-order nibble to the low-order nibble.

Example 1: Register-Shift Instructions Demonstration Program

Object: Demonstrate the effect of the ASL, LSR, ROL, and ROR instructions on a mem-
ory location (Port A, an output port).

0200 A9 FF START LDA $FF Set up the Port A DDR by loading

0202 8D 01 17 STA PADD $FF into PADD.

0205 AD 02 17 LDA PBD Get some data from Port B.

0208 29 BF AND $BF Mask bit six for the SYM-1 and KIM-1.
020A 8D 00 17 STA PAD Ovutput the resulting number to Port A.
020D _ 00 17 LOOP __ PAD Shift the contents of Port A, and put the
0210 4C 0D 02 JMP LOOP instruction in a loop for repeated shifts.

Before turning to some application programs that make use of the
register-shift instructions, we note that a new addressing mode,
called accumulator addressing, was introduced in Table 7-1. In this
addressing mode, which only the register-shift instructions have, it
is the contents of the accumulator that are shifted or rotated. The
ASL, LSR, ROL, and ROR instructions are single-byte instructions
when used in the accumulator addressing mode because no extra
bytes to identify a memory location are necessary.

The ASL, LSR, ROL, and ROR instructions together with the
INC and DEC instructions are collectively known as read-modify-
write instructions. The reason for this name lies in the fact that the
microprocessor must first read the contents of a memory location,
modify it in accordance with the instruction, and then write the
modified byte of data back to its original location.

A 4-BIT MULTIPLICATION PROGRAM

To illustrate an application for the ASL and LSR instructions,
we will write a program to multiply two 4-bit numbers. To begin,
note that the largest number represented by four bits is 15,(; con-
sequently the largest product that is possible is 15-15 = 225, so the
product will fit in one 8-bit memory location. To understand the
program one must understand a typical binary multiplication prob-
lem, and one is illustrated in Example 2. Note the structural simi-
larity between binary multiplication and your recollection (pre-
electronic-calculator era) of elementary decimal multiplication.

123

Example 2: Binary Multiplication Problem

Multiply $A by $9.
Solution: $A = 1010 Multiplicand 10,4
$9 =1001 Moltiplier 910

$5A 1010 9010
0000
0000 Add to obtain product.
1010

$5A = 1011010 Product

The important point to recognize in the calculation of Example 2
is that the multiplicand appears in the sum for every one in the mul-
tiplier. With one exception, it is shifted to the left before it is added
to obtain the product. For every zero in the multiplier, a zero is
summed. The appearance of the “left-shifted” multiplicands, added
to find the product, suggests a procedure for performing the multi-
plication with a’computer program. The flowchart of Fig. 7-2 is
our starting point. The 8-bit locations will be used for the 4-bit
numbers, but they will have four leading zeros. The multiplicand
will be symbolized by MCND, the multiplier by MLTP, and the
product by PROD.

The multiplication program is listed in Example 3. The LSR
MLTP instruction shifts the multiplier bit zero into the carry flag.

e If this sets the carry flag, then the multiplicand is added to the
location containing the product.
o If this clears the carry flag, then nothing is added to the product.

Next, the multiplicand is shifted left. The next bit of the multiplier
is tested by shifting the multiplier right, moving it into the carry

Example 3: A 4-Bit Multiplication Program

Object: Multiply two 4-bit numbers
$0000 = MCND; Multiplicand
$0001 = MLTP; Multiplier

$0003 = PROD; Product

0200 D8 START CLD Clear decimal mode.

0201 A9 00 LDA $00 Clear location of product by

0203 85 03 STA PROD storing $00 in PROD.

0205 46 00 AGAN LSR MLTP Shift multiplier right to test

0207 90 07 BCC ARND for zero or one in carry flag. If
0209 18 CLC zero branch to shift multiplicand
020A A5 01 LDA MCND left for next test. If one, add

020C 65 03 ADC PROD multiplicand to obtain product.
020E 85 03 STA PROD

0210 06 01 ARND ASL MCND Shift multiplicand left for next sum.
0212 FO 04 BEQ DONE If multiplicand is zero, operation
0214 A5 00 LDA MLTP is finished. Same for multiplier.
0216 DO ED BNE AGAN Otherwise branch back to sum again.
0218 00 DONE BRK

124

&)

CLEAR PROD

LSR MLTP
[BIT O] — [C}

Fig. 7-2. Flowchart of 4-Bit Multiplication
Program. MCND = Multiplicand, MLTP =
Multiplier, and PROD = Product.

flag. The “left-shifted” multiplicand is added, if the carry flag is set;
otherwise it is not added. The entire process is repeated until either
the multiplicand or the multiplier have become zero by virtue of
having had zeros shifted into successive bit positions.

The reader should study this program and the following 8-bit
multiplication program for their use of the ASL and LSR instruc-
tions. These programs are not necessarily intended to provide you
with ready-made multiplication routines.

125

@)

CLEAR
STORAGE

LSR MLTP
[BIT O] — [C]

1S

NO
CARRY SET
? /

YES

Fig. 7-3. Flowchart of 8-Bit Multiplication.
DOUBLE MCND = Multiplicand, MLTP = Multiplier,
PRECISION MSFT = Left-Shifted Multiplicand.
ADD

ROL MSFT

AN 8-BIT MULTIPLICATION PROGRAM

The maximum product of two 8-bit numbers is $FF - $FF =
$FEO1; thus 16 bits are required for the answer. Recall that in our
example of a 4-bit multiplication, the multiplicand was successively
shifted left and added to form the final product. To shift an 8-bit
multiplicand left requires that it be shifted into a new memory loca-
tion. This is accomplished by the AS. MCND and ROL MSFT
instructions in the flowchart of the 8-bit multiplication shown in
Fig. 7-3. Note that an ASL operation shifts bit seven of the multi-

126

plicand (MCND) into the carry fiag, and that an ROL takes the
carry flag and moves it into bit zero of what we call MSFT for
“multiplicand shifted.” With these two instructions, the contents of
one location may be successively shifted into another location. The
product takes two locations (PRDLO and PRDHI), and a double-
precision addition is required. Refer to Fig. 7-3 and Example 4 for
further details.

One final note: In the flowcharts for the multiplication programs
and in other flowcharts that follow, the bracket notation, “[17, will
occasionally be used. In microcomputer literature the brackets are
read “contents of.” That is, “[ALFA]” means “the contents of the
memory location symbolized by “ALFA,” or more simply, “the con-
tents of ALFA.” Thus, in the flowcharts “[Bit 0]” means “the con-
tents of bit zero.” The bracket notation will be used whenever it
clarifies the actual events that are taking place.

Example 4: An 8-Bit Multiplication Program

Object: Multiply two 8-bit numbers.

$0000 = MCND; Multiplicand

$0001 = MSFT; Multiplicand is shifted into this location
$0002 = MLTP; Multiplier

$0003 = PRDLO; Low-order byte of the product

$0004 = PRDHI; High-order byte of the product

0200 D8 START CLD Clear decimal mode.

0201 A9 00 LDA $00 Clear storage locations for

0203 85 01 STA MSFT MSFT, PRDLO, and PRDHI.

0205 85 03 STA PRDLO

0207 85 04 STA PRDHI

0209 46 02 AGAN LSR MLTP Shift multiplier right into carry
0208 90 OD BCC ARND flag to test for one or zero.

020D 18 CLC ’ Clear carry flag for addition.

020E A5 00 LDA MCND Get multiplicand.

0210 65 03 ADC PRDLO Add to low-order byte of product.
0212 85 03 STA PRDLO Store result.

0214 A5 01 LDA MSFT Get shifted multiplicand.

0216 65 04 ADC PRDHI Add to high-order byte of product.
0218 85 04 STA PRDHI Store result.

021A 06 00 P&ND ASL MCND Shift multiplicand and roll it

021C 26 01 ROL MSFT into MSFT (multiplicand shifted).
021E A5 02 LDA MLTP If multiplier is not zero then the
0220 DO E7 BNE AGAN job is not finished: branch back again.
0222 00 DONE BRK Otherwise job is finished.

HEX TO ASsCII

In Chapter 6, we listed a program to convert an ASCII character
to a hexadecimal number. A related problem is the conversion of an
8-bit binary number represented by two hexadecimal numerals to
their equivalent ASCII characters. To communicate with the user,

127

the microcomputer usually has a means of displaying the contents
of 8-bit memory locations and registers. The KIM-1 and SYM-1
use seven-segment LED displays, while the AIM 65 has 16-segment
alphanumeric displays. The latter requires ASCIL. Since displays,
printers, and other output devices that represent hexadecimal
numerals using ASCII characters are common, we take as a pro-
gramming problem the conversion of the contents of the accumu-
lator (or any memory location) to two hexadecimal numerals
(0-9 and A-F) represented with ASCII. A simple description of this
problem is “Two Hex Numerals to ASCIL,” or more simply “HEX
to ASCIL.”

The contents of a memory location or register may be divided into
a high-order nibble and a low-order nibble, each represented by one
hex numeral. Refer to Table 6-2 for the ASCII representations of
the hexadecimal numerals. To distinguish whether a nibble is to be
represented by a hex numeral 0-9 rather than a hex numeral A-F,
$A is subtracted from the nibble, and:

e If the result of the subtraction is non-negative, the carry flag
is set; the value of the nibble must be represented by a numeral
A-F.

e If the subtraction gives a negative result, the carry flag is clear;
the nibble must be represented by a numeral 0-9.

The following were also used in the program to convert the con-
tents of the accumulator to two ASCII characters:

® A nibble having a hex value $0-$9 is converted to ASCII by
adding $30.

® A nibble having a hex value $A-$F is converted to ASCII by
adding $37.

Since the program first subtracts $A from a nibble to test if it is
a numeral 0-9 or A-F, the two points above are modified to add
$30 + $A = $3A, and $37 + $A = $41, respectively. With this expla-
nation, a study of the flowchart shown in Fig. 7-4 and the program
comments should make the program understandable. In a typical
case, writing an ASCII character to OUTPUT would cause it to
appear on an output device like a crt or printer. The comments
in the program are more detailed than usual because this is the
most complex program presented thus far. Again, the program
should be studied for its use of specific instructions. The purpose
of this book is not to build a program library; it is to teach you how
to program.

128

Example 5: Hex to ASCIl Conversion Program

Object: Output the contents of a register or memory location as two ASCII characters
representing two hexadecimal numerals. Assume the data to be converted is
in DATA and the 1/0 location is OUTPUT.

$0000 = DATA
$03FF = OUTPUT

0350 A5 00 START LDA DATA DATA contains the number to be
converted to two ASCII characters.

0352 A8 TAY Transfer A to Y for temporary
storage of DATA.

0353 A2 FE LDX $FE Initialize X to count characters.

0355 6A ROR A High-order nibble must be output

0356 6A ROR A first, so rotate accumulator

0357 6A ROR A four bits to the right. High-order

0358 6A ROR A nibble is now low-order nibble.

0359 29 OF CHAR2 AND $0OF Mask top nibble.

0358 38 SEC Set carry for subtraction.

035C E9 0A SBC $0A Subtract $A to separate numerals

035E BO 04 BCS HERE 0-9 from A-F. Carry set means numerals
A-F. Carry clear means numerals 0-9.

0360 69 3A ADC $3A ASCII for numerals 0—9 obtained by
adding $0A + $30 + Accumulator.

0362 BO 02 BCS OVER Jump over conversion of numerals A-F.

0364 69 40 HERE ADC $40 ASCII for numerals A—F obtained by
adding $40 + Carry + Accumulator.

0366 8D FF 03 OVER STA OUTPUT Output ASCII representation of nibble.

0369 E8 INX Need to get another nibble?

036A FO 04 BEQ DONE Not if X = 0.

036C 98 TYA Transfer Y to A to put DATA back
into accumulator.

036D 4C 59 03 JMP CHAR2 Jump to output second character.

0370 00 DONE BRK

DECIMAL TO HEXADECIMAL

Suppose that a programmer enters two digits in a memory loca-
tion, and he chooses to regard this two-digit number as a base-ten
number. For purposes of illustration, suppose that the number is
391¢. The programmer must restrict his use of digits to the base-ten
numerals 0-9.

Of course, the microcomputer will regard the number as an 8-bit
binary number represented by two hex digits, which is not what the
programmer intended. Therefore, before the “decimal value 597
can be used in subsequent operations, the program must convert
it to a binary or hexadecimal number. (The only exception to this
rule is in decimal addition and subtraction.)

Before providing the solution to the problem of converting a
two-digit base-ten number into a hexadecimal number, consider
some interesting properties of the ASL and LSR instructions, as
shown by Examples 6 through 9.

129

GET DATA

INCREMENT X

SET

=$FE I Y INTO A I

ROR A 4 TIMES

E

MASK HI NIB

ENENENA

&

SUBTRACT $0A

[aop s3] [Aopsar]

OUTPUT
CHARACTER

Fig. 7-4. Conversion of accumulator contents to two ASCII characters.

Example 6: Demonstration of the Effect of One ASL Instruction on a Number

What is $05 after one ASL instruction?
Solution: $05 = 0000 0101, shifted once becomes 0000 1010 = $A = 10,,. Ob-
serve that one shift left is equivalent to multiplication by two.

Example 7: Demonstration of the Effect of Two ASL Instructions on a Number

What is $05 after two ASL instructions?
Solution: $05 = 0000 0101, shifted twice becomes 0001 0100 = $14 = 20,,. Ob-
serve that two shifts left is equivalent to multiplication by four.

130

Example 8: Demonstration of the Effect of One LSR Instruction on a Number

What is $0C after one LSR instruction?
Solution: 12, = $0C = 0000 1100, shifted right becomes 0000 0110 = $06 = 6,,.
Observe that one shift right is equivalent to division by two.

Example 9: Demonstration of the Effect of Two LSR Instructions on a Number

What is $0C after two LSR instructions?
Solution: 12, = $0C = 0000 1100, shifted twice is 0000 0011 = $03 = 3,5. Ob-
serve that two shifts right is equivalent to division by four.

From these examples we can conclude:

® A succession of ASL instructions is equivalent to multiplying
by 2, 4, 8, 16, . . . , provided no significant bits are shifted out
of the location.

® A succession of LSR instructions is equivalent to dividing by 2,
4,8, 16, ..., provided no significant bits are shifted out of the
location.

Now return to the example of the 59, which the programmer intends
to mean 59, but which the computer supposes is 59,4 or $59. To
convert 59, to binary or hexadecimal we make use of the fact that

Clearly, we need only multiply the five by $A and add it to nine in
order to convert 59,9 to hexadecimal. One problem remains. Recall
that the low-order nibble is the one’s place while the high-order
nibble is the sixteen’s place. The “5” is in the high-order nibble of the
memory location, so the computer interprets it as being (5 - 16).
We could convert this “5” in the sixteen’s place to a five in the one’s
place by four shift-right (LSR) instructions, moving it from the
high-order nibble to the low-order nibble, and then we could mul-
tiply it by $A as outlined above.

There is a more efficient technique, however. We may leave the

5” in the sixteen’s place and divide by 16 and multiply by $A,
using the following facts:

5. 5A= (5 $A) 0= (5 16)%_ (5-16) (%5

=(5-16)(3+5) = (5 '216) + 5 '816) ,

$8 + $2)

In other words, to multiply five times $A, we may take the high-
order nibble, (5 - 16), divide it by two, divide it by eight, and add
these two results. This is what the equations above tell us.

The two rules regarding ASL and LSR instructions tell us that
division by two is accomplished by one LSR instruction, and division
by eight is accomplished by three LSR instructions. To divide the

131

(5 - 16) by two, the high-order nibble is shifted to the right by one
LSR instruction. To divide the (5 16) by eight, the high-order
nibble is shifted to the right by three LSR instructions. When these
two results are added, we have converted 50, to its binary or hexa-
decimal representation. Adding the nine in the one’s place com-
pletes the conversion of 59 to its hexadecimal representation. Other
numbers are handled in the same way, and the program in Example
10 will convert any two-digit base-ten number to a hexadecimal
number.

Example 10: Decimal to Hexadecimal Conversion Program

Obiject: Convert a two-digit base-ten number to hexadecimal. The base-ten number will
be symbolized by DCML. The answer will be symbolized by HEX. TEMP will serve as a
temporary storage location.

$0000 = DCML
$0001 = HEX
$0002 = TEMP
03A0 D8 BEGIN CLD Clear decimal mode.
03A1 A5 00 LDA DCML Get decimal number.
03A3 AA TAX Save A in X temporarily.
03A4 29 OF AND $OF Mask high-order nibble.
03A6 85 01 STA HEX One’s place in answer.
03A8 8A TXA Get A back again.
03A9 29 FO AND $FO Mask low-order nibble.
03AB 4A LSR A Divide by two (see text).
03AC 85 02 STA TEMP Store in temporary location.
03AE 4A LSR A Total of three LSRs gives division
03AF 4A LSR A by eight (see text).
03B0 18 CLC Clear carry for addition.
03B1 65 02 ADC TEMP Add divide by two to divide by eight.
03B3 65 01 ADC HEX Add to answer.
03B5 85 01 STA HEX Result in answer location.
03B7 00 END BRK

HEXADECIMAL TO DECIMAL

In this section we consider the process of converting a hexa-
decimal number in one byte of memory to its bed representation.
Note that since $FF = 255,, and each byte of memory can represent
only two decimal digits with bed code, we will require two bytes of
memory to represent the decimal equivalent of the hexadecimal
number.

Let $PQ represent a hexadecimal number in the sense that P
is the high-order nibble and Q is the low-order nibble. We intend
to convert $PQ to its decimal equivalent. Note that P is in the 16’s
place while Q is in the one’s place. That is,

$PQ = ($P - 1610) + ($Q - 1,)
This result suggests a means of converting $PQ to its decimal equiva-
lent, namely, add 16, to itself $P times using the decimal mode

132

for addition, and add 1 to itself $Q times using the decimal mode.
These two results are then added to give the final answer. Any
carry from these sums will be added to another byte of memory,
giving the complete two byte representation. The program is given
in Example 11.

Suppose $PQ is in a location symbolized by PQ. We first mask
$P, and transfer Q to the X register. X is then used as a counter
to add one to the low-order byte of the decimal answer Q times. This’
addition is carried out in the decimal mode, and the result is stored
in location DCMLO. There will be no carry from this addition.
Next, $P is shifted into the low-order nibble of PQ with four LSR

Example 11: Hexadecimal to Decimal Conversion Program

Object: Convert a hexadecimal number in location PQ to a decimal number located in
DCMLO and DCMHI. These two locations contain the least significant two
digits and the most significant digit, respectively.

$0000 = PQ; Contains the hexadecimal number to be converted to decimal.

$0001 = DCMLO; Contains the two least-significant digits of the decimal answer.

$0002 = DCMHI; Contains the most-significant digit of the decimal answer.
0200 A9 00 ORIGIN LDA $00 Clear the locations that will
0202 85 01 STA DCMLO contain the decimal answer.
0204 85 02 STA DCMHI
0206 A5 00 LDA PQ Get the hexadecimal number.
0208 29 OF AND $0OF Mask $P, leaving $Q in A.
020A FO OC BEQ OVER Branch to convert 16's place if

one’s place is zero.
020C AA TAX Transfer $Q to X for counter.
020D 18 CLC Make sure carry flag is clear.
020E F8 SED Set the decimal mode flag.
020F A5 01 RPT1 LDA DCMLO Get DCMLO contents.
0211 69 01 ADC 01 Add one.
0213 85 01 STA DCMLO Result into DCMLO.
0215 CA DEX Decrement X until one has been
0216 DO F7 BNE RPTI1 added $Q times.
0218 A5 00 OVER LDA PQ Get the hexadecimal number again.
021A 4A LSR A Shift it right four times to get
021B 4A LSR A $P in the low-order nibble.
021C 4A LSR A
021D 4A LSR A
021E FO 11 BEQ FINISH If 16’s place is zero, end
the conversion.

0220 AA TAX Transfer $P to X for counter.
0221 18 CLC Clear carry flag in case LSRs set it.
0222 A5 01 RPT2 LDA DCMLO Get DCMLO contents.
0224 69 16 ADC 16 Add 16.
0226 85 01 STA DCMLO Result into DCMLO.
0228 A9 00 LDA $00 Prepare to add carry, if any,
022A 65 02 ADC DCMHI to the contents of DCMHI.
022C 85 02 STA DCMHI Result into DCMHI.
022E CA DEX Decrement X.
022F DO F1 BNE RPT2 Repeat adding 16 until $P additions
0231 00 FINSH BRK have been completed. Finish.

133

instructions. It is then transferred to the X register for the purpose
of counting $P additions of 16,, in the decimal mode. Up to two
carries may result from these sums. so the carries are added to the
contents of a location called DCMHI, which contains the high-order
byte of the decimal representation of $PQ. This completes the con-
version,

EXPERIMENT NO. 1
Step 1

Load the program in Example 1. Put an ASL instruction (op
code $0E) in location $020D.

0200 A9 FF START LDA $FF Set up the Port A DDR by loading
0202 8D 01 17 STA PADD $FF into PADD.

0205 AD 02 17 LDA PBD Get some data from Port B.

0208 29 BF AND $BF Mask bit six for the SYM-1 and KIM-1.
020A 8D 00 17 STA PAD Output the resulting number to Port A.
0200 __ 00 17 LOOP — PAD Shift the contents of Port A, and

0210 4C oD 02 JMP LOOP put the instruction in a loop for

repeated shifts.

Step 2

Set the Port B switches to $01; that is, make PBO logic one and
all the other switches logic zero.
Step 3

Single-step the program, repeating the ASL PAD and JMP LOOP
instructions at least eight times. Describe what you observe.

(We observed that after the STA PAD was executed the PAO LED
glowed. The ASL instruction shifted the logic one in PAO to PAl,
PA2, and so on, until the one was shifted out of PAD altogether.)

Step 4

Set the Port B switches to put a $05 in Port B. Run the program
again (in the single-step mode) and describe what you observe.

(We observed that initially PA2 and PAO light. Successive ASL
instructions move each of these one bits to the left, until they are
shifted out of Port A.)

134

EXPERIMENT NO. 2
Step 1

Change the ASL instruction to an ROL instruction (op code $2E)
in the program in Experiment No. 1.

Step 2
Set the Port B switches to $01.

Step 3

Single-step the program, repeating the ROL PAD instruction at
least nine times. What do you observe?

(You should observe that initially PAQ LED lights. After each
execution of the ROL PAD instruction the glowing LED shifts
left. After eight ROL instructions it disappears, but on the ninth
ROL instruction the glowing LED appears at PAO again.)

Step 4
Experiment with other settings of the Port B switches and the
single-step mode.

EXPERIMENT NO. 3

Repeat Experiments 1 and 2 with LSR and ROR instructions,
respectively. You may wish to set PB7 rather than PBO to logic
one, because the LSR and ROR instructions shift or rotate right.
Also, experiment with other settings of the Port B switches. Describe
and explain your results.

EXPERIMENT NO. 4
Step 1
Load the program in Example 7-3.

$0000 = MCND; Multiplicand
$0001 = MLTP; Multiplier
$0003 = PROD; Product

0200 D8 START CLD Clear decimal mode.

0201 A9 00 LDA $00 Clear location of product by
0203 85 03 STA PROD storing $00 in PROD.

0205 46 00 AGAN LSR MLTP Shift multiplier right to test
0207 90 07 BCC ARND for zero or one in carry flag. If
0209 18 cLc zero branch to shift multiplicand
020A A5 01 LDA MCND left for next test. if one, add

135

020C 65 03 ADC PROD multiplicand to obtain product.

020E 85 03 STA PROD
0210 06 01 ARND ASL MCND Shift multiplicand left for next sum.
0212 FO 04 BEQ DONE If multiplicand is zero, operation
0214 A5 00 LDA MLTP is finished. Same for multiplier.
0216 DO ED BNE AGAN Otherwise branch back to sum again.
0218 00 DONE BRK

Step 2

Check the operation of the program by entering $02 in $0000 and
$03 in $0001, execute the program, and check the answer in $0003.
The answer should be $06.

Step 3

Now try some more difficult problems like $F - $A, $2 - $C, $9 -
$E, and others. Check your results by hand calculations.

Step 4

Experiment with some 8-bit problems. Try $10 - $02, for exam-
ple. What do you get for an answer? Try $10 - $20. What do you
obtain for an answer?

(For the first answer we obtained $20 as expected. For the second
answer we obtained $00 because the most significant byte is lost.
The program does give the correct answer for the least significant
byte.)

EXPERIMENT NO. 5

Repeat Experiment No. 4 using the 8-bit multiplication program
instead of the 4-bit multiplication program. You should now be able
to multiply two 8-bit numbers. In addition to the problems sug-
gested in Experiment No. 4, try some more difficult ones such as
$FF - $FE and $7C - $EA. Check your program by doing the
calculations by hand.

EXPERIMENT NO. 6

Step 1
Load the program in Example 5.
$0000 = DATA
$03FF = OUTPUT
0350 A5 00 START LDA DATA DATA contains the number to be
converted to two ASCII characters.
0352 A8 TAY Transfer A to Y for temporary

storage of DATA

136

0353 A2 FE LDX $FE Initialize X to count characters.

0355 6A ROR A High-order nibble must be output

0356 6A ROR A first, so rotate accumulator

0357 6A ROR A four bits to the right. High-order

0358 6A ROR A nibble is now low-order nibble.

0359 29 OF CHAR2 AND $OF Mask top nibble.

035B 38 SEC Set carry for subtraction.

035C E9 OA SBC $0A Subtract $A to separate numerals

035E BO 04 BCS HERE 0-9 from A-F. Carry set means
numerals A—F. Carry clear means
numerals 0-9.

0360 69 3A ADC $3A ASCII for numerals 0-9 obtained by
adding $0A + $30 + Accumulator.

0362 BO 02 BCS OVER Jump over conversion of numerals A-F.

0364 69 40 HERE ADC $40 ASCII for numerals A—F obtained by

adding $40 + Carry + Accumulator.
0366 8D FF 03 OVER STA OUTPUT Output ASCII representation of nibble.

0369 E8 INX Need to get another nibble?

036A FO 04 BEQ DONE Not if X = 0.

036C 98 TYA Transfer Y to A to put DATA back
into accumulator.

036D 4C 59 03 JMP CHAR2 Jump to output second character.

0370 00 DONE BRK

Step 2

Put $C5 in location $0000. Run the program. What do you find
in location $03FF after the program has been executed?

(The program first converts $C to its ASCII representation, which, it
you refer to Table 6-2, is $43. Next the program converts $5 to its
ASCII representation, which is $35. It is the ASCII representation
of the second digit which you should find in $03FF, namely $35.)

Step 3

Put $5C in location $0000. Run the program and examine the
contents of $03FF. What do you find there?

(You should find the ASCII representation of C, namely $43, in lo-
cation $03FF.)
Step 4

Try some other numbers in location $0000 and make sure the
program always gives the correct ASCII representation of the
second digit.

137

Step

1

EXPERIMENT NO. 7

Load the program in Example 10.

$0000 = DCML

$0001 = HEX

$0002 = TEMP

03A0
03A1

03A3
03A4
03A6
03A8
03A9
03AB
03AC
03AE
03AF
03B0
03B1

03B3

03B5

03B7

D8
A5
AA
29
85
8A
29
4A
85
4A
4A
18
65
65
85
00

Step 2

Put a base-ten number like 59 in location $0000. Run the program.

00

OF
01

FO

02

02
01
01

BEGIN

END

CLD

LDA DCML
TAX

AND $OF
STA HEX
TXA

AND $FO
LSR A
STA TEMP
LSR A
LSR A
CLC

ADC TEMP
ADC HEX
STA HEX
BRK

Clear decimal mode.

Get decimal number.

Save A in X temporarily.

Mask high-order nibble.

One’s place in answer.

Get A back again.

Mask low-order nibble.

Divide by two (see text).

Store in temporary location.
Total of three LSRs gives division
by eight (see text).

Clear carry for addition.

Add divide by two to divide by eight.
Add to answer.

Result in answer location.

What number do you find in location $0001?

(You should find $3B in location $0001, since it is the hexadecimal
equivalent of 59,,.)

Step 3

Try some other base-ten numbers to confirm that the program

converts them to hexadecimal.

Here are a few additional programs and problems you might like

to try.

138

EXPERIMENT NO. 8

Convert a four-digit hexadecimal number to base ten.

Input two ASCII representations of hexadecimal numbers and

convert them to a hexadecimal number in the accumulator.
Divide two 8-bit numbers. This is very challenging.
Test the hexadecimal-to-decimal conversion program.

Try constructing a flowchart for the hexadecimal-to-decimal

conversion program.

CHAPTER 8

Indexed Addressing

OBJECTIVES
At the completion of this chapter you should be able to:

e Understand the function of an index.

® Use absolute and zero-page indexed addressing modes in com-
puter programs. See Table 8-1 for a summary of the instructions
that use this mode.

Understand the concept of indirect addressing,.

Use the indexed indirect and indirect indexed addressing modes
in programs.

INTRODUCTION

So far, we have used, at various times, seven different addressing
modes, including immediate, absolute, zero-page, accumulator, im-
plied, relative, and, finally, the indirect jump.

In the immediate addressing mode, the data to be operated upon
is included in the program as the byte following the op code. The
absolute addressing mode uses two program bytes to specify the
address of the location where the byte of data is to be found. Zero-
page addressing is similar to the absolute addressing mode, except
that only the low-order byte of the address of the data is given, it
being understood that the high-order byte of the address is $00.
The other addressing modes, accumulator, implied, and relative, will
not be recapped here because they are not closely related to the
topics of this chapter.

139

Table 8-1. Op Codes for Instructions Introduced in Chapter 8

Addressing Mode
Instructions (IND,X) (IND),Y Z-PAGE,X ABS, X ABS,Y Z-PAGE,Y

ADC 61 71 75 7D 79

AND 21 31 35 3D 39

ASL 16 1E

CMP Ci D1 D5 DD D9

DEC D6 DE

EOR 41 51 55 5D 59

INC Fé6 FE

LDA Al Bl B5 BD B9

LDX BE B6
LDY B4 BC

LSR 56 5E

ORA [1 15 1D 19

ROL 36 3E

ROR 76 7E

SBC El F1 FS FD F9

STA 81 91 95 9D 99

STX 96

Considering all the addressing modes learned so far, it can be
seen from the 6502 instruction set summary in Table 2-3 that there
are still six addressing modes to learn. The instructions, addressing
modes, and the op codes used in this chapter are summarized in
Table 8-1. These addressing modes have one feature in common,
namely, the use of an index. As you shall see, the use of an index
gives the microprocessor the ability to handle large amounts of data
quickly, efficiently, and with a minimum amount of programming.
The indirect addressing modes allow the microprocessor to fetch
data from locations whose addresses have been calculated. The
indirect addressing capability distinguishes the instruction set of the
6502 from the instruction sets of several other popular micro-
processors.

To provide the motivation for learning about indexed addressing,
consider the problem of writing the same number, say $FF, to all
the locations on a single page of memory. This might be part of an
R/W memory test, in which the same number is placed in all loca-
tions, and then all locations are read to see if that number is still
present. (Good memory tests are more elaborate than this.) Without

140

indexing, the 6502 program would have to be similar to the one in
Example 1. Clearly such a program is extremely long, requiring
more memory space for the program than for the page of memory
to be tested. There has to be a better way, and the better way is
accomplished with indexed addressing.

Example 1: Loading a Page of R/W Memory with a Number
Write a program to load $FF in all the memory locations in page three of memory.

Solution: START LDA $FF
STA $0300
STA $0301

STA $O3FF
END BRK

ABSOLUTE INDEXED ADDRESSING

Before getting started, we note that the X and Y registers are
central to the indexed addressing modes. In fact, these two registers
are more properly called index registers, since their contents will
be the index in all indexed addressing modes. No other registers
may serve as an index. “X” will refer to the number in the X register
and “Y” will refer to the number in the Y register.

To illustrate absolute indexed addressing, first consider the LDA
instruction in the absolute addressing mode. In mnemonic form

LDA TABLE

means fetch the contents of the location symbolized by TABLE.
Thus, TABLE is actually a 16-bit address consisting of an 8-bit

- address low (ADL) and an 8-bit address high (ADH). We may
write:

TABLE = ADH-ADL.
The address, TABLE, may be indexed by the contents of register X

in an addressing mode called “absolute indexed by X” or, more sim-
ply, “ABS,X.” The mnemonic is written:

LDA TABLEX.

This means that the LDA operation goes to an address that is the
sum of the 16-bit address for TABLE (ADH-ADL) and the con-
tents of the X register. The actual 16-bit address for TABLE is called
the base address, and it is now symbolized as BAH-BAL for base-
address high and base-address low. Thus,

TABLE, X = BAH-BAL + X.

141

®

The address BAH-BAL is called the base address of TABLE, and X
is called the index. BAL and BAH are the second and third bytes,
respectively, of any absolute indexed instruction. The data is ob-
tained from location BAH-BAL + X.

In words, the microprocessor adds the contents of the X register
to the BAL of TABLE, any carry from this addition is added to
BAH, and the data is fetched from that location. Example 2 illus-
trates how this calculation proceeds.

Example 2: Illustration of Absolute Indexed Addressing Mode
In the program below, identify the address of the byte of data referenced by the
LDA instruction.
0200 A2 2D START LDX $2D
0202 BD 00 03 END LDA TABLEX

Solution: BAL = $00 and BAH = $03, so the base address of TABLE is $0300. The
X register contains $2D, so the byte of data is fetched from the location whose address
is $0300 + $2D = $032D.

The addition of the contents of the X register to the BAL of the
base address is accomplished within the 6502. It does not involve
the carry flag, but it may involve a carry from the sum (X + BAL),
to BAH. For example, if the base address is $23F5 and the X
register contains $10, then the LDA TABLE,X instruction would
fetch the contents of location $2405. In any case, where BAL is $00
no page boundary will be crossed because the maximum value of the
X index is $FF, since the X register is an 8-bit register.

Of course, the LDA instruction is not the only instruction capable
of being used in the ABS, X addressing mode. The arithmetic, logi-
cal, store, register-shift, compare, and several other instructions also
have this absolute indexed addressing mode available. See Table
8-1 for details.

For most of these same instructions, the Y register may also be
used as an index in an addressing mode called ABS,Y that functions
in exactly the same way as the ABS,X addressing mode, except
that the Y register is used as the index. Table 8-1 summarizes the
new addressing modes introduced in this chapter.

ZERO-PAGE INDEXED ADDRESSING

The two zero-page indexed addressing modes, “Z-PAGE,X” and
“Z-PAGE,Y” are similar to their ABS, X and ABS,Y counterparts.
These instructions require only two bytes, the first being the op
code from Table 8-1 and the second being the base address low
(BAL); it is understood that BAH is $00, since page zero is being
used. Another important difference between zero-page indexing and
absolute indexing is that any carry from the addition of the BAL

142

to the X register is discarded in zero-page indexing. This produces
a “wrap-around™ effect, since the high byte of the address will
always be zero in this mode. For example, if the BAL is $F5, and
the X register used for the index contains $10, then the location of
the data to be operated upon in the Z-PAGE X addressing mode
is $0005, not $0105, which you would obtain from an addition of
BAL to X with a carry going to BAH. See Example 3.

Example 3: lllustration of Zero-Page Indexed Addressing Mode

Identify the memory location referenced by the ADC instruction in the following
program.

0200 A2 35 START LDX $35
0202 A9 29 LDA $29
0204 75 20 ADC TABZX

Solution: The ADC instruction uses Z-PAGE,X addressing (see Table 8-1). The base
address of TABZ is $0020. Adding the X index gives $0020 + $35 = $0055 as the
location to be referenced.

To illustrate how indexing is used in programs, we will look at
a variety of programs. To begin, refer to the problem posed in
Example 1 in which we wish to address sequentially the 256 loca-
tions in a given page of memory. The program in that example would
have required at least 256 3-byte instructions. Using indexed ad-
dressing, however, the program in Example 4 accomplishes the same
task with only five instructions. A flowchart for this program is
shown in Fig. 8-1. Carefully study it and the program in Example 4
to see how the simplest form of the indexed addressing modes works.
(The flowchart uses the notation “[A] - [TABLE + X].” Recall
that this notation means “store the contents of A in the location
whose address is symbolized by TABLE + X.” Thus, the “[]” means
“the contents of.”)
"~ In Example 5, we have implemented the simple memory test
mentioned earlier. It begins with the same instructions as the
program in Example 4, but it goes on to illustrate the CMP instruc-
tion in the absolute indexed addressing mode. A flowchart for the
program is given in Fig. 8-2. Study the program and the flowchart
to obtain a better understanding of the absolute indexed addressing
mode. It is important that you realize that the calculated address of
BASE + X may be used over and over again, as was the case for
the STA TABLE X and CMP TABLEX instructions. Thus an
address that was calculated in this way could be used by many
different instructions in a program. The use of the indexed mode
does not change the base address, or the contents of the index
register, X or Y.

One other note about the program in Example 5. The use of $FF
to test R/W memory is probably a poor choice. It is possible that

143

$FF - A
$00 — X
Fig. 8-1. Flowchart of program in Example
|A] — 4. Recall that notation [A]—> [TABLE + X]
[TABLE +X] means ‘“‘the contents of the accumulator
b the ¢ s of the location

symbolized by TABLE + X.”

“empty” locations would not be discovered because the logic levels
on the data bus might all be one for these locations. A better choice
for a number is $55, or any other number containing both ones and
ZEeros.

Example 4: Program to lllustrate Absolute Indexed Addressing Mode

Object: Load $FF in all page-three locations.
$0300 = TABLE

0200 A2 00 START LDX $00 Initialize X index to $00.

0202 A9 FF LDA $FF Initialize A to $FF.

0204 9D 00 03 BACK STA TABLEX Store $FF in location TABLE + X.
0207 E8 INX Increment index X.

0208 DO FA BNE BACK If X 5% 0, branch back to load

other locations.
020A 00 BRK

Example 5: Simple R/W Memory Test

Object: Load each location in page three with $FF. Then read each location in page
three to see if it still contains the number $FF. If it does not contain $FF, out-
put the ADL of that location.

$0300 = TABLE
$A003 = PADD
$A001 = PAD

144

0200
0202
0204
0207
0208
020A
020D
020F
0210

A2
A9
9D

DO
DD
DO
E8

DO

00
FF
00

FA
00
04

F8

SFF — A
$00 — X
[A] -
[TABLE + X]

IS
[TABLE + X]

PORT A

Fig. 8-2. Flowchart of program in Example 5.

START LDX $00 The first five instructions of

LDA $FF this program were commented on

03 BACK STA TABLEX in Example 4.
INX
BNE BACK

03 CHECK CMP TABLEX Compare A (still contains $FF with
BNE OUT page three location. Branch to OUT
INX if location does not contain $FF;
BNE CHECK otherwise return to read another

location.

145

0212 00 BRK Finish here when all locations are

read.
0213 8D 03 A0 ouTt STA PADD Initialize Port A to be output port.
0216 8E 01 A0 STX PAD Output X for location where test
fails.
0219 00 BRK Then end here.

DATA TABLES

Indexed addressing provides an efficient technique for the manip-
ulation of data stored in tables. This will be illustrated, along with
the zero-page indexed addressing mode, in programming examples,
Examples 6 and 7. The program in Example 6 locates the largest

$10 — X

|[ZTAB + X] = [A]

FIND
[ZTAB + X] A — PORTA
[ZTAB + X — 1]
JES @ @
NO

Fig. 8-3. Flowchart of the program in Example 6. Recall that carry flag is set if subtraction
does not produce a borrow, that is, if [ZTAB + X] = [ZTAB + (X — 1)].

146

INITIALIZE

REGISTERS,
MEMORY,
& FLAGS.

=]

[TABLE + X]
—~[Al

Fig. 8-4. Flowchart of program in A + SUMLO
Example 7. — SUMLO

C + SUMHI
— SUMHI

[=i=x]

1 NO
xX<0

YES

number in a table, and the program in Example 7 adds all of the
numbers in a table. The flowcharts for these two programs are
shown in Figs. 8-3 and 8-4, respectively. In reference to the program
in Example 6, you should realize, of course, that the largest value
may be present in several locations. This program only finds the
largest value. It does not note where it (they) are, or how many of
them there are.

The program in Example 7 adds all of the numbers in a table.
The largest value of the sum of all the numbers in the table would

147

Example 6: Program to Locate Largest Number in a Table

Object: Locate the largest number in a table that starts at location $00A0 and ends at
$00B0. Output the largest number to Port A.

$00A0 = ZTAB
$A003 = PADD
$A001 = PAD

0200 A9 FF START LDA $FF Initialize Port A DDR to make the

0202 8D 03 A0 STA PADD port an output port.

0205 A2 10 LDX $10 Start X at $10 and get data

0207 B5 A0 AGAIN LDA ZTABX from the top of the table.

0209 CA BACK DEX Decrement X; if X is less than

020A 30 07 BMI OUT zero, task is finished.

020C D5 A0 CMP ZTABX Is [ZTAB 4 X] = [ZTAB 4 (X — 1)]?

020E BO F9 BCS BACK Yes, keep [ZTAB + X] as largest value
and return to check the next location
in the table.

0210 4C 07 02 JMP AGAIN No, then use [ZTAB + (X — 1)] as
largest value and return to check
other locations in the table.

0213 8D 01 AO ouT STA PAD Store largest value in Port A.

0216 00 BRK Finished.

occur if each location had a $FF in it. Since $FF - $100 < $FFFF,
a two-byte location for the sum will be sufficient as long as the
table does not exceed $100 locations. That is why there is a high-
order byte (SUMHI) and a low-order byte (SUMLO) for the
sum of the numbers in the table. Although the table could have as
many as $100 = 256 locations, our program illustrates a table with
16 entries. This program will be easier to test than one with 256
entries, while the basic principles remain the same.

Although these two examples of operating on data in tabular
form may seem contrived, they are not. The author has used both
ideas in working with computer applications. In fact, most of the
programs given in this book have practical applications other than
providing mental gymnastics for interested readers.' Because infor-
mation usually comes in large quantities, the importance of being
able to work with tables can hardly be overemphasized. In fact,
the ability to manipulate a large quantity of information quickly
is one of the justifications for microprocessor-based instrumentation.

Example 7: Program to Add all Entries in a Table

Obiject: Add all the numbers in a table consisting of 16 locations in page zero, from
$00A0 through $00AF.

$0000 = SUMLO
$0001 = SUMHI
$00A0 = TABLE
0200 A9 00 START LDA $00
0202 85 00 STA SUMLO Clear SUMLO to zero.

148

0204 85 01 STA SUMHI Clear SUMHI to zero.

0206 D8 CLD Clear decimal mode.

0207 A2 OF LDX $OF Initialize X to start at the top

0209 18 BACK CLC of the table. Clear carry flag.

020A B5 A0 LDA TABLE,X Load A with [TABLE + X].

020C 65 00 ADC SUMLO Add to SUMLO.

020E 85 00 STA SUMLO Result in SUMLO.

0210 A5 01 LDA SUMHI Get SUMHI.

0212 69 00 ADC $00 Add carry, if any, from previous sum.
0214 85 01 STA SUMHI Result into SUMHI.

0216 CA DEX Decrement X.

0217 10 FO BPL BACK Keep adding until all the table entries
0219 00 BRK have been included in the sum. Then quit.

CODE CONVERSION PROGRAMS

Another important use of indexed addressing and tables is in
converting one code into another. For example, refer to Example
8 in Chapter 6 in which a hexadecimal character represented by an
ASCII value was converted into a hexadecimal number, and to
Example 5 in Chapter 7 in which two hexadecimal numerals repre-
senting the contents of a memory location were converted to two
ASCII characters. Tables and indexed addressing sometimes make
the conversion task easier than when using arithmetic, logical, and
shift instructions.

The program in Example 8 is a hex to ASCII conversion, the
program in Example 9 converts two bed digits to binary, and the
program in Example 10 converts a hexadecimal number into the
code necessary to display a hexadecimal numeral on a seven-
segment LED display. Example 8 might be used to output informa-
tion from a microcomputer to a video monitor, printer, typewriter,

Example 8: Hex-to-ASCIl Conversion Program

Object: Convert the hex number representing the low-order nibble of a memory loca-
tion into its ASCIl equivalent. Refer to Table 8-2 for the location and contents
of the conversion table. Output the ASCII character to Port A.

$0300 = TABLE

$A000 = PBD

$A001 = PAD

$A003 = PADD

0200 A9 FF START LDA $FF Initialize Port A to be an

0202 8D 03 A0 STA PADD output port by loading $FF
into its DDR.

0205 AD 00 A0 LDA PBD Get data from Port B.

0208 29 OF AND $0F Mask the high-order nibble.

020A AA TAX Put the low-order nibble in X

0208 BD 00 03 LDA TABLEX to be used as the index to look
up the ASCII value in the table.

020E 8D 01 AO STA PAD Output the ASCIl value.

0211 00 BRK Finish.

149

or some other output device. Example 9 might be used to read bed
data from a voltmeter or other instrument and convert the data to
binary for processing by the microcomputer. Example 10 could be
used to display the contents of a register or memory location. Both
the SYM-1 and KIM-1 use seven-segment displays to do this.

Because similar flowcharts have already been given, none will
be drawn for Examples 8 through 10. In Example 8 note that the
nibble to be converted to an ASCII value is used as the index to
locate the ASCII character. The value TABLE points to the start
of the code conversion table, while the hex value is actually used
to locate the value in the table. In this way, the hex value was used
to address the table, so that the corresponding ASCII value at the
proper address could be retrieved. The contents of Table 8-2 must
be loaded into memory in order for the program to work. The pro-
gram could be expanded to output both nibbles of a memory loca-
tion. Refer to Example 5 in Chapter 7 for details about how this
might be accomplished.

The program in Example 9 assumes that two decimal digits are
represented in bed at Port B. For example, 95,, would appear as
1001 0101 at the Port B pins. Refer to Table 5-4 to find other
decimal-to-bed conversions. Also refer to Example 10 in Chapter 7
which accomplishes the same objective as the program in Example
9 in this chapter. Our task is to convert the bed number to binary.
Since the number in the ones place is the same in both bed and
hexadecimal, we may simply add it to the conversion of the number
in the tens place. Thus,

9510=(9-10)+ (5-1)=(9-A)+(5-1)=(9-A) +5

Table 8-2. ASCIl Character Look Up Table for Example 8

Hex Numeral ASCIl Character Location Contents
0 $30 $0300 $30
1 31 0301 31
2 32 0302 32
3 33 0303 33
4 34 : 0304 34
5 35 0305 35
] 36 0306 36
7 37 0307 . 37
8 38 0308 38
9 39 0309 39
A 41 030A 1
B 42 030B 42
C 43 030C 43
D 44 030D 44
E 45 030E 45
F 46 030F 46

150

will form the basis for the conversion. The bed digit which appears
in the high-order nibble must be multiplied by A and then added
to the number in the low-order nibble. But the multiplication can
be done ahead of time and the answers stored in a table in memory.
Such a table is shown in Table 8-3. In order for the program in
Example 9 to work, this table must be in memory.

Table 8-3. BCD to Binary Look Up Table for Example 9

BCD Number Hexadecimal Value

(Tens Place) (Number - $A) Location Contents
0 $00 $0000 $00
1 0A 0001 0A
2 14 0002 14
3 1E 0003 1E
4 28 0004 28
5 32 0005 32
6 3C 0006 3C
7 46 0007 46
8 50 0008 50
9 5A 0009 5A

Example 9: Decimal-to-Binary Conversion Program

Object: Convert bed number (two digits) at Port B to a binary number and store the

$0000 = TABLE

$0010 = TEMP
$A003 = PADD
$A001 = PAD
0200 D8
0201 AD 00 A0
0204 AA
0205 29 OF
0207 85 10
0209 B8A
020A 4A
020B 4A
020C 4A
020D 4A
020E AA
020F B5 00
0211 18
0212 65 10
0214 8D 01 AO
0217 A9 FF
0219 8D 03 A0
021C 00

result in Port A.

START

CLD

LDA PBD
TAX

AND $0F
STA TEMP
TXA
LSR
LSR
LSR
LSR
TAX
LDA TABLEX
CLC

ADC TEMP
STA PAD
LDA $FF
STA PADD
BRK

>>>>

Clear decimal mode

Get two BCD digits from Port B.
Save in X.

Mask high-order nibble.

Store temporarily in TEMP.

Get both digits back in A.

Shift high-order nibble into low-
order nibble, and zeros into high-
order nibble.

Use high-order nibble as index to

look up conversion in TABLE.

Clear carry for addition.

Add conversion of tens place to ones place.
Result into Port A.

Configure Port A into output port.

$FF into DDR of Port A.

Finished.

The program in Example 10 converts the low-order nibble of a
location to the seven-segment code necessary to indicate the hexa-

151

Table 8-4. Data for Hex Numeral to Seven-Segment Display Program

Séven-Segment Display Output Port Bit Assignments
a
g Bit 7 6543210
Segment g f ed c¢c b a
d
Hexadecimal Character Output Data-Table Contents Location
0 $3F $03F0
1 06 $03F1
2 5B $03F2
3 4F $03F3
4 66 $03F4
5 6D $03F5
6 7C $03F6
7 07 $03F7
8 7F $03F8
9 67 $03F9
A 77 $03FA
B 7C $03FB
C 39 $03FC
D 5E $03FD
E 79 $03FE
F 71 $03FF

decimal numeral on a seven-segment LED display. Table 8-4 sum-
marizes the segment-bit assignments for the output port, and it
lists the table contents that are necessary to perform the conversion.
It will be assumed that a logic one lights the segment, while a logic
zero at the output port will turn the segment off. Each segment
can be controlled individually by the computer in this application.

E ple 10: Hex-to-Seven-S Conversion Program

Object: Convert the low-order nibble of a memory location into the seven-segment code
necessary to display the hexadecimal numeral which represents the nibble.
Output the code to Port A.

$03F0 = TABLE

$A003 = PADD

$A001 = PAD

$A000 = PBD
0200 A9 FF START LDA $FF Configure Port A to be an output
0202 8D 03 A0 STA PADD port by loading $FF into its DDR.
0205 AD 00 A0 LDA PBD Get data to be displayed from Port B.
0208 29 OF AND $0F Mask high-order nibble.
020A A8 TAY Put low-order nibble in Y for index.

152

020B B9 OF 03 LDA TABLEY Look up code for seven-segment display.
020E 8D 01 A0 STA PAD Output code to Port A.
0211 00 BRK Finished.

MULTIPLE-BYTE ARITHMETIC

The indexed addressing modes are also useful for performing
multiple-byte arithmetic operations, especially when three or more
bytes are involved. This is illustrated with a triple-precision deci-
mal-mode addition program, shown in Example 11. Double preci-
sion sums were illustrated in Chapter 5, and you may want to refer
to those examples. The process of adding numbers that must be
represented by more than one byte is shown in Fig. 8-5. The illus-

"

(4] (€]
+ +

ADDEND ONE | BYTE THREE | | | BYTETWO | | | BYTEONE |

+ + +
apoenp Two | BTETHREE | | [BrreTwo] | [svie one |

SUM ﬁ BYTE THREE | —{ BYTETWO | ' BYrE ONE |
[cl

Fig. 8-5. Diagram of triple-precision sum.

tration applies both to binary numbers and decimal numbers. The
only difference is that the decimal mode flag must be set to do
decimal arithmetic, and it is assumed that in the decimal mode
each byte represents a number no greater than 99. Note that this
triple-precision addition program requires no more instructions
than the double-precision program given in Example 6 in Chapter
5. If greater precision (more bytes) is required, then a savings in
program bytes results from using the absolute indexed mode of
addressing as illustrated by Example 11. The program in Example
11 is easily modified to add four-byte numbers, five-byte numbers,
etc., simply by changing the LDY instruction to reflect the number
of bytes used to represent the numbers being added. In Example
11, the most-significant byte of each of the numbers is stored in the
location of the base address of NUM1, NUM2, and SUM, re-
spectively. Thus, the most-significant byte of NUML is in location
$0300, and the least-significant byte of NUMI is in location $0302.

The program in Example 12 converts a four-digit hexadecimal
number (16-bit binary number) to a decimal number. Since

153

Example 11: Triple-Precision Decimal Addition Program

Object: Perform a triple-precision decimal-mode addition. Use the Y register for the
index. Y is the number of bytes used to represent the numbers involved in
the sum.

$0300 = NUMI1; most-significant byte of addend 1

$0310 = NUM2; most-significant byte of addend 2

$0320 = SUM; most-significant byte of sum

0200 18 START cLc Clear carry flag.

0201 F8 SED Set decimal mode.

0202 A0 02 LDY $02 Initialize Y index to two.
0204 B9 00 03 BACK LDA NUMI1Y Get byte of NUM1.
0207 79 10 03 ADC NUM2,Y Add to byte of NUM2.
020A 99 20 03 STA SUM)Y Result into sum location.
020D 88 DEY Decrement Y index.
020E 10 F4 BPL BACK 1fY=0, branch

0210 00 BRK back to get other bytes.

the largest four-digit hexadecimal number is $FFFF, and since
$FFFF = 655350, it is clear that five bcd nibbles are needed to
represent the largest possible number. We will use three bytes of
memory for the decimal number and two bytes for the hexadecimal
number.

The conversion proceeds as follows. Let $PQRS be the four-digit
hexadecimal number to be converted to bed, in the sense that $P
is the most-significant hexadecimal digit and $S is the least-signifi-
cant hexadecimal digit. Using the base-16 place values, $PQRS can
be expressed as follows:

Thus, if we add 4096 to itself $P times, add 256 to itself $Q times,
add 16 to itself $R times, and add 1 to itself $S times, using the
decimal mode, then the conversion will be complete. Adding 4096
to itself and adding 256 to itself requires a double-precision (two-
byte) sum, with the possibility of a carry into a third byte. That is
the reason three bytes of memory, DCMLO, DCMMI, and DCMHI,
are used in Example 12 to store the answer. The two-byte hexa-
decimal number to be converted to bed will be stored in locations
symbolized by PQ and RS. The numbers to be added, 4096, 256,
16, and 1, are stored in a table that is referenced using the absolute
indexed addressing mode.

The program of Example 12 illustrates two indexed addressing
techniques introduced in this chapter, namely:

® The use of tables for code conversions
® Multiple-precision arithmetic

Note that this four-hex-digit conversion program requires only three
more instructions than its two-digit counterpart in Example 11 in

154

Chapter 7. The use of indexed addressing modes makes program-
ming much more efficient.

One application of this program is related to the pulse counting
mode of the 6522 versatile interface adapter that is described in
Chapter 10. This integrated circuit is found on both the AIM 65
and the SYM-1. The 6522 has the ability to detect and count pulses
on its PB6 pin. A 16-bit register keeps track of the number of
pulses counted, and this register (occupying two memory locations)

Example 12: Four-Digit Hexadecimal to Five-Digit Decimal Conversion Program

Object: Convert $PQRS, a four digit hexadecimal number, to a five-digit decimal num-
ber. Assume $PQ is in a location symbolized by PQ, and $RS is in a location
symbolized by RS. The three-byte decimal number will be stored in three
locations called DCMLO, DCMMI, and DCMHI.

$0001 = DCMLO; Low-order byte of decimal answer

$0002 = DCMMI; Middle-order byte of decimal answer

$0003 = DCMHI; High-order byte of decimal answer

$0010 = RS; Low-order byte of hexadecimal number

$0011 = PQ; High-order byte of hexadecimal number

$0300 = CNVLO; Four bytes, $96, $56, $16, $01, from $0300 to $0303, respectively

$0304 = CNVHI; Four bytes, $40, $02, $00, $00, from $0304 to $0307, respectively
0200 A9 00 START LDA $00 Clear the locations that will
0202 85 01 STA DCMLO contain the decimal answer.
0204 85 02 STA DCMMI
0206 85 03 STA DCMHI
0208 A2 03 LDX $03 X will index number from the
020A A5 10 MORE LDA RS conversion table. Get $RS.
020C 29 OF AND $0OF Mask $R, leaving $S.
020E FO 1A BEQ ARND If $S = 0, skip the addition.
0210 A8 TAY Otherwise transfer $S to Y to serve
0211 18 CLC as a counter for $S additions.
0212 F8 SED Clear carry and set decimal flags.
0213 A5 01 HERE LDA DCMLO Get low-order byte of decimal number.
0215 7D 00 03 ADC CNVLO,X Add the two-digit number from the
0218 85 01 STA DCMLO conversion table.
021A A5 02 LDA DCMMI Get the middle-order byte.
021C 7D 04 03 ADC CNVHILX Add the most-significant digits of
021F 85 02 STA DCMMI the conversion numbers.
0221 A5 03 LDA DCMHI Get the high-order byte.
0223 69 00 ADC $00 Add any carry from previous sum.
0225 85 03 STA DCMHI Result into high-order byte.
0227 88 DEY Decrement Y before adding again
0228 DO E9 BNE HERE to see when $S sums are complete.
022A CA ARND DEX The next higher place value will
022B 30 0OC BM! FINISH be converted by moving $PQRS four
022D A0 04 LDY $04 bits to the right. Y serves as the
022F 46 N NIBRO LSR PQ bit counter. Shift PQ right.
0231 66 10 ROR RS Rotate PQ into RS.
0233 88 DEY Decrement bit counter until an
0234 DO F9 BNE NIBRO entire nibble has been moved from
0236 4C OA 02 JMP MORE PQ into RS. Jump back to convert
0239 00 FINISH BRK the next place value.

155

can be read by the 6502. Of course, the count is expressed in binary,
but since human beings like their numbers in decimal, a conversion
is necessary to produce a decimal representation on an output
display.

INDIRECT ADDRESSING

The essential idea in indirect addressing is that the location
referenced by the second byte of an instruction does not contain
the data upon which the microprocessor operates. Instead, the zero-
page location referenced by an instruction contains the low address
(ADL) of the location of the data. The high address (ADH) of the
location at which the data is to be found is in the next sequential
zero-page memory location. Thus, the ADL and ADH address in-
formation is pointed to by the instruction.

Call the second byte of an instruction using the indirect ad-
dressing mode IAL, an acronym for indirect address low. The IAL
is the low-order byte of the address of a zero-page memory location.
Then the content of IAL is the ADL of the data to be operated on,
and IAL + 1 contains the ADH of the data to be operated upon. A
diagram of this is shown in Fig. 8-6. Symbolically,

[IAL] = ADL

[IAL + 1] = ADH
[ADL-ADH] = DATA

PROGRAM PAGE ZERO

$0200 [INDIRECT OP CODE |

$0201 | 1AL ADL

IAL + ll ADH- ADL

Fig. 8-6. Diagram of Indirect Addressing Mode.

Indirect addressing is always indicated by parentheses around
the operand symbol. The parentheses are used to indicate that the
content of the location symbolized is the address of the data to be
operated on, rather than the data itself. It is worthwhile to ask
what a hypothetical

LDA (MEM)

instruction would mean. This “instruction” would result in the ac-
cumulator being loaded with data from a location whose ADL was
in MEM and whose ADH was in MEM + 1. The indirect indexed

156

PROGRAM PAGE ZERO

$0200 | INDIRECT OP CODE |

s0201 | 1AL BAL

IAL + l] BAL-BAH+Y

Fig. 8-7. Diagram of Indirect Indexed Addressing Mode.

addressing mode, studied next, is similar to the indirect addressing
mode.

INDIRECT INDEXED ADDRESSING MODE

The indirect indexed addressing mode is similar to indirect ad-
dressing, except that it uses the Y register as an index. With indirect
indexed addressing, the data to be operated on is found in a lo-
cation identified by BAH-BAL + Y. Acronym BAL symbolizes “base-
address low,” and BAH symbolizes “base-address high.” Thus the
Y index has the same meaning as it did in the absolute indexed ad-
dressing mode. However, BAL and BAH are not given in the in-
struction. Instead, the second byte of an indirect indexed instruction
is the low-order address of the page-zero location that contains
BAL. As before, call the second byte of the indirect indexed instruc-
tion IAL. BAH is found in the location whose zero-page address
is IAL + 1. Refer to the diagram in Fig. 8-7.

All indirect indexed instructions are two-byte instructions. The
first byte is, as always, the op code. The second byte is the address-
low (IAL) of the location in page zero that contains the base-
address low (BAL) of the location that contains the data. The
base-address high (BAH) is contained in location IAL + 1. When
the microcomputer obtains BAL from location IAL in page zero, it
adds the contents of the Y register to find the ADL of the data. Any
carry from this result is added to the contents of location IAL -+ 1
to find the ADH of the data. Symbolically, the address of the loca-
tion that contains the data is given by the expression:

ADH-ADL = BAH-BAL + Y

The fact that the carry from BAL + Y is added to BAH means that
when an indexed address reaches $0AFF, the next sequential ad-
dress is in the next page, namely $0B00. Example 13 illustrates how
to calculate the address of the data referenced by an indirect in-
dexed instruction.

157

Example 13: Calculating Address Referenced With Indirect Indexed Addressing Mode
In the following program, calculate the address of the location whose contents are

transferred to the accumulator

[$00F0] = $67 [$00F1] = $03
0200 A0 23 LDY $23
0202 B1 FO LDA (MEM),Y

Solution: Since MEM refers to location $00F0 and this location contains $67, the
BAL is $67. The location MEM + 1 is $00F1, and it contains $03, so BAH-BAL= $0367.
Then BAH-BAL + Y = $0367 + $23 = $038A, so the location referenced by the LDA
(MEM),Y instruction is $038A.

If Y = 0, then the instruction
LDA (MEM),Y

works exactly like the hypothetical instruction described in the
previous section. The data to be loaded into the accumulator is
found in a location whose ADL is in the zero-page location MEM
and whose ADH is in the zero-page location MEM + 1. The indirect
indexed mode is frequently used with Y=0. The diagram in Fig.
8-6 applies to this case. The instructions that have indirect indexed
addressing capability include two data transfer instructions, the
arithmetic and logical operations, and a comparison instruction.
The first programming example, given in Example 14, was inspired
by the MEMORY TEST! program written by Butterfield. Readers
who are interested in a good memory test program should consult
the reference. We consider only the problem of loading the same
number, say $FF, in all memory locations in page $PQ through
page 3RS of the address space. Refer to the detailed flowchart of
this program given in Fig. 8-8. Locations $0001 and $0002 should

Example 14: Program to Load R/W Memory With a Number

Object: Load pages $PQ through $RS with $FF.
$0000 = TABLE

$0001 = START; [0001] = $PQ

$0002 = STOP; [0002] = $RS

0010 A0 00 ORIGIN LDY $00 Initialize Y index to zero.

0012 84 00 STY TABLE Initialize BAL of TABLE to zero.

0014 A6 02 LDX STOP X register contains last page, RS.

0016 A9 FF LDA $FF Initialize A to $FF for load.

0018 91 00 BACK STA (TABLE),Y Store A in location BAH-BAL + Y.
(BAH is in location $0001.)

001A C8 INY Increment index.

001B DO FB BNE BACK Branch back if Y 54 0; otherwise

001D E6 01 INC START page is filled so increment page number.

001F E4 01 CPX START Is page number [STOP] = RS?

0021 BO F5 BCS BACK No, fill another page. Yes, then task

0023 00 BRK is finished.

1Butterfield, F. J., The First Book of Kim, Orb, Argonne, Illinois, 1977, p. 122.

158

START

®

X — [START|

s

$00
| $00 — [TABLE] NO
I [STOP] I {

SF-A]

GET BAL,
ADD Y,
GET BAH,
ADD CARRY,
(A} ~
[BAH — BAL + Y]

DID
BORROW
OCCUR?

|
>

Y+1-=Y

<>
YES

INCREMENT
[START]

I

Fig. 8-8. Flowchart of program in Example 14.

contain the starting page number ($PQ) and the ending page num-
ber ($RS), respectively.
A SIMPLE MONITOR

Another example of the use of indirect indexing is shown in
Example 15 which will be called the NIM-1 for Nibble Input
Monitor. It allows the two I/O ports to be used to modify and

159

display the contents of any location in memory. Data or address
information is entered one nibble at a time using the switches on
the I/O board. The contents of a location are displayed on the
LEDs on the I/O board. Perhaps this simple monitor could be
extended to initialize the program counter and execute programs,
but our objectives were smaller in scope. We want to illustrate
the indirect indexing mode, and we want to show how the most
basic feature of a monitor could be implemented. To be precise,
the program in Example 15 uses indirect addressing because the Y
index is zero.

To use the NIM-1 and the I/O board to examine and modify a
memory location, the NIM-1 program must be running, and these
instructions must be followed.

e The four nibbles forming the address of the location to be
modified are entered one nibble at a time, beginning with the
high-order nibble and ending with the low-order nibble. PB5
is at logic one for an address nibble.

¢ The nibble value is determined by the settings of switches PB4,
PB3, PB2, and PB1. PB4 is the high-order bit and PBI is the
low-order bit of the nibble.

e The two nibbles forming the data to be loaded are entered one
nibble at a time using the same switches mentioned above. PB5
is at logic zero for a data nibble.

® When the switches are set (PB5 is at logic one for an address
and at logic zero for data, and PB4, PB3, PB2, and PB1 repre-
sent the nibble), then changing the setting of the PBO switch
enters the information. Either a change from logic zero to logic
one or a change from logic one to logic zero will enter the infor-
mation. PBO0 is debounced, so the nibble is only entered once.

A flowchart of the entire NIM-1 program is given in Fig. 8-9.

Example 15: Nibble-Input-Monitor: The NIM-1

Object: Use the 1/0 board to examine, modify, and display the contents of any loca-
tion in memory.

$0000 = ADL

$0001 = ADH

$0002 = TEMP

$A003 = PADD

$A001 = PAD

$A000 = PBD
0010 A9 FF ORIGIN LDA $FF Load Port A data direction register
0012 8D 03 A0 STA PADD so it is an output port.
0015 B1 00 START LDA (ADL),Y Output the data at the location
0017 8D 01 AO STA PAD BAH-BAL + Y where BAL is [ADL]

and BAH is [ADH].

001A AE 00 A0 LDX PBD Read Port B.

160

001D 8A CHECK TXA Save A in X.

