
MICROPROCESSOR
INTERFACING

TECHNIQUES

SYBEX

c o

to n

en

AUSTIN LESEA

RODNAYZAKS

MCMXCVn

MICROPROCESSOR

INTERFACING

TECHNIQUES

AUSTIN-LESEA

RODNAY ZAKS

SYBEX

Published by: SYBEX Incorporated

2161 Shattuck Avenue

Berkeley, California 94704

In Europe: SYBEX-EUROPE
313 rue Lecourbe

75015-Paris, France

DISTRIBUTORS

L P. ENTERPRISES

313 KINGSTON ROAD
ILFORD, Essex. IG1 IPj

Tel: 01-553 U

$9.95 (USA)
FF66 (Europe)

FOREWARD

Every effort has been made to supply complete and accurate

information. However, Sybex assumes no responsibility for its use;

nor any infringements of patents or other rights of third parties which

would result. No license is granted by the equipment manufacturers

under any patent or patent rights. Manufacturers reserve the right to

change circuitry at any time without notice.

In particular, technical characteristics and prices are subject to rapid

change. Comparisons and evaluations are presented for their educational

value and for guidance principles. The reader is referred to the manu-
facturer's data for exact specifications.

Copyright Q) 1977 SYBEX Inc. World Rights reserved. No part

of this publication may be stored in a retrieval system, copied,

transmitted, or reproduced in any way, including, but not limited to,

photocopy, photography, magnetic or other recording, without the prior

written permission of the publisher.

Library of Congress Card Number: 77-20627
ISBN Number: 0-89588-000-8

Printed in the United States of America
Printing 109 8 76 5 43 2 1

CONTENTS

PREFACE .5

L INTRODUCTION 7

Concepts, Techniques to be discussed, Bus Introduction, Bus
Details

II. ASSEMBLING THE CENTRAL PROCESSING UNIT 17

Introduction, The $080, The 6800, The Z-80: Dynamic
Memory, The 8085

III. BASIC INPUT-OUTPUT. 45

Parallel, Serial LSI Interface Chips

IV. INTERFACING THE PERIPHERALS 85

Keyboard, LED, Teletypewriter, Paper Tape Reader, Credit

Card Reader, Cassette Tape Recorder, Floppy-Disk, CRT

V. ANALOG CIRCUITRY - A/D and D/A CONVERSION 191

Introduction, Conceptual D/A, Practical D/A, Real Products,

The A/D, Sampling Theorem, Successive Approximation,

Integration, Direct Comparison Conversion, Real Products,

Interfacing D/A '$, Interfacing A/D's, A Data Collection Sub-

System, Scaling, Offset, Conclusioni

VI BUS STANDARDS 215

Parallel: SI 00, 6800, IEEE-488, CAMAC
Serial: EIA-RS232C, RS422, RS423, Synchronous Formats

TABLE OF CONTENTS

VII CASE-STUDY: A 32-CHANNEL MULTIPLEXER .259

Introduction, Specifications, Architecture, Software, CPU
Module, RAM Module, USART Module, Host Interface Module,
Conclusion

Vni DIGITAL TROUBLE-SHOOTING 281

Introduction, What Goes Wrong: Components, Noise, Soft-
ware; The Tools and Methods: VOM, DVM, QscHliscope,
Logic Probes, Signature Analysis, Emulation, Simulation, Logic
State Analyzers, Case-Study Trouble History, The Perfect Bench

IX CONCLUSION - EVOLUTION 317

The New Chips: 1-Chip Systems, Plastic Software

APPENDIX A 319
Manufacturers

APPENDIX B 321
SI00 Manufacturers

INDEX

PREFACE

Computer interfacing has traditionally been an art, the art to design and

implement the required control electronics for connecting a variety of

peripherals to the main processor.

With the advent of microprocessors* and of LSI chips, since 1976, mi-

croprocessor interfacing is no longer an art. It is a set of techniques, and in

some cases just a set of components. This book presents the techniques and

components required to assemble a complete system, from a basic central

processing unit, to a system equipped with all usual peripherals, from

keyboard to floppy-disk.

Chapters two and three are a recommended reading for every designer

who has not had the experience of designing a basic system. Chapter two

presents the construction of a basic CPU, in the case of popular micro-

processors such as the Intel 8080. 8085, and the Motorola 6800. Chapter

three presents the set of input-output techniques used to communicate with

the external world, and a brief survey of the existing chips which facilitate

the implementation of these techniques-

Chapter four is an essential chapter: the microprocessor-based CPU will

be successively interfaced to every major peripheral: keyboard, LED, tele-

type, floppy-disk, CRT display, tape-cassette.

The following chapters then focus on specific interfacing problems and

techniques, from industrial design (analog-to-digital conversion) (chapter

five) to communication with the outside world (busing, including S-tOO and

other bus standards), in chapter six.

Chapter seven presents a detailed case study, which incorporates the

interfacing principles presented in the previous chapters: the design of a

r$al 32-channel multiplexer.

Finally, chapter eight presents the basic techniques and tools for

trouble-shooting microprocessor systems.

This book assumes a basic understanding of microprocessor systems,

equivalent to the level of book C20I - Microprocessors: from chips to sys-

tems.

CHAPTER 1

INTRODUCTION

OBJECTIVE

The objective of this book is to present the complete set of techniques

required to interface a microprocessor to the external world. Because of the

availability ofnew LSI interface chips, which implement most techniques in

hardware, it will be shown that interfacing has become simple.

FROM ART TO TECHNIQUE

Microcomputer interfacing has traditionally been the art of designing

complex boards of logic managing the data transfers and the synchroniza-

tion signals necessary for the processor to communicate with external de-

vices. The processor itself has traditionally required one or more boards of

logic. Each I/O interface has traditionally required on or more boards of

boards. Such Multi-board implementations are obsolete today in most

cases. Large scale integration (LSI) has now resulted in the implementation

of a complete (or almost complete) CPU in a single chip. The new market

created by microprocessors has introduced, in turn, the necessity for man-

ufacturers to provide the required support components. Most of the boards

required to assemble a complete system have now been shrunk into LSI

chips. Since 1976, even device-controller interface chips exist. They do for

interface design what the microprocessor has done for CPU design.

A complete interface board, or most of it, is today shrunk into a few LSI

chips. The price paid, just like in the case of a microprocessor, is that the

architecture is frozen inside the LSI chip.

It is now possible to implement a complete microcomputer system, in-

cluding interfaces, in a small number of LSI chips. If you are still imple-

menting your interfaces on one or more boards of logic, your design might

be obsolete!

Microprocessor interface-chips have not reached their maturity yet.

They are still "dumb" chips. In other words, they can execute only a very

few commands. It can be predicted that in view of the very low cost of a

processing-element, most microprocessor interface chips will become fully

programmable in the near future. They will become "processor-equipped",

and be capable of sophisticated programmed sequencing. They will become

"intelligent" interfaces.

Although this next step has not been reached yet, all the techniques

presented within this book should retain their validity in the future. There is

always a trade-off between software and hardware implementation. The
balance will change with the introduction of new components, and with the

trade-offs involved in each specific system design.

THE HARDWARE/SOFTWARE TRADE-OFF

Detailed techniques will be presented to solve all the common interfac-

ing problems. As usual in computer design, most of these techniques may
be implemented either by hardware (by components), or by software (by
programs), or by a combination of both. It is always up to the system
designer to strike a reasonable compromise between the efficiency of
hardware, and the lower component count of a software implementation.
Examples of both will be provided.

THE STANDARD MICROPROCESSOR SYSTEM

Throughout this book, reference will be made to a "standard micro-
processor." The "standard" microprocessor today is the 8-bit microproc-
essor. Examples are the Intel 8080, 8085, the Zilog Z-80, the Motorola 6800,

the Signetics 2650, etc. In view of the pin number limitation on DIP's
(dual-in-line packages), the 8-bit microprocessor has become the norm. The
reason is simple:

The number of pins is limited to 40 (or 42) by economic considerations.

Industrial testers required to test components having more than 40 pins are

either not available, or would be extremely expensive. All standard testers

will accept only up to 40 or 42 pins. In addition, naturally, the cost of the

package itself increases rapidly over 40 pins.

Because of the limitation of the densities which can be achieved with the

MOS LSI process, it is not yet possible to integrate the complete memory,
plus I/O facilities directly on the microprocessor chip. In the standard
system, the microprocessor itself (abbreviated MPU), and perhaps the

clock, reside on a single chip. The memory (ROM, or Read-Only Memory,
and RAM, or Random-Access Memory) are external. Because memory
and I/O chips are external to the microprocessor, a selection mechanism
must be provided to address the components: a microprocessor must be
equipped with an address-bus. The standard width of the address-bus is 16

bits, permitting the addressing of 64 K locations (where K = 1,024: 2 16 =
64K).

An 8-bit microprocessor will transfer 8-bit data. It must be equipped
with an 8-bit data-bus. This requires 8 additional pins.

At least two pins must be provided for power, and two more for connec-

tion to an external crystal or oscillator. Finally 10 to 12 control lines must be

provided to provide the coordination of data transfers in the system (the

control-bus). The total number of pins used is 40. No pins are left unused.

Because of this pin-number limitation, a 16-bit microprocessor cannot

provide at the same time a 16-bit address-bus, and a 16-bit data-bus. One of

the buses must be multiplexed. This results in turn into a slower operation,

and in the necessity of external components to multiplex and de-multiplex

the buses.

It can be expected that the progress of integration will soon introduce a

new standard microprocessor, the 16-bit microcomputer-on-a-chip. A mi-

crocomputer-on-a-chip is a microprocessor-plus-clock-plus-memory (ROM
+ RAM) on a single chip. Since the memory is directly on the chip, there is

no longer the necessity to provide an external address-bus. 16 pins become

available. In such a system, at least 24 lines become available for data

transfers. They are general-purpose I/O lines. The disadvantage of current

microcomputers is that, for the time being, the quantity of memory which

may be implemented directly on the microcomputer-chip is limited. The

current limitation is 2048 words for the ROM, and 512 words for the RAM.
Adding external memory involves complex multiplexing and de-

multiplexing, and is usually not worth it. However, if a system can be

implemented in the near future with a significantly larger memory, it can be

expected that it will become the next standard design.

8-BIT DATA BUS

7T

ROM

(PROGRAM)

H

V .I/O BUS.

I/O

I 1

i I/OPROGRAM-wZ^
MABLE ^~ v

,

j/0 BUSK I

czf~> ' DEy,CES

* CONTROL*' '

16-BIT ADDRESS BUS

:>

CONTROL LINES

Fig. 1 .1 Standard Microprocessor System

For the time being, the 8-bit microprocessor is indeed the standard de-

sign used for "powerful" and flexible applications, and will be referenced as

INTRODUCTION

such. The basic diagram showing the architecture of a standard system
appears on Fig. 1-1. The microprocessor itself, labeled MPU, appears on
the left of the illustration. On most standard systems, up to 1976, the clock
was external to the MPU. It appears here on the far left at the illustration.

Since 1976, the clock circuitry has been incorporated in the microprocessor
chip itself and all recent products do not require this external clock. How-
ever they always require an external crystal or oscillator. It appears here,

connected to the clock

The microprocessor creates three buses:

The 8-bit bi-directional data-bus (implemented in tri-state logic to allow

the use of a direct-memory-access controller, or DMAC).
A 16-bit mono-directional address-bus, connected internally, within the

microprocessor, to the address-pointers, and in particular to the program-
counter (PC). The address-bus is also implemented in tri-state logic in order
to allow the use of a DMAC.

Finally, a 10 to 12-line control-bus , which carries the various synchroni-

zation signals to and from the microprocessor. Control lines are not neces-

sarily tri-state.

All the usual system components are directly connected to these three

buses. The three basic components appear on the illustration. They are

respectively the ROM, the RAM, and the PIO. The ROM is the Read-
only Memory. It stores the programs. The RAM is the Random-Access-
Memory. It is a read-write MOS memory which stores the data. The PIO is

a programmable input-output chip which multiplexes the data-bus into two
or more input-output ports. It will be studied in more detail in chapter three.

These ports may be connected directly to input-output devices, or to

device-controllers, or may require the use of interface-circuits.

The interface-circuits or interface-chips required to interface this basic

system to actual I/O devices will be connected to these buses, whether the

microprocessor buses or the input-output buses created by the PIO, or by
other chips.

Interfacing techniques are precisely those techniques required to con-

nect this basic system to the various input-output devices. The basic inter-

facing techniques required to connect any microprocessor system to input-

output devices are essentially identical. They will be described in detail in

chapters three, four, and five. At the level of the microprocessor itself, the

logical and electrical interface required is simple. All standard microproces-

sors have essentially the same data-bus and the same address-bus. The
essential difference is the control-bus. It is the specific characteristics of the
control-bus which make input-output interface chips compatible or incom-
patible from one microprocessor to the next. As an example of basic inter-

facing characteristics, the basic 8080, 6800, and SC/MP, interfacing charac-

teristics appear on Fig. 1-2. A more detailed listing of signal equivalences

10

appears on Fig. 1-3.