001E 4D 00 AO EOR PBD Exclusive-OR with PBD to see if PBO

0021 29 O1 AND $01 has changed. Mask all bits except PBO

0023 FO F8 BEQ CHECK Loop to CHECK if no transition
occurred

0025 AD 00 AO LDA PBD Read Port B.

0028 29 3E AND $3E Mask bits not used for information.

002A OA ASL A Move bit from PB5 into carry flag

002B OA ASL A and the nibble into the high-order

002C OA ASL A nibble of A. All other bits are zero.

002D A2 04 LDX $04 Initialize X register to count four bits.

002F 85 02 STA TEMP Store A temporarily.

0031 BO OF BCS ADDRSS If carry was set, nibble was for address.

0033 A0 00 LDY $00 Set Y index to zero.

0035 B1 00 DATA LDA (ADL),Y Get contents of location to be modified.

0037 06 02 ASL TEMP Shift high bit of nibble into carry.

0039 2A ROL A Rotate carry into A.

003A 91 00 STA (ADL),Y Store modified data in location
BAH-BAL.

003C CA DEX Repeat four times to get entire nibble

003D DO F6 BNE DATA into location.

003F 4C 15 00 JMP START Go back to get more information.

0042 OA ADDRSS ASL A Address information: Shift high bit

0043 26 00 ROL ADL of nibble into carry flag. Rotate

carry flag into ADL, high-order bit
of ADL into carry flag, and carry

0045 26 01 ROL ADH flag into ADH.

0047 CA DEX Repeat four more times to get entire
0048 DO F8 BNE ADDRSS nibble into the address.

004A 4C 15 00 JMP START Go back to get more information.

INDEXED INDIRECT ADDRESSING

With indirect indexing, studied in the previous section, the index
determined the location of the data. With indexed indirect ad-
dressing, the subject of this section, the index determines the location
of the address of the data. The X register is the only register that
may be used as an index in this mode.

The instruction

LDA (MEM,X),

where MEM is zero-page location whose low-order address is IAL,
gets the ADL of the location of the data byte from the zero-page
location IAL + X. The ADH of the data is found in the zero-page
location TAL + (X + 1). Example 16 shows such a calculation, and
Fig. 8-10 diagrams this addressing mode.

All indexed indirect instructions use the notation shown above for
the LDA (MEM,X) instruction (see Table 8-1 for a list of instruc-
tions that have this mode available). They are two-byte instructions,
the first byte being the op code, and the second byte being the IAL

161

which, when added to X, gives the zero-page location where the
ADL of the data byte is found.

Like indirect indexed addressing, indexed indirect addressing is
useful in dealing with large quantities of information. Qur last
programming example illustrates how indexed indirect addressing

ORIGIN
DATA ENTRY COLUMN ADDRESS ENTRY COLUMN
(ADH-ADL)] $00 — Y }
~ Al SHIFT BIT 7
NOTE: Y = 0 . OF AINTO C
[(ADH-ADL)]
I A- P@ — A ROL ADL LEFT
jL C-BITO7—¢

SHIFT BIT 7 1

OF TEMP TO C ROL ADH LEFT
C— BITO

PORTB - A

PBO ROTATE A LEFT.
CHANGED? C—BITO
YES *
1A -
|(ADH-ADL)]

SHIFT A
THREE BITS
LEFT

o]

IS
CARRY SET?

YES

Fig. 8-9. Flowchart of NIM-1 Program. Notation [(ADH-ADL)] means “the contents of the
location whose address is the contents of the locations ADH and ADL.”

162

PROGRAM PAGE ZERO

INDEXED
$0200 | INDIRECT
0P CODE

s+ s L 0]]
ADH-ADL DATA

Fig. 8-10. Diagram of Indexed Indirect Addressing Mode.

Example 16: Calculating the Address Referenced With Indexed Indirect
Addressing Mode

Find the location referenced by the indexed indirect instruction in the following:

[$0017] = $FF [$0018] = $AO
0200 A2 14 START LDX $14
0202 E1 03 END SBC (MEM,X)

Solution: The IAL is $03 + $14 = $17. Location $0017 contains $FF and location
$0018 contains $A0, so the location referenced by the SBC (MEM,X) instruction is
$AOFF.

can be used to input information from several sources. Suppose an
instrument that collects data provides four output channels. (The
author’s application was a speech recognition circuit.) Assume
that the four channels are multiplexed; that is, the data from a
channel appears at a single I/O port on the computer, depending
on the channel number (zero through three) that is loaded into
another I/O port. The voltage level at the output of the multiplexer
is converted to a 6-bit digital number by an analog-to-digital (A/D)
circuit. When the circuit is busy making an analog-to-digital con-

Table 8-5. Multichannel Data Logging Program Information

Write Read
Multiplexer Port Data Port
$00 selects Channel-0 Data
$01 selects Channel-1 Data
$02 selects Channel-2 Data
$03 selects Channel-3 Data

[$0000] = [Base Address Low of Channel-0 Table] = $00.
[$0001] = [Base Address High of Channel-O Table] = $03.
[$0002] = [Base Address Low of Channel-1 Table] = $40.

[$0003] = [Base Address High of Channel-1 Table] = $03.
[$0004] = [Base Address Low of Channel-2 Table] = $80.
[$0005] = [Base Address High of Channel-2 Table] = $03.
[$0006] = [Base Address Low of Channel-3 Table] = $CO.
[$0007] = [Base Address High of Channel-3 Table] = $03.

163

version, bit seven of the data port is one. When the conversion is
complete, bit seven is zero. Table 8-5 summarizes the pertinent
information for the system.

All four channels must be read and the data stored in a table, one
table for each channel. After all four channels are read, a delay of
10 ms is inserted before they are read again, until 64,, = $40 data
points have been read for each channel. The channel-zero data will
be stored in locations $0300 through $033F, channel-one data in
locations $0340-$037F, channel-two data in locations $0380-$03BF,
and channel-three data in locations $03C0-$03FF. The machine
language version is not given because it is unlikely that you would
use exactly the same program.

Example 17: Logging Four Channels of Input Data
Obiject: Read and log the four-channel system described in the text.

$0000 = TABLE
$0000 = BALO
$0002 = BAL1
$0004 = BAL2
$0006 = BAL3
ORIGIN LDX $00 Initialize X index to zero.
HERE LDY $00 Initialize Y index to zero, Y = Channel Number.
AGAIN STY MULTPLX Store Y in multiplexer to select channel.
BACK LDA DATA Get A/D data at data port.
BMI BACK If bit seven is one, A/D is busy.
STA (TABLE,X) Otherwise store data in table.
INX Advance X to select the BAL of
INX the next table.
INY Advance Y to get next channel.
CPY $04 If Y < 4, branch back to get data from
BCC AGAIN another channel.
INC BALO Otherwise, the first data point for each
INC BAL1 channel has been logged. Next, increase
INC BAL2 the BAL of each table, so the next point
INC BAL3 will be stored in the next location.
LDA BAL3 If BAL3 is $00, the whole table has been
BEQ OUT filled, so the task is finished.
Otherwise delay here with interval timer.
JMP HERE Then jump back to get more points.
our

INTRODUCTION TO THE EXPERIMENTS

Having advanced to this stage in your knowledge of the 6502
instruction set, you should feel more like writing your own pro-
grams than repeating the ones in the text. The experiments that
follow give you some experience with the programs we studied in
this chapter; some experiments suggest another program to write, a

164

program that is somewhat similar to the one being studied. You
have probably thought of programs you want to write for yourselt,
and you should take the time to try a few of these. You have now
learned all but a few instructions of the instruction set, so you should
be able to write programs. If you cannot think of any programs of
your own, here are a few ideas to try for programming experience:

® A program to load data from the I/O board Port B into a
table

e A five-byte addition program

® A program to transfer one page of memory to another page of
memory

® A program to relocate a program (difficult)

® A program to transfer a table in an input buffer to the top of an
existing table someplace in memory

e A program to handle N input channels simultaneously, storing
each channel in a separate page in memory

® A program to implement an FIFO (First-In, First-Out) memory
for a given number of bytes, say N bytes

® A program to implement a LIFO (Last-In, First-Out) memory
for 256 bytes.

EXPERIMENT NO. 1
Step 1

Load the program in Example 8-4, which is listed below for con-
venience.

0200 A2 00 START LDX $00
0202 A9 FF LDA $FF
0204 9D 00 03 BACK STA TABLE,X
0207 E8 INX

0208 DO FA BNE BACK
020A 00 BRK

Step 2
Execute the program. Check a number of locations in page three
of memory to see if the program worked. Change the byte at loca-

tion $0203 to $00. Now what do you expect to find in page three
locations?

(The first time the program is run should result in $FF being stored
in every page three location. The second time the program is run
should clear every location in page three.)

165

EXPERIMENT NO. 2

Step 1
Load the program in Example 6. It is listed here for convenience.

0200 A9 FF START LDA $FF
0202 8D 03 A0 STA PADD
0205 A2 10 LDX $10
0207 B5 A0 AGAIN LDA ZTABX
0209 CA BACK DEX

020A 30 07 BMI OUT
020C D5 A0 CMP ZTABX
020E BO F9 BCS BACK
0210 4C 07 02 JMP AGAIN
0213 8D 01 A0 OUT STA PAD
0216 00 BRK

Step 2

Clear locations $00A0 through $00B0. Run the program. What
do you expect to see at Port A?

(If all the locations are loaded with $00, the largest value in the
table is $00. All the Port A LEDs should go out.)

Step 3

Put some other numbers in locations $00A0 through $00B0, noting
the largest. Now run the program, and check to make sure it does
find the largest number.
Step 4

Modify the program to find the smallest number in the same

table, and to output this number to Port A. Check your program to
see if it works.

EXPERIMENT NO. 3
Step 1
Load the program in Example 7, which is listed below for con-
venience.

0200 A9 00 STARY LDA $00

0202 85 00 STA SUMLO
0204 85 01 STA SUMHI
0206 D8 CLD

0207 A2 OF LDX $0F
0209 18 BACK CiLC

166

020A B5 A0 LDA TABLE,X

020C 65 00 ADC SUMLO
020E 85 00 STA SUMLO
0210 A5 01 LDA SUMHI
0212 69 00 ADC $00
0214 85 01 STA SUMHI
0216 CA DEX

0217 10 FO BPL BACK
0219 00 BRK

Step 2

Clear the locations $00A0 through $00AF. Execute the program.
What do you expect to find in SUMLO and SUMHI, locations $0000
and $0001, respectively?

(You should find $00 in both locations.)

Step 3

Load all of the locations in the table with $FF. Now what do you
expect to find in SUMLO and SUMHI?

(You should find $F1 in SUMLO, and SUMHI should contain $0E
since $F - $FF = $0EF1.)

Step 4

Write a program to subtract the same number from all the num-
bers in a table. It will not look exactly like Example 7, but it should
use Z-PAGE,X addressing. Assume the table is in locations $00A0
through $00AF.

EXPERIMENT NO. 4
Step 1

Load the program in Example 8, listed here for convenience.
This experiment will use the I/O board, so attach it to the applica-
tion port. Also load the conversion table, Table 8-2, into memory.

0200 A9 FF START LDA $FF
0202 8D 03 A0 STA PADD
0205 AD 00 A0 LDA PBD
0208 29 OF AND $OF
020A AA TAX

0208 BD 00 03 LDA TABLE,X
020E 8D 01 AO STA PAD
0211 00 BRK

167

Step 2

For convenience in running the program, change the BRK in-
struction to a JMP 0205 instruction, putting the program in a loop
that runs continuously.

Step 3
Set up a hex nibble on the Port B switches PB3-PB0. For ex-
ample, set the switches to $A. What should you observe at Port A?

(Since the program converts the hex number represented by the
four switches to ASCII, you should observe $41 at Port A.)

Step 4

Alter the switches PB3-PBO0, and check to see if the program is
making the correct conversion. Use Table 8-2 to check your answers.

Step 5

Try writing a program to take an ASCII character from some
location and convert it to the low-order nibble of another location.
Table 8-2 should be useful. Use a table to perform the conversion.

EXPERIMENT NO. 5
Step 1

Load the program in Example 9. If you are not using an AIM 65,
you may want to add an AND $BF instruction after the LDA PBD
instruction to mask bit six.

0200 D8 START CLD

0201 AD 00 AO LDA PBD
0204 AA TAX

0205 29 OF AND $0F
0207 85 10 STA TEMP
0209 B8A TXA

020A 4A LSR A
020B 4A LSR A
020C 4A LSR A
020D 4A LSR A
020E AA TAX

020F B5 00 LDA TABLE,X
0211 18 CLC

0212 65 10 ADC TEMP
0214 8D 01 A0 STA PAD
0217 A9 FF LDA $FF
0219 8D 03 A0 STA PADD
021C 00 BRK

168

Step 2

Set up two bed digits on the Port B switches. Make sure Table
8-3 is in memory. Run the program. Does the program convert bed
to binary correctly? For example, if the digits 95 are set up on the
port input switches, what do you expect to see at Port AP

(9510 = $5F so you should observe $5F at Port A.)
Step 3

Try writing a program to convert a hexadecimal number less than
$64 = 100, to two bcd digits and output them at Port A.

EXPERIMENT NO. 6
Step 1

Load the NIM-1, Example 15. The program is quite long, so it
is not repeated here. Turn back to the original listing to load it into
memory.

Step 2

Execute the program. Following the instructions for entering
address and data information, enter $00 in location $0300. This is
accomplished as follows:

e Set PB5 to 1 (address mode) and PB4-PB1 to represent $0.
Change switch PBO.

¢ Set PB5 to 1 and PB4-PB1 to represent $3. Change switch PBO.

¢ Set PB5 to 1 and PB4-PBl to represent $0. Change switch PBO.

o Enter the last zero in the address by leaving PB5-PB1 the same

as in the previous step; then change switch PBO to enter the
nibble.

The address $0300 is now entered. To enter $00 as data:

¢ Set PB5 to 0. PB4-PB1 should represent $0. Change switch PBO.
e Change switch PBO to enter the second nibble.

Now examine location $0300. It should contain $00, and all the
Port A LEDs should be off.
Step 3

Enter $7F in location $0300. Since the monitor is already set up
to modify location $0300, we can leave it in the data mode (PB5
at 0) and enter $7F with these steps.

e Set switches PB4-PB1 to represent $7. Change PBO.
¢ Set switches PB4-FB1 to represent $F. Change PBO.

169

Examine location $0300 to see if your I/O board and NIM-1 monitor
did actually enter $7F in this location, and that Port A does represent
the data found in a location.

EXPERIMENT NO. 7
Step 1
Breadboard the circuit shown in Fig. 8-11. The author used a rib-
bon cable from a 22/44-pin edge connector on the application port

to a dip socket on an AP Products Superstrip. (These parts are
available from JAMECO Electronics, 1021 Howard Ave., San Carlos,

CA 94070.)
I+5V
a |

Al4

1
3
M a
b /
5 6 R 10 f b
s [FR> |y
8 R e c
a2 [PA> > nef” /
] P
0 R L
il
AS m 7-SEGMENT
LED
" 2 R (COMMON ANODE)
A6 [PAS > R = 2700

2 7404 INVERTERS (PIN 14 = +5V, PIN 7 = GND)

Fig. 8-11. Circuit diagram for Experiment No. 7. Pin bers on application tor
are given for each bit of Port A used.

Step 2

Load the program in Example 10. It is listed below for conveni-
ence. Also load Table 8-4 into memory.

0200 A9 FF START LDA $FF
0202 8D 03 A0 STA PADD

170

0205
0208
020A
0208
020E
021

Step 3

AD 00 AO
29 OF
A8

B9 FO 03
8D 01 A0
00

LDA PBD
AND $OF
TAY

LDA TABLEY
STA PAD
BRK

Change the BRK instruction at location $0211 to a JMP 0205 so
the program will run as a continuous loop.

Step 4

What is the.status of the LEDs on the seven-segment display when
the system is RESET?

Step 5

Now try to input various nibbles on the Port B switches. You
should observe the hex numeral corresponding to the switch set-

tings on PB3-PBO0.

7

CHAPTER 9

Subroutines,
The Stack, and
Interrupts

OBJECTIVES
At the completion of this chapter you should be able to:

e Understand the function of subroutines and use them in pro-
grams.

® Understand how the stack is used in processing subroutines
and interrupts.

e Use the JSR, RTS, CLI, SEI, RTI, PHA, PHP, PLA, PLP, TXS,
TSX, BRK, and NOP instructions. See Table 9-1 for a summary.

e Write programs that make use of subroutines and interrupts.

INTRODUCTION

With few exceptions, the programs in this book that have been
used to illustrate the 6502 instruction set would generally be part of
larger programs with more elaborate objectives. For example, the
program in Example 10 in Chapter 7 that converts two bed digits
to an 8-bit binary number might be part of a much longer data-
logging program in which the input data is manipulated and dis-
played on an oscilloscope or output to a printer. As such, the bed
to binary program would be called a routine. Long programs can
frequently be divided into groups of simpler programs, each of

172

Table 9-1. Summary of Instructions Introduced in Chapter 9

Addressing Mode Op-Codes
Instruction Description Implied Absolute
BRK Force Interrupt 00
cu Clear Interrupt Disable Flag 58
JSR Jump to Subroutine 20
NOP No Operation EA
PHA Push Accumulator on Stack 48
PHP Push P Register on Stack 08
PLA Pull Accumulator from Stack 68
PLP Pull P Register from Stack 28
RTI Return from Interrupt 40
RTS Return from Subroutine 60
SEI Set Interrupt Disable Flag 78
TSX Transfer Stack Pointer to X Register 8A
™S Transfer X Register to Stack Pointer 9A

which is usually referred to as a routine. A 16-bit multiplication
program might be part of the interpreter of a high-level language,
such as FORTRAN. As such, it would be called a multiplication
routine.

If a program requires the use of a particular routine in several
different places in the program, then the instructions for that routine
would have to be repeated. This is inefficient programming. It
would be better if the routine could be written and stored once,
and the program could jump to the routine whenever it was needed,
followed by a return to the main program.

The 6502 microprocessor has two quite different, but extremely
important, ways of jumping to and returning from routines. The
first is through the use of the JSR (Jump to Subroutine) instruction
and the RTS (Return from Subroutine) instruction. The second
way of jumping to a routine is through the use of interrupts. In
this case, an external circuit signals the microprocessor and requests
that it jump to a particular routine, called an interrupt routine. These
two techniques for calling a routine will be discussed in detail in
this chapter. The various instructions that are used in calling and
processing these two types of routines are summarized in Table 9-1.

SUBROUTINES

A routine that may be used at several points in a program through
the use of the JSR instruction is called a subroutine. Like a program,
a subroutine has a specific objective, such as multiplying two 8-bit
numbers. Once designed as a subroutine, it cannot be used by itself.
The program of which the subroutine is a part is called the main
program. The main program can use (or call) the subroutine at

173

any point through the use of the JSR instruction. On the other hand,
the subroutine signals the main program that it has completed its
objective with an RTS instruction. The main program then continues
execution at the instruction following the JSR instruction. In this
way, the instructions in the subroutine have been “inserted” in the
main program, between the JSR instruction and the one that
follows it.

The JSR instruction is a three-byte instruction. The first byte is
the op code ($20), the second byte is the ADL for the location of
the first instruction in the subroutine, and the third byte is the ADH
for the location of the first byte in the subroutine. Consider the
program excerpt shown in Table 9-2. The STA, LDA, and LDX
are just “dummy” instructions used to illustrate the fact that the
JSR instruction is usually found somewhere in the middle of a main
program. It is also assumed in Table 9-2 that there are many in-
structions in the subroutine, only the first and last of which have
been shown.

Referring to Table 9-2, the JSR MLTP instruction results in a
jump to the subroutine labeled MLTP, and the op code of the first
instruction in subroutine MLTP is located at address $0300. The
instruction located at this address will be executed immediately
following execution of the JSR MLTP instruction. Subsequent in-
structions in the subroutine will be executed until an RTS (Return
from Subroutine) instruction is encountered.

The RTS instruction is a single-byte instruction, op code = $60.
Execution of this instruction results in the main program continuing
at the instruction following the JSR instruction. In the example
shown in Table 9-2, the RTS instruction would result in the next
op code being fetched from the location whose address is $0253;
that is, the location immediately following the last byte of the JSR
instruction.

The JSR instruction contains the information necessary to find
the first instruction of the subroutine, but the RTS instruction is

Table 9-2. Example of Subroutine Call and Return from Subroutine

Location Instruction Label Mnemonic Operand Comments
024D 8D 03 04 | MAIN STA | MEM
0250 20 00 03 JSR | MLTP Jump to subroutine labeled
MLTP.
0253 AD 03 04 LDA | MEM
0300 A2 FF MLTP 4 LDX | $FF
0344 60 RTS— Return from subroutine

174

a single-byte instruction and contains no such information. How
could it? Since, as indicated, a jump to a subroutine may occur any-
where in the main program, there will be a number of different
“return locations.”

How does the microprocessor know where to return to get the
next instruction after a subroutine call has been completed? Before
the microprocessor jumps to the subroutine, it stores the address of
the location of the third byte of the JSR instruction in a special
section of read/write memory called the stack. Execution of the RTS
instruction results in a fetch of this address which is then loaded into
the program counter. The program counter is then automatically
incremented by one to identify the address at which the op code
immediately following the JSR instruction is stored. In the example
shown in Table 9-2, the address of the $03 byte is stored on the
stack. That is, ADL $52 and ADH $02 are stored on the stack.
Upon executing the RTS instruction, these two numbers are loaded
back into the program counter of the microprocessor, the $52 is in-
cremented by one, and the number $0253 becomes the new PCH-
PCL and, thus, the address of the location of the next op code. Since
both subroutines and interrupts, to be described in a subsequent
section of this chapter, make use of the stack, we now turn to an
explanation of the operation of the stack.

THE STACK

The stack is a series of read/write memory locations in page
one of memory (addresses $0100-$01FF). The stack area starts at
address $01FF and extends downward in memory, but no farther
than address $0100. It is sometimes called a push down stack be-
cause locations are filled from the top location, whose address is
$01FF, downward; but locations are emptied (loosely speaking)
from the bottom upward. It could better be called FILO for “first-
in, last-out” memory. The first byte placed on the stack by the micro-
processor is the last byte taken off the stack.

All stack operations make use of the stack pointer, the only in-
ternal register of the 6502 that has not yet been mentioned. The
stack pointer is an 8-bit register which contains the low-order ad-
dress (ADL) of the next empty or available location on the stack.
The location just above this may be called the top of the stack,
since it was the last location filled by a stack operation. When the
contents of the stack pointer are placed on the address bus, an ADH
of $01 always appears along with the contents of the stack pointer
as ADL. Thus, in a certain sense, the stack pointer is a 16-bit
register with the most significant byte always being equivalent to
$01. That is, the ADH of the location to be referenced by a stack

175

operation is always $01, while the ADL for the location comes trom
the stack pointer. (If the address line A8 is not decoded, as in the
case of some small microprocessor-based designs, then the stack will
be in page zero.)

The stack pointer is always initialized to $FF by a RESET opera-
tion. You may check this by pressing the RESET button on your
computer and then using the monitor to examine the contents of
this register. There may be situations in which it is undesirable
to have the stack near the top of page one in memory. Two instruc-
tions allow the stack pointer to be set to any page-one location or,
if necessary, to be checked. The TSX instruction transfers the con-
tents of the stack pointer to the X register. This may be used to see
how much of the stack has been used. The TXS instruction transfers
the contents of the X register to the stack pointer. This may be
used to set the stack pointer to other locations in page one of
memory for the stack. One could, with considerable care in pro-
gramming, operate two or more stacks in page one through the use
of the TXS and TSX instructions. However, great care must be
exercised to make sure the stack does not wrap around, for when
the stack pointer reaches $00, it will be decremented to $FF with the
next stack operation, and then it will start writing over data at the
bottom of the stack, address $01FF.

To understand how the stack is used for subroutine calls, consider
again the program example in Table 9-2. Assume that the system
has been RESET so that the stack pointer is $FF before the pro-
gram is executed. Upon execution of the JSR MLTP instruction,
the number $02, representing the ADH of byte three in the JSR
MLTP instruction, is stored in the location with address $01FF.
The stack pointer is then decremented by the microprocessor to
$FE, and the number $52, representing the ADL of byte three in
the JSR MLTP instruction, is stored at the location whose address
is $01FE Again. the stack is decremented and it becomes $FD.
Finally, the number $0300 is put in the program counter on the
address bus to fetch the first op code in the subroutine. The subrou-
tine is then executed.

The RTS instruction causes the stack pointer to be incremented
from $FD to $FE, and the contents of the location with address
$01FE is loaded into the PCL. The stack pointer is incremented
again, and the contents of the location whose address is $01FF is
put into the PCH. Next, the program counter is incremented, and
the program counter contents, now $0253, are placed on the address
bus to fetch the op code of the instruction following the JSR in-
struction in the main program.

The JSR and RTS instructions may be summarized briefly as
follows:

176

e JSR—Push the address of the third byte of the JSR instruction
on the top of the stack in the order ADH, ADL. Place the
second and third bytes of the JSR instruction into the PCL and
PCH, respectively. Continue execution.

e RTS—Pull the top two bytes off the stack and place them in
the program counter in the order PCL, PCH. Increment the
program counter and continue execution.

It is clear that the JSR and RTS instructions require the micro-
processor to perform several operations, and, consequently, one
would expect that these instructions take a lot of time. They do. An
examination of the instruction set summary or the complete instruc-
tion set for the 6502 shows that they each take six clock cycles,
whereas the shortest instructions only take two clock cycles. In ap-
plications where time is critical, it may be necessary to avoid sub-
routines; but, in many other applications, the expense in time is
worth the programming convenience and savings in the memory
space allotted to the program. Your microcomputer monitor is a
good place to look for the applications of subroutines.

NESTED SUBROUTINES

To understand the idea of nested subroutines and how the stack
works, consider Example 1. This program does nothing except
demonstrate the concept of nested subroutines. The main program
is simply a loop consisting of a subroutine call, namely JSR ONE.
Note that subroutine ONE calls another subroutine, subroutine
TWO. This represents a nested subroutine, because one subrou-
tine is calling another. Finally, subroutine TWO calls subroutine
THREE, which also does nothing, whereupon it returns to sub-
routine TWO. Subroutine TWO returns to subroutine ONE, and
subroutine ONE returns to the main program. The sequence of
instruction executions is illustrated in Table 9-3. We have, so to
speak, subroutines nested three deep. In Example 9-1, observe that

Example 1: Demonstration of Nested Subroutines
MAIN PROGRAM

0010 20 00 O1 MAIN JSR ONE Jump to subroutine ONE.
0013 4C 10 00 JMP MAIN Loop back to jump to subroutine ONE.

SUBROUTINE ONE

0100 20 00 02 ONE JSR TWO Jump to subroutine TWO.
0103 60 RTS Return to main program.

SUBROUTINE TWO
0200 20 00 03 ™WO JSR THREE Jump to subroutine THREE.

0203 60 RTS Return to subroutine ONE.
SUBROUTINE THREE
0300 60 THREE RTS Return to subroutine TWO.

177

Table 9-3. Instruction Execution Sequence and Stack Pointer
Values for Example 1

Stack Page One Memory Locations By ADL
Location Instruction Pointer $FF $FE $FD $FC $FB $FA $F9
(Initial Values) $FF XX XX XX XX XX XX XX
0010 20 JSR 0100 (XX means ““don’t care’’)
$FD 00 12 XX XX XX XX XX
0100 20 JSR 0200
$FB 00 12 01 02 XX XX XX
0200 20 JSR 0300
$F9 00 12 01 02 02 02 XX
0300 60 RTS
$FB 00 12 01 02 XX XX XX
0203 60 RTS
$FD 00 12 XX XX XX XX XX
0103 60 RTS
$FF XX XX XX XX XX XX XX
0013 4C JMP 0010
$FF XX XX XX XX XX XX XX
0010 20 JSR 0100
$FD 00 12 XX XX XX XX XX

the subroutine label, TWO for example, also labels the starting
location of the subroutine.

Although the program in Example 9-1 was introduced for the sole
purpose of demonstrating nested subroutines and the operation of
the stack with nested subroutines, you might want to make the
program more useful by putting delay loops, see Chapter 6, in
each of the subroutines. For example, suppose subroutine THREE
produces a 10-millisecond delay. Subroutine TWO might produce
a 100-millisecond delay by calling subroutine THREE ten times.
If subroutine ONE called subroutine TWO ten times, then sub-
routine ONE would produce a delay of 1 second. Thus, the pro-
grammer would have a choice of three delays, 1 second, 100 milli-
seconds, or ten milliseconds, by calling subroutine ONE, TWO,
or THREE, respectively.

The implementation is left to the reader. Precise delays are more
easily programmed through the use of interval timers, the subject
of the next chapter.

When the program in Example 1 is executed, the sequence of
instruction executions is shown in Table 9-3. Also shown is the
value of the stack pointer after execution of each instruction, and
the contents of the stack locations used by the program are given

178

on the right-hand side of the table. After executing the first JSR
instruction, the stack pointer is $FD, meaning locations with ad-
dresses $01FF and $01FE have been filled. In particular, these
locations contain the ADH and ADL of the last byte of the first
JSR instruction, as can be seen from the contents of the stack. It
can be seen that subroutines nested three deep will require at least
six locations in the stack. The stack is said to be six locations deep.
Observe that, as the RTS instructions are executed, the stack pointer
is incremented until it is again $FF when all the subroutines have
been executed.

USE OF THE STACK FOR STORAGE

A program that makes use of the X register, for example, may
have a subroutine that also requires the use of this register. Further-
more, the contents of the processor status register (P register) will
undoubtedly change during execution of the subroutine, but it
may be necessary to preserve the flag settings in the P register for
the part of the main program that follows the subroutine. Clearly,
it is desirable to have some way of saving the contents of the 6502
internal registers so that a subroutine may use them and so that
after execution of a subroutine the registers may be restored to the
same value they had prior to the use of the subroutine. Of course,
certain memory locations could be allocated for the purpose of
saving registers, but there is a more efficient technique that makes
use of the stack and several so-called stack operations.

Here we summarize the principal stack operations; S stands for
the contents of the stack pointer, and Mg stands for a memory loca-
tion in page one whose low address corresponds to the stack pointer.

e PHA—Push Accumulator on the Stack: place the contents of the
accumulator on the stack, then decrement the stack pointer.
Logically, A > Mg, S — 1 S. See Fig. 9-1.

e PHP—Push the P register on the Stack: place the contents of
the processor status register on the stack, then decrement the
stack pointer. Logically, P-> Mg, S — 1 S. See Fig. 9-2.

PAGE-ONE ADDRESS PAGE-ONE CONTENTS STACK POINTER CONTENTS

BEFORE PHA AFTER PHA BEFORE PHA AFTER PHA

$01PQ ———— | [A fe—sro $PQ-1

Fig. 9-1. Diagram of PHA Instruction. In this diagram, A symbolizes accumulator and
PQ symbolizes any two-digit hexadecimal number.

179

PAGE-ONE ADDRESS PAGE-ONE CONTENTS STACK POINTER CONTENTS

BEFORE PHP AFTER PHP BEFORE PHP AFTER PHP

$01RS——L J I P} —|-—$RS $RS-1
ss1—— | |

Fig. 9-2. Diagram of PHP Instruction. P symbolizes processor status register and RS
symbolizes any two-digit hexadecimal number.

e PLA—Pull Accumulator from the Stack: increment the stack
pointer, then load the accumulator with the contents of the
stack. Logically, S + 1 > S, Ms ~ A. See Fig. 9-3.

PAGE ONE
STACK POINTER CONTENTS ADDRESS CONTENTS ~ ACCUMULATOR CONTENTS
BEFORE PLA AFTER PLA BEFOREPLA AFTER PLA
SOLK SOLK+1—>SOLK+1 | 1] [sour+uf
SOLUK

Fig. 9-3. Diagram of PLA Instruction. JK symbolizes any two-digit hexadecimal number.

e PLP—Pull the P register from the Stack: increment the stack
pointer, then load the P register with the contents of the stack.
Logically, S + 1= S, Mg - P. See Fig. 9-4.

PAGE ONE
STACK POINTER CONTENTS ADDRESS CONTENTS P REGISTER CONTENTS
BEFORE PLP AFTER PLP BEFORE PLP AFTER PLP
SOIMN SOIMN+1——=SOIMN+1 | | | | [somn+1y |
S01MN

Fig. 9-4. Diagram of PLP Instruction. MN symbolizes any two-digit hexadecimal number.

Assume that the contents of both the accumulator and the P
register are to be preserved during a subroutine jump. Before the
JSR instruction, one would place a PHA and a PHP instruction.
After the JSR instruction, still in the main program, one would have
a PLP and a PLA instruction, in that order. Remember, the accumu-
lator was “first in” so it will be “last out.” It is very important to
keep track of the order in which data to be saved is placed on the

stack, because it is taken from the stack in reverse order. The “save”
instructions could be in the subroutine instead, the PHA and PHP
being the first two instructions in the subroutine instead, and the
PLP and PLA the last two instructions before the RTS instruction.

It is also very important that these instructions occur in pairs.
That is, for every PHA instruction there should be a PLA instruc-
tion, and for every PHP instruction there should be a PLP instruc-
tion. If this is not the case, then the stack pointer will not correctly
point to the data that is to be transferred. There may be a few
exceptions to the rule of having the save instructions occur in pairs,
but it is a good rule to keep in mind when programming.

To save the X register, for example, during a subroutine jump,
it is first transferred to the accumulator and then to the stack before
the subroutine call. After the subroutine call the contents of the
stack are placed in the accumulator, and the accumulator contents
are transferred to the X register. The program in Example 2 illus-
trates these ideas.

Example 2: Saving X Register During Subroutine Call

Show how the X register may be preserved during a subroutine call.
Solution: The program listing for the main program would appear as follows:

TXA Transfer the X register to the lator.
PHA Push A on the stack.

JSR MLTP Jump to subroutine MLTP.

PLA Pull A from the stack.

TAX Transfer the accumulator to the X register.

The contents of the internal registers of the 6502 may also be
saved by putting the save instructions in the subroutine. Example 3
shows how the accumulator, X register, and Y register may be saved
during a subroutine call by placing the save instructions in the
subroutine.

Example 3: Saving X and Y Registers During Subroutine Call
Show how the accumulator, X register and Y register may be saved with stack op-
erations placed in the subroutine.
Solution: The subroutine would appear as follows:
PHA Transfer A to the stack.
TYA Transfer Y to A.
PHA Push A on the stack.
TXA Transfer X to A.
PHA Push A on the stack.

. Subroutine instructions.
PLA Pull A from the stack.
TAX Transfer A to X.

PLA Pull A from the stack.
TAY Transfer Ato Y.

PLA Pull A from the stack.
RTS

The stack operation instructions are not used exclusively with
subroutines and interrupts. They may be used anywhere in a pro-
gram or subroutine where a few simple instructions will save a byte
of data momentarily. An examination of the instruction set will
show that the stack operations are only one cycle longer than the
necessary STA and LDA instructions, if one is saving data. Keep
in mind, however, that if a subroutine requires several stack opera-
tions in addition to the JSR and RTS instructions, then it requires
a great deal of time. This is of concern only in those applications
where time is a critical factor. In many applications, this is not the
case.

Another illustration of a situation in which a subroutine is useful
is shown in Example 4. Suppose we have a rather extensive pro-
gram such as a monitor, FORTRAN interpreter, or an assembler,
all of which require lengthy communication with an input device
and an output device. We will assume that both I/O devices use the
ASCII format; that is, an ASCII character is read at the keyboard
input port, and, when it is necessary to produce an output, an ASCII
character is written to an output port. Clearly, programs such as
this are required to input and output information at many places
in the program, and subroutine calls provide a convenient way
of accomplishing this. Furthermore, in certain cases the output
should mimic or echo the input. For example, when an input key
is pressed, the same character should appear on the video monitor
or teletypewriter.

Example 4 is a partial simulation of such a situation. The main
program is a “dummy” program that represents an interpreter,
assembler, or a monitor. In our case, we just use an infinite loop
containing three subroutine calls. The subroutines are more realistic,
although in an actual case they might be more complicated. We
assume the keyboard produces a 7-bit ASCII character at bits
PB6-PBO of Port B. Bit seven of Port B is used by the keyboard
to signal the computer that a character is ready. The keyboard
makes bit seven (PB7) of Port B logic zero if a character is ready
(key depressed); otherwise it is at logic one. The INPUT sub-
routine simply loops until a character is entered from the keyboard;
then it returns to the main program, which, in a real situation,
would process the input until it was ready for another character
from the keyboard. This type of keyboard operation is called
polling. The program polls the keyboard until a character is ready.
Observe that the accumulator serves to pass the character from
the subroutine to the main program.

If it is necessary to output a character, the main program calls
the OUTPUT subroutine. We have used Port A to simulate this
output location. Finally, if the main program must “echo” the

182

input to the output, it calls the ECHO subroutine. The ECHO sub-
routine not only passes an ASCII character to the main program,
but it also outputs the same ASCII character to the output device.
Again, the main program is not to be taken literally. It is meant to
simulate a much longer program that calls these subroutines.

Example 4: Program to Simulate ASCII Input and Output Subroutines

Objective: Write a program to poll a keyboard with an “input’ subroutine, write
ASCIl characters to an output device with an “‘output” subroutine, and
write a subroutine that echos the input to the output.

$1700 = PAD; Port A Output Port
$1701 = PADD; Port A Data Direction Register
$1702 = KYBD; Keyboard Input

0200 20 00 03 START JSR INPUT Jump to INPUT subroutine.

0203 20 10 03 JSR OUTPUT Jump to OUTPUT subroutine.

0206 20 20 03 JSR ECHO Jump to ECHO subroutine.

0209 4C 00 02 JMP START Loop to start over.

0300 AD 02 17 INPUT LDA KYBD Read data from keyboard.

0303 30 FB BMI INPUT If bit seven in one, wait until

0305 60 RTS key is depressed. Otherwise, return
with ASCII character.

0310 8D 00 17 OUTPUT STA PAD Write data to Port A.

0313 60 RTS Return to main program.

0320 20 00 03 ECHO JSR INPUT Get data from keyboard.

0323 20 10 03 JSR OUTPUT Write data to output port.

0326 60 RTS Return to main program.

INTERRUPTS

Once a program has begun execution, nothing short of hitting
the REseT button, pulling the plug, or dropping a hammer on the
6502 will stop it. The programs already described in this book
either continued by jumping to the monitor {(BRK instruction) or
they ran continuously in some kind of loop with the use of a branch
instruction or the JMP instruction. The program counter was under
complete control of the program and the microprocessor, as opposed
to outside or external influences. Even the monitor runs continu-
ously, so in all cases the program flow was controlled by the soft-
ware, that is, the program itself.

To allow external devices, for example, a keyboard, panic but-
ton, or interval timer, to exert control over the program flow, the
6502 has the capability of being interrupted by external circuitry.
In particular, a logic-zero voltage level on the interrupt request
(IRQ) pin on the microprocessor may cause an interrupt, or a
logic one to logic zero (negative edge) transition on the nonmask-
able interrupt (NMI) pin on the microprocessor can interrupt the
program that is currently being executed.

What happens when an external device produces an interrupt
by bringing the IRQ pin to logic zero or by producing a negative
transition on the NMI pin? These are the events that follow an
interrupt request on the IRQ pin.

¢ The instruction currently being executed by the processor is
completed.

e If bit two in the processor status register (the IRQ disable
flag) is a one, the interrupt request is ignored and program
execution continues.

® Assuming that the IRQ disable flag in the P register was
cleared that is. bit two has a value of zero, then the IRQ dis-
able flag is set to prevent further interrupts while the existing
one is being processed.

e After the instruction that was being executed at the time of the
interrupt is completed, the current value of the program
counter is stored on the stack in the order PCH first, PCL next.

¢ The contents of the P register are stored on the stack.

¢ The microprocessor reads the contents of the location whose
address is $FFFE. The number found there becomes the new
PCL.

¢ The number found in the location whose address is $FFFF
becomes the new PCH.

e The next op code is fetched from the location whose address
is the new PCH-PCL. That is, the microprocessor puts the
contents of the program counter on the address bus to fetch the
next op code. Program execution continues from this point.

In terms that neglect some of the more subtle events described
above, an interrupt, produced by an external event, causes the pro-
gram to jump to another location where it continues executing
instructions. The address of the new location is stored in the loca-
tions with addresses $FFFE and $FFFF, The jump is actually like
a jump to a subroutine, since the return addresses are placed on the
stack.

The location whose address is $FFFE is called IRQL, and the loc-
cation whose address is $FFFF is called IRQH. The numbers stored
in these two locations are known as the IRQ vector. The IRQ vector
points to a location where program execution is to begin when an
interrupt request occurs and is recognized (IRQ disable is clear).

A nonmaskable interrupt differs from an interrupt request in the
following ways:

e The NMI pin is edge sensitive rather than level sensitive. A non-
maskable interrupt is produced by a logic-one to logic-zero
transition on the NMI pin, whereas an interrupt request is pro-
duced by a logic-zero level on the IRQ pin.

184

e The nonmaskable interrupt is recognized and processed no
matter what the status of the interrupt disable flag. That is why
it is called nonmaskable.

e The nonmaskable interrupt vector is fetched from the locations
whose addresses are $FFFA and $FFFB. That is, the new PCL
is stored in the location whose address is $FFFA, and the new
PCH is stored in the location whose address is $FFFB. These
locations are called NMIL and NMIH, respectively.

The setting and clearing of the interrupt disable flag occurs in ex-
actly the same way with an NMI-type interrupt as with an IRQ-type
interrupt. Although an NMI sets the interrupt flag, this only pre-
vents further IRQ-type interrupts. The interrupt disable flag does
not prevent NMI-type interrupts. The stack operations are the same
for both types of interrupts, and the RTI operation (to be described
in Example 5) is the same in both cases. A nonmaskable interrupt
can interrupt an IRQ-type interrupt routine, but the inverse is not
true. Thus, the nonmaskable interrupt has a higher priority than an
IRQ-type interrupt, an important consideration for any decision in-
volving the use of interrupts in a particular application.

The KIM-1 and AIM 65 microcomputers handle interrupts in
similar ways. The IRQ vector and the NMI vector point to loca-
tions in ROM. These locations contain indirect jump instructions
to locations in R/W memory. Thus, the user can vary the starting
point of the interrupt routines by loading the proper R/W memory
locations with the vectors that point to the start of his interrupt
routine. An example will aid in your understanding. In the AIM 65,
locations with addresses $FFFE and $FFFF contain $78 and $EO,
respectively. The value $E078 becomes the new value of the pro-
gram counter when an interrupt is recognized. The address $E078
is a location in ROM, and, as outlined above, the first op code in
the interrupt routine is stored in this location. Examination of the
location whose address is $E078 shows that it contains a $6C, which
is the op code for an indirect jump. The next two bytes in memory
are the ADL and the ADH of the location for the jump. These two
bytes are $04 and $A4, respectively. The location with address $A404
is an R/W memory location. Recall that with the indirect jump in-
struction, it is this location that contains the new PCL, while the
new PCH is in the location whose address is $A404 + 1, or $A405.
The user loads these locations with the ADL and ADH of the first
instructions of his interrupt routine. That is, the contents of the
locations with addresses $A404 and $A405 become the value in the
program counter. The KIM-1 works in the same way, but with
different addresses. Tables 9-4 and 9-5 summarize the important
locations for these two systems, and Example 5 traces the history

185

Table 9-4. AIM 65 Interrupt Structure and Important Addresses

AIM 65 Memory

Address Contents Remarks
$A402 (User PCL) Points to user NMI-Interrupt Routine
$A403 (User PCH)
R/W Memory
$A404 (User PCL) Points to user IRQ-Interrupt Routine
$A405 (User PCH)
q Indirect Jumps
A $E075 NMI Interrupt starts execution here
$E076
$E077
$E078 $6C -— IRQ Interrupt starts execution here
$E079 $04
$EQ7A $A4
ROM)
$FFFA $75 (NMIL (PCL) .
NMI-Vector Locat
$FFFB $E0 J TNMIH (PCH) ecior focation
$FFFE $78 IRQL (PCL) .
— IRQ-Vector Location
Y $FFFF $E0} {IRQH (PCH) :
Table 9-5. KIM-1 Interrupt Structure and Important Addresses
KIM-1 Memory
Address Contents Remarks
$17FA > (User PCL) Points to user NMI-Interrupt Routine
$17FB (User PCH)
R/W Memory :
$17FE » (User PCL) Points to user IRQ-Interrupt Routine
$17FF (User PCH)
d_PD—— Indirect Jumps
A $1C1C T $6C ——— NMI Interrupt starts execution here
$1C1D $FA
$1C1E $17
$1CIF $6C -— IRQ Interrupt starts execution here
$1C20 $FE
ROM $1C21 $17
$1FFA $1C NMIL (PCL) .
NMI-Vector Locat
$1FFB $1c NMIH (PCH) eclor tocation
$1FFE $1F IRQL (PCL) .
| IRQ-Vector L
v $1FFF $]C} IRGH (PCH) Q-Vector Location

186

of the program counter subsequent to an interrupt request on the
KIM-1.

In the SYM-1 microcomputer, addresses $FFFE, $FFFF, $FFFA,
and $FFFB are all R/W memory locations. Thus, the user may
place his own interrupt request vector or nonmaskable interrupt
vector in these locations. That is, for an interrupt request, the
new value of the PCL is in the location whose address is $FFFE,
and the new value of the PCH is in the location whose address is
$FFFF. The NMI vector is placed in $FFFA and $FFFB. The
monitor of the SYM-1 will load all of these locations with its own
interrupt routine vectors if the user does not load them. Table 9-6
summarizes the interrupt locations of importance to the SYM-1
microcomputer.

Table 9-6. SYM-1 Interrupt Structure and Important Addresses

SYM-1 MEMORY*
Address Contents Remarks
t $A67AT (User PCL) NMI-Vector Location. Points to user
$A678B1 (User PCH) NMI-Interrupt Routine
R/W MEMORY .
$A67ET (User PCL) IRQ-Vector Location. Points to user
$A67FT (User PCH) IRQ-Interrupt Routine

*In order to modify these locations, the SYM-1 system ren~uires that a JSR ACCESS instruc-
tion precede the instructions that load these locations. ACCESS — $8B86.

tAccording to the SYM-1 manual, these locations are ‘‘echoed’ at locations $FFFA, $FFFB,
$FFFE, and $FFFF, respectively.

Although technically speaking, the interrupt request vector and
the nonmaskable-interrupt vector are always found at the addresses
$FFFE, $FFFF, $FFFA. and $FFFB, loosely speaking these vectors
are found at $17FE, $17FF, $17FA, and $17FB in the KIM-1 and
at $A404, $A405, $A402, and $A403 in the AIM 65, because the

Example 5: Tracing the Program Counter After an Interrupt Request
Trace the history of the program counter after an interrupt request on the KIM-1.
Solution: After finishing the instruction that was executing at the time of the inter-
rupt, the program counter and the microprocessor behave as described in the follow-
ing sequence:

PC Microprocessor Activity
$FFFE Fetch interrupt vector low = $1F.
$FFFF Fetch interrupt vector high = $1C.
$1CIF Fetch indirect jump op code = $6C.
$1C20 Fetch ADL of indirect jump = $FE.
$i1c21 Fetch ADH of indirect jump = $17.
$17FE Fetch new PCL from the location with address $17FE.
$17FF Fetch new PCH from the location with address $17FF.

PCH-PCL Fetch first op code in the user’s interrupt routine.

187

actual interrupt vectors produce indirect jumps to these latter loca-
tions. Throughout the remainder of this book it will be assumed that
the interrupt vectors are in these latter locations.

Both the interrupt-request routine and the nonmaskable interrupt
routine must end with an RTI instruction. Execution of the RTI
(Return from Interrupt) instruction causes the microprocessor
to return to the main program, and it continues executing instruc-
tions immediately following the “interrupted” instruction. It does
this by loading the program counter with the two numbers at the
top of the stack, loading the P register with the third number down
on the stack, incrementing the stack pointer once for each of the
numbers (PCH, PCL, and P) mentioned, and clearing the interrupt
disable flag in the P register. Examples 6 and 7 illustrate the stack
operations that take place when an interrupt occurs and when an
RTTI instruction is executed.

Example 6: Tracing Stack Pointer After an Interrupt Request
Describe how the stack pointer and the contents of the stack register change as a
result of an interrupt in the following program segment. Assume the interrupt occurs
during execution of the LDA instruction.
0200 AD 00 03 LDA NUMI1
0203 FO 05 BEQ THERE
Solution: Assuming the stack pointer was $FF before the interrupt, the number $02
representing the PCH will be stored on the stack at the location whose address is
$01FF, and the stack pointer will be decremented to $FE. Next, the number $03,
representing the PCL at the completion of the LDA instruction, will be stored on the
stack. The stack pointer will be decremented again, and the contents of the P register
at the completion of the LDA instruction will be stored on the stack at the location
whose address is $01FD. The stack pointer will be decremented a third time to $FC.

Example 7: Tracing Stack Pointer Subsequent to RTI Instruction
Describe how the stack pointer and the contents of the stack change as a result of
a return from interrupt in the same program segment shown in Example 6.

Solution: The stack pointer is first incremented to $FD, and the contents of the loca-
tion whose address is $01FD are transferred to the P register. The contents of memory
location $O1FE are transferred to the PCL, and the contents of location $01FF are
transferred to the PCH with suvitable increments in the stack pointer. The stack pointer
will be $FF at the completion of the RTI instruction, and the program continuves with
PCH-PCL = $0203, resulting in a fetch of the BEQ op code.

Fig. 9-5 illustrates the many activities that are taking place during
the events described in Examples 6 and 7. This illustration shows
the “flow” of the program counter during an IRQ-type interrupt
and describes the “stack activities” as well.

The interrupt disable flag in the processor status register may
also be set and cleared by the program in addition to being set by
an interrupt and cleared by the execution of an RTI instruction.
If it is imperative that a section of program not be interrupted by an
interrupt request, then the interrupt flag may be set by the SEI

MEMORY REMARKS

—
ADDRESS CONTENT
. NAME | VALUE
smso:l $50 = [STACK POINTER| AFTER IRQ BUT BEFORE RTI.
$0151 P P REGISTER STORED HERE DURING THE INTERRUPT.
$0152 PCL | $03 | PCL IS STORED HERE DURING THE INTERRUPT
STACK $0153<' | PCH | $02 | PCH IS STORED HERE DURING THE INTERRUPT.
POINTER S " | $53 = |STACK POINTER| BEFORE IRQ AND AFTER RTI.
PROGRAM—— © | :
COUNTER $0200 LDA | $AD | SOMEWHERE IN THE MAIN PROGRAM.

$0201 ADL $00 INTERRUPT OCCURS HERE.
$0202 ADH $02 THE "LDA" INSTRUCTION WILL BE COMPLETE.

—1 $0203 BEQ $FO | THE MAIN PROGRAM CONTINUES HERE AFTER
$0204 THERE | $05 | THE INTERRUPT ROUTINE IS COMPLETED.

50380 l LDA $/.§D START OF THE INTERRUPT ROUTINE.

RTI ($40 END OF THE INTERRUPT ROUTINE.

. l $FFFE IRQL | $80 LOCATION OF INTERRUPT VECTOR LOW.
SFFFF IRQH | $03 LOCATION OF INTERRUPT VECTOR HIGH.

$0398

Fig. 9-5. Diagram representing the Program Counter and Stack Pointer changes that
occur during an Interrupt Request (IRQ).

(set interrupt disable flag) instruction. Later in the program it
may be cleared with the CLI (clear interrupt disable flag) instruc-
tion to allow further interrupts.

You should recognize that an interrupt request is like a JSR
instruction. They both result in an exit from the main program in
order to execute a subprogram. The subprogram is called an “inter-
rupt routine” in the case of an interrupt request or a nonmaskable
interrupt. In both cases, the information necessary to return to the
main program is stored on the stack. One important difference is
that an interrupt will result in the contents of the P register also
being stored on the stack. If a programmer wishes to save the
contents of the P register during a subroutine jump, then he must
use the PHP and PLP instructions. The microprocessor takes care
of saving the P register contents during an interrupt.

The reason for this important difference between an interrupt
and a subroutine is simply that the programmer knows where he
has placed a JSR instruction, but he never knows where an inter-

189

rupt will occur in a program. If it occurs directly before a branch
instruction, and the interrupt routine changes the flag settings in
the P register (as it undoubtedly will) then a branch may be caused
by the result of an operation in the interrupt routine rather than as
a result of the operation in the main program that it was supposed to
test. Clearly, the programmer put the branch instruction in the
main program to test circumstances that develop there, rather than
those in the interrupt routine. Since the 6502 saves the contents of
the P register on the stack when an interrupt occurs, this allows the
programmer to write programs without concerning himself with
either where the interrupt might occur or when the P register is to
be saved.

If other registers must be saved during an interrupt, then it is
up to the programmer to use the necessary stack operations to save
them. The accumulator is almost universally saved on the stack
during an interrupt because almost every interrupt routine one
could think of would use the accumulator. In fact, it would have
been nice if the 6502 would take care of this responsibility, but
the designers of the chip did not provide this feature. Note that
all the register-save instructions must be included in the interrupt
routine. If the X register is used in both the main program and the
interrupt routine, then suitable instructions must be included in
the interrupt routine to save and restore the X register. Example
8 illustrates the necessary instructions that must be included to save
both the accumulator and the X register and then restore them.

Example 8: Saving Accumulator and X Register During an Interrupt

Show the instructions that will result in saving both the accumulator and the X regis-
ter during an interrupt routine.

Solution:
Interrupt Routine
0300 48 BEGIRQ PHA Push accumulator on stack.
0301 8A TXA-=—— Transfer X to A.
0302 48 PHA —=—— Push A on the stack.
0303 - .
Interrupt routine instructions.
(NOTE REVERSED ORDER)
0329 68 PLA Pull A from the stack.
032A AA TAX Transfer A to X.
032B 68 PLA Pull A from the stack.
032C 40 RTI Return to main program.

An interrupt request (IRQ) may also be forced with the use of
the BRK instruction that is best described as a software-forced
interrupt request. Note that a nonmaskable interrupt cannot be
forced with any instruction. In those instances where one wants

190

to enter the interrupt request routine without a “hardware-generated
request,” the BRK instruction is used to force a jump to the interrupt-
request routine. Throughout this book we have been using this
instruction to force the microprocessor to jump from the program
we have written to the monitor. We have done this because, in this
case, the monitor saves the register contents. Furthermore, in our
use of the BRK instruction with the monitor, the microprocessor
never returns from the interrupt. That is, the monitor avoids using
the RTI instruction because that would cause execution to return
to the next instruction in our program, an instruction that did not
exist because we ended the program with a BRK instruction.

In general, when using the BRK instruction one must assume that
an RTI instruction will be encountered and that the program will
return from the interrupt routine. In this situation, it is important
to realize that the BRK instruction results in an increment of the
program counter by two. Thus, upon returning, the instruction im-
mediately following the BRK instruction is not executed. If the
break instruction op code is in the location ADH-ADL, then the
next instruction to be executed after the return from the interrupt
routine must be located with its op code in the location ADH-
ADL + 2. For this reason, a no-operation instruction (NOP) with
op code $EA is usually placed after a break instruction, that is,
in the location ADH-ADL + 1. The reasons for this quirk in the
BRK instruction are beyond the scope of this book and the author’s
comprehension.

Two examples of programs involving interrupts are given. The
program in Example 9 illustrates how an FIFO (first-in, first-out)
memory may be implemented. Originally it was part of a program
to convert ASCII characters from a keyboard to Morse code, and it
will be described in that context. Do not, however, consider that
this example of data acquisition is unique to this application. There
are other instances in which data must be read when they are
produced, and stored in an FIFO memory to be processed on a first-
in, first-out basis. The program in Example 10 is a 24-hour clock
that uses a nonmaskable interrupt request. We turn first to the
FIFO memory application.

Most operators can type faster than the Morse code is to be sent,
so the keyboard must be read and stored in the FIFO (first-in, first-
out) memory. In the program in Example 9, the keyboard is read
with an interrupt request routine, and the ASCII character is placed
in the FIFO memory. For the FIFO memory we used page two of
memory. It is assumed that the keyboard produces a negative pulse
of at least 10 microseconds on the IRQ pin when a key is depressed
and the ASCII character is ready to be read. Many keyboards not
only produce the 7-bit ASCII data for a particular key, but they

191

also provide a positive- or negative-strobe signal when the data is
ready. We assume the negative-strobe signal is connected to the
IRQ pin, and the seven bits of ASCII data are available at Port A.

Space does not permit the listing of the complete conversion pro-
gram. You are referred to a complete ASCII to Morse code con-
version program in a reference!. Here we simply wish to show an
example of an interrupt routine. The program is supposed to read
the keyboard and store the ASCII character in the FIFO memory.
Another part of the program reads the first character placed in the
FIFO memory, converts it to Morse code, and “sends” it by keying
a transmitter, and returns to see if another character has been placed
in the FIFO memory. It continues to send as long as the FIFO mem-
ory is not empty. The keyboard continues to place characters in the
FIFO memory as long as the typist continues. The typist may get
up to 256 = $FF + 1 characters ahead of the sending routines be-
fore he begins to write over previously entered characters that have
not yet been sent.

The Y register serves as an index for the FIFO memory whose
base address is $0200. The number in the Y register also points to
the last location of the FIFO memory that was filled with the key-
board interrupt routine. In particular, the number in the Y register
is the ADL of the last location in page two of memory that was
filled by the keyboard interrupt routine. The number in the location
labeled PNTR is the ADL of the location in page two of memory
that contains the character being converted to Morse code and sent
by the OUTPUT subroutine. If the contents of the Y register are
identical to the contents of PNTR, then the OUTPUT subroutine
has “caught up” with the keyboard input, and there is nothing
to do but wait in a loop. The flowchart in Fig. 9-6 and the comments
associated with the program should give you an understanding
of the remaining details. Indexed addressing is used both to fill the
FIFO memory using Y as an index and to empty the FIFO memory
using X as an index.

The program in Example 10 is our second example of a program
that uses an interrupt routine. It is a 24-hour clock program that
may be used to display hours, minutes, and seconds. A number of
clock programs have appeared in various sources.23 These programs
make use of the interval timers on the 6530 or 6522 integrated cir-

1De Jong, Marvin L., “The Best of Micro,” The Computerist, Chelmsford, MA
01824, 1978, p. 38.

2Parsons, Charles, The First Book of KIM, ORB, Argonne, IL 60439, 1977,
p. 52.

3Sullivan, Chris, “MICRO,” The Computerist, Chelmsford, MA 01824, 1978,
pp. 7-45.

192

©

SAVE
ACCUMULATOR
AND X REG
$FF — PNTR ON STACK
\ (KYBD] — A /
s
= [PNTRP
YES Y =1]
0 [resr]
TNCREMENT
POINTER INCREMENT
Y INDEX
[Cevm = ——
(FIFO + V]
BEERT
~A PULL
X REGISTER
AND A
JUMP T0 OUTPUT] FROM STACK
SUBROUTINE

Fig. 9-6. Flowchart of FIFO Data Acquisition Program.

cuits and the system clock, a crystal-controlled oscillator. Although
crystal oscillators are very accurate and stable, the precision neces-
sary to keep good time over a long period (weeks) generally ex-
ceeds the capability of the microcomputer system’s crystal oscillator.
If we demand that there be an error of no greater than 1 second
in 24 hours, then the crystal must be accurate to approximately
1 part in 100,000. Few microcomputer clocks guarantee this kind
of accuracy, and, consequently, significant errors tend to accumulate
over a period of days.

One approach to guarantee long-term (days) accuracy at the
expense of short-term (seconds) accuracy is to use a signal from the

193

Objective:

Example 9: First-in, First-out (FIFO) Data Acquisition Program

Read the data at an input port whenever an IRQ-type interrupt request

occurs. Store this data in successively higher memory locations in page two
of memory. Output data from the bottom of this table one location at a
time until the highest filled location is reached. Wait there until more data
is added to the table from the input port.

$0000 = PNTR; contains the ADL of the location in the FIFO memory that contains the

data currently being processed by the output subroutine.

$0200 = FIFO; base address of the FIFO memory

$1700 = KYBD; input port for the data

$17FE = UIRQL; $00 = low order byte of user’s interrupt vector
$17FF = UIRQH; $03 = high order byte of user’s interrupt vector.

0200
0202
0204
0206
0208
020A
020C

020F

0212

0300
0301
0302
0303
0306

0308
0309
030C
030D

030E
030F

AO FF
84 00
C4 00
FO FC
E6 00
A6 00
BD 00 02

2017 80

4C 04 02
##

48

8A

48

AD 00 17

29 7F

cs8
99 00 02
68
AA

68
40

START

LOOP

NMIR

MAIN Program

LDY $FF Initialize Y pointer.

STY PNTR Initialize output pointer.

CPY PNTR Is output pointer = Y pointer?

BEQ LOOP Yes; wait in loop for more input data.

INC PNTR No; increment pointer to get data.

LDX PNTR PNTR contents will index FIFO memory.

LDA FIFO,X Get data from FIFO memory at FIFO
+ X.

JSR OUTPUT Jump to subroutine to output data.
(Not included in this program.)

JMP LOOP Return to see if there is more data.
Interrupt Routine

PHA Save accumulator on the stack.

TXA Transfer X to A.

PHA Save X on the stack.

LDA KYBD Read the keyboard.

AND $7F Mask bit seven. ASCll is a seven bit
code.

INY Increment Y to index next location in
FIFO.

STA FIFO,Y Store the keyboard data in the FIFO.
memory at FIFO + Y.

PLA Get X back from the stack.
TAX

PLA Get A from the stack.

RTI Return from interrupt.

60-Hz power line as the fundamental time unit. Whenever 60 cycles
are counted a memory location that stores “seconds” is incremented.
When the seconds location reaches 60, a “minutes” location is in-
cremented, and when the minutes location reaches 60 an “hours”
location is incremented. When the hours location reaches 24, the
cycle begins again. The 60-Hz signal from the power line is first
transformed down to 6.3 V ac and then conditioned with a 555
timer circuit acting as a Schmitt trigger to produce one negative
transition for each cycle.* See Fig. 9-7 for details of the circuit.

4Jung, Walter G., Popular Electronics, January 1973, p. 73.

194

+Vec

T

Rl%> 100K
8 4
Fig. 9-7. A 60-Hz Signal Conditioner 6 3 OUTPUT
for 24 Hour Clock. Cl
, INPUT 0—) 355
0.01 uF)

5
R2 %OOK 1 1]- 0.1 uF

The 6.3 V ac is connected between the input and ground. The con-
ditioned signal from the 555 circuit is applied to the NMI pin on
the 6502 by way of pin 6 on the expansion port of the AIM 65,
KIM-1, or SYM-1. Each time an interrupt occurs, a counter (location
with address $0000 labeled CNTR) is incremented until 60 counts
have accumulated. CNTR starts at $C4 and is incremented to $00
to give 6019 counts. Then the seconds counter (location with ad-
dress $0001) is incremented. The “minutes” are stored in the loca-
tion with address $0002, and “hours” are stored in the location whose
address is $0003. The flowchart in Fig. 9-8 should help in under-
standing the nonmaskable interrupt routine.

The main program, associated with the 24-hour clock nonmask-
able-interrupt routine, consists of loading the appropriate interrupt
vectors into their locations and a routine to display the contents of
SEC, MIN, and HRS on the microcomputer display. Do not connect
the 60-Hz source to the NMI pin until these vectors have been
loaded. The interrupt routine starts at the location whose address is
$0300. It may be relocated anywhere in memory, but we will as-
sume that the interrupt vector is $0300. The program in Example
10 shows the initialization instructions for the AIM 65. The same
instructions are used with the KIM-1 and SYM-1, but the locations
of the nonmaskable interrupt vector are different. See Tables 9-5
and 9-6 for the addresses of the appropriate locations for the KIM-1
and SYM-1 microcomputers. ($00 is loaded into $17FA on the
KIM-1 or into $A67A on the SYM-1, while $03 is loaded into $17FB
on the KIM-1 or into $A67B on the SYM-1.)

Each of the three microcomputer systems needs a different display
routine to display the time, so we have included the necessary
routine for each of the systems. Note that we have used the sub-
routine approach to display the time. Also observe that the routine
for each system includes one or more subroutine calls to subroutines

195

TONTRI + T RS 7 1
~ [CNTR] ~ HRS|
NG | NO

YES YES
e $00 — HRS

IS
[SEC| = 607

NO | 564~ ONTR* |

RT1
$00 — SEC

*$C4 + 60,9 = 300

[MIN] + 1

NO

[MIN] = 607

A

$00 — MIN

Fig. 9-8. Flowchart of NMI Routine for 24 Hour Clock.

included in the monitor. You are referred to your system manual
for details of these subroutines.

Microcomputers are not used simply to keep time. There are
much less expensive approaches to that problem. However, there
are applications in which the time is important. If you are charging
a client for the amount of time used to process his data, then a

196

Example 10. Twenty-Four Hour Clock Program
Obijective: Calculate and display the time of day in hours, minutes, and seconds.
Main Program
$A402 = NMIVL; location of user interrupt vector, low-order byte
$A403 = NMIVH; location of user interrupt vector, high-order byte
$0000 = CNTR; location used to count 60 cycles

0200 A9 00 START LDA $00

0202 8D 02 A4 STA NMIVL Load NMI vector, low-order byte.

0205 A9 03 LDA $03

0207 8D 03 A4 STA NMIVH Load NMI vector, high-order byte.
020A A9 C4 LDA $C4 CNTR counts from $C4 to $00 to give a
020C 85 00 STA CNTR total of $3C = 60 counts.

020E 20 03 40 LOOP JSR DISPLY Jump to display subroutine at $0340.
0211 4C OE 02 JMP LOOP Loop to display time continuously.

Nonmaskable Interrupt Routine
$0000 = CNTR; location used to count 60 cycles
$0001 = SEC; location used to store time in seconds
$0002 = MIN; location used to store time in minutes
$0003 = HRS; location used to store time in hours

0300 48 NMIR PHA Save accumulator on the stack.