8080 PACE 6800 SC/MP

ADDRESS WORD LENGTH 16-BIT 16-BIT DATA/ 16-BIT 12- OR 16-BIT

ADDRESS BUS

DATA WORD LENGTH 8-BIT 8-BIT 8-BTT

ADDRESS & DATA POLARITY ALL CHIPS ARE 1 » TRUE; HOWEVER, IF INTEL SYSTEM BUS DRIVERS AND RECEIVERS

ARE USED, 8080 SYSTEM DATA AND ADDRESS BITS ARE = TRUE.

ADDRESS STROBE NONE NADS = TO SET VMA = 1 NADS *

MEMORY ADDRESS
LATCHES (CONCURRENT WITH)

MEMORY READ STROBE MRDC « TO READ IDS » 1 TO INPUT R/W 1 TO READ NRDS = TO READ

DATA DATA DATA DATA

MAXIMUM CLOCK RATE 2MHz 2MHz 1MHz 1MHz

Fig. 1 .2 Basic Interfacing Characteristics

Interfacing input-output devices requires the understanding of two basic

techniques:

1. The assembly of a complete CPU, using a microprocessor chip. This

topic will be addressed in chapter 2.

2. The fundamental input-output techniques used to communicate between

the microprocessor and the external world. This topic will be addressed

in chapter 3.

MICROPROCESSOR CONTROL SIGNALS

It has been shown that a standard MPU creates three busses: the 8-bit

bi-directional data bus, the 16-bit mono-directional address bus, and a

control-bus of varying width, depending on the microprocessor. The

data-bus is essentially identical for all microprocessors. It is 8-bit-bi direc-

tional bus, normally implemented in tri-state logic. Similarly, the address-

bus is almost universally a 16, or sometimes 15-bit mono-directional bus,

used to select a device external to the MPU. The actual use and inter-

connect of the address-bus and the data-bus will be presented in the next

chapter. The third bus is the only complex one. It carries the micro-

processor control signals or "interface signals."

INTRODUCTION 11

CM C\J CM cy

» * !* IS I I

03 PS K CO

I I I I I I I I CO

3l«

cy of cy cy cy

gg§!i!gggg

d o jH SB o I

WS M M S
I I I I I

Fig. 1.3 Signal Equivalences

12

The control bus provides four functions:

1

.

memory synchronization

2. input-output synchronization

3. MPU scheduling - interrupt and DMA
4. utilities, such as clock and reset.

Memory and input-output synchronization are essentially analogous.

A hand-shake procedure is used. In a "read" operation, a "ready" status

or signal will indicate the availability of data. Data will then be trans-

ferred on the data-bus. In the case of some input-output devices, an

"acknowledge" is generated, to confirm the receipt of data. For "write"

operation, the availability of the external device is verified through a

status-bit or signal, and the data is then deposited on the data-bus. Here

also an "acknowledge" might be generated by the device to confirm the

receipt of data.

The generation, or non-generation, of an "acknowledge" is typical

of the use of the synchronous procedure versus an asynchronous one.

In a synchronous procedure, all events take place within a specified

period of time. In this case there is no need to acknowledge. In an asyn-

chronous system, an acknowledge must be generated. The choice of a

synchronous versus an asynchronous communication philosophy is basic

to the design of a control bus. A synchronous design has a potential

for a higher speed and a lower number of control lines. However it imposes

speed constraints on the external devices. An asynchronous design will

require an additional acknowledge, and somewhat more logic, but allows

the use of components of varying speeds in the same system.

8080 Control Signals

INTRODUCTION 13

' T, T„ Tj T.
1

T»

.. i
T 1 n n n

•l

/ v_ / ML 1 WA / \ /

i

L
«1M /

I

x.
! UNKNOWN

0,0
/ ® X }

L-— WRIT! MODE FLOATING
1

/
, ,:;: \ FLOATING

SVNC
/

i
v_

\

|

E.OV

1

\

1

*AIT

1

Mm
/

\

DATA \

on
1

TATUS
NFORMATIOM

/

DATA

MEMORY ADORE S3
Of*

I/O DEVICE NUMBER

STATUS INFORMATION
INTA OUT

SAMFLE REAOV
HOLD AND HALT

OPTIONAL FETCH OATA
OR
INSTRUCTION
OR

OPTIONAL

ACCESS TIME

INSTRUCTION
EXECUTION
IF REQUIRED

Basic 8080 Instruction Cycle

DBIN IS TRIGGERED BY B,

DBIN Timing

14

c;

^> D0-D7

6800

A0-A15

DATA BUS

DBE

TSC

HALT

NMl

RESET

IRQ

BA

VMA

R/W

.01

02

>

5Z.
+ 5

CLOCK

^>APPRESS BUS

C
DBE T IT ' 1111*0 N.

CONTROL BUS

6800 Bus Signals

INTERRUPTS

CLOCK

RESET

Trq

NHI

HALT

$1

$1

3-STATE CONTROL

DATA BUS ENABLE

BUS AVAILABLE

R/W -*

VALID MEMORY ADDRESS -

Detail: 6800 Bus Control

INTRODUCTION 15

16

CHAPTER 2

ASSEMBLING THE CENTRAL
PROCESSING UNIT

INTRODUCTION

The heart of any microprocessor system is the central processing unit or

CPU. A CPU includes the microprocessor, plus any additional compo-

nents it may require. Memory devices, buffers, decoders, clock-drivers are

all included in the typical central processing unit. Many of these circuits are

now being integrated on the same chip as the processor. In fact, since 1976,

one-chip microcomputers are a reality. Yet, even with the advent of one-

chip microcomputers, there still exist certain limitations on integrated cir-

cuit fabrication. There are three basic limits of the present LSI technology:

yield limits the number of transistors per chip, packaging limits the number

of pins on the package, and substrate material prevents some devices from

being integrated.

1,000,000?

1
NUMBER

OF

TRANSISTORS/

CHIP

10,000

1,000 „

1

—I
1960

I
1970

1
1980

2-1 Devices Integrated Versus Time

ASSEMBLING THE CENTRAL PROCESSING UNIT 17

At first, only single transistors were made on each chip. Later, differen-

tial pairs, and simple logic gates made their appearance. Present technology
allows for up to 30,000 devices to be integrated on a chip. A graph of
devices integrated versus time appears in Fig. 2-1. One factor has remained
constant throughout this process: process defects limit the maximum size of
the individual die. Yields are higher for smaller die sizes. (The yield is the
number of good devices per batch). In the design of any LSI chip, the
"real-estate" (chip-area) becomes an all important factor affecting the cost
of the final device. Fig. 2-2 illustrates the trade-off between yield and die-

size. Yields also increase with manufacturing experience—this is called the
"learning-curve": costs decrease with higher quantities, because of im-
proved yield.

2-2 Yield versus Die Size

A less obvious factor is the packaging of LSI devices. Present testing

equipment cannot handle packages with more than 40 pins. Future test

systems may overcome this limitation, but, for now, the scarcity of
package-pins may require the use of multiplexing techniques: the data-bus
may also be used to carry address or control information so that pins may
be conserved (ex: 8080, 8085).

How does the substrate material limit LSI technology? Certain compo-
nents require a different physical material. The simplest example is the

18

crystal required for timing. A crystal is cut from quartz. The integrated

circuit is made from silicon. All systems requiring accurate timing will

require a crystal. Because of its bulk, the crystal is external.

In addition to the fact that limitations of LSI technology partition our

system into multiple components, additional devices are often needed for

system expansion. Large microprocessor systems require a significant

amount of "support-logic".

This chapter will present the concepts, techniques, and components

required to build a complete CPU: from system architecture to support

logic. Four typical systems will be presented, using the 8080, 6800, Z-80,

and 8085 microprocessors.

SYSTEM ARCHITECTURE

Fig. 2-3 presents the block-diagram of a typical microprocessor system.

All standard microprocessors, such as the 8080 or the 6800, have a similar

architecture. Three buses connect the systems' components: data; address;

and control-bus.

INTERRUPT
LOGIC

V V
-mJ CPU

TMT nrr
r m

HH IT

H n n

H
a

2-3 Typical System Architecture

The data-bus carries information to and from the processor element. It

carries the instructions fetched from memory, the data-input from input

devices, the data stored into memory, and the data-output going to the

output-devices.

To specify where the data are going, or where they are coming from, the

ASSEMBLING THE CENTRAL PROCESSING UNIT 19

address-bus is used. It selects a location in memory or a register of an
input-output device.

The control bus is used to control the sequencing and nature of the

operation being performed. The control-bus indicates in particular the type
of operation to be performed: "read from memory to the processor,"
"write to memory from the processor," "read from an input-device to the

processor," or "write to an output-device from the processor." Addition-
ally, interrupt, direct memory access, and other control functions are car-

ried by lines of the control bus to implement the scheduling and synchroni-

zation of events.

Our standard microprocessor has 8 data-lines, 16 address-lines, and at

least 8 control-lines. 8 data-bits form a byte. The byte is the basic unit of
information in our standard system. Half of a byte is sometimes known as a
nibble. The 16 address-lines allow for addressing of 65,536 (2

16
) different

memory locations or bytes. Two methods are used for selecting a memory
location, or a device-register: linear selection, and fully-decoded selection.

Linear Selection

In the microprocessor-world, memory is partitioned into read-only-

memory (ROM) for programs and fixed data tables, and random-access-
memory (RAM) for data storage and temporaries, because of the volatility

of MOS RAM's.
When more than one type of memory is used, the two types of memory

are generally in separate packages. Also, the size of each will be considera-

bly less than the full 65,536 possible locations available to our system. We
must place each device in its proper place in our memory map. A memory
map is the addressing plan for the address bus bits.

Initially, each device, RAM and ROM for our system, will have 256
locations. This implies that eight address lines will be needed to select one
of the 256 possible locations in each chip. Besides these eight lines, the

processor must be able to select one device at a time. RAM and ROM
devices have, in addition to their address inputs, at least one "chip-select"

(CS). This select-line, when activated, allows the operation to be performed
on the device (Read or Write).

Two basic techniques are used to implement the chip selection: Linear-
selection connects individual address lines to individual chip-select inputs.

For example, if the most-significant address bit (bit 15) is tied to a chip-

select, that chip is selected whenever the most-significant-bit is a one. This
occurs for half of the total memory locations. Assume that our ROM is

20

selected by this most-significant-bit being "0" and the RAM by this bit

being "1". To address the 256 locations available inside each device, we

will connect lines A0 to A7 of the address-bus.

The essential advantage of linear-selection is simplicity: no special logic

is necessary to select chips. Each new chip is selected by a dedicated

address-line. This is, indeed, the approach used in all small microprocessor

systems.

For example, a IK x 8 ROM chip will be used and a 512 x 8 RAM, plus

3 peripheral chips. The IK ROM requires 10 lines for address-selection: A0
- A9, plus one line for the chip-select: A14. The RAM will use A0 - A8 for

address-selection, and A15 for the chip-select. Lines A12, A13, A14, A15

may be used for additional devices.

AI5 AI4 AI3 AI2 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

ROM
' CS

[

RAM
CS

PIO

CS

2-4 Linear Selection

However linear selection divides the available memory in half every time

a separate address line is used. If the need exists to select more devices than

there are available address lines, another method must be used: fully

-

decoded addressing.

Fully-Decoded Addressing

The goal of fully-decoded addressing is to provide a complete 64K ad-

dressing capability.

In our example, the 256-location RAM will reside in the last 256 loca-

tions of the memory. Expressed in binary, this is addresses

11111111 OOOOOOOO2 to 111111111111111 12. Grouping into four-bit groups

and converting to hexadecimal this is: FF00 to FFFF. (See appendix for

hexadecimal conversion table). We see that the RAM chip should be ena-

bled when the 8 high-order address bits are equal to "1". "ANDing" these

bits together would form our chip select. Fig. 2-5 illustrates the decoding for

our example.

ASSEMBLING THE CENTRAL PROCESSING UNIT 21

A15

2-5 Fully Decoded Selection

Instead of using AND gates for every device, there exist general-

purpose gating devices known as decoders. An example is the 8205 or

74LS138 three-to-eight decoder. The 8205 has three inputs to select one of

eight mutually exclusive outputs, in function of three enable inputs. When
the three enable inputs are in their proper states, one of the outputs will be

active depending on the three select lines. Examples using the 8205 will be

presented in the hardware section to clarify full-decoding schemes.

S0= (A0-A1A2) . (E1-E2E3)

S1 = (AD A1.A2) • (E1-EE2. E3)

S7= (A0A1 A2) • (E1- E2. E3)

2-6 8205 Decoder

22

Complete-decoding selects devices without wasting available address

space. A contiguous memory may be built where addresses pass from one

device to the next without large areas of nonexistent or overlapping mem-

ory. The disadvantage of this approach is the cost of decoding. Most sys-

tems implement a mix of linear selection and partial decoding.

Storage Chips

The basic devices for storing information now used are the RAM and the

ROM. The ROM contains permanent information and cannot be changed

by the system. The RAM allows for temporary storage and retrieval of

information. The program information is usually kept in a non-volatile

ROM since it does not change, and the data and intermediate results are

stored in RAM.
"RAM" usually refers to a semiconductor device, but is also used for

other storage media such as core memory.

A RAM chip may contain from 256 to 16,384 cells, each cell representing

a bit of the information-word or byte. Each cell may consist of a flip-flop

type structure—in which case it is a static device , or it may consist of a

capacitor structure—in which case it is a dynamic device. The static RAM
will retain information as long as power is present, whereas the dynamic

device must be refreshed every few milliseconds in order to renew the

stored charge in each cell. This means that dynamic memory will undergo a

refresh cycle one to five percent of the time. This may be important in some

1103 uses 10 pins

18- PIN DIP

2104 user 10 pins

16- PIN DIP

Intel Dynamic RAMs Address is multi-plexed

ASSEMBLING THE CENTRAL PROCESSING UNIT 23

real-time applications as memory will be "busy" and unavailable for use as

long as a refresh cycle is in progress.

ROM will refer here to an LSI device, but may also be used to denote

other types of read-only memories. Several types of ROM's are available.

The masked-ROM is "programmed" by the manufacturer and will stay

programmed for the life of the chip. It cannot be altered. The PROM is

programmed by the user and may either be of the fusible-link type, where a

bit is programmed by blowing a microscopic fuse, or it may be a stored-

charge type that will retain the pattern for tens of years. The latter type is

also known as an EPROM because it can be erased by ultraviolet light and

reused. The EAROM is electrically erasable and could be considered as

RAM except that it takes 100 milliseconds or longer (typically) to erase the

device. This makes it inconvenient to use as a scratchpad for calculations or

data manipulations. The use of EAROM's has been restricted so far to

military applications.

Buffering the Buses

Each input of a device presents a load on the output driving it. Most
components drive anywhere from one to twenty other components. Every

component must be checked for its input and output loading and driving

characteristics.

The microprocessor's buses must connect to every memory and

peripheral input-output chip in a system. All MOS microprocessors lack the

BUFFERED ADDRESS BUS

2-7 Buffering Address and Control Lines

24

output drive needed for a large system. Because of this, buffers or drivers

are used to boost the driving power of the buses. There are bus transmitters

for driving the bus, and bus receivers for listening to the bus and driving the

processor.

Fig. 2-7 illustrates the use of transmitters to buffer the address and

control-buses. The lines on the address and control buses are unidirec-

tional: the data flows in one direction.

Fig. 2-8 illustrates the use of bus transceivers for the data-bus. Data

must pass in both directions so both transmitters and receivers are used.

The bidirectional data-bus will receive data and transmit data, depending on

the function being performed.

TRANSCEIVER

I
«

BUFFERED DATA BUS $

2-8 Buffering The Data Bus

The concept of a system architecture will be expanded and completed in

Chapter 3 on input and output techniques. To clarify the concepts pre-

sented so far, four real systems will now be assembled: an 8080, a 6800, a

Z-80 (with dynamic RAM), and an 8085 system.

THE 8080 SYSTEM

Intel's 8080 has been the most widely used "standard"-architecture-

microprocessor. The 8080 is a popular processor also used in many hobby

microcomputers. We will assemble the complete central processing module

for a typical 8080 computer system. The connection of the: clock, system

ASSEMBLING THE CENTRAL PROCESSING UNIT 25

controller, RAM, and ROM will be presented. The input-output will be

covered in detail in Chapter 3.

2-9 8080 Completed CPU

The Clock

The 8080 requires a two phase non-overlapping clock. This clock must

swing between +11 volts and +0.3 volts. The clock is therefore not TTL-
compatible. Initially, clock-drivers were made from discrete components or

special-driving integrated circuits. Intel introduced the 8224 clock chip to

reduce parts-count and simplify the clock interface problem. One merely

connects the crystal to the 8224, the 8224 to the 8080, and all clock interfac-

ing is complete.

The connection of the 8224 appears in Fig. 2-9, and the structure of the

8224 itself appears in Fig. 2-10.

The System Controller

When designing the 8080, the lack of pins became a major limitation. In

order to gate out the required control signals, pins have to be multiplexed.

26

>

SYNC

RST dh

2-10

->
->_o

8224 Schematic

01

© 2 TTL

©2

E:

2-1

1

System Controller Using 8212 and 8216's

Control or address functions would have to share lines with the data-bus. In

this case, the designers chose to multiplex control information or status on
the data-bus. This status byte may be latched for use at the time of the

SYNC signal. The lack of pins is essentially due to the early technology

ASSEMBLING THE CENTRAL PROCESSING UNIT 27

used for the 8080, which required three power levels, using four pins.

Early processor designs used latches and random-logic to capture these

status signals. In fact, this is why the actual SI 00 bus still retains what is

known as the old 8080 status signals. The design of what became known as

the system-controller appears in Fig. 2-11. The latch holds the status infor-

mation and the gates decode the status along with the other 8080 control

lines into control signals for the memory and input-output devices.

Intel, realizing early that the system-controller function should be inte-

grated into a single-chip, introduced the 8228 chip, shown in Fig. 2-12. This

device latches the status and drives the control bus. In addition, it buffers

the data bus, i.e. includes a data-bus driver.

CPU

DATA

BUS

BI-DIRECTIONAL

BUS DRIVER

DB0
DB1
DB2
DB3

DB<4

DB5
DB6
DB7

SYSTEM

DATA
BUS

STATUS

LATCH

STSTB
DB|N

WR

HLDA

GATING

ARRAY

-*- HEfIR

* MEMW

-+- T70R

-*- I/OW

- BUSEl

* IilTA

2-12 8228 System Controller

The trio of 8224, 8228, and 8080 now completes the central processor

function. The only other component required is the crystal. To complete

the CPU we need to add the program memory and the random-access

memory (ROM and RAM).

Connecting the ROM

Read-only memories come in two essential varieties: programmable and

masked. The programmable ROM's may be programmed once at the time

they are to be used, (such as fusible link ROM's or PROM's); or they may
be programmed, used, and erased, (such as ultraviolet erasable ROM's or

EPROM's). The mask-ROM's are programmed at the time of manufacture

28

and are used only in production systems. The erasable or fusible link

ROM's are used for prototyping.

CH
2- 1

3

2708 Selection Using 8205

X Address becomes stable

^:

DATA FROM 2708

"V
I I

"V
I I

decoding

delay

PROM

ACCESS

TIME

s
^^ unstable ^^^^ stable ^^„

2-14 PROM Timing

A typical erasable ROM appears connected to our 8080 buses in Fig.

2-13. This device, a 2708 EPROM, contains 1024 bytes of memory. In order

to address 1024 bytes, 10 address lines are needed, (2
10 = 1024). In addition,

the chip must be selected at its proper place in the memory map. We will

ASSEMBLING THE CENTRAL PROCESSING UNIT 29

choose to put this memory at locations 0000 through 03FF hexadecimal. In

order to decode this address space, an 8205 is used in addition to some other

selection logic for controlling the memory read condition. Note that it can

select up to seven additional, contiguously located, 2708's, if required. The

data-bus connects directly to the data lines of the 8228 system-controller.

The only control-line required is the memory jead line. The timing of a

memory read appears in Fig. 2-14.

The address and memory-read lines activate the 2708. After a period of

time called access-time, the data byte fetched appears on the data-bus. The

processor reads this byte and executes the instruction.

Connecting the RAM

A convenient size for the economical manufacture of ROM's is 1 K by 8

bits (IK = 1024). RAM's, however, come in different sizes. The most

inexpensive configuration is 1 K by 1 bit (least number of pins). We need

eight bits for a byte, so that eight devices are needed—one for each bit.

Another popular size is 256 by 4 bits. This type of RAM is interfaced here.

256 by 4 implies that two devices are needed to complete the byte. The
schematic for the 256 by 4 memories, interfaced to the 8080 bus, appears in

Fig. 2-15.

Buffing RAM data Lines Using a Bus Transceiver

30

DATA BUS

A0_

Al
A2"

s:

Ai.

nlD» d3 d4 d5d> d7

A0

~aT
"aT
s:

a8

a15
:

>
cs TS

2- 1

5

Connecting the 2 1 1 1 RAM

The address-bus lines needed to specify the address are connected to

each RAM chip. The eight address-lines will select one of the 256 bytes in

each RAM chip. The unused eight address lines are decoded by an eight

input NAND gate. As per our earlier discussion, the RAM will be located

from FFOO to FFFF hexadecimal. The data bus splits in two, with four bits

going to each of the 256 by 4 bit RAM's. Control lines are needed to enable

the memories for reading and writing as well as controlling the timing of the

X S
X s
V

TRISTATE ^
S

X
ACCESS
TIME

~X stable > ,

estate

I

READ CYCLE

y
data bus TRISTATE < DATA FROM PROCESSOR > WRITE CYCLE

2-16 RAM Timing

ASSEMBLING THE CENTRAL PROCESSING UNIT 31

writing operation. The 2111 RAM's used here have a number of extra

enable inputs, as well as a read/write line. The two signals: "memory-
read," and "memory-write," are used to control the RAM's. "Memory-
read" enables the output drivers of the chips to drive the data-bus. At all

other times, the chip is in a read-mode, but will not place information on the

bus. "Memory-write" enables the RAM to perform a write cycle and gates

data presented on the data-bus into the RAM's. Timings of these operations

are illustrated in Fig. 2-16.

When the address becomes stable and "memory-read" is brought low,

the chip is enabled to drive the data-bus. After the byte is accessed, it

remains on the bus until fetched by the processor and "memory-read"

returns high. The write-cycle is similar, except that, this time, "memory-
write" is brought low, forcing the data-bus contents to be written into the

RAM's.

Integrating the processor and memory into an assembled module re-

quires only that we draw them all on the same schematic.

The Complete 8080 System

To make life more interesting, the system module presented here con-

tains only partial decoding for the PROM's and linear-selection for the

RAM's. The memory module appears in Fig. 2-17. The PROM's will oc-

cupy locations 0000 through 0FFF hexadecimal. The RAM will be at 2000

through 20FF hexadecimal. It will also be addressed for all addresses of the

form: 0XX1XXXXXXXXXXXXX binary—where X is a one or a zero

(don't care condition). The PROM is addressed for: XX00000000000000

through XX01 1 1 1 1 1 1 1 1 1 1 1 1 binary. We cannot add any other memory to

this system without further decoding.

The central-processor module will be the same as in Fig. 2-9. As an

exercise, the central processor assembly of Chapter 8 could be examined at

this time and the reader should verify his/her understanding of address-

decoding and buffering techniques.

THE 6800 SYSTEM

Developed by Motorola, the 6800 is also a popularly used "standard"

type of microprocessor. In comparison to Intel's device, the 6800 imple-

ments some design philosophy differences. The most obvious are the lack

of pin-multiplexing and the single power-supply requirement. Other differ-

ences lie in the instruction set, internal architecture, and control signals.

Overall, both devices are essentially similar. Fig. 2-18 shows a schematic of

a 6800 system.

32

I?
CO oo D-

LO
CM

X
3"

or

oo

X
oo
CD

oo

CD

Q_

^:

•=r

it

oo
CD

oo

II MINIM

oo

X
oo
CD
1^
oo

CD

Q_

OO oo
CD CD
r^. i^.
PP

rii
CD" «
oo y

(=5

CD

-lo
+

en i—I Lo
<Ci—I i—

I

2- 1

7

Complete 8080 System Memory

ASSEMBLING THE CENTRAL PROCESSING UNIT 33

DATA BUS

6800

c
— =>V V V

ROM RAM PIA

-ft" "ft- ff
*

"
|_

INR/W r

2- 1

8

6800 System Block Diagram

The Clock

The 6800 requires a non-TTL compatible clock-generator. Since no

other useful functions are needed for the two-phase clock generation, either

simple discrete clock circuits, or integrated drivers are used. Motorola

produces a hybrid device which contains the crystal and conveniently pro-

vides the necessary clock phases. Fig. 2-19 details the 6800 clock require-

ments.

01

t
eye

^~V
02

2-19 6800 Non-Overlapping Clock Signals

6800 Buses

The 6800 architecture uses memory-mapped input-output (see Chapter

3) and requires only a single power-level, versus three for the 8080. As a

result, no multiplexing is required to gate the control signals. However, the

buses need to be buffered in any large system, making the parts count

34

essentially equal between 8080 and 6800 systems. (The 8228 system con-

troller includes a data-bus driver).

The data-bus is a bidirectional 8-bit bus. It requires buffering for most

applications. The suggested Motorola components appear in Fig. 2-20.

6800

- DATA
NC 6880

HC 8T26

r J
BUS

ADDRESS

XC 6885

XC 8T95

J

BUS *

QUAD 3-STATE BUS EXTENDER

HEX 3-STATE BUFFER INVERTER

» 8ns

non/inverting available

2-20 Buffing 6800 Buses - Suggested Devices

The address and control-buses are unidirectional with respectively 16

address lines, and ten control lines. Fig. 2-21 illustrates the 6800 bus signals.

For memory interfacing, the R/W, <I>, and VMA signals are required. They

are the read/write control, phase two of the clock, and valid-memory-

address control line.