0301 E6 00 INC CNTR Increment CNTR once for every interrupt.

0303 DO 33 BNE DONE Counter has not reached zero (60 counts)
yet.

0305 F8 SED Set decimal mode for subsequent additions.

0306 18 CLC Clear carry flag for same reason.

0307 A5 01 LDA SEC Get time in seconds.

0309 69 01 ADC $01 Add one to increment seconds counter.

030B 85 01 STA SEC Store in seconds counter.

030D C9 60 CMP $60 Has the seconds counter reached 60?

030F 90 22 BCC RPT No; Initialize CNTR, then return from
interrupt.

0311 A9 00 LDA $00 Yes; Initialize seconds to zero.

0313 85 01 STA SEC

0315 18 CLC Clear carry flag to add one to minutes

0316 A5 02 LDA MIN counter. Get minutes counter.

0318 69 01 ADC $01 Add one to minutes.

031A 85 02 STA MIN Result into minutes counter.

031C C9 60 CMP $60 Has the minutes counter reached 60?

031E 90 13 BCC RPT No; Initialize CNTR, then return from
interrupt.

0320 A9 00 LDA $00 Yes; Initialize minutes to zero.

0322 85 02 STA MIN

0324 18 CLC Clear carry for next addition.

0325 A5 03 LDA HRS Get hours counter.

0327 69 01 ADC $01 Increment by one.

0329 85 03 STA HRS Result into hours counter.

032B C9 24 CMP $24 Has the hours counter reached 24?

032D 90 04 BCC RPT No; Initialize CNTR, then return from
interrupt.

032F A9 00 LDA $00 Yes; start new day.

0331 85 03 STA HRS

0333 A9 C4 RPT LDA $C4 Initialize CNTR for 60 more counts.

0335 85 00 STA CNTR

0337 D8 CLD Clear decimal mode.

197

0338 68 DONE PLA Get Accumulator from stack.
0339 40 RTI Return from interrupt.

AIM 65 Display Subroutine
$0004 = TSEC; temporary storage of seconds
$0005 = TMIN; temporary storage of minutes
$0006 = THRS; temporary storage of hours

0340 A5 01 DISPLY LDA SEC Get seconds.

0342 85 04 STA TSEC Store temporarily here.

0344 A5 02 LDA MIN Get minutes.

0346 85 05 STA TMIN Store temporarily here.

0348 A5 03 LDA HRS Get hours.

034A 85 06 STA THRS Store here temporarily.

034C A2 13 LDX $13 X identifies right-most display cell.

034E B8A BACK TXA Save X by

034F 48 PHA placing it on the stack.

0350 AO 04 LDY $04 Initialize Y for a count of four.

0352 A5 04 LDA TSEC Get seconds.

0354 29 OF AND $0F Mask high-order nibble.

0356 18 CLC Clear carry flag for subsequent
addition.

0357 69 30 ADC $30 Add $30 to convert low-order nibble
to ASCII.

0359 09 80 ORA $80 Set bit seven to one for display.

0358 20 7B EF JSR OUTDD1 Use monitor subroutine to display
ASCII.

035E 46 06 AGAIN LSR THRS Shift hours right into carry flag.

0360 66 05 ROR TMIN Carry into minutes; minutes (bit 0)
into carry.

0362 66 04 ROR TSEC Carry into seconds; shift one bit
right.

0364 88 DEY Repeat four times, moving a nibble

0365 DO F7 BNE AGAIN at a time into the display routine.

0367 68 PLA Get X back again (it was modified in

0368 AA TAX monitor subroutine).

0369 CA DEX Decrement X to identify next display

036A EO OE CPX $0OE cell, then return to display another

036C BO EO BCS BACK nibble, until all six nibbles of time

036E 60 RTS have been displayed. Then return to

main program.

KIM-1 Display Subroutine

$00F9 = DISPS
$00FA = DISPM
$00FB = DISPH
0340 A5 01 DISPLY LDA SEC Get seconds.
0342 85 F9 STA DISPS Store in KIM-1 display cell.
0344 A5 02 LDA MIN Get minutes.
0346 85 FA STA DISPM Store in KIM-1 display cell.
0348 A5 03 LDA HRS Get hours.
034A 85 FB STA DISPH Store in KIM-1 display cell.
034C A2 FF LDX $FF Initialize X for timing loop.
034E 8A RPT TXA Save X on stack during subroutine.
034F 48 PHA
0350 20 1F IF JSR SCANDS Jump to KIM-1 display subroutine.
0353 68 PLA Restore X.

198

0354 AA TAX

0355 CA DEX Decrement X.
0356 DO F6 BNE RPT Branch to display again until X = 0.
0358 60 RTS Return from subroutine.

SYM-1 Display Subroutine
$A640 = DISBUF; base address of SYM-1 display buffer
$8C29 = TAB; base address of seven-segment code table in SYM-1 monitor

0340 A5 01 DISPLY LDA SEC Get seconds.

0342 85 04 STA TSEC Store temporarily in TSEC.

0344 A5 02 LDA MIN Get minutes.

0346 85 05 STA TMIN Store temporarily in TMIN.

0348 A5 03 LDA HRS Get hours.

034A 85 06 STA THRS Store temporarily in THRS.

034C 20 86 8B JSR ACCESS Jump to SYM-1 ACCESS routine to
access RAM.

034F A2 05 LDX $05 Initialize X index to fill display
table.

0351 A5 04 PRR LDA TSEC Get seconds.

0353 29 OF AND $0OF Mask high-order nibble.

0355 A8 TAY Transfer low-order nibble to Y index.

0356 B9 29 8C LDA TAB,Y Get seven-segment code from table.

0359 9D 40 A6 STA DISBUFX Store in display buffer.

035C A0 04 LDY $04 Initialize bit counter for one nibble.

035E 46 06 DGL LSR THRS Shift hours into carry flag.

0360 66 05 ROR TMIN Carry into minutes; minutes (bit 0)
into carry.

0362 66 04 ROR TSEC Carry into seconds; shift one bit
right.

0364 88 DEY Decrement Y until one nibble has

0365 DO F7 BNE DGL been shifted right.

0367 CA DEX Decrement X.

0368 10 E7 BPL PRR Return to convert remaining nibbles,

036A A2 FF LDX $FF Initialize X for timing loop.

036C BA JAT TXA Save X.

036D 48 PHA

036E 20 06 89 JSR SCAND Jump to SYM-1 monitor subroutine.

0371 68 PLA Get X back.

0372 AA TAX

0373 CA DEX Decrement X for timing loop.

0374 DO F6 BNE JAT Branch to display again until X = 0.

0376 60 RTS Return from subroutine.

system clock is useful. In any application where the time at which
a particular event occurred must be known, a 24-hour clock is
useful. The program in Example 10 would be easily modified to
display or store the time at which a logic-zero to logic-one transition
occurred at one of the Port B input pins. For example, if you were
monitoring the feeding habits of a laboratory animal, a suitable
detector could be placed at the feeding station to produce a logic
level transition on an input pin that, in turn, would result in the
time being recorded. Many other applications suggest themselves
in a brainstorm. The program in Example 10 should not be used in

199

applications such as frequency counting or other short-term timing
measurements because the short-term stability of the power-line
frequency is inadequate. Experiments such as these require interval
timers and a crystal-controlled time base, the subject of the next
chapter.

To start the 24-hour clock, load the programs and wire the cir-
cuit shown in Fig. 9-7. Before applying the 60-Hz signal to the
555 timer, start the program and make sure it works. Next, load
locations with addresses $0001, $0002, and $0003 with the seconds,
minutes, and hours of the time you intend to start the clock. Put
$C4 into the location with address $0000. At the instant the time
corresponds to the time loaded into memory, apply the 60-Hz
signal to the 555 input.

EXPERIMENT NO. 1

Step 1
Load the following program.
0200 4C 00 03 START JSR NOTHING Jump to a subroutine that does
nothing.
0203 00 BRK Break to monitor.
0300 EA NOTHING NOP No operation.
0301 40 RTS Return from subroutine.
Step 2

There are two bugs in this program. Can you find the bugs with-
out running the program? It always pays to search for bugs before
running a program.

Step 3

If you found the bugs before running the program, then run the
program with the bugs in it anyway. If you didn’t find the bugs,
then you have no choice but to run the program with the bugs in it.

Step 4

Assuming that there are no bugs in the program, what would you
expect to observe when the program is executed?

(The program should execute the jump to subroutine, the NOP
instruction, return to the main program and execute the BRK in-
struction, whereupon the display should light showing the address
$0205 and the contents of that location.)

200

Step 5
What do you observe when the program is executed?

(We observed that the display did not light. The BRK command
was not executed.)

Step 6

We will attempt to debug the program using the single-step mode
and a trace of the 6502 internal registers. What registers would you
suggest be traced?

(Only the S register and the program counter are used in the pro-
gram. These are the registers we will trace.)

Step 7

Single step through the program and make a table showing the
contents of the stack pointer (S register) and the program counter
after the execution of each instruction.

(We obtained the following table. The stack pointer was $FF
initially.

Instruction Register Contents After Execution of the Instruction
Program Counter High Program Counter Low Stack Pointer
JSR $03 $00 $FF
NOP $03 $01 $FF
RTS $31 $30 $02

Your table may not be identical in all respects.)

Step 8

What do you conclude from studying your table? Concentrate
on the contents of the stack pointer.

(We reasoned as follows: The program does jump to the subroutine
because the program counter becomes $0301 as it should. However,
in a subroutine jump the stack pointer should decrement by two
to store the return address. The program made the jump, but it did

201

not provide a way to return. This suggests the JMP instruction was
executed rather than the JSR. Check the op code and confirm this.)

Step 9
Can you find the other bug by studying the table?

(It's not as easy but the evidence is there. Note that on the RTS
instruction the stack pointer increments by three, that is $00, $01,
$02. But an RTS instruction should only result in the stack pointer
being incremented by two. An RTI op code was substituted for the
RTS op code.)

Step 10

Change the op codes to their correct values and verify that the
program now runs correctly.

EXPERIMENT NO. 2
Step 1

Examine the following program, then load it into your micro-
computer.

0200 A2 00 START LDX $00 Initialize X to $00.

0202 9A TXS Transfer the contents of X to S.
0203 20 00 03 JSR NOTHING Jump to subroutine.

0206 00 BRK Break to the monitor.

0300 EA NOTHING NOP No operation.

0301 60 RTS Return from subroutine.

Step 2

What will the value of the stack pointer be after execution of the
TXS instruction?

(The stack pointer will be $00 because the value of X ($00) was
transferred to the stack pointer by the TXS instruction.)
Step 3

Will this program work correctly? Remember the JSR instruction
requires two locations on the stack. What do you predict will happen
when the program is executed? Where will PCL and PCH be stored?

202

(The value of the program counter will be stored at locations whose
addresses are $0100 and $01FF. After storing PCH = $02 at $0100,
the stack pointer is decremented and becomes $FF. Thus, the
PCL = $05 is stored at the location whose address is $01FF. The
stack “wraps around.” Recall that what is stored as the program
counter is the address of the third byte in the JSR instruction which
in this case is $0205. The program will work perfectly. The stack
pointer may have any initial value the user desires.)

Step 4
You may want to check the operation of the stack pointer in this

case by single stepping through the program and tracing the history
of the stack. Also check the contents of the stack after each step.

EXPERIMENT NO. 3
Step 1
Breadboard the circuit of Fig. 9-7, but do not connect the 60-Hz

signal to the 0.01-uF capacitor. Load the program for the 24-hour
clock.

Step 2

Put $C4 into memory location with address $0000. Load locations
with addresses $0001, $0002, and $0003 with the seconds, minutes,
and hours, respectively, of the time at which you intend to start
your clock. If you have a WWYV receiver use it to set the time and
start the clock.

Step 4

Start the program. The AIM 65 will display the time continuously,
while the KIM-1 and SYM-1 multiplex the various segments giving
what appears to be a continuous display. The time displayed should
be the time you stored in Step 2.

Step 5

At the instant the time on WWYV or a good electric clock coin-
cides with the time stored in the display, connect the 60-Hz signal
to the capacitor on the 555 timer input. If you do not succeed the
first time, try again until you have a good match between your clock
and some standard.

Step 6

Let your system run overnight or for a day. Does it keep good
time? Keep your clock circuit and program. It will be used in the
next experiment.

203

EXPERIMENT NO. 4
Step 1
How would you modify the main program of the 24-hour clock
to display the correct time only when a transition occurs at PB0

(Bit 0 of Port B)? Try to write the modification yourself before
looking at our answer.

(Here is how the main program would look after we modify it to
display the time after a logic-level transition at PBO. Other answers
are possible. Comments are provided for the added instructions.

START LDA $00

STA NMIVL
LDA $03
STA NMIVH
LDA $C4
STA CNTR
LOOP LDY PBD Transfer data at Port B to the Y register.
PULSE TYA Transfer contents of Y to A.
EOR PBD Exclusive OR produces a one in any bit that changed.
AND $01 Mask all except bit 0.
BEQ PULSE Loop back to PULSE unless bit O changed.
JSR DISPLY Display time.
JMP LOOP Return to check Port B for more transitions.)

Step 2

Modify Example 10 to include the above instructions or the
instructions you used to answer STEP 1.

Step 3

Execute the program. Remember to supply the 60-Hz signal after
the program is running. The display should remain blank. Change
the PBO switch on the I/O board. You should observe the time. On
the KIM-1 and SYM-1 the time will flash on the display momen-
tarily. On the AIM 65 the time will be latched into the display, but
the display will not change until another transition occurs.

Step 4

Try to think of at least one application where the ability to record
the time when a particular event causes a logic-level transition on
an input pin might be useful.
Step 5

About how much time does the NMI interrupt routine take? Why
is this an important question?

204

(Consider first that an interrupt occurs 60 times every second. Dur-
ing 59 of those interrupts only five instructions are executed. They
include the PHA, INC, BNE, PLA, and RTI instructions that take
3, 5, 3, 4, and 6 microseconds, respectively. (We are assuming a
clock frequency of 1 MHz.) The interrupt itself takes 8 micro-
seconds; that is, there are eight clock cycles between the completion
of the last instruction in the main program and the fetch of the
first op code in the interrupt routine. Thus, we have a total of 29
microseconds for the interrupt time. The AIM 65 and KIM-1 require
an indirect jump for each interrupt, and that accounts for another
5 microseconds, giving a total of 34 microseconds. The remaining
interrupt in the one-second interval requires 23 microseconds, in
addition to the time mentioned above, to increment the seconds
counter and attend to other details. Thus, in 1 second the micro-
processor spends (60 X 34 4+ 23) microseconds processing the in-
terrupts. The total is 2063 microseconds, so about 0.2063% of the
time is devoted to maintaining the 24-hour clock. The additional
time required to increment the minutes and/or hours counters is
small enough to neglect because these instructions are used so
seldom. The minutes counter is incremented only once every 3600
interrupts, and the hours counter is incremented once every 216,000
interrupts.

The question is important because a real time clock such as this
must usually run concurrently with other programs. One must know
whether the interrupt routine will adversely affect the operation
of another program. In most cases the 0.2063% will not bother.)

Step 6

Try to write an interrupt routine that keeps time using ASCII
rather than the decimal mode we used. This is useful in those micro-
computers that must output the time to display devices such as line
printers and terminals that require ASCII data.

EXPERIMENT NO. 5

Step 1

Breadboard the circuit shown in Fig. 9-9. It consists of a mechan-
ical switch that is debounced by the cross-coupled NAND gates and
a 74121 monostable multivibrator that gives a 10-microsecond pulse
(one-zero-one) each time the mechanical switch is changed from
logic one to logic zero as noted on the switch positions. (Note that
a debounced signal is available on the I/O board. A small wire or
clip connected to pin 9 (PB0) on the application connector will

provide the necessary debounced signal from the switch associated
with PBO0.)

205

45V o +5V

5 14 |4
3 15K
11
74121 0.001uF
10
1 L
IRQ
ly PIN E-4
GND

= GND

Fig. 9-9. Circuit to produce an Interrupt Request Signal on IRQ pin.

Step 2

Connect the output of the multivibrator to the IRQ line by con-
necting it to pin E-4 on the expansion connector. You will need a
22/44 pin edge connector to put on the expansion port.
Step 3

Load the following program.

0200 58 MAIN CLI Clear interrupt disable flag.

0201 A9 FF LDA $FF Initialize Port A to be an output port

0203 8D 01 17 STA PADD by storing $FF in its DDR; KIM-1
address.

0206 4C 06 02 LOOP JMP LOOP Loop here.

0300 48 INTERPT PHA Store accumulator on the stack.

0301 BA TSX Transfer stack pointer to X.

0302 8E 00 17 STX PAD Output X to Port A LEDs.

0305 68 PLA Pull accumulator from the stack.

0306 40 RTI Return from interrupt.

Step 4

The interrupt vector is $0300. Refer to Tables 9-4 to 9-6 and
load the interrupt vector into the appropriate locations for your
microcomputer.

Step 5

Describe what effect execution of the program will have on the
Port A LEDs when the program is executed.

206

(When the program is started by initializing the program counter
to $0200 (the starting address of the main program) we observed
that the Port A LEDs did not glow.)

Step 6

What do you predict the Port A LEDs will show when an inter-
rupt occurs by flipping switch PBO from logic one to logic zero?
Predict before you cause the interrupt, and give reasons for your
prediction.

(The Port A LEDs should show $FB. In the interrupt routine the
stack pointer is first transferred to the X register, then the X register
is output to Port A. Thus, Port A displays the value of the stack
pointer after the PHA instruction in the interrupt routine. Recall that
an interrupt requires three locations on the stack, the PHA instruc-
tion will require one location, and then the stack pointer is decre-
mented to point to the next empty location. Counting backward
from an initial value of $FF to the first empty location gives $FB.)

Step 7

If the PHA and PLA instructions are replaced by NOP instruc-
tions, what will the stack pointer be during the interrupt as dis-
played by the Port A LEDs?

(Since only three locations on the stack are used, the stack pointer
will be $FA.)

Step 8

Think carefully about what would happen if an interrupt routine
had a PHA instruction but no corresponding PLA instruction. Ex-
periment with the circuit and program if necessary.

EXPERIMENT NO. 6
Step 1

Write a program to display the time when an interrupt request
occurs; that is, modify the 24-hour clock program to display the time
when an interrupt from the circuit of Fig. 9-9 causes an interrupt.
Try to write your own modifications before looking at the answer
below.

0200 A9 00 START LDA $00
0202 8D 02 A4 STA NMIVL

207

0205 A9 03 LDA $03

0207 8D 03 A4 STA NMIVH

020A A9 40 LDA $40

020C 8D 04 A4 STA IRQVH Load IRQ vector to point to DISPLY,

020F A9 03 LDA $03 AlIM 65 locations indicated.

0211 8D 05 A4 STA IRQVH Load IRQ vector to point to DISPLY.

0214 A9 C4 LDA $C4 KIM and SYM users see Tables 9-5 and
9-6.

0216 85 00 STA CNTR Initialize CNTR for 60 counts.

0218 58 CLl Allow interrupts.

0219 4C 19 02 LOOP JMP LOOP Loop here.

Step 2

Load the program, initialize the time locations as described in
the text, and start the program running. What should you observe on
the display?

(The display should remain blank. The display subroutine has be-
come an IRQ routine. The time will be displayed when an inter-
rupt occurs.)

Step 3

With the circuit of Fig. 9-9, produce an interrupt. Does the time
appear? If it does not, you have made a mistake with your pro-
gram. Try again or use the answer given above.

EXPERIMENT NO. 7
Step 1

Study the program below and decide if it will execute properly.
Explain your reasoning. The program has no objective or usefulness.

0200 A9 FF START LDA $FF Initialize Port A to be an output port
0202 8D 01 17 STA PADD by storing $FF in its DDR.

0205 48 PHA Save the accumulator on the stack.
0206 20 10 02 JSR TEST Jump to subroutine TEST

0209 A9 FO LDA $FO

0208 8D 00 17 STA PAD Ovutput accumulator contents to Port A,
020E 00 BRK

0210 68 TEST PLA Get contents of stack.

0211 60 RTS Return from subroutine.

Step 2

What do you expect to observe if the program executes properly?

208

(Four of the lights on Port A should light and four should remain
dark because after the program returns from the subroutine we load
$FO0 into Port A.)

Step 3
Execute the program, see if it works, and then explain why it
doesn’t work. Try tracing the program counter and the stack pointer.

(The program attempts to “pass a parameter” from the main pro-
gram to the subroutine by means of the stack. The data is placed on
the stack by the PHA instruction in the main program. It is pulled
off the stack by the PLA instruction in the subroutine. If the stack
pointer was $FF before the program was executed, then the PHA
instruction will decrement it to $FE. The “return address” for the
JSR instruction will be stored at $01FE and $01FD. The PLA in-
struction in the subroutine increments the stack pointer from $FC
to $FD. The RTS instruction increments the stack pointer again, and
reads the “return address” from locations with addresses $01FE
and $01FF. Note that these are not the correct locations. It is good
practice to make sure that PHA and PLA instructions always occur
in pairs in subroutines and interrupts.)

209

CHAPTER 10

Interval Timers

OBJECTIVES
At the completion of this chapter you should be able to:

® Understand the use of interval timers in programming.

® Program the 6530, 6532, and 6522 interval timers.

e Write programs that use interval timers to implement delay
loops, to measure time between events, and to count events.

INTRODUCTION

Computer systems that are designed mainly as “number crunch-
ers” or data processors, and that operate primarily with high-level
language interpreters such as BASIC, FORTRAN, etc., do not
usually make much use of interval timers, except perhaps as a 24-
hour clock. But in many cases where a computer is interfaced to
some device in the real world, you are likely to find an interval
timer.

One of the reasons for the popularity of the KIM-1 microcomputer
in particular, and 6502-based designs in general, has to be the
interval timers that are associated with these systems. An interval
timer may replace software timing loops, freeing the computer for
other tasks while the timing is taking place in external hardware.
Interval timers may be used to implement 24-hour clocks. They
can be used to make precise measurements of the times between
events, and they can also be used as event counters. Almost any data
logging problem requires a particular time to elapse between the
points or values to be logged, and interval timers are ideal for

210

implementing these time delays. Interval timers are used in music
synthesis applications. The purpose of this chapter is to acquaint
you with the basic programming techniques needed to operate an
interval timer, and to give you some examples of simple applications
that may give you ideas of your own.

In 6502 systems, an interval timer is a location in memory that
may be loaded with a number like any other R/W memory location.
After a number has been written into the location of the interval
timer, the system clock decrements the number in the interval timer
until the number is zero. At that time a flag in a register associated
with the timer is set and/or an interrupt occurs, signaling the micro-
processor that the “time is up.” Details of how these events take
place vary considerably, depending on the device involved. Interval
timers are part of the logic circuitry found on integrated circuits
known as the 6522 Versatile Interface Adapter (VIA), the 6530
RAM-ROM-I/O-Timer (RRIOT), and the 6532 RAM-I/O-Timer
(RIOT). The 6530 is found exclusively on the KIM-1, while both
the 6522 and the 6532 are found on the AIM 65 and the SYM-1. The
specifications for these devices are found in Appendix C. After this
brief introduction, we now proceed to examine the interval timing
functions of each of these integrated circuits.

6530 INTERVAL TIMER

Although the integrated circuit known as the 6530 contains R/W
memory locations, ROM memory locations, and I/O ports, in this
section we are interested only in its interval timers. A model of the
interval timer structure of the 6530 is shown in Fig. 10-1. The system
clock decrements a number in the timer register at a rate determined
by “divide down” logic. The clock signal may be divided by one,
eight, 64, or 1024, depending on which divide circuit is selected.
The divide circuits are selected by address lines AO and Al. Thus,
the two least-significant bits of the address of the counter register
determine which divisor will be used to “predivide” the time base
that is used to decrement the count. While the actual address may
change; that is, 0000 0100 through 0000 0111, with the ADH fixed,
the same register is addressed, but different count-down frequencies
are selected by the programmable divide-down logic. If the divide-
by-64 circuit is selected, then the timer register will be decremented
once every 64 clock cycles.

When the number in the timer register reaches zero (an event
that we will describe as “timing out”), a flag is set in a 1-bit register
called the status register. The status bit is bit seven of a location in
memory that is read to determine whether the timer has timed out.
All the other bits (bit six through bit zero) of the status register

am

W |

SYSTEM
CLOCK

*IRQ Line on the 6532 Chip.

are always zero. A complete summary of the memory locations for
the 6530 interval timer in the KIM-1 system is given in Table 10-1.

The time-out of a timer may also be used to cause an interrupt.
This option is also selected by addressing. Refer to Table 10-1 and
note that the divide-by-1024 circuit may be selected with either ad-

J LT L 6530 INTERVAL TIMER
DIVIDE
BY TIMER REGISTER
000L. 07|06] 5] 04 [03] b2] p1] b0
0008. =
0064, =0
1024.
a0 | |Al
STATUS § REGISTER
D7
A3 = PB7
ENABLE
= (IRQ
ENABLE)*
. SNE
| TO PB7
(IRQ)*
ADDRESS BUS DATA BUS

Fig. 10-1. Model of 6530 Interval Timer.

Table 10-1. The 6530 Interval Timer Read and Write Data

6530 Address

Address Lines (Input)

(KIM-1) A3 A2 A1 A0 Function
$1704 0 1 0 O Write to the TO001 Timer; PB7 Disabled
$1705 o 1 0 1 Write to the T0O008 Timer; PB7 Disabled
$1706 o 1 1 0 Write to the T0064 Timer; PB7 Disabled
$1707 o 1 1 1 Write to the T1024 Timer; PB7 Disabled
$170C 1 1. 0 O Write to the TO001 Timer; PB7 Enabled*
$170D 1 1 0 1 Write to the TO008 Timer; PB7 Enabled*
$170E 1 1 1 0 Write to the T0064 Timer; PB7 Enabled*
$170F 1T 1 1 1 Write to the T1024 Timer; PB7 Enabled*
$1706 o1 1 0 Read Timer Register
$1707 o 1 1 1 Read Timer Status Register (Bit Seven)

Writing to or reading from any address after time-out clears the status register

and sets PB7 to logic one.

*PB7 should be programmed as an input line.

212

dress $1707 or $170F. In using the first address, only the status
flag will be set to one when the timer register reaches zero, while
if the second address is used the status flag will be set and PB7
(pin seven of Port B) will make a logic-one to logic-zero transi-
tion. If PB7 is connected to either the IRQ pin or the NMI pin by
means of an external wire, then an interrupt will result at the end
of the timing period. However, PB7 must be programmed as an
input line for this option to work. Table 10-1 and Fig. 10-1 show
that address line A3 selects the interrupt mode.

The contents of the timer register may be read by reading the lo-
cation whose address is $1706. The number in the timer will continue
to decrement during and after a read operation. This read option
is not used very frequently. In most programming situations, one is
interested only in when the timer reaches zero, an event that is sig-
naled by the status flag being set or by an interrupt.

Writing to or reading from any of the timer addresses after a
time-out clears bit seven of the status register and sets PB7 to logic
one. the latter being necessary to clear the interrupt.

The time duration, T, between the end of the last clock cycle in
the write instruction (STA TIMER) and the setting of the status
flag and/or the interrupt is given by the formula:

T=[(N~D)+%] ‘Te (10-1)

where,
N is an 8-bit number written to the timer,
D is the divide ratio, for example, 64, 1024, etc., selected by ad-
dressing,
T is the system clock period (typically one microsecond).

The same formula applies to the timer on a 6532 integrated circuit.
In fact, the timer on a 6532 has many features in common with the
timer on a 6530.

For reference purposes (Table 10-1), we have included the states
of the various address lines connected to the 6530 that identify
which timer or feature is being used. Owners of other systems may
use this information to help in interfacing a 6530.

The operation of the 6530 interval timer may be demonstrated
with a few simple programs. Example 1 shows a simple delay loop
implemented with an interval timer. The corresponding flowchart is
shown in Fig. 10-2, Several modifications of this program are used
in Experiment No. 1. The first instruction in Example 1 loads the
accumulator with the number to be stored in the timer register. The
next instruction stores this number in the timer register; the address
chosen in this case calls for a divide-by-1024. At the conclusion of
the fourth cycle in the STA instruction, the timer register begins

213

Fig. 10-2. Flowchart of Basic Interval
Timer Delay Loop—Example 1.

to decrement. The status flag is read by the third instruction in the
program, and bit seven is tested by the BPL instruction. If bit seven
of the status register is zero, then the timer register has not yet
reached zero. The program loops back to read the status flag until
the flag is set, at which time the BRK instruction is executed, finish-
ing the program. The total delay time produced by the interval
timer delay loop is approximately

T =[255 - 1024] - 10—% second = 0.261 second,

where we have neglected the time for the STA and BPL instructions
and the % cycle mentioned in Formula 10-1. The finer details will
be considered when precision timing is required.

Example 1: Basic Interval Timer Delay Loop
Obiject: Produce a delay of approximately 0.261 second.
$1707 = T1024; location of divide-by-1024 timer. STATUS; Timer status register.

0200 A9 FF START LDA $FF Get number to be stored in timer
register.

0202 8D 07 17 STA T1024 Store it in /1024 timer.

0205 AD 07 17 LOOP LDA STATUS Read status.

0208 10 FB BPL LOOP Loop until timer times out.

020A 00 BRK Finish.

214

The next program demonstrates how the interval timer may be
used in an interrupt mode. Example 2 is not designed to do any-
thing except generate equally spaced interrupts, the time between
interrupts being determined by the timer chosen and the number
loaded into the timer. The initialization sequence in Example 2
clears the interrupt flag to allow interrupts, then it forces an inter-
rupt to get the timer started, and finally it waits in a “do-nothing”
loop until the next interrupt occurs. In Experiment No. 3, some
useful things will be done with this program. Here we simply dem-
onstrate how to set up the interrupt mode. Note that for the KIM-1,
output pin PB7 (pin 15 on the application connector) should be
connected to the IRQ pin (pin 4 on the expansion connector).

Example 2: Demonstration of Interval Timer in Interrupt Mode
Object: Generate equally spaced interrupts with an interval timer.

$170E = T0064; divide-by-64 timer with interrupt enabled
$17FE = IRQL; Load with $06
$17FF = IRQH; load with $02

0200 58 START CLI Clear interrupt flag.

0201 00 BRK Force interrupt.

0202 EA NOP No operation.

0203 4C 03 02 LOOP JMP LOOP Loop here.

0206 A9 9C INTRPT LDA $9C Interrupt routine starts here.
0208 8D OE 17 STA T0064 Load divide-by-64 timer.
020B 40 RTI Return from interrupt.

In order for the program in Example 2 to execute properly, an
interrupt vector of $0206 must be loaded into locations whose ad-
dresses are $17FE and $17FF on the KIM-1. The time between
interrupts will be $9C times 64 (timing interval) plus the time
necessary to complete the JMP instruction in the main program and
the LDA and STA instructions in the interrupt routine. Also, the
time necessary to process the interrupt (seven clock cycles) and the
indirect jump (five cycles) in the KIM-1 monitor must be included.
Adding these periods gives a time interval between 10.002 milli-
seconds and 10.002 + 0.003 milliseconds as the time between inter-
rupts. The +0.003 millisecond originates in the uncertainty of the
location in the JMP instruction in the main program where the
interrupt occurs. The JMP instruction requires three clock cycles,
and it will be completed even though it is interrupted. Thus, the
ability to generate equally spaced interrupts with the 6530 (or
6532) is made somewhat uncertain by the length of time required
to complete the interrupted instruction. As we shall see below, one
feature of the 6522 eliminates this uncertainty. In any case, the
precision involved with the 6530 timer in the interrupt mode is
sufficient for many experiments and designs.

215

6532 INTERVAL TIMER

The interval timer on the 6532 integrated circuit operates in
almost the same way as the 6530 interval timer. The only significant
difference is that the 6532 has an interrupt pin that is usually con-
nected to the IRQ pin on the 6502 microprocessor. This is in contrast
to the 6530 which uses the PB7 pin to signal an interrupt. The inter-
val timer model shown in Fig. 10-1 for the 6530 will be identical in
all respects to a model of the 6532 if the line labeled “TO PB7” is
changed to “IRQ.” The connection from the 6532 IRQ pin to the
IRQ pin of the 6502 is usually internal to the microcomputer system;
that is, a jumper wire is not necessary as in the case of the 6530
timer on the KIM-1. As in the case of the 6530, the control of the
interrupt feature is implemented by addressing. If the address line
A3 is at logic zero, then the interrupt feature is disabled. If address
line A3 is at logic one, then the interrupt feature is enabled.

In Table 10-2 the various addresses used to select the timer func-
tions are listed. Note that we have included addresses for the

Table 10-2. Equivalent Addresses for 6532 Timers on
AIM 65 and SYM-1

Timer KIM-1 Address AIM 65 Address SYM-1 Address
T0001 $1704* $A494* saq1ct
T0008 $1705 $A495 $A41D
T0064 $1706 $A496 $A41E
11024 $1707 $A497 $A41F
READ

STATUS $1707 $A497 $A407
READ

TIME $1706 $A486 $A406

*Add eight {in hexadecimal) to the address to enable the interrupt feature on the KIM-1 and
AIM 65.
1The interrupt line on the SYM-1 is not connected.

KIM-1 that actually address a timer on a 6530 chip rather than a
6532 chip. The reason is that these locations give timing intervals
and interrupt behavior that is equivalent to the AIM 65. Since the
interrupt pin of the 6502 on the SYM-1 is not connected to the
IRQ pin on its 6532, the SYM-1 addresses are equivalent only in
the sense that they produce identical timing intervals, without inter-
rupts. The literature associated with the KIM-1 is far more extensive
than that for the AIM 65 or SYM-1, and Table 10-2 is useful for
writing new programs for the AIM 65 and SYM-1, if those programs
make use of the 6532 interval timer. For purposes of illustration,
Example 3 demonstrates the addressing required to implement a
simple delay loop using the 6532 interval timer with the interrupt

216

feature disabled. The program in Example 3 toggles bit zero of
Port A (PAO) with a period equal to twice the length of the timing
interval, producing a square waveform at PAQ. See Experiment No.
3 for further details.

Example 3: Using an Interval Timer to Produce a Square Wave
Objective: Produce a square wave at PAO with a programmable period.

$A001 = PAD; Port A
$A003 = PADD; Port A DDR
$A497 = T1024; Write to divide-by-1024 timer; read status

0200 A9 01 START LDA $01

0202 8D 03 A0 STA PADD Make pin PAO an output pin.

0205 A9 62 LOOP LDA $62 Get number = % period of the square
wave.

0207 8D 97 A4 STA T1024 Store in divide-by-1024 interval timer.

020A A9 01 LDA $01

020C 4D 01 A0 EOR PAD Complement PAO.

020F 8D 01 A0 STA PAD Result into PAO.

0212 2C 97 A4 TEST BIT STATUS Test status register for time out.

0215 10 FB BPL TEST

0217 4C 05 02 JMP LOOP Repeat the process.

The frequency of the square wave produced by the timing vari-
ables chosen in Example 3 is about 5 Hz, corresponding to a pe-
riod of approximately 0.20 second. Of course, higher and lower
frequencies may be obtained by varying the byte in the location
whose address is $0206 and/or by selecting a different divide-by
ratio with another timer address. Example 3 uses AIM 65 ad-
dresses for the timer and for the output port. It may be converted
to run on the SYM-1 by selecting the appropriate timer addresses
with the use of Table 10-2. The output port addresses are the same
for both systems. The program in Example 3 may be run on the
KIM-1 by converting both the timer addresses and the output port
addresses using Table 10-2 and Table 3-3, respectively. The square
wave is produced by complementing the value of PAO each time the
interval timer is started. Complementation is produced by an

Table 10-3. Symbols for 6522 Timer Latches and Counters

Name Symbol
Timer 1 Latch Low TIL-L
Timer 1 Latch High TIL-H
Timer 1 Counter Low T1C-L
Timer 1 Counter High TIC-H
Timer 2 Latch Low T2L-L*
Timer 2 Counter Low T2C-L
Timer 2 Counter High T2C-H

*There is no corresponding Latch High.

27

Exclusive or operation of PAO with logic one. See Chapter 4 for
a description of the logical operations.

6522 INTERVAL TIMERS

The 6522 Versatile Interface Adapter (VIA) is a complex but
powerful integrated circuit. The purpose of this section is to de-
scribe the two interval timers on the chip. For a description of the
other features of the 6522 refer to Appendix C. Do not expect to
understand the many features of the interval timers with one read-
ing. Study the descriptive material and experiments along with the
programs that demonstrate the operation of the timers; then you
will soon appreciate the versatility of this chip. One further note:
the KIM-1 does not have a 6522, but an interface between the 6502
and a 6522 is described in Part II of this book, so that a 6522 could
be added to a KIM-1 system very easily.

The 6522 has two interval timers referred to as T1 and T2. A
model of the two 16-bit timers and their related control and inter-
rupt registers is shown in Fig. 10-3. The basic principle of operation

AUXILIARY CONTROL REGISTER (ACR)
ACR7| ACR6|ACR5| ACR4 ACRS}ACRZIACRIIACROI

ADDRESS BUS INTERRUPT ENABLE REGISTER (IER)

EFW ‘ IER6 ‘ IERS ‘ |ER4’ IER3| IER2 [lERl‘ |ERO|

INTERRUPT FLAG REGISTER (IFR)

DATA
EUS T0 6502 IRQ ‘—-—I IFR7 ‘ IFRG ‘ IFRS [IFR4 I IFR3 l IFR2 ‘ IFRIWIFROI

—TIMER 2—
F COUNTER HIGH —}-—COUNTER LOW |

15 14|13|12|11

10|9‘8’7‘6|5‘4’3210

j—————TIMER 2—LATCH LOW -

o lels] LaMIIOI

| COUNTER HIGH ————COUNTERLOW ——————]

|15|‘.4|13[12111’10|9|8|7‘6|5\4|3—‘Z\1‘0I

b tatch e —MER L=) arcH Low e

’15|14|13’12‘11|10l9}8|7|6|5‘4|j‘2\1|0|

Fig. 10-3. The 6522 Registers, Latches, and Counters.

218

Table 10-4. Locations and Functions of 6522 Interval Timers
on AIM 65 and SYM-1

Location | Timer Write Function

A004 T Write data to timer 1 latch low (T1L-L).

A005 T Write data to timer 1 latch high (T1L-H) and counter high (T1C-H).
Transfer the contents of T1L-L to TI1C-L.

Clear the T1 interrupt flag. Start timing.

A006 mn Write data to timer 1 latch low (T1L-L).

A007 T Write data to timer 1 latch high (T1L-H). Clear the T1

interrupt flag.

A008 T2 Write data to timer 2 latch low (T2L-L).

A009 T2 Write data to timer 2 counter high (T2C-H). Transfer the contents
of T2L-L to T2C-L. Clear the T2 interrupt flag. Start timing.

Read Function

A004 m Read the contents of timer 1 counter low (T1C-L). Clear the T1
interrupt flag.

A005 m Read the contents of timer 1 counter high (T1C-H).

A006 T Read the contents of timer 1 latch low (T1L-L).

A007 T Read the contents of timer 1 latch high (T1L-H).

A008 T2 Read the contents of timer 2 counter low (T2C-L). Clear the T2
interrupt flag.

A009 T2 Read the contents of timer 2 counter high (T2C-H).

is similar to the 6530 and 6532 timers: a number loaded into a
counter is decremented at the system clock rate until it reaches zero.
At that time a flag is set in the interrupt flag register and, if the
corresponding bit in the interrupt enable register is set, an inter-
rupt will occur. The various features of the two timers are con-
trolled by the status of various bits in the Auxiliary Control Register
(ACR), the Interrupt Flag Register (IFR), and the Interrupt En-
able Register (IER). In addition to studying Fig. 10-3, refer to
Tables 10-3, 10-4, and 10-5 for the names, symbols, and addresses
that will be used in describing the timers. Figs. 10-4, 10-5, and 10-6
supply the necessary information about the three registers (ACR,
IFR, and IER) to select the various timing modes and interrupt
conditions.

We will explain the functions of the various registers, latches, and
timers in the context of demonstration programs. The program in
Example 4 implements a simple delay loop, the most common func-
tion of an interval timer, using timer T2. The addresses used are
the same for both the AIM 65 and SYM-1. The internal registers
of the 6522 are cleared when a system RESET occurs, and we as-
sume that is the state of the 6522 when the program in Example 3
is started. Refer to Fig. 10-4 and observe that when the IER is
cleared, then the interrupt from timer T2 is disabled. The informa-
tion in Fig. 10-6 indicates that since ACR5 =0, then the T2 timer

219

Table 10-5. The 6522 Control and Interrupt Registers
Used for the Timers

Register Symbol Address Bits Used for Timers
Auxiliary Control Register ACR $A00B ACR7 ACR6 ACR5
Interrupt Flag Register IFR $A00D IFR7 IFR6 IFR5
Interrupt Enable Register IER $AO0E IER7 IER6 IER5

INTERRUPT ENABLE REGISTER (IER)
7 6 5 4 3 2 10

HEEEEEEE
IER5 = 0. DISABLE T2 INTERRUPT

T2 g5 = 1, ENABLE T2 INTERRUPT

T IER6 = 0, DISABLE T1 INTERRUPT
IER6 = 1, ENABLE T1 INTERRUPT

IER SET/CLEAR CONTROL

IF-IER7 = 0, THEN WRITING A 1 TO A BIT CLEARS THE
CORRESPONDING IER BIT.

IF IER7 = 1, THEN WRITING A 1 TO A BIT SETS THE
CORRESPONDING IER BIT.

Fig. 10-4. Operation of 6522 Interrupt Enable Register.

is set to the mode in which a single time-out is generated. That is,
the 16-bit number in the T2C-L and T2C-H is decremented at the
clock rate until it reaches zero, at which time bit IFR5 is set (see
Fig. 10-5).

The first two instructions in Example 4 load the Timer 2 Latch
Low (T2L-L) with an 8-bit number. The next two instructions in

INTERRUPT FLAG REGISTER (IFR)
5 4 3 2 10

EEEEREER
| T2 INTERRUPT FLAG.

IFRS = 1 WHEN T2 TIMES OUT.

T1 INTERRUPTS FLAG.

IFR6 = 1 WHEN T1 TIMES OUT

IFR7 = 1 WHEN IFRn AND IERn ARE EQUAL
TO ONE.

IFR7 = 0 WHEN IFR1 — 6 = 0 OR IER]
— 6 = 0. THE MICROPROCESSOR IS
INTERRUPTED (IRQ) WHEN IFR7 = 1.

Fig. 10-5. Operation of 6522 Interrupt Flag Register.

220

AUXILIARY CONTROL REGISTER (ACR)
76 5 43 2 10

LITTTTTT

T2 MODE ACR5 = 0, GENERATE SINGLE TIME-OUT AT CLOCK RATE.

ACRS = 1, GENERATE SINGLE TIME-OUT AT RATE DETERMINED
BY SIGNAL AT PB6.

T1 MODE
ACR7 ACR6
0 0 GENERATE SINGLE TIME- OUT AT CLOCK RATE.

P7 DISABLED.

1 0 GENERATE SINGLE TIME- OUT AT CLOCK RATE.
PB7 ENABLED.

0 1 FREE-RUNNING MODE. GENERATE CONTINUOUS
TIME-OUTS AT CLOCK RATE. PB7 DISABLED.

1 1 FREE-RUNNING MODE. GENERATE CONTINUOUS
TIME-OUTS AT CLOCK RATE. PB7 ENABLED.

Fig. 10-6. Operation of 6522 Auxiliary Control Register.

Example 4 load the Timer 2 Counter High (T2C-H) with an 8-bit
number. At the completion of the STA T2C-H instruction, the num-
ber in the T2L-L is automatically transferred to the T2C-L, pro-
viding a 16-bit number in the T2 counter. There is no latch for the
T2C-H. The number in the T2 counter, which we shall call N, is
decremented at the system clock rate. Decrementing commences as
soon as the T2 counter is loaded; that is, at the completion of the
STA T2C-H instruction.

Later, after (N + 1.5) microseconds have elapsed, bit IFRS is
set, signaling the time-out of the timer. If bit IER5 were set, en-
abling the interrupt feature, then an interrupt would also occur.
However, in Example 4 we have assumed that the IER was cleared
by a RESET operation prior to running the program. The last three
instructions before the BRK instruction serve the purpose of testing
bit IFRS5 to see if a time-out has occurred. A one in bit five of the
accumulator is ANped with the IFR. If the result is zero, indicating
that bit IFR5 has not yet been set, then the program loops back to
test bit IFR5 again. Recall that the BIT instruction performs a logi-
cal aAND operation. When the timer reaches zero, the program will
detect the flag and exit the delay loop to execute the BRK instruc-
tion that will send it back to the monitor. The AIM 65 and SYM-1
displays will light after the BRK instruction is executed. By itself,
the program in Example 4 is of little use except to demonstrate

221

how to program timer T2 to produce a delay. Experiment No. 6
provides some variations of the program in Example 4 that might

be useful in certain applications.

Example 4. Demonstration of T2 in Noninterrupt Delay Loop Mode

Objective: Generate a single delay using the system clock and the T2 timer.

$A008 = T2L-L

$A009 = T2C-H

$A00D = IFR

0200 A9 30 START LDA $30
0202 8D 08 A0 STA T2L-L
0205 A9 99 LDA $99
0207 8D 09 A0 STA T2C-H
020A A9 20 LDA $20
020C 2C 0D A0 DELAY BIT IFR
020F FO FB BEQ DELAY
0211 00 BRK

Get number to be stored in T2L-L.
Store it in the timer.

Get number to be stored in T2C-H.
Store it and start timing.

Set bit five in A to one.

AND A with IFR to test bit IFR5.
Wait here until bit IFR5 is one,
then break to the monitor.

Example 5 demonstrates how the T2 timer may be programmed
to operate in the interrupt mode. A program such as this could be
used to produce interrupts for servicing some peripheral device, for
example, but our purpose here is to demonstrate simply how the
6522 must be programmed to operate the T2 timer in this mode.
Note in particular how the IER is programmed. Bit IER5 must be
set by writing a one to both bit IER7, the IER set/clear bit, and

Example 5: Demonstration of 6522 Timer T2 in the Interrupt Mode

Objective: Produce a square wave of frequency 10 Hz on pin PAO.

$A001 = PAD; Port A

$A003 = PADD; Port A DDR

$A008 = T2L-L

$A009 = T2C-H

$AOOE = IER; Interrupt Enable Register
$A404 = IRQL; Load with $15

$A405 =IRQH; Load with $02

0200 A9 A0 START LDA $A0Q
0202 8D OE A0 STA IER
0205 A9 FF LDA $FF
0207 8D 03 AO STA PADD
020A A9 00 LDA $00
020C 8D 01 AO STA PAD
020F 58 ClLI

0210 00 BRK

0211 EA NOP

0212 4C 12 02 Loor JMP LOOP
0215 A9 50 IRQ LDA $50
0217 8D 08 AO STA T2L-L
021A A9 C3 LDA $C3
021C 8D 09 A0 STA T2C-H
021F EE 01 A0 INC PAD
0222 40 RTI

222

Set bits seven and five of A to one.
Enable T2 interrupts.

Set Port A DDR to make Port A an
output port.

Initialize Port A LEDs to zero.

Clear interrupt flag to allow interrupts.
Force the first interrupt.

No operation.

Idle here between interrupts.

Set up timer registers.

Initialize T2,

Increment the contents of Port A.
Return from interrupt.

bit IERS. The one in bit IER7 tells the 6522 that one or more bits
of the IER are going to be set. The one in bit IER5 enables the
interrupt feature of the T2 timer, as indicated in Fig. 10-4. A zero
in the other data bits written to the IER leaves the corresponding
IER bits unaffected.

The first two instructions in the program in Example 5 set the
IERS bit. Notice that $A0 corresponds to a one in bits seven and
five. The CLI instruction clears the interrupt flag so that subsequent
interrupts will work. The BRK instruction forces the first interrupt.
In the interrupt routine, the T2 timer is loaded with $C350 =
50,000, so there will be slightly more than 0.05 second between in-
terrupts. The voltage at pin PAQ will be a square wave with a fre-
quency of 10 Hz, pin PAl will produce a square wave of 5 Hz,
pin PA2 will produce a square wave of 2.5 Hz, and so on. Note
that in order for the program in Example 5 to work, an interrupt
vector of $0215 is required, $0215 being the starting address of the
interrupt routine.

USING T2 TIMER AS A COUNTER

To demonstrate how the T2 timer may be used to count pulses
from an external source, we will describe a 24-hour clock with
extremely low computer-time overhead. To simplify matters, our
clock will keep time in hours and minutes, omitting seconds. In
many applications such as security systems, oven timers, and punch
clocks for timing in and out of work, the time to the nearest minute
is sufficiently precise. Example 6 utilizes a conditioned signal from
the 60-Hz power line, as outlined in Example 10 in Chapter 9.
This signal is applied to pin PB6, which, in turn, is connected inter-
nally in the 6522 to the T2 timer. If bit ACRS5 is set to one, then the
number in the T2 timer is decremented once for each pulse on PB6,
rather than being decremented by the system clock. If the T2 timer
is loaded with 3600,,, then it will time out once every minute if 60-
Hz pulses are applied to PB6. Timer T2 will be operated in the
interrupt mode, so once every minute an interrupt occurs and loca-
tions in memory representing minutes and hours are incremented
as necessary. You should compare this with the 24-hour clock pro-
gram in Example 10 in Chapter 9 that required interrupts every
Yo second.

Examples 6 in this chapter and 10 in Chapter 9 are similar in
several respects. The so-called “main” program initializes the inter-
rupt vector and then breaks to the interrupt routine to start the
timing. Both programs increment locations in memory corresponding
to minutes and hours in the interrupt routine. The program then
returns to the main program to display the time. Note that in

223

Example 6 we have used a JSR DISPLY instruction that jumps
to the same display subroutine that was used in Example 10 in
Chapter 9. This routine is not repeated here because of its length.
The comments should provide enough information to understand
the program, provided that you understood Example 10 in Chap-
ter 9.

Example 6: Low Overhead 24-Hour Clock
Objective: Write a program to keep time in hours and minutes using the T2 timer.

$0340 = DISPLY; location of the first byte of the display subroutine described in
Chapter 9, Example 10

$A00B = ACR; Auxiliary Control Register of the 6522

$AOOE = IER; Interrupt Enable Register of the 6522

$A404 = IRQL; contains low-order byte of the interrupt vector

$A405 = IRQH; contains high-order byte of the interrupt vector

0200 78 MAIN SEI Set Interrupt Disable Flag.

0201 A9 00 LDA $00 Load interrupt vector.

0203 8D 04 A4 STA IRQL

0206 A9 03 LDA $03

0208 &D 05 A4 STA IRQH

020B A9 20 LDA $20 Bit five of A is set to one, then it
020D 8D OB A0 STA ACR is stored in the ACR to set the timer
0210 A9 A0 LDA $AO0 in the pulse counting mode.
0212 8D OE A0 STA IER Enable interrupts from T2.

0215 58 ctl Clear interrupt flag.

0216 00 BRK Jump to the first interrupt.

0217 EA NOP No operation.

0218 20 40 03 IDLE JSR DISPLY Jump to display subroutine.
021B 4C 18 02 JMP IDLE

$0002 = MIN; this location stores the time in minutes
$0003 = HRS; this location stores the time in hours
$A008 = T2L-L; low-order byte of the T2 timer
$A009 = T2C-H; high-order byte of the T2 timer

0300 48 IRQ PHA Push accumulator on the stack.

0301 A9 OF LDA $OF Load T2 timer with 3600 = $0E10.
0303 8D 08 A0 STA T2L-L Since T2 counts through zero, use
0306 A9 OE LDA $OE 3599 = $OEOF.

0308 8D 09 A0 STA T2C-H Start counting pulses on PB6.

030B F8 SED Set decimal mode.

030C 18 CLC Clear carry flag for next addition.
030D A5 02 LDA MIN Get minutes.

030F 69 01 ADC $01 Add one.

0311 85 02 STA MIN Result into minutes.

0313 C9 60 CMP $60 Minutes equal 60?

0315 90 13 BCC OuUT No. Prepare to leave interrupt routine.
0317 A9 00 LDA $00 Yes. Set to zero then increment HRS.
0319 85 02 STA MIN

031B 18 CLC Clear carry flag.

031C A5 03 LDA HRS Get hours.

031E 69 01 ADC $01 Add one.

0320 85 03 STA HRS Result into hours.

0322 C9 24 CMP $24 Hours equal 24?

224

0324 90 04 BCC OUT No. Prepare to leave interrupt routine.

0326 A9 00 LDA $00 Yes. Set hours to zero.

0328 85 03 STA HRS Result into hours.

032A D8 out CLD Clear decimal mode flag.

032B 68 PLA Pull accumulator from the stack.
032C 40 RTI Return from the interrupt routine.

In order for the program in Example 6 to run, the program should
be started with the contents of MIN equal to one less than the
time at which you intend to start keeping time, and the contents
of HRS should equal the correct time. Connect the circuit of Fig.
9-7 with the output of the 555 timer connected to PB6 (pin 17 on the
application connector of the AIM 65). Connect the input of the 555
timer (Fig. 9-7) to the 6.3 V ac 60-Hz source at the instant at
which the time exceeds the time loaded into MIN by one minute.
Be sure that the computer and the 555 timer have common ground
connections.

USING T1 TIMER

The T1 timer on the 6522 VIA may also be used to generate
delays either with or without interrupts. In other words, Examples
4 and 5, described previously, will also work with the T1 timer.
Changes to these programs to utilize the T1 timer would include
writing the 16-bit number to T1L-L and T1L-H at addresses $A004
and $A005, respectively, instead of using T2L-L and T2C-H. Also,
the time-out of timer T1 is flagged by bit IFR7 instead of bit
IFR6. Thus, the BPL instruction, which tests bit seven, could be
used to hold the timer in the delay loop until it times out. Then
Example 4 should also be modified to include clearing bits ACR7
and ACRS, if the T1 timer is to be used. This last step would not
be necessary after a system RESET because the registers are auto-
matically cleared. Example 5 would also require bits ACR7 and
ACRS6 to be cleared, and, in addition, bit IER6 must be set to allow
interrupts. Bit IER6 may be set by writing $CO to the IER; that is,
both bit IER7 and bit IER6 must be one to set bit IER6. Refer to
Figs. 10-4, 10-5, and 10-6 for details. The T1 timer cannot be used to
replace the T2 timer in Example 6 because it does not have an
external pulse counting mode.

One of the most attractive features of the T1 timer is its ability
to generate equally spaced interrupts in its “free-running” mode.
In this mode, the timer is automatically restarted after each time-
out. No write instructions are required to reset or restart the timer.
This has the advantage of making the time between interrupts in-
dependent of the time necessary to process the interrupt routine
instructions. For example, when an interrupt occurs, the instruction

225

currently being executed is completed. Depending on the instruc-
tion being interrupted and the clock cycle in which it is interrupted,
this time could vary from one to seven clock cycles. This might be a
significant error in precision timing measurements, but it is elim-
inated with the free-running mode.

In the free-running mode it is also possible to invert the logic level
of PB7 each time the counter reaches zero. Thus, a square wave
output at PB7 may be obtained, the period of the square wave being
twice the timing interval. The various modes are selected by bits
ACR7 and ACR6 in the ACR. Refer to Fig. 10-6 for details. It is
important to know that the time between interrupts or between
inversions of PB7 is N + 2 clock cycles where N is the 16-bit num-
ber loaded into the T1 timer. Also, the T1 timer interrupt flag must
be cleared after each interrupt. This is accomplished by reading
T1C-L with an LDA TI1C-L instruction. Even though we are not
interested in the contents of this location, the reading operation
clears the flag. '

PRECISION TIMING PROGRAM

To demonstrate the operation of the T1 timer in its free-running
mode, we have written three programs that also represent useful
applications. The program in Example 7 measures the time interval,
in units of 100 microseconds, between two successive negative
pulses on pin PA7. A six-digit counter (three bytes of bed data) is
incremented every 100 microseconds after the first event produces a
pulse on PA7 until the second event produces the second pulse on
PA7. The display subroutine listed in Example 10 in Chapter 9 is
used to display the result. Since the six-digit counter is incremented
every 100 microseconds, the two most-significant digits give the
time in seconds, the decimal point is between the second and third
digits, and the remaining four digits give the time in units of ten-
thousandths of a second. Time intervals between 0.0001 second
and 99.9999 seconds may be measured with a precision of +0.0001
second. The program in Example 7 is the basic ingredient for a large
number of interesting applications that require precise measure-
ment of the time between two events.

Example 7: Program to Measure Time Between Two Events

Objective: Measure the time between successive negative pulses on PA7 in units of 100
microseconds. Display the answer using the display subroutine of Example
10 in Chapter 9.

$0001 = CNTLO; contains the two low-order digits of the time interval
$0002 = CNTMI; contains the two middle-order digits of the time interval
$0003 = CNTHI; contains the two high-order digits of the time interval
$A001 = PAD; Port A, bit PA7 is used to detect the pulses.

226

$A004 = TIC-L; a location that is read to clear the T1 interrupt flag
$A005 = TIL-H

$A006 = TIL-L
$A00B = ACR
$AO00E = IER

$A404 = IRQL; contains the low-order byte of the interrupt vector
$A405 = IRQH; contains the high-order byte of the interrupt vector

0200 A9 44 START LDA $44 Get the low-order byte of the IRQ
vector.

0202 8D 04 A4 STA IRQL Store it in IRQL.

0205 A9 02 LDA $02 Get the high-order byte of the IRQ
vector.

0207 8D 05 A4 STA IRQH Store it in IRQH.

020A F8 SED Set decimal-mode flag for decimal
addition.

020B 18 CLC Clear carry flag for addition.

020C A9 00 AGAIN LDA $00 Clear counter locations.

020E 85 01 STA CNTLO

0210 85 02 STA CNTMI

0212 85 03 STA CNTHI

0214 A9 40 LDA $40 Set bit six of A to one. Store the

0216 8D 0B A0 STA ACR result in the ACR to put T1 in free-
running mode.

0219 A9 CO LDA $CO Set bits six and seven of A to one.

021B 8D OE A0 STA IER This result into IER enables T1
interrupts.

021E A9 62 LDA $62 The time between interrupts will be

0220 8D 06 AO STA TIL-L $62 + 2 = 100, clock cycles.

0223 A9 00 LDA $00 Ciear accumulator.

0225 2C 01 A0 WAIT BIT PAD Is PA7 at logic 1?

0228 30 FB BMI WAIT Yes; wait for a negative transition.

022A 2C 01 A0 IDLE BIT PAD No; then negative pulse has begun.

022D 10 FB BPL IDLE Wait for positive transition.

022F 8D 05 A0 STA TIiL-H Put $00 in T1L-H, then start timing.

0232 58 CLI Clear interrupt flag to allow
interrupts.

0233 2C 01 A0 LOAF BIT PAD Wait for next negative pulse.

0236 30 FB BMI LOAF

0238 2C 01 A0 BACK BIT PAD

023B 10 FB BPL BACK

023D 78 SEI Pulse is complete; prevent further
interrupts.

023E 20 40 03 JSR DISPLY See Example 10, Chapter 9 for
display subroutine

0241 4C 0C 02 JMP AGAIN Return to make another
measurement.

0244 48 IRQ PHA Save accumulator during the
interrupt.

0245 A9 01 LDA $01 Increment counters during each

0247 65 01 ADC CNTLO interrupt, that is, every 100
microseconds.

0249 85 01 STA CNTLO Result into counter low-order byte.

024B A9 00 LDA $00 Clear accumulator.

024D 65 02 ADC CNTMI Add carry from previous add to

227

024F 85 02 STA CNTMI middle-order byte of the counter.

0251 A9 00 LDA $00 Clear accumulator.

0253 65 03 ADC CNTHI Add carry from previous add to the
0255 85 03 STA CNTHI high-order byte of the counter.
0257 AD 04 A0 LDA TIC-L Clear 6522 timer T1 interrupt flag.
025A 68 PLA Restore accumulator.

025B 40 RTI Return from interrupt.

A flowchart that presents most of the important features of the
program in Example 7 is shown in Fig. 10-7. The instructions in
Example 7 that relate directly to the operation of the T1 timer
should be studied carefully. The instruction starting at address
$0216 sets up the ACR for timer T1 to operate in the free-running
mode with PB7 disabled. That is, PB7 will not toggle each time
that an interrupt occurs. The instruction starting at the address
$020B sets the IER to enable interrupts from the T1 timer. The
low-order byte of the counter is loaded with the instruction starting
at address $0220. Note that since the time between interrupts is
to be 100,, clock cycles we loaded $62 = 98,, into the counter. Two
additional cycles are used to reload the counter after each inter-
rupt, giving exactly 100 clock cycles between interrupts. The high-
order byte of the 16-bit number loaded into the counter is put there
with the instruction starting at the address $022F, directly after the
first negative pulse is detected. Recall that the timer starts counting
down directly after T1L-H is loaded. Directly after that instruction,
the 6502 interrupt flag is cleared to allow the 6522 VIA to interrupt
it from timer T1. The six-digit counter is incremented in the inter-
rupt routine once every 100 microseconds thereafter, until another
negative pulse is detected. Note that one of the last instructions
in the interrupt routine is used to clear the 6522 interrupt from
the T1 timer.

To measure the time interval between positive pulses, change all
of the BMI instructions to BPL instructions, and vice versa. The
accuracy of the time measurements depends ultimately on the ac-
curacy of the system clock. You should be aware that most crystal
oscillators on microcomputers like the KIM-1, SYM-1, and AIM 65
are not accurate to six significant figures. For example, the crystal
on the author’s AIM 65 appears to have an error of 240 counts per
million counts. If you want to do laboratory-standard timing, you
will need laboratory-standard crystal oscillators.

The timer program may be used in many ways. We have used
similar programs to measure muzzle velocities, the acceleration of
gravity, the period of a square wave and to conduct simple stop-
watch-type experiments. Note that mechanical switches are not
suitable to provide pulses at PA7 unless they are debounced elec-
tronically. Refer to Fig. 3-2 for suitable debouncing circuitry. Photo-

228

START

INITIALIZE
REGISTERS
AND
COUNTERS
LOAD
Tl
FOR L
100 CYCLES INCREMENT
SIX-DIGIT
COUNTER
\
YES|
IS PA7 = 17
[CLEAR 6522 INTERRUPT
NO

IS PA7 = 07

START T1

IS PA7 = 17

DISPLAY
6-DIGIT
COUNTER

Fig. 10-7. Flowchart of Event Timing Program.

229

a) (b)
AVaVY 4
QVaVL 4

10 PA7
A B
10 PA7 e
R = 10K GND GND

L 6ND
© (&

Fig. 10-8. Phototransistor Interface for Precision Timing Program of Example 7. Text
describes difference in (a), (b), (c), and (d) circuits.

+5V
VAV TO PA7
70 PA7 [aVave 2 FPT—100
R = 10K
L GND

L GND

(

B

A

cells and phototransistors make excellent event detectors. Several
possible interfaces involving phototransistors are shown in Fig.
10-8. The time between successive negative pulses produced by the
phototransistor circuit is displayed by the program of Example 7.

Circuit (a) in Fig. 10-8 produces a negative pulse whenever
the light to the phototransistor is interrupted. The 10K potentiometer
is adjusted to give the necessary pulse depth. Circuit (b) pro-
duces a negative pulse when a light pulse strikes the phototran-
sistor. Circuit (c) produces a negative pulse when the light to
either phototransistor A or B is interrupted. Circuit (d) produces
a negative pulse when a light pulse strikes either phototransistor
A or B.

The program in Example 7 can be easily modified to measure the
time for which pin PA7 is at logic zero. It can also be modified to
start timing when a logic transition occurs at one pin of Port A and
to stop timing when a logic transition occurs at another pin of Port
A. The experiments at the end of the chapter go into some further
details. Do not attempt to use other than incandescent light sources

230

or LEDs operated from dc voltages, or you may find that you are
timing the interval between ac pulses on the power line.

USING T1 TIMER TO IMPLEMENT FREQUENCY COUNTER

The second application of the T1 timer operating in the free-
running mode is an event counter. It may be used to count the
number of events that produce a positive pulse at pin PA7 in a
programmed interval of time. As described here, the program is
used as a frequency counter, and the number of positive pulses
that occur in one second is displayed by the display subroutine
of Example 10 in Chapter 9. However, the general principles are
applicable to any kind of events-counting problem, such as radio-
active decay, cars passing by a certain point, a laboratory animal
going to his feeding station, the arrival of telephone calls, etc., pro-
vided that one can construct an interface circuit that produces a
positive pulse on PA7 for each event.

Since the T1 timer is operating in the same mode as in Example
7, details regarding setting up the various timer registers will not
be repeated. A flowchart of the program in Example 8 is shown
in Fig. 10-9. Although the time between interrupts is independent
of the time necessary to process the interrupt routine, this latter
time must be taken into account in this program because time spent
processing the interrupt routine is time not spent counting pulses.
We decided on a basic time interval of 50,000 cycles. Twenty of these
intervals gives a total counting time of 1 second, since each cycle
is 1 microsecond. Each interrupt requires a total of 36 cycles (add
the instruction cycles for each instruction in the interrupt routine,
remembering that the interrupt itself takes seven cycles and the
indirect jump required by the monitor takes five cycles). Thus, to
obtain a total counting time of 50,000 cycles. we must set the timer
for 50,000 + 36 — 2 cycles = 50,034 cycles. Recall that the time be-
tween interrupts is N + 2, so we subtract two to get the correct
number of cycles. So the timer should be loaded with 50,034 =
$C372. Twenty of these intervals should give a total counting time
of 1 second.

There is one additional minor complication. The first timing
interval is not begun with an interrupt, but rather with an STA
T1L-H instruction. To make sure all 20 intervals are the same
length, we should, in principle, waste 36 cycles after the timer is
started the first time. This is the reason that in Example 8 we have
spent some time clearing counters and doing other odd jobs after
starting the timer for the first time. In this way, we were able to
take up 15 cycles leaving 21 cycles yet to waste. Instead of writing
another delay loop taking 21 cycles, we chose to reduce the total

231

SET ACR AND
IER. SET
TIL - L =371

DISPLAY IONTR =1
SIX-DIGIT — ICNTR)
COUNTER
YES
$14 — [CNTR|
START T1.