TSC HIGH FORCES ADDRESS BUS AND R/W INTO HIGH-IMPEDANCE MODE

DBE LOW FORCES DATA BUS INTO HIGH-Z MODE

R/W MPU IS IN READ MODE WHEN LOW

VflA IS VALID MEMORY ADDRESS. A HIGH ENABLES RAM, PI A, AC I

A

IRQ IS INTERRUPT REQUEST LINE. PC IS LOADED FROM FFF8, FFF9

RESET STARTS THE 6800 FROM POWER-DOWN. PC IS LOADED FROM

FFFE, FFFF. 8 CYCLES ARE REQUIRED BEFORE

NMI" IS NON-MASKABLE INTERRUPT. PC IS LOADED FROM FFFC, FFFD

HALT ALLOWS PROGRAM EXECUTION BY EXTERNAL SOURCE AND STEPPING

BA . (HALT OR WAIT) INDICATES THAT ADDRESS BUS IS AVAILABLE

2-21 6800 Control Signals

ASSEMBLING THE CENTRAL PROCESSING UNIT 35

The ROM

Motorola manufactures a line of 6800 compatible products which facili-

tate the interface requirements in small or medium-size systems. Their 1

K

by 8-bit mask ROM includes/owr chip-select lines for selecting the ROM.

(» n n ,,

1

CHIP1

1

CHIP 2

1

CHIP 3

1 1 1

CHIP 8

3-Chip Selects Allow Connection of up to 8 Devices

< DATA BUS ^>7%

P
A10

D0-D7

IK BYTE

A0-A9 R0M

CS0
VMA-02

+5V

ADDRESS BUS

C CONTROL BUS

2-22 6800 ROM Connection

In the example of Fig. 2-22, the chip-selects are connected to three of the

high-order address bits, and to the VMA signal ANDed with the <J>2 signal.

In this way, the ROM is selected for any valid memory address cycle from

36

1C00 to FFFF hexadecimal. Of course, the ROM is only 1024 bytes, so the

large area it takes up is due to the "don't cares" or the undecoded address

bits: A15, A14, and A13. The essential advantage of providing the three

Chip-Selects is to allow the possibility of connecting up to 8 devices to only

3 address lines: no external decoder is needed (see Fig. 2-24).

The RAM

Motorola is one of the few manufacturers that makes a 128 by 8-bit

RAM. This is a convenient size for small systems. The interface to the 6810

RAM is aided by the large number of decoded chip-selects that are pro-

vided on the chip.

The interface of the RAM appears in Fig. 2-23. Note that only seven

address lines are needed to select one of the 128 RAM bytes. The other 9

address lines must be used in some combination to select the chip. In this

example, RAM is selected when Al 1 through A7 are all low. This would be

address 0000 through 00FF hexadecimal. Since the highest four address bits

are not fully decoded, the memory is also enabled for addresses 1000

through 10FF. Similarly, it is enabled for 2000 through 20FF, and so on,

ending with F000 through F0FF.

c pDATA BUS

$

P
M
A8

A9

D0-D7

128 BYTE

RAM
A0-A6

CS1

CS2

COT

^css

CS3

R/W

CS0

~—

X

4-5V -=r

VMA •
2

11

ADDRESS BUS 3>

=>C CONTROL BUS

2-23 6800 RAM Connection - The 68 1

ASSEMBLING THE CENTRAL PROCESSING UNIT 37

Q_

y
> itOOlf ^>

5
is S
Ice ce

a. —• <c <
is i-h lesi 3 a
OO OO OO ^v cc

<_> C_> |C_> LU Dd \
—

i J

.—1

k J

=r
1—

1

j ' '

t—

1

OO

PQ

oo
oo
LU
C£L

f=>
(=>
<C

i

=>
\ oo 1 oo loo l^l'O

1

k A k k M •a:

en

oo

Ii

<=
oo oo oo oo

1 i

3c

k i I

t

o
<

CS1
1 SJ

\,7

i—»-

TSC

RES

MPU

01 0?

3 <C

•• <C 1—
is:

,> i

J n
«a:
(—
oo
LU
DC

CD

2-24 Completed 6800 System

38

In order to use our RAM with our ROM, we must select those places

where the two do not overlap. One example is ROM from FCOO through

FFFF and RAM from 0000 through 00FF.

The VMA and 4>2 signals select the device for the memory cycle, and

"read/write" controls the function: fetching or storing.

The Complete 6800 System

In Fig. 2-24, the complete 6800 system is presented. Note that an input-

output device is included here. This will be explained in Chapter 3.

THE Z-80

Up to this point, the processors used were developed at about the same

time. Zilog, created by the designers of the Intel 8080, was determined to

improve the power of the original device. The Z-80 is software-compatible

with the 8080. (In addition, it has some additional instructions and registers

which improve its processing capability.) In particular, the Z-80 provides

the necessary signals to interface with the larger dynamic memory devices.

A Z-80 system appears in Fig. 2-25.

CLOCK

^5v

f Aq-Aq

z-80

MREQ

RD

c
MA t <*

I0RQ

POWER

+5 V GNDSADDRESS

ROM

DATA
OUT

Ml

1M
PIO

T\

Ao

Al

2-25 Z-80 System \>
OUTPUT INPUT
DATA DATA

ASSEMBLING THE CENTRAL PROCESSING UNIT 39

Dynamic RAM Interface

In our previous examples, the memory devices used were static RAM's.
With static RAM's data are retained as long as power is applied. Dynamic
RAM's need to be refreshed periodically. A dynamic RAM stores informa-
tion in a FET capacitor. Such a device can only retain its charge for a few
milliseconds. The cell must be accessed every few milliseconds, in order to
renew, or "refresh" the cell. The Z-80 provides the refresh address using a
design trick.

After an instruction is fetched, the address bus no longer needs to remain
stable. Instead of wasting this time, the Z-80 outputs on the lower 7 address
bits a refresh address. This address increments once each instruction-cycle.

With this method of "stealing" a refresh cycle in every instruction cycle,
and with the additional internal refresh register dynamic memories may be
interfaced easily to the Z-80.

Otherwise, the processor would have to wait while a separate circuit,

called the refresh-controller, stepped through the dynamic memory rows
refreshing the cells.

RFSH

MREQ

A
12

r>^>\
A0-AU

PAGE

MREQ

2-26 Z-80 Dynamic Memory Interfacing

The dynamic memory interface appears in Fig. 2-26. Mostek, which
second-sources Zilog, produces a single-board CPU, with 16K bytes of
RAM, 20K bytes of ROM and various input-output ports. The RAM bank

40

UOZS-BiO-1 <OOliU»t

sa-a

2.S. Ad*
77 w wo/i
_~ MM

3TV
00.

I L

% §

1 < a
BU

as

2 = * i—— «. Q

2 »

2-A/V

11

7s :* O J ui » O —

IA Ul M

U Vn TTTT
SldnMM3J.NI

2-27 8085 System

ASSEMBLING THE CENTRAL PROCESSING UNIT 41

consists of eight 16K by 1-bit dynamic memories, and the ROM bank of five
4K by 8-bit ROM's. This one board uses few chips to implement a powerful
processor. Compared to the 8080, the chip-count reduction is due to the
elimination of the 8224 clock, 8228 system controller, and refresh logic.

The 8085

Intel naturally also had to improve the 8080 design. The 8085 reduces the
parts count of an 8080 system while increasing the speed. Essentially, it

integrates the 8080, the 8224, and the 8228 into a single-chip.

This time, to provide expanded control functions, 16 address lines and 8
data lines, the decision was made to multiplex the low eight address bits. At
the beginning of every instruction cycle, the low eight address-lines appear
on the data-bus. To be used, they need to be latched. The multiplex-control
line ALE ("address-latch enable") is used to latch and hold the lower
address bits.

Fig. 2-27 shows the 8085 system. Right away it should be apparent that
no latch is used for the low address bitsl Intel has created a new line of
special RAM, ROM, PROM, and input-output chips which contain the
low-address latch. Thus, the 8085 bus has 8 data; 8 address; and 1 1 control-
lines.

The special peripheral chips contain combinations of RAM, PROM, and
input-output. In this way, complete systems with as few as three LSI chips
may be built. An 8277 PROM I/O chip is presented in Fig. 2-28.

CLK

READY

DATA

PCWER

2-28 8277 PROM + I/O

42

The clock circuitry has also been built into the 8085. The connection of a

crystal to two pins finishes the interface for the basic CPU.

X2

_d'
X1

X2

WITH A CRYSTAL WITH AN R-C NETWORK

Clocking The 8085

SUMMARY

The standard microprocessor architecture, with its three buses, controls

the assembly of our complete microcomputer. The memory devices, RAM
and ROM, are easily connected to the standard microprocessor buses.

Small systems use partial or linear decoding to select the memory. Larger

systems use full address-decoding. The 8080, 6800, Z-80, and 8085 systems

were presented to illustrate the simplicity of CPU assembly. Future proc-

essors will contain almost everything—except for the crystal, making CPU
assembly obsolete. The only task remaining will be signal buffering and

input-output interfacing. The basic input-output techniques will now be

presented, before the interfacing of actual peripherals.

ASSEMBLING THE CENTRAL PROCESSING UNIT 43

CONVERSION TABLE

BINARY DECIMAL HEXADECIMAL

OOOO

0001 1 1

0010 2 2

0011 3 3

0100 it It

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 lit E

1111 15 F

3

It

5

6

7

10

11

12

13

lit

15

16

17

APPENDIX CHAPTER 2

44

CHAPTER 3

BASIC INPUT-OUTPUT

INTRODUCTION

Now that the processing section of our microcomputer is complete, the

next step is to communicate with the peripherals. Information about the

outside world must be gathered and processed. Once processed, the infor-

mation must be displayed, and sent to control the various devices. This

chapter will present the input-output techniques, and illustrate them with

design examples. This will be done in two steps.

Basic input and output interfacing will first be described: Serial input-

output, and parallel input-output. The concepts will first be presented, then

the chips which implement the algorithms.

The scheduling techniques required for sequencing the input-output de-

vices will then be presented: polling, interrupts, and direct-memory-access.

A terminology problem will first be clarified. Larger computers have

been equipped traditionally with memory-type instructions, and with

I/O-type instructions. This distinction is obsolete for microprocessors.

MEMORY VS. I/O MAPPING OF INPUT-OUTPUT DEVICES

The traditional implementation of computers distinguishes I/O and

memory instructions:

Memory-Mapped I/O

Memory-mapped I/O refers to the use of memory-type instructions to

access I/O devices. Memory-mapped input-output allows the processor to

use the same instructions for memory transfers as it does for input-output

transfers. An I/O port is treated as a memory location. The advantage is

that the same powerful instructions used for reading and writing memory

can be used to input and output data. In a traditional computer, there are

usually many more memory instructions than I/O instructions. For exam-

ple, in memory-mapped I/O, arithmetic may be performed directly on an

input or output latch, without having to transfer the contents in and out of

temporary registers.

What are the disadvantages? First, each I/O port used in this way makes

one less location available for memory. Thus, if all 65,536 memory locations

are needed as memory, memory-mapped I/O should not be used. Clearly,

BASIC INPUT-OUTPUT 45

this is virtually never the case in a microprocessor system. Second, instruc-

tions that operate on the memory normally require three bytes to address
the location of the port (there can be 65,536 locations, which require 16 bits

of address), whereas special I/O instructions may need only eight bits to

specify a port). Third, memory-mapped I/O instructions may take longer to

execute than special I/O instructions because of the need for extra address
bytes. This problem is usually solved by allowing "short addressing", i.e.,

the use of 2-byte memory instructions.

I/O Mapped Input-Output

In I/O-mapped input-output, the processor sends control signals indicat-

ing that the present cycle is for input or output only—not for memory. Two
special lines are supplied for I/O read, and I/O write. Fewer address-lines

may be used to select input-output ports, since systems need less input-

output ports than memory locations.

There are three advantages to I/O-mapped input-output. One, since

separate I/O instructions are used, they can be easily distinguished from a

memory-reference instruction while programming, a convenience. Two,
because of shorter addressing, less hardware is necessary for decoding.

Three, the instructions are shorter. The disadvantages are two: One loses

the processing power of memory-mapped I/O, but, most important, two
control pins must be "wasted" for I/O read and I/O write. For this reason,

this technique is almost never used with microprocessors (except the 8080).

Fig. 3-1 shows a memory-mapped input-output system, where the con-
trol signal, which determines whether the address is for memory or I/O,

depends on the state of A15. If A15 is high, then all addresses on bits A14
through A0 specify an I/O device. If A15 is low, A14 through A0 specify a

memory location.

MEMR }

TO— MEMW l MEMORY

I/OR TO

I/OW
I/O

3-1 Memory-Mapped Input-Output

46

Fig. 3-2 shows an I/O-mapped input-output system with separate control

lines for memory and I/O-control functions. The address bus will select a

device and a register or location within the device. This is illustrated in

Fig. 3-3. The control-bus will specify the operation to be performed. This is

the standard design in most every microprocessor system.