CLEAR SIX- No
DIGIT COUNTER CLEAR 6522
TIMER T1
INTERRUPT
FLAG
Y8 % PA7>
NO
YES B paT = 1)
NO
INCREMENT
SIX-DIGIT
COUNTER

Fig. 10-9. Flowchart of frequency counter in Example 8.

counting time of each of the twenty 50,000-cycle intervals by one
cycle. Thus, we used the number $C371 in the counter rather than
$C372. We are now within 1 microsecond of 1 second for our total
counting interval. This is more than sufficiently precise, and we
could have decided not to worry about the 21 cycles.

The location with address $0000 is used as the count-to-twenty
counter. It is loaded with 20 = $14 initially, and each interrupt
decrements it until 20 interrupts have occurred. Then the program
jumps to display the number of events counted. After displaying
the number of events counted with a six-digit counter, the counter

232

locations are initialized again and the process is repeated, giving
a new measurement about once every second. If an event counting
interval of ten seconds is desired, change the program byte at $021E
to 200 = $C8.

Largely because of the time needed to increment the six-digit
counter after each pulse is detected, there is a limit to the rate at
which pulses may be counted without missing them. This limit is
just above 20 kHz; in other words pulse rates of 20 kHz are ac-
ceptable, but rates above this result in pulses not being counted.
To detect negative pulses, interchange the BMI and BPL instruc-
tions at $0233 and $0238.

Although the most obvious use of the frequency-counter program
is to measure frequencies, there are other applications for an event
counter. Experiments in nuclear physics, chemistry, biology, and
medicine require nuclear-event counters. If some analog voltage
signal needs to be integrated, for example, the output of a gas
chromatograph, then a voltage-to-frequency converter connected to
the frequency counter may be used to integrate the voltage wave-
form. Other things to count include rotations of a motor, heartbeats,
rotation of a turnstile, arrival of cosmic rays, and many others. Of
course, the timing interval may need to be changed, depending on
the nature of the events that are counted.

E ple 8: Freq y Count
Objective: Count the number of events that take place in 1 second- and display the
result after each count.

$0000 = CNTR; contains number of 0.05-second intervals to be used in counting
$0001 = CNTLO; low-order byte of six-digit event counter

$0002 = CNTMI; middle-order byte of six-digit event counter

$0003 = CNTHI; high-order byte of six-digit event counter

$A001 = PAD; bit seven of Port A (PA7) is used as the input pin.

$A004 = T1C-L; this location is read to clear the 6522 interrupt flag

$A005 = TIL-H

$A006 = TIL-L
$A00B = ACR
$AO0E = IER

$A404 = IRQL; contains low-order byte of interrupt vector
$A405 = IRQH; contains high-order byte of interrupt vector

0200 A9 50 START LDA $50 Set up interrupt vector.

0202 8D 04 A4 STA IRQL

0205 A9 02 LDA $02

0207 8D 05 A4 STA IRQH

020A A9 40 LDA $40 Set ACR so timer T1 operates in the
020C 8D OB AO STA ACR free-running mode.

020F A9 CO LDA $CO Set IER to enable T1 interrupts.
0211 8D OE A0 STA IER

0214 20 40 03 DISP JSR DISPLY Use display subroutine from Example
10 in Chapter 9.
0217 F8 SED Set decimal mode for bed addition.

233

0218 A9 71 LDA $71 Set up T1 counter for 50,033 cycles

021A 8D 06 A0 STA TiL-L (see text).

021D A9 14 LDA $14 Set up 20, interval counter.

021F 85 00 STA CNTR

0221 A9 C3 LDA $C3 Start timer by loading its high-order
0223 8D 05 A0 STA TiL-H latch.

0226 A9 00 LDA $00 Clear counters.

0228 85 01 STA CNTLO

022A 85 02 STA CNTMI

022C 85 03 STA CNTHI

022E 58 CLI Allow interrupts to start.

022F EA NOP Use up two more cycles of time.
0230 2C 01 A0 WAIT BIT PAD Is PA7 at logic zero?

0233 10 FB BPL WAIT Yes. Then wait for it to go high.
0235 2C 01 A0 LOAF BIT PAD No. Then wait for it to go low again.
0238 30 FB BMI LOAF When it goes low, then a complete
023A 18 CLC pulse has been detected so increment
023B A5 01 LDA CNTLO the six-digit counter.

023D 69 01 ADC $01 Add one to the low-order byte.

023F 85 01 STA CNTLO Result into low-order byte of counter.
0241 A5 02 LDA CNTMI Carry from previous addition is added
0243 69 00 ADC $00 to middle-order byte of counter.
0245 85 02 STA CNTMI Result into middle-order byte.

0247 A5 03 LDA CNTHI Carry from previous addition is added
0249 69 00 ADC $00 to high-order byte of the counter.
024B 85 03 STA CNTHI Result into high-order byte.

024D 4C 30 02 JMP WAIT Return to count the next pulse.

0250 48 IRQ PHA

0251 C6 00 DEC CNTR Decrement count-to-twenty counter.
0253 FO BF BEQ DISP If count is zero, 1 sec interval is
0255 AD 04 AO LDA TiC-L complete. Clear 6522 interrupt flag.
0258 68 PLA Get accumulator back,

0259 40 RTI then return from interrupt.

MAKING MUSIC USING T1 TIMER

A final program to demonstrate the T1 timer in the free-running
mode with PB7 enabled is given in Example 9. This program gen-
erates a series of tones the frequencies of which are determined by
numbers loaded into the T1 timer from a table, and the durations of
which are determined by a number in a table that controls the
number of times the T2 timer times out. The program could easily
be modified to play simple songs. Simple programs like this may be
used for sound effects in electronic games, alarms and alarm clocks,
or music synthesis. A simple interface circuit is shown in Fig. 10-10.

The frequency of the tone is determined by the 16-bit number
loaded into the T1 timer. PB7 is complemented each time T1 times
out, so the number loaded into the T1 timer is % the period of the
square wave at PB7, measured in microseconds. It 1000,, is loaded
into T1, then the period will be 2000 microseconds, or the frequency
will be 500 Hz. The desired periods are stored in a table in page

234

Fig. 10-10. Output Circuit for Tone

Generation Program.

three. Starting at address $0300, the first two bytes of the table in
page three contain the numbers to be loaded into TI1L-L and
T1L-H, respectively. The next byte contains a number that de-
termines the duration of this tone. Timer T2 is loaded with $C34E
corresponding to a time interval of about 0.05 second. The number
in the third byte of the table in page three determines the number
of 0.05-second intervals that the tone will play.

Information that determines the frequency and duration of the
next tone is stored at addresses $0303, $0304, and $0305, and so on
for as many tones as desired. The tone sequence or “song” will end
when a $00 appears in a duration byte. Note that the Y register
is used to index the tones and durations of the notes. Since each
tone requires three bytes of page three, a total of 85, notes are
available if the song is confined to page three. Longer sequences of
notes may be played if a new base address is chosen after 85,4 notes
are played, that is, if the song requires more memory space than
page three. A short sequence of notes is provided in the program.
The indirect indexed addressing mode was used so that a number
of tone sequences could be played by changing the base-address
low (BAL) and the base-address high (BAH) of the tone and
duration tables.

Sirens, vibrato, or other sound effects may be created with similar
programs by putting the frequency determining parameters in a
loop where they are incremented or decremented in small amounts,
and a single tone lasts for only a short period of time. You may
wish to impress your wife by implementing a “wolf whistle” when
she enters the room,

Example 9: Tone Generation Program

Obijective: Use the PB7 toggle option of the T1 timer to generate tones.

$0000 = NOTLO; Contains $00, the BAL of the tone frequency table, low-order bytes

$0001 = NOTLO + 1; Contains $03, the BAH of the tone frequency table, low-order
bytes

$0002 = NOTHI; Contains $01, the BAL of the tone frequency table, high-order bytes

235

$0003

$0004
$0005
$A005
$A006
$A007
$A008
$A009
$A00B
$A00D

0200
0202

0205

0207
020A
020D
020F

021

0214
0216
0219
021B

021D
021E

0220
0223
0225
0228
022A
022D
022F
0230
0232

0233
0234
0235
0238
023A
023D

A9
8D

A9
8D
8D
A0
B1

8D
B1

8D
B1

FO

AA
A9

8D
A9
8Db
A9
2C
FO

CA
DO
Cc8

cs8
Cc8
4C
A9
8D
00

Step 1

Load the following program. The timer addresses listed are for
the KIM-1. See Table 10-2 to convert to the 6532 timers on the
AIM 65 or SYM-1. This program is a modification of Example 1 in
the text.

236

NOTHI + 1; Contains $03, the BAH of the tone frequency table, high-order

byte

DUR; Contains $02, the BAL of the tone duration table

TIL-H

co
0B

TiL-L
= TIL-H
= T2L-L
= T2C-H
= ACR

= IFR

A0

A0

A0

AO

A0

A0

A0

A0

OF 02

0B

AO

START

OVER

AGAIN

WAIT

ouTt

DUR + 1; Contains $03, the BAH of the tone duration table.

SIMPLE TONE TABLE

$0300 00 01 01 00

$0304 02 02 00 03

$0308 03 00 04 04

$030C 00 05 06 00

$0310 06 07 00 00

LDA $CO Set up ACR for T1 to operate in

STA ACR the free-running mode with PA7
enabled.

LDA $00 Start T1 running.

STA TiIL-L

STA TiL-H

LDY $00 Initialize Y register.

LDA (NOTLO),Y Get low-order byte of half-period.

STA TIL-L Result into timer.

LDA (NOTHI),Y Get high-order byte of half-period.

STA TiL-H Result into timer.

LDA (DUR),Y Get duration of note.

BEQ OUT Duration = zero means end of
tone sequence.

TAX Duration into X register.

LDA $4E Total time = Duration X 0.05
second.

STA T2L-L

LDA $C3

STA T2C-H Start timer T2.

LDA $20 Check to see if time T2 flag is set.

BIT IFR

BEQ WAIT

DEX Decrement duration counter.

BNE AGAIN

INY Increment Y to get new tone
parameters.

INY

INY

JMP OVER Return to get another note.

LDA $00 Clear ACR.

STA ACR

BRK

EXPERIMENT NO. 1

0200 A9 FF START LDA $FF Get number to be stored in the timer.

0202 8D 01 17 STA PADD Set Port A DDR to output data.
0205 8D 07 17 STA T1024 Store in 1024 timer and start timer.
0208 AD 07 17 LOOP LDA STATUS Read status flag of timer.

0208 8D 00 17 STA PAD Output status to Port A.

020E 10 F8 BPL LOOP Branch back to loop until time out.
0210 00 BRK

Step 2

Press your system ReSeT key. Execute the program. What do you
expect to observe on the Port A LEDs?

(The reset should cause all the LEDs to glow. When the program
is in the delay loop, the LEDs should all go out. Note that while
waiting for the timer to time out, bit seven and all the other bits
of the status register are zero. When the timer goes through zero,
bit seven is set to one. Storing this in the output port causes the
PAO LED to glow. All the other bits remain at zero. Thus, running
the program should cause the PAO LED to go out for about % second
and then it should light again.)

Step 3

Change the second byte of the program to something other than
$FF, making sure that it is an odd number to ensure that PAO re-
mains as an output port. Rerun the program. What is the shortest
pulse you can observe on PAO? Each count of the T1024 timer is
1.024 milliseconds, or approximately 1 millisecond.

EXPERIMENT NO. 2
Step 1

Load the following program. The timer addresses listed are for
the KIM-1. See Table 10-2 to convert to the 6532 timer on the
AIM 65 or SYM-1. This program is a modification of Example 1
in the text.

0200 A9 FF START LDA $FF Initialize Port A DDR so Port A is
0202 8D 01 17 STA PADD an output port.

0205 A9 00 LDA $00 Initialize Port A pins to logic 0.
0207 8D 00 17 STA PAD

020A A9 FF OVER LDA $FF Get number for timer.

020C 8D 07 17 STA T1024 Store in 1024 timer.

020F EE 00 17 INC PAD Increment contents of Port A.
0212 2C 07 17 LOOP BIT STATUS Test bit seven of status register.
0215 10 FB BPL LOOP Loop until time out.

0217 4C OA 02 JMP OVER Repeat timing loop.

237

Step 2
Before executing the program, predict what will happen with the

Port A LEDs when the program is run. Then execute the program
to verify your prediction.

(The Port A LEDs should toggle on and off at a rate determined
by the number stored in the timer. PA1 toggles at % the frequency
of PAO, PA2 at % the frequency of PAl, and so on.)

Step 3

Restart the program and predict how long it will take to light
all the LEDs starting with them all dark. Use a stopwatch or sweep
second hand to measure the time. Is this number consistent with the
0.261 second of each delay?

Step 4

Experiment with other values for the byte at $020B and other
divide values; that is, with other timer locations.

(For step three above we obtained a time of 1 minute and 6 sec-
onds. There are 254 delays and 254 X 0.261 second = 66.3 seconds.
Step 4 may be used to test other values when they are loaded into
the timer.)

EXPERIMENT NO. 3
Step 1

Load the following program. It is a variation of Example 2
described in the text. See Table 10-2 to convert the timer addresses
for execution on the AIM 65 (select the interrupt mode). SYM-1
users will not be able to do this timing experiment because the
6532 on the SYM-1 is not connected to the IRQ line. Refer to Table
3-3 to find the AIM 65 Port A and Port A DDR addresses. Use a
jumper cable to connect PB7 on the I/O board to pin four on the
expansion connector on the KIM-1. The AIM 65 has the interrupt
line connected internally.

0200 A9 FF START LDA $FF Initialize the Port A DDR so
0202 8D 01 17 STA PADD Port A is an output port.
0205 58 CLI Clear interrupt disable flag.
0206 00 BRK Force the first interrupt.
0207 EA NOP No operation.

238

0208 4C 08 02 LOOP JMP LOOP Loop here until interrupt.

020B A9 FF INTRPT LDA $FF Interrupt starts here.

020D 8D OF 17 STA 1T1024 Load divide-by-1024 timer;
interrupt enabled.

0210 A9 01 LDA $01

0212 4D 00 17 EOR PAD Exclusive OR of $01 with contents
of Port A,

0215 8D 00 17 STA PAD Result into Port A.

0218 40 RTI Return from interrupt.

Step 2

Load the interrupt vector ($020B) by putting $0B into location
$17FE on the KIM-1 or $A404 on the AIM 65 and by putting $02
into location $17FF on the KIM-1 or $A405 on the AIM 65.

Step 3

Before running the program, analyze it and describe what you
expect to observe on the Port A LEDs.

Step 4
Run the program, then explain what you observe.

(You should observe that the PAO LED toggles; that is, it turns
off and on at intervals of about 0.26 second. You have produced
a square waveform with a period of approximately 0.52 second.
Recall from the chapter on logical operations that an EOR with a
logic 1 produces the complement. Each time an interrupt occurs,
bit PAO is complemented; that is, its logic level is changed causing
the LED to switch.)

Step 5
What is the smallest number you can load into the timer register

and still perceive the LED blinking as opposed to a continuous
glow?

Step 6

Change the byte at the location whose address is $0211 to $05.
Also, initialize Port A to $01 by loading $01 into the location with
address $1700. Now run the program, using $FF as the number to
be loaded into the timer register. Explain what you observe. Can
you think of a use for this last result? The author couldn’t; but he
was fascinated by the blinking lights.

239

EXPERIMENT NO. 4
Step 1

In the program listed in Experiment 3 change the instructions
from $0210 to the end of the interrupt routine to the instructions
given below.

0210 EE 00 17 INC PAD Increment the contents of Port A.
0213 CE 00 17 DEC PAD Decrement the contents of Port A.
0216 40 RTI Return from interrupt.

Step 2

Load the interrupt vectors as outlined in Step 2 of Experiment
No. 3. Also, initialize the contents of PAD (Port A) to $00.

Step 3

Describe how you think this altered program will affect pin PAO
when the program is running.

(It should produce a positive pulse on pin PAO of about six micro-
seconds in duration. Review the INC and DEC instructions if neces-

sary.)
Step 4

Attach a frequency counter to pin PAO. Then try the following
numbers with the corresponding timer address:

$50 $170C TO001; Divide by one timer.
$7A $170D T0008; Divide by eight timer.
$9C $170E T0064; Divide by 64 timer.
$62 $170F T1024; Divide by 1024 timer.

hobn -~

Note what frequencies are produced at PAQ with the above values
used in the program.

(We observed a frequency of 9.80 kHz for case 1, 1004 Hz for case
2, 99.9 Hz for case 3, and 9.98 Hz for case 4. These correspond to
periods between pulses of 102 microseconds, 996 microseconds, 10.0
milliseconds, and 100 milliseconds, respectively. Note that for many
applications these values are close enough to 100 microseconds, 1
millisecond, 10 milliseconds, and 100 milliseconds to make time
measurements. No error is larger than 2%, and three errors were less

than 1%.)

240

EXPERIMENT NO. 5
Step 1

In the program listed in Experiment No. 3, change the instruc-
tions from $0210 to the end of the interrupt routine with the in-
structions listed below.

0210 2E 00 17 ROL PAD Rotate the contents of Port A to the left.
0213 40 RTI Return from interrupt.

Step 2

Make sure the program loads the number $FF into the divide-
by-1024 interval timer by checking the program bytes located at
$020C and at $020E. Make sure the interrupt vectors are loaded.

Step 3
Before running the program, first load $FF into PADD, then

load $01 into PAD. The PAQO LED should glow; all others should be
dark.

Step 4
Execute the program and describe what you observe.

(We observed that the one in bit zero of Port A was shifted left
at intervals of about 0.26 second, causing the LEDs to light. The
lights to the left of the PAO LED successively light and then go
out as the one is shifted left. The peculiar thing is that the one
does not reappear in bit zero as would be expected with a ROL
instruction. Why does the one not reappear in bit zero of Port A?)

Step 5

Load all zeros into PAD after initializing PADD to $FF. All the
LEDs should be out. Now set the carry flag by loading the P
register with $01. Run the program and describe what you observe.

(We observed that when the program ran, the LEDs at Port A
were turned on from right to left until they all glowed. They then
remained glowing,)

Step 6
Modify the program listed in Experiment No. 3 again. Change the

instructions from $0210 to the end of the interrupt routine with the
instructions listed below.

291

0210 28 PLP Get P register from the stack.
0211 2E 00 17 ROL PAD Rotate the contents of Port A to the left.

0214 08 PHP Place P register on the stack.
0215 40 RTI Return from interrupt.
Step 7

Repeat Steps 2, 3, and 4 of this experiment. Compare the be-
havior of the modified program as observed on the Port A LEDs
with the behavior of the unmodified program. Describe your re-
sults and then write an explanation. In your explanation tell how a
PLP can be used before a PHP instruction, when the opposite order
is the usual one. Why does the ROL instruction produce the ex-
pected results with the modified program? A good knowledge of the
stack operation is necessary at this point. You may wish to refer to
Chapter 9.

EXPERIMENT NO. 6
Step 1

Load the following program. It is very similar to Example 4
described in the text.

0200 A9 FF START LDA $FF Load $FF into the Port A DDR
0202 8D 03 AQ STA PADD to make it an output port.
0205 A9 30 BACK LDA $30 Get data for T2L-L.

0207 8D 08 A0 STA T2L-L Store it in the timer.

020A A9 90 LDA $99 Get data for T2C-H.

020C 8D 09 A0 STA T2C-H Store it in the timer and start the timer.
020F A9 20 DELAY LDA $20 Set bit five in A to one.

0211 2D OD A0 AND IFR AND A with bit five of the IFR.
0214 8D 01 A0 STA PAD Output result to PAD.

0217 FO F6 BEQ DELAY Branch back if result is zero.
0219 00 BRK Jump to monitor.

Step 2

Describe what you expect to observe on the Port A LEDs when
this program is executed. Run the program and explain what you
observe.

(You should observe that the LED associated with bit five, PA5, of
Port A glows. The reason is that this bit is set to one by storing
the contents of the IFR in Port A after time-out, that is, when bit
IFR5 has been set to one by the timer timing out.)

Step 3

Modify the instructions starting at $020F in the program in Step 1
as shown next.

242

020F EE 01 AO INC PAD Increment the contents of PAD.

0212 A9 20 LDA $20 Set bit five of A to one.
0214 2C 0D A0 DELAY BIT IFR AND with IFR.

0217 FO FB BEQ DELAY Branch back until time-out.
0219 4C 05 02 JMP BACK Jump to delay again.
Step 4

Describe what you expect to observe on the Port A LEDs. Run
the program and confirm your suspicions.
Step 5

With a stopwatch or sweep second hand, time the interval be-
tween the events when all the LEDs are dark. Compare this with
the time you calculate 255 loops will take. They should be approxi-
mately the same.

EXPERIMENT NO. 7
Step 1
Load the following program.

0200 A9 20 START LDA $20 Set bit five of A to one.
0202 8D 0B A0 STA ACR Load A into the ACR of the 6522,
0205 A9 06 LDA $06

0207 8D 08 A0 STA T2L-L Store six in T2L-L.

020A A9 00 LDA $00

020C 8D 09 A0 STA T2C-H Store zero in T2C-H.

020F A9 20 LDA $20 Set bit five of A to one.
0211 2C 0D A0 CNT BIT IFR AND A with the IFR.

0214 FO FB BEQ CNT Branch back until IFR5 is set.
0216 00 BRK Then break to the monitor.
Step 2

Clearly we are using the T2 timer. What mode is it in? Check
Fig. 10-6. What should the timer do in this mode?

(The timer is in the pulse counting mode. It should count pulses
at pin PB6 until ($06 + 1) pulses have occurred; then it should
set the interrupt flag and jump to the monitor.)

Step 3

Using the I/O board connected to the application port, carefully
connect a jumper from pin 9 to pin 17, connecting PB0O to PB6.
Note we are not using PB0, but we will use the PB0O I/0O switch to
pulse PB6. This can only be done on the AIM 65.

243

Step 4

Switch the PBO switch from logic 1 to logic O after starting the
program. What happens? Switch the PBO switch several more times.
How many times must you switch it before the program breaks to
the monitor? Why?

(Since the T2 timer counts through zero, it will require N +1
pulses at PB6 to decrement the timer through zero, where N is the
number loaded into the timer.)

Step 5
Modify the bytes at addresses $0206 and $020B to be $10 and $0E,
respectively, Connect the 60-Hz power line signal conditioner cir-

cuit of Fig. 9-7 to pin 17 of the application connector. Connect
the input of the 555 to a 60-Hz source.

Step 6
When the second hand on your watch crosses 12, start the pro-

gram running. How long will it be before it breaks to the monitor?
Measure the time on your watch.

($0E10 = 3600 so it should require (3600 + 1) counts before the
T2 timer counts to zero. At 60 counts/sec this should take about 60
sec = 1 min.)

Step 7

If you have a signal generator, set it to about 65 kHz. Instead
of loading $0E10 into the counter, load $FFFF into it. Run the
program. How long will it take to count to zero?

(It should take about one second.)

EXPERIMENT NO. 8
Step 1

To test the event timer and the frequency counter programs you
will need a signal generator or some other source that produces
positive or negative pulses. A simple 555 multivibrator circuit will
do, and one is shown in Fig. 10-11. The frequency may be adjusted
by changing the values of R;, Ry, or Cyp. The frequency f in Hz is
determined from the formula

244

1.443
(Ri+2R;)Cr

If you do not have a signal generator with a square-wave output,
then breadboard the circuit shown in Fig. 10-11.

f=

Vg (5Y)

OUTPUT 0——3

Fig. 10-11. Basic 555 Astable Multivibrator (Pulse Generator).

Step 2

Load the event timer program. Connect the square wave signal
generator to PA7 (pin 8 of the application connector), making
sure the computer and the signal generator have a common ground.
Adjust the frequency of the signal generator to be about 100 Hz.

Step 3
What is the time interval between successive negative pulses with

a frequency of 100 Hz? What number do you predict will show on
the display?

(The interval between successive negative pulses with a 100-Hz
square wave is 0.01 second, or 100 X 10—+ second. Since the time
is given in units of 100 microseconds = 10—* second, the display
should read about 000100.)

Step 4

Load the frequency counter program and measure the frequency
of the same square wave. You should find that f = 1/T where f is in
hertz and T is the time interval measured in Step 3 in seconds.

Step 5

Increase the frequency of the signal to about 20 kHz. Does the
frequency counter give correct results compared to the calibration
of the signal generator? If you have another frequency counter

245

available, check the computer measured frequency with the result
of the frequency counter.

(We found that the laboratory frequency counter and the computer
frequency counter were the same to within about 5 cycles. The 5
cycles was explained by a measurement of the crystal frequency of
the author’s computer that showed it to be running slow.)

Step 6

Increase the frequency of the signal generator to frequencies
above 20 kHz, comparing the result given by the computer to either
the dial value or to another measurement. What do you regard as
the maximum frequency that may be measured with the computer?

Step 7

How would you modify the timing program to measure the time
duration that PA7 is at logic zero? Flowchart your answer, then
program and test it.

(The most important features of the flowchart are shown in Fig.
10-12.)

Step 8

Here are some further questions to consider: How could you
measure very long (hours or days) intervals? Would a 24-hour

START THE
T1 TIMER

Fig. 10-12. Flowchart of Modified
Event Timer.

DISPLAY
SIX-DIGIT
COUNTER

246

clock be useful for this task? Can you modify the 24-hour clock
program to produce a tone sequence at a preset time; that is, an
alarm? In the tone sequence program, calculate the half-periods
in microseconds that would be required to play several octaves of
the equally tempered scale (A =440 Hz). Write a program to
count events or frequencies using the PA6 pulse-counting mode of
timer T2.

247

PART 11

Interfacing the 6502

Introduction to Part Il

The term interfacing means different things to different people in
the world of microcomputers. For some it means connecting the
computer to devices in the real world. A smoke detector, for exam-
ple, may produce an input signal for a computer; a relay to drive a
sprinkler system may act in response to a voltage level on an output
pin of a computer. For others the term means connecting various
integrated circuits and devices to make a microcomputer system.
For example, how can additional R/W memory be added to an exist-
ing microcomputer system? For that matter, how could one build a
microcomputer from scratch?

Both uses of the term “interfacing” are equally valid, but it is the
latter interpretation of interfacing that will most correctly describe
the position taken in Part II of this book. The microcomputer and
any devices it controls should be regarded as a complete system,
and developing and designing such a system would properly be
described as interfacing. However, we have neither the time nor the
space to describe the host of microcomputer-based designs, so we
will concentrate on interfacing components up to and including I/O
ports. In particular, the next three chapters have an underlying
theme which is to configure several memory-mapped I/O ports. The
principles learned in following this theme are generally applicable
to interfacing problems. In Chapter 14 some designs that illustrate
interfaces with the real world will be given.

Some background information and knowledge will be assumed.
Experience with, and knowledge of, TTL or CMOS logic families
will be extremely useful, if not necessary. In particular, the action
of the various gates, flip-flops, and decoders should be understood.
You should be able to read a truth table, understand binary and hex-

251

adecimal numbers, and know the most elementary Boolean opera-
tions. Readers not having this background may wish to study other
books on these subjects in the Blacksburg Continuing Education
Series™, The knowledge acquired in mastering Part I of this book
will also be assumed. You are urged to re-read Chapter 1 of this
book before beginning Part II.

1—] Vg RES |—40
2—{ RDY &, (0UT)—39
3— &, (0UT) S.0.}—38
4—RQ & (N |37
s—|NC. NC.f—36
6— NMI N.C.}—35
7] SYNC RIW— 34
8—Vee DO—33
g— A0 Dlp—32
10— Al D2}—31
11— A2 6502 D3}—30 Fig. 1I-1. Pinout Diagram of 6502
Microprocessor.
12— A3 D4—29
13— A4 D528
14— AS D6 —27
15— A6 D7—26
16— A7 Al5—25
17— A8 Al4f—24
18— A9 A13}—23
19— ALD Al2|—22
20— A1l Ve, |21

N.C. = NO CONNECTION

The various pins of the 6502 microprocessor are conveniently di-
vided into five groups. These five groups will help us to organize the
subject matter in the next few chapters. A pinout diagram of the
6502 is shown in Fig. II-1.

® The pins used to supply power to the 6502. These include pin
8 for the +5.0 V dc =5% (V..) supply and pins 1 and 21 for
the ground (V) connections.

¢ The address bus pins. There are 16 address bus pins, including
pins 9 through 20 and pins 22 through 25. These are desig-
nated A15-A0.

252

¢ The bidirectional data bus pins. There are eight data bus pins
from pin 26 through pin 33. These are designated D7-DO0.

¢ The control bus pins. There are eight of these pins, including pin
2, RDY; pin 3, ¢; (out); pin 7, SYNC; pin 34, R/W; pin 37, ¢,
(in); pin 38, S.0.; pin 39, ¢» (out); and pin 40, RES.

* The interrupt pins. There are two such pins, pin 4, IRG, and pin
6, NMI. The function of these two pins has already been de-
scribed in Chapter 9.

The next three chapters in this book are divided according to pin
functions. In Chapter 11, we will deal with the address bus, includ-
ing decoding and generating device select pulses. In Chapter 12,
we will discuss the control bus, and in Chapter 13, we will deal with
the bidirectional data bus. Of course, there will be some overlap. Our
treatment of these topics is intended to be introductory rather than
encyclopedic, since this book is intended for beginners more than
for experts. When these chapters are completed, you should be able
to understand how a microcomputer system works and, perhaps, you
will be ready to create, add to, or remodel your own 6502-based
microcomputer system.

Three final notes before beginning. First, you may wish to obtain
a TTL Data Book, if you do not already have one. Either the data
book published (1976) by Texas Instruments (P.O. Box 5012, Dal-
las, TX 75222), or the one published (1976) by National Semicon-
ductor (2900 Semiconductor Drive, Santa Clara, CA 95051) will do.
Second, complete pinout diagrams for the TTL integrated circuits
used in the experiments are given in Appendix D. Finally, some of
the material presented in the next few chapters was originally pub-
lished in MICRO, a monthly journal devoted to 6502-based systems,
and it is used with permission of the publisher.

253

CHAPTER 11

Address Decoding

OBJECTIVES
At the completion of this chapter you should be able to:

e Understand the need for address decoding circuits in a micro-
computer system.

e Understand what the function of a device select pulse is, and
how device select pulses may be generated.

® Design simple address decoding circuits to generate device
select pulses for any memory location.

INTRODUCTION

While executing a program, the 6502 receives bytes of data from a
variety of devices, and it sends bytes of data to one or more devices.
Recall from Chapter 1 that a READ operation causes eight bits of
data to be transferred from some location in memory to the micro-
processor, while a WRITE operation causes eight bits of data to be
transferred from the microprocessor to some location in memory.
The locations in memory that supply data to the microprocessor may
be R/W memory, ROM, a memory-mapped keyboard-input port,
floppy-disc port, UART, A/D converter, or a variety of other devices.
The 6502 processes the bytes of data it reads, and then writes data
back either to R/W memory, to a teletypewriter output port, video
monitor, relay, interval timer, D/A converter, or some other device.

It is the purpose of the address pins on the 6502 to place a set of
signals on the address bus to select the memory location or the device
that is going to either supply or receive eight bits of data. The set

254

of signals that we speak of is a set of zero or one logic levels on the
16 address lines, A15-A0, that constitute the address bus. Typically,
a logic zero or binary zero corresponds to a voltage level near zero,
while a logic one or binary one corresponds to a voltage level near
5 volts. The logic levels on the 16-bit address bus are interpreted as
a 16-bit binary number that we have been calling the address of a
memory location, and that we have been representing by a four-digit
hexadecimal number. Each memory location (and, hence, each de-
vice) in the computer system has a unique address, and when the
6502 places an address on the address bus, the uniquely addressed
device or location must be activated.

Circuits that are connected to the address bus to produce a signal
when a particular address appears on the address bus are called
decoders. A decoding circuit may include one or more integrated
circuits. When the correct address appears on the address bus, the
output of the decoder changes to the logic level (usually zero) nec-
essary to activate the device that is to supply or receive data. This
signal is called a device select pulse, a chip select pulse, or a port
select pulse. In this book, we will use the term “device select pulse,”
and the notation “DS” will be used to indicate device select pulses
in diagrams. The bar over the “DS” means that the signal is “active
low”; in other words, the device selected is activated by a logic-zero
voltage level.

The READ and WRITE operations take place at regular intervals
determined by the system clock frequency. Many 6502 systems use
a 1-megahertz clock frequency, so each READ or WRITE cycle is
1 microsecond in duration. Every cycle of the clock corresponds to
either one READ operation or one WRITE operation. (In some
addressing modes the data that is read is discarded because the mi-
croprocessor is actually using that cycle for another purpose.) The
memory locations in a 6502 system, including R/W memory, ROM,
I/O ports, and interval timers, are accessed a million times every
second. Since different memory locations are accessed on subsequent
clock cycles, there is a different address on the address bus once
every microsecond. That is the reason the device select signal is re-
ferred to as a pulse. The device select pulse is typically 1 microsec-
ond in duration.

A schematic overview of the microcomputer system, as just de-
scribed, is shown in Fig. 11-1. We shall refer to this figure again, but
for now we will use it in conjunction with the following summary
of the READ and WRITE operations:

e A READ cycle is 1 microsecond in duration. During the first
part of that cycle, the microprocessor places the address of the
memory location to be read on the address bus. The decoding

255

8-BIT BIDIRECTIONAL DATA BUS D7-D0

TN N I

READ/WRITE READ ONLY INPUT/QUTPUT
6502 MEMORY MEMORY PORTS

oo L I 17 T

16-BIT ADDRESS BUS A15-A0

SE(?(?SE[% EVICE SELECT LINES

INTERVAL TIMERS

Fig. 11-1. Block diagram of 6502 System. Various memory locations, R/W Memory,
ROM, etc., may decode some address lines internally, while highest-order address lines
are decoded by decoding circuitry represented by ADDRESS DECODER block.

g

circuitry responds to that address by producing a device select
pulse that activates one of the 65536 locations in the address
space. The byte stored at that location is placed on the data bus,
and the byte is stored in the 6502 microprocessor later in the
1-microsecond cycle.

® A WRITE cycle is 1 microsecond in duration. During the first
part of that cycle, the microprocessor places the address of the
memory location that is to receive the byte of data on the ad-
dress bus. The decoding circuitry responds to that address by
producing a device select pulse that activates one of the 65536
locations in the address space. Near the end of the cycle, the
6502 places the byte of data on the data bus, and the active
memory location stores it at the end of the 1-microsecond cycle.

We now turn to a more elaborate description of address decoding.

ADDRESS DECODING

Fig. 11-2 indicates how a microprocessor with only one address
line might generate device select pulses. When its single address
line, called AO, is a logic one, then the device select line labeled
DSO0 is at loglc zero, and any device connected to it is activated.
Meanwhile, the DS signal is at logic one, so a device connected to
it is disabled. We are assuming, unless otherw1se stated, that all
devices in the address space are activated by logic-zero signals. In

256

ADDRESS LINE 0 —_
DS0O

MICRO-
PROCESSOR

Fig 11-2. Hypothetical decoding scheme for one-address-line microprocessor.

any case, a one-address-line microcomputer can have only two mem-
ory locations. Table 11-1 is the decoder truth table.

Fig. 11-3 shows how a microprocessor with two address lines, Al
and A0, might be decoded. A 74139 decoder/demultiplexer could be
used to generate four device select pulses, DS3-DSO0. Refer to the
truth table of the 74139 shown in Table 11-2. When both A0 and

+5V
rlﬁ

LU Yop——— 550
AL 3 vipt— 051
MICRO- %) 6
PROCESSOR ° bsz
e Bl — 753
I | 8
- GND
Fig. 11-3. Hypothetical decoding sch for a t dd line microprocessor

(decoder shown is 74139).

Table 11-1. Truth Table for One Line Decoder

A0 | DSO DS1
0 l 1 I 0
1 0 1

Table 11-2. Truth Table for Two Line Decoder, 74139

A0 A1| DSO DS DS2 Ds3

0 0 0 1 1 1
0
1
1

o —

il o 1
ol 1 1 1
! i i 0

-

257

Al are at logic zero, then DSO0 is at logic zero, and the device con-
nected to it would be active. The truth table in Table 11-2 indicates
the address line logic levels necessary to produce the other device
selects. This kind of microprocessor system is not to be taken too
literally, but it does illustrate the techniques necessary to produce
a unique device select pulse for every possible address that is placed
on the address bus.

A little inductive reasoning can be used to proceed further. If a
microprocessor with one address line can be decoded to produce
two device select pulses, and a microprocessor with two address lines
can be decoded to produce four device select pulses, then it appears
that the number of unique device select pulses that may be obtained
from n address lines is 2. This is in fact the case and, consequently,
the 16 address lines of the 6502 microprocessor may be decoded to
give 216 = 65536 = ($FFFF + 1) device selects. This is the reason
there are a total of 65536 memory locations in the memory space of
the 6502.

Clearly, no single integrated circuit can be used to simultaneously
decode all 16 address lines and provide an output pin for each device
select pulse. Fortunately for the designer, it is usually not necessary
to decode all 16 lines. Many R/W memory integrated circuits and
ROM ICs decode the low-order address lines (A9-A0, for example)
internally. The 6102 R/W memory integrated circuits and the 6530
ROM, R/W, 1/0O, and timer integrated circuits on the KIM-1 decode
address lines A9-AQ. Likewise, the 2104 R/W ICs on the AIM 65
and the SYM-1 decode the ten lowest-order address lines internally.
The 2332 ROM chips on the AIM 65 or SYM-1 decode address lines
A11-AOQ internally. That is why in Fig. 11-1 we showed the address
bus connected directly to the R/W memory locations as well as to
the decoding circuitry. The decoding circuitry handles the high-
order address lines for the various integrated circuits or other de-
vices in the microcomputer system, while the low-order address lines
are decoded by the integrated circuits themselves. Although in cer-
tain circumstances a designer may be required to decode all 16
address lines, there are numerous other circumstances in which only
the highest-order address lines need to be decoded.

Consequently, our problem is to decode the highest-order address
lines, at least initially. These lines are usually decoded to form blocks
of address space. Before we see how this is done, some familiarity
with the concept of address-space blocks is desirable. You may wish
to refer again to Tables 1-2 and A-3 for this discussion.

Address line Al5 is at logic zero for all addresses from $0000
through $7FFF, and it is at logic one for all addresses from $8000
through $FFFF, dividing the address space into two blocks each
with $8000 = 32768,, memory locations. In most computer systems,

258

1024,, ($0400) memory locations are usually referred to as 1K of
memory. Dividing 1024 into 32768 gives 32; thus address line Al5
divides the address space into two 32K blocks. Table 11-3 indicates
the logic level of Al15 and the addresses associated with this level.

Table 11-3. Dividing Address Space Into 32K Blocks
With Address Line A15

Al5 I Addresses
0 $0000-$7FFF
1 $8000—-$FFFF

Fig. 11-4 shows how a 7404 inverter could be used to provide the
necessary “decoding.” In some microcomputer systems, Al5 is used
to divide the address space so that R/W memory is in the lower
32K locations, while ROM, I/O ports, and interval timers are in the
ADDRESSES
ALS DSO $0000— STFFF

% DS8 $8000— SFFFF

Fig. 11-4. Decoding circuit for dividing Address space into 32K blocks.

upper 32K locations. In many microcomputer systems, not all of the
64K “spaces” or locations are actually occupied by memory chips.
Just because the address lines and decoders are available does not
mean that they must be used.

Refer to Table A-3, or call on your knowledge of 16-bit binary
numbers, and note that bit 14 of a 16-bit binary number is zero for
half of the numbers between $8000 and $FFFF, while it is one for
the other half of these numbers. Bit 14 similarly divides the hexa-
decimal numbers between $0000 and $7FFF into two groups. Thus,
each 32K block of address space may be divided into two 16K blocks
by the logic levels associated with Al4. Table 11-4 illustrates how

Table 11-4. Dividing Address Space Into 16K Blocks
With Address Lines A15 and A14

Al15 A4 | Addresses

0 0 $0000-$3FFF
(V] 1 $4000-$7FFF
1 0 $8000-$BFFF
1 1 $CO00-$FFFF

259

T+5V
16 ADDRESSES

2 -
A Yo DSO $0000— S3FFF
3 —
B vijol—~DSE 54000 S7FFF

. 6 —
1 Y2]o— DS8 $8000—$BFFF

Y3fo—= DSC $C000— SFFFF

8
[GND

Fig. 11-5. Decoding circuit using 74139 to divide Address space into 16K blocks.

this works, and Fig. 11-5 shows a 74139 decoding address lines A15
and Al4 to produce device select pulses for each 16K block. In Fig.
11-5 we indicate the range of addresses that will produce the corre-
sponding device select pulse. For example, any address in the range
$4000 to $7FFF will produce a device select pulse at the Y1 (pin 5)
output of the 74139. The digit in the “DSn” symbolism identifies the
first digit in the lowest address that the decoder will enable.

Proceeding inductively again, if one address line (Al5) divides
the address space into two 32K blocks, and two address lines (A15
and Al4) divide the address apace into four 16K blocks, then three
address lines (A15, Al4, and Al3) could be decoded and used to
divide the address space into eight 8K blocks, four address lines
(Al5, Al4, Al13, and A12) could be decoded and use to divide the
address space into sixteen 4K blocks, and n address lines divide the
address space into 2° blocks. How many address lines must be de-
coded to divide the address space into 1K blocks? There are sixty-
four 1K blocks in the address space of the 6502. Since 2% = 64, six
address lines (Al5, Al4, Al13, Al2, All, and Al0) are required.
Many popular R/W memory chips decode the remaining ten address
lines internally, as noted above.

In Fig. 11-6 we show how a 74138 Decoder/Demultiplexer may
be used to divide the address space into 8K blocks. The logic levels
of the address lines Al5, Al4, and Al3 associated with each 8K
block are presented in Table 11-5. Since we will refer to these blocks
again, we have given each block of 8K memory locations a name,
as indicated in Table 11-5. The names help to identify the location
of the 8K block in the address space. The truth table of the 74138
given in Table 11-6 should be used in conjunction with Table 11-5
to verify the behavior of the 74138 decoding circuit shown in Fig.
11-6.

260

o+5V

16 5 ADDRESSES
; Yoo—— DS0 $0000— SLFFF
61 14 -
Ylo——DS2 $2000—$3FFF
13

Y2jo——DS4 $4000—S$5FFF

A 12 _
$6000—$7FFF

Y3jo—— DS6

2
B 11 _

] Y4 $8000 — $9FFF
> 0

A Y5 $A000 — $BFFF

jo— DSA
G2A 9 o
5 ygjo——DSC $C000—$DFFF
628 7 o
Y7lo——— DSE SE000—SFFFF
8
Lono

Fig. 11-6. Decoding circuit using 74138 to divide Address space into 8K blocks.

Table 11-5. Dividing Address Space Into 8K Blocks
With Address Lines A15, A14, and A13

Al5 Al4 Al13 Addresses Block Name
0 0 0 $0000-$1FFF 8K0
0 0 1 $2000—$3FFF 8K1
(V]] [$4000-$5FFF 8K2
0 1 1 $6000—$7FFF 8K3
1 0 0 $8000—$9FFF 8K4
1 o 1 $A000-$BFFF 8K5
1 1 0 $CO00-$DFFF 8K6
1 1 1 $ECOO—$FFFF 8K7

Note that in Figs. 11-4, 11-5, and 11-6, the device select pulses are
produced by any of the corresponding addresses given in these fig-
ures. Thus, in Fig. 11-6, for example, DS6 will be at logic zero for

Table 11:6. Truth Table for 74138 Decoder

C B A Yo Yi Yo Ys Y Ys Y Y,
0 0 o 6 1 1 1 1 1 1 1
0 0 1 10 1 1 1 1 1 1
o 1 o 11 0 1 1 1 1
0o 1 1T 1 1 0 1 1 1 1
1 0 0 T 1 1 1 0 1 1
1 0 1 1T 1 1 1 1 0 1 1
11 0 11 1 1 1 1 0 1
11 11T 1 1 1 1 1o

261

any address in the range $6000-$7FFF. Clearly, additional decoding
is required if we demand that each address on the address bus pro-
duces a unique device select pulse that activates a unique location
in memory.

ADDRESS DECODING FOR R/W MEMORY

To illustrate this idea begun in the previous paragraphs, let us ex-
amine a hypothetical but realistic design problem. Suppose we want
the lowest 8K block of the address space to contain R/W memory.
In other words, the 8KO block with addresses from $0000 to $1FFF
is to contain the R/W memory for our microcomputer system. Also
assume that the R/W memory ICs we have chosen (2114 memory
chips, for example) internally decode the ten lowest-order address
lines, A9 through AO.

If the R/W memory chips decode address lines A9-AQ, then we
must decode the remaining six address lines, A15-A10. We could
use a 74138 to decode the top three address lines, and another 74138
to decode address lines A12 through A10. The device select from the
first 74138 will be used to activate the second 74138. Our final
scheme is shown in Fig. 11-7. (Note that there is nothing inherently
correct about one decoding scheme over another. There appear to
be as many different ways of decoding as there are designers.)

Observe that in Fig. 11-7 we have not shown all the device select
signals from the 74138 that decodes address lines A15-A13. The
device select signal that is active for the 8K0 block of address space,
addresses $0000-$1FFF, is connected to the G2A pin of the 74138
that decodes address lines A12 through A10. This 74138 works (sup-
plies device select pulses) only if G2A is low, as is indicated by the
inversion circle on the G2A pin. Otherwise this 74138 is disabled.
Refer again to Fig. 11-6 and note that G2A will be at logic zero for
all addresses from $0000-$1FFF, exactly the same addresses that are
decoded by the second 74138 introduced in Fig. 11-7.

We have identified the device select pulses from the second 74138
by the first two digits of the lowest address in the 1K memory block
that they enable. Thus, DS04 is at logic zero for all addresses from
$0400 through $07FF, a 1K block of address space.

For purposes of completeness, we conclude this little design prob-
lem by showing how the 2114 R/W memory chips would be con-
nected to provide 1K of R/W memory. This is described by Fig.
11-8. Our main concern here is that the device select pulse DS00 is
connected to the so-called chip select pins of the two 2114 integrated
circuits, enabling them for addresses $0000 through $03FF, while
the 2114s themselves decode the lowest ten address lines, A9-AO.
The addresses $0000 through $03FF are said to be absolutely de-

262

T+5V

16 15 ADDRESSES
yofpo— DS00 $0000— $O3FF
§ Gl 14

Yljo————» DS04 $0400 - SO7FF

! Y2Jo———» DS08 $0800 - SOBFF
[R0>—a 12 _

2 Y3jo—— DSOC $0C00—S$OFFF
[A>——"s 741382 |
o DSI0 $1000—$13FF

+5V

O e
> f

] 7 $1400—S17FF

15 4 Y5jo—— DSl
m)
. Yop———df62a !
[AZ>——A 5 Y6o——» DSI8 $1800— SIBFF
2 628 ;
[a>—=8 Y7lo——= DSIC $1C00— SIFFF

G2A =GND

]
I
[}
|
3. 741381 l
[A1s >——¢ ! 8
1
1
1
1

628 Y7 jfo—b—»
3

= GND

Fig. 11-7. Arrangement in which two 74138s are used to decode lowest 8K block of the
address space for R/ W memory.

coded because each memory location in this block is activated by
one and only one address in the entire address space $0000-$FFFF
of the 6502 microprocessor.

There are address decoding schemes in which one or more address
lines are not decoded, and in those cases a particular memory loca-
tion may be activated by several addresses rather than a single ad-
dress, in contrast to absolute decoding. The KIM-1 does not decode
address lines A13 through A15, which means that location $1FFF,
for example, is also activated when addresses $3FFF, $5FFF,
$7FFF, . . ., or $FFFF are on the address bus.

Note the data bus connections and the control line connections
for the 2114 R/W memory chips in Fig. 11-8. Each chip provides
1K-by-four data bits, or a total of 4K bits of memory. Two chips give
1K-by-eight data bits, or a total of 8K bits of R/W memory. Since
eight bits make one byte, two 2114s give 1K bytes of R/W memory.
To provide a full 8K of R/W memory, the other seven device select
lines in Fig. 11-7 must each be connected to two 2114 integrated cir-
cuits, requiring 16 2114 chips for 8K of memory. The R/W control
line from the 6502 is connected to the write enable (WE) pin of
each 2114. An inverted ¢, signal should also be connected to the

263

__ ADDRESSES $0000 — $03FF
DS00 > }

+5V 0 +5VT

R[> ¢ <

18 wl 8<_L 18 10l 8
Ag.—_ls WE CS 15 WE CS
As_—lﬁ 16
p— 1] 17
po———11 !
s ——— 2] 2
p— | 2114 E 2114
A3>—4 4
A2>——7 !
Al»——6 6
a— 5

14[13[12]11 1GND 14[13[12[11 iGND

Dor————"—"—

Dl
D2
D3
D4r—
D5»-
D6 >

n7

Fig. 11-8. Read/Write Memory Interface using two 1C memory chips for memory
locations with addresses $0000 - $O3FF.

G2B pin of the 74138 decoder that supplies the DS00 device select
pulse. We shall postpone a more detailed discussion of the control
bus and data bus interfaces until the next two chapters. In any case,
you have enough information to provide your microcomputer system
with 1K to 8K of R/W memory.

1/O PORT ADDRESS DECODING

As pointed out in the introduction to Part II of the book, the gen-
eral theme of these chapters on interfacing the 6502 will be the con-

264

figuration of several input/output ports. We will show how this may
be done with standard 7400 series integrated circuits or, preferably,
with the 74LS00 series integrated circuits. In addition to learning the
fundamentals of interfacing, you will acquire the capability of add-
ing several I/ O ports with inexpensive, readily available integrated
circuits.

Our first problem is to decide where in the address space of the
microcomputer system to put the I/ O ports. The general philosophy
in 6502 systems is to put R/W memory at the low-order addresses,
since page zero and page one should be R/W locations. Thus, the
KIM-1, AIM 65, and SYM-1 all have 1K of R/W memory supplied
and located at $0000 through $03FF. The three systems all make
provision for additional R/W memory to be added from $0400 up-
ward.

The KIM-1 provides device select pulses for an additional 4K of
R/W memory from address $0400 to address $13FF. The SYM-1
provides device select pulses for an additional 7K of memory from
address $0400 to address $1FFF. The AIM 65 provides device select
pulses for an additional 11K of R/W memory, from address $0400
to address $OFFF and from address $8000 to address $9FFF. The
address space on the AIM 65 from address $1000 to $7FFF is not
decoded. but it is available for expansion.

In 6502 systems ROM is generally placed high in the address
space. For example, the AIM 65 monitor is located at addresses
$E000 through $FFFF. The KIM-1 has its monitor in the highest
decoded locations (remember, the KIM-1 does not decode address
lines A15-A13). The SYM-1 departs from this philosophy, and has
its monitor located from address $8000 to $8FFF.

The 6502 address space allocation philosophy usually has I/O
ports and interval timers somewhere between the R/W memory at
the low end of the address space and the ROM at the high end of
the address space. We decided to provide up to 16 1/O ports at ad-
dresses $9FF0 to $9FFF. These addresses correspond to “empty”
memory locations in all three of the microcomputer systems. The
added I/O ports, in addition to providing us with an interfacing
problem, are also useful since the three microcomputer systems do
not have many of these ports. If you want to add an ASCII encoded
keyboard, video monitor, A/D converter, D/A converter, relays,
sense switches, LED indicators, and other I/O devices to your sys-
tem, you will soon find that two ports are inadequate. Also, by locat-
ing the I/O ports from addresses $9FF0 to $9FFF, we will have
them out of the way of the other vital memory functions. The SYM-1
and AIM 65 have on-board decoders that will provide us with at
least one device select pulse, and this will help to minimize the addi-
tional circuitry required to implement the I/O ports. On the other

265

hand, the KIM-1 will require additional circuitry since it does not
provide any device select pulses for these addresses, and since it
does not fully decode all the address lines.

The circuit for providing the necessary device select pulses for 16
I/0 ports is shown in Fig. 11-9. In the next few paragraphs, we will
describe this circuit; do not expect to comprehend it with a single
glance. The 74138 decodes the four highest address lines (A15-A12).
Since address line Al5 is connected to the G1 input of the 74138, it
will provide no device selects for addresses below $8000. The truth
table for the 74138 is shown in Table 11-7, and it gives the logic
levels on the address lines A15 through A12 that produce the device
select pulses on the output pins. Table 11-7 also indicates which
addresses produce device select pulses. Note that the Y1 output pin
of the 74138 is active (logic zero) for addresses $9000 through

+5V +5v
E Tu 1

ol [>—21a 0 p———— DS3FFO
2 EE—
D 3|, 74138 i 2 78154 1 Jo——— DSOFFI
‘ ’ 2o DS9FF2
2 21

[a1> 8 [r2> ¢ 3t D33
[>—» D 4 o——~ DS3FFE
4 58—+ DSIFFs

GZA 14 —_r 19 7
5 Y1 o—D_Sg——d 62 6 lo———= DSOFF6
628 18 8 o
- L P 7 - DS
DSXFF 8 Jo—— DSIFFS
1 ono Y S
10— 5SaFFA
1j - Dsorre

14
12 fo—— DS9FFC
132 059D
14 oli—» DSIFFE
15—~ DSIFFF

T
= GND

Fig. 11-9. Device select pulse circuit for 1/O ports.

266

Table 11-7. Truth Table for 74138 in Fig. 11-9

A15 A14 A13 A12
ojo| o

<
(=]

Y1l Y2 Y3 Y4 Y5 Y6 Y7 Addresses

1 1 1 1 1 $8000-$8FFF
$9000-$9FFF
$A000-$AFFF
$BO00—$BFFF
$CO00-$CFFF
$DO00-$DFFF
$EO00—$EFFF
$FO00—$FFFF

—_——_— —_——_—0 00

—_ - - - ——O

e — ——— O —

—_—_- OO —-—0O
—_—0 = O - O —
—_e— - = O —
—_—— - — O - —
[i R —

—_— O — o — —
O et ot =

1
1
1
0
1
1
1

$9FFF; hence, that is the pin we will use for our device select pulse
DSo.

The 74138 decoder will produce device select pulses only when
both pins G2A and G2B are at logic zero, and they are both perma-
nently connected to logic zero (GND). The 7430 NAND gate output
will be at logic zero only when all eight inputs are at logic one. The
eight inputs are address lines A1l through A4. Recall that address
bits All through A4 are the two “middle” nibbles of the address.
Thus, the output of the 7430 nanD gate will be at logic zero for
any address of the form $XFFX, where “X” is a “don’t care” symbol
for one hex digit. That is why we have labeled the device select
signal from the 7430 NanD gate with DSXFF.

Together the 74138 and the 7430 decode the 12 highest address
lines, and the 74154 will decode the lowest four address lines, A3-AO.
Note that the 74138 and the 7430 are connected to the G1 and G2
inputs of the 74154, enabling it only for addresses $9FF0 through
$9FFF. The 74154 produces one active low output for each of these
addresses, as indicated to the right of the 74154 in Fig. 11-9. Since
all 16 address lines have been decoded, this is an absolute decoding
scheme. Each of the logic-zero device select pulses from the 74154
may be used to activate an input port device or an output port
device, as we shall see in the next two chapters. The decoding task
has been completed, except for a few odds and ends that we now
describe.

Both the AIM 65 and SYM-1 have device select pulses developed
by their decoding circuitry that may be used instead of the 74138
in Fig. 11-9. The AIM 65 has a signal called CS9 available at pin 19
on its expansion connector, and this may be connected to the G2
input (pin 19) of the 74154 decoder, completely omitting the 74138
shown in Fig. 11-9. _

The SYM-1 has a device select pulse, labeled 98, available at
jumper number 10. It is active for addresses $9800 through $9FFF.
To eliminate the necessity for the 74138 in Fig. 11-9, connect this

267

jumper to pin 19 on the 74154, and also connect a 3.3K pull-up resis-
tor between pin 18 on the 74154 and the +5-V supply voltage.

The KIM-1 cannot dispense with the 74138, and, in fact, the addi-
tional circuit shown in Fig. 11-10 must be added. Since the KIM-1
does not decode address lines A15-A13, all of its locations in the
lowest 8K block of the address space will be activated by several
addresses on the address bus. For example, the memory location
with address $1FFF will also be activated by the address $9FFF.
To prevent this, the additional circuit shown in Fig. 11-10 disables
the 74LS145 decoder on the KIM-1 board whenever address line
A15 is at logic one. This is accomplished by bringing the D input of
the 7415145 on the KIM-1 to logic one by connecting it to pin four
of the 7405 shown in Fig. 11-10.

TO PIN A-K ON THE KIM-1
APPLICATION CONNECTOR

FROM 74138
DECODER
TO PIN A-J ON THE KIM-1

APPLICATION CONNECTOR

Fig. 11-10. Additional decoding circuit for KIM-1 1/O Port Device Selects.

The KIM-1 requires one other modification if it is to work prop-
erly with the circuit of Fig. 11-9. Recall from Chapter 9 that when
an interrupt (or RESET) occurs two of the addresses $FFFA
through $FFFF will appear on the address lines to fetch the inter-
rupt (or RESET) vector. Since the KIM-1 system does not decode
address lines Al15 through A13, the interrupt (and RESET) vectors
are actually located at addresses $1FFA through $1FFF. However,
the modification introduced in the previous paragraph will deselect
these locations whenever address line A15 is at logic one. To reselect
the interrupt vectors located in the integrated circuit known as the
6530-002 on the KIM-1, we connect the Y7 output of the 74138 to
the chip select on the 6530-002 through two open-collector 7405s.
This modification is also shown in Fig. 11-10.

268

ADDRESS DECODING CIRCUIT FOR 6522 INTERFACE

In Chapter 10, we promised an interface circuit for the 6522 Ver-
satile Interface Adapter so that KIM-1 owners could utilize the tim-
ers on this integrated circuit. The same decoding circuit used to
enable the 74154 in Fig. 11-9 may be used to enable the 6522. The
interface is shown in Fig. 11-11. The DS9 device select pulse from
the 74138 in Fig. 11-9 is connected to the CS2 pin on the 6522. The
DSXFF device select pulse shown in Fig. 11-11 is obtained from the
7430 in Fig. 11-9. If this pulse is first inverted and then connected to
the CS1 pin on the 6522, then the 6522 will be addressed by addresses
$9FF0 through $9FFF. (Note that the 74154 can no longer be used
in this case.) Compare these addresses with the on-board 6522 ad-
dresses for the AIM 65 and SYM-1, namely $A000 through $AOOF.
There is a one-to-one correspondence between the function of each
$A00X address and each $9FFX address, where X is the same hex
digit (0 through F) in both cases. Thus, in Chapter 10, the programs
that used the interval timers will work in exactly the same way if all
6522 addresses with “A00” prefixes are replaced with “OFF” prefixes.
Refer to Table 11-8 for additional details regarding addressing the
6522.

Table 11-8. Addressing Information for the 6522 Interface

Address Function

$9FFO Port B Output Data Register (PBD)

$9FF1 Port A Output Data Register (PAD), Controls handshake

$9FF2 Port B Data Direction Register (PBDD)

$9FF3 Port A Data Direction Register (PADD)

$9FF4 Write T1L-L; Read T1C-L; Clear Interrupt Flag

$9FF5 Write T1L-H and T1C-H; Transfer TIL-L to TIC-L; Clear Interrupt Flag;
Start the T1 timer; Read T1C-H

$9FF6 Write T1L-L; Read T1L-L

$9FF7 Write T1L-H; Clear Interrupt Flag; Read T1L-H

$9FF8 Write T2L-L; Read T2C-L; Clear Interrupt Flag

$9FF9 Write T2C-H; Transfer T2L-L to T2C-L; Clear Interrupt Flag;
Start the T2 timer; Read T2C-H

$9FFA Shift Register (SR)

$9FFB Auxiliary Control Register (ACR)

$9FFC Peripheral Control Register (PCR)

$9FFD Interrupt Flag Register (IFR)

$9FFE Interrupt Enable Register (IER)

$9FFF Port A Output Data Register (PAD), No effect on handshake

If, on the other hand, the DSXFF device select pulse is connected
directly to the CS1 pin on the 6522, then the device selects from the
74154 may still be used because the 6522 is addressed with addresses
$9000 through $900F. However, in this case the 6522 is not abso-

269

lutely decoded, and it will be activated by any other set of addresses
of the form $9XXO0 through $9XXF except addresses $9FF0 through
$9FFF, where X is a “don’t care” hex digit. This will be of no con-
sequence unless other memory locations in the range $9000 to $9FEF
are to be utilized. The addresses $9FF0 through $9FFF enable the
74154 device selects, as before. Although it is generally good practice
to absolutely decode the address lines, in certain cases no harm will
result if this practice is not strictly followed.

~N
o
<
=)
a8

PAO f——

RSO PALE—
[>—ks1 Prft——s
RS2 PA3 P
R >—3rss Paaf—
2
g

S2 PAS |——

D
CS1 PA6 LI
.— 31ng AT
D1 PRO
2 6522 PRI —»
>3, g 112
D4 PR3 —

DS pRa P

'Q

o >—21{w) L
[, >—2, Ty A
RW RW Y] L
R0 mfl
[RE>—res) L
I
IR

Ve, 082 [~——

Fig. 11-11. Interface for 6522 Versatile Interface Adapter.

270

All the other input connections to the 6522 in Fig. 11-11 are found
on the so-called expansion connectors on the KIM-1, SYM-1, and
AIM 65. A pinout description of these connectors is given in Table
11-9. The functions of the various pins will be described in the next
two chapters. Since you have enough detail in Fig. 11-11 to complete
the interface and operate the chip, we will not return to the 6522
interface. This interface was introduced mostly as a service to KIM-1
users who do not have an on-board 6522.

Table 11-9. Pinout Description of Expansion Connector

Pin Pin Function Pin Pin Function
Number | AIM 65 | SYM-1 KiM-1 Number | AIM 65 SYM-1 KIM-1
1 SYNC |sYNC SYNC A AO A0 A0
2 RDY RDY RDY B Al Al Al
3) &1 &1 C A2 A2 A2
4 RQ RQ RY D A3 A3 A3
5 S.0. RO RO E A4 A4 Ad
6 NI ™ NMi F A5 A5 A5
7 RES RES RES H A6 A6 A6
8 D7 D7 D7 J A7 A7 A7
9 D6 D6 D6 K A8 A8 A8
10 D5 D5 D5 L A9 A9 A9
n D4 D4 D4 M A10 A10 A10
12 D3 D3 D3 N All All All
13 D2 D2 D2 P Al12 Al12 Al12
14 D1 D1 D1 R Al3 Al3 A13
15 DO DO DO S Al4 Al4 Al4
16 —12Vv | T8 Ké T Al5 Al5 Al5
17 ﬂ‘? V | DBOUT | SST OUT u b b b2
18 (¢S POR Unused v R/W R/W R/W
19 57 Unused | Unused w R/W R/W R/W
20 CSA Unused | Unused X TEST TEST TEST
21 +5V +5V +5V Y (2 /2 ¢2
22 GND GND GND z RAM R/W | RAM R/W | RAM R/W

6502 INSTRUCTIONS AND DEVICE SELECT PULSES

To understand a few more details related to device select pulses,
we examine the execution of some 6502 instructions on a cycle-by-
cycle basis. Table 11-10 describes the behavior of the address bus,

Table 11-10. Analysis of Microcomputer Buses by Clock Cycles

During LDA Instruction in Absolute Addressing Mode

Cycle | Address Bus | R/W | Data Bus Comments

1 $0200 1 $AD The 6502 fetches the LDA op code.

2 $0201 1 $FO The 6502 fetches the ADL of the memory
location to be accessed.

3 $0202 1 $9F The 6502 fetches the ADH of the memory
location to be accessed.

4 $9FFO 1 DATA The 6502 fetches the data in the
location whose address is $9FFO.

27

the data bus, and the R/W control line during the execution of the
LDA instruction in the absolute addressing mode, assuming that the
LDA instruction op code is in the location with address $0200 and
that the memory location referenced by the LDA instruction is
$9FF0. Table 11-11 analyzes the STA instruction in a similar way,
and Table 11-12 analyzes the ASL instruction by clock cycles.

Table 11-11. Analysis of Microcomputer Buses by Clock Cycles
During STA Instruction in Absolute Addressing Mode

Cycle | Address Bus R/W | Data Bus Cqomments

1 $0200 1 $8D The 6502 fetches the STA op code.

2 $0201 1 $F7 The 6502 fetches the ADL of the memory
location to be referenced.

3 $0202 1 $9F The 6502 fetches the ADH of the memory
location to be referenced.

4 $9FF7 0 | DATA The 6502 is writing the contents of the
accumulator to the location whose
address is $9FF7.

Table 11-12. Analysis of Microcomputer Buses by Clock Cycle During
Read-Modify-Write Instruction, e.g., ASL, DEC, or ROL Instruction

Cycle | Address Bus | R/W | Data Bus Comments

1 $0200 1 $OE The 6502 fetches the ASL op code.

2 $0201 1 $F5 The 6502 fetches the ADL of the memory
location to be modified.

3 $0202 1 $9F The 6502 fetches the ADH of the memory
location to be modified.

4 $9FF5 1 DATA The 6502 reads the contents of the
location whose address is $9FF5.

5 $9FF5 0 DATA The 6502 uses this cycle to modify
the data.

6 $9FF5 0 MODIFIED | The 6502 writes the modified data back

DATA to the location whose address is $9FF5.

In all three of these tables, note that each cycle is either a READ
or WRITE cycle. Either an instruction byte is read, or a data byte
is either read from memory or written to memory. Referring to Table
11-10, device select pulses corresponding to addresses $0200, $0201,
$0202, and finally $9FFO0 must be generated by the address decoding
circuitry in order to execute this LDA instruction. Each device select
pulse will last for about 1 microsecond. In Table 11-11, you see that
similar events occur during an STA instruction. Finally, in Table 11-
12, you can see that the data byte located at $9FF5 is first loaded into
the microprocessor, then it is modified, and finally it is written back
to the location whose address is $9FF5, during three successive

272

cycles. The middle cycle of these three cycles is required to give the
microprocessor time to modify the data. Although it, too, is a WRITE
cycle, nothing new is written back to the location being modified.
Finally, note that the device select pulse corresponding to $9FF5
will be generated three times during this Read-Modify-Write in-
struction. Consult your 6502 hardware manual for further details
regarding bus activity during other instructions. We have chosen a
few representative examples to illustrate the fact that each clock
cycle in a 6502 system is either a READ or a WRITE cycle, and that
device select pulses are generated during each clock cycle.

The address decoding circuit of Fig. 11-9 generates a 1 microsec-
ond logic zero pulse when an LDA or STA instruction references one
of the locations shown in the figure. This pulse may be used to pre-
set or clear a flip-flop, as shown in the circuit in Fig. 11-12. The

+5V

= 41 T“ o+5V

PR

$150¢

N\

[RES >—— Hew 7am GDLED
2

D [(—7_
CLR
1 [*]

)
]

>

Fig. 11-12, Device select pulses used to preset and clear D-type
flip-flop, and LED used as test probe.

L o

LED probe will glow when it is connected to a logic-zero voltage
level, and it can be used to test the logic levels of the Q or Q outputs.
The probe will also be used in the experiments to detect device select
pulses. We now describe the behavior of the circuit in Fig. 11-12,
assuming the device select pulses from the 74154 in Fig. 11-9 are
being used.

Suppose that the device select pulse DS9FFOQ is connected to the
preset input of the 7474 and that device select pulse DS9FF1 is con-
nected to the clear input. When the microcomputer is RESET, as it

273

usually is during “power up,” then the RES control signal available
at pin seven on the expansion connector will clock the logic level of
the D input into the Q output. Thus, when power is first applied or
the RESET button is pressed, the Q output will be low and the Q out-
put will be high. The LED test probe connected to the Q output will
glow, but an LED test probe connected to the Q output will not
glow. Using an LDA DS9FFO will preset the flip-flop, making Q go
to logic one and Q to logic zero. Using an LDA DS9FF1 instruction
in a program will clear the flip-flop to the same state it had after a
RESET.

It should be clear that this scheme could be used to switch a
motor, light, cassette recorder, or any other device, off and on with
a computer program. Thus we have made a simple output circuit
with no output port chips, control signals, or data bus lines involved.
With interval timers, a square wave whose frequency and duty cycle
may be programmed can be made to appear at either the Q or Q
output of the 7474 flip-flop.

INTRODUCTION TO THE EXPERIMENTS

The experiments in the next few chapters will give you an oppor-
tunity to experiment with some of the circuits described in the text.
Although a variety of techniques may be used to test the circuits,
we have found that breadboarding on Proto Boards made by Con-
tinental Specialties, Super Strips made by A P Products, Inc., or the
SK 10 made by E & L Instruments, Inc., is an excellent approach.
In fact, we did all of the experiments in Part IT on an A P Products
Unicard. The Unicard has a 22/44 printed circuit pad just like the
KIM-1, AIM 65, and SYM-1 edge connectors. We took a 22/44 pin
edge connector with solder eyelets and soldered the eyelets to the
Unicard pads. The edge connector may be connected directly to the
expansion port and may be left in place for permanent applications,
if desired. Photographs of this configuration before any experiments
were begun and after a number of experiments were completed are
shown in Fig. 11-13. The breadboards mentioned above are available
from a variety of electronic parts mail-order houses. Consult the
advertisements in any of the well known computer or electronics
magazines for sources of parts.

Although we did not indicate in any of our circuit diagrams the
particular variety of 7400-series integrated circuits to use, we
strongly urge you to work with the 74LS00 variety. Ordinary 7400-
series chips will work, but you run into buffering problems because
of the higher power required to drive the logic inputs. The pins on
the 6502 are rated at one standard TTL (7400 series) load, which
means you can have four “LS” series inputs attached to a single 6502

274

(A) Before experiments.

(B) After experiments.

Fig. 11-13. Our breadboarding system.

275

output pin. Unless otherwise noted, the experiments were performed
with the 74L.S00 series. Do not attempt to use 74C00 or other CMOS
circuits for the experiments.

Circuits that are breadboarded in one experiment will frequently
be used in subsequent experiments. Do not, therefore, dismantle
your circuits after each experiment.

EXPERIMENT NO. 1
Step 1

Breadboard the circuit shown in Fig. 11-6. Refer to Table 11-9 for
the expansion connector pin description to connect the address lines.
Use +5 V and GND from pins 21 and 22, respectively.

Step 2

Construct the simple LED probe shown in Fig. 11-12. It will be
used to detect a series of device select pulses.

Step 3
Load the following program:

0200 AD FO 9F START LDA MEM Fetch the contents of $9FFO.
0203 4C 00 02 JMP START Loop back to START.

Note that this program is of no use except to demonstrate the genera-
tion of device select pulses. Refer to Table 11-10, and observe that
the program simply repeats the LDA instruction analyzed in Table
11-10.
Step 4

Connect the LED probe constructed in Step 2 to each device
select output of the 741.5138 in turn. Describe and explain what you
observe.

(We observed that the LED glowed quite brightly on the YO (pin
15) output and less brightly on the Y4 (pin 11) output. On all the
other outputs the LED did not glow. These observations may be
explained by referring to Table 11-10 again. During three of the
four clock cycles of the LDA instruction the address bus has an
address in the lowest 8K block, that is, between $0000 and $1FFF.
These addresses enable the DSO device select pulse labeled in Fig.
11-6. During the fourth cycle of the LDA instruction the address
$9FF0 appears on the address bus, and the decoding circuit produces

276

a device select pulse on the DS8 output, namely pin 11. The J]MP
instruction takes three cycles, all of which reference a memory loca-
tion in the lowest 8K block. Thus, the entire program takes seven
cycles. During six of those cycles the DSO pulse occurs, but during
one cycle the DS8 pulse occurs. Since the eye cannot perceive 1-
microsecond flashes, we observe a bright glow when the LED is con-
nected to the DSO line, and a faint glow when the LED probe is
connected to the DS8 line.)

Step 5

Replace the LDA instruction in the program of Step 3 with an STA
instruction. Execute the program and use the LED probe to test the
device select outputs of the 74L.5138. Explain your results.

Step 6
Replace the LDA instruction in the program of Step 3 with an
ASL $9FF5 instruction as analyzed in Table 11-12. Execute the pro-

gram and describe and explain your results obtained by using the
LED probe.

(The results are essentially the same as in Step 4, but the LED
appears to glow more brightly. The ASL and JMP program takes
nine cycles while the LDA and JMP program takes seven cycles.
Refer to Table 11-12 and note that the location being modified
has its address on the address bus for three of the six cycles re-
quired by the ASL instruction, or for a total of three of the nine
cycles required for the program. In the LDA and JMP program the
location being modified has its address on the address bus for only
one cycle out of the seven cycles necessary to execute the program.
Consequently, when the LED probe is connected to the DS8 device
select line, it appears to glow more brightly with the ASL and JMP
program than with the LDA and JMP program.)

Step 7

If you have a frequency counter, connect it to pin 11 of the 74LS-
138 while the program of Step 3 is running. What do you expect to
measure? Repeat this experiment for the program of Step 6.

(In the first case you should measure 14 of the clock frequency, or
about 142.86 kHz.)

277

EXPERIMENT NO. 2
Step 1

AIM 65 owners may wish to repeat all of the steps in Experiment
No. 1, using the device select pulse (called CS9) made available at
pin 19 on the expansion connector.

EXPERIMENT NO. 3
Step 1
SYM-1 owners may wish to repeat all of the steps in Experiment

No. 1 using the device select pulse (called 98) made available at
jumper number 10.

EXPERIMENT NO. 4
Step 1
Modify the circuit for the 741.5138 so that it is the same as shown
in Fig. 11-9. AIM 65 and SYM-1 owners need not breadboard this

integrated circuit. They can use the device select pulses mentioned
in Experiments No. 2 and 3.

Step 2

Breadboard the 74LS30 8-input NanND gate shown in Fig. 11-9.
Before connecting the output of the 74LS30 to the 74L.S154, test it
by loading the program given in Step 3 of Experiment No. 1. The

LED should glow when the probe is connected to the output of the
74L.S30. Why?

(The location referenced with the program is $9FF0. The output of
the 74L.S30 should go to logic zero whenever an address of the form
$XFFX, where X is a “don’t care” hex digit, is on the address bus.)

Step 3

Try the LED probe on the output of the 74LS30 when the same
program is executed, but location $9550 is referenced. What should
you observe?

(The LED probe should not glow, because the 74L.S30 output goes

to logic zero only when the middle two hex digits of the address are
“FF”‘)

278

Step 4

Breadboard the 741.S154 circuit shown in Fig. 11-9. Connect the
device select line from the 741.S30 to the GI1 input (pin 18). AIM
65 users can omit the 74L.S138 and connect their CS9 device select
pulse from pin 19 on the expansion connector to the G2 (pin 19)
input of the 74L.S154. If you have a SYM-1, connect the 98 device
select pulse from jumper number 10 to the G2 input of the 741.S154.

Step 5

Refer to Experiment No. 1, Step 3, and load the same program.
Execute the program and use the LED test probe to test the device
select pulse outputs of the 74L.S154. Which one should produce a
glow on the LED?

(Since the location whose address is $9FF0 is referenced by the
LDA instruction, the device select labeled DS9FFO0 should cause the
LED to glow. None of the other outputs of the 74LS154 should
affect the LED.)

Step 6

Change the address referenced by the LDA instruction to ad-
dresses $9FF1 through 9FFF, in turn, executing the program and
testing the outputs of the 74L.S154. You should observe that the cor-
rect address produces the corresponding device select pulse.

Step 7

Repeat Step 7 of Experiment No. 1 with the frequency counter
connected to the output of the 741.5154 that is being enabled by the
address referenced by the LDA instruction. What do you observe?

Step 8

Experiment with other instructions such as the STA, ROL, DEC,
ADC, AND, and CMP instructions replacing the LDA instruction in
the program described in Step 3 of Experiment No. 1. Do all of these
instructions produce device select pulses on the 74L.S154 when they
reference the locations enabled by the 74L.S154 outputs?

EXPERIMENT NO. 5
Step 1

Connect the circuit shown in Fig. 11-12. Connect the input labeled
DSn to the DS9FFQ device select pulse from the 74LS154 in Fig.

279

11-9. Connect the input labeled DSm to the DS9FF1 device select
pulse from the 741.5154. Construct two LED test probes and connect
one to each of the outputs of the 7474.

Step 2

RESET your microcomputer by pressing the Reser key. Which
LED glows?

(The LED connected to the Q output glows. The reason for making
the RESET connection to the clock input of the 7474 is to bring up
the Q outputs in known conditions when power is supplied. With
motors, relays, or other devices connected to an output, it is very
important to know the state of the outputs when power is first
applied to a microcomputer system.)

Step 3
Load and execute the following program.

0200 AD FO 9F START LDA DS9FFO Initiate device select pulse DS9FFO.
0203 00 BRK End of program.

What do you observe on the LEDs?

(The Q output LED should go out and the Q LED should glow.)

Step 4

Change the program above to initiate the DSIFF1 device select
pulse by using an LDA DSOFF1 instruction. What happens to the
LEDs?

(We observed that they switched back to their RESET condition.)

Step 5

Load and execute the following program.
0200 AD FO 9F START LDA DS9FFO Initiate device select pulse DS9FFO.
0203 A9 FF LDA $FF Set up the T1024 interval timer.
0205 8D 97 A4 STA Ti024
0208 2C 97 A4 WAIT BIT STATUS Time up?
0208 10 FB BPL WAIT
020D AD F1 9F LDA DS9FF1 Initiate device select pulse DS9FF1.
0210 A9 FF LDA $FF Set up the interval timer again.
0212 8D 97 A4 STA T1024
0215 2C 97 A4 WAIT BIT STATUS Check the timer status again?
0218 10 FB BPL LOAF
021A 4C 00 02 JMP START Repeat entire program.

280

Step 6

The program in Step 5 initiates a device select pulse to preset the
7474, waits in a delay loop using the divide-by-1024 interval timer,
clears the 7474, waits in a second delay loop, then repeats this pro-
cess again and again. What do you expect to observe on the LED
test probes connected to the Q and Q outputs of the 74747

(The two LEDs should alternately blink on and off.)

Step 7

Experiment with the values loaded into the timers. You should be
able to vary both the frequency of the pulsations and the duty cycle
of the square wave at the Q output of the 7474. For example, change
the byte at address $0204 to $01 and the byte at address $0211 to
$05. Then connect a small speaker from the Q output to ground.

281

CHAPTER 12

Control Signals, Output
Ports, and Applications

OBJECTIVES

At the completion of this chapter you should be able to:

e Describe the functions of each of the control pins on the 6502.
® Understand the timing requirements for interfacing the 6502 to
R/W memory devices and TTL latches used as output ports.
Construct up to 16 output ports using ordinary TTL integrated
circuits.

Design the control signal logic necessary to perform the READ
and WRITE operations of the 6502.

Construct a hexadecimal display port.

Interface a digital-to-analog converter to an output port.

INTRODUCTION

In this chapter we will examine the functions of those pins on the
6502 that are classified as control pins. Although we will primarily
be interested in the ¢, and R/W signals, all of the control pins will
be mentioned, if only to provide a brief summary of their function.
The ¢, and R/W signals are necessary to implement R/W memory,
ROM, I/0 ports, and interval timers, whereas some of the other con-
trol pins have more specialized functions.

CLOCK SIGNALS, 9, (IN), &, (OUT), AND &, (OUT)

The heart of any microcomputer system is, of course, the micro-
processor. What keeps the “heart” beating, so to speak, is the system

282

clock. Although it is not absolutely necessary to have a crystal con-
trolled oscillator for a clock, most microcomputer clocks are quartz
crystals. Although crystal control of the clock frequency is common-
place, you should be cautioned against assuming that your clock
frequency is absolutely accurate. The few measurements we have
made suggest that the crystal frequencies may be in error by several
hundred hertz relative to their specified frequency of 1 MHz. If
precision timing is high on your list of applications, you may wish
to purchase and install your own crystal. Consult the specification
sheets in Appendix C for details on clock circuits.

In Fig. 12-1 we show the relationships between the ¢, (IN) signal
and the two clock signals that are produced by the microprocessor
at the ¢, (OUT) and the ¢, (OUT) pins. We will assume that the
clock frequency is 1 megahertz, making T 1 microsecond. Lower
frequencies are not prohibited, and 2-MHz versions of the 6502 are
available, but 1 MHz is currently the most popular frequency. There
are many important properties of the three clock signals shown in
Fig. 12-1, such as the pulse width, rise time, fall time, and the delay
time between ¢, and ¢ that are described in detail in the specifica-
tion sheets given in Appendix C, but we will be more concerned
with the general features of these signals.

—

‘Po{\N)

——————

$,(0UT)

$,(0UT)

Fig. 12-1. Clock signals in 6502 Microcomputer System.

283

The clock system is called a two-phase system because the two
clock signals ¢, and ¢, are out of phase. We will refer to the period
when the ¢, signal is at logic one as the ¢, phase or simply as ¢,
while the period when ¢, is at logic one will be called the ¢, phase
or simply ¢s. The periods when the two signals are at logic one
are not allowed to overlap, although the transitions of these signals
are extremely close. As we shall see, different events take place in
the microcomputer system depending on whether ¢; or ¢. is at
logic one.

R/W CONTROL SIGNAL

In a 6502 system, each clock cycle is either a READ cycle or a
WRITE cycle. That is, the 6502 is either reading a memory location
or writing to a memory location, but not both, during each and every
clock cycle. The various components in the microcomputer system
are “informed” about which of the two operations is taking place by
the logic level on the R/W line. If the 6502 places a logic one on the
R/W line, then a READ operation is taking place during that clock
cycle. If the R/W line is at logic zero, then a WRITE operation is
taking place. In some of the 6502 literature the R/W line is called
the R/W line, indicating that the READ operation occurs on a logic
one, while the WRITE operation occurs when the R/W line is at
logic zero.

Fig. 12-2 shows the timing for reading a memory location. Let us
use a concrete example and suppose that data is to be read from a
2114 R/W memory integrated circuit such as is found on the SYM-1
and AIM 65. (The specifications of the 2114 are in Appendix C.)
Our reference point on the timing diagram in Fig. 12-2 will be the
trailing edge of the ¢ signal, as indicated by the left-most dashed
line in Fig. 12-2. At the beginning of a new cycle, when ¢, is at
logic one, the 6502 places the address of the location to be read on
the address lines, and the 6502 brings the R/W to logic one, inform-
ing the 2114 that it is to supply the data. The address lines and the
R/W line do not change instantaneously, but the 6502 is guaranteed
to have a stable address on the address bus and a stable logic one
on the R/W line within 300 nanoseconds (ns) after ¢.. In Fig. 12-2,
this time is labeled Tg, and it is referred to as the set-up time for the
address bus and the R/W line. The cross-hatched areas in Fig. 12-2
indicate nonstable conditions. The two lines on the graph for the
address bus indicate that some address lines are changing to logic
one, while others are changing to logic zero. The high interval of
¢, is that period when the address bus and the control lines are
changing to select the operation (READ or WRITE) and the loca-
tion to be accessed.

284

| f—— L06IC 1

¢

—_— LOGIC 0

|
5
" | A{@’
|
|
ADDRESS
BUS

Ts

LOGIC 1

DATA
BUS

LOGIC 0

Fig. 12-2. Timing for a READ operation. Ts is set-up time for address lines and R/W line.
Tp is time that data on data bus must be stable before end of ¢.. Ta is access time.

We now move our attention to the dashed line on the right-hand
side of Fig. 12-2, which is the end of the read cycle. The 6502 re-
quires that the data on the data bus be stable for at least 100 ns
before the end of ¢.. We have labeled this period as Ty, in Fig. 12-2.
It is the trailing edge of the ¢, signal that “clocks” or latches the
data into the 6502. It is up to the device being read to have stable
logic levels on the data bus at least 100 ns before the end of ¢, and
to hold the data lines stable for 10 ns after ¢,. The time between the
address lines arriving at their stable levels and the point where the
data lines must be stable is labeled T, in Fig. 12-2. It is called the
access time. Clearly

TA=TC—TS—TD

giving an access time for the 6502 of about 600 ns. We have neg-
lected the rise time of the ¢, signal in this equation, and in Fig. 12-2
we have shown ¢, and ¢ changing instantaneously, which is not
the case. The rise time is about 25 ns, reducing the access time to
575 ns.

285

Recall that the address lines are connected to the decoding cir-
cuitry that produces a device select pulse and to the 2114 R/W
memory chip that decodes the address lines A9 through A0. Because
it takes time for the changing logic levels at the inputs of the decod-
ing circuits to propagate to the outputs, the device select pulse will
be delayed and will not begin until slightly after the address lines
have reached their stable levels. With 7400 series or 74L.S00 series
chips this time is of little consequence since it is only a few nanosec-
onds, and we may regard the device select pulse as occurring simul-
taneously with the address lines reaching their stable values, some-
time during ¢;.

Memory chips are usually a bit slower. While the address lines are
changing, and for some time after they have become stable, the
address decoding circuitry on the 2114 chip is actively responding
to the address changes on its input lines. The 2114 must “decide”
which four of its 4 X 1024 flip-flops will put data on the four output
lines it has. The time it takes to “decide” is known as its access time.
The access time of the memory chips used in a 6502 system must be
less than the 6502 access time shown in Fig. 12-2 or the 6502 will
read meaningless information. The 2114 chips have an access time
of 450 ns, so there is a comfortable margin for which the data is
stable. If the 2114 chip is selected by the device select pulse and its
WE pin is at logic one, then after the access time has elapsed it puts
its four bits of data on four lines of the data bus in the form of stable
logic levels. The data will remain stable until shortly after the device
select from the address decoding circuitry allows the chip select,
CS, on the 2114 to go high. This will occur after the trailing edge
of 4) so the logic levels will be successfully read by the 6502, com-
pleting the read cycle. The logic circuit required to produce a
“READ ENABLE?” signal from the device select pulse and the R/W
line is shown in Fig. 12-4.

We turn now to an analysis of a WRITE operation,, the timing dia-
gram being given in Fig. 12-3. The parameter Tg has the same mean-
ing as before; namely it is the time required for the 6502 to produce
stable logic levels on the address bus, and for the 6502 to change
the R/W line to logic zero for a WRITE operation. The parameter
Tps is the amount of time, measured from the beginning of ¢s, re-
quired to produce stable logic levels on the data bus. The 6502 re-
quires no more than 200 ns to produce stable data, giving a period
of about 300 ns when the data are stable. Finally, the logic levels
on the data bus remain stable for a short time after the conclusion
of ¢s, called the data hold time and symbolized by Tg. For a 6502,
Ty is typically 30 ns.

The peripheral that is to receive the data, the 2114 in our example,
usually requires that the address be stable during the write time.

286

LOGIC 1
¢

—_— LOGIC 0

%,

SN

|
|
|
|
I
|
|
|
|
T
|
i
|
|
|
|

|
—Ts— Ll S—
LOGIC 1
DATA
BUS

LOGIC 0

—

I
o Ty
[

Fig. 12-3. Timing for WRITE Operation. Ts is set-up time for address lines and R/W line.
Tps is data set-up time from 6502. Ty is data hold time.

Thus, the WE pin on the 2114 is usually brought to logic zero after
the addresses are stable, namely during ¢.. Thus, to activate the
“write enable” (WE) pin on the 2114, we would like the R/W line
to be at logic zero and the ¢, signal to be at logic one. We also want
the chip to be selected by the DS pulse. The logic circuit shown in
Fig. 12-4 produces the correct WRITE ENABLE signal for the con-
ditions stated above. Furthermore, we must somehow signal the 2114
that the data is now stable and should be latched into whichever
of the 4 X 1024 locations we have selected with the address. This is
done by the trailing edge of the ¢. signal at the end of the cycle.
Note that at this time the data have been stable for almost 300 ns,
a sufficient length of time for the 2114, which requires only 200 ns
of stable data. The trailing edge of the ¢ signal clocks the data into
the 2114, completing the write cycle. Note that both the address lines
and the data lines are still stable at the trailing edge of ¢..

To conclude our discussion of the control signal interface required
to correctly read the 2114 and to correctly write to the 2114, we note
that some of the control line logic is located on the 2114 itself. In

287

RS> L] 52
741500
3L RAM—RW

1
[o>=Et LTDOT 74502
r 5 4L WRITE ENABLE =

@) RIW e 0, ¢ DS

(DEVICE m)

741802

READ ENABLE =
I READ ENAE 150
1 [— “RrweDs

3 (DEVICE m)

TEST

741502 LED

2
> :j:}—'JL' (DEVICE,) L

741502
E. el
3 1r .. (DEVICE,)

Fig. 12-4. Logic circuit to produce READ ENABLE and WRITE ENABLE signals.

Fig. 12-5 we show the control line logic that the designer must pro-
vide and the on-chip logic. Note that this is not the only way to inter-
face the control signals to a 2114; in fact, the AIM 65 does not_use
this approach. The AIM 65 brings the R/W line directly to the WE
pin on the 2114, and it effectively “aAnps” the ¢, signal with the
DS signal in the decoder, producing a chip select (CS) signal that
is at logic zero when ¢- is at logic one and DS is at logic zero. It
can be shown that this logic circuit is equivalent to the logic circuit
shown in Fig. 12-5.

One final note on the control signals shown in Fig. 12-4: The
signal labeled RAM R/W is generated on the KIM-1 and the SYM-1.
Its logical expression is R/W - ¢, meaning that it is logic zero when
the R/W line is at logic zero and ¢. is at logic one. It is used to
write to R/W locations, and it is made available at pin Z of the

2114 R/W MEMORY CHIP

RAM WE
AW >——a . RW LT
L READ ENBLE =
5> cj —=—="Cs » Wt
r
ED e
L WRITE ENABLE =
05« WE

Fig. 12-5. Control Line Logic and On-Chip Logic for controlling 2114.

288

expansion connectors on these two systems. The AIM 65, on the
other hand, generates a signal whose logical expression is R/W - ¢.,
a signal that is also called RAM R/W, and that is also brought to
pin Z of the application connector. The user should be aware of
the fact that these are not equivalent signals. The KIM-1 and SYM-1
RAM-R/W signals are useful for the WRITE operation. A future
version of the AIM 65 will have the correct RAM-R/W signal. Cur-
rent versions of the AIM 65 are marked near the crystal with a
printed-circuit triangle. The new version of the AIM 65, with the
correct RAM-R/W signal, will have a nontriangular-shaped symbol
in the same place.

USING CONTROL SIGNALS FOR AN OUTPUT PORT

The circuit of Fig. 12-4, in addition to providing the necessary
control signals for accessing R/W memory, may also be used to pro-
vide the necessary control signals for an output port. Recall that the
write enable output of Fig. 12-4 is at logic one when the R/W line
is at logic zero, ¢. is at logic one, and the device select (DS) is at
logic zero. Apply this signal to the G input of either a 74100 or two
7T4LS75 integrated circuits, and connect the data bus to the D inputs
of these chips, as shown in Figs. 12-6 and 12-7.

The 7475 and the 74100 integrated circuits are both bistable
latches (or flip-flops), and they behave much like an R/W memory
location during a WRITE operation. When the G inputs are at logic
one, the Q outputs follow the logic levels at the D inputs. The D
inputs are connected to the data bus of the 6502. Refer to Fig. 12-4
and notice that during a WRITE operation to the location whose
address produces the DS pulse, a positive pulse, whose duration is
the same as ¢, is produced at the WRITE ENABLE output. If this
pulse is applied to the G inputs of the 7475s or the 74100, then the Q
outputs will correspond to the data on the data bus during the
WRITE cycle, and, at the end of the WRITE cycle, the WE pulse
ends while the data is still stable, clocking the data bus logic levels
into the Q outputs. The Q outputs on the 74LS75 will have logic
levels just opposite to their Q counterparts. The device select (DS)
pulses may be obtained from 74LS154 in the circuit of Fig. 11-9.

Note that only three instructions in the 6502 instruction set will
write data to the output port we have just constructed. These are the
STA, STX, and STY instructions. The output port only responds to
a WRITE operation because the R/W line must be at logic zero for
the WRITE ENABLE pulse to occur. Instructions such as LDA,
LDX, LDY, or any other instruction that involves a READ operation
from this address will produce meaningless data because nothing
is read (no READ ENABLE pulse occurs). Instructions such as the

289

2 16
.—IEI:’ D1 r—»
74LS75 %l_ "
D2 7] L —
02 |4
D3)
Q=—
[o3>—"1 o4 7]
ul
13
Gl
62
12)
IL = GND Fig. 12-6. Two 74LS75s used as
Output Port. Circuit to generate
[We>— +5V WRITE ENABLE shown in Fig. 12-4.
WRITE
ENABLE 5
62
74LS75
13 ol
—i
2 g
D1 QL H—=P4
Qhe
3 15
D2 g_g 5

P6

o6 >——Y 03 Q3
B L

T
= GND

‘JI;FI

P7

ASL, DEC, and ROL instructions will not work because they require
a READ cycle also. However, the use of only three of the nine in-
structions in the 6502 instruction set that involve the WRITE opera-
tion is no great handicap for an output port.

The output pins of the 6502, including the data bus pins, are rated
for one TTL load. The 74100 in Fig. 12-7 represents such a load on
the data bus. Since the data bus on your microcomputer will already
have several devices loading it, the circuit in Fig. 12-7 will cause the
data bus to be overloaded. The circuit might work with the data bus
connected to the D inputs of the 74100, but it is a marginal situation.
To solve the problem, the data bus must be buffered, one of the
topics in the next chapter. The 74LS75s in Fig. 12-6 may be operated
directly from the data bus, but if several output ports are desired,
requiring that the data bus be connected to the inputs of several

290

WRITE ENABLE 12

. 2‘DIZG 1G u 5 PO
T ™
22
Fig. 12-7. A 74100 used as 8-bit out- D3 Q3 i—’ P2

put port. Circuit to generate WRITE

ENABLE shown in Fig. 12-4. D4 (7] U P3

b1 a4
[05 >—Lp, P———ps
[os >—L403 03— s
[07 >—2860 (Y] L

T
= GND

74L.S75s, then buffering will again be required. Refer to Chapter 13
for details. We will also postpone the discussion of input ports until
Chapter 13, in which three-state devices are described. With suit-
able data bus buffering, the circuits shown in Figs. 11-9, 12-4, and
12-6 or 12-7 may be used to make up to 16 output ports with ad-
dresses $9FF0 through $9FFF. In the experiments at the end of this
chapter, we will describe a simple buffer/driver that will allow you
to experiment with these circuits, without going into a full discussion
of data bus buffering. In Chapter 13 we will show how to make input
ports. Some of the device select pulses from addresses in this range
may be used for input ports.

[We> T '
23

MEMORY-MAPPED, LATCHED HEXADECIMAL DISPLAY

The address decoding circuit and the control line logic may be
used to implement a memory-mapped, latched hexadecimal display.
Assuming that the data lines at the expansion connector are ade-
quately buffered (see the experiments section at the end of this
chapter, or Chapter 13), two hexadecimal display chips with latches
and drivers make a convenient and useful output display. The chips
used were Texas Instruments TIL31ls, but equivalent chips are
made by other manufacturers. The circuit diagram is shown in Fig.
12-8. The write enable pulse from the circuit in Fig. 12-4 may be
converted to the necessary strobe signal by the 74L.504 inverter. One
of the device selects, DSIFF0 for example, from the 741.5154 in
Fig. 11-9 may be used to address the display.

291

? +5V - T+5V
ﬁ

1 14 1 14

1 2 5 5
WE > p STB T3n STB Tnt
12

(o7 >——° [o3>—o
[oe>——c [o>—=¢
[T>—2» >—s
E— [>—»

1 L
= GND = GND

Fig. 12-8. Using hexadecimal latch-displays as an output display. WE signal generated
with circuit shown in Fig. 12-4.

Assuming that this memory-mapped display is selected with the
address $9FF0, one can view the contents of the accumulator, X
register, or Y register with STA, STX, and STY instructions, respec-
tively. This may be useful in debugging programs. For example, an
STX $9FF0 instruction may be placed in a program loop that is
giving trouble, and the program may be single-stepped to observe
how the X register is changing. This is certainly much faster than
using the register trace mode on the KIM-1. To observe the stack
pointer, use a TSX instruction followed by an STX$9FFQ instruction.
A latched hexadecimal display such as this is much more convenient
(and more expensive) than the unlatched seven-segment displays
that require constant refreshing. A program to demonstrate the dis-
play is given in the experiments.

MEMORY-MAPPED DIGITAL-TO-ANALOG CONVERTER
AND AN APPLICATION TO MUSIC SYNTHESIS

The address decoding circuitry described in the last chapter, the
control circuit logic, and the 74100 (or 74LS75s) may be used with
a Motorola 1408L8 8-bit digital-to-analog converter to make a mem-
ory-mapped digital-to-analog converter circuit. The 1408L§ circuit
is shown in Fig. 12-9, while the necessary control logic was shown
in Fig. 12-4, the 74100 output latch circuit was given in Fig. 12-7,
and the address decoding circuit was shown in Fig. 11-9. We used

292

the DS9FF0 device select pulse from the 74L.S154 shown in Fig.
11-9.

Just as we did not attempt to explain how the various TTL gates
and decoders worked, we will not attempt to explain how the DAC
(digital-to-analog converter) works. Basically the 1408 is a system of
resistors and “switches” that produce a current proportional to the
8-bit binary number represented by the logic levels on pins 5
through 12, pin 5 being the most significant bit. The outputs of the
74100 shown in Fig. 12-7 are connected to the inputs of the 1408
DAC. The CA3140 operational amplifier acts as a current-to-voltage
converter, and the 10K feedback resistor (pin 6 to pin 2) may be
adjusted to produce the desired proportionality between the 8-bit
number on the input of the DAC and the voltage level at pin 6 of
the CA3140 operational amplifier. You may wish to adjust the resis-
tor so that with $FF as the digital signal you obtain 2.55 volts on the
output. Then a simple hex-to-decimal conversion gives the correct
output voltage, providing the decimal point is also shifted.

Although there are many uses for digital-to-analog converters,
such as in controlling motor speed, analog-to-digital conversions,
graphics on oscilloscopes or plotters, etc., the application we have
chosen to illustrate the use of a DAC is from the area of music syn-
thesis. If one cycle of a particular waveform is stored in a table in
memory, and the computer writes the entries in the table to the

6| MOTOROLA
P6 > 140818

o ANALOG
out

R gt

= GND

Fig. 12-9. Digital-to-analog converter circuit.

293

DAC as part of a continuously running loop, then the waveform
appears as a voltage level at the output of the CA3140, and this volt-
age varies in exactly the same way as the stored waveform. If the
entries in the table are written to the DAC at a fast enough rate,
then the entire waveform stored in the table may appear at the
DAC output at an audio frequency, say 440 Hz, that may then be
amplified and connected to a speaker.

One advantage of this approach over the method of toggling an
output. which we used in earlier tone generation programs, is that
it is the waveform which affects the quality or timbre of the music;
and, with the waveform in a table, we have complete control over
the timbre. A toggled output is always a rectangular wave, and al-
though the timbre may be altered somewhat by changing the duty
cycle, the technique lacks the versatility of the sampled-waveform
approach.

If the waveform table contains one cycle of the waveform, and if
it is written to the DAC at the rate of 440 tables per second. then
an “A” note (equally tempered scale) will be heard. If the same
read-out rate were used, but only every other entry in the table were
used. then we would hear a tone whose frequency is 880 Hz. Thus,
by skipping a certain number of entries in the table the output fre-
quency may be changed.

Chords (several simultaneous tones) may be produced by adding
samples together in the microcomputer, and writing them to the
DAC. For example, if we sample the table at every entry. every
other entry, every third entry, and every fourth entry, add these
samples together and output them continuously to the DAC, we
will hear the fundamental, second harmonic, third harmonic, and
fourth harmonic.

The equally tempered scale assigns the frequency of 440 Hz to
the note A. Successively higher (or lower) notes are related to this
frequency by multiplication by 2%z A table of note frequencies is
provided in Table 12-1. Unfortunately, to play these frequencies we
need to skip fractional numbers of entries in the waveform table.
To handle this idea, we must look in a little more detail at how we

Table 12-1. Frequencies of Several Notes on Equally Tempered Scale

Frequency Frequency
Note (Hertz) Note (Hertz)
C 261.62 Fi 369.99
Ct 277.18 G 391.99
D 293.66 Gf 415.30
D 311.13 A 440.00
E 329.63 A 466.16
F 349.23 B 493.88

294

intend to accomplish the production of chords with our computer
program.

For our waveform table, let us use one page of memory, or 256
entries. With a base address of $0300, for example, we can use in-
direct indexing to read the table. Keeping the base address high con-
stant (BAH = $03), the program will continue to “wrap around” the
table as the BAL (base address low) is incremented. Assume we
can output a number to the DAC every 100 microseconds. Then the
frequency we will hear is

_ 1 1o
7256 X 100 X 10—%sec 256

To produce higher frequencies, we must skip entries in the table
so that we output the table more quickly. To hear middle C
(f=261.62), we must sample the waveform table every 261.62/
39.0625 = 6.70 entries. The formula giving the number of table en-
tries to skip is

f Hz = 39.0625 Hz

~ 100 x 10—¢

where 256 represents the number of entries in the table, 100 X 10—
is the time it takes to output the sum of the entries (loop time) to
the DAC, and f; is the frequency of the tone we wish to hear.

We decided to write a simple demonstration program to play the
chord consisting of F and A (below middle C), middle C, and D4.
Thus, the chord consists of four tones, and the table must be sam-
pled every 4.47 entries for the F note, every 5.63 entries for the A
note, every 6.70 entries for the C note, and every 7.96 entries for the
D¢ note. We begin by converting the fractional parts to hexadecimal.
That is, for the F note,

a7 _ X
100~ 256

where X is the two-digit hexadecimal number to the right of the
hexadecimal point. Solving for X gives X = $78 for the F note, $A2
for the A note, $B3 for the C note, and $F7 for the Df note. The in-
tervals are then $4.78 for the F note, $5.A2 for the A note, $6.B3
for the C note, and $7.F7 for the D4 note.

To sample the waveform table we may start by reading an entry,
using indirect indexed addressing with the index set equal to zero,
for each of the four notes. The samples are then added together and
loaded into the DAC. Next, the base address low of each read oper-
ation is incremented by the numbers given in the preceding para-
graph, and the next samples are taken from these new locations in
the table.

047 =

295

To handle the fractional increments, a two-byte addition is per-
formed. First the fractional part is added, then the integer part is
added. Any carry from the fractional part will be added to the in-
teger part. Only the integer part is used as the BAL for the table
entry to be read. A close examination of the program in Example 1
will make this clear.

The program in Example 1 is very similar to the PLAY subrou-
tine used by Hal Chamberlin! in his noteworthy article on computer
music. There are many other important details, related to this sam-
pled waveform approach to making music, that you may find in this
reference or by obtaining a reprint from Micro Technology Unlim-
ited, Box 4596, Manchester, NH 03108. Our coverage of this topic
is intended only to stimulate your interest in this area of computer
applications. Refer to the experiments for further details and other
experiments with the DAC circuit of Fig. 12-9.

The waveform table we used was a triangular wave that produces
a simple but mellow tone. A simple program for producing the wave-
form table is given in Example 2. Note that the largest amplitude
in the table is $3F so that when four tones are added together the
result will not exceed $FF, the largest number the DAC will accept.
You may wish to experiment with other waveforms, such as a ramp
or a rectangular waveform. To listen to the chord, we coupled the
auxiliary input of our hi-fi to the output of the CA3140 using a 0.047-
microfarad capacitor.

Example 1: Program to Produce Four Simultaneous Tones

$0000 = TNI1L; Fractional part of waveform table address for tone one
$0001 = TN1H; Integer part of waveform table address for tone one (BAL)
$0002 = $03 = BAH of waveform table

$0003 = TN2L; Fractional part of waveform table address for tone two
$0004 = TN2H; Integer part of waveform table address for tone two (BAL)
$0005 = $03 = BAH of waveform table

$0006 = TN3L; Fractional part of waveform table address for tone three
$0007 = TN3H; Integer part of waveform table address for tone three (BAL)
$0008 = $03; BAH of waveform table

$0009 = TNAL; Fractional part of waveform table address for tone four
$000A = TN4H; Integer part of waveform table address for tone four (BAL)
$000B = 03; BAH of waveform table

$9FF0 = DAC; Digital-to-analog converter port

$0200 A2 00 START LDY $00 Set indirect index to zero.

$0202 D8 CLD Clear decimal mode.

$0203 18 CLC Clear carry for additions to follow.

$0204 B1 01 LOOP LDA (TN1H),Y Get tone one sample from the table.

$0206 71 04 ADC (TN2H),Y Add tone two sample from the table.

$0208 71 07 ADC (TN3H),Y Add tone three sample from the
table.

1Chamberlin, Hal, “A Sampling of Techniques for Computer Performance of
Music,” BYTE, V2, No. 9, Sept. 1977, p. 62.

296

$020A
$020C
$020F
$0211

$0213
$0215
$0217
$0219
$021B
$021D
$021F
$0221
$0223
$0225
$0227
$0229
$0228
$022D
$022F
$0231
$0233
$0235
$0237
$0239
$0238
$023D
$023F
$0241
$0242
$0243
$0244

71

8D
A5
69

85
A5
69
85
A5
69
85
A5
69
85
A5
69
85
A5
69
85
A5
69
85
A5
69
85
A5
EA
EA
EA
4C

0A
FO 9F

78

00
01
04
01
03
A2

04
05
04
06
B3
06
07
06
07
09
F7

0A

07
0A

04 02

ADC (TN4H),Y
STA DAC
LDA TNIL
ADC $78

STA TNIL
LDA TNI1H
ADC $04
STA TNIH
LDA TNIL
ADC $A2
STA TN2L
LDA TN2H
ADC $05
STA TN2H
LDA TN3L
ADC $B3
STA TN3L
LDA TN3H
ADC $06
STA TN3H
LDA TN4L
ADC $F7
STA TN4L
LDA TN4H
ADC $07
STA TN4H
LDA DUM
NOP

NOP

NOP

JMP LOOP

$0300 = Base Address of Waveform Table

$0250
$0252
$0254
$0255
$0256
$0259
$025C
$025D
$025E
$0260
$0262

A2
A0
8A
4A
9D
99
E8
88
EO
DO
00

00
FF

00 03
00 03

80
F2

START

LOOP

LDX $00
LDY $FF
TXA

LSR A
STA TABX
STA TAB,Y
INX

DEY

CPX $80
BNE LOOP
BRK

Add tone four sample from the table.
Output the result to the DAC.
Calculate address of the next entry
by adding $4.78 to the previous
addresss.

Add fractional part first.

Next add carry from this to integer
part of the low-order byte of the
address.

Repeat above process for remaining
three tones.

The remaining instructions are
“"dummies.”” They take up time to
make loop time 100 microseconds.

Back to start over.

Example 2: Program to Place Triangular Waveform in Page Three of Memory

Initialize X register to zero.
Initialize Y register to $FF.
Transfer X to A.

Divide by two.

Store in table, beginning half.
Store in table, ending half.
Increment X.

Decrement Y.

Is X = $80?

No, continue filling table.
Yes, table is filled.

OTHER CONTROL PINS ON 6502

The control pins not yet mentioned include three input pins, RES
(Reset), RDY (Ready) and S.0O. (Set Overflow), and one output
pin, SYNC (Synchronization). We will discuss these briefly. The

297

RES pin is usually used under “power up” conditions or at other
times when it is desired that the microcomputer “restart.” When
power is applied to the 6502, or when the Reser key is depressed,
the RES pin is held at logic zero. Suitable delay circuits hold the
RES pin at logic zero during power-up conditions, while the RESET
key is usually connected to a 555 timer to produce a logic-zero sig-
nal at the RES pin. After the RES line goes high, the 6502 waits for
six clock cycles; then it fetches the new PCL from the location with
the address $FFFC and the new PCH from the location with the
address $FFFD. The next cycle sees PCH-PCL on the address bus
to fetch the first op code in the program. In the case of the KIM-1,
AIM 65, and SYM-1, this address is the starting point of the monitor.

The Ready (RDY) pin is used to interface slow memory devices.
If the ready line is brought to logic zero during ¢, of any READ
cycle, the R/W line remains at logic one and the address lines main-
tain their logic levels. In that case, slow memory devices may be
given a longer access time. When the ready line is allowed to return
to logic one, then the microprocessor will simply complete the sec-
ond half of the clock cycle begun when the ready line was pulled
low. That is, the slow memory device will be read. The RDY pin is
also used in direct-memory-access (DMA) applications, a topic be-
yond the scope of this book.

The S.O. pin might be a useful pin, but it appears to have found
few applications. Basically it could serve as a kind of “hardware
flag,” since a positive-to-negative transition on the S.O. pin sets the
overflow flag. This flag may be tested with the BVC and the BVS
instructions. Note that arithmetic operations also affect this flag.

Finally, the SYNC pin produces a logic-one pulse during the entire
cycle in which an op code is being fetched. In the SYM-1, KIM-1,
and AIM 65, the SYNC pulse is used to pull the NMI pin low when
these microcomputers are in the single-step mode. This produces a
nonmaskable interrupt. The instruction currently being executed is
completed; then the processor jumps to the nonmaskable-interrupt
routine. This monitor routine saves the processor registers and re-
turns control of the program to the monitor. The user can, therefore,
execute his program one instruction at a time, and the various regis-
ters may be examined after each instruction. The monitor routine
contains no RTI instruction, so a key depression or some other signal
is required to execute the next instruction in the user’s program.

EXPERIMENT NO. 1
Step 1

Using the breadboard begun during the experiments at the end
of Chapter 11, add the circuit shown in Fig. 12-4. KIM-1 and SYM-1

298

users may omit the 74LS04 and the 741.S00 and use the RAM-R/W
signal available at pin Z of the expansion connector. Use the DS9FF0
device select pulse from the 7415154 shown in Fig. 11-9.

Step 2

Load the following program.
0200 8D FO 9F START STA MEM Write to address $9FFO
0203 4C 00 02 JMP START Loop back to START
Step 3

With the test probe shown in Fig. 12-4, test the WRITE ENABLE
output and the READ ENABLE output. Describe and explain what
you observe.

(You should observe that the LED glows when it is connected to the
WRITE ENABLE, but it does not glow when it is connected to the
READ ENABLE. Refer to Table 11-11 and note that during the
fourth cycle of the STA $9FF0 instruction the device select pulse
DS9FFO0 will occur. Since this is a WRITE operation, the R/W line
will be at logic zero. During the last half of this cycle, ¢» will be at
logic one, and a WRITE ENABLE pulse will occur. The READ
ENABLE requires that the R/W line be at logic one when the
DS9FFO0 pulse occurs, but during the last cycle of the STA $9FF0
instruction the R/W line is at logic zero. Thus, no READ ENABLE
pulse occurs.)

Step 4

How could you modify the program in Step 2 to produce a READ
ENABLE pulse but not a WRITE ENABLE pulse? Use the LED
test probe to verify your hypothesis.

EXPERIMENT NO. 2
Step 1

Breadboard the data bus buffer shown in Fig. 12-10. The 81LS97
is an octal version of the 741.S367, and two 74L.S367s may be used
instead. Other data bus buffers will also work. Keep this circuit for
Experiments No. 3, 4, and 5.

Step 2

Breadboard the hexadecimal display circuit of Fig. 12-8. Connect
the buffered data bus outputs to the data inputs of the two display

299

+5V
Tzo

=
e

81L897

10

= GND

Fig. 12-10. Temporary data bus buf-
fer for experiments in Chapter 12.
Two 7415367s (Hex Buffer/Drivers)
will also serve for this purpose.

chips, as indicated in the figure. For the WRITE ENABLE pulse use
the circuit of Experiment No. 1. The address of the display will be
$9FFO0, although any other of the addresses $9FFO0 through $9FFF
could also be used.

Step 3
To test the display, load the following program and execute it.

0200
0202
0205
0207
020A
020D
020F
0211

A5 00
8D FO 9F
A9 FF
8D 97 A4
2C 97 A4
10 FB
E6 00
4C 00 02

START

WAIT

LDA MEM
STA DISP
LDA $FF
STA T1024
BIT STATUS
BPL WAIT
INC MEM
JMP START

Load A with the contents of $0000.
Store A in the display.

Store $FF in 1024 timer.
Wait for time out.

Increment contents of $0000.
Loop to beginning of the program.

What effect do you expect this program will have on the display?

(The display should “count” through all possible (256) two digit
hexadecimal numbers. The time delay simply gives enough time for

human beings to observe the count.)

300

EXPERIMENT NO. 3
Step 1
Remove the display chips, and replace them with a 74100, as
shown in Fig. 12-7.
Step 2

Connect the outputs of the 81LS97 to the D inputs of the 74100
shown in Fig. 12-7. Connect the WRITE ENABLE output of Fig.
12-4, that you wired in Experiment 1, to the G inputs of the 74100
as shown in Fig. 12-7.

Step 3

Wire a test probe like the one shown in Fig. 12-4. Check all eight
outputs of the 74100. Some of them will be at logic one (the LED
glows) and some of them will be at logic zero. This output port has
random output logic levels when power is first supplied.

Step 4

Load and execute the following program.
0200 A9 FF START LDA $FF Put logic one into each bit of A.
0202 8D FO 9F STA PORTP Store A in output port $9FFO.
0205 00 BRK Break to the monitor.

What do you expect the test probe LED to indicate when you test
the output pins of the 74100?

(The LED should glow when it is connected to any of the 74100
output pins.)

Step 5

Change the byte to be stored in the output port to $00 by changing
the program byte at address $0201 to $00. Execute the program
again. What do you expect will appear on the output pins of the
74100? Experiment with other values of the byte located at $0201,
and test the output port pins with the LED test probe. Your 74100
should work perfectly before you proceed.

EXPERIMENT NO. 4
Step 1

Add the circuit shown in Fig. 12-9 to your breadboard. Connect
the outputs of the 74100 (or 74LS75s) to the Motorola 1408L8 DAC.
Adjust the 10K resistor to be approximately 1000 ohms.

301

Step 2

Connect a vom or vtvi between ground and the output (pin 6)
of the CA3140 operational amplifier.

Step 3

Using the “examine and modify memory” feature of your micro-
computer, load $FF into the location whose address produces the
device select pulse to write to the 74100. We have been using
DS9FFO0 in previous experiments. Your voltmeter should read, very
approximately, three volts. Adjust the 10K feedback resistor so that
the voltage is about 2.55 V.

Step 4

Now load the location whose address is $9FF0 with $00. Your volt-
meter should read zero.

Step 5

Now load $80 into the DAC output port, $9FF0. You should read
about 1.28 V on your voltmeter. If you do not get this value, you
might check to see if bit seven is connected to pin five of the DAC.
Pin five of the DAC input should be a logic one; all the other pins
should be at logic zero. ’

Step 6

In turn, load $01, $02, $04, $08, $10, $20, $40, and $80 into the
DAC and measure the logic levels on the input pins and the voltage
output from the operational amplifier. The values given above to
load into the DAC produce, in turn, a logic one on pins 12, 11, 10,
9, 8, 7, 6, and 5, leaving the other input pins at logic zero. In this
way you can make sure all the output bits are properly ordered.
Your DAC is now working properly. Compare your output voltages,
given the DAC inputs, with what you would expect.

(You should obtain the following output voltages with the given in-
puts, provided the 10K feedback resistor was adjusted to give an
output voltage of 2.55 volts with $FF loaded into the DAC. A DAC
input of $01 gives 0.01 V, $02 gives 0.02 V, $04 gives 0.04 V, $08
gives 0.08 V, $10 gives 0.16 V, $20 gives 0.32 V, $40 gives 0.64 V,
and $80 gives 1.28 V.)

302

EXPERIMENT NO. 5
Step 1
Load the programs given in Examples 1 and 2. Execute the
program given in Example 2 first. This loads the waveform table
needed for the tone generation program. After executing the pro-
gram in Example 2, check page three of memory to see that it
contains a triangular waveform.

Step 2

Load $03 into locations with addresses $0002, $0005, $0008, and
$000B. These locations contain the high-order byte of the addresses
of the entries in the waveform table.

Step 3

Connect a 0.047-microfarad capacitor from the output of the
CA3140 to the input of your hi-fi or some other audio-amplifier-
speaker system.

Step 4

In the program listed in Example 1, replace the instruction bytes
from $0206 through $020B with $EAs. In other words, six bytes are
changed to NOP instructions.

Step 5

Run the program. You should hear a mellow tone from your audio
system. The program is now playing only one note.

Step 6

Remove the first two NOP instructions you inserted, and put the
correct instruction bytes back into the program. Now execute the
program. You should hear two tones that are harmonious.

Step 7

Remove the second two NOP instructions you inserted, and put
the correct instructions back into the program. Execute it. What do
you expect to hear?

Step 8

Add the final two correct instructions. Run the program. You
should hear four tones. See reference 1 if you want to play the
Star Spangled Banner in four-part harmony. Keep your DAC circuit;
it will be used in the next chapter.

303

CHAPTER 13

Data Bus, Buffering, and
Applications

OBJECTIVES
At the completion of this chapter you should be able to:

® Understand the necessity for buffering the various microcom-
puter buses.

® Understand and use three-state buffer/drivers to buffer the bi-
directional data bus.

e Construct a 1-bit or an 8-bit input port using three-state buffer/
drivers.

¢ Build and operate a memory-mapped analog-to-digital converter
circuit.

® Design and construct latched input ports using the 8212 I/0
integrated circuit.

INTRODUCTION

The general topic of this chapter will be the subject of buffering,
but it will include a more complete discussion of the data bus than
has been heretofore given in this book; several interfacing applica-
tions will also be mentioned. The control bus and the address bus
are “one-way,” or unidirectional, buses; that is, one device in the mi-
crocomputer system controls the logic level of the line. For example,
the 6502 controls the logic levels on the address bus (unless the mi-
crocomputer system utilizes direct memory access techniques). The
R/W line is also controlled by the 6502, and no other component in

304

the microcomputer system can be allowed to affect this control line.
On the other hand, logic levels on the data bus are controlled by the
6502 only during a WRITE operation. During a READ operation,
the data bus logic levels are determined by the device that was
addressed by the 6502. This might be a R/W memory chip, an input
port, an interval timer, or a ROM chip. Since the data bus carries
information to and from the 6502, it is called a bidirectional bus.
We will look first at the need to buffer any kind of bus in a 6502
system; then we will examine the special requirements of a bidirec-
tional hus.

WHY BUFFER?

There are two reasons for buffering any bus:

¢ The pins on the 6502 that control a bus line are rated to drive
one standard TTL load. In many microcomputer systems there
will be heavier loading than this; that is, the computer will have
to “drive” more than one TTL-type input.

® The conductors in any bus system have capacitance. Capacitors
require time to charge and discharge, and, consequently, they
can distort the rapidly changing waveshapes one encounters on
the buses. Buffers can drive a much larger capacitance than can
the 6502, and, consequently, they are used to preserve the in-
tegrity of the waveshapes over long path lengths.

In addition, the data bus requires a special kind of buffer. Recall
that the microprocessor is capable of reading data from any of 65536
devices. However, only one of these devices should control the data
bus during any particular READ cycle. All the others should act as
if they are not there. If two devices are trying to take a data bus line
to opposite logic levels, not even a prophet can predict what data
the 6502 will read. Furthermore, during a WRITE cycle all the
devices in the memory space should be isolated from the data bus
as far as their control of it is concerned, while the 6502 controls the
logic levels on the data bus. This brings us to the third reason for
buffering:

¢ Buffers must be capable of isolating the data bus from all of the
devices connected to the data bus, except the device being

addressed.

All the control pins, the address pins, and the data pins on the
6502 are capable of driving one standard TTL load. This means that
only one standard 7400-series chip may be connected to an output
pin on the 6502, if the 6502 is to operate properly. You could con-

305

nect four 74L.S00-series chips to a bus line, but if you tried to connect
additional chips to these lines, the circuit might not operate.

One solution to the problem of connecting many devices to a sin-
gle line, in the case of the control bus or the address bus, is to con-
nect the pins of the 6502 directly to two 7404 inverters in series. Two
inverters in series results in no net inversion. A 7404 can drive ten
standard TTL loads and about 40 LS loads, while a 741.S04 can
drive 20 741.S00 loads. This kind of buffering would be adequate for
most systems provided the bus length is not too great. The AIM 65,
KIM-1, and SYM-1 all buffer the ¢, and R/W control lines with two
7404 inverters in series. Refer to the schematic of your system for
details. The address lines in these three microcomputer systems are
not buffered because they only drive a few MOS R/W memory and
ROM chips that require almost no driving power. However, if any
of these microcomputer systems are expanded, using the expansion
connector for example, some or all of the address lines will have to
be buffered. A popular technique is again to use two “head to tail”
7404 or 741.S04 inverters in series for each address line to be buf-
fered. For an example, check Pollock’s KIM-1 to S-100 bus circuit.!

There are other integrated circuits, called bus buffer/drivers that
either may be used on a unidirectional bus, such as the control bus,
or they may be used on a bidrectional bus. These integrated circuits
have four (quad), six (hex), or eight (octal) buffer/drivers per
chip. Some of the more popular chips are listed in Table 13-1. The
logic symbols for some typical buffer/drivers are shown in Fig. 13-1.
A truth table for the buffer/drivers used in this chapter is provided
in Table 13-2. Study the function of the G (gate) input. Note that
when the G input is low, then the output logic level of the buffer is
the same as the input logic level. In that case, the buffer/driver is
driving the particular bus line to which it is attached. An inversion
circle on a G input indicates that the buffer/driver is active when
the G input is at logic zero. Other buffers are active when their G
inputs are at logic one, and their logic symbols will not have inver-
sion circles at the G inputs.

Perhaps the most important feature is the third state in the truth
table, the one labeled “disabled.” When the gate is at logic one, the
buffer/driver acts as if it were disconnected from the bus; that is, it
behaves as if a switch in series with the output had been opened.
In effect, the buffer is “disconnected” from the bus. This property
of the buffer/driver is the reason for calling these devices “three-
state buffer/drivers” or “TRI-STATE buffer/drivers.” (TRI-STATE
is a trademark of National Semiconductor Corporation.) Observe
that the third state, or the disabled state, is exactly what is required

1Pollock, Jim, “KIM-1 to S-100 Bus Adapter,” 6502 User Notes, #7-8, p. 7.

306

=~/

=~

Fig. 13-1. Logic symbols for typical Buffer/Drivers.

when many devices are to be connected to the same bus. The bus
buffer/driver can be enabled whenever the device to which its input
is connected is addressed. It can be disabled, or disconnected from
the bus in effect, whenever the device to which its input is connected
is not addressed.

Fig. 13-2 shows how one bit of data might be input to the 6502
using some simple control logic and a three-state buffer/driver. Sup-
pose the address on the address bus produces a device select pulse
as indicated in Fig. 13-2. If the R/W line is at logic one, as it is dur-
ing a READ cycle, then the output of the 741.S00 will go to logic
zero during this cycle, enabling the three-state buffer/driver. The in-
put labeled D7 will then control the logic level of the seventh bit
of the data bus, and at the conclusion of the READ cycle the 6502
will read this logic level. Whenever the R/W line is low, or the

Table 13-1. Some Popular Buffer/ Driver Integrated Circuits

74125 QUAD DM8093 QUAD DM8097 HEX 7415241 OCTAL
74126 QUAD DM8094 QUAD 7415367 HEX 81LS97 OCTAL

Table 13-2. Typical Buffer/Driver Truth Table

Gate Input Output
(] (o] 0
(] 1 1
1 X DISABLED
X = DON'T CARE

307

Q +5v

74L500

DS LS04 ; Dcl—'_ G
31

RIW > JL
BIT TO BE INPUT % 3 [(lJN[E)A;A BUS

la
= GND
Fig. 13-2. Using Three-State Buffer/Driver to input one bit to data bus.

74L8367

device select pulse is not present, then the three-state buffer/driver
will be “disconnected” from the data bus, allowing other devices in
the system to control this bus,

Note that the data must be stable at the input to the 7415367 dur-
ing the READ cycle. Clearly, the idea expressed in Fig. 13-2 may be
extended to include the other seven lines of the data bus. Since the
741.8367 is a hex buffer/driver, two of them would be required to
make an 8-bit input port. Alternatively, an octal device, such as
the 811597, could be used to provide a single-chip 8-bit input port.
An example of such an input port is given in Fig. 13-3. Note that
we have changed the control signal logic slightly to illustrate that
different possibilities exist, and the designer has a certain amount of
freedom in this area. However, we are assuming that an R/W (in-
verted R/W) signal is available, and it will be if two 7404s in series
are used to buffer this control line.

The circuit of Fig. 13-3 is not only useful as an input port, but it
is also useful to interface some devices to the data bus. For example,
on the KIM-1 we find two 74125 buffer/drivers used to interface the
6102 R/W memory chips to the data bus. Some memory chips lack
the necessary drive to control the data bus, so buffer/drivers are used
to provide the drive, and to isolate the memory chips from the bus
when they are not being addressed. The 2114 R/W memory chips
on the AIM 65 and SYM-1 have three-state data bus drivers. These
on-chip buffer/drivers are capable of driving two TTL loads, and
the AIM 65 and SYM-1 do not, therefore, buffer the R/W memory
chips.

An important restriction on the use of the circuit in Fig. 13-3 must
be observed if it is to be used as an input port. The data logic levels
at the input to the 81LS97 must be stable, at least during the READ

308

T+5V
20
_ LI o 74802

DS
- -3 1_I_L 81LS97
19 TO DATA BUS

2 3 LINES Q7
—

bi>—24 —
BYTE TO BE INPUT
TO THE COMPUTER I
5> 14 13
————
5> 16 15
r>—28 LU

llo
GND

Fig. 13-3. Using 811597 as 8-bit Input Port.

cycle in which the port is being read, or else the 6502 will read in-
correct data. In other words, an 81LS97 is not a latch. The logic
levels at the output follow the logic levels at the input anytime the
G inputs are at logic zero. A latched input port will be discussed
later in this chapter. We turn first to an application where the cir-
cuit of either Fig. 13-2 or 13-3 is suitable for reading data.

MEMORY-MAPPED ANALOG-TO-DIGITAL CONVERTER

The one-bit input port of Fig. 13-2 and the digital-to-analog con-
verter circuit shown in Fig. 12-9 can be used to make an analog-to-
digital converter. The complete circuit is shown in Fig. 13-4. Several
parts of this circuit have already been described. For example, the
74100 latch was described in Chapter 12, Fig. 12-7. The WRITE
ENABLE pulse is generated by the circuit in Fig. 12-4. Any conve-
nient device select pulse generated by the 74LS154 in Fig. 11-9
may be used. For the experiments, we used DS9FF0. The 74L.504
and the 74L.S00 perform the same function as described in Fig. 13-2;
that is, they enable the buffer/driver on the 741.S367 during a READ
cycle. The 1408 is a digital-to-analog converter; it was described in
Fig. 12-9. Note that we have shown the data bus lines connected
directly to the 74100. Since the 74100 represents one TTL load on

309

oLe

3021 199AUO0) [eyBig-ot-Bojeuy p-g| Biy

T+5V
+5V

L

74100 |4 6| 140818
o> 2 9 7

+5V
22K TIS

0> 21 20 8
DATA [03>
BUS o> 11 8 9 7415367
> 10 9 10 —12v 5
- S —12v 1/
o> 15 18 11 ANALOG IN
(06 > 16‘ 16 I
17 12 8
(o7 >— J‘ZSpF - 1
12 23’ 1 15 3
WRITE ENABLE T

—12V

these lines, and there may well be other loads on the data bus in
your microcomputer, it would be wise to use the buffer circuit shown
in Fig. 12-10 between the data bus and the 74100. In that case, the
output line from the 74L.S367 1-bit input port should be connected
directly to data bus line 7, and not to the input of the 74100. Now
you should see that almost all of the circuit shown in Fig. 13-4 has
already appeared in one form or another in previous circuit diagrams
and, therefore, its complexity should not disturb you. The only new
component is the LM311 voltage comparator whose significance in
this circuit will now be explained.

To see how the analog-to-digital converter works, suppose that the
microcomputer program starts by loading $00 into the 74100 output
port that drives the 140818 DAC. Then the output of the CA3140
operational amplifier, which is converting the DAC current to a volt-
age level at pin 6 of the CA3140, should be zero. Assume also that
the CA3140 feedback resistor, R, has been adjusted to give 10 volts
at pin 6 when $FF is stored in the DAC port. Let the microcomputer
program increment, in steps of one, the number being output to the
DAC port. The voltage level at pin 6 of the CA3140 should increase
from zero to ten volts in 255 steps of 39 mV/step during the incre-
menting process. If, after reaching $FF, the number loaded into the
DAC port is incremented once more, then the voltage will suddenly
drop to zero again. If this entire sequence of instructions is put into
a program loop, then a ramp waveform will appear at the output of
pin 6 of the CA3140. A photograph of an oscilloscope measurement
of this waveform from our circuit is shown in Fig. 13-5.

Next, turn your attention to the LM311 voltage comparator. It
compares the voltage at pin 3 with the voltage at pin 2. If the former
is larger than the latter, then the output of the comparator, pin 7,

Fig. 13-5. Photograph of ramp waveform produced by DAC circuit. Sweep time is ap-
proximately 12 milliseconds, voltage rises from 0 to 10 volts.

3N

will be at logic zero. If the voltage at pin 3 is less than the voltage
at pin 2, then the output of the comparator is at logic one.

Suppose that the analog voltage at pin 2 of the comparator is 5
volts. Then, as the computer program increments the DAC output
from 0 volts to 10 volts, the comparator output voltage will corre-
spond to a logic one during that period when the DAC output is less
than 5 volts. As soon as the DAC output exceeds 5 volts, the com-
parator output corresponds to a logic zero. Thus, by “watching” bit
seven of the 1-bit input port, we can see when the comparator went
from logic one to logic zero. It did this, of course, when the output
of the DAC was equal (or slightly larger) to the analog input volt-
age. Fig. 13-6 is a photograph of both the DAC output and the com-
parator output with the program running. Observe that the com-
parator output drops to zero whenever the DAC output reaches a
certain level.

Suppose that the DAC output was adjusted, by means of the feed-
back resistor (R), so that when $FF was loaded into the DAC port
the voltage level at the output of the CA3140 was 2.55 volts. Further,
suppose that the microcomputer program continually increments the
number loaded into the DAC port. If the comparator switches from
logic one to logic zero when the number loaded into the DAC port
increments from $XY to $XY + 1, then the analog voltage is some-
where between $XY and $XY + 1. We, therefore, have succeeded in
finding a hexadecimal representation of the analog voltage. To get
a decimal representation, we must convert the hexadecimal number,
$XY, to a base-ten number, and then move the decimal point two

Fig. 13-6. Ramp waveform from DAC and LM311 Comparator output. Sweep time is 12
milliseconds; ramp voltage waveform (top) goes from 0 to 10 volts, while comparator
output switches between 0 and 5 volts.

312

places to the left. Thus, $F0 corresponds to a voltage between 2.40
and 2.41 volts, and $CO corresponds to a voltage between 1.20 and
1.21 volts.

A program to convert the analog voltage to a hexadecimal repre-
sentation is presented in Example 1. We assume that the DS9FFO0
device select pulse is used to write to the DAC and to read the
741.S367. The 74L.S367 represents the logic level of the comparator
output. It will only be connected to the data bus (line seven) when
the DS pulse is present and the R/W line is at logic one. Otherwise,
it will be disabled. Note that the data at the output of the 7415367
will be stable during the time when it is read because the compara-
tor would only change its state after a new “voltage” had been out-
put to the DAC by a new 8-bit representation from the computer.
This takes only a few microseconds. Thus, there is no need to latch
the data that we are going to read. Since we are only interested in
the logic level of bit seven of the data bus, a BPL instruction is used
to test the status of this bit.