MEMR
TO MEMORY

IOR

IOW

TO I/O

3-2 Input/Output Mapping

LINEAR SELECTION WASTES MEMORY:

ADDRESS BITS:

15 10 7

1 | 1 |

LINEAR
SELECT

IK ADDRESS

32K

16K

8K

4K'

2K

UNUSED
(WASTE)

UNUSED

UNUSED

BIT 15 ON

BIT 14 ON

BIT 13 ON

BIT 12 ON

BIT 11 ON

BASIC INPUT-OUTPUT 47

ADDRESS BUS (16)

MEMORY

^
REGISTER
SELECT

3-3 Selection of an I/O Port

:>

I/O

CHIP

DATA BUS

^TO DEVICE

FROM DEVICE

3-4

ADDRESS BUS

Basic I/O Port

PARALLEL INPUT-OUTPUT

A minimum parallel interface requires latches and bus-drivers. Let us

look at a basic LSI input-output port. On Fig. 3-4, a port is equipped with
an input-buffer, which latches input signals from a device, and holds them
stable, until the microprocessor requires that information, and with an
output-buffer to latch microprocessor data, to hold them as long as the

external device requires. In addition, there must be a selection mechanism
and read/write control for the registers or ports. Figs. 3-5 and 3-6 illustrate

conceptually what a simple I/O port requires.

This device has: an input-latch that can hold external information until

the system reads it; an output-latch to hold data from the system stable until

output, and bus-buffers to receive and drive the data-bus. Additionally,

48

DATA BUS

ADDRESS BUS 7>

C

i>

\7
I/O

ADDRESS
¥I/O
DATA

I/O INTERFACE

STATUS

\7

CONTROL BUS

=>

<=^>
I/O DEVICE

> CUNIKULK

3-5 Simple I/O Port (I)

<=^

C

AUDBESSJUSL

CftTfltp

ADDRESS DECODER

^>

1 WRITE

CLK

LATCH

^
3-STATE £
BUFFER ^

LI

READ

EN

3-STATE

BUFFER

CLK

LATCH

•OUTPUT BUFFER FULL

— DATA RECEIVED

OUTPUT

INPUT BUFFER EMPTY

<^r

INPUT STROBE

CONTROL BUS ^

3-6 Simple I/O Port (II)

BASIC INPUT-OUTPUT 49

there should be an internal status-register indicating if there are data to be
read, or whether the data has been output. Although such ports can be
constructed from discrete devices, a new component, the PIO, has made
them essentially obsolete.

Programmable Parallel Input-Output Device

The programmable parallel LSI input-output device (PIO) will perform
the following functions: address-decoding, data input-output buffering and
multiplexing, status for "handshaking", and other control functions, to be
described.

The address-decoder will select one of the internal registers to be read or
written. These registers may be the input-latch, output-latch, direction-

register, or status-register. Usually, three address-bits, as well as the chip-
select, will be required for 6 to 8 internal registers. In addition, the PIO is

' 'programmable' '

.

The new concept is the use of a "data-direction register": it is possible,

on a bit-by-bit basis, to define a port as having the first three bits configured
as inputs and the last five as outputs, or any other combination.

The direction of every line of the PIO ports is programmable in direc-

tion. Each bit of the "data-direction register" specifies whether the corres-

ponding bit of the PIO port will be an input or an output. Typically, a "0" is

the data-direction register specifies an input, while a "1" specifies an out-

put. A PIO is programmable in other ways. Each PIO has one or more
command-registers which specify other options, such as the configuration

of the ports, and the operation of the control logic.

Finally, each PIO multiplexes its connection to the microprocessor
data-bus into 2 or more 8-bit-ports. The maximum is 3, including control

lines for the I/O device, because of the 40-pin limitation on the package. A
typical PIO appears on Fig. 3-7. In this case, the device has two ports

equipped each with its own direction register. In addition, a status-register

is used to indicate the status of each port.

Example 1: the Motorola 6820 PIA

The internal diagram of the 6820 appears on Fig. 3-8. It has six registers,

two sets of three register per port. One set is for port A and the other is for

port B.

Let us examine the control register. Its format is shown on Fig. 3-9. Bit 7

indicates a transition of the CA1 input. It is used as an interrupt-flag. The
same is true of bit 6, except that it monitors the CA2 pin ofCA2 used as an
input. Bits 5, 4, and 3 establish the eight different modes of the device, and
the function of the CA2 pin. Bit 2 indicates whether the direction-register or

SO

I/O DATA LINES

PORT 1 PORT 2

* * * *

DATA BUFFER 1

J
FUNCTION REG

STATUS

14*4

DATA BUFFER 2

T
FUNCTION REG

CONTROL

LOGIC

i i l i k

POWER

CHIP
SELECT

MICROPROCESSOR

DATA BUS

CONTROL

SIGNALS

3-7 Typical PIO

DATA BUS / S

REGISTER

SELECT

IRQA -*-

TRQB -*-

RS0

RSI

CRB

DDRA PDRA

— > -D
(A -i X
H > m

DDRB PDRB

- CA1

-+-CA2

<^=>

<=>
-»-CB2

- CB1

3-8 6820 PIA

BASIC INPUT-OUTPUT 51

7 6 5 H 3 2 i

IRQA1 IRQA2 CA2 CONTROL DORA
ACCESS

CAl

CONTROL

CRA

READ-ONLY READ/WRITE BY 6800

3-9 6820 Control Register Format

data-register is to be selected, as they have the same address. Bits 1 and
are the interrupt enable/disable control bits.

A clarification is needed here: Motorola's PIA has 6 registers and only
two register-select (RS) pins, because of the 40-pin limitation. The DR and
the DDR in each port share the same address! They are differentiated by
the value of bit 2 of the control register, a programming nuisance.

Fig. 3-10 indicates how the registers are selected by use of the RSI and
RSO pins, and the state of the internal bit 2 of the control register.

SELECTING PIA REGISTERS USES 2 LINES (RS0, RS]). PLUS BIT 2 OF CR:

RSI = SELECTS PORT A REGISTER

RSI = 1 SELECTS PORT B REGISTER

RS0 = 1 SELECTS CONTROL REGISTER (A OR B)

RS0 = SELECTS DATA DIRECTION OR BUFFER REGISTER

RSI RS0 CRA(2) CRB(2) REGISTER

DATA DIRECTION REGISTER
j

1 BUFFER REGISTER A

1 - CONTROL REGISTER j

1

DATA DIRECTION REGISTER)

1 1 BUFFER REGISTER B

] 1 - CONTROL REGISTER
J

3-10 6820 Register Selection

Fig. 3-11 shows the connection to the 6800 buses, and Fig. 3-12 illus-

trates a typical application with the bits shown for the control and data

direction registers.

52

£ DATA BUS

u=> D0-D7

RS0
RSI

CS0

E5Z

CS1

E
R/W

Reset

+ 5V

cai k-

CA2

PA0-7

PB07

CB2

CB1

ADDRESS BUS

<:
inn

CONTROL BUS

3-1

1

6820 and 6800 Interface

tai

TAO

" INrUI KLAUY
^ mm it Ari/

DATA <^_. DATA

00000000

00100111

DATA > nMTDIIT

11111111

00100111

mo _-. nn-rniiT nr«nu

LOl uuirui KtUUt5l

3-12 6820 Application

BASIC INPUT-OUTPUT 53

As a last note on the 6820, it is a good idea to buffer the data bus to this

chip as it cannot drive a heavily loaded data bus. Fig. 3-13 gives a suggested
buffering arrangement for the data lines.

DATA LINE

^
DATA

(BIDIRECTIONAL

CONNECTION)

3-13 Data Bus Buffering

Example 2: Intel 8255 PPI

The 8255 contains four ports, two with eight bits each, and two with four

bits each. Each port can be programmed via the mode control register to be
either all inputs, all outputs, or a special function. The 8255 appears on
Fig. 3-14.

Table 3-15 indicates how the ports are addressed. There are several

modes of operation, where each half of port C are used for interrupt flag

inputs or handshaking signals. The Intel device is not programmable by bit,

but offers 4 more lines for control. Overall, the functions performed are

essentially analogous. In fact, a PIA can be used on an 8080 system, and
conversely. Each major microprocessor manufacturer has its own version

of a programmable parallel interface. Their .function is essentially similar.

54

<=>

RD

—

*c

WR—»•<

Al —
RESET

DATA

BUS

BUFFER

"TZ
READ/

WRITE

CONTROL

LOGIC

CS-

GROUP A

CONTROL

tt
<^

C>

GROUP B

CONTROL <^

3-14

GROUP A

PORT A
(8)

I/O» PA0-PA,

GROUP A

PORT C

UPPER (4)

"^3—o pc
/)
-pc

7

C=3
GROUP b

PORT C

LOWER (1)
O

GROUP B

PORT B

(8) o

8255 Addressing

c s A 1 A R D W R OPERATION

1 PORT A TO DATA BUS MP'J

1 1 PORT B TO DATA BUS READ

1 1 PORT C TO DATA BUS (A. 3.0

1 DATA BUS TO PORT A

j
MP'J

1 1 DATA BUS TO PORT B

1 1 DATA BUS TO PORT C

\ WRITE

1 1 1 DATA BUS TO CONTROL 1

1 1 1 ILLEGAL

1 - - - - DATA BUS TO 3-STATE (DISABLE)

3-15 8255 Addressing

SERIAL INPUT-OUTPUT:

Several devices require serial communication: teletype (TTY), tape,

disk.

BASIC INPUT-OUTPUT 55

Instead of latching eight bits of parallel data, we could pass each bit in

the byte to a single line one at a time. Known as bit-serial interfacing, there
are serial standards that cover this kind of transmission. Such standards are

discussed in Chapter 6. The format of the serial input-output to a teletype is

shown in Fig. 3-16.

START

SPACE

MARK

ST0P1

LSB
1 2 3 1 5 6 7

MSB
8

STOP 2

-» TIME

3-16 Serial Character Format

Since microcomputers are parallel systems, we need to convert an eight

bit byte of data to serial form before output, and from serial form to input.

There are two ways to perform this conversion: by software, or with a

UART (universal asynchronous receiver-transmitter).

Software Serial I/O:

In software, a program can simply accomplish the serialization-

deserialization. On input, the program will wait until it senses a start bit,

then sample at the proper times to read the data bits. On output, the pro-

gram will send the series of ones and zeroes to a single line, with a pro-

grammed delay between each bit.

An example of a teletype output program appears in the flowchart of

Fig. 3-17 and the 8080 program listing on Fig. 3-18.

It will be described in Chapter 4. The principles of a serialization routine

is to assemble an 8 (or more)-bit word in the accumulator, and to shift it out,

one bit at a time, at the proper frequency. The simplest way is to output the

contents of the accumulator to an output port which is connected only to

line 0. The accumulator is then shifted right, by one bit position, a delay is

implemented, and the next bit is output. After 8 (or more) outputs, the

initial parallel data has been serialized.

Conversely, assembling serial data into parallel form by program is just

as simple. Bit is read into the accumulator. The accumulator is shifted left.

After a specified delay, bit is read again. After eight shifts, a byte has been
assembled.

56

ENTER ENTER

SEND START

BIT

SEND DATA

BITS

SEND STOP

BIT

EXIT

NO

SET BIT
COUNTER TO

ELEVEN

OUTPUT
A BIT

DELAY
9.1 MSEC

DONE

YES

RET

3-17 Flowchart for Serial Conversion

THIS SUBROUTINE ENTERED WITH CHARACTER TO BE OUTPUT IN THE C REGISTER

TYOUT : MVI B.ll SET COUNTER FOR 11 BITS
MOV A,C CHARACTER TO ACCUMULATOR
ORA A CLEAR CARRY-POR START BIT
RAL MOVE CARRY TO A(O)

MORE: OUT 2 SEND TO TTY
CALL DELAY KILL TIME
RAR POSITION NEXT BIT
STC SET CARRY-POR STOP BITS
DCR B DECREMENT BIT COUNTER
JNZ MORE , DONE?
RET , YES

; 9 MSEC DELAY (ASSUME 1YO WAIT STATES)

DELAY : MVI D,6
DLO: MVI E.2000
DL1: DCR E , 1.5 MSEC

JNZ DL1 , INNER LOOP
DCR D
JNZ DLO

3-18 8080 Serial Conversion Program

The advantage of a programmed implementation is simplicity and the

elimination of external hardware. However, it is slow, and might impair the

microprocessor's performance. Also, no reliable delays can be imple-

mented in a system using interrupts. A hardware implementation is re-

quired.

BASIC INPUT-OUTPUT 57

UART and USART:

One of the earliest standard LSI devices was the UART. A UART is a

serial-to-parallel and parallel-to-serial converter. The UART has two func-

tions: to take parallel data and convert it to a serial bit stream with start,

parity, and stop characters, and to take a serial bit stream and convert it to

parallel data.

The functional block-diagram of the UART appears on Fig. 3-19. Each

UART has 3 sections: a transmitter, a receiver, and a control section.

Almost all the manufacturers have a pin-compatible or "improved" version

of the standard UART.

SERIAL INPUT-

CLOCK-
enable/reset-

PARALLEL

I/O

CONTROL

FUNCTIONS

CLOCK

RECEIVER

TRANSMITTER

CONTROL

PARALLEL

OUTPUT

SERIAL

OUTPUT

STATUS

SIGNALS

3-19

POWER

UART Block Diagram

The UART requires both an input port and an output port to interface to

a microcomputer system, so subsequent UART's were designed to be di-

rectly bus-compatible with microprocessor buses. Two of these are: the

Motorola MC6850 ACIA (asynchronous communications interface adap-

tor), and the Intel 8251 USART (universal synchronous and asynchronous

receiver-transmitter).