When the program in Example 1 was run, the photograph shown
in Fig. 13-7 was obtained from an oscilloscope used to measure the
DAC output. Compare this photograph with the one shown in Fig.
13-6, and note that in Fig. 13-7 the ramp waveform stops as soon as
the comparator switches from logic one to logic zero, indicating that
the conversion has been completed. At that time, the number written
to the DAC, which was also stored in the location whose address is
$0000, is stored in the output Port A. If you have the I/O board used
for the experiments at Port A, then the LEDs will indicate the hexa-

Fig. 13-7. DAC and Comparator outputs with Analog-to-Digital Converter program execut-
ing. Sweep time is 3 milliseconds, ramp waveform (top) peaks at 4 volts when comparator
waveform (bottom) switches to 0 volts.

313

decimal number that represents the analog voltage. To generate an
“unknown” analog voltage, a 10K potentiometer connected between
+12 V and ground may be used, with the tap going to pin 2 of the
comparator.

We were able to assemble all of the components, including the
necessary decoding circuits described in Chapter 11, the control sig-
nal logic described in Chapter 12, and the components in Fig. 13-4
on a single AP Unicard, but it was a close fit. If you want a more
permanent analog-to-digital converter, you might try a wire-wrap
approach. Users of KIM-1 must be sure to include the circuit shown
in Fig. 11-10, or they will have two devices trying to control the logic
levels on the data bus simultaneously. (An oscilloscope is indispens-
able for getting this circuit adjusted properly. The layout, grounding,
and general construction practices may affect its operation. Voltage
comparators sometimes oscillate near the point where they make the
transition from one logic level to the other.) More details on analog-
to-digital conversions, including a much faster conversion routine,
are provided in Chapter 14.

Example 1: Analog-to-Digital Conversion Program—Ramp Approximation

$0000 = DIGITL; digital representation of analog voltage
$9FFO = DAC; output port to load the DAC and input port to test comparator
$A001 = PAD; output port to display result
$A003 = PADD; data direction register for PAD
$0200 A9 FF START LDA $FF Set up data direction register.
$0202 8D 03 AO STA PADD
$0205 A9 00 AGAIN LDA $00 Start generating DAC output voltage
$0207 85 00 STA DIGITL by loading $00 into DIGITL.
$0209 A5 00 RAMP LDA DIGITL Get DIGITL and store it in the DAC
port.
$0208B 8D FO 9F STA DAC
$020E AD FO 9F LDA DAC Test the comparator output level.
$0211 10 05 BPL DONE If it is logic zero, conversion is
finished.
$0213 E6 00 INC DIGITL Otherwise, increment number and
$0215 4C 09 02 JMP RAMP return to try again.
$0218 A5 00 DONE LDA DIGITL Now output the result to the 1/0
$021A 8D 01 A0 STA PAD port for display purposes.
$021D 4C 05 02 JMP AGAIN Repeat the conversion process.

AN ASCIl KEYBOARD INPUT PORT

One of the problems with the input port shown in Fig. 13-3 is that
the data must be stable at the inputs to the port during the READ
operation, and the data must be available when the computer is
ready to “read” the port. In many instances, it is desirable to be able
to latch a byte of data that is being input to the computer. For ex-
ample, suppose two 7490 decade counters provide eight bits of

314

counting data; at the end of a counting period we would like to store
the result and then continue counting while the computer reads the
byte of counting data just obtained. Clearly, using a three-state
buffer/driver as an input port would not allow us to save the count-
ing data because the outputs of the 7490s change constantly while
counting.

Another example in which it is sometimes desirable to be able to
latch the data byte to be input to the microcomputer is an ASCII
keyboard. Many computer systems utilize a keyboard as an input
device to get data or instructions from the outside world. The KIM-1
and SYM-1 systems interface with a teletypewriter keyboard with
which seven bits.of ASCII code are sent one bit at a time to the
computer. This is called serial input and it is quite common. Of
course, the computer is capable of reading seven bits of ASCII code
in one byte. When operated in this way, the keyboard input is just
another location in memory, and the mode is sometimes referred to
as the parallel 1/O mode.

To implement a parallel keyboard input port we will use the fol-
lowing:

e A device select pulse, DS, for the memory location of the key-
board input port.

¢ A three-state buffer/driver connecting the keyboard to the data
bus when the device select pulse occurs, but disabling it other-
wise.

® A means for the keyboard to communicate with the computer;
that is, the keyboard must inform the computer that a key has
been depressed.

® A means to store the byte of ASCII code until the computer
reads it into the accumulator.

Techniques for generating a device select pulse were described in
Chapter 11. A single Intel 8212 8-bit I/O will be used. In this appli-
cation the 8212 will be used for an input port. (It makes a suitable
output port also, but it is more expensive than a 74100, for example.)
In its input mode, the main advantages of the Intel 8212 are that it
has some control-signal logic circuitry available on the chip, it has
the ability to latch the input data, and it has three-state outputs that
can be connected to the data bus.

The logic diagram of the 8212 is shown in Fig. 13-8. We may
divide the chip circuitry into three_subsystems; the control logic, in-
cluding the DSI, DS2, MD, STB, CLR inputs and the INT output;
the eight data latches connected to the eight data inputs; and the
eight three-state buffer/drivers. Consider first the control logic
shown in Fig. 13-8. The CLR input will be tied to logic one to dis-
able it, although it might be connected to the system RES line to

315

LOGIC DIAGRAM SERVICE REQUEST FF

DEVICE SELECTION

(>0t W [>
>0 {:)_‘—> o (ACTIVE LOW)
[w W
(> st | i 1ouTPuT
| ' | BUFFER
! ! b
| ! !
: | :
" ! 4
E> D1y : b] : o0 D
1
DATA LATCH s, ; !
. o i
. |
PIN CONFIGURATION 5>y, S0 Q- Lpo, [6 >
| ! |
. | |
g ! :
i ! i
]
ol . : v
> snkinn - 00;
1 1]
el ! i
I) '
N e i
N)
By AR EEL N
I) |
[Sy) !
i R !]
i ! i
1
ol e LI 00 [15>
1 1 1
s) |
8 il i
Dlg E o o 005 (17>
‘ !
' ! ;
Balll ! |
; ' '
: ! !
PIN NAMES DY o Q| 00, 19>
D1y-Dly | DATAIN E He | i
| 01 . :
D0, -D0; | DATA OUT ' Sl !
DS, - DS, | DEVICE SELECT > o, P @—Lnos >
I — —_—] ! I
|Mo | MoDE | RESET DRIVER ' ¢) !
sT8 STROBE i R i |
— .]]]
iNT INTERRUPT (ACTIVE LOW) - \4>c ! T ! !
TR | CLEAR (ACTIVE LOW) ACTIVE LOW) e O s

Courtesy Intel Corp.
Fig. 13-8. Logic diagram of Intel 8212 1/O Port.

bring up the inputs in a known logic-zero state. The MD input is
tied to logic zero for the input mode. This step disables the top anp
gate in the cluster of two AND gates and one or gate, and it enables
the lower anD gate in this same cluster. Then the STB (for strobe)
line is connected directly to the C inputs of the data latches. When
the STB line is at logic one, then the Q outputs of the latches follow
the D inputs. When the strobe line goes to logic zero, then the data
are latched; that is, they are stored at the Q outputs of the eight data

316

latches. Associated with most ASCII keyboards is a strobe signal
that consists of a positive pulse that occurs with each key depression
and only occurs when the ASCII word is available at the parallel
output of the keyboard. Many keyboards produce only a 7-bit word.
Thus, a single key depression results in the ASCII data being stored
in the 8212, with one bit (bit seven) left over. A 10-microsecond
strobe pulse will be adequate for our purposes.

Note that the STB input is also connected to the C input on the
service request flip-flop. The trailing edge of the strobe latches a
logic zero into the Q output of the flip-flop because the D input of
the service request flip-flop is connected to logic zero. Following the
Q output of the flip-flop, we see that it is inverted, ored, and in-
verted again to produce a logic zero output at INT whenever the
strobe pulse occurs. The output at the INT pin on the 8212 is used
to communicate with the microcomputer, informing it that_data is
available. It might be used to cause an interrupt (either TRQ or
NMTI), and the interrupt vector would point to a routine to read the
keyboard with an LDA KEYBOARD instruction. Assume that KEY-
BOARD is a symbol for the address of the memory location of this
input port.

Continuing, we note that the address of KEYBOARD appears on
the address bus during the third cycle of the LDA KEYBOARD in-
struction. The address lines must be decoded to produce a device
select pulse, DS, for this address, and this device select pulse goes
to pin DSI on the 8212. The R/W line is connected to the DS2 pin
on the 8212. Thus, at the same time that DS1 is brought to logic
zero by the device select pulse, the DS2 pin is a logic one. When
DSI is at logic zero and DS2 is at logic one, then the three-state
buffers are enabled, as an examination of Fig. 13-8 will reveal. This
action places the byte of data on the data bus.

Also observe that when DSI is at logic zero and DS2 is at logic
one, then the set input of the service request flip-flop is at logic
zero, setting it. A logic zero appears at the Q output of the service
request flip-flop, clearing the interrupt request. In other words, INT
goes to logic one. The data has now been read and the interrupt has
been cleared, freeing the computer to go on its way until another
key is depressed and the entire process is repeated.

In Fig. 13-9, we show a complete 8-bit input port utilizing the
8212. The device select pulse, DSIFFF, is assumed to originate in
the 74LS154 in Fig. 11-9. The R/W line comes from the 6502, while
the keyboard strobe and the data originate in an ASCII encoded
keyboard. Obviously there are other uses for an input port such as
this, other than obtaining information from a keyboard. The data in-
put pins might be connected to two 7490s in a decade counter config-
uration. A positive strobe might be generated by the same circuit

317

+5V

14 24

DSOFFF psi O

Ds2 INTpZ—— 10 1RQ OR NI
KEYBOARD 1

srhoge 5 STB

KE&?\%RD s 70 THE

DATA

5 —peBUsS
2 21
[ois>— MD > 07

2(12

l: GND

Fig. 13-9. Intel 8212 used as 8-bit Input Port.

that gates the pulses going to the first 7490 counter. When the gate
closes, counting stops, a strobe occurs, and the data at the Q outputs
of the 7490s is latched into the 8212. This would make a simple
two-digit bed pulse counter or timer. You can use your imagination
to think of some other applications.

Let us produce the_software necessary to utilize this input port.
First assume that the INT is connected to the TRQ pin on the 6502.
Note that the TRQ and NMI pins both require a pull-up resistor, but
these are already connected on the AIM 65, KIM-1 and SYM-1 sys-
tems. The program offered in Example 2 illustrates how the input
port would work in the interrupt mode. The main program is simply
intended to simulate a much longer, more complex, and more useful
program. The main program in Example 2 outputs the contents of
the location with address $0000 to Port A, and in the experiments
section of this chapter it will be used to test the input port. The main
program is also an infinite loop. The interrupt routine reads the key-
board and stores the result in the location whose address is $0000.

318

Thus, the keyboard data is passed to the main program by using
this_zero-page memory location. Of course, the interrupt vector
(TRQ) must point to $0300 in order for the program to work. The
same program could be used with INT connected to the NMT pin if
the NMI interrupt vector points to $0300. The hardware in Fig. 13-9
and the software given in Example 13-2 constitute an interrupt
driven keyboard.

There is another mode in which an input port may be operated
without using interrupts. If the INT output is connected to the D7
input of our 1-bit port described in Fig. 13-3, then the strobe pulse
will cause this input to go to logic zero. Assume another device select
pulse, DSOFFE, for example, is used to read this 1-bit input port.
When it shows a logic zero in bit seven, then the computer knows
that a key has been depressed and it should read the input port. In
this case, the software is said to poll the keyboard. After the program

Example 2: Software for Interrupt Driven Input Port
$0000 = DATA
$1700 = PAD; Port A, an output port
$1701 = PADD; Port A data direction register

$17FE = IRQL; Contains $00

$17FF = IRQH; Contains $03

$9FFO = KYBD; Keyboard input port
0200 A9 FF MAIN LDA $FF Initialize Port A to be an output
0202 8D 01 17 STA PADD port
0205 A5 00 LOOP LDA DATA Get data from address $0000.
0207 8D 00 17 STA PAD Store it in the output port.
020A 4C 05 02 JMP LOOP Loop here unless interrupt occurs.
0300 AD FF 9F IRQST LDA KYBD Get data from keyboard input port.
0303 85 00 STA DATA Store it at address $0000.
0305 40 RTI Return from interrupt.

reads the input port, INT goes to logic one, indicating that the key-
board has been serviced. The software for this mode of operation is
given in Example 3. Note that two distinct device select pulses are
required. We have placed the polling software in a subroutine.
Again, our main program is not to be taken literally. Rather, it is in-
tended to simulate a more useful program. The subroutine INPUT
stores the keyboard data in Port A. We will use this feature to test
the program and the ports.

Example 3: Program to Poll Keyboard Input Port

$1700 = PAD; Port A, an output port

$1701 = PADD; Port A data direction register

$9FFE = POLL; Bit seven at logic zero indicates a keystroke

$9FFF = KYBD; Keyboard input port
0200 A9 FF MAIN LDA $FF Set up data direction for Port A.
0202 8D 01 17 STA PADD

319

0205

0208
0300
0303
0305
0308
0308

20

4C
2C
30
AD
8D
60

Step 1

Connect a 74L.S367 three-state buffer/driver as shown in Fig.
13-10. You can do this on a breadboard other than the AP Unicard.

00 03 HERE

05 02

FE 9F INPUT
FB

FF 9F

00 17

o +5V

16

1
[C>—6 a0

Step 2

Connect the gate, G, input to ground; then try connecting the in-
put pin to logic one (+5 V) and next to logic zero (GND). What
do you expect the LEDs will show?

ls
GND

JSR INPUT
JMP HERE
BIT POLL
BMI INPUT
LDA KYBD

STA PAD
RTS

150 @

LED

150 @

LED

Jump to test if data from keyboard is
ready.

Is bit seven at logic zero?
No; loop here until it is zero.
Yes; read the keyboard.
Output result to Port A.

EXPERIMENT NO. 1

Fig. 13-10. Circuit to demonstrate a
Three-State Buffer/Driver.

(The top LED should glow when the input is connected to logic
zero, because then current can flow from the +5-volt source through
the LED and through the output pin of the 741.S367 to ground. The
lower LED lights when the input is at logic one.)

320

Step 3

Now connect the gate, G, to logic one (+5 V) and repeat Step 2.
What do you expect to observe? Refer to the truth table in Table
13-2 to explain your observations.

(Both LEDs will be lit since there is no longer a path to +5 V
(through pin 3) or GND through the 74L.S367.)

EXPERIMENT NO. 2
Step 1

In this experiment we will construct a 1-bit input port on the AP
Unicard. The control-logic circuit will be similar to the one shown
in Fig. 13-3. However, since the board is becoming crowded we will
use a slightly modified version shown in Fig. 13-11. Note that the
741.S00 NAND gate is used as an inverter. Connect this circuit. The
74L.S02 and 74LS00 are already on the breadboard.

+5V
TIB

+5V
DSIFFF 741502 g J4LS00
Bs>——d) o4

> 2 3 BIT SEVEN
OF THE
INPUT 14,_5367 DATA BUS

la

= GND

Fig. 13-11. One-Bit (Bit Seven) Input Port.

Step 2

Test the input port to see if it works. Connect the input (pin 2)
of the 74L.S367 to logic zero. Then load and execute the following
program.

0200 2C FF 9F START BIT PORT Test bit seven of the input port.
0203 10 FB BPL START If bit seven = zero, branch back.
0205 00 BRK

k73

What do you expect to observe?

(If bit seven is at logic zero, then the program should stay in the
loop. Otherwise, it will exit the loop and jump to the monitor, light-
ing the display.)

Step 3

While the program is running, change the input pin from logic
zero to logic one. What do you observe?

(You should observe that the program jumps to the monitor as soon
as the input pin is lifted from its ground connection.)

Step 4

With the input pin connected to logic one, load and execute the
same program as in Step 2, but with the BPL instruction replaced
by a BMI instruction (op code $30). Describe and explain your
results.

EXPERIMENT NO. 3
Step 1

Breadboard the analog-to-digital converter circuit of Fig. 13-4.
Use the 1-bit input port constructed in the previous experiment; that
is, connect the output of the LM311 comparator to the input of the
741.S367, and connect the output of the 741.S367 to bit seven of the
data bus.

Step 2

Connect a 10K potentiometer between +12V and ground, with the
wiper of the potentiometer going to the analog input (pin 2) of the
comparator.

Step 3

Write, load, and execute a short program to load $FF into the
DAC output port, address $9FF0. Adjust the feedback resistor on
the CA3140 to give about 10V output at pin 6. Adjust the potentiom-
eter to produce about 5 V at the pin 2 input of the comparator. What
logic level should you measure with your voltmeter on the output
of the comparator?

322

(You should measure a logic zero (zero voltage) since the output
of the CA3140 exceeds the analog input to the comparator.)

Step 4
With the same program load $00 into the DAC output port. A
simple program of the form:
LDA $00

STA DAC
BRK

will work. Now measure the output of the LM311 comparator. What
do you expect to read?

(Your voltmeter should read +5 V because the output from the
CA3140 is less than the potentiometer input to the comparator. Do
not proceed to the next parts of this experiment unless your experi-
ments this far have been successful.)

Step 5
Load and execute the following program:
0200 A5 00 START LDA DIGIT
0202 8D FO 9F STA DAC
0205 E6 00 INC DIGIT
0207 4C 00 02 JMP START

What do you suppose is the output of the CA3140?

(It should be a ramp waveform, since the input to the DAC is con-
tinually being incremented. If you have an oscilloscope, connect it
to the output of the CA3140 (pin 6) and observe this waveform. A
photograph of our results is shown in Fig. 13-5.)

Step 6

Connect the oscilloscope to pin 7 of the comparator. Describe and
explain what you observe. Compare it with the photograph in Fig.
13-6.

EXPERIMENT NO. 4
Step 1

In this experiment, we will make some final tests of the analog-to-
digital circuit. With the same circuit used in Experiment No. 3, load

323

and execute the program given in Example 1. Connect the I/O board
to the application connector.

Step 2

With the program running, reduce the potentiometer setting until
the voltage at pin 2 of the LM311 voltage comparator is zero. If you
cannot make this voltage zero with the potentiometer, connect pin 2
directly to ground. The LEDs at Port A should all be out, although
in certain cases the op amp might have some offset voltage that will
cause a one or a two to appear at Port A.

Step 3

Increase the potentiometer setting. What happens to the LEDs at
Port A?

(You should observe that as the potentiometer setting is increased
the number represented by the glowing LEDs at Port A increases.
It should be possible to increase the potentiometer until $FF appears
on the Port A LEDs. You have now successfully completed the A/D
converter. Congratulations! The proportionality between the analog
voltage level and the digital number is determined by the feedback
resistor, R, in the operational amplifier circuit. For a much faster
conversion scheme, refer to Chapter 14.)

EXPERIMENT NO. 5
Step 1

In this experiment we will test the 8212 1/O chip. There will be
no room on the AP Unicard, if you have built the DAC and the A/D
converter on this board. If you do not want to dismantle that cir-
cuit, you will need another breadboard. In any case, you will need
the device select circuitry of Fig. 11-9. Connect the DS9FFF device
select pulse to the DS pin of the 8212 and connect the R/W line
to DS2. Connect the output pins of the 8212 to the data bus, using
the expansion connector as before. Connect the IRQ pin on the ex-
pansion connector to the INT pin on the 8212.

Step 2

Breadboard the circuit of Fig. 9-9. It is used to produce a strobe
pulse. Instead of connecting the Q output of the 74121 to the IRQ
line, connect the Q output (pin 6) to the strobe input of the 8212.

324

Step 3

With suitable jumper wires, connect the DI inputs of the 8212 to
either +5 V or ground, producing logic one or logic zero signals,
respectively.

Step 4

Load and execute the following program:
0200 A9 FF MAIN LDA $FF Initialize Port A to be an output
0202 8D 01 17 STA PADD port.
0205 A5 00 LOOP LDA DATA Get data from address $0000.
0207 8D 00 17 STA PAD Store it in the output port.
020A 4C 05 02 JMP LOOP Loop here unless interrupt occurs.
0300 AD FF 9F IRQST LDA KYBD Get data from keyboard input port.
0305 40 RTI Return from interrupt.

What do the Port A LEDs indicate?

(They should show whatever random data happened to be at ad-
dress $0000.)

Step 5

Note the logic levels you have set up at the inputs to the 8212;
then strobe the 8212 with the circuit of Fig. 9-9. What do you ob-
serve at the Port A LEDs?

(You should observe that they show the same logic levels as you in-
put to the 8212. If they do not, check your interrupt vector and try
again.)
Step 6

Now change the inputs to the 8212 by connecting some to +5 V
and some to ground. What do you observe at the Port A LEDs?

(You should observe no change at these LEDs because the data has
not yet been strobed into the outputs, nor has the 8212 been read.)

Step 7
Strobe the 8212 and observe that the Port A LEDs indicate the
same data as are found at the inputs on the 8212.

Step 8
Design your own experiment to test the polled-service routine
described in Example 3.

325

CHAPTER 14

Applications

INTRODUCTION

In this chapter we have collected several articles, already pub-
lished or in press, that will give you an idea of what a finished micro-
computer project is. Of course, the projects described represent only
a small sample of the possibilities, and the projects would generally
be regarded as “minimal” designs. That is, much more elaborate and
sophisticated instruments and programs are possible. The articles
also reflect the author’s interests.

An important source of information for 6502 software and hard-
ware is:

COMPUTE!
P.O. Box 5406
Greensboro, NC 27403

Articles about 6502-based designs are often published in other jour-
nals as well.

Although the application programs described in this chapter were
written for the KIM-1, they may be easily converted to run on other
microcomputers once you understand both the basic elements of
programming and the features of your microcomputer. We begin by
giving a brief description of each application; the articles then fol-
low to complete the chapter.

® “Digital-to-Analog and Analog-to-Digital Conversion Using the
KIM-1.” This article first appeared in MICRO, December 1977-
January 1978, page 11. It is reprinted with permission. The
article gives several experiments with the Motorola 1408L8 digi-

326

tal-to-analog converter. It also describes a storage scope appli-
cation. The storage scope program and interface have been cor-
rected and improved by including suggestions made in the arti-
cle “Storage Scope Revisited,” by Joseph L. Powlette and Don-
ald C. Jeffery in the December 1978-January 1979 issue of
MICRO.

“Employing the KIM-1 Microcomputer as a Timer and Data
Logging Module.” This article first appeared in MICRO, Febru-
ary-March 1978, page 3. It shows how to measure the times at
which a series of events occur, and how to store the times of
the events for later display.

“Employing the KIM-1 as a Precision Keyer and Automatic
Message Sender.” This article is to appear in 73 Magazine. The
article is of particular interest to amateur radio operators. Code
speed is controlled digitally, and the program has the ability to
send three standard code messages automatically.

“Catching Bugs With Lights—A Program Debugging Aid.”
Kilobaud Microcomputing intends to publish this article. Some
of the interfacing techniques introduced in the last few chapters
of this book are used to display the contents of the various reg-
isters of the 6502.

“Lunar Occultation of a Star.” This program was written by Dr.
Thomas D. Strickler, Jesse Maupin, and John Drake of Berea
College. A technique to measure the precise time at which an
analog voltage is changing is described. Although they were in-
terested in timing occultations of stars by the moon, the tech-
niques are applicable to a number of scientific problems, so the
article is included.

DIGITAL-ANALOG AND ANALOG-DIGITAL
CONVERSION USING THE KIM-1*

A Motorola 1408L8 8-bit digital-to-analog converter is connected

as shown in Fig. 14-1. (The 1408LS8 is available from James Elec-
tronics, 1021 Howard Ave., San Carlos, CA 94070, as are the op amps
used in these experiments.) The PAD port of the KIM-1 is used to
provide the digital input to the 1408L8. The analog output of the
1408L8 is a current sink at pin 4, which we converted to a voltage
by means of the RCA CA3140 operational amplifier. The feedback
resistor R is adjusted to give the desired voltage output. For exam-
ple, a value of about 6500 ohms for this resistor results in a voltage
range from 0 volts when PAD is 0000 0000 to 10 volts when PAD is
1111 1111.

®Copyright © 1977, The Computerist, Inc., All rights reserved.

327

TO SCOPE
VERTICAL INPUT

ARAAY

AR

—
o

>
NS
=3
—_
i

=GND
Fig. 14-1. Circuit diagram for Digital-to-Analog Converfer and Analog-to-Digital Converter.
See text for values of R; IN746 is 3.3 V zener diode and 1N751 is 5.1 V zener diode.

For the first experiment do not connect the second op amp; simply
connect the output of the first op amp to an oscilloscope as shown.
Load the program given in Example 1.

Example 1: Program to Generate a Ramp Voltage Waveform

0300 A9 FF START LDA $FF 255 in accumulator.
0302 8D 01 17 STA PADD Port A is the output port.
0305 EE 00 17 BACK INC PAD Increment number in PAD.
0308 4C 05 03 JMP BACK Increment in a loop.

Running this program should cause a ramp waveform to be observed
on the oscilloscope screen. A close examination of the ramp will
show that it consists of 28 = 256 steps, rather than a straight line.

Next, connect the 531 op amp. It acts as a comparator. It compares
the voltage from the output of the first op amp (which we shall call
the digital signal) with a voltage from some source to be applied to
pin 3 (which we shall call the analog signal). The output of the
531 is connected to PB7 on the KIM. If PB7 = 1, the analog signal
is greater than the digital signal. If PB7 = 0, the analog signal is less
than the digital signal. The digital signal is, of course, produced by
the contents of PAD.

A flowchart showing what we intend to do is shown in Fig. 14-2,
and the corresponding program is given in Example 2. Output port

328

START

Fig. 14-2. Flowchart for Analog-t
Digital Converter: Ramp
Approximation.

DISPLAY PAD
CONTENTS ON
KIM

PAD is set to zero. If the analog signal is positive, then PB7 = 1.
PAD is now incremented until the comparator indicates that the ana-
log signal is less than the digital signal, i.e., PB7 = 0. At that instant,
the digital and analog signals are the same to within one bit, the
least significant bit, in PAD. The contents of PAD are then displayed
and the cycle continues.

If the feedback resistor is adjusted so that a value of PAD = 255,
= $FF ;¢ produces a voltage of 2.55 volts, then we have constructed
a simple digital voltmeter with a full-scale reading (in hex) of 2.55
volts. A simple program to convert from hex to base ten would make
the meter easier to read.

The ramp approximation is quite slow, and there is a faster tech-
nique known as “successive approximation.” It works as follows: the
most significant bit in the DAC is set to one, and all the others are
set to zero. If the comparator indicates that the analog signal is
greater than the digital signal, then the highest bit is made zero, and

Example 2: Program for Analog-to-Digital Converter (Ramp Approximation)

0300 A9 FF START LDA $FF 255 in accumulator.

0302 8D 01 17 STA PADD Make Port A an output port.
0305 A2 00 AGN LDX $00 Start PAD at zero.

0307 8E 00 17 RAMP STX PAD Ovtput value of X register.
030A AD 02 17 LDA PBD Read Port B.

030D 10 04 BPL DISP Branch if bit7 = 0.

O30F E8 INX Increment X register.

0310 4C 07 03 JMP RAMP Continve loop.

0313 86 F9 DISP STX INH Put X into display register.
0315 20 1F 1F JSR SCANDS Use KIM-1 display subroutine
0318 4C 05 03 JMP AGN and start again at zero.

329

the next lower bit is set to one and the test is repeated. This iterative
process is repeated until all eight bits have been tested, starting with
the MSB and ending with the LSB. The flowchart shown in Fig. 14-3
indicates how this will be accomplished.

This analog-to-digital conversion scheme will be used in a program
which digitizes 256 points on a waveform and then stores the results,
to be displayed on an oscilloscope at a convenient time and with as
many repetitions as desired. This program is useful for examining
slow waveforms with an oscilloscope with a low persistence screen,
for example, ECG waveforms, and it is useful for examining non-
periodic waveforms, such as a one-shot impulse from an accelerom-
eter. The program has triggering built in, and the output scan por-
tion synchronizes the oscilloscope with a SYNC signal, turning an
inexpensive scope into something more useful. Flowcharts for the
storage scope program are presented in Figs. 14-4 and 14-5.

PAD = 8016 = 10000000,
PBZZ = 801¢ = 10000000,

E
ISPB7 = 17 YES

NO

PAD = PAD — PBzzJ

Fig. 14-3. Flowchart for Successive
Approximation Analog-to-Digital
Conversion program.

LOGICAL SHIFT RIGHT PGZZ
(SHIFTS ALL BITS ONE BIT
RIGHT AND ZERO BIT IS
SHIFTED INTO CARRY BIT)

| PAD = PAD + PGZZ l

NO

IS PGZZ CARRY
BIT SET?

APPROX. FINISH

330

(SET TRIGGER)

‘ START TIMER)

Fig. 14-4, Flowchart for Storage DIGITIZE)
Scope Program.
X=X+1
WAIT
FOR TIMER

DISPLAY

A short description of the behavior of the circuit and program
follows. The experimenter chooses the desired trigger level and loads
this into location $0306. When the analog signal is greater than this,
the comparator makes PB7 go high and the scan begins. The sam-
pling rate and the scan time are determined by the number loaded
into the timer and the timer used, locations $0314 and $0316, respec-
tively. It takes about 300 microseconds to digitize, so there is no
point in choosing time intervals smaller than this. The X register is
used as an index to identify each of the 256 points on the scan. After

3N

SYNC SCOPE ’

PUT Fig. 14-5. Flowchart for Waveform
TABLE (X) Display program.
INTO PAD

the timer is started, the analog signal is digitized and the timer is
watched until it is finished. The X is then incremented and a new
point is digitized until all 256 points are finished and stored in
TABLE X.

The X is then zero again. This entire process will repeat unless the
“1” key is depressed, in which case the program displays the data
on the oscilloscope, connected as before to the output of the first
op amp. The display will repeat, complete with a SYNC signal out-
put from PBO, until the program is halted. In our case we loaded the
vector $17FA and $17FB with the starting address of the program
($0300) so a depression of the ST key caused the entire program to
start over.

A listing of the program is shown in Example 3. Notice that the
data is stored in TABLE, X located in page two of memory, PGZZ is
at location $0000, the trigger level is in $0306, and the scan time
variable is in $0314 and $0316. The scan time should not be shorter
than 300 microseconds. As far as display is concerned, we found
that a sweep rate of 200 to 500 microseconds per cm gave good re-
sults. Two photographs, showing the results obtained by converting
two 14-Hz waveforms to digital levels and then displaying them on
an oscilloscope with the storage scope program, are shown in Figs.
14-6A and B.

A few other comments may be in order. First, most of the ideas
for this project were obtained in a KIM workshop offered by Dr.
Robert Tinker. The software implementation is the author’s work.

332

(A) Sine Wave.

(B) Ramp Wave.

Fig. 14-6. Storage Scope reconstruction of 14-Hz Sine and Ramp Waveforms. Photographs
made by Joseph L. Powlette and Donald C. Jeffery of Moravian College.

There are some obvious improvements, such as a sample-and-hold
device between the analog source and the comparator or a faster
approximation routine. These improvements are left for the reader
to implement. Fast A/D converter circuits can be difficult to adjust.

333

I am indebted to Joseph L. Powlette and Donald C. Jeffery® of
Moravian College for pointing out the necessity for the high-speed
531 op amp, and for providing the photographs.

0300
0302
0305
0307
030A
030C
030D
030E
0311

0313
0315
0318
031A
031C
031F

0322

0324
0325
0327
0329
0328
032D
0330
0333
0336
0337
0339
033C
033E
0341

0344
0346
0348
0348
034D
0350
0352
0355
0357
035A
035D
0360
0361

0363

A9
8D
A9
8D
A2
EA
EA
AD
10
A9
8D
A9
85
8D
AC
30
38
E5
46
BO
65
4C
8D
9D
E8
FO
AD
10
4C
20
c9
FO
4C
A9
8D
A2
AD
49
8D
BD
8D
E8
DO
4C

FF
o1
10
00

02
FB
co
05
80
00
00
02
03

00
00
05
00
1C
00
00

08
07
FB
13
6A
01

03
05
01

03
00
02
01

02
00
00

F7
52

17
17

17
02
17

03

Example 3: Program for Storage Scope

BEGIN

START

TRIG

STIME

TEST

FWRD

out

CHEK

DISPLY

SYNC

RPT

SCAN

LDA
STA
LDA
STA
LDX
NOP
NOP
LDA
BPL
LDA
STA
LDA
STA
STA
LDY
BMI
SEC
SBC
LSR
BCS
ADC
JMP
STA
STA
INX
BEQ
LDA
BPL
JMP
JSR
CMP
BEQ
JMP
LDA
STA
LDX
LDA
EOR
STA
LDA
STA
INX
BNE
JMP

$FF
PADD
TSET
PAD
$00

PBD
TRIG
$co
TIMER
$80
PGZZ
PAD
PBD
FWRD

PGZZ
PGZZ
out
PGZZ
TEST
PAD
TABLE X

DISPLY
TCHEK
CHEK
STIME
GETKEY
$01
SYNC
START
$01
PBDD
$00
PBD
$01
PBD
TABLE, X
PAD

SCAN
RPT

Initialize Port A to be an output port.
Trigger voltage set.

Initialize X register.

Test PB7 for trigger level.
Wait if PB7 = 0.

Set scan time here.

Select interval timer.

Start digitize sequence.
Store initial value.

Output value.

Test PB7.

Branch if PB7 = 1.

Clear borrow flag.

Subtract bit seven.

Set PGZZ for next lower bit.
Out of digitize loop if finished.
Set next lower bit = 1.
Return to test all lower bits.
Final approximation in PAD
and in TABLE(X) in page 2.
Bump table index.

Go to display if table is complete.
Test if timer is finished.

If not, wait in loop.

Digitize another point.

Is key 1’ depressed?

Yes. Display the data.
No. Return to start.
Set up PBO as SYNC output pin.

Initialize X to display table.
Toggle PBO for SYNC.
Signal to scope.

Output TABLE(X) for

display on scope.

Increment X register.

Continue until all points are out,
then repeat.

1“Storage Scope Revisited,” Powlette, Joseph L., and Jeffery, Donald C.,

MICRO, December 1978-January 1979, p. 29.

334

EMPLOYING THE KIM-1 MICROCOMPUTER AS A
TIMER AND DATA LOGGING MODULE*

The interval timers on the 6530 on the KIM-1 microcomputer pro-
vide a convenient way to measure the time between two or more
events. Such events might include the start and end of a race, the
exit of a bullet from a gun and its arrival at a measured distance
along its trajectory, the interruption of light to a series of phototran-
sistors placed along the path of a falling object, an animal arriving
at a feeding station, cosmic rays striking a detector, etc. Some ot
these measurements will be described in more detail below. Each
event must produce a negative pulse that the microcomputer detects.
The microcomputer also records the time at which the event oc-
curred. The time is stored in memory, and later it may be displayed
on the six-digit KIM-1 display.

The data logging, timer, and display programs are listed in Exam-
ples 4, 5, and 6, respectively. The programs must be used together
for the applications described in this article, but each might be used
with other applications, for example, pulse generators, Geiger count-
ers, temperature logging, etc. The events to be timed must produce
either a one-shot pulse (positive-zero-positive) whose duration is at
least 50 microseconds, or a zero-to-positive transition which must be
reset to zero before the next event. These signals are applied to pin
PAO accessed on the KIM-1 applications connector. The programs
may be easily modified to detect positive pulses.

The first pulse starts the timer which continues to operate on an
interrupt basis. The time at which the first pulse occurs is not re-
corded by the data logging program since it corresponds to t =0.
Successive pulses cause the data logging program to store the six-
digit time counter in memory. The number of events (not counting
the first event), N, to be timed must be stored in location $0003.
Remember to convert the number of events, N, to base 16 before
entering it in memory. As the program is written, N must be less
than 75 = $4B.

The function of the timer program is to load the interval timer,
increment the six-digit time counter, and return to the data logging
program. At the end of each timing period the timer causes an inter-
rupt to occur (pin PB7 on the application connector must be con-
nected to pin 4 on the expansion connector), the computer jumps
to the timer program, does its thing, and returns to the main data
logging program to wait for events.

Table 14-1 lists several timing intervals which are possible and the
numbers which must be loaded into the various timers to produce

*Copyright © 1978, The Computerist, Inc., All Rights Reserved.

335

Table 14-1. Timing Intervals for Example 4

Time Interval Valuve Address Measured Interval % Error
100 microsec 49 170C 99.98 microsec 0.02%
1 millisec 7A 170D 0.9998 millisec 0.02%
10 millisec 9C 170E 10.007 millisec 0.07%
100 millisec 62 170F 100.5 millisec 0.5%

the given interval. For example, if one wishes to measure time in
units of 100 microseconds, then $49 must be stored in the divide-by-
one counter whose address is $170C. In this case. the numbers which
appear on the display during the display portion of the program
represent the number of 100 microsecond intervals between the first
event and the event whose time is being displaved To put it another
way, multiply the number on the display by 0.0001 to get the time
in seconds. The other possibilities listed in the table are treated in
the same way.

When all N events have been logged, the program automatically
jumps to the display program. When one is ready to record the data,
key “1” on the keyboard is depressed. The time of each event, ex-
cepting the first which occurred at t = 0, is displayed on the six-digit
readout for several seconds before the display moves to the time ot
the next event. This gives the experimenter time to record the data
on paper. If more time is required, increase the value of the number
stored in location $0289.

Example 5 also lists the measured time interval and gives the per-
cent error between the stated interval (say 100 microseconds) and
the actual measured interval (99.98 microseconds). The measure-
ments were made by connecting a frequency counter (PASCO Sci-
entific Model 8015) to pin PB7 while the program was running and
after the first event had started the timer. If greater accuracy is re-
quired for the 10-millisecond and 100-millisecond intervals, then
experiment with putting NOP instructions between the PHA instruc-
tion and the LDA TIME instruction in the timer program.

The simplest application for the program is a simple stopwatch
with memory. Any suitably debounced switch can be used. See
pages 213 and 280 in CMOS Cookbook by Don Lancaster, published
by Howard W. Sams & Co., Inc., 4300 West 62nd Street, Indianapo-
lis, Indiana 46268 for several suitable switching circuits. The circuit
of our Fig. 9-9 may also be used to construct a stopwatch.

Being a physics teacher, I originally designed the program to col-
lect data for an “acceleration of gravity” experiment in the introduc-
tory physics lab. The technique may be applicable to other prob-
lems, so it is described herein. Nine phototransistors (Fairchild FPT
100 available from Radio Shack) were mounted on a meter stick at

336

10-cm intervals. Two incandescent (do not try fluorescent lighting)
150-watt flood lamps provided the illumination. The interface circuit
is shown in Fig, 14-7.

The 555 timer serves as a Schmitt trigger and buffer which pro-
duces a negative pulse when an object passes between the light and
the phototransistor. The 500K potentiometer is adjusted so that an
interruption of the light to any of the phototransistors increases the
voltage at pin 2 of the 555 from about 1.5 volts to at least 3.5 volts;
this is a very simple adjustment that should be made with a vtvm or
other high impedance meter, not a vom.

In the case of a simple pendulum, the relationship between the
period and the amplitude can be investigated by allowing the
pendulum to “run down” while logging the times when the bob in-
terrupts the light to a single phototransistor. With only one photo-
transistor the timer-data logging program can also be used as a ta-
chometer, if a rotating system of some kind is involved.

Lancaster, in the CMOS Cookbook, describes a tracking photocell
pickoff which could be used in conjunction with the program for out-
door races and other sporting events. See page 346 in the “Cook-
book.” A simple light-beam-phototransistor system could be placed
in a cage, and the apparatus would record the times at which an ani-
mal interrupted the beam, giving a measurement of animal activity.

If you want to measure the muzzle velocity of your rifle or hand-
gun, you will have to be more creative. First, I would modify the

T+5V

SOUK% 3 PAO
555
6 5
1 l
1
I
I

:r .0lmF

Fig. 14-7. Interface circuit for Timer-Data Logging program. Up to ten phototransistors
(FPT-100) may be connected in series as indicated by dashed line.

337

program so that one pin, say PAO, is used to start the timing while
another pin, say PBO, is used to stop the timing. This can be accom-
plished by changing the instructions at addresses $0226 and $022D
in Example 4 from AD 00 17 to AD 02 17. Then I would use a fine
wire foil to hold the clock input of a 7474 flip-flop low until the wire
foil was broken by the exit of the bullet from the gun. The Q output
going high would start the timing, so it would be connected to PAO.
To end the timing, one could use a microphone to detect a bullet
hitting the backstop. Of course, the microphone signal would have
to to be amplified and used to clock the other flip-flop on the 7474
to signal the second event. Another approach would have the arriv-
ing bullet smash two pieces of aluminum foil together, closing a
switch. The distance between start and stop should be at least 10
feet. Please be extremely careful with all muzzle velocity measure-
ments.

Example 4: Data Logging Program

$0000 = LOW
$0001 = MID
$0002 = HIGH
$0003 = N
$0053 = LO
$0053 = MI
$00A3 = HI
$00F9? = INH
$00FA = POINTL
$00FB = POINTH
$0271 = KEY
$1700 = PAD

$1F6A = GETKEY
$1F1F = SCANDS

0200 78 INITIAL SEI Disable interrupt.

0201 F8 SED Set decimal mode for addition.

0202 A2 00 LDX $00 Set X register to zero.

0204 A9 50 LDA $50 Locate interrupt ‘vector $0250 at

0206 8D FE 17 STA 17FE addresses $17FE and $17FF.

0209 A9 02 LDA $02

020B 8D FF 17 STA 17FF

020E A9 99 LDA 99 Clear counter by storing 99

0210 85 00 STA LOW in the three two-digit memory

0212 85 01 STA MID locations of the counter.

0214 85 02 STA HIGH

0216 AD 00 17 START LDA PAD Read input pin PAO.

0219 29 01 AND $01 Logical AND with input pin.

021B DO F9* BNE START If pin is 1, loop to START; if O,
continue.

021D AD 00 17 FLIP LDA PAD Read input pin again.

0220 29 01 AND $01 Logical AND with input pin.

0222 FO F9* BEQ FLIP If pin is O, loop to FLIP.

0224 58 18 CLl CLC Enable interrupt, go to interrupt

0226 00 EA BRK NOP to start timer, then return.

338

0228 AD 00 17 CHEK1 LDA PAD These instructions are the same

022B 29 01 AND $01 as the START and FLIP sequence.
022D DO F9* BNE CHEK1 They sense a logic 0 to logic 1
022F AD 00 17 CHEK2 LDA PAD transition at pin PAQ on the

0232 29 01 AND $01 application connector.

0234 FO F9* BEQ CHEK2

0236 E8 INX Increment X for each point.

0237 A5 00 LDA LOW Counter contents are stored in
0239 95 03 STA LOX a sequence of locations indexed
0238 A5 01 LDA MID by the X register.

023D 95 53 STA MLX

023F A5 02 LDA HIGH

0241 95 A3 STA HILX

0243 E4 03 CPX N Compare X to N. Return to CHEK1
0245 DO E1l BNE CHEK] if X is less than N. Otherwise,
0247 78 DISPLAY SEI go to DISPLAY; disable interrupt.
0248 4C 71 02 JMP KEY Jump to display program at $0271

*To trigger on negative transitions change D0 instructions to FO instructions
and vice versa in the asterisked statements.

Example 5: Timer Program

$0049 = TIME

$170C = TIMEX

$0000 = LOW

$0001 = MID

$0002 = HIGH
0250 48 INTRPT PHA Push accumulator on stack.
0251 A9 49 LDA TIME Start timer for 49, cycles.
0253 8D OC 17 STA TIMEX
0256 A9 01 LDA $01 Increment counter by adding 1
0258 65 00 ADC LOW to the two low digits;
025A 85 00 STA LOW and store result.
025C A9 00 LDA $00 Add carry from previous
025E 65 01 ADC MID addition to mid digits. If
0260 85 01 STA MID carry occurs from the two mid
0262 A9 00 LDA $00 digits, then add this to the
0264 65 02 ADC HIGH two high digits.
0266 85 02 STA HIGH
0268 68 PLA Pull accumulator from stack.
0269 40 RTI Return to data logger.

Example 6: Display Program

$0003 = N

$0003 = LO

$0053 = MI

$00A3 = HI

$00F9 = INH

$00FA = POINTL
$00FB = POINTH
$0200 = INIT
$1707 = TIME
$1F6A = GETKEY
$1FIF = SCANDS

339

0271 20 6A IF KEY JSR GETKEY Jump to KIM-1 keyboard monitor.

0274 C9 01 CMP $01 Test valid input.

0276 DO F9 BNE KEY If not, wait for input.

0278 A2 01 LDX $01 Initialize X register to index
027A B5 03 NXPNT LDA LO data points.

027C 85 F9 STA INH Put in KIM-1 display registers.
027E B5 53 LDA MI

0280 85 FA STA POINTL

0282 B5 A3 LDA HI

0284 85 FB STA POINTH

0286 8A TXA Save X while in subroutine by
0287 48 PHA pushing it on the stack.

0288 A0 10 LDY $10 Time to display each point.
028A 98 AGN TYA Save Y while in subroutine by
028B 48 PHA pushing it on the stack.

028C A9 FF LDA $FF

028E 8D 07 17 STA TIME

0291 20 1F IF REPEAT JSR SCANDS SCANDS is KIM-1 routine which
0294 AD 07 17 LDA TIME displays data in $00F9, $O00FA,
0297 30 O3 BMI OVER and $00FB. Repeated jumps to
0299 4C 91 02 JMP REPEAT SCANDS produce a constant display.
029C 68 OVER PLA Restore Y register.

029D A8 TAY

029E 88 DEY Decrement Y by 1 and repeat
029F FO 03 BEQ HOP display unfil Y = 0.

02A1 4C 8A 02 JMP AGN

02A4 68 HOP PLA Restore X register.

02A5 AA TAX

02A6 E4 03 CPX N Compare X with N. If X is less
02A8 FO 04 BEQ BEGIN than N increment X and display
02AA E8 INX next point. Otherwise, return
02AB 4C 7A 02 JMP NXPNT to the beginning.

02AE 4C 00 02 BEGIN JMP INIT

EMPLOYING THE KIM-1 AS A PRECISION KEYER
AND AUTOMATIC MESSAGE SENDER*

The short application program listed in Example 7 allows the
KIM-1 to send any of three messages by pressing one of three keys,
A, B, or C, on the KIM-1 keyboard, and with the interface circuit
shown in Fig. 14-8 the KIM-1 becomes an electronic keyer as well.
Any microcomputer with a 650X microprocessor and one of the
MOS Technology PIA or VIA chips may be used with only minor
modifications to the program. An important feature of the program
is the ability to precisely set the code speed between 5 and 99 words
per minute by entering the speed, in decimal, at storage location
$0000 in memory. The program converts this decimal number to
hexadecimal, then does a division routine to convert the speed to a

*Copyright © 1979 by 73, Inc., Peterborough, NH, Courtesy of 73, Inc. All
rights reserved.

340

o +5V —=XMTR

s
R

1
PAQ »—i PBO 1213 8 10 L XMTR
12 11 g
7400

Fig. 14-8. Interface circuit for Keyer and Message Sender. Some transmitters may require
optional relay for keying, with 1N914 diode across coil for protection against voltage
transients. All grounds should be same as KIM-1 ground.

time duration of the basic dot element, and the interval timers on
the 6530 PIA do the rest.

Anyone who does much contest operating will realize how usetul
an automatic message sender is. Even the casual cw operator can use
it for sending CQ or other routine messages. Code tests for novices
can be programmed and sent at precisely 5 wpm by storing the en-
tire test in memory. At 5 wpm at least five minutes of code may be
sent. For field day (1977) we used a similar program to send CQ
CQ CQ FD DE K@EI K@EI K as message A; then when a station
responded we sent __ DE K#EI UR 599 MO 599 MO K where
the blank was the call of the station to be keyed by the operator,
after which he hit key B to give the remainder of the message. It
worked very smoothly with no discernible pause between the call
letters and the message. (Don’t try to look up the score because
KOEI was not the call we used.) The operation of the keyer is exactly
like most electronic keyers; holding the paddle in the dot position
will cause a series of dots and spaces to be sent. Dashes occur with
the paddle in the dash position, and the timing of all the characters
is controlled by the program and the crystal on the microcomputer.

Assuming the program has been loaded and the interface circuit
connected, operation proceeds as follows. The code speed at which
you wish to operate is loaded into storage location $0000. Any deci-

341

mal number from 05 to 99 may be put into this location. Next the
starting and ending addresses of each message must be loaded into
memory. Since all three messages are in page two of memory, only
the low-order bytes of the starting and ending addresses need be
given. Suppose message A starts at $0200 and ends at $0251, message
B starts at $0252 and ends at $0265, while message C starts at $0278
and ends at $02FF. Then one would load $00, the starting address of
message A, at location $0001; $52, the starting address of message B
goes in at $0002; and $78 is entered at $0003. The respective ending
addresses go into memory locations $0004 to $0006; that is, $51 goes
into $0004, $65 goes into $0005, and $FF goes into $0006.

How do you load the messages themselves? For each character
you want to send you must load the corresponding hex number
shown in Table 14-2. Suppose message A is to be “DE KOEI K,” and
is to start at $0200. Then you load the hex numbers $90, $40, $00,
$B0, $FC, $40 $20, $00, $BO from locations $0200 through $0208;
$00 goes into $0001 and $08 goes into $0004.

Probably the best way to proceed is to first load the three messages
including spaces, noting the starting and ending addresses of each
message on a piece of paper. Then go back to page zero and put the
starting and ending addresses in their proper locations (Table 14-3).
Go to location $0300 and hit the co button to start the program run-
ning. Test to make sure everything is working before you put it on
the air.

Table 14-2. Morse Character to Hex Conversion Table

Morse Morse Morse
Character Hex Character Hex Character Hex
A 60 S 10 Word space 00
B 88 T co SK 16
C A8 u 30 BT 8C
D 90 v 18 AR 54
E 40 w 70 / 94
F 28 X 98 . 56
G DO Y D8 , CE
H 08 z cs8 ? 32
I 20 1 7C
J 78 2 3C
K BO 3 1C
L 48 4 oC
M EO 5 04
N A0 6 84
o FO 7 C4
P 68 8 E4
Q D8 9 F4
R 50 (o] FC

342

Table 14-3. Storage Locations to Be Loaded by Operator

Location Contents
0000 Speed in decimal (words per minute)
0001 Starting address of message A (low-order byte)
0002 Starting address of message B
0203 Starting address of message C
0004 Ending address of message A (low-order byte)
0005 Ending address of message B
0006 Ending address of message C
00F1 $04 prevents interrupts while in the monitor program

The flowchart shown in Fig. 14-9 and the comments in the pro-
gram should give the reader a good feeling for the structure of the
program. It consists of three principal parts, the main program, sub-
routine SEND, and the interrupt routine, all of which have individ-
ual flowcharts shown. Minor components are subroutine DIT which
holds PBO at logic zero for the dot length followed by a logic one for
the space length, subroutine DAH which holds PB0 at logic zero for
three dot lengths (1 dah =3 dits) followed by a space, and sub-
routine TIMER which loads the timer on the KIM-1 with the precise
length of one dot and then waits for this time to elapse.

We now look at some specific details of the program. The speed
in words-per-minute must be converted to hex before the computer
can do any further calculations with it. This conversion may best be
explained with an example. Suppose we wish to operate at 20 wpm,
so 20 is entered into location $0000. What we mean by 20 is 2 in the
tens place and 0 in the ones place, but what the computer thinks
this means is 2 in the sixteens place and 0 in the ones place. At least
we agree on the ones place, so initially we mask the ones place out
with an AND instruction; later we retrieve it and simply add it to the
result of our decimal-to-hex conversion of the 2. To trick the com-
puter into thinking the 2 in the sixteens place is the 2 in the tens
place we intended it to be, we change the sixteen to a ten with this
trick,

16,16

10=%5+3

The sixteens place divided by two is accomplished by one shift right
instruction (LSR), while the sixteens place divided by eight is ac-
complished by three shift right instructions. So, the two in the six-
teens place is shifted right once, stored, shifted right two more times,
and these two results are added. We now have 2 X 10 in the com-
puter (in hex, of course) rather than 2 X 16. Adding the results from
the ones place completes the conversion.

343

344

(BEGIN)

INITIALIZE
FLAGS

AND

PORTS

DECIMAL TO
HEX, TIME =
494/SPEED

JUMP
SUBROUTINE
GETKEY

—] X = START, Y F+— skseno |

INCREMENT X

(A) Keyer.
Fig. 14-9. Flowchart for

Sve

‘1apuag abessopy pue seho)y

‘Panuyuod 18puag (D)

‘ INTERRUPT)

SAVE
REGISTERS
AND

ACCUMULATOR

NO @ YES

}

TOGGLE
PAD

T0
RESET FLIP-FLOP

.

RESTORE
X REGISTER
AND A

‘ RETURN ,

3puag (g)

LOAD A WITH
MEM. X

SEND DASH

SHIFT LEFT

SEND
WORDSPACE

SEND
CHARACTER
SPACE

(' RETURN)

Using the keying speed definitions from The Radio Amateur’s
Handbook, one can calculate that the dot length in milliseconds is
1200/S where S is the code speed in words per minute. If the divide-
by-1024 timer on the KIM-1 is used, one count corresponds to 1.024
milliseconds. Converting the dot length to timer counts gives

TIME = (Hsi) base 10 = @ hex

where TIME is the number to be loaded into the divide-by-1024
timer to give a code speed of S wpm. So the computer must divide
S into 494. This is determined by successively subtracting S from 494
until the result becomes negative. The number of subtractions is the
quotient of 494/S.

Pin PBO on the KIM-1 is used as the keying output from the com-
puter. When power is applied to the computer and the reset button
is depressed, PBO comes up in a logic-one state. This dictates that
logic one corresponds to the transmitter being off. Consequently,
PBO is buffered and inverted twice by the Nor gates. Inverters such
as the 7404 would work, but since I needed a Nor gate in the keyer
interface, I simply used the other NoR gates on the same chip. If
PBO could sink enough current it might drive the relay directly, but
I preferred the buffering shown in Fig. 14-8. Mark elements of the
Morse code are sent by decrementing (DEC) PBO for the appropri-
ate length of time, while space elements are sent by leaving PBO at
logic one.

The program idles in the loop starting with JSR GETKEY and
ending with BNE RPT, testing each of three keys (A, B, and C) to
see if they were depressed. Refer to flowcharts for the keyer and
message sender shown in Figs. 14-9A, B, and C. If no key is de-
pressed, the program remains in this loop. If a key is depressed,
register Y is set to zero, one, or two, depending on which key was
struck. The Y is then used as an index to look up the starting address
(low-order byte of page two of memory) of the message (STRT,Y)
and later the ending address (END,Y) of the message. The starting
address is used as an index to find the first code element of the mes-
sage (MEM,X), and it is incremented until the ending address is
encountered.

The conversion of an 8-bit word of memory to a Morse code char-
acter has been described in other references in detail and will not
be repeated here. There are a number of schemes available-2:3:4, but

1Pollock, James W., “1000 WPM Morse Code Typer,” 73, January 1977,
p- 100.

2De Jong, Marvin L., “A Complete Morse Code Send/Receive Program for
the KIM-1,” MICRO, April-May 1978, p. 7.

346

the most efficient schemes appear to be those in references 3 and 4,
and that was the technique used here.

The keyer is implemented by the interrupt routine which in turn
uses subroutines DIT, DAH, and TIMER. It will send at exactly the
same speed as the messages. The keyer interface circuit is simply
debouncers that are reset at the end of an interrupt. If the key is still
in the dot or dash position, the reset has no effect and another inter-
rupt occurs. The flowchart indicates that the state of PA7 determines
which element is to be sent.

One last thought: if you want to be able to key in a few characters
in the middle of a message, just load a few word spaces there and
key the characters in when the blank occurs. This is handy for giving
signal reports and also in some contests where the number of con-
tacts is updated after each QSO.

Example 7: Source Listing for Message and Keyer Program

0300 78 BEGIN SEI Prevent interrupts.

0301 D8 CLD Binary mode.

0302 A9 C9 LDA $C9 Set interrupt vectors.

0304 8D FE 17 STA IRQL

0307 A9 03 LDA $03

0309 8D FF 17 STA IRQH

030C A9 01 LDA $01 Initialize 1/0 Ports A

030E 8D 02 17 STA PBD and B.

0311 8D 03 17 STA PBDD PBO is output pin.

0314 8D 01 17 STA PADD PAO is output pin.

0317 8D 00 17 STA PAD

031A CE 00 17 DEC PAD Toggle PAO to reset debounce
031D EE 00 17 INC PAD circuit.

0320 A5 00 LDA SPEED Get decimal value of speed
0322 48 PHA from location $0000 and
0323 29 FO AND $FO convert it to hex.

0325 4A LSR A Multiply tens digit by ten.
0326 85 10 STA SCRATCH

0328 4A LSR A

0329 4A LSR A

032A 18 CLC

032B 65 10 ADC SCRATCH

032D 85 10 STA SCRATCH Result of multiplication here.
032F 68 PLA Get SPEED again.

0330 29 OF AND $0F Add ones digit to SCRATCH.
0332 65 10 ADC SCRATCH

0334 85 10 STA SCRATCH Decimal to hex complet
0336 38 SEC Division routine begins here.
0337 A2 00 LDX $00

0339 A9 94 LDA $94

3Pollock, James W., “A Microprocessor Controlled CW Keyboard,” Ham
Radio, January 1978, p. 81.

4Qckers, Stan, “Code Test” The First Book of KIM, ORB, Argonne, Illionis,
1977, p. 56.

347

0338 85 08 STA LO

033D A9 04 LDA $04
033F 85 09 STA HI
0341 A5 08 up LDA LO
0343 E5 10 SBC SCRATCH
0345 85 08 STA LO
0347 A5 09 LDA HI
0349 E9 00 SBC $00
034B 85 09 STA HI
034D E8 INX
034E BO F1 BCS UP
0350 86 07 STX TIME Division complete.
0352 20 6A IF RPT JSR GETKEY Read keyboard subroutine.
0355 58 CLI
0356 A0 00 LDX $00 Test keys.
0358 C9 0A CMP $0A
035A FO OA BEQ MESSA
035C C9 0B CMP $0B
035E FO 05 BEQ MESSB
0360 C9 0C CMP $0C
0362 DO EE BNE RPT
0364 C8 INY
0365 C8 MESSB INY
0366 BE 01 00 MESSA LDX STRT,Y Start message.
0369 20 76 03 CNT JSR SEND
036C 8A TXA
036D D9 04 00 CMP END,Y End message?
0370 FO EO BEQ RPT
0372 E8 INX
0373 4C 69 03 JMP CNT
SUBROUTINE SEND
0376 8A SEND TXA
0377 48 PHA
0378 BD 00 02 LDA MEMX Get code element.
037B FO 1E BEQ WDSP
037D 0A HERE ASL A
037E FO 10 BEQ FINSH
0380 48 PHA
0381 BO 06 BCS DASH
0383 20 A0 03 JSR DIT Send dot.
0386 4C 8C 03 JMP ARND
0389 20 B9 03 DASH JSR DAH Send dash.
038C 68 ARND PLA
038D 4C 7D 03 JMP HERE
0390 A2 02 FINSH LDX $02
0392 20 BE 03 AGN JSR TIMER Character space.
0395 CA DEX
0396 DO FA BNE AGN
0398 68 PLA
0399 AA TAX
039A 60 RTS
0398 A2 04 WDSP LDX $04 Word space.
039D 4C 92 03 JMP AGN
SUBROUTINE DIT
03A0 A2 01 DIT LDX $01

348

03A2 CE 02 17 BACK DEC PBD

03A5 20 BE 03 SPA JSR TIMER
03A8 CA DEX
03A? DO FA BNE SPA
03AB AD 02 17 LDA PBD
03AE 4A LSR A
03AF BO 07 BCS DONE
03B1 EE 02 17 INC PBD
03B4 E8 INX
03B5 4C A5 03 JMP SPA
0388 60 DONE RTS
SUBROUTINE DAH
03B9 A2 03 DAH LDX $03
03BB 4C A2 03 JMP BACK
SUBROUTINE TIMER
03BE A5 07 TIMER LDA TIME Delay for the number of
03CO 8D 07 17 STA TIMER 1.024-millisecond units
03C3 2C 07 17 CHK BIT TIMER stored in TIME.
03C6 10 FB BPL CHK
03C8 60 RTS
INTERRUPT ROUTINE
03C9 48 INTRPT PHA Save registers.
03CA 8A TXA
03CB 48 PHA
03CC AD 00 17 LDA PAD Is PA7 = logic one?
03D0 30 06 BMI PAST Yes, dah. No, dit.
03D2 20 A0 03 JSR DIT Send dot.
03D5 4C DA 03 JMP ACRS
03D8 20 BY 03 PAST JSR DAH Send dash.
03DB CE 00 17 ACRS DEC PAD Toggle debounce circuit.
03DD EE 00 17 INC PAD
03E0 68 PLA Restore registers.
03E1 AA TAX
03E2 68 PLA
03E3 40 RTS Return from interrupt.

CATCHING BUGS WITH LIGHTS—
A PROGRAM DEBUGGING AID*

In debugging a program, how often have you wished you could
see the contents of the accumulator or the status register at each
step without pushing all those buttons? If you are interested in a
simple hardware solution to this problem, read on.

Although my circuit was designed for the KIM-1, the idea cer-
tainly is applicable to other systems. Even if you're not interested in
my Bug-Light circuit for programming purposes, it gives you one
or more output ports in page zero of memory, and it makes a useful
tool for teaching programming.

The KIM-1 monitor and a little hardware provide you with a sin-
gle-step mode in which the program may be executed one instruction

*Courtesy of Kilobaud Microcomputing. Copyright © 1979 by 1001001, Inc.,
Peterborough, NH. All rights reserved.

349

at a time. After each instruction is executed, the resident monitor
program stores the contents of the accumulator, the status register,
X register, Y register, and other registers. (See Table 14-4 for the
locations of each register.) The important registers are also saved in
zero page when a break (BRK) command is placed in a program
and the IRQ vector is $1C00. Both the single-step (SST) mode and
the break-to-KIM monitor are used extensively in debugging pro-
grams.

Table 14-4. Zero-Page Memory Locations of Various Registers

Address Label Contents
OOEF PCL Program Counter Low
00FO0 PCH Program Counter High
00F1 P Status Register (Flags)
00F2 SP Stack Pointer
00F3 A Accumulator
OOF4 Y Y Register
00F5 X X Register
00F6 CHKHI Cassette Checksum High
00F7 CHYSUM Cassette Checksum Low

Use of the SST mode is explained in the KIM-1 User Manual,
while the break-to-KIM monitor technique is explained in The First
Book of KIM. With either technique, the contents of the various
registers may be read by using the keyboard to look up the locations
in zero page where their contents are stored. For example, to see
what the contents of the accumulator are after an instruction, simply
address location $00F3 with the keyboard to display it on the seven-
segment display.

It’s a great feature, but it’s slow. At least six consecutive key de-
pressions must take place to examine a register, restore the program
counter, and execute the next instruction in the program. If you're
following your program around some crazy loop to see why it never
comes out, this procedure can take a lot of time. Perhaps my arthritic
fingers and bouncy keys are the problem. There has to be a faster
approach to the register display problem. A reasonable objective, I
decided, was an LED display of each bit in a particular register,
with no extra key depressions.

To accomplish this objective I designed a circuit to decode the
addresses of the locations where the various register contents were
stored and allow the microprocessor to WRITE the same data to
output ports with LEDs to represent each bit. Thus, when the moni-
tor stores the contents of the status register at location $00F1, it also
writes the same data to an output port whose address is $00F1. In
this case the LEDs indicate the state of the various flags. If the out-

put port has address $00F3, then the LEDs will show the contents
of the accumulator, in binary, of course.

Bug-Lights comes in three versions. The basic circuit is shown in
Fig. 14-10. It will display one register only. A modification that in-
creases the utility of the basic circuit is shown in Fig. 14-11. The
DIP switch allows you to select which register you want to follow
as you step through your program. If you really like blinking lights
and/or do a lot of programming, see the chrome-plated modification
to display up to eight registers simultaneously, as outlined in Fig.
14-12.

RAM-RIW 741502

45V
7a15138 |14 00F1y z

-m AL 2
s Y DEVICE SELECT 3

4
G2A

\—d 628
vV > RW ' +5VT

Az‘ 1], 191
o B D0 2 3 2 a0y
(e >— 811597 4] 74875 -
A5 Dl 4 5 3 1420
B >——— [Ee>——— T
@Aﬁ___ [D26 7 § 120 /N
v 1
o 741530 /
[B>— D3 3 9 7 g a0 ™
A "
> n 2 I/ B
ng (NL304 4 7aLs7s \\/
0> D5 14 13 3 14 200 6 }
ED> 13
> D616 15 6 120 Yy
ED "
[@> D718 17 7 8 20 Y

LED'S
Fig. 14-10. Basic Bug-Lights circuit.

Of course, the most important registers to display are the accumu-
lator, the status register, the X and Y registers and, perhaps, the stack
pointer. These displays would make an impressive yet functional
front panel. My personal version has the DIP switch modification
shown in Fig. 14-11. (The program counter low, PCL, is stored at
address $00EF and cannot be observed with the Bug-Light circuit.
I cannot recall ever using this register to debug a program.)

351

" 15
F
sz |1 000
1 00F1
13
Y2
L, O0F2
Y3 p———ovo—+ T0
1 00F3 +——PIN3
A pb———ovpo—1 741502
00F4
" 10
g O0F5
Y6 p———
, O0F6
Y7 > ~o—
00F7 pip swiTcH
ADDRESS
SELECT

Fig. 14-11. Use of DIP Switch to select register to be displayed by Bug-Lights circuit.

. . TO OTHER
RAM-RW 781502 741502 PORTS
D—’FDi PORT SELECT
PORT SELECT
74L$75 74LS75
748575 741875
811597
BUS
BUFFER

ﬁ

Fig. 14-12, Bug-lights circuit expanded to output several registers simultaneously. Each
pair of 74LS75s makes one 8-bit output port. Port selects are from 7415138 decoder.