Example 1: the Motorola 6850 ACIA

The internal block diagram of the ACIA appears on Fig. 3-20. Besides

the input and output serial/parallel registers, the control circuitry imple-

ments the control functions of the EIA RS232C standard. (See Chapter 6

for details on RS232C).

58

ACIA

TDR

TRANSMIT

DATA
. SERIAL

=>

Jp

MUX

RDR
DATA OUT

<
— RECEIVE

DATA
SERIAL

DATA BUS^

<
— SR

DATA IN

STATUS "

CR

CONTROL

3-20 6850 ACIA

3-21 6850 ACIA: Functions

BASIC INPUT-OUTPUT 59

Fig. 3-21 breaks down the inputs and outputs into their functions: the

serial data, the modem control, the clocks, and the buses. The serial data in

and out are TTL-compatible signals and must be buffered to provide the

necessary levels to drive serial devices. (See Chapter 4 for a full explanation

of how to connect a teletype to an ACIA). The modem-control controls the

interface required in an RS232C modem link.

The clocks control the bit rate of the serial data and may be different for

transmit and receive sections. The bus signals are the signals used in a 6800

system. The truth table showing the addressing of the internal registers,

appears on Table 3-22.

R S R/W REGISTER

CONTROL

1 STATUS

1 1 RECEIVE DATA

1 1 TRANSMIT DATA

3-22 6850 Internal Register Addressing

Example 2: The Intel 8251 USART

The block-diagram and control signals for the 8251 USART are shown
on Fig. 3-23. This device differs from the ACIA: it also provides synchron-

ous data transmission and reception, in addition to asynchronous transmis-

sion. (Motorola supplies a separate USRT, the "SSDA" for synchronous

communication)

.

The 8251-to-8080 system interface appears on Fig. 3-24. Some of the

internal circuitry of the 8251 is dynamic, hence the need for the 4>2 clock

signal. The rest of the signals are straightforward.

The USART has five internal registers: receive data, transmit data,

mode, status, and control. Upon reset, the first byte sent to the 8251 as

control will set the mode. The next byte sent as control will be latched-in as

control. The mode determines whether the 825 1 is to be used in synchron-

ous, or asynchronous, mode. The control indicates the word length and

other transmit parameters. Table 3-25 is a truth table of the 8251 bus control

signals.

60

READY TO ACCEPT DATA TxRDY

TRANSM. EMPTY TxE

CHARACTER READY RxRDY

MODEM
CONTROL

RESET
CLK
c/d
RD

WR
DSR

I DTR

I CTS
, RTs

<^=$

TRANSMITTER

RECEIVER

DATA BUS

BUFFER

CONTROL

TxD

TxC

SERIAL OUT

TRANSMITTER CLOCK

(baud rate or multiple)

RxD SERIAL IN

RxC RECEIV. CLOCK

SYNDET FOR SYNC. MODE

3-23

CS

8251 USART

CQMTRQL MIS

aBWBS»U8

11=3

15
I
8251 e

wr

:=a

3-24

CRT

TERMINAL

CONTROLLER

CRT

KEYBOARD

BAUD RATE

GENERATOR

8251 to 8080 Interface

Serial Interface Summary:

The two methods presented, hardware and software, illustrate the tradi-

tional trade-offs decisions to be made even in the simplest interface design.

Most small systems use a software serial interface whereas larger systems

tend to use the UART's. Still more sophisticated circuits are being in-

troduced to perform new types of synchronous serial communications.

These LSI components implement the other serial standards described in

Chapter 6.

BASIC INPUT-OUTPUT 61

c/tT RD WR cs OPERATION

1 8251 TO DATA BUS (READ)

1 DATA BUS TO 8251 (WRITE)

1 1 STATUS TO DATA BUS

i 1 DATA BUS TO CONTROL

- - - 1 DATA BUS TO 3-STATE

3-25 8251 Addressing Truth Table

THE THREE INPUT-OUTPUT CONTROL METHODS

We have introduced now the components and techniques required for

basic I/O interfacing: we can create parallel and serial ports.

The next problem is to manage data transfers, i.e., to implement a

scheduling-strategy . Three basic methods are used, and will be briefly de-

scribed. Additional chips will be introduced to facilitate each of these

strategies.

These three methods are illustrated on Fig. 3-26. They are called: poll-

ing, interrupt-controlled, and DMA. (Combinations may also be used).

Programmed I/O or Polling:

In programmed input-output, all transfers to and from devices are per-

formed by the program. The processor sends and requests data; all input

and output operations are under the control of the program being executed.

The transfers must be coordinated by a "handshaking" process. The basic

method for determining if an I/O operation is needed or possible is through

the use offlags. A flag is a bit which, when set, indicates that a condition

has occurred that needs attention. For example, a flag indicates "device-

ready" = buffer full for an input-device, or buffer empty for an output

device.

The flag is continually checked: it is "polling." The characteristic of this

approach is to use a minimal amount of hardware at the expense of software

overhead.

62

MEMORY

DATA BUS

MPU
^

9 ^__$ $i

>
1

1 i

I/O I/O

1 A
j ?

MEMORY

MPU

1 1

I I 1 1

-

INT 1

I/O I/O

t INT t INT

1

^

HOLD
MEMORY DMA

MPU

A 1 1 1 ,

i i

1 III
1

••> I/O -
L_

1 1

L- i/o

1

3-26 Three Methods of I/O Control

SERVICE ROUTINE
FOR DEVICE A

SERVICE ROUTINE
FOR DEVICE B

SERVICE ROUTINE

FOR DEVICE C

3-27 Polling Loop Flowchart

BASIC INPUT-OUTPUT

> POLLING

INTERRUPT

DMA

63

A flowchart for a polling loop appears on Fig. 3-27.

The program continually loops through a series of tests to determine if

input or output can/should be performed. When a device needing service is

found, the proper service-routine is activated and polling resumes after its

completion.

Two basic methods of sensing device-ready flags are used: the use of a

simple input-status port, and the use of a priority-encoder input-status port.

The simplest technique is to drive the data-bus with the device-ready

flags of eight devices when executing a read-status input-port instruction.

Fig. 3-28 illustrates such a system. The input-status port may be any conve-

nient decoded address. Usually, the first or last I/O port addresses are used

for this port. When the port is read in, the program will check each bit,

determine priority, and branch to the proper service routine.

INDIVIDUAL

INTERFACE

DEVICE

FLAGS

k:W
k
k
k

£!_

D2

D3

D4

D5

J2L

D7

CPU

DECODED
ADDRESS

3-28 Device Ready Flag Status Port

The second method is to perform the priority encoding with a look-up

ROM or a priority-encoder chip. This way, the status port holds the actual

address of the highest-priority device requesting service. Figs. 3-29 and 3-30

show the byte format, and the hardware required.

64

N<*-

Priority

Encoder

No service requested

1 Device 1 on port 1

1 Device 2 on port 2

1 1 1 Device 7 on port 7

3-29 Byte Format

A-
$

3 bit

binary code

of input with

highest priority

3-30 Polling Priority Encoder Hardware

By changing the upper five bits to any other code, other port addresses

may be generated. This will save looking up or generating the port address

from the device-ready status-port since that port holds the address of the

ready device.

Polling is the most common and simplest method of I/O control. It

requires no special hardware and all input-output transfers are controlled by

the program. Transfers are said to be synchronous with program execution.

BASIC INPUT-OUTPUT 65

Interrupts

The polling technique has two limitations:

1

.

It is wasteful of the processor's time as it checks needlessly the status of
all peripherals all the time.

2. It is intrinsically slow since it checks the status of all I/O devices before

coming back to any specific one. This may be objectionable in a real-time

system, where a peripheral expects service within a specified time. In

particular, when fast peripherals are connected to a system, polling may
simply not be fast enough to satisfy the minimum service requirements.

Fast devices such as the floppy disk or a CRT requires a near-

instantaneous response-time in order to transfer data without loss.

Polling is a synchronous mechanism, where devices are serviced in se-

quence. Interrupts are an asynchronous mechanism. The principle of inter-

rupts is illustrated on Fig. 3-31. Each I/O device, or its controller, is con-

nected to an interrupt line. This line will gate an interrupt request to the

microprocessor. Whenever one of the I/O devices needs service, it will

generate an interrupt pulse or level on this line to request the microproces-

sor's attention.

mi

INT

I/O

INTERFACE 1

I/O

INTERFACE n

INT 1 i
' INT n

SEVERAL DEVICES NAY REQUEST SERVICE SIMULTANEOUSLY

3-31 Interrupt Sequence

A microprocessor will check for interrupts at the end of every instruc-

tion. If an interrupt is present, it will service the interrupt. If no interrupt is

present, it will fetch the next instruction. This is illustrated in Fig. 3-32.

During the execution of some critical processes, it must be guaranteed

that the program in execution will not be disturbed by external interrupts.

One such example is the execution of a power-fail routine. Power failure

can be easily detected. If the system is equipped with a battery back-up for

the memory, the processor may preserve the contents of its registers in

memory, and shut down the entire system in an orderly fashion. Several

milliseconds of processing time are normally left, by the time the power

failure is detected. A power-failure routine is then activated which should

execute regardless of other less important requests which might occur.

Other requests should be "masked-out". (Power-failure is considered a

"non-maskable interrupt").

66

INTERRUPT LOGIC

EXECUTE
INSTRUCTION

NEXT INSTRUCTION

_£E£

MASK
ON

3-32

This is the purpose of the mask-bit (or mask-register when several inter-

rupt levels are available) in the microprocessor. Whenever the mask-bit is

on, interrupts will be ignored (see the chart in Fig. 3-33). The "mask"

facility is also often called the "enable." An interrupt will be enabled

whenever it is not masked.

PRESERVE REGISTERS

llfnwtmn

IDENTIFY DEVICE
(Iff

EXECUTE ROUTING

RESTORE REGISTERS

INTERRUPT HANDLER

3.33 Interrupt Control

BASIC INPUT-OUTPUT 67

Servicing the Interrupt

Once the interrupt request has been received, and accepted, by the

microprocessor, the device must be serviced. In order to service the device,

the microprocessor will execute a specialized service-routine. Two prob-

lems occur:

MICROPROCESSOR

SPT
** mwa-w-w-51

GENERAL

REGISTER

^^
MEMORY

INTA

sp r
pp K^W^W-KJi

S

SP |
|

pp Eaasaaasasasfl

^T

NEXT INSTRUCTION

PP IS PRESERVED
IN THE
STACK

* INTERRUPT ROUTINE

ADDRESS OF INTERRUPT
ROUTINE IS LOADED

INTO PC

INTERRUPT VECTOR

First the status of the program in execution on the microprocessor at the

time of the interrupt must be preserved. This implies saving away the con-

tents of all the registers of the microprocessor. These registers will be

preserved in the stack. At the very minimum, the program counter (PC)

must be pushed in the stack, in order to install a new branching address in

the PC, for execution of the interrupt-handler. Preserving the rest of the

registers can be done in hardware, by the microprocessor, or else may be

the responsibility of the interrupt-handling routine. Once the PC (plus pos-

sibly the other registers) has been preserved in the stack, the microproces-

sor will branch to the interrupt handler's address. This is where the second

problem arises:

A number of input-output devices are connected to the same interrupt

line. Where should the microprocessor branch in order to service this de-

vice? The problem is to identify the I/O device which triggered the inter-

rupt. This identification of the device may be done in hardware, in software,

or by a combination of both methods. Branching to the I/O device address

is called vectoring the interrupt. The simpler system, from a hardware

standpoint, will not provide vectored interrupts. A software routine will

determine the identity of the device which requested service. Polling will be

used. The technique is illustrated in Fig. 3-34. The interrupt identification

routine will poll every device connected to the system. It will check their

68

status register, usually testing bit 7. The presence of a 1 in a given bit

position will signal that the device did request the interrupt. Having iden-

tified the device which has triggered the interrupt, it will then branch to the

appropriate interrupt-handling-routine address. The order in which the poll-

ing is conducted will determine which device is serviced first. This imple-

ments a. software -priority scheme, in the case where multiple devices might

have triggered an interrupt at the same time. .

INTERRUPT

N0_
OUT (RTI)

OUT

(RTI)

3-34 Polling the Interrupts

A second method, software-driven, but with the help of some additional

hardware, is significantly faster. It uses a daisy -chain to identify the device

which triggered the interrupt. This is illustrated on Fig. 3-35. After preserv-

ing the registers, the microprocessor generates an interrupt-acknowledge.

This acknowledge is gated to device 1 . If device 1 did generate the inter-

rupt, it will place its identification number on the data bus, where it will be

read by the microprocessor. If it did not generate the interrupt, it will

propagate the acknowledge signal to device 2. Device 2 will follow the same

procedure, and so on. Because of the physical arrangement of devices, this

interconnect mechanism is called a daisy chain. This mechanism can be

implemented by most PIO's.