352

We will begin with the address decoding circuitry. The 741.5138
decoder/demultiplexer will decode the lowest three address lines
(A0, A1, A2) when Gl is at logic one and G2A and G2B are at logic
zero. G1 is tied high, eliminating any further consideration of it.

In order to have both G2A and B at logic zero, the KO select from
the KIM-1 and the output of the 74L.S30 must be at logic zero. KO
will be low when address lines A10-A15 are low. This is handled by
the KIM-1 circuitry. You can see from Fig. 14-10 that the output of
the 74L.S30 is low when A4-A7 are at logic one and A3, A8, and A9
are at logic zero. The compilation of this information as the require-
ments to select the 74L.S138 is shown in Example 8.

The 74LS138 decodes the lowest three address lines to produce
active low device select pulses whenever addresses $00F0-$00F7 are
on the address lines. Each of the eight outputs of the 741.5138 cor-
responds to one of the eight addresses $00F0-$00F7, which in turn
include the address of the locations where the various registers are
stored.

The device select pulse from the 74L.S138 is inverted and axped
with the inverted RAM-R/W signal from the KIM-1. This produces
a positive pulse from the 74L.S02, which occurs only on a WRITE
cycle and when the correct address is placed on the address bus. For
example, an STA $00F1 instruction will produce such a pulse in the
circuit of Fig. 14-10. This pulse is applied to the gate inputs of the
74L.S75 Bistable Latches.

As long as the positive pulse is applied to the 75LS75 gates, the Q
outputs follow the D inputs, and the Q outputs are the D inputs in-
verted. At the trailing edge of the positive pulse, which occurs when
the ¢ clock signal on the KIM-1 changes from logic one to logic
zero, the data at the D inputs is latched into the Q outputs. So, when
a WRITE occurs to $00F1, the data will appear at the Q outputs
and it will be stored there, at least until another WRITE to $00F1
occurs.

The 81LS97 is a data bus buffer. It is activated only on a WRITE
command when the R/W is low. If only one output port is desired
and the data bus lines are kept short, then the 81LS97 may be
omitted since the 6502 microprocessor can drive the 74LS75s di-
rectly. However, if you want to locate your lights on a front panel,
or if you want to add sets of eight lights for several registers, then
the bus driver becomes essential.

The LED:s are connected through current-limiting resistors to the
Q outputs of the 74L.S75s. They will glow when Q is low and Q is
high. Thus, a glowing LED corresponds to a logic one for the bit it
represents while an LED in the off state corresponds to a logic zero.

An added feature of the Bug-Light circuit is its ability to be used
as an output port as well as a debugging tool. The Q outputs of the

353

741.S75s are not used for display purposes; they contain the data
that was written to them. Thus, they can be used as zero-page mem-
ory-mapped output ports.

An application program can make use of these ports to write a
7-bit ASCII word to some external device, such as a video card, an
IBM Selectric, or some other device. A/D or D/A converters can be
driven from these ports as easily as the PAD and PBD ports on the
KIM-1 application connector. The only time the memory locations
$00F0-F8 are used by the computer is in an NMI or IRQ jump to
the monitor; that is, in debugging. So you have your Bug-Lights and
output ports as well.

Table 14-5. Power Connections for Bug-Light Integrated Circuits

Integrated Circuit +5V Ground
7415138 16 8
741830 14 7
741502 14 7
74LS04 14 7
741875 5 12
811597 20 10

Table 14-5 shows the power connections for each of the chips in
the logic diagram. All the other connections are shown in the figures.
My version was built on a UNICARD 1, which contains two bread-
board strips and an edge connector pad that matches the KIM-1
expansion pad. I soldered an edge connector to the UNICARD so I
could plug the KIM-1 expansion pad into it. All the connections of
the Bug-Light circuit except one are to the expansion pad on the
KIM-1. All the connections are found on the pad symbols in Fig.
14-10. The KO select comes from the application pad on the KIM-1.
Its pin number, AB, is also given.

Layout is not critical, and approaches other than the one I used
will work. A wire-wrap approach might be more permanent and less
expensive, although I have found that the circuits on the bread-
boards last indefinitely. Fig. 14-13 shows my version. Power was
stolen from the KIM-1 power supply, since +5 V and ground are
available at the expansion pad.

When you get your circuit built, say a one-port version, select the
location you want to view with the DIP switch or by the appropriate
connection. With the KIM-1 running in the monitor, address the
location and store $FF in it, using the keypad on the KIM-1. All the
LED:s should light. Change the contents of the port until you are
sure that each LED is responding to the correct bit value. Stepping
through the sequence $00, $01, $02, $04, $08, $10, $20, $40, $80 of
data values will test each light in turn.

354

= s iz - ¥ c ~

WEEEIRRET | LR - A4S UEERTEET Y

Fig. 14-13. Bug-Lights circuit.

Next, load any program, set the KIM-1 up for the SST mode, and
step through the program. The lights should reflect the current con-
tents of the register you have selected to view. I had no trouble. For
once my design worked the very first time I tried it. I hope you have
the same kind of success. If you don’t, recheck all your wiring, check
the polarity on your LEDs, make sure they all work, and finally
make sure you haven’t made a mistake on numbering the pins on
the ICs.

If some bits work and some do not, then exchange signal paths for
the two bits. For example, if one bit is working, then the 74LS75
latch for this bit will also be working. Use the same latch for a non-
working bit to see if the problem is in the latch. The circuit is simple
enough so that it should not take too long to figure out any problems.

Beginning programmers have a lot more trouble visualizing what
is happening as a result of a certain instruction than veteran pro-
grammers imagine. One application of Bug-Lights is to illustrate the
results of various instructions. For example, set up Bug-Lights to
show the contents of the accumulator ($00F3). Then write a short
program (shown in Example 9) in which the accumulator is loaded
with 01 followed by an ASL A in an infinite loop.

Now single-step through the program and watch the “1” move
from right to left on the LEDs. Replace the ASL A with an ROL A
and note the difference. Other instructions can be illustrated in the
same way, giving students, who have difficulty visualizing zeros and
ones among bits and bytes, an excellent visual aid.

355

Example 8: Address Decoding for Bug-Lights Circuit

A15 A14 A13 Al12 A1l A10 A9 AB A7 A6 A5 A4 A3 A2 Al A0 — Address Line
0 0 0 0 0 0 0 O 1T 1 1 1 0 X X X — LogicValue
0 0 F 0-7 — Hex Number
(X means ““don’t care.”’)

Example 9: Program to Demonstrate ASL Instruction With Bug-Lights Circuit

BEGIN LDA $01
THERE ASL A
JMP THERE

LUNAR OCCULTATION OF A STAR*

The program described here is designed to measure the light in-
tensity from a star as it passes behind the dark face of the moon, a
so-called lunar occultation. A photometer and amplifier attached to
a telescope provide a signal proportional to the light intensity, and
this intensity drops rapidly (in a few milliseconds) as the moon
passes in front of the star. This signal voltage is measured periodi-
cally, and the data is stored in 256 memory locations in the KIM-1.
When the star is occulted and the level drops below a predeter-
mined value, the measurement is stopped, and the previous 256 mea-
surements, representing about 1 second of data, are displayed on an
oscilloscope.

Fig. 14-14 shows the support circuitry for the program which is
given in Example 10. When a logic one appears on PB2 (from,
say, a radio time signal), the timer is set, the measurements START,
and a zero mark is placed in the data every ¥ second to allow accu-
rate measurements of the time of the event. The arming switch SW
can be set on position “B” which ensures a logic zero on PB3 to keep
the program from inadvertently stopping before the event takes
place. Near the predicted time of the occultation, it can be switched
to “A,” at which time it is armed to stop when the light level falls
below the cut-off point determined by the 100K potentiometer.

The time constants RC and R’C’ can be selected to integrate the
incoming signal as desired. We use RC =5 msec and R’'C’ =20
msec. This delays the cut-off point slightly after the actual occulta-
tion. The sampling time can be selected by changing the number
stored in location $003E (we sample about every 4 msec), and the
number stored in locations $002F and $009D can be used as a fine
adjustment to make the timing marks appear at exactly 1 sec inter-
vals. The data is stored in locations $0200 through $02FF but may
appear folded over on display. For example, if the cut-off time occurs

*Courtesy of Dr. Thomas D. Strickler, John Drake, and Jesse Maupin, Berea
College, Berea, Ky.

356

15 14
S, 1, 16 o
. 7 AD7530
Pt B OUTPUT
FROM § —5 6 3140
KM : —g——— 7 2 + CRO VERTICAL
i 38 -
S 9
i 10 10k $
PAC———11 10K
IV
%
N1
" — 150 PB5
INPUT
FROM v
PHOTOMETER 3
AMPLIFIER _ sy
?F
120 PB3
— 13 P
oCRO
SYNC
LOGIC = I
TIME o PB2
NAL FR
m \?LF oM 15 oo
& o wmi
EXPANSION
CONNECTOR

Fig. 14-14. Support circuitry for Occultation program.

while data is being stored in memory location $0280, then the most
recent measurements are in locations $027F, $027E, . . . , while the
earliest measurements are in locations $0281, $0232, . . ., etc. Every
1, second, the number in location $00CB is incremented, and every
256 (FFuex) Y seconds, the number in location $00CC is incre-
mented, so that the total time since the START signal can be deter-

mined.

Photoelectric measurements of bright stars as they are occulted
often show a diffraction pattern typical of that observed in the labo-
ratory by a point source diffracted from a straight edge. They can

357

be used to measure angular diameters of stars and can often resolve
very close double and triple stars. For further information on lunar
occultations, the reader is referred to the articles “Photoelectric Ob-
serving of Occultations,” by David S. Evans, in Sky and Telescope,
Vol. 54, Nos. 3 and 4 (1977).

Example 10: Occultation Program

$002F and $009D = Additional count to make timer equal /4 second

$003E
$0096
$00C9
$00CA
$00CB
$00CC
$00CD
$00CE
$00CF

0004
0006
0008
000A
000D
000F
0012
0014
0016
0018
001A
001C
001F
0020
0022
0024
0027
002A
002C
002E
0030
0033
0036
0038
003A
003D
003F
0042
0044
0046
0047
0049
0048
004D
0050
0053

358

= Convert time count (40 = 4 msec)

= Comparator Delay Count (02)

= BIT2 (04) Test BIT2 to start timer from WWV

= REM Remainder in timer after last V4 sec count

= QSEC No. of V4 sec counts since start (or since last MIN)
= MIN
= KEY
= Sp
= BITS

A9
85
A9
8D
A9
8D
A9
85
A9
85
A9
8D
0A
85
A9
8D
AD
24
FO
A9
8D
2C
10
A9
8D
A9
8D
A9
85
0A
85
A5
05
8D
20
AD

04
ce9
9C
FA
00
FB
00
cB
00
cC
10
03

CF
FF
01
02
co
F9
DO
04
07
FB
F4
OF
40
46
80
cp

CE
cb
CE
00
95
02

No. of minutes (actually 64 secs) since start

(20) Test BITS to test comparator

LDA $04 Initialize and set port directions.
STA BIT2
LDA $9C
17 STA 17FA
LDA $00
17 STA 17FB
LDA $00
STA QSEC
LDA $00
STA MIN
LDA $10
17 STA BPD
ASL
STA BITS
LDA $FF
17 STA PAD
17 WAIT LDA PB Wait until logic one appears on PB2.
BIT BIT2
BEQ WAIT
LDA $DO Extra count to make timing
17 STA TIME4 marks = V4 second.
17 T™I BIT TIME7
BPL TMI
LDA $F4 Set timer to count 244 X 1024 =
17 STA TIMEF 249,856 microseconds.
RTIME LDA $40 Set convert time using
17 STA 1746 “other counter.”
CONV LDA $80 Initialize conversion.
STA KEY
ASL
STA SP
LOOP LDA KEY OR KEY info result and output.
ORA SP
17 STA PA
00 JSR CDLY Wait for comparator delay.
17 LDA PB Check comparator, jump if

0056
0058
005A
005D
005F

0061

0063
0065
0068
0068
006D
006E

0070
0073

0075

0077
0079
007C
007E
007F

0081

0084
0086
0089
008C
008F
0090
0092

0097
0098
0099
0098

009C
009E
00A1
00A4
00A6
00AS8
00AB
00AD
O0AF
0081
00B3
00B5
00B7
00BA

0088

24
FO
AD
85
46
DO
A5
9D
AD
FO
E8
EA
AD
29
FO
EA
AD
85
EA
A9
8D
A9
8D
BD
8D
E8
DO
4C
A9
A8
88
DO

CF
05
00
CE
(]

CE

47
FB

EA

08
cé
EA
06
CA

10
02

02
00
F7

7F
02

FD

DO
04
07
FB
F4
OF
cB

cB

cC

00

17
02
17

17
17

02

LARGE

DT

SYNC

ourt

cDLY

DELAY

TM2

CONT

BIT
BEQ
LDA
STA
LSR
BNE
LDA
STA
LDA
BEQ
INX
NOP
LDA
AND
BEQ
NOP
LDA
STA
NOP
LDA
STA
LDA
STA
LDA
STA
INX
BNE
JMP
LDA
TAY
DEY
BNE
RTS

BITS
LARGE
PA

SP

KEY
Loor
SP
TABLE,X
TIMER
DT

NOP
PB
$08
RTIME
NOP
TIMER
REM

$10

PB

$00

PB
TABLE X
PA

out

SYNC
$02

DELAY

too large.

If too small, store result

in SP.

Shift KEY right and repeat
eight times.

Store result in TABLE, starting
with $0200.

Wait until timer stops.

Increment X.

Look for logic one on PB3.
If no, repeat conversion
measurement.

If yes, read remaining time,

store and jump to SYNC.

Generate SYNC pulse for CRO.

Display spectrum on CRO.

Delay for comparator.

INTERRUPT ROUTINE

LDA
STA
BIT

$DO
TIME4
TIME?

BPL TM2

LDA
STA

INC

LDA
CMP
BNE
INC

LDA

STA

INX

RTI

$F4
TIMEF
QSEC
$00
QSEC
CONT
MIN
$00
TABLE,X

Reset V4 second timer.

Incr t Va dc ter.
Check V4 second counter for
overflow (00).

If no, continue.
If yes, increment MIN counter.

Put zero in TABLE X at V4 second

intervals.

Return from interrupt.

359

APPENDIX A

Decimal, Binary, and
Hexadecimal Number
Systems

OBJECTIVES
At the completion of this appendix you should be able to:

¢ Understand and define the terms number, face value, place
value, base, bit, byte, and nibble.

e Understand that numbers are used to indicate quantity, to in-
dicate order, or to indicate codes for various operations.

¢ Convert binary numbers to decimal numbers and decimal num-
bers to binary numbers.

¢ Convert hexadecimal numbers to binary numbers and binary
numbers to hexadecimal numbers.

INTRODUCTION

Microprocessors use binary numbers to control internal operations,
to communicate with other components in the microcomputer sys-
tem, and to exchange information with peripheral devices. On the
other hand, devices that humans use to input information to a micro-
computer and devices that display information output by the micro-
computer frequently use hexadecimal numbers. Hexadecimal num-
bers are representations of binary numbers that provide human
beings with readily recognized symbols that aid in handling binary

360

numbers. These facts justify competency in dealing with binary and
hexadecimal numbers.

NUMBERS

Numbers are used in the following ways:

® Numbers are used to indicate quanttty This is the use with
which we are most familiar.

® Numbers are used to indicate order. For example, the order in
which a mechanical device is assembled is specified by numbers.

¢ Numbers are used as names or codes. Your social security num-
ber is a code which identifies you.

Sometimes numbers are used in several of these ways. The page
numbers of a book order the pages, name the pages, and indicate
the quantity of pages.

You will see that a microcomputer uses numbers in each of these
three ways.

® A “smart” blood pressure monitor measures a signal and displays
a number representing the blood pressure of a patient.

¢ A microcomputer program is executed one step at a time, and
the order is determined by a number stored in the program
counter.

® All microprocessor instructions have code numbers. The number
69 sent to the 6502 microprocessor will cause it to execute an
addition operation.

¢ The memory locations in a microcomputer are ordered and
named by a number called the address of the location.

A number is a sequence of digits. In the familiar decimal (base-
10) system, the ten decimal digits are 0, 1, 2, . . . , 9. The binary
number system (base-two) uses only two binary digits, namely 0
and 1. The words binary digit are frequently contracted to form the
word bit. (If the same thing were done with decimal digits we
would have dits, while hexadecimal digits would be hits.) The hexa-
decimal system (base-16) requires 16 different hexadecimal digits.
Theyare 0,1,2,...,9, A, B, C, D, E, and F. Perhaps a better choice
could have been made for the last six digits, but these are the ones
commonly used.

DECIMAL NUMBERS

In order to understand binary and hexadecimal numbers it will
be helpful to dissect a familiar decimal number. Taking the number
1939 as an example, we obtain the following diagram.

361

Digit Number 3
Digit Number 2
Digit Number 1
H—Digit Number 0

1939=1000+900+30+9

— | |I——FAICE VALUES
=(1x1030)+(9><1(|)0)+(3><1I0)+(9><11)
L PLACE VALUES

————DIGIT NUMBERS
| |) 1
= (1X10°) + (9 X 10%) + (3 X 10') + (9 X 10°)
L _BASE=10

Referring to the preceding diagram, each decimal digit has a face
value, the meaning of which is acquired from experience and mem-
orization at an early age. There are 10 different face values in a
base-10 system. Each decimal digit has a digit number or place in
the decimal number which determines its place value. The place
value of digit number 0 is 10° = 1; the place value of digit number
1 is 10 = 10. Place values of successive digits are 102 = 100, 103 =
1000, and so on. The place value is equal to the base raised to a
power equal to the digit number.

BINARY NUMBERS

Binary numbers are constructed the same way as decimal numbers
except the base is two and only two face values, 0 and 1, are re-
quired. Each binary digit is called a bit. The place values are 2° =1,
21=2 22=4 23=8, and 2¢ = 16, corresponding to bit numbers 0,
1, 2, 3, and 4, respectively. Table A-1 lists powers of two

To illustrate these ideas and to show you how a binary number
may be converted to a decimal number, the binary number 1101 is
expanded in a way similar to the decimal number expansion above.

Table A-1. A Table of Powers of Two

2°=
2'= 2 25 = 32 2° = 512 2'3 = 8192
2= 4 2= 64 2'° = 1024 2'4 = 16384
2= 38 27 =128 2" = 2048 2'% = 32768
2* =16 2% = 256 2'2 = 4096 2'¢ = 65536

362

Bit3
Bit 2
Bit 1
Bit 0

.~ |——BIT NUMBERS
| 8 | v L
1101,= X 23 X 22 1 0
L,=(1 l)+(142)+(0><?)+(1><%)
L BASE=2

——— PLACE VALUES
T T L
:(%xS)+J><4)+(JOx2)+(}x1)
{ FACE VALUES
=8+4+0+1=13,.

The subscripts “2” and “10” are used to indicate the base of the num-
ber unless the base is obvious from the context of the discussion.
The expansion diagram for the number 1101, also suggests how
binary numbers may be converted to decimal numbers. Multiply the
face value (either 1 or 0, so the multiplication is easy) by the place
value of each bit and add the results. The place values are 2°, where
n is the bit number. The place value for bits numbered 0-16 may be
obtained from Table A-1. Example 1 gives another base two to base
ten conversion.

Example 1: Conversion of 10100010, to Base 10

10100010, = (1 X 27) + (0 X 2% + (1 X 25) + (0 X 2%)
+OX2)+(0X2)+ (X2 +(0X29
=128 +32+ 2
= 16240

Sometimes it is simpler to organize your work from the smallest
place value, or least significant bit (the bit on the extreme right), to
the largest place value, or most significant bit (the bit on the extreme
left). Thus,

1100, = (0X 1) + (0 X 2) + (1 X 4) + (L X 8) =4 + 8 = 12,

There are several techniques to convert a decimal number to a
binary number. Here is a simple one; Example 2 illustrates it.

e To find the highest place value that has a face value of one
(that is, the most significant nonzero bit), find the largest power
of two which will divide the number. Place a one in this bit
position and note the remainder of the division.

363

e The remainder of the first result is then divided by the next
largest power of two. If it will not divide the first remainder,
then a zero is put in the next lower bit position. Otherwise, a
one is placed in this bit position, and the remainder is noted.

® Repeat step two until you finish by dividing by one.

Example 2: Conversion of 233, to Base 2

Clearly the largest power of two which will divide 233 is 27 = 128. The process now
proceeds as follows:

0 1 0 0 1
128|233 64 |105 32': 16|; 8|; 4[1_ 2IT 'II'I_ = 11101001,
8

128 64 32

1
0

105 41 9 1

Although this looks complicated, it proceeds rather quickly because
most of the steps can be done mentally. In any case, it will be easier
to handle binary numbers in terms of their hexadecimal representa-
tions as you shall see in a subsequent section.

BITS, BYTES, AND NIBBLES

Numbers used to express quantity are usually of variable length;
they have no leading zeros to take up “unused” places. Numbers
used as codes, zip codes for example, are usually fixed in length and
often have leading zeros. All numbers used by a microprocessor are
fixed in length regardless of whether they are used to express quan-
tity, determine order, or represent a code. If a binary number rep-
resents quantity, the leading zeros are disregarded.

The fixed length of the numbers which the 6502 microprocessor
regards as data is eight bits. An 8-bit number is called a byte. The
number 7, is represented as shown in Example 3.

Example 3: How the Number 7,, is Represented by a Byte of Data

Data Byte [o]oJo]o]o] 'r‘L']=7m

Data Bit Designations D7 D6 D5 D4 D3 D2 D1 DO

The 6502 microprocessor also names and orders 65536 different
locations in memory with a 16-bit fixed length binary number called
an address. The number 1020, representing location 1020,, in mem-
ory is represented as an address as shown in Example 4.

The 16-bit address number is frequently referred to in terms of two
bytes. The low-order byte, or address low (ADL) as it is sometimes
called, is the eight bits on the top while the high-order byte, or
address high (ADH) as it is sometimes called, is the eight bits on
the bottom.

364

Example 4: How the Address 1020,, is Represented by a 16-Bit Binary Address
ADH

"\
Address (Two Bytes) ,uJ 0 J[oJoJoTJoT 1] |\
8

Address Bit Designations A15 Al14 A13 Al12 All AI0 A9 A

ADL
A

/ AN
I [[T]o]0]

A7 A6 A5 A4 A3 A2 Al A0

A 4-bit binary number is sometimes called a nibble. This is a
useful idea when representing binary numbers by means of hexa-
decimal digits. A byte consists of a high-order nibble and a low-
order nibble.

HEXADECIMAL NUMBERS

The sixteen hexadecimal digits and their decimal and binary
equivalents are given in Table A-2. The subscripts 16, 10, and 2 are
omitted.

Table A-2. Decimal, Binary, and Hexadecimal Equivalents

Decimal Number Binary Number Hexadecimal Number
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 o1n 7
8 1000 8
9 1001 9

10 1010 A
n 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1mn F
16 10000 10

Notice that one hexadecimal digit represents four binary digits or
one nibble. This fact provides the most convenient way to convert
from binary numbers to hexadecimal numbers and vice versa.

Once the table has been committed to memory, the conversion
process is as follows:

365

¢ Divide the binary number into groups of nibbles, starting from
the least significant bit.

¢ Mentally convert each nibble to a hexadecimal number and
write it down. (This process sometimes calls for a mental trans-
lation of the binary number to decimal and a translation of the
decimal number to hexadecimal.)

Examples 5 and 6 illustrate how binary numbers are converted into
hexadecimal numbers.

Example 5: Conversion of Binary Numbers 01010101,, 00000101,, 10101111,, and
11111110, Into Hexadecimal Numbers.

010101012 = 0101 0101 = 55,6 00000101, = 0000 0101 = 05,6
101011112 = 1010 1111 = AF,4 111111102 = 1111 1110 = FE,¢

Example 6: Conversion of Binary Numbers 1001111100011100, and
0100010111011011; Into Hexadecimal Numbers.

1001111100011100, = 1001 1111 0001 1100 = 9F1C,¢
0100010111011011, = 0100 0101 1101 1011 = 45DB, ¢

The reverse process, converting from hexadecimal to binary, is done
in a similar way.

¢ Divide the hexadecimal number into separate digits.
¢ Mentally convert each hexadecimal digit into a binary nibble.

Example 7 illustrates the process.

Example 7: Conversion of 3D,4 and FC83,, Into Binary Numbers

3Dy = 0011 1101 = 00111101,
FC83,6 = 1111 1100 1000 0011 = 1111110010000011,

By now it should be easy for the reader to understand that hexa-
decimal numbers represent 8-bit and 16-bit binary numbers more
efficiently than decimal numbers. Practice will produce the familiar-
ity required for rapid calculations. A table of binary to hexadecimal
to decimal conversions is provided in Table A-3.

It might be added that hexadecimal numbers are frequently called
“hex” numbers, and sometimes the suffix “H” is attached to indicate
the hexadecimal representation. The notation used in this book to
indicate hexadecimal numbers is a “$” prefix. That is, 36, = $36
and 7FFC,; = $7FFC. This is the most common practice among
6502 users, perhaps to make them feel wealthy. Readers who were
not previously familiar with hexadecimal and binary numbers are
urged to try the exercises at the end of this appendix.

366

Table A-3. Binary to Hexadecimal to Decimal Conversions

Binary Number Hexadecimal Numb Decimal Numb

0001 NIBBLE 01 1
0210 " 02 2
0011 “ 03 3
0100 " 04 4
0101 “ 05 5
0110 " 06 6
o1 " 07 7
1000 " o8 8
0001 0000 BYTE 10 16
0010 0000 " 20 32
0100 0000 " 40 64
1000 0000 “ 80 128
1000 1020 o 88 136
1000 1100 " 8C 140
1100 1100 " CcC 208
1111 " FF 255
0001 0000 0000 3 NIBBLES 0100 256
0010 0000 0000 " 0200 512
0011 0000 0000 “ 0300 768
0011 1111 1N “ O3FF 1023
0100 0000 0000 “ 0400 1024
1000 0000 0000 o 0800 2048
0001 0000 0000 0000 2 BYTES 1000 4096
0001 1111 1111 11N " 1FFF 8191
0010 0000 0000 0000 “ 2000 8192
0011 1111 1111 11N “ 3FFF 16383
0100 0000 0000 0000 " 4000 16384

0101 1111 1111 1N o 5FFF 24575 .
0110 0000 0000 0000 " 6000 24576
0111 1111 1111 1N " 7FFF 32767
1000 0000 0000 0000 “ 8000 32768
1001 1111 1111 1 " 9FFF 40959
1010 0000 0000 0000 “ A000 40960
1011 1111 1111 1N " BFFF 49151
1100 0000 0000 0000 “ C000 49152
1101 1111 1111 1N " DFFF 57343
1110 0000 0000 0000 " E0OOO 57344
1111 1111 111 1 “ FFFF 65535

EXERCISES

1. Identify the digit number of the digit 5 in the number 25033. If
this is a base 10 number what is the place value of the 5?7 Would
the face value be changed if this were a base 16 number? Would
the place value be changed if this were a base 16 number?

2. What is the place value of a digit in the nth place of a number
written in base b?

367

368

. Give examples of how numbers are used to indicate quantity, to

indicate order, and as codes or names.

. Convert the following decimal numbers to binary numbers:

17, 31, 64, 65, 127, 255, and 365.

. Convert the following binary numbers to decimal numbers:

10110110 11110000
00010010 11111111
01000000 01010101
10000001 00110011

. Convert the decimal numbers in problem 4 to hexadecimal num-

bers. Use the binary results you obtained by doing problem 4.
Also convert the binary numbers in problem 5 to hexadecimal
numbers.

. How many different 4-bit numbers or nibbles are there? 8-bit

numbers? 16-bit numbers?

. Define number, bit, byte, and nibble.

EXERCISE ANSWERS

. The digit number of 5 is 3. (Digit numbers start with 0 on the

right and increase to the left.) Its place value is 103 = 1000 if the
base is 10. Face values are the same in numbers of any base, pro-
vided that face value exists. For example, there is no face value
of 5 in the binary number system. If the base of the number were
16 then the place value of the digit 5 would be 16° = 4096,,.

. The general formula for the place value of a digit in the nth place

of a number written in base b is bn.

. The number of words on this page is a quantity. If the Kansas

City Royals are in 2nd place, the 2 is used as an indication of
order. The ASCII for the letter A is 41,6. Thus, A is represented
by the code number 41,.

. 17 = 10001,, 31 = 11111,, 64 = 1000000, 65 = 1000001,

127 = 1111111,, 255 = 11111111,, 365 = 101101101,.

. 10110110 = 182,90 = B6y5 11110000 = 240, = F0,6

000100].0 = 3410 = 1216 11111111 = 25510 = FFl(;

01000000 = 6410 = 4016 01010101 = 8510 = 5516
10000001 = 129, = 81,4 00110011 =51,y = 3345

. Some of the answers are given in problem 5. The conversions from
problem 4 are 10001 = 11,5, 11111 = 1F,4, 1000000 = 40,,
1000001 = 41,4, 1111111 = 7F ¢, 11111111 = FF44, and

101101101 = 16Dys.

. Notice that there are 2 different 1-bit numbers, 4 different 2-bit
numbers, 8 different 3-bit numbers and 16 different 4-bit numbers.
Thus, there are 16 different nibbles. Using induction, if the num-
ber of bits in a number is n, then the number of different n-bit
numbers is 2°, Thus, there are 28 =256 different bytes or 8-bit
numbers and 216 = 65536 different 16-bit numbers. These answers
may be verified with the table.

. A number is a sequence of digits. A bit isa binary digit. A byte is
an 8-bit binary number, and a nibble is a 4-bit binary number.
Leading zeros are permitted.

369

APPENDIX B

Instruction Set Summary

The following instruction set summary is made available through
the courtesy of Rockwell International.

370

6502 INSTRUCTION SUMMARY

(V4

INSTRUCTIONS IMMEDIATE | ABSOLUTE | ZeRDPAGE | Accum | mPuED | N0, x) | D) Y | Z PAGE X | aBS.X aws, v | mecamve | omect | z eace, v | cooes STATUS

MNEMONIC OPERATION OP”‘OP"'NOPHIOnlOPnlOPnlOPnlOPnlOFnlOnaOPndOPnlOPnlL%?‘B%f;g

ADC A+M+C=A (69l 2|2 |60| 4[3]65 3|2 61| 6[2|71]s[2|rs|af2]0] 4|3]re]a]3 NV....zC| aDC
AND AAM = A M |29| 2|2 |20] 4|3 25| 3|2 21| 6f2|3r|sf2[as|a|2 |30 a3]30]|af3 Ne+oo-.2:]aND
ASL c{—9-0 0E| 63 |06 5|2 Joa| 2|1 16|62 [1€] 7|3 N.....zcC|lastL
BccC BRANCHONC = 0 (2) 9| 2|2 i et e BCC
BCS BRANCHONC = 1 (2) 80| 2| 2 i e e BCS
BEQ BRANCHONZ =1 (2) FO| 2| 2 P Y BEQ
BIT AAM 2c|a|3faaf3]2 M;Mge « = = Z | BT
BMI BRANCHONN = 1 (2) 0|22 N T
BNE BRANCHONZ =0 (2 ool 2| 2 e e e e e o] BNE
BPL BRANCHONN = 0 (2) w22 s e oo elBRPL
BRK BREAK 00|71 « e o1 + 1« ¢+ BRK
BvC BRANCHONV = 0 (2) s0(2|2 N
BVS BRANCHONV = 1 (2) 70|2]2 e e e e BYVS
cLC 0-C 1821 « e+« c0flcCcLC
cLD 0-D o8| 21])
CLi 0-1 58|21 e e e e 0 0. . cLi
cLv 0-v 88| 2|1 0. +«....|cLv
cMP A-M co| 2|2 |co|af3]csf3]2 cife|2]|o1|s5|2|os|4|2fo0|4|3|o9faf3 c .. .2cClCMmP
CPX X-M €0 2| 2[ec{4|3|ea| 3|2 c. .. o2cCcflcPx
crPy Y-M co| 2| 2]cc| 4| 3|cal 3] 22cClcPy
DEC M-1-M cE| 6 (3|ce| 5| 2 D6| 6| 2|0E[73 B DEC
DEX X-1=X CA| 2|1 DT 2K DEX
DEY Y-1-Y 88| 2|1 N+.«o+oo+2+| DEY
EOR AVM=A |a9] 2] 2|40 a|3]as]| 3] 2 a1|6|2|s1|5|2|ss|a|2]|sDf4a|3|s9]|4]|3 Ne++oo+o2.| EOR
INC M+ 1M €E[6| 3es| 5|2 Fe{6| 2|Fe| 7|3 N.....2:l1NC
1N X X4 1=X €8l 2|1 e e e o Z] INX
INY Y+1=Y c8l2|1 N o o o o o« 2« INY
JMP JUMP TO NEW LOC acl3|3 sc|s|3 e Y
JSR JUMP SUB 20[6|3 N Y
LDA M=A (|asl 2] 2|apja[3]as|3]|2 Aale[21B1|5[2|Bs|a[2]8D[4|3 B9 4|3 N:++++2+l1LDA

TLE

ACCUMULATOR MUST BE CHECKED FOR ZERO RESULT

LD X M-~X () [A2| 2| 2 |AE| 4 | 3]|A6| 3| 2 BE(4 |3 B6[4|2|N - - « vzl Lox
LOY M- Y) |a0f 2| 2 |ac(4|3 |As[3] 2 B4l 4| 2(BC| a3 N« - -+ Z-|liOoY
LSR [A 4El 6(3]a6| 5| 2[en| 2|1 56| 6| 2(s€| 7|3 .. « - 2zZc|lLsnA
NOP NO OPERATION EA| 2 e ... NnoOP
ORA AVM—~A 08| 2| 2|oDj 4| 3]os| 3|2 01 21 2|1s| 4| 2|i0|a|3]19]4a]s N« - « - 2| 0oRA
PHA A~ Ms §-1-+§ 48| 3 s v o o PHA
PHP P~ Ms S-1-8 o8| 3 vl PHP
PLA S+ 1-8 Ms ~ A 68| 4 Ne e+ zlPLa
PLP S+1-=5 Ms—~P 28| 4 (RESTORED) PLP
RO 26| 6|3 |26) 5] 2]2A[2] [6[2[|7]3 N+ -7 RO L
ROR LG o} 6E| 63|66 5|2 [6al 2|1 78|6|2f7ef 7|3 N> - -+ 2zc| ROR
RT RTRN INT 406 {RESTORED) R T
RTS RTAN SUB 60| 6 .+« .+ RTS
sBC A-M-CT-a M |eg| 2|2 |eo|a|3fes| 3|2 Et 2|F1 2|Fs|a| 2|Fo| 4|3 |F9(4|3 NV c v zZw@ s8c
sec | 1-cC |2 .+ 1] sEC
SED 1-0 F8| 2 e e+ e1 ..+ sED
S E 11 78| 2 1 e el SEL
STA A=M 80| 4| 3(85/3]|2 81 2|9 295| 4| 290539953 coe s ol sTaA
STX X=M 8E| 4| 38| 3|2 9%la|2|- ¢« ¢ s e s STX
sSTY Y~M 8c| 4| 38s| 3|2 94l 4|2 .. e sl sTY
TAX A-=X AA| 2 N - crZ | TAX
TAY A=Y A8| 2 N - v Z | TAY
TS X S—~X BA| 2 N - - veZ s Tsx
TXA X—~A BA| 2 N« - coez ool Txa
TXS X~$ 9A| 2 o lTxs
TYA YA 98| 2 N - - s Z | TYa

(1) ADD 110 N" IF PAGE BOUNDARY IS CROSSED X INDEX X + ADD M, MEMORY BIT7

(2) ADD 170 "N"IF BRANCH OCCURS TO SAME PAGE Y INDEX Y _ SUBTRACT M, MEMORYBIT6

ADD 27O "N IF BRANCH OCCURS TO DIFFERENT PAGE
) CARRY NOT = BORROW A ACCUMULATOR A AND N NO.CYCLES
@ IF IN DECIMAL MODE. Z FLAG IS INVALIO M MEMORY PER EFFECTIVE ADDRESS v OR . NO. BYTES
Ms MEMORY PER STACK POINTER ¥ EXCLUSIVEOR

APPENDIX C

Microcomputer
Technical Data

The following pages contain some technical information pertain-
ing to the 6500-series microprocessor devices. The specification sheets
reprinted here are made available through the courtesy of Rockwell
International Corporation. Copyright © 1978 Rockwell International
Corporation. All rights reserved.

The SY2114 specification sheet is made available through the cour-
tesy of Synertek Systems Corp. Copyright © 1978 Synertek Systems
Corp. All rights reserved.

373

R6500 Microcomputer System
DATA SHEET

R6500 MICROPROCESSORS (CPU'’s)

SYSTEM ABSTRACT

The B:bit R6500 microcomputer system s produced with N
Channel, Siicon Gate technology Its performance speeds are
enhanced by advanced system architecture This innovative
architecture results in smaller chips - the semiconductor threshold
10 costeffectwity. System costeffectivaty is further enhanced by
providing a family of 10 softwarecompatible microprocessor
(CPU) devices, described i this document. Rockwell also pro
vides memory and microcomputer system as well as low<ost
design ads and documentation

R6500 MICROPROCESSOR (CPU) CONCEPT

Ten CPU devices are available Al are software-compatible.
They provide options of addressable memory, interrupt nput,
on<hip clock oscillators and drvers. Ali are buscompatible
with earher generation microprocessors like the MEBOO devices

The family includes six microprocessors with onboard clock
oscillators and dnvers and four miCroprocessors driven by external
clocks. The on-chip clock versions are aimed a1 high performance,
low cost applications where single phase inputs, crystal or RC
nputs provide the tme base. The externai clock versions are

geared for mulp system where

nming control s Al RE500 are
also available in a varety of packaging ceramic and plastic),
operaning frequency (1 MHz and 2 MH7) and temperature (com

mercaal, industrial and military) versions

MEMBERS OF THE R6500 MICROPROCESSOR
(CPU) FAMILY

Microprocessors with On-Chip Clock Oscillator

Model Addressable Memory
R6502 65K Bytes
R6503 4K Byites
RE504 8K Bytes
R6505 4K Bytes
RE506 4K Bytes
R6507 8K Bytes

Microprocessors with External Two Phase Clock Output

Model Addressable Memory
R6512 65K Bytes
A6513 4K Bytes
R6514 8K Bytes
AE515 4K Bytes

374

FEATURES
® Single +5V supply
® N channel, silicon gate, depletion foad technoloay
« Eight but parallel processing
® 56 Instructions
& Decimal and binary arithmetic
® Thirteen addressing modes
® Teue indexing capability
@ Programmable stack pointer
& Vanable length stack
® Interrupt capability
® Non-maskable interrupt
® Use with any type of speed memory
® 8Lt Bitrectional Data Bus
® Addressable memory range of up 10 65K bytes
® “Ready’ input
® Direct Memory Access capability
® Bus compatible with M6800
® 1 MHz and 2 MHz operation
® Choice of external or onchip clocks
* On-ihechip clock options
- External single clock input
- RC ime base input
- Crystal tme base input
® Commercial, ndustrial and military temperature versions
Pipeline architecture

Ordering Information
Order Number RE5XX_ _ _

Temperature Range
0°C 10 +70°C

No sutfix
€ -40°C 10 +85°C
Uindusinal)
MT - ~55°C 10 +125°C
{Miitary)
M MIL.STD 883,
Class B
Package
C - Ceramic
P - Plastic

(Not Avaible for
M or MT suffix)
— Frequency Range
Nosuthx = 1 MHz
A = 2MHz
Model Designator
XX = 02,0304, .15

(s.NdD) SHOSSIDOHJOHIIIN 0059H

R6500 Signal Description

Clacks (8. 6,)

The R651X requires a two phase non-overlapping clock that runs
at the Vo voltage level.

The R650X clocks are supplied with an internal clock generator.
The frequency of these clocks is externally controlled.

Address Bus (A0-A15)

These outputs are TTL compatible, capable of driving one standard
TTL toad and 130 pF

Data Bus (D0-D7)

Eight pins are used for the data bus. This is a bidirectional bus,
transferring data to and from the device and peripherals. The out-
puts are tri-state buffers capable of driving one standard TTL load
and 130 pF.

Data Bus Enable (DBE)

This TTL compatible input allows external control of the tri-state
data output buffers and will enable the microprocessor bus driver
when in the high state. In normal operation DBE would be driven
by the phase two (ozl clock, thus allowing data output from
microprocessor only diring @,. During the read cycle, the data
bus drivers are disabled, i an open
circuit. To disable data bus drivers externally, DBE should be held
low.

Ready (RDY)

This input signal allows the user to halt or single cycle the micro-
processor on all cycles except write cycles. A negative transition
10 the low state during or coincident with phase one (@ 1) will halt
the microprocessor with the output address lines reflecting the
current address being fetched. If Ready is low during a write
cycle, it is ignored until the following read operation. This con
dition will remain through a subsequent phase two (@3] in which
the Ready signal is low. This feature allows microprocessor inter-
facing with the low speed PROMS as well as fast (max. 2 cycle)
Direct Memory Access (DMA).

Interrupt Request (IRQ)

This TTL level input requests that an interrupt sequence begin
within the The will the
current instruction being executed before recognizing the request.
At that time, the interrupt mask bit in the Status Code Register
will be examined. If the interrupt mask flag is not set, the micro-
processor will begin an interrupt sequence. The Program Counter
and Processor Status Register are stored in the stack. The micro-
processor will then set the interrupt mask flag high so that no fur-
ther interrupts may occur. At the end of this cycle, the program
counter low will be loaded from address FFFE, and program
counter high from location FFFF, therefore transferring program
control to the memory vector located at these addresses. The
RDY signal must be in the high state for any interrupt to be rec-
ognized. A 3K external resistor should be used for proper
wire-OR operation.

Non-Maskable interrupt (NMI)

A negative going edge on this input requests that a non-maskable
interrupt sequence be generated within the microprocessor,

NMI 1s an unconditional interrupt. Following completion of the
current instruction, the seqy of defined for IRQ
will be performed, regardless of the state interrupt mask flag. The
vector address loaded into the program counter, low and high, are
locations FFFA and FFFB respectively, thereby transferring pro-
gram control to the memory vector located at these addresses
The instructions loaded at these locations cause the microproc-
essor 10 branch to a non-maskabie interrupt routine in memory

NMI aiso requires an external 3K §2 register to V. for proper
wire-OR operations

Inputs IRQ and NMI are hardware interrupts lines that are sam-
pled during az (phase 2) and will begin the appropriate interrupt
routine on the @, (phase 1) following the completion of the cur-
rent instruction.

Set Overflow Flag (S.0.)

A negative going edge on this input sets the overflow bit in the
Status Code Register. This signal is sampled on the trailing edge of
@1 and must be externally synchronized

SYNC

This output line is provided to identify those cycles in which the
microprocessor is doing an OP CODE fetch. The SYNC line goes
high during @ of an OP CODE fetch and stays high for the
remainder of that cycle. 1f the RDY line is pulled low during the
@, clock pulse in which SYNC went high, the processor will stop
in its current state and will remain in the state until the RDY line
goes high. In this manner, the SYNC signal can be used to control
RDY to cause single instruction execution.

Reset

This input is used to reset or start the microprocessor from a
power down condition. During the time that this line is held low,
writing to or from the microprocessor is inhibited. When a posi-
tive edge is detected on the input, the microprocessor will imme-
diately begin the reset sequence

After a system initialization time of six clock cycles, the mask
interrupt flag will be set and the microprocessor will load the pro-
gram counter from the memory vector locations FFFC and FFFD.
This is the start location for program control.

After VCC reaches 4.75 volts in a power up routine, reset must be
held low for at least two clock cycles. At this time the R/W and
{SYNC) signal will become valid.

When the reset signal goes high following these two clock cycles,
the microprocessor will proceed with the normal reset procedure
detailed above.

375

Clock Timing — R6502, 03, 04, 05, 06, 07

— beTeg — =—TRg, e

LT

15v BEY

oav
- PWHO, — mrm PWHO =
WHy, oF

— PWHG | —

0.4av

@, 0uT)

Clock Timing — R6512, 13, 14, 15

Timing for Reading Data from Memory or Peripherals

Rer A" U REF
- ;
|
[ow 1 oav
TRWS - YHRW“" ——

ADDRESS FROM
cPu

= Taps - 2ov_
DATA FROM
MEMORY

RDY.S 0O .

SYNC

—=i Tsync

Timing for Writing Data to Memory or Peripherals

I"FEF |— REF " ———REF B REF
Teve —— toav foav
[P s —
) Ve 02V Aw RN
®,
J— o2v
ADDRESS FROM
-1 - Ty cru
_ v
o, C DATA FROM
ceu
02V
T —— PWH02
Rer g
Note: “REF.” means Referance Points on clocks.
PROGRAMMING MODEL
7 0 7
ACCUMULATOR A N|v] [Blo[t[Z][C]PrOCESSOR STATUS REG P
;] L
Y
7 0
[inbex REGISTER x ZERO 1 = RESULT ZERO
15 7 [
[oCH [PCL PROGRAM COUNTER "PC" IRQ DISABLE 1= DISABLE
8 7 [
l——————BRK COMMAND 1= BRK
OVERFLOW 1= TRUE
NEGATIVE 1= NEG

376

1 MHz Timing

Clock Timing — R6502, 03, 04, 05, 06, 07

2 MHz Timing

Clock Timing — R6502, 03, 04, 05, 06, 07

[r—— Symaot e e | we Ve
Cocte Tams Teve® 0 ~
0,y P W (memasea 15w | pwmo, 20 0 ~
iy B Fa T tae e, o -
on T o °
Suou e -
oy Pt W (o PO 0
Croun Sagyr B Fa T "
imem oo 110 8Y 112 0v1
‘o 3008 1T

P BV R
08V 20v
Tous 1t |
* The lowest operating freq. y for the

(TCYC) of 10 s
10 a maximum cycle time (Tcyc) of 4 us

Clock Timing — R6512, 13, 14,15

Clock Timing — R6512, 13, 14,15

range CPU’s 15 100 KHz, which corresponds 1o a maximum cycle time
The lowest operating frequency for the industrial and military temperature range CPU's is 250 KHz, which corresponds

[oo | W [e [I v o | o]
Teve ‘ | N e
—e 1 e P
I A .
i
" o | |
I I 1 | 1
Read/Write Timing -+ Read rite Timing -+
[[T - S [
B RS Besawote Sein T fiom R65008
Memory Sean Acers Time | ™ Memory Aesd Accen Tome
P | - o e e
| oma ot Time esn 0 Ootn Mot Teme - Aens
(I Sl I I e
O e e rom RE300 Toos w | OuaSewo fn rom ags008
SYNC Serup Time rom R6300 Towe Y SYNC Serun Tome tom 965008
At o Time a » © Adaren ora Tume

Load Conditions = 1

TTL Load + 130 pf

RECOMMENDED TIME BASE GENERATION

(1 MHz ~ 5 MHz)*

1.8 1.8K
—AAA _AAA
VW VWA
RE5XX
® (IN)
0
7404 7404
—'D'—- 6,10UT L 67
XTAL

*CRYSTAL: CTS KNIGHTS MP SERIES, OR EQUIVALENT

377

4—— REGISTER SECTION CONTROL SECTION ——P»

INDEX
REGISTER
v

a0] M

INTERRUPT

LoGic

a -]
A2 - INDE X
x p———————— ROV
s -]
ABL

] s x

< REGISTER
] g

z DECODE

e <

R6512. 13, 14,15
o, 651213

oz 1M

a1 -]
ADORESS
Bus
z
Ag a
< ACCUMULATOR TIMING
1 - conTROL
s
a9 @
@
z 0, f— 0, im

cLock

GENERATOR %'"N' 502,03, 04, 05, 06. 07

REGISTER
.

0, 0uT
a3
030Ut
am
are
oBe
0aTA BUS INSTRUCTION
ceen
L)L
t 15 ..
LEGEND or
02
1 r 03
BEiTLINE bATA
oa | sus
o3
I 1T Line - 06
o7
Note 1 Clock Ganerator 4 not included on RE512. 13,14, 15

2 Addressng Capabiiity and cORtral options ¥ary wiih each
o1 the A6500 Products

R6500 Internal Architecture

378

SPECIFICATIONS

Maximum Ratings

Rating Symbol Value Unit

Supply Voltage Vee 0310+7.0 Vdc
Input Voltage Vm 0310+70 gdc
Operating Temperature T c

Commercial 010+70

industrial 4010 +85

Mititary 5510 +125
Storage Temperature Tsrg 55 10 +150 °c

This device contains input protection against damage due to high static voltages or electric fields; however, precautions should be taken to

avoid application of voltages higher than the maximum rating

Electrical Characteristics

IVCC = 5.045%, VSS =0
©,. 0, applies 1o R6512.13, 14,15, & appies to RE502. 03, 04, 05, 06 and 07.
Characteristic Symbol Min Tye Max Unit
Input High Voltage Vig Vdc
Logie. Oy i) Vg 24 - Vee
01,02 \/CC-OZ - VCC*OZS
Input Low Voltage Vi Vdc
Loglc,éolm) VSSVOJ - VSS' 04
0|,02 VSS~0.3 - VSS*OY
Input High Threshold Voltage VinT Vde
ES, NMI1, RDY, iRQ, Data, $.0 VSs +2.0 - -
Input Low Threshold Voltage Vit Vde
ES, NMi. RDY, IRQ, Data, $.0 - - Vgg* 08
Input Leakage Current lin wA
(Vm =010 525V, VCC =0)
Logic (Excl. RDY,S.0.) - - 25
.9, - - 100
@otin) - - 0o
Three-State (Off State) Input Current |TSI HA
V,,=041024V, V(.. -5.25V)
Data Lines - - 10
Output High Voitage You Vde
(1 oap = 100 MAde, V(o < 4.75V)
SYNC, Data, AO-A15, R/W, 0. 02 VSS‘24 - -
Output Low Voltage o B VoL B Vdc
Ul oap = 16 mAde, V. = 4.75V)
SYNC, Data, AD-A15, R/W, ¢4, 2 - - Vgg* 04
Power Dissipation o "5 ”
Commercial temp. versions 0.25 0575
Industnal and military temp. versions 0.25 0700
Capacitance at 25°C c nF
IV, = 0.1~ 1 MH2
Logic Cl" - 10
Data - - 15
AQ-A15, R/W,SYNC C 12
out
©oin) Cooun) - - s
1 o 30 50
02 002 - 50 80

Note: IRQ and NMI require 3K pull-up resistors.

379

R6500 Microcomputer System
DATA SHEET
VERSATILE INTERFACE ADAPTER (VIA)

SYSTEM ABSTRACT

The 8bit RE500 microcomputer system s produced with N
channel, sdwon-qate, depleton-load technology Ity perform
ance speeds are enhanced by advanced system architecture
Ms nnovative architecture tesully i smaller chips the sem
conductor threshold 10 costeffectivity System cost pilectivity
1 further enhanced by providing a family of 10 software com
patble microprocessar ICPUY devices, momory ant | O devices

as well as low cost desian aids and documentation

DESCRIPTION

The R6522 VIA adds two powertul. flexible (nterval Timers,
a senal-tomaraliel parallel (o serai shoft reaister and mput latch
g on the perpheral ports o e capabilities of the R6520
Penpheral latiface Adapter (PIA] device Handshaking capa
bility 15 expanded to allow control of bidiectionl daty tans
fers betwesn VIAs i multiple processor systems and between
peripherals

Control of perpherals 1s primanty through twa 8-bif biduectionat
ports Each of these ports can be proqrammed (o act as an input

o1 an output Peipheral | O hines ¢

7 be selectively controlled
by the Interval Timers 1o generate programmable-fiequency square
waves and:or to count externally generated pulses Positive con
trol of VIA functions 15 ganed through its intermal reqister organ:
sation Interrupt Flag Reqister, Interrupt Enable Reqister, and
wo Function Control Reqisters

Ordering Information

Order Package Temperature
Number Type Frequency Rang
R6522P Plastic 1 MH, 00C w0 +20°¢C
RE522AP Plastic 2MH, 00C 10+ 105¢C
R6522C Coramic 1 MH; 09C 10 +700C
R6522AC Coramic 2 MH; 09C 10 + 707C
RE522PE Plastic 1 MH; 40°C 10 +850C
RE522APE Prastic 2 MH, 409C 10 +850C
RE522CE Cerarmic 1 MH7 407¢ 10 +857C
RE6522ACE Ceramic 2 MMy 40°¢C 1 -85°¢
RE522CMT Ceramic 1 MH; 55°C to +125°C
L
RN
o ["
o b SPNTUTE ST
e
[*—» e

Basic R6522 Interface Diagram

380

FEATURES

® Organized for simphitied soliware control of many functions

e Compatible with the R650X and RE51X family af micra
processors (CPUs)
e Bidirectional. 8:bit data bus for communication with micro

processor

e Two Bidirectional, 8-t input outpul ports fornterface with
perpheral devices

e CMOS and TTL compatible input,outpul pernpheral ports

e Data Durction Reqisters dilow cach penpheral pin to act as
esther an input or an output

o Interrupt Flag Reaister allows the microprocessor 1o readily
determine the source of an interrupt and provides convenent
control of the interrupts within the chip

@ Handshake control loqic for 1nput/output peripheral data
transter operations

o Data latching on peripheral input/output Ports

@ Two fully programmable interval imersscounters

E1ght-bit Shift Reqister for seriai inter face

Forty pin plastic or ceramic DIP package

vss .1 aof cat
Pa0 2 9fD caz
23N = k] 383 RSO
PA2 C]a 37 RS
PA3 Y5 36 RS2
Pas e 35 Rsa
eas 7 34f 3 RES
Pas 8 333 00
23X = I 20 o1
eg0] 10 afgo2
PBY (] 11 308303
P82 (]12 29 04
P83 Y13 28f3 05
PB4 (14 27f306
P85 (15 26107
P86 [J16 250z
pe7 17 24 st
cs1 (18 23 &s2
cB2 (19 20 Rw
vee] 20 21 iRG

Pin Configuration

(VIA) H31dvav 3OV4HILNI I7ILVYSHIA 22S9Y

OPERATION SUMMARY
Ragister Select Lines (RSO, RS1, RS2, RS3)

The four Register select lines are normally connected to the processor address bus lines to allow the processor to select the internal R6522

register which is to be accessed. The sixteen possible combinations access the registers as follows

RS3 | RS2 | RS1 | RSO | Register Remarks RS3 | RS2 | RS1 | RSO | Register Remarks
L L L L | ore H L L Lo| TouL | write Laten
L L L H ORA Controls Handshake T2C-L | Read Counter
. . " . bORE H L L H | T2CH | Triggers T2L-L/T2CL
Transfer
L L H H DDRA
H L H SR
L H L L TILL | Write Latch H L H H ACR
TIC-L Read Counter H H L L PCR
L H L Ho| TicH | Trigger TiLLTICL || " L P
Transfer
H H H L 1ER
L H H R ST
H H H H | ORA | NoEftecton
L H H H TILH Handshake
Note: L =04V DC, H = 2.4V DC.
Timer 2 Control
RS3 RS2 RS1 RSO RW =L RW=H
H L L L Write T2L-L Read T2C-L
Clear Interrupt flag
H L L H Write T2CH Read T2C-H
Transfer T2L-L to T2C-L
Clear Interrupt tiag

Writing the Timer 1 Register

The operations which take place when writing to each of the four T1 addresses are as follows

RS3 RS2 RS1 RSO Operation (R/W = L)

L H L L Write into low order fatch
Write into high order latch

L " N " Write into high order counter
Transfer low order latch into low order counter
Reset T1 interrupt flag

L H H L Write low order latch

% " " " Write high order fatch
Reset T1 interrupt flag

Reading the Timer 1 Registers

For reading the Timer 1 registers, the four addresses relate directly to the four registers as follows

RS3 RS2 RS1 RSO Operation (R/W = H)
Read T1 low arder counter
t " t - Reset T1 interrupt flag
L H H Read T1 high order counter
L H H L Read T1 low order latch
L H H H Read T1 high order iatch

381

Timer 1 Operating Modes

Two bits are provided in the Auxiliary Control Register to allow selection of the T1 operating modes

are as follows

These bits and the four possible modes

ACR7 ACR6

Output “Frea-Run"

Enable Enable Mode
0 0 Generate a single ime-out interrupt each time T1 15 loaded
0 1 Generate continuous Interrupts

Generate a single interrupt and an output pulse on PB7 for
each T1 load operation

Generate continuous interrupts and a square wave output
on PB7

FUNCTION CONTROL

Control of the various tunctions and operating modes within the R6522 is accomplished primarr-y through two registers, the Peripheral Con
trol Register (PCR), and the Auxihiary Control Register (ACR}. The PCR 15 used primarily to select the operating mode for the four peripheral
control pins. The Auxihiary Control Register selects the operating mode for the Interval Timers (T1, T2}, and the Serial Port {SR)

Peripheral Control Register

The Peripheral Control Register 1s organized as follows

Bit # 6 5 4 3 [2 [1 0
Function CB2 Control cB1 CA2 Control cal
Control Control
Typical functions are shown below
PCR3 PCR2 PCR1 Mode
0 0 0 Input mode — Set CA2 intercupt flag (1FRO) on a negative transition of the input signal. Clear
IFRO on a read or write of the Perpheral A Qutput Register
0 0 1 Independent interrupt input mode — Set IFR0 on a negative transition of the CA2 input sig-
nal. Reading or writing CRA does not ciear the CA2 interrupt flag,
0 1 0 Input mode - Set CA2 interrupt fiag on 3 positive transition of the CA2 input signal. Clear
IFRO with a read or write of the Peripheral A Output Register
0 1 1 Independent interrupt input mode — Set 1FRO on a positive transition of the CA2 input sig-
- nal. Reading or writing ORA does not clear the CA2 interrupt flag
1 0 o Handshake output mode — Set CA2 output low on @ read or wnte of the Peripheral A Qutput
Register. Reset CA2 high with an active transition on CA1
1 0 1 Pulse output mode ~ CA2 goes low for one cycle following a read or write of the Peripheral
A Output Register
1 1 0 Manual output mode — The CA2 output 1s held low in this mode.
1 1 1 Manual output mode — The CA2 output is held high n this mode

Auxitiary Control Register

Many of the functions in the Auxihary Control Register have been discussed previously.
here as a convenient reference for the R6522 user

However, a summary of this register is presented
The Auxiliary Control Register 1s organized as follows

Bit # 6 5 4 ! 3 I 2 | 1 0
T2 P8 PA
Function T1 Control Contro! Shift Register Control Latch Latch
Enable Enabie
]
Shift Register Control
The Shift Register operating mode is selected as follows
T
ACRa ACR3 ACR2 Mode
0 0 9 Shift Register Disabled
0 Q 1 Shift in under contiol of Timer 2
0 1 0 Shiftin under control of system ctock
0 1 1 Shift in under control of external clock puises
1 0 0 Free-running output at rate determined by Timer 2
1 [1 Shift oui under control of Timer 2
1 1 0 Shift out under control of the system clock
1 1 1 Shift out under control of external clock pulses
T2 Control

Timer 2 operates in two modes

If ACRS =0, T2 acts as an interval timer in the oneshot mode

determined number of pulses on pin PBE

1f ACRS = 1, Timer 2 acts 10 count 3 pre

TIMING CHARACTERISTICS

Read Timing Characteristics (loading 130 pF and one TTL load)

Parameter Symbol Min Tvp Max Unit
Delay time, address valid 10 clock posttive 1ransition Tach 180 - - ns
Delay time, clock positive transition to data vahd on bus TCDH - - 395 nS
Peripheral data setup hime TPCR 300 - nS
Data bus hold tme THR 10 - - nS
Rise and fall time for clock input IRC - 25 nS
RE
T
ACR
q—Tcﬁ
PHASE TWO
cLock Teor
Tee
24v
ADDRESS X
+ — t 0.4v
[="ecrU 1 .

PERIPHERAL
DATA
DATA BUS X

Read Timing Characteristics

0.4v
24v

f—m e == = ——-0av

Write Timing Characteristics

Parameter Symbol Min Typ Max Unit
Enabie pulse width Te 047 - 25 us
Delay tume, address valid 10 clock positive transition Tacw 180 nS
Delay time. data valid to clock negative transition Tocw 300 nS
Delay time, read write negative transition to clock positive Twew 180 - - ns
transition
Data bus hoid time Thw 10 - - ns
Delay time, Enable negative transition to peripheral data valid Tepw - - 10 us
Detay time, clock negative transition to peripheral data valid . Temos - - 20 us
CMOS (VCC 30%)

f—Te
PHASE TWO
cLOCK /

f—et-T,
ACR 24v
ADDRESS X
T 0av
wew cMos 24v
Toew+
READ/WRITE } e e e m= 04V
THW.' L
- HW S
DATABUS X i——
[PR —— Y
Tepw T - - oo - - - vee
2.4v
PERIPHERAL X
DATA

Write Timing Characteristics

1/0 Timing Characteristics

Characteristic Symbol Min Typ Max Unit
Rise and fall time for CA1, CB1. CA2 and CB2 input signals Tar 10 us
Delay time, clock negative transition 1o CA2 negative Teaz 10 s
transition (read handshake or pulse mode)
Delay time, clock negative transition 10 CA2 positive Tast 10 s
transition (puise mode)
Delay time, CA1 active transition to CA2 positive transition Tas2 20 us
(handshake mode)
Delay ime, clock positive transition to CA2 or CB2 negative Twns 10 s
transition (write handshake)
Delay time, peripheral data valid to CB2 negative transition Toc 0 15 s
Delay time, clock positive transition to CA2 or CB2 positive Tasy 10 s
transition (pulse mode)
Delay time. CB1 active transition 10 CA2 or CB2 positive Tasa 20 us
transition (handshake mode)
Delay time. peripheral daia vaiid 10 CA1 o C81 active T 300 ns
transition (input latching)
Delay time CB1 negative transition 10 CB2 data vahd Tsa 300 ns
(internal SR clock, shift out)
Delay time, negative transition of CB1 input clock to CB2 data Tsr2 300 ns
vahd lexternal clock. shift out
Delay tme. CB2 data vaiid 10 pos:tive transition of CB1 clock Tsns 300 ns
(shiftin, internal or external clock)
Pulse Width — PB6 Input Pulse L 2 us
Pulse Width - CB1 Input Clock Tiew 2 "
Pulse Spacing PB6 Input Pulse lips 2 . us
Pulse Spacing - CB1 Input Pulse Iics 2 s

PB6 INPUT PULSE
COUNTING MODE

CB2 SERIAL
DATA IN
CB1CLOCK 5
Tsm1
CB2 SERIAL
DATA OUT av

1/0 Timing Characteristics

384

SPECIFICATIONS

Maximum Ratings

Rating Symbot Value Unit
Supply Voltage vee 0310+70 vde
tnput Voltage Vin 0310470 vde
Operating Temperature Range T °c
Commercial 010 +70
Industrial -40 to +85
Military 5510 +125
Storage Temperature Range TsTG 5 to +150 °c
This device contains circuitry to protect the inputs against damage due to high static voltages. However, it 1s advised that normal precautions
be taken to avoid application of any voltage higher than maximum rated voltages.
Electrical Characteristics
IVCC 5.0V +5%, VSS - 0)

Characteristic Symbol Min Max Unit
1nput high voltage (normal operation) Vi w24 vee vde
Input low voltage Inormal operation) A 03 +08 Vde
Input leakage current - Vo - 0 1o 5 Vdc 1 25 wAdc

A/, HES, RSO, RS1TAS2, AS3, CS1, N
C52.ca1.02
Offstate nput current Vi - 0.4 1o 2.4V [- +10 uAde
VCC = Max, DO to D7
Input high current -- [100 - uwAdc
PAO-PAT. CA2, vy PE7 Cor, ce2
Input low current - Vi [- 16 mAdc
PACPA7. CA2, PHO vy & ce
Output high voltage Vom 24 - Vvde
VCC = min, ljgag =
PAGPAT. CAS B0 987)
Output low voltage VoL - +0.4 vde
VCC = min, Jigaq < 1.6 mAdc
Output high current {sourcingl on
VoH * -100 - »Adc
VOH - 15V, PBO-PB7, CB1, CB2 10 - mAdc
Output fow current (sinking) oL 16 - mAde
Vo = 0.4 vdc
Output leakage current (off statel [- 10 wAdc
IR
Input Capacuance —~Ta-25%C. 1< 1 MHz [pF
R:w, RES, REO, RS1. RS2, RS3, CS1, T2 - 70
00-D7, PAQ-PA7, CA2, PBO-PBY, - 10
CB1, CB:
02 nput 20
Output capacitance - T - 25°C, f = | MHz Com - 10 pF
Power dissipation Py 750 mw

R6500 Microcomputer System

ROM-RAM-1/0-INTERVAL

SYSTEM ABSTRACT

The 8bit RE500 microcomputer system 1s produced with N

DATA SHEET

TIMER DEVICE (RRIOT)

FEATURES

® B bit bidirectional Data Bus for direct communication with the
microprocessor

1024 x 8 ROM

channel. Silicon-Gate technology. Its performance speeds are : 64 x 8 static RAM
enhanced by advanced system architecture [1s nnovaive aichi o Two 8 bit bidirectional data ports for interface ta peripherals
tecture results 1n smaller chips - the semiconductor threshold to & Two programmable Data Direction Registers
costeffectity. System costeffectivity 15 further enhanced by & Programmable Interva) Timer
o) ¥ X . " Programmable Interval Timer Interrupt
providing a family of 10 software-compatible microprocessor & 770 g CMOS compatible peripheral lines
ICPUI devices Rockwell also provides memory and 1/ devices o Peripheral pins with Direct Transistor Drive Capability
that further enhance the costeffectivity of the R6500 . Th ata
puter system as well as low-cost design aids and documentation ® Allows up to 7K contiguous bytes of ROM with no external
decoding
DESCRIPTION Ordering Information
The R6530 is designed to operate in conjunction with the R6500 Order Package Temperature
Microprocessor Family. It is comprised of a mask programmable Number Type Range
1024 x 8 ROM, a 64 x 8 static RAM, two software controlied
8 bit bidirectional data ports allowing direct interfacing between R6530P Plastic 0°C 10 +70°C
the microprocessor unit and peripheral devices, and a software R6530C Ceramic 0°C 10 +70°C
programmable interval timer with interrupt. capable of timing in
various intervals from 1 to 262,144 clock periods A custom number will be assigned by Rockwell
PAO PA7 P8O PB?7
DATA
DIRECTION OuTPUT PERIPHERAL INTERVAL PERIPHERAL ouTPUT
REGISTER |—#{ DATA BUFFER TIMER DATA BUFFER[#—] REGISTER
REGISTER
A A 8 8
A
—]
DATA
CHIP
D;JSA ADDRESS SELECT 64x8 1K x8 DIRECTION
DECODER RAM ROM REGISTER
BUFFER Rw 8
cs2 | mw
00 D7 A0 A9 CS1 92 msO

R6530 Block Diagram

386

(LOIHH) 3DIA3A HAWIL TVAHILNI-O/I-WVH-NOY

INTERFACE SIGNAL DESCRIPTION

Reset (RES)

During system initialization a Logic “0" on the RES input will
cause a zeroing of all four 1/O registers. This in turn will cause all

Address Lines (A0-A9)

There are 10 address pins (AO-A9). In addition, there is the
ROM Select pin (RSO). Further, pins PB5 and PB6 are mask

1/0 buses to act as inputs thus ing external

from possible damage and erroneous data while the system is being
configured under software control. The Data Bus Buffers are put
into an off state during Reset. Interrupt capability is disabled
with the RES signal. The AES signal must be held low for at least
one clock period when reset is required.