The fastest method is the vectored-interrupt . It becomes the responsibil-

ity of the I/O device controller to supply both an interrupt and the identity

of the device causing the interrupt, or better yet the branching-address for

the interrupt-handling routine. If the controller just supplies the identity of

the device, it is a simple software task to look-up a table containing a

branching address for each device. This is simpler, from a hardware

standpoint, but does not achieve the highest possible performance. The
highest possible performance is achieved when the microprocessor receives

an interrupt and the direct 16-bit branching address. It can then directly

BASIC INPUT-OUTPUT 69

(1 TO N LINE22

DATA BUS

3-35 Daisy Chain Scheme

branch to the required location in the memory, and start servicing the
device. The new PIC's (Priority-Interrupt-Controller) chips have made this

a practical reality now.

Priorities

One more problem arises: several interrupts may be triggered simultane-
ously. The microprocessor must then decide in which order they should be
serviced. A priority is attached to each device. The microprocessor will

service each device in the order of their priorities. In the computer world,
priority level is, by convention, the highest one, priority 1 is next, and so
on. Typically level will be for a power-failure (PFR or Power-Failure-
Restart), level 1 will be for a CRT. Level 2 may be left vacant for the
possible addition of a second CRT. Level 3 could be a disk. Level 5 will be
a printer. Level 6 will be a teletype. Level 7 will be external switches. Level
4 is unused in this example. Priorities may be enforced in hardware or in

software. The software enforcement of priorities has been described above.
The routine looking at the devices will simply look at the device with the
highest-priority first. Enforcing priorities in hardware is also possible. It is

indeed accomplished in the recent PIC's. In addition, these priority-

interrupt-controllers provide a full 8-bit mask which allows the programmer
to mask selectively any interrupt level. The basic structure of the PIC logic

appears on Fig. 3-36. It does not show the address vectoring, but simply the

generation of the level-vector. Such a device typically accepts 8 interrupt

levels. They appear on the right of the illustration and will set a bit in the

70

DATA BUS

DATA BUS

3-36 PIC Logic

interrupt register. The mask-register is used by the programmer to mask-out

interrupt levels selectively. Typically, unused interrupt levels will be

masked. However it is also possible to mask levels at specific times in the

program. A simple AND-gate will allow the propagation of unmasked inter-

rupts. The level of the interrupt of highest priority will be converted to a

three-bit code by a an 8 to 3 encoder. One more facility is provided: the

level of the interrupt is compared to the contents of the three-bit priority

register. The priority-register is set by the user. It will prevent any interrup-

tion by an interrupt of level higher than n, where n is the priority. It is a

global masking process for any interrupt of level higher than n. A com-

parator in the PIC determines that the level of the interrupt is acceptable,

and will then generate a final interrupt request. The microprocessor will

have available the three-bit interrupt vector. A more sophisticated PIC will

do more. Recent PIC's will supply directly a 16-bit branching-address. This

is simply accomplished by including a RAM of 8 x 16-bit registers within

the PIC. The three-bit level vector is then used to select the contents of one

of these eight registers. The contents of these 16 8-bit registers are then

pulsed on the microprocessor data bus, or sometimes on its address bus.

This causes an automatic branch to the specified address. Naturally, these

registers are loaded by the programmer.

BASIC INPUT-OUTPUT 71

LEVE
VECTOR3R ^

INT

LOGIC
COMPARATOR

INTO
INT 1

INT 2

INT 3

INT 4

INT 5

INT 6

INT 7

INT DETECT

Interrupt Controller with Priority

PROGRAM A
1NSTN i INSTK INSTN INSTN

RETURN

CONTROL UNIT

INTERRUPT HANDLER

jBRAHCIL

I I ^|IRQ Hnta
~ SERVICE ROUTINE OVER-

HEAD

RQ

3-37 Interrupt Sequence

Fig. 3-37 illustrates the sequencing of events during an interrupt. Going
from left to right on the illustration, program A is in execution until an

interrupt request in generated at time Trq. This interrupt will be taken in

account at the end of the instruction, at Time Tb. The control unit of the

microprocessor will then implement the branch to the necessary address.

Once this branch is accomplished, the interrupt handler (the third line of

Fig. 3-37) starts execution. The interrupt-handler may have to spend some
overhead-time in preserving the registers, which might not have been pre-

served automatically by the control unit of the microprocessor. The service

72

routine for the device then executes. At the end of execution, registers must

be restored (time Tf to Tr). A return instruction is then executed, and the

control unit restores the previous contents of the program counter (fetched

from the stack), so that execution of the previous program A may resume.

Program A resumes at time Tp.

The time Trq to Ts is the interrupt-response-time, i.e. the total time that

has elapsed between the interrupt request, and the effective time at which

the service routine has started doing its useful work. Some manufacturers

consider that the response-time is only Trq to Th. The total length of time

lost to the program is Tb to Tp. The total overhead involved in the interrupt

is really Tb to Ts + Tf to Tr. These numbers vary significantly from one

microprocessor to another.

TII.E Tc

PROGRAM P *

INTERRUPT I,

INTEkkt.PT I-

1HTERU.PT 1

3

»-

3-38 Stack During Interrupts

Multiple interrupts and the stack.

Fig. 3-38 illustrates the role of the stack during multiple interrupts. At

Time TO program P is in execution. At time Tl interrupt II is accepted. The

registers used by program P are then pushed in the stack (see the bottom of

the illustration, on the left). Interrupt II executes until time T2. At time T2,

interrupt 12 occurs, and it is assumed here that 12 is of higher parity.

Interrupt II is suspended just like program P before. The registers used for

interrupt II are pushed in the stack. This is illustrated on Fig. 3-38 at the

bottom of the illustration, by time T2. Interrupt 12 then executes; this is the

third line of Fig. 3-38. Interrupt 12 executes to completion, at time T3. At

that time, the contents of the stack will be popped back in the microproces-

sor and only P is left in the stack, (see Fig. 3-38: the stack contains only P at

time T3). Interrupt II resumes execution, and, at time T4, it is interrupted

again by another interrupt, 13, of higher priority. Again two levels are in the

BASIC INPUT-OUTPUT 73

stack: II and P at time T4 (see Fig. 3-38). Interrupt 13 executes to comple-
tion, at time T5. At that time II is popped from the stack (see Fig. 3-38) and
resumes execution. This time it runs to completion until time T6, at which
time program P is popped from the stack and resumes execution. It should
be noted that the number of levels contained in the stack is equal to the
number of suspended programs, i.e. to the number of dashed horizontal
lines at any time. This example illustrates the use of the stack during multi-
ple interrupts. Clearly, if a large number of interrupts may occur simultane-
ously, the programmer should allocate a large enough stack to contain the
successive levels.

YES

Interrupt Service Flowchart

DEVICE A SERVICE

CLEAR DEVICE A
INTERRUPT FLAG

RETURN FROM
INTERRUPT

CASB «*-

MSI -*-

CAS2 «•-

RD-*k

fin fr r

Afr

CS-*-o|

R/W

LOGIC

INITIALIZATION
C0WNO
MORS

D0-7 <=>

fc

INTA

(8228)

B-SERVICE

REGISTER <^ PRIORITY

2Z I
7T

INT

-1

INTBNPT

RGOCST

RGGISTBt

I

IRS)

IR7i

8228 PRODUCES 3 INTA PULSES

8259 PLACES A 3-BYTE CALL ON DATA BUS

74
8259 Interrupt Controller

Direct Memory Access

Interrupts guarantee the fastest possible response to an input-output

device. However service to the device is accomplished by software. This

may still not be fast enough for processes involving fast memory transfers

such as disks and CRT displays. Again, the solution is to replace software

by hardware. The software routine performing the transfer between the

memory and the device is replaced by a specialized hardware processor, the

DMAC, or Direct-Memory-Access Controller. A DMAC is a specialized

processor designed to perform high speed data transfers between memory

and the device. In order to perform these transfers, the DMAC will require

the use of both the data-bus and the address-bus. DMAC philosophies

differ in the way they obtain access to these buses. For example a DMAC
may suspend a processor, or it may stop it, or it may steal memory cycles

from the processor, or it may stretch clock pulses. Some sophisticated

DMA's such as dynamic-memory-refresh DMA's can also use some por-

tions of the instruction-cycle, when they "know" that the processor will not

require the use of the data-bus and the address-bus. A complete discussion

of DMA philosophies is beyond the scope of this book. The simplest ap-

proach, and the one usually implemented for most microprocessors, is to

suspend the operation of the processor. This is the reason for the tri-state

buses used for the data and the address-bus. The organization of a DMA
system is illustrated on Fig. 3-39. Each device will send its interrupt to the

MPU

,16

<F
MEMORY

MPU

| HOLD

MEMORY

DMA PERIPHERAL

MPU

DMA

DATA

MEMORY

PERIPHERAL

DRIVER

MEMW

1. MPU ACCESSES MEMORY

2. DMA INTERRUPTS MPU

3. MPU FINISHES INSTRUC-

TION THEN IS SUSPENDED

4, DMA "TAKES CONTROL"

OF BUS AND SIGNALS

I/O DEVICE TO

TRANSMIT

3-39 DMA Controller Operation

BASIC INPUT-OUTPUT 75

DMAC, rather than to the microprocessor. When the DMAC receives an
interrupt from a device, it generates a special signal for the microprocessor,
the HOLD signal. The HOLD signal will suspend the microprocessor, and
place it in a dormant state. The microprocessor completes its instruction,

then releases the data-bus and the address-bus in the high-impedance state.

It is said to "float" its buses. It then goes to sleep, and responds with the

"HOLD-acknowledge" signal. Upon receipt of the HOLD-acknowledge,
the DMA knows that the buses are released. It will then automatically

place an address on the address bus, which specifies the memory address at

which the data transfer is to take place. A DMAC connected to 8 I/O
devices will contain 8 16-bit address-registers for this purpose. Naturally,

the contents of these registers have been specified by the programmer for

each device. The DMAC specifies the address at which the transfer is to

take place, then generates a "read" or a "write" signal, and lets the I/O
device generate the data, or receive the data, on the data-bus. In addition, a

DMAC contains an automatic sequencing mechanism for block-transfers.

This is particularly valuable for transmitting blocks of data (in the case of a

disk) or sequences of data (in the case of lines in a CRT). The DMAC is

equipped with a counter-register for each device. Typically an 8-bit counter
is used which allows automatic transfers of 1 to 256 words. After each
word-transfer, the counter is declamented. The data-transfer stops

whenever the counter goes down to 0, or whenever the DMA request from
the device disappears.

The advantage of a DMA is to guarantee the highest possible transfer-
speed for the device. Its disadvantage, naturally, is to slow down the opera-
tion of the processor. The DMA is a very complex device whose complex-
ity is analogous to the one of a microprocessor. It is also expensive, since
DMA's do not sell in the same quantities as microprocessors. In many
instances, it may be cheaper to dedicate a microprocessor plus memory to
doing dedicated block-transfers, than to use a DMA-chip. As an example,
the structure of an Intel DMAC appears in Fig. 3-40, and the structure of a
Motorola 6800 DMAC appears on Fig. 3-41. The DMA controller shown
on Fig. 3-41 is a cycle-stealing DMA controller. The address-bus and the
R/W float up to 500 ms. However the maximum duration of the suspension
may not exceed 5 microseconds, as the dynamic registers of the 6800 would
lose their content after this time. The new Motorola 6844 DMAC may
operate in three modes: halt-burst, halt-steal (1-byte transfer), and TSC
steal. In "halt-burst", a transfer request on T x RQ halts the 6800, and a
byte-count of restarts-it. This is a block-transfer. In halt-steal, only one
byte is transferred. It has four DMA channels with 16-bit address, and

76

S\ 4\

*n
HF&

CONTROL ADDRESS DATA

BUS BUS BUS g_40

^DB-7

-MSTB

-HEN

cs

*:

:>.

Intel DMAC

BASIC INPUT-OUTPUT 77

DATA BUS

MEMORY

S
PIO

DMJI
TR/W I

ADDRESS BUS

READY

mm
REFGRT

TxAK

TxRQ

S>

>

3-41 Motorola DMAC

CS/TxAKB

R/W

2
DMA

RESET

"1

TxRQ2

78

6800

I£
ADBRESS BUS

ROM

1£

TRI

STATE

DRIVER
C

DMA

ADDRESS

COUNTERHi
RAM

¥
DMA
WORD

COUNT

REGISTER
G

TRI

STATE

DRIVER

DMA

DATA

SOURCE

R/W

DBE<TSC 1

CLOCK 02

DMA

CONTROL

16-bit counter. The maximum transfer rate is 1 megabyte per second. This

is illustrated in Figs. 3-42 and 343. The Intel 8257 provides four channels

and operates by simply suspending the 8080 (for any length of time). It

requires an external 8212 latch for bits 8-15 of the address-bus. It is illus-

trated on Figs. 3-40 and 3-43. Finally, the interconnect of the Am 9517 of

AMD to an 8080 system is shown on 3-44.

DATA BUS

3-42 DMA Block Diagram

BASIC INPUT-OUTPUT 79

343 4 Channels of 8257

SUMMARY

The basic input-output techniques and components have been presented
in this chapter. In an actual system, the designer will select the combination
of hardware and software algorithms required to meet his performance and
cost constraints. More chips will be introduced in the future, which offer
still greater efficiency for high-speed input-output management.

The next, and most important, problem to be solved, is to interface the
peripherals. This will be done in Chapter 4.