Read/Write (R/W)

The R/W signal is supplied by the microprocessor and is used to
control the transfer of data to and from the microprocessor and
the R6530. A high on the R/W pin aliows the processor to read
(with proper addressing) the data supplied by the R6530. A low

and can be used either individually or together as
chip selects. When used as peripheral data pins they cannot be
used as chip selects.

INTERNAL ORGANIZATION

The R6530 is divided into four basic sections: RAM, ROM,
1/0 and Timer. The RAM and ROM interface directly with the

on the R/W pin allows a write (with proper to the
R6530.

Interrupt Request (TRQ)

The TRQ pin is an interrupt pin from the interval timer. This same
pin, if not used as an interrupt, can be used as a peripheral 1/O pin
(PB7). When used as an interrupt, the pin should be set up as an
input by the Data Direction Register. The pin will be normally
high with a low indicating an interrupt from the R6530. An exter-
nal pull-up device is not required; however, if collector-OR'd with
other devices, the internal pullup may be omitted with a mask
option.

Data Bus (D0-D7)

The R6530 has eight bidirectional data pins (DO-D7). These pins
connect to the system’s data lines and aliow transfer of data to
and from the microprocessor. The output buffers remain in the
off state except when selected for a Read operation.

Peripheral Data Ports

The R6530 has 16 pins available for peripheral |/O operations.
Each pin is i sofiware to act as either
an input or an output. The 16 pins are divided into two 8-bit
ports, PAO-PA7 and PBO-PB7. PBS, PB6 and PB7 also have other
uses which are discussed in later sections. The pins are set up as
an input by writing a 0"’ into the corresponding bit of the Data
Direction Register. A “1" into the Data Direction Register will
cause its corresponding bit to be an output. When in the input
mode, the Peripheral Data Buffers are in the 1" state and the
internal pull-up device acts as less than one TTL load to the
peripheral data lines. On a Read operation, the microprocessor
unit reads the peripheral pin. When the peripheral device gets
information from the R6530 it receives data stored in the Out-
put Register. The microprocessor will read correct information
if the peripheral lines are greater than 2.0 volts (for a “1”) or
less than 0.8 volts (for a "’0") as the peripheral pins are all TTL
compatible.

mic through the system data bus and address lines.
The 1/0 section consists of two 8-bit halves. Each half contains
a Data Direction Register (DDR) and an Output Register.

ROM 1K Byte (8K Bits)

The 8K ROM is in a 1024 x 8 configuration. Address lines AO-A9,
as well as RSO are needed to address the entire ROM. With the
addition of CS1 and CS2, seven R6530's may be addressed, giving
7168 x 8 bits of contiguous ROM.

RAM — 64 Bytes (512 Bits)

A 64 x 8 static RAM is contained on the R6530. It is addressed
by AO-AS5 (Byte Select), RSO, A6, A7, A8, A9 and, depending
on the number of chips in the system, CS1 and CS2.

Internal Peripheral Registers

There are four internal registers, two data direction registers and
two output registers. The two data direction registers (A side
and B side) control the direction of the data into and out of the
peripheral pins. A ““1" written into the Data Direction Register
sets up the corresponding peripheral buffer pin as an output.
Therefore, anything then written into the Output Register will
appear on that corresponding peripheral pin. A "0 written
into the DDR inhibits the output buffer from transmitting data
from the Output Register. For example, a ‘1" loaded into Data
Direction Register A, position 3, sets up peripheral pin PA3 as an
output. If a 0" had been loaded, PA3 would be configured as
an input and remain in the high state. The two Data Output
Registers are used to latch data from the Data Bus during a Write
operation until the peripheral device can read the data supplied
by the microprocessor.

During a Read operation the microprocessor is reading the periph-
eral data pins. For the peripheral data pins which are programmed
as outputs the will read the cor data
bits of the Output Register. The only way the Output Register
data can be changed is by a microprocessor Write operation.
The Output Register is not affected by a Read of the data on the
peripheral pins.

387

Interval Timer

The Timer section of the R6530 contans three basic parts
scale divide down register, programmable 8-bit register and inter-
rupt logic

pre-

The interval timer can be programmed to count up to 256 time
intervals. Each time interval can be either 1T, 8T, 64T or 1024T
increments, where T is the system clock period. When a full count
is reached, an interrupt flag is set 1o a logic ""1°". After the inter-
rupt flag is set the internal clock begins counting down to a maxi-

When the timer has counted down to 0 0 0 0 0 0 0 O on the
next count time an interrupt will occur and the counter will read
LINR I B R R B B | After interrupt, the Timer Register decre-
ments at a divide by 1 rate of the system clock. If afterinter
rupt, the tmer s read and a vaiue of 11100 10 015 read, the
ume since interrupt is 27T. The value read i1s in one’s complement

Value read =

11100100
mum of -265T. Thus, after the interrupt flag is set, a Read of the Complement = 0.0 01101 1=

timer will tell how long since the flag was set up 1o a maximum of

265T.

The 8 bit system Data Bus is used to transfer data to and from the Thus. 1o arrive at the total elapsed tme, merely do a one’s com

Interval Timer. 11 a count of 52 time intervals were 1o be counted, plement and add to the original time written Into the timer. Again,
assume time written 250 0 1 1.0 1 0 0 (-52). With a dwide

the pattern 0 0 1 1 0 1 0 0 would be put on the Data Bus and

woitten into the Interval Timer Register by 8, total ime (o interrupt 13 (52 x 8) + 1= 4177, Total elapsed

time would be 417T + 27T = 4447, assuming the value read alter

A1 the same time that data is being written to the Interval Timer, 100100

the counting interval (1, 8, 64 or 1024T) s decoded from address
lines AO and A1. During a Read or Write operation address line
A3 controls the interrupt capability of PB7, i.e., Ay = 1 enables
IRQ on PB7, A, = 0 disables IRQ on PB7. When PB7 is to be used
as an interrupt flag with the interval timer it should be pro-
grammed as an input. If PB7 is enabled by A3 and an interrupt
occurs PB7 will go low. When the timer is read prior 10 the inter-
rupt flag being set, the number of time intervals remaining will be
read, i.e., 51, 50, 49, etc.

interrupt was 1 1

After the interrupt, whenever the timer is written or read the
interrupt is reset. However, the reading of the timer at the same
time the interrupt occurs will not reset the interrupt flag. When
the interrupt flag is read on DB7 all other DB outputs (DBO thru
DB6) go ta 0"

When reading the timer after an interrupt, A3 should be low so as

.to disable the IRQ pin. This is done so as to avoid future inter-
rupts until after another Write timer operation.

R/W A p7 D5 D3 D1
3 lps D4 | D2 110 RIW AI A0
_ INTERRUPT PROGRAMMABLE] DIVIDE .
RO @+ conTroL [* REGISTER DOWN 02

ARAKS

l—l

o7 D6 D4 D2 DO

Basic Elements of Interval Timer

[©) &)) @ ®
62N] 0 1 2 3 213 214 415 416 500 501
WRITE T

|

1

3
ol

Data written into interval timer s 0 1 1010 0= 5'210

N

Data in Interval timeris0 0 0 11 0 0 1=25,,
52 % -1=56226-1=25

3. Datain Interval timerisO 0 0 0 0 0 0 0=01°

52-‘—;5 52-51-1=0

4. Interrupt has occurred at 02 pulse #416
Datain Interval timer=11 1111 11

@

. Data in Interval timer is 1
two's complement is 0 1
B83+(52x8)+ 1= 500‘0

0101
0100

388

ADDRESSING

Addressing of the R6530 offers many variations to the user for
greater flexibility. The user may configure his system with RAM
in lower memory, ROM in higher memory, and 1/0O registers with
interval timers between the extremes. There are 10 address lines
(A0-A9). In addition, there is the possibility of 3 additional
address lines to be used as chip-selects and to distinguish between
ROM, RAM, I/0O and interval timer. Two of the additional lines
are chip-selects 1 and 2 (CS1 and CS2). The chip-select pins can
also be PB5 and PB6. Whether the pins are used as chip-selects or
peripheral 1/0 pins is a mask option and must be specified when
ordering the part. Both pins act independently of each other in
that either or both pins may be designated as a chipselect. The
third additional address line is RSO. The R6502 and R6530 in a
2-chip system would use RSO to distinguish between ROM and
non-ROM sections of the R6530. With the addressing pins avail-
able, a total of 7K contiguous ROM may be addressed with no
external decode. Below is an example of a 1-chip and a 7<chip
R6530 Addressing Scheme.

One-Chip Addressing

A 1<hip system decode for the R6530 is illustrated on the top of
the following page.

Seven-Chip Addressing

In the 7chip system the objective would be to have 7K of contigu-
ous ROM, with RAM in low order memory. The 7K of ROM
could be placed between addresses 65,535 and 1024. For this
case, assume A13, A14 and A15 are all 1 when addressing ROM,
and 0 when addressing RAM or 1/0. This would place the 7K
ROM between addresses 65,535 and 58,367. The 2 pins desig-
nated as chip-select or /O would be masked programmed as
chip-select pins. Pin RSO would be connected to address line
A10. Pins CS1 and CS2 would be connected to address lines
A11 and A12 respectively. See illustration below.

The two examples shown would allow addressing of the ROM
and RAM; however, once the /O or timer has been addressed,
further decoding is necessary to select which of the 1/O regis-
ters are desired, as well as the coding of the interval timer.

1/O Register — Timer Addressing

Addressing Decode for 1/O Register and Timer illustrates the
address decoding for the internal elements and timer program-
ming. Address lines A2 distinguishes 1/0 registers from the timer
When A2 is high and 1/0 timer select is high, the 1/O registers are
addressed. Once the 1/O registers are addressed, address lines A1
and AO decode the desired register.

When the timer is selected A1 and AO decode the divide by matrix.
In addition, Address A3 is used to enable the interrupt flag to
PB7.

R6530 Seven Chip Addressing Scheme

The addressing of the ROM select, RAM select and 1/0 Timer select lines would be as follows

cs2 cs1
Al12 Al

R6530 #1, ROMSELECT 0]
RAM SELECT 0)

1/0 TIMER 0 o

R6530 #2, ROM SELECT o 1
RAM SELECT [o

1/0 TIMER 0)

R6530 #3, ROM SELECT [¢] 1
RAM SELECT 0)

1/0 TIMER 0 o

R6530 #4, ROMSELECT 1 0o
RAM SELECT 0 o

1/0 TIMER 0]

R6530 #5, ROM SELECT 1 o
RAM SELECT) o

1/0 TIMER o o

R6530 #6, ROM SELECT 1 1
RAM SELECT) 0

1/0 TIMER) o

R6530 #7, ROM SELECT 1 1
RAM SELECT 0 0

1/0 TIMER o o

RSO

A0 A9 A8 A7 A6
1 X b3 X X
[]]]]
0 1 0 o o
[X X X X
o o 0 [1
[1 0o o 1
1 X X X X
0 0 o 1 0
o 1 0 1 0
0 X X X X
o 0 0 1 1
0 1 0 1 1
1 X X X X
[) 1 0 0
[¢] 1 1 0 0
o X X X X
0 0 1 0 1
o 1 1 o 1
1 X X X X
0) 1 1 0
o 1 1 1 0

*RAM select for R6530 #5would read = A120A116A10 6A0 @ ABeAT @ AG

389

T T seC
- INTERVAL
—] a1 Twen
]
110 TIMER 560
1 "o seL
- vo
4 a0
seu
as
r=—=--- Tt N M
! ! a1 mam
' '
e ! .
D> . s
s i
T
|T“> '
T ! AomsEL
' '
s
T T
D~ : .
O O T
' '
a
v v
A6 ! ! s
v T
D> L .
PP ittt it it A
a .
a2
a0
A X et ma progamming
+ BOM wwict + G510 RSD
AaMseivct - CSTeATBeRTen) 0r6
1O TIMER SELECT + G510 ASBeAD aABeAT0AS
B Notce mar AB o don't core for RAM saect
© CS7.on e uaed 21 BB it ensmte
R6530 One Chip Address Encoding Diagram
Addressing Decode for 1/0 Register and Timer
Addressing Decode
ROM Select RAM Select 1/O Timer Select R/W A3
Read ROM 1 (4] [:} 1 X
Write RAM 0 1 0 [1} X
Read RAM 0 1 0 1 X
Write DDRA 1]] 1] X
Read DDRA 0 0 1 1 X
Write DDR8B 0 0 1 o X
Read DDRB 0] 1 1 X
Write Per. Reg. A 0 o 1 o X
Read Per. Reg. A] 0 1 1 X
Write Per. Reg. 8 [[1} 1 0 X
Read Per. Reg. B] o 1 1 X
Write Timer
-7 o 1] 1 [.
8T] o 1 o N
+64T] 9 1 o o
+1024T o o 1 o N
Read Timer 0 0 1 1 .
Read Interrupt Flag 0 0 1 1 X

*A, = 1 Enables IRQ to PB7
A3 = 0 Disables IRQ to PB7

390

2

OO0 000000 XXX
-~ =00 = =~00XXX

© 00O = = ==X XX

X X = = OO0
-0 -0 =0

Write Timing Characteristics

Characteristic Symbol Min Typ Max Unit
Clock Period Teve 1 10 us
Rise & Fall Times Te- Te 25 ns
Clock Pulse Width Te 470 ns
R/W valid before positive transition of clock Twew 180 ns
Address valid before positive transition of clock Tacw 180 ns
Data Bus valid before negative transition of clock Tocw 300 ns
Data Bus Hold Time THW 10 ns
Peripheral data valid after negative transition TCPW 1 uS
of clock
Peripheral data valid after negative transition TCMOS 2 us
of clock driving CMOS (Level = VCC - 30%)
Read Timing Characteristics
Characteristic Symbol Min Typ Max Unit
R/W valid before positive transition of clock Twer 180 ns
Address valid before positive transition of clock TacR 180 ns
Peripheral data valid before positive transition Tocr 300 ns
of clock
Data Bus valid after positive transition of clock Teor 395 ns
Data Bus Hold Time THR 10 ns
IRQ (Interval Timer Interrupt) valid before Tc 200 "
positive transition of clock
Loading = 30pF + 1 TTL load for PAO-PA7, PBO-PB7
= 130pF +1 TTL load for DO-D7
cLoCK ineuT v

N

-

acw

Twow

h
o RCE X

. Tov iz
oatasus 4

X e

emengaac
oara

Toon I

e Tcmos =

Write Timing Characteristics

R
remieneAaL Tov
oaTa oav

20v

aw
~—l'm- p-—

a00REss

Tach fe—

Tov
o8y

Read Timing Characteristics

R6500 Microcomputer System

DATA SHEET

RAM, 1/0, INTERVAL TIMER DEVICE (RIOT)

SYSTEM ABSTRACT

The 8.bit R6500 microcomputer system is produced with N-
Channel, Sil s p speeds are
enhanced by advanced system architecture which enables muitiple

FEATURES

e 8 bit bidirectional Data Bus for direct communication with the
microprocessor

e 128 x 8 static RAM
Its results in smaller chips — E , neral
the semiconductor threshold to cost-effectivity. System cost ¢ TwoB bitbidirectional data ports for interface 1o peripherals
effectivity is further enhanced by providing a family of 10software- & Two programmable Data D-rection Registers
compatible microprocessor (CPU) devices. Rockwell also Pro- y pyooam e interval Timer Interrupt
vides memory and /O devices that further enhance the cost-
effectvity of the RB500 microcomputer system ... as well as ® 17L& CMOS compatible peripheral lines
low-cost design aids and documentation @ Peripheral ptns with Direct Transistor Drive Capabihity
e High impedance Three-State Data Bus
DESCRIPTION e Programmable edge-sensitive Interrupt
The RE532 15 designed 1o operate in conjunction with the RE500 Ordering Information
Microprocessor Family. It 1s comprised of a 128 x 8 static RAM,
two software controlled 8 bit bidirectional data ports allowing Order Package Temperature
direct ntertacing between the microcomputer and peripheral Number Type Range
devices, a software programmable interval timer with interrupt, o o
capable of tming in various mtervals from 1 to 262,144 clock RE532P Plastic 0%C 10 +70%
periods, and a programmable edge detect circuit R6532C Ceramic 0°C 10 +70°C
PAD PA7 PBO PB7
DATA PUT IPHERAL
DIRECTION oursu PERIPHE - INTERVAL PERIPHERAL OUTPUT
REGISTER REGISTER |—{ DATA BUFFE TIMER DATA BUFFER 4—7 REGISTER
a A A 8 B
[—)
DATA CHIP DATA
aUs ADDRESS SELECT 128x8 INTERRUPT DIRECTION
BUFFER DECODER AW RAM CONTROL REGISTER
B
cs2 H/WT 1
Do D7 A0 A8 ¢St 92 RS iR

R6532 Block Diagram

392

(LOIH) 3DIA3A HIWIL TVAHILNI 'O/ ‘WVH 2€59H

INTERFACE SIGNAL DESCRIPTION
Reset (RES)

During system initialization a logic 0" on the RES input will
cause a zeroing of all four 1/0 registers. This in turn will cause
all 1/0 buses to act as inputs thus protecting external components
from possible damage and erroneous data while the system is being
configured under software control. The Data Bus Buffers are put
into an OFF-STATE during Reset. Interrupt capability is dis-
abled with the RES signal. The RES signal must be heid low for
at least two clock periods when reset is required.

Read/Write (R/W)

The R/W signal 1s supplied by the microprocessor and is used to
control the transfer of data to and from the microprocessor
and the R6532. A high on the R/W pin allows the processor
to read (with proper addressing) the data supplied by the R6532
A low on the R/W pin allows a write (with proper addressing) to
the R6532

Interrupt Request (IRQ)

The TRQ pin is an interrupt pin from the interrupt control logic
The pin will be normally high with a low indicating an interrupt
from the R6632. An external 3K pull-up resistor is required. The
TRQ pin may be activated by a transition on PA7 or timeout ~*
the interval timer.

Data Bus (D0-D7)

The R6532 has eight bidirectional data pins (DO-D7). These
pins connect to the system's data lines and allow transfer of
data to and from the microprocessor array. The output buffers
remain in the off state except when the R6532 is selected for a
Read operation

Peripheral Data Ports (PAO-PA7, PBO-PB7)

The R6532 has 16 pins available for peripheral 1/0 operations.
Each pin is software prog 1o act as either
an input or an output. The 16 pins are divided into 2 8-bit ports,
PAOQ-PA7 and PBO-PB7. PA7 also has other uses which are dis-
cussed in later sections. The pins are set up as an input by writing
a "0” into the corresponding bit of the data direction register
A 1" into the data direction register will cause its corresponding
bit to be an output. When in the input mode, the peripheral out-
put buffers are in the 1" state and the internal puil-up device
acts as less than one TTL load to the peripheral data hnes. On a
Read operation, the microprocessor umit reads the peripheral
pin. When the peripheral device gets information from the R6532
1t recewes data stored in the output register. The microprocessor
will read correct information if the peripheral lines are greater
than 2.0 volts for 3 1" and less than 0.8 volt for a as the
peripheral pins are all TTL compatible. Pins PBO-PB7 are also
capable of sourcing 3 ma at 1.5V, thus making them capable of
Darlington drive

Address Lines (A0-A6)

There are 7 address pins. In addition to these 7, there is the RAM
SELECT (RS) pin. The pins AO-A6 and RAM SELECT are
always used as addressing pins. There are two additional pins
which are used as CHIP SELECTS. They are pins CS1 and CS2

INTERNAL ORGANIZATION

Thé R6532 is divided into four basic sections, RAM, 1/0, TIMER,
and Interrupt Control. The RAM interfaces directly with the
microprocessor through the system data bus and address lines.
The 1/0 section consists of two 8-bit halves. Each half contains a
Data Direction Register (DDR) and an Output Register

RAM — 128 Bytes (1024 Bits)

The 128 x 8 Read/Write memory acts as a conventional static
RAM. Data can be written into the RAM from the microprocessor
by selecting the chip (CS1=1, TS2 = 0) and by setting RS to a
logic 0 (0.4V). Address lines AO through A6 are then used to
select the desired byte of storage

Internal Peripheral Registers

The Peripheral A 1/0 port consists of eight lines which can be
individually programmed to act as either an input or an output. A
logic zero in a bit of the Data Direction Register (DDRA) causes
the corresponding line of the PA port to act as an inout. A logic
one causes the corresponding PA line to act as an output. The
voltage on any line programmed to be an output is determined by
the corresponding bit in the Output Register (ORA)

Data is read directly from the PA pins during any read operation.
For any output pin, the data transferred into the processor will
be the same as that contained in the Output Register if the voltage
on the pin is allowed to go to 2.4V for a logic one. Note that for
nput lines, the processor can write into the corresponding bit of
the Output Register. This will not affect the polarity on the pin
until the corresponding bit of DDRA s set to a logic one to allow
the peripheral pin to act as an output

In addition to acting as a peripheral 1/ line, the PA7 line can be
used as an edge-detecting input. In this mode, an active transition
will set the internal interrupt flag (bit 6 of the Interrupt Flag reg-
ister). Setting the interrupt flag will cause TRQ output to go low
if the PA7 interrupt has been enabled

Control of the PA7 edge detecting mode is accomplished by writ.
ing 1o one of four addresses. In this operation, AQ controls the
polarity of the active transition and A1 acts to enable or disable
interrupting of the processor. The data which is placed on the
Data Bus during this operation is discarded and has no effect on
the control of PA7

Setting of the PA7 interrupt flag will occur on an active transition
even If the pin is being used as a normal input or as a peripheral
control output. The flag will aiso be set by an active transition
it interrupting from PA7 is disabled. The reset signal (RES) will
disable the PA7 interrupt and will set the active transition to neg-
ative (high to low). During the system initialization routine, it 1s
possible to set the interrupt flag by a negative transition. It may
also be set by changing the polarity of the active interrupt. It 1s
therefore recommended that the interrupt flag be cleared before
enabling interrupting from PA7

Clearing of the PA7 Interrupt Flag occurs when the micorproc-
essor reads the Interrupt Flag Register

The operation of the Peripheral B Input/Output port is exactly
the same as the normal 1/0 operation of the Peripheral A port.
The eight lines can each be programmed to act as either an input
or as an output by placing a 0 or a 1 into the Data Direction reg-
ister (DDRB). In the output mode, the voltage on a peripheral
pin is controlled by the Output Register (ORB)

393

The primary difference between the PA and the PB ports is in the
operation of the output buffers which drive these pins The PB
output buffers are push-pull devices which are capabie of sourcing
3 ma at 15V This allows these pins to directly drive transistor
switches To assure that the microprocessor will read proper data
on a "Read PB’’ operation, sufficient logic 1s provided in the chip
to ailow the microprocessor to read the Output Register instead
of reading the peripheral pin as on the PA port

Interval Timer

The Timer section of the R6532 contains three basic parts: pre-
hminary dwvide down register, programmable 8-bit register and
interrupt logic

The interval timer can be programmed 1o count up to 255 time
ntervals, Each vme interval can be either 1T, 8T, 64T or 1024T
increments, where T is the system clock period. When a full count
1s reached, an interrupt fiag 1s set to a logic

After the inter-
rupt flag 1s set the internal clock begins counting down to a maxi-
mum of -255T. Thus, after the interrupt flag is set, a Read of the

timer wil! tell how long since the flag was set up to a maximum
ot 255T

The 8-bit system Data Bus is used to transfer data to and from the
Interval Timer. If a count of 52 time intervals were to be counted,
the pattern 0 0 1 1 0 1 0 O would be put on the Data Bus and
written into the Interval Time register

At the same time that data is being written to the Interval Timer,
the counting intervals of 1,8, 64, 1024T are decoded from address
hnes AQ and A1. During a Read or Write operation address line
A3 controls the interrupt capability of PB7. 1e., A3 = 1 enables
fRQ, A3 = 0 disables IRQ. When the timer 1s read prior 1o the
interrupt fiag being set. the number of time intervals remaining
will be read, 1.e, 51,50, 49, etc

When the timer has counted thru 0 0 0 0 0 0 O O on the next
count time an nterrupt will occur and the counter will read
1111 11 1 1 Afterinterrupt, the imer register decrements
at a divide by 1" rate of the system clock. If after interrupt, the
timer s read and a value of 1 1 1 0 O 1 G O s read, the ime
since interrupt 1s 27T, The value read i1s in two's complement,
but remember that interrupt occurred on count number one
Therefore, we must subtract 1

Value read 100100

Complement 011011

ADD 1 011100 =28Equals wo's
plement of register

SuB 1 011011 =27

Thus, 1o arnive at the total elapsed time, merely 00 a two's com
plement add to the original time written into the timer. Again,
assume time written as 0 0 1 1 0 1 0 0 (=52). With a divide
by 8, total ime to interrupt 1s {52 x 8) + 1 = 417T. Total elapsed
time would be 416T + 27T 4437, assuming the value read after
interruptwas 1 1 100100

After the interrupt, whenever the timer 1s written or read the inter-
upt 15 reset. However, the reading of the tmer at the same time
the interrupt occurs will not reset the interrupt flag. When the
interrupt flags are read (D7 for the timer, D6 for the edge detect)
data bus lines DO-D5 go 10 O

When reading the timer after an interrupt, A3 should be low 50 as
to disable the TRQ pin. This 1s done so as to avaid future interrupts
unul after another Write timer operation.

D7 D5 D3 DI
D6 | D4 T RIW Al ‘10
INTERRUPT PROGRAMMABLE DIVIDE
iRO%+— conTROL REGISTER DOWN o2
§5103101
D7 D6 D4 D2 DO
Basic Elements of Interval Timer
COUNTER P Tc —a=|
CONTENTS ¢ | 0 | 255 | 256 | 253 | | &

buse mmﬂmmﬂmm

NUMBER
WRITE
TIMER

PRESCALE p T

QUTPUT
INTERRUPT NPTC+ Toi2
FLAG (BIT 71 _L
READ
TIMER I

ASSUME 52 LOADED INTO TIMER WITH A OIVIOE BY 8
THE COUNTER CONTENTS AND THE CLOCK PULSE NUMBERS WILL COINCIDE

Prescale P - 8
Cycle Time, Tc 1 usec (for 1 MH2)
Count, N 52

394

Write Timing Characteristics

Characteristic Symbol Min Typ Max Unit
lock Peri
Clock Period Teve 1 10 us
Rise & Fall Times TR' TF 25 ns
Clock Pulse Width Tc 470 ns
R/W valid before positive transition of clock Twew 180 ns
Address valid before positive transition of clock TACW 180 ns
Data Bus valid before negative transition of clock TDCW 300 ns
Data Bus Hold Time THW 10 ns
Peripheral data valid after negative transition T 1 us
CPW
of clock
Peripheral data valid after negative transition Temos 2 us
of clock driving CMOS (Level = VCC - 30%)
Read Timing Characteristics
Characteristic Symbol Min Typ Max Unit
R/W valid before positive transition of clock TWCR 180 ns
Address valid before positive transition of clock TACR 180 ns
Peripheral data valid before positive transition TPCH 300 ns
of clock
Data Bus valid after positive transition of clock TCDR 395 ns
Data Bus Hold Time Tur 10 ns
IRQ (tnterval Timer Interrupt) valid before TIC 200 ns
positive transition of clock
Loading = 30pF +1 TTL load for PAQ-PA7, PBO-PB7
= 130pF +1 TTL load for DO-D7
-~
Tov
soomss_ X X o
—— T semngaaL D(T o
a vata oy e
o
oatasus X o ov =ty L——T'“" e
Tcow e 14 AU
S B B — e X
e X e

Write Timing Characteristics

Read Timing Characteristics

395

RAM Addressing

RS=0
AOQ-A6 select RAM address

1/0 Addressing

RS=1A2:-0
R/W = 1 to read, O to write

A1 A
PA data 0 0
PA data direction 0 1
PB data 1 0
PB data direction 1 1

Write Edge Detect Control

RS, A2=1 R/W, A4=0

A1 = 1, enable interrupt from PA7
A1 = 0, disable interrupt from PA7
AQ = 1, positive edge detect (PAT)

Read and Clear Interrupt Flag
RS, R/W, A2, A0 = 1

87 = Timer Flag

Bit6 = PA7 Flag

Read Interval Timer
RS, A4, A2 R/W. A0 -1

Read Interval Timer Overflow
RS, A4, A2, R/W=1,A0:0

Write Count to Interval Timer

RS, A4, A2 1.R/W=0
Al A0
-1 0 0
=8 0 1
-64 1 0
<1024 1 1

A3 = 1,enable nmer interrupt
A3 = 0, disable imer interrupt

396

AO = 0. negative edge detect (PAT) NOTE. For all aperations CS1 = 1, CS2 = 0
10° Max
A T
DOT ORNOTCH -
TO LOCATE osoomax| 11587 0625
PIN NO 1 1524 M| 15111 D895
20; L - vss 41 40 a6
as 2 39 o2
0155 Max A4 43 38 cs1
1393 M) i
. 2020MAx __ [A3 Oa 37:3(22
" 15130 MM} (0190 MaX a2 s 36[I RS
i (482 MM) ar e 35 Arw
N . a0 7 3a[JRES
T h; P 0'43.0',““ pa0 CJ8 300
W, = i T oa8rmMm pa1 (]9 o1
L X T ¥ PA2 é 10 31302
us?yggiz,w,i‘ L - 0100 min PA3 n 30303
(on 1 Tz 58 MMy Paa []12 29[04
103551 00 PA! 13 o
05510022, 4. L ootomin 5 281 0s
1045) 0018 25N PAG 14 2706
e = R =5
{ ra7 16 251 TRa
19 EQUAL SPACES P86 []17 24[]PBO
0100 G TOL NONCUM
P 18
1258 MM) = 23Pel
PB4 19 22[3P82
NOTE PinNo 115 in t1ower left corner when vDD 20 21[JPBe3

SymBbONZaton 1 1n Aormal orieniation

Packaging Diagram

Pin Configuration

SPECIFICATIONS

Maximum Ratings

Rating Symbol Voltage Unit
Supply Volts vee 0310 +7.0 v
Input/Output Voltage 0310 +7.0 v
Operating Temperature Range Top Qto 70 °c
Storags Temperasture Range Terg 55 to +150 o

All inputs contain protection circuitry to prevent damage due to high static charges. Care should be exercised to prevent unnecessary applica-

tion of voltage outside the specification range.

Electrical Characteristics

(VCC=5 0%, VS§=0V, T ,=25°C)

Chargcteristic Symbol Min Typ Max Unit

Input High Vottage Vin ss* 2.4 vce v

Input Low Voltage Vi Vgs 03 Vgg * 04

Input Leakage Current; V| = Vo + 5V [1.0 2.5 ua

A0.A6, RS, R/W, RES, ¢2, €51, €82

Input Leakage Current for High Impadance State [1.0 $10.0 ua

(Three State); V| = 0.4V to 2.4V; DO-D?

Input High Currant; Vin " 2av . ~100. 300. uA

PAO-PA7, PBO-PB7

Input Low Current; V| = 0.4V [1.0 16 MA

PAD-PA7. PBO-PB7 4

Output High Voltage Vou v

VCC = MIN, 1| 0,1y < 100 UA (PAO-PA7, PBO-PB7, DO-D7) VSs + 2.4

lLoap <3 MA (PBO-PBY) VSS + 1.5

Output Low Voitage

VCE =MIN, I o, € 1.6 MA (D0-D7) VoL VSS + 0.4 v

Output High Current (Sourcing); YoH

VOH > 2.4V (PAD-PA?, PBO-PB7, DO-D7) -100 -1000 HA
-3.0 5.0 MA

(Darlingtons) {PBO-PB7)
Output Low Current (Sinking): VOL < 0.4V (PAO-PA7) oL 16 MA
{PBO-PBY)

Clock Input Capacitance Ce 30 pF

Input Capacitance C\n 10 oF

Output Capacitance Sour 10 oF

Power Dissipation 5 500 1000 mw

All values are D.C. readings

397

1024 x4 Static Random

Access Memory

® 300 ns Maximum Access

@ Low Operating Power Dissipation
0.1 mW/Bit

® No Clocks or Strobes Required

Identical Cycle and Access Times

Single +5V Supply

Totally TTL Compatible:

All Inputs, Outputs, and Power Supply
® Common Data 1/0

400 mv Noise Immunity

High Density 18 Pin Package

The SY2114 is a 4096-Bit static Random Access
Memory organized 1024 words by 4-bits and is fabri-
cated using Synertek’s N-channel Silicon-Gate MOS
technology. It is designed using fully DC stable (static)
circuitry in both the memory array and the decoding
and therefore requires no clock or refreshing to
operate. Address setup times are not required and
the data is read out nondestructively with the same
polarity as the input data. Common Input/Output
pins are provided to simplify design of the bus oriented
systems, and can drive 2 TTL loads.

PIN CONFIGURATION

ORDERING INFORMATION

Supply

Order Package Access Current Temperature

Number Type Time (Max) Range
SYC2114 Ceramic 450nsec 100mamp 0°C to 70°C
SYP2114 Moided 450nsec 100mamp 0°C to 70°C
SYC2114:3 Ceramic 300nsec 100mamp 0°C to 70°C
SYP2114:3 Molded 300nsec 100mamp 0°C to 70°C
SYC2114L Ceramic 450nsec 70mamp 0°C to 70°C
SYP2114L Molded 450nsec 70mamp 0°C to 70°C
SYC2114L-3 Ceramic 300nsec 70mamp 0°C to 70°C
SYP2114L-3 Molded 300nsec 70mamp 0°Cto 70°C

The SY2114 is designed for memory applications
where high performance, low cost, large bit storage,
and simple interfacing are important design objectives.
It is totally TTL compatjble in all respects: inputs,
outputs, and the single +5V supply. A separate Chip
Select (CS) input allows easy selection of an individ-
ual device when outputs are or-tied.
The SY2114 is packaged in an 18-pin DIP for the
highest possible density and is fabricated with N-
channel, lon Implanted, Silicon-Gate technology — a
1l providing performance charac-
teristics as well as protection against contamination
allowing the use of low cost packaging techniques.

BLOCK DIAGRAM

>

-— Ve
-—— GNO
MEMORY ARRAY

64 ROWS
64 COLUMNS

—w
—=
— .
u w seLect
_w
—=

Ag.
T T
101 -‘?' H comn
= H iocicurrs
1o,
2 weur | [column secect
T DATA
10, conTROL
10,
I - B & A Ay

398

SY2114

ABSOLUTE MAXIMUM RATINGS COMMENT

Temperature Under Bias -10°C t0 80°C Stresses above those listed under “‘Absolute Maximum
Storage Temperature -65°C to 150°C Ratings" may cause permanent damage to the device.
Voltage on Any Pin with This is a stress rating only and functional operation of

Respect to Ground -0.5V to +7V the device at these or any other conditions above
Power Dissipation 1.0W those indicated in the operational sections of this

specification is not implied.

D.C. CHARACTERISTICS Ta =0°Cto +70°C, VcC = 5V 5% (Unless Otherwise Specified)

2114-3, 2114 [2114L, 2114L-3]
Symbeol Parameter Min | Max | Min | Max Unit Conditions
TN} Input Load Current 10 10 uA VIN = 0t0 5.25V
(All input pins)
Lo 1/0O Leakage Current 10 10 uA CS=2.0v,
Vi/0 = 0.4V to Vcc
Icct Power Supply Current 95 65 mA | Vce =525V, lj)0 =0 mA,
TA=25°C
Icc2 Power Supply Current 100 70 mA Vee =5.25V, 1170 = 0 mA,
Ta=0°C
ViL Input Low Voltage -05| 08 |-05 | 0.8 \Y
VIH Input High Voltage 20 | Vee | 20 | vee \2
VoL Output Low Voltage 0.4 04 \ loL=3.2mA
VOH Output High Voltage 24 | Vce | 24 | Vce \ IoH =-1.0mA
CAPACITANCE Tp = 25°C, f = 1.0 MHz
Symbol Test Typ Max Units
Ci/o Input/Output Capacitance 5 pF
CIN Input Capacitance 5 pF

NOTE: This parameter is periodically sampled and not 100% tested.
A.C. CHARACTERISTICS Ta =0°C to 70°C, VcC = 5V 5% (Unless Otherwise Specified)

21143,2114L-3 2114,2114L
SYMBOL PARAMETER MiIN MAX MIN MAX UNIT
READCYCLE
tRC Read Cycle Time 300 450 nsec
tA Access Time 300 450 nsec
tco Chip Select to Output Valid 100 120 nsec
t1cX Chip Select to Output Enabled 20 20 nsec
toTD Chip Deselect to Output Off 4] 80 o] 100 nsec
tOHA Output Hold From Address Change 50 50 nsec
WRITECYCLE
twe Write Cycle Time 300 450 nsec
tAW Address to Write Setup Time o] 0 nsec
tw Write Pulse Width 150 200 nsec
tWR Write Release Time 0 0 nsec
tOTW Write to Output Off 0 80 0 100 nsec
tDwW Data to Write Overlap 150 200 nsec
tDH Data Hold 0 0 nsec

A.C. Test Conditions
Input Pulse Levels

......... 0.8V to 2.0V

Input Riseand Fall Timeottt ettt e e e e e 10 n sec
Timing Measurement Levels: Input e 1.

Output . 0.8and 2.0V

OUtPULt Load . . . oot e 1TTL Gate and 100pF

399

TIMING DIAGRAMS

Read Cycle o
—— —— e
- T -
oo X X
_—
Oout
Write Cycle
T we .
AonRESS
——
TRIXIII KIS
< SIRRZZIRIRL
s LIRRIEARRKRKR
A
we -] .
— OTW e
ww | |
|
{
i
NOTES:

(@ WE is high for a Read Cycle

(@ W is measured from the latter of TS or WE going low to the earlier of TS or WE going high.

DATA STORAGE

When WE is high, the data input buffers are inhibited
to prevent erroneous data from being written into
the array. As long as WE remains high, the data stored
cannot be affected by the Address, Chip Select, or
Data 1/0 logic levels or timing transitions.

Data storage also cannot be affected by W,‘Addresses,
or the 1/O ports as long as CSis high. Either CS or
WE or both can prevent extraneous writing due to
signal transitions.

Data within the array can only be changed during
Write time — defined as the overlap of CS low and

WE low. The addresses must be properly established
during the entire Write time plus typ

Internal delays are such that address decoding prop-
agates ahead of data inputs and therefore no address
setup time is required. If the Write time precedes the
addresses, the data in previously addressed locations,
or some other location, may be changed. Addresses
must remain stable for the entire Write cycle but the
Data Inputs may change. The data which is stable
for tpw at the end of the Write time will be written
into the addressed location.

TYPICAL CHARACTERISTICS

1A (nsec)

SUPPLY CURRENT SUPPLY CURRENT ACCESS TIME VS
VS VOLTAGE , VS TEMPERATURE VOLTAGE
120 20 400
=257 Vi = 5.25V
% r 285°¢C 100 cc 525 350
80 - F \\ 3 ta=25°C
- &5 2
< 0 £ ISN_2114211 3 £
E e S . N S as0—
0 AL 3L 2
o 214 2114121143 2114.2114L
A/
/ 21141321143
150 |
40 45 50 55 6.0
vee Vi
2 3 a 5 6 7 0 20 4 60 80 100
vee (v Ta°C)
ACCESS TIME VS INPUT VOLTAGE LIMITS ACCESS TIME VS
TEMPERATURE VS TEMPERATURE CAPACITIVE LOAD
25 400 T
AL
Veg = 4.75V B | 23
C 20 t 350 |—— 7114, v
- cc = 5V
A \ ViH vee = 5V Taz25°C
3 - 15 v 3 3w
A\ s L H 3 1
s 2z < \A’SJ“‘L/
r 290 < 250 3
Lames g™ | 2 A
AL
O 05 200
1 | 0 150
o 2 4 60 80 o 20 40 60 80 100 100 200 300 400 500 600
TaCC) TaCCH cL (PF)
PACKAGE DIAGRAM ¢
CERAMIC PACKAGE MOLDED PACKAGE
19101
e (an0)
! -
[P
nononononn -
(3101 25
(2801 pree
smmo Lo o > v
e oUoouoooug i .
=
T040)
i ; t [
Crsd —
e o b || e
(odoi LoG0)
} - " ,”‘ o |_ 3z i
o0
(1o ozn
(0501 o)

032 REF

401

APPENDIX D

Pin Configurations of
Frequently Used
SN7400-Series Chips

The following pages contain pin configurations reprinted from the
TTL Data Book published by Texas Instruments, Inc. and are made
available through the courtesy of Texas Instruments, Inc. Copyright
© 1976 by Texas Instruments, Inc. All rights reserved.

Pin assignments for the following integrated circuits have been
reproduced: 7400, 7402, 7404, 7405, 7430, 7474, 7475, 74100, 74121,
74138, 74139, 74154, and 74367.

QUADRUPLE 2-INPUT
POSITIVE-NAND GATES

pasitive logic:
Y=AB

JENREN

HaHsBedalalall
X 8 v 2 78 2V GND

SN5400 (J) SN7400 (J, N}
SN54H00 (J) SN74HO00 (J, N)
SN54L00 () SN74L00 (J, N}

SN54LS00 (J, W) SN74LS00 (J, N)
SN54S00 (J, W) SN74s00 (J, N)

SNS400 (W)
SN54H00 (W)
SN54L00 (T)

QUADRUPLE 2.INPUT
POSITIVE-NOR GATES

02

Y = A+B

W A @ v In 8 GNO

S$N5402 (J) SN7402 (J, N)
SN54L02 (J) SN74L02 (J, N)
SN54LS02 (J, W) SN74LS02 (J, N}
SN54502 (J, W) SN74S02 (J,N)

TA 8 W v I 1A 18

SN5402 (W)
SN54L02 (T)

HEX INVERTERS

04

VEC BA 8Y SA SV 4A 4
w| [o] Ja] [n| [w] Jeo]jo

Y eA 6 GND SY SA 4y

o

)

W v A Iv 1A 3V GND

SN5404 (J) SN7404 (J, N}
SNS4HO04 (J) SN74HO04 (J, N)
SN54L04 (J) SN74L04 (J,N)

SNS4LSO04 (J. W) SN74LS04 (J.N)
SN54S04 (J,W) SN74S04 (J, N}

SN5404 (W)
SN54HO4 (W)
SN541.04 {T)

HEX INVERTERS
WITH OPEN-COLLECTOR OUTPUTS

sy
»

IV 8A 6y GND EY SA 4y
2] [e

VL 8. &Y BA PYS}
wul (o]l [e] s ol fe

P P P

1A 1w 2 v EoY I¥ GNO
SN5405 (J) SN7405 (J,N)
SN54HO05 (J) SN74HOS (J, N}
SNS4LSO05 (J, W) SN74LS05 (J, N}
SN54S05 (J, W) SN74S05 (J, N)

s Nl

1
A IV A Ve A I A

SN5405 (W)
SNS4HOS (W)

8INPUT
POSITIVE-NAND GATES

30

positive logic:
Y = ABCDEFGH

N Y OGN W G

wi[uifel (n| Tw] 's] o wifn) Jul inf [w] e
V23S 7 IaBaBs0sDalial
A 8 €t © F GND WM A 8 V¢ € 0 €

SN5430 (J) SN7430 (J,N) SNB430 (W)

SNS4H30 (J) SN74H30 (J,N) SN54H30 (W)

SN54L30 (J) SN74L30 (J,N) SN54L30(T)

SN54LS30 {J, W) SN74LS30 (J, N}

SN54S30 (J, W) SN74830 {J, N} NC~No internal connection

DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

14

FUNCTION TABLE

INPUTS OUTPUTS

PRESET CLEAR CLOCK D | @ @
L H X x| H L
H L X x| L H
L L X X | B He
H H t H H L
H H 1 L L H
H H L X | Qg Qg

cla 2 20k 2em 28 1PR 10 10 GND 20 20 2°R
wi(n)fu| Inf{w] o] 2
CI] o o
PR CLR| cLr eR|
0 €K XS
[} Hedalalall
1CK 16 3 vec 2 20 Zck
R cur cLR
SN5474 (J) SN7474 (J, N) SN5474 (W)
SNS4H74 (J) SN74H74 (J, N} SN54H74 (W)
SN54L74 (J) SN74L74 (3, N) SN54L74 (T)

SN54LS74A (J, W) SN74LS74A (J.N)
SN54S74 (J, W) SN74s74 (J,N)

4-BIT BISTABLE LATCHES

FUNCTION TABLE

(Each Latch)
INPUTS OUTPUTS
) G Qa a
L H L H
H H H L
X L | @ Q

H = high level, L = fow level, X = irrelevant

SN5476 {J, W)
SN54L75 (J)
SN54LS75 (J, W)

Qg = the leve! of Q before the high-to-low transistion of G

SN7475 (J, N)
SN74L75 (J,N)
SN74L§75 (J, N}

8-BIT BISTABLE LATCHES

EnAmLE
6

w03 e s e

204 o
n| n| (2 0| e (w] e o] (6] n]{u o

FUNCTION TABLE
100 {Each Latch)
oo
iNpUTS | OUTPUTS ot
D G| a a o
L H| L H R
H H H L ™")
- o
X L |Q G
H = high level, X = irrelevant TR HsHe
Qg = the level of Q before the ~ W @ e
high-to-low transition of G
SN54100 (J,W) SN74100 (J, N)

NC — No internal connection

MONOSTABLE MULTIVIBRATORS

121

FUNCTION TABLE

INPUTS OUTPUTS
Al_A2 B[a @
L X H| L H
X L H|fL H
X X L| L H
H H X| L H
H 4 Hi u
: H H|J o
L4 H|[NU U
L x t|lnu
X L _t|lnoar

NOTES: 1

N

An external capacitor

may be connected
between Cq, (positive)
and Rgyy/Cext-

. To use the internal

timing resistor, connect
Ring to V. For imoroved
pulse width accuracy and

repeatab

. connect an
external resistor between
Rext/Cext and V¢ with
Rint Open-circuited.

SN54121 (4, W) SN74121 (J,N)
SN54L121 (4, T} SN74L121 (4, N)
121 Rjpy = 2 k2 NOM

‘L121. .. Ring = 4 kQ NOM

NC—No internal connection

3-TO-8 LINE DECODERS/MULTIPLEXERS

138

gssee
man

%

louteur
saLkct

SN54LS138 (J,W) SN74LS138 (J,N)
SN54S138 (J,W) SN74S5138 (J, N)

uase

DUAL 2-TO-4 LINE DECODERS/MULTIPLEXERS

139

sygcr oaraoumum
lll.\l/_g

v e\ iy o

w][s]lu]u]fe][n][w]]s

™ v
Enasce

sadtcr oaTA OUTRUTS

SN54LS139 (J, W) SN74LS139 (J,N)
SN54S 139 (J, W) SN74S139 (J, N)

4-LINE TO 16-LINE DECODERS/DEMULTIPLEXERS

154

b—|
b
b
b
b—|
—{=

o ei e 14 1 uJ
o n
.
s

ouTeuTS

SN54154 (J, W)
SN54L154 (J)

SN74154 (J, N)
SN74L154 (J, N)

HEX BUS DRIVERS

3 67 NONINVERTED DATA OUTPUT
4-LINE AND 2-LINE ENABLE INPUTS
3STATE OUTPUTS

1 1 3 L)
[T ST TY

SN54367A (J, W)
SN54LS367 (J, W)

1] L] 7 L]

™ o v o
SN74367A (J, N}
SN74LS367 {J,N)

APPENDIX E

Pin Configuration
of 81LS97

The following pin configuration for the 81LS97 integrated circuit
is made available through the courtesy of National Semiconductor
Corporation. Copyright © 1976 by National Semiconductor Corpora-
tion. All rights reserved.

Ve B2 a8 Y8 AT Y? A6 Y6 A5 Y5
P AL lu In Iw Ls 1w |z iz n
l 1 lz 3 '4 5 Is 7 I 8 9 10

Gt Al Y1 A2 Y2 A3 Y3 A4 YA GND

71LS97/81LS97(N)

LS97
INPUTS | OUTPUT
A Y

ol

X z
H H
L L

- I

Index

A

Absolute
indexed addressing, 141-142
mode, 34, 58
Absolutely decoded, 263
Access
direct memory, 20
time, 285, 286
Accumulator, 19
addressing, 123
ACR, 219
Adapter(s)
interface, 51
Versatile Interface, 218
ADC instruction, 84-86
Add, 31
Addition
decimal, 87-88
multibyte, 86-87
Address, 18
decoding, 256-262
circuit for 6522 interface, 269-271
1/0 port, 264-268
R/W memory, for, 262-264
space, 20-23
Addressing, 20
absolute indexed, 141-142
accumulator, 123
implied, 35
indexed indirect, 161-164
indirect, 156-157
indexed, 157-159
mode(s), 31, 34-35
immediate, 41
indirect, 57
zero-page, 42
relative, 104
zero-page indexed, 142-146

410

Analog-digital
conversion, 327-334
converter, memory-mapped, 309-314
AND
instruction, 70
bit values, using to control, 71-73
program to demonstrate, 70-71
operation, 68, 69
Applications
connector, 54
microcomputer, 11-12
Approximation, successive, 329-330
Arithmetic
multigle-byte, 153-156
signed, 93-96
number, 92-93
StvaoIs-complement, 88-92

C

hex to, 127-129

keyboard input port, 314-320

to hexadecimal conversion, 108-111
ASL, 121-123
Assemblers, 41
Automatic message sender, 340-349
Auxiliary control register, 219

BCC, 101
BCS, 101
BEQ, 101
Bidirectional, 18
Binary numbers, 362-364
Bit, 364
overflow status, 93-96
sign, 92
status, 83
test instruction, 106-108
Blocks, 20

BMI, 102
BNE, 102
Borrow, 91
BPL, 102
Bracket notation, 127
Branch instructions, 100-102
time delays, using for, 111-114
Branching, 103-105
BRK instruction, 43-45
Buffer
/drivers
bus, 306
three state, 306-308
why?, 305-309
Buffering, 274
Bugs, catching with lights, 349-356
Bus(es), 14
bidirectional, 305
buffer/drivers, 306
BVC, 102
BVS, 102
Byte, 364
data, 272 '
instruction, 272

C

Chart, op-code, 36
Chips, 53-54

Clock
signals, 282-284
system, two-phase, 284
24-hour, program, 192-200
CMP, 105
Code(s)
condition, 83, 102
conversion programs, 149-153
op, 31
Comments, 40
Comparison instructions, 105-106
Complement
operation, 68, 69, 70
twos, 90
Condition codes, 83, 102
Connector, applications, 54
Control signals for output port, 289-
291
Conversion, ASCII to hexadecimal,
108-111
Counter 7
program, 3
high, 19
low. 19
using timer T2 as, 223-225
CPX, 105
CPY, 105

DAC, 293

Data

direction registers, 19, 53-54

logging module, microcomputer as,

335-340

tables, 146-149
DDR, 19
Debugging aid, program, 349-356
DEC instruction, 58-59
Decimal

addition, 87-88

hexadecimal to, 132-134

numbers, 361-362

to hexadecimal, 129-132
Decoded, absolutely, 263
Decoders, 255
Decoding, 20

address, 256-262

circuit for 6522 interface, 269-271
R/W memory, for, 262-264

1/0 port address, 264-268
Device select pulse, 255, 271-274
DEX instruction, 59-60
DEY instruction, 59-60
Difference, 89
Digital-analog

conversion, 327-334

converter, memory-mapped, 292-297
Direct memory access, 20
Display, hexadecimal, memory-

mapped, latched, 291-292

DMA, 20
Double-precision arithmetic, 86
DS, 255

Echo, 182
English language description, 31
EOR instruction, 70
bit values, using to control, 71-73
program to demonstrate, 70-71
Fxclusive or operation, 68, 69, 70
Executing a program, 43

F
Flag(s), 83, 102

borrow, 91
carry, 83, 84
interrupt disable, 185
modification instructions, 83
Frequency counter, using T1 timer to
implement, 231-234

Hex to ASCII, 127-129
Hexadecimal
ASCII conversion to, 108-111
decimal to, 129-132
numbers, 365-367
to decimal, 132-134

1
IER, 219

M

IFR, 219
Immediate
addressing mode, 41
mode,
Imphed addressing, 35
INC instruction, 58-59
Index registers, 19
Indexed
addressing
absolute, 141-142
zero-page, 142-146
indirect addressing, 161-164
Indirect
addressing, 156-157
mode, 57
indexed addressing mode, 157-159
mode, 58
Input
memory mapped, 52
/output
ports, 19, 51-53
programming, 55-57
Instruction(s)
ADC, 84-86
AND, 70
bit values, using to control, 71-73
program to demonstrate, 70-71
bit test, 106-108
branch, 100-102
used for time delays, 111-114
BRK, 43-45
CLI, 189
comparison, 105-106
DEC, 58-59
DEX, 59-60
DEY, 59-60
EOR, 70
bit values, using to control, 71-73
program to demonstrate, 70-71
flag modification, 83
INC, 58-59
INX, 59-60
INY, 59-60
JMP, 57-58
microcomputer, 29-31
ORA, 70
bit values, using to control, 71-73
program to demonstrate, 70-71
read-modify-write, 123
register shift, 121-123
RTI, 188
set, 31
6502, 271-274
table of, 30, 32-33
table of, 30, 140, 173
Interface
adapters, 51
circuit, I/0, 60-62
6522, address decoding circuit for,
269- 271
Interfacing, 57
Interrupt(s), 173, 183-200

412

Interrupt(s)—cont
enable register, 219
flag register, 219
nonmaskable. 184-185

Interval timer(s), 19
6522, 218-222
6530, 211-215
6532, 216-218

Inversion operation, 68

INX instruction. 59-60

INY instruction, 59-60

1/0
interface circuit, 60-62
port s), 53-54

address decoding, 264-268
symbols, 54-55
IRQ vector, 184

J

JMP instruction, 57-58
JSR, 174-175, 177
Jump, 173

K

K of memory, 20
Keyboard, ASCII, input port, 314-320
Keyer, precision, 340-349

L

Label, 40
Language, machine, 41
Length of program, 39
Lignts, catching bugs with, 349-356
Line, 14
Load, 18, 31
Loading a program, 43
Logical

expression, 31

operations, 68-70

uses of, 73-75

Loop, 57
LSR, 121-123
Lunar occultation of a star, 356-353

M

Machine language, 41
Map, memory, 22-23
Masking, 72
Memory, 19-20

access, direct, 20

map, 22-23

mapped

analog-to-digital converter, 309-
314

digital-to-analog converter, 292-
297
input, 52
latched hexadecimal display, 291-
292
output, 52
random access, 19

Memory—cont
read
only, 19

address decoding for, 262-264
Microcomputer(s), 14
applications, 11-12
data logging module, as, 335-340
features of, 1
instructions, 29-31
program, 35-37
timer, as, 335-340
what is?, 13-18
Microprocessor, 13
6502, 18-25
Minuend, 89
Mnemonic, 31, 40
Modes, addressing, 31
Monitor, 23-25
simple, 159-161
Multibyte addition, 86-87
Multiple-byte arithmetic, 153-156
Multiplication program
4-bit, 123-125
8-bit, 126-127
Music
making with T1 timer, 234-236
synthesis, 292-297

N

Nested subroutines, 177-179
Nibble, 365
Numbers, 361
binary, 362-364
decimal, 361-362
hexadecimal, 365-367

(o]

Occultation, lunar, of star, 356-359
Offset, 103-104
Op code, 31
chart, 36
Operand, 40
Operation code, 31
Or
Exclusive, operation, 68, 69, 70
operation, 68, 69
ORA instruction, 70
bit values, using to control, 71-73
program to demonstrate, 70-71
Output
memory maf)ped, 52

port, control signals for, 289-291

Overflow status bit, 93-96
P

P reglster 19
Page, 2
Parallel 1/0 mode, 315
PCH, 19
PCL, 19

PHA, 179
PHP, 179
Pinout diagram, 6502, 252
Pins, control, on 6502, 297-298
PLA, 180
PLP, 180
Poll, 319
Polling, 182
Port(s)
input
ASCII keyboard, 314-320
/output, 19, 51-53
1/0, 53-54
symbols, 54-55
Processor status register, 19
modifying, 102-103
Program(s)
code conversion, 149-153
counter, 37
high, 19
low, 19
executing, 43
length of, 39
loading, 43
main, 173
microcomputer, 35
multiplication
4-bit, 123-125
8-bit, 126-127
simple, 37-39
timing, precision, 226-231
writing, 40-43
Programming, input/output, 55-57
Pulse
chip select, 255
device select, 255, 271-274
port select, 255

R
RAM, 19
Random access memory, 19
Read

only memory, 19
operation, 18
/write memory, 19
Register(s), 19
auxiliary control, 219
data direction, 19, 53-54
index, 19
interrupt
enable, 219
flag, 219
P, 19
processor status, 19
modifying, 102-103
-shift instructions, 121-123
status, 6502 processor, 81-83
timer, 211
X, 19
Y, 19
Relative addressing, 104
Return, 173

413

ROL, 121-123
ROM, 19
ROR, 121-123
Routine, 172
interrupt, 173
RTI instruction, 188
RTS, 174-175, 177
R/W
control signal, 284-289
memory, 19
address decoding for, 262-264

S

SED, 83
Sender, message, automatic, 340-349
Serial input, 315
Set

instruction, 31

-up time, 284
Signed

arithmetic, 93-96

number arithmetic, 92-93
Single-step mode, 45
6502

control pins on, 297-298

instructions, 271-274

microprocessor, 18-25
6522 interval timer, 218-222
6530 interval timer, 211-215
6532 interval timer, 216-218
Space, address, 20-23
Stack, 175-177

pointer, 19, 175-176

storage, use of for, 179-183
Status

bit, 83

register, 6502 processor, 81-83
Storage, use of stack for, 179-183
Store, 18, 31
Subroutines, 173-175

nested, 177-179
Subtrahend, 89
Successive approximation, 329, 330
Symbols, I/0 port, 54-55

414

T

Tables, data, 146-149
Three-state buffer/drivers, 306-308
Time
access, 285, 286
delays, branch instructions used for,
111-114
set-up, 284
Timer(s)
interval, 19
6522, 218-222
6530, 211-215
6532, 216-218
microcomputer as, 335-340
register, 211
T1
frequency counter, using to
implement, 231-234
music, making, using, 234-236
T2, using as counter, 223-225
Timing
out, 211
program, precision, 226-231
Triple-precision arithmetic, 86
Twos complement, 90
arithmetic, 88-92

v
Versatile Interface Adapter, 218

w

Write operation, 18
Writing a program, 40-43

X
X register, 19

Y
Y register, 19

z

Zero-page
addressing mode, 42
indexed addressing, 142-146
mode, 34

READER SERVICE CARD

To better serve you, the reader, please take a moment to fill out
this card, or a copy of it, for us. Not only will you be kept up to date
on the Blacksburg Series books, but as an extra bonus, we will
randomly select five cards every month, from all of the cards sent to
us during the previous month. The names that are drawn will win,
absolutely free, a book from the Blacksburg Continuing Education
Series. Therefore, make sure to indicate your choice in the space
provided below. For a complete listing of all the books to choose
from, refer to the inside front cover of this book. Please, one card
per person. Give everyone a chance.

In order to find out who has won a book in your area, call(703)
953-1861 anytime during the night or weekend. When you do call,
an answering machine will let you know the monthly winners. Too
good to be true? Just give us a call. Good luck.

If I win, please send me a copy of:

I understand that this book will be sent to me absolutely free, if my
card is selected.

For our information, how about telling us a little about
yourself. We are interested in your occupation, how and where you
normally purchase books and the books that you would like to see
in the Blacksburg Series. We are also interested in finding authors
for the series, so if you have a book idea, write to The Blacksburg
Group, Inc., P.O. Box 242, Blacksburg, VA 24060 and ask for an
Author Packet. We are also interested in TRS-80, APPLE, OSI
and PET BASIC programs.

My occupation is
I buy books through/from
Would you buy books through the mail?
I'd like to see a book about
Name
Address
City
State Zip

MAIL TO: BOOKS, BOX 715, BLACKSBURG, VA 24060

The Blacksburg Group

According to Business Week magazine (Technology July 6, 1976) large scale integrated circuits
or LSI “chips” are creating a second industrial revolution that will quickly involve us all. The
speed of the developments in this area is breathtaking and it becomes more and more difficult to

keep up with the rapid advances that are being made. It is also becoming difficult for newcomers
to “get on board.”

It has been our objective, as The Blacksburg Group, to develop timely and effective educational
materials that will permit students, engineers, scienfists, technicians and others to quickly learn
how to use new technologies and electronic techniques. We continue to do this through several
means, textbooks, short courses, seminars and through the development of special electronic de-
vices and training aids.

Qur group members make their home in Blacksburg, found in the Appalachian Mountains of
southwestern Virginia. While we didn't actively start our group collaboration until the Spring
of 1974, members of our group have been invelved in digital electronics, minicomputers and
microcomputers for some time.

Some of our past experiences and on-going efforts include the following:

-The design and development of what is considered to be the first popular hobbyist computer.
The Mark-B was featured in Radio-Electronics magazine in 1974. We have also designed several
8080-based computers, including the MMD-1 system. Our most recent computer is an 8085-based
computer for educational use, and for use in small controllers.

—The Blacksburg Continving Education Series™™ covers subjects ranging from basic electronics
through microcomputers, operational amplifiers, and active filters. Test experiments and examples
have been provided in each book. We are strong believers in the use of detailed experiments and
examples to reinforce basic concepts. This series originally started as our Bugbook series and many
titles are now being translated inte Chinese, Japanese, German and Italian.

-We have pioneered the use of small, self-contained computers in hands-on courses for micro-
computer users. Many of our designs have evolved into commercial products that are marketed
by E&L Instruments and PACCOM, and are available from Group Technology, Ltd., Check, VA
24072. D

—Our short courses and seminar programs have been presented throughout the world. Programs
are offered by The Blacksburg Group, and by the Virginia Polytechnic Institute Extension Divi-
sion. Each series of courses provides hands-on experience with real computers and electronic
devices. Courses and seminars are previded on a regular basis, and are also provided for groups,
companies and schools at a site of their choosing. We are strong believers in practical labora-
tory exercises, so much time is spent working with electronic equipment, computers and circuits.

Additional information may be obtained from Dr. Chris Titus, the Blacksburg Group, Inc. (703)
©51.9030 or from Dr. Linda Leffel, Virginia Tech Continuing Education Center (703) 961-5241.

Our group members are Mr. David G. Larsen, who is on the faculty of the Department of Chem-
istry at Virginia Tech, and Drs. Jon Titus and Chris Titus who work full-time with The Blacksburg
Group, all of Blacksburg, VA.

PROGRAMMING & INTERFACING
e THE 6502,
WITH EXPERIMENTS

This book is compiled for those people who are interested in, or
who may already be using, 6502-based microcomputer sys-
tems. The level of the book addresses 6502 users who may not
have much assembly language programming, or chip-level
interfacing experience. Following an introduction to some in-
structions that the 6502 can execute, you will write and test short
programs. Experiments and examples are written so that a KIM,
AlM, or SYM system may be used to reinforce the material pre-
sented in each chapter. Since each system is slightly different,
the author has provided the necessary information so that pro-
grams and interfaces can be readily adapted to each system.
In Partl, simple |/O technigues and the remainder of the instruc-
tions are tackled. The “laundry-list” approach to the instruction
set is avoided through the use of many programming ex-
amples and explanations. Part |l discusses chip-level interfac-
ing and provides experiments so that you can see how the on-
board programmable interface chips may be used in avariety
of ways. This book is an excellent starting point for 6502 micro-
computer novices, as well as 6502 users familiar with other
microcomputers, but who would like to know more about the
6502-based computer systems available today.

Dr. Marvin L. De Jong is Professor of Physics at The
School of the Ozarks in Point Lookout, Missouri. He re-
ceived his A.B. degree in physics from Hope College
of Technology in 1960, and his Ph.D. in radio astronomy
from Rensselaer Polytechnic Institute in 1965.

Dr. De Jong has written a variety of papers that have
been published in The Astrophysical Journal, The Astro-
nomical Journal, The American Journal of Physics. The

. Physics Teacher, Computer Design, Kilobaud Micro-
computing, QST, Micro, and 6502 User Notes. He be-
came interested in microcomputers several years ago
and he spent a sabbatical leave at Virginia Polytechnical
Institute and State University at Blacksburg, Virginia,
working with the editors of the Blacksburg Continuing
Education Series. 2

Howard W. Sams & Co., Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

$17.95/21651 : ISBN: 0-672-21651-5