80

u

14 11
± -3*

<0

MAS

IF
+

Z2l
-V>

$

^>

=}
9J.SJ.

fc

EISW i
azsJL

k*
xBLlsia?

town*

/woi

ADSTfl<r% *W|J!

ADEN

-Ida*

< WW3W

S3

P<* £ iV-^U,

^

ML1MK

AKEW

vol

Mor

ootte g

12

U^>o-^|g

<^
}

*• ^

V W V W

DWA.S

AM
20
/0

9 oo
*. »«>

<l7Qff

WW <<.

u u c
mm —

V V

A
^± =0U

3-44 AM95 1 7 Application Example

BASIC INPUT-OUTPUT 81

Appendix: Miscellaneous Useful Circuits.

TIMING ELEMENTS

'V,

OUTPUT

INPUT

n
OUTPUf "

346 One Shot Stretches Pulses

MUl.Tiri.EXED

<E>

347 Multiplexer Operation

82

348 MPU Reset Circuit

A15 *-

RESET

+5H
^>

r>
new A15

3-49 Address Vector on Reset to a Different Reset Vector

BASIC INPUT-OUTPUT
83

L L >-

input

•1T02A
PROM

jW output

Code Converter:
Load Prom with-

Baudot to ASCII
ASCII to Baudot
EBCDIC to ASCII
ASCII to EBCDIC
or other converson

tables

.

3-50 Code Conversion Using PROM

address i\

check
ROM

25L,
X
y

Interrupt on
Sof+—Tnil H^-h^n-h

A8-al5)

A

Compart

B

„ A*\low h data

> _

—

^

-RD
>.

^
i—n '

3-51 Software Failure Detecting Load ROM with
Table Derived from a Logic Analyzer

84

CHAPTER 4

PERIPHERAL INTERFACING

INTRODUCTION

Now that the CPU, memory and input-output are connected and work-

ing, how do we connect to the teletype in the corner? What about the

paper-tape punch, keyboard and telephone line? These are all peripherals

that allow the user, or another computer, to communicate with the system.

In this chapter, a number of common peripherals will be interfaced:

— Keyboard (including ASCII keyboard)

— LED Display

— Teletype (TTY)
— Paper-tape reader (PTR)

— Magnetic Stripe Credit Card Reader

— Cassette Recorder

— Floppy-Disk

— CRT Display

KEYBOARDS

A keyboard consists of pressure- or touch-activated switches arranged

in a matrix fashion. To detect which key has been pressed usually requires

a combination of hardware and/or software means. Two basic types of

keyboards are available: encoded and non-encoded. Encoded keyboards

include the necessary hardware to detect which key was pressed and hold

that data until a new key stroke. Non-encoded keyboards have no hardware

and must be encoded by a software routine or by special hardware.

Bounce

One of the most common problems with a single switch is bounce. Key-

bounce refers to the fact that when the contacts of a mechanical switch

close, they bounce for a short time before staying together. This is also true

when the switch opens. Fig. 4-1 is a time-versus-resistance plot of a typical

switch contact.

INTERFACING THE PERIPHERALS 85

KEY

DEPRESSED

H H
LEADING

EDGE

BOUNCE

• BOUNCE IS 10-20 MSEC

• HARDWARE SOLUTION: R-C FILTER

• SOFTWARE SOLUTION: VERIFY KEY STATUS FOR 20 MS

TRAILING
EDGE

BOUNCE

4-1 Key Bounce

The solution is to wait for the status of a key to remain stable for perhaps
20 milliseconds. This may be done by hardware -filtering or by a software-
delay routine. The hardware circuit appears in Fig. 4-2 and requires the

same circuitry for each key. This circuit is useful for the few front-panel

switches in a system. In the case of a larger number of keys, software is

often used.

+5V

4-2 Debounce Circuit

86

1 2 3

n 5 6 7

8 9 A B

C D E F

A Hex Keyboard

Non-Encoded Keyboard

Usually, the keyboard is arranged in a row-and-column fashion, with an

n by m key organization. We can scan one set of lines with a "walking one"

pattern and sense the other lines for a coincidence. (See Fig. 4-3). This

key-identification technique is known as "row-scanning." Once a coinci-

dence is found, it is checked for 20 milliseconds or so, to see if it is stable

and then the corresponding data are generated.

OUTPUT OUTPUT

|i i i i"} GP I 11 i

•

a

i

•

>

/ ""
[71

a

a

a

1 1 < ' '

/ / A' /
'

/ / *\'
/ / 'YJ 2

l< a i •1 l<) 1

IT]

t

a

a

' 1

' '

1

'

1

—

1

T
a

a

a

/
>

/
<

i :

KEY (1-2) IDENTIFIED 3 4

4-3 Walking Ones Keyboard Decode

Larger keyboards require more select or sense lines. Fig. 4-4 shows how

a four to sixteen line decoder allows for a 64-key matrix with four bits of

output and four bits of input from the microprocessor I/O ports. Fig. 4-5

INTERFACING THE PERIPHERALS 87

shows a simple twelve-key matrix using four output bits and three input bits

on an F8 microprocessor system.

4

4:16

DECODER

16 |S

16 x 4

KEYBOARD

> >
ROW SELECT^

i*

^

(I0LUMN SENSING

4-4 4 to 16 Line Decoder with Keyboard

F 8

>*-

>*-

>*

CQL0

4-5

3^-

/A

*2-M

Twelve-Key Matrix

Rollover

Rollover is the problem caused when more than one key is held down at

the same time. It is essential to detect this fact and to prevent wrong codes

88

from being generated. The three main techniques used to resolve this prob-

lem are the two-key rollover, the n-key rollover, and the n-key lock-out.

Two-key rollover provides protection for the case where two keys are

pressed at the same time. Two philosophies are used. The simplest two-key

rollover simply ignores the reading from the keyboard until only one key

closure is detected. The last key to remain pressed is the correct one. This

philosophy is normally used when software routines are used to provide

keyboard scanning and decoding. The second philosophy is often used by

hardware devices. The second key closure is prevented from generating a

strobe until the first one is released. This is accomplished by an internal

delay mechanism which is latched as long as the first key is pressed. Clearly

for better protection, rollover should be provided for more than two keys.

N-key rollover will either ignore all keys pressed until only one remains

down, or else store the information in an internal buffer. A significant cost

of n-key rollover protection is that most systems need a diode in series with

every key in order to eliminate the problem created when three adjacent

keys at a right angle are pressed ("ghost key"). This increases the cost very

significantly and is seldom used on lost-cost systems.

N-key lock-out takes into account only one key pressed. Any additional

keys which might have been pressed and released do not generate any

codes. By convention it may be the first key pressed which will generate the

code, or else the last key left pushed. The system is simplest to implement

and most often used. However it may be objectionable to the user as it

slows down the typing: each key must be fully released before the next one

is pressed down.

Line-reversal Technique

The basic technique used in identifying the key which has been pressed

on a keyboard is row-scanning, as described above. However, because of

the availability of the universal parallel interface chip, the PIO, another

method can now be used. This is the line-reversal technique. This method

will use a complete port on a PIO, but will be more efficient soft-ware-

wise (faster). This method is illustrated below. In the example, a 16-key

keyboard is used. One port of the PIO is dedicated to the keyboard

interface. The identification of the key is performed in essentially four

instructions only. In practice, some more instructions may be needed,

because of the specific structure of the PIO used.

Step one: Output

Initially, the 8 lines of the PIO are configured as 4 lines in, and 4 lines

INTERFACING THE PERIPHERALS 89

Line Reversal: Step 1

KEYBOARD

INT

out. This will be accomplished by loading the proper data pattern in

the direction-register, which controls the direction of the lines. In the

example, the direction register is loaded with the value "00001111".

This results in configuring the data lines DO through D3 as inputs, and
the data lines D4 through D7 as outputs. DO through D3 are the row
outputs of the keyboard. D4 through D7 are the column inputs to the

keyboard. It is assumed that the initial value of the data-register is all

zeroes. In other words, four zeroes are output on lines D4 through D7,

the row inputs to the keyboard. Whenever a key is pressed on the key-

board, the normal output on the column, which is a "one", is grounded

by the key closure. As a result, a "zero" value will appear on the column
output on which a key has been pressed. In the example presented on
the illustration, a "zero" appears on line Dl (the third column from
the left of the keyboard). The other three column outputs, i.e. lines

DO, D2, D3 have not been grounded by any key closure, and supply

a "one" output. Detecting the key closure itself can be accomplished

in two ways. A NAND gate, appearing under the keyboard in the

illustration, may be used to generate an interrupt to the microprocessor.

As an alternative, as usual, a polling program may read the contents

of the data register and detect the fact that a zero is present on any one

of lines DO through D3. The problem to be solved here is to identify

which key was pressed. The information available so far in the data

register, i.e. "10110000" is not sufficient. The column is identified, but

not the row. This problem was solved in the row-scanning technique

by supplying a "one" on each row in turn. Here a more "elegant" method
will be used, which will supply the same information in fewer steps.

90

OUTPUT

INPUT

1

1

1

1

I

1

1

1

1

f

1

_J'__'
ii ' '

i I

1

1

1 I

1

i 1

1

l_.
—

1

PIO

. _j

Line Reversal: Step 2

Step two: Line Reversal

At this point, the direction of the eight lines is simply reversed. Inputs

become outputs, and outputs become inputs. This is illustrated on the

right of the drawing. To perform this line-reversal, a single instruction

is necessary: "complement the contents of the direction-register".

Naturally, this assumes that such an instruction is available. On some

microprocessors, two, or even three instructions might be required to

perform this on an external location.

The contents of the direction-register are now "11110000". As a

result, the contents of bits DO through D3, which were previously in-

puts, are now outputs. The value "1011" is therefore output on the

columns of the keyboard. As a result, lines D4 through D7 are condi-

tioned by the rows of the keyboard. In this example, the resulting value

for D4 through D7 is "1011". Wherever a key was pressed, a "zero"

is generated on input. Finally, it is sufficient to read the contents of

the data register to know which key was pressed. The contents of the

data register in our example is "10111011". It indicates that the key

at the intersection of the third column and the third row was pressed.

It is then a simple matter of using a branch table, or any other conver-

sion technique, to obtain the code corresponding to the key. In addi-

tion, if more than one "zero" is present either in the first "nibble"

(group of four bits) or in the second one, it detects a multiple-key

closure, i.e. a roll-over problem. This is usually handled by the jump

table. Such a code, having illegal zeroes, will result in a branch to a

table entry which is invalid. This can be detected, or else this may cause

INTERFACING THE PERIPHERALS 91

the whole process to be restarted again, therefore ignoring the input

until only a single key is pressed.

The advantage of this technique is to require a very simple software

program, and to eliminate the circuitry needed to scan rows. The dis-

advantage is to dedicate one port of a PIO to keyboard management.
However in view of the very low cost of PIOs, this can be indeed a very

inexpensive alternative.

Encoded Keyboard

Not everyone enjoys writing the software required for keyboard encod-

ing. Various types of LSI interface-circuits are used to encode keyboards.

Usually, the circuit will scan the matrix, discover a coincidence, provide for

some amount of debounce and rollover, and latch the data for use in the

system. Some units also provide an internal ROM look-up table to generate

the proper code for the key pressed, such as ASCII or EBCDIC.
With this one chip and the microcomputer system, a complete entry and

display interface is accomplished. Note in Fig. 4-9 that the 8279 forms the

complete entry and display section interface for a point of sale terminal

using the 8048 single-chip microcomputer system.

Keyboard Encoders

The basic role of the keyboard encoder is to identify the key which has

been pressed and to supply the 8 bit key code corresponding to it. In

addition, a good keyboard chip should also solve the problems we have

described above. It should debounce and provide ro/Zover-protection.

Three essential types of encoders are available: static encoders, scanning

encoders, and the converting encoder.

A static-encoder simply generates the code corresponding to the key. In

order to simplify the key-protection problem, the linear keyboard can be

considered. A linear keyboard is, for example, a 64-key keyboard which

provides a wire for every key pressed. Detection is then easy. The pulse

appears on the wire corresponding to the key pressed. This pulse is then

simply transformed into the suitable 8-bit code. However this means 64

separate incoming lines to produce one of 64 8-bit codes. In order to reduce

the cost of the wiring, and the necessity for encoders, most keyboards are

arranged in matrix fashion, for example 8 by 8. In an 8 by 8 keyboard, only

16 wires are used. The price paid is that the process necessary to identify

the key becomes more complex. This requires then a scanning encoder, or

the use of a scanning routine. Expensive ASCII keyboards (full keyboards)

can afford the luxury of a linear arrangement in view of the cost of every

92

key. No scanner is then necessary to identify the key. However most

keyboards have the matrix arrangement.

Scanning-Chip

A scanning-chip solves the problem of key identification, when using a

matrix-keyboard array. Each row of keys is scanned in turn by using a

counter. As long as no key is pressed, the scanning goes around in a circular

manner. As soon as the key is pressed, a key closure strobe is generated,

and scanning stops. The counter can be read: it identifies the row and

column on which the key has been pressed. Such a straightforward scanning

mechanism may not provide the desired two-key rollover protection. Scan-

ning in this system stops with the first key down which is encountered.

When two keys are pressed in close sequence, one which is identified might

well be the second one which was pressed. A better scanning mechanism

will scan the entire keyboard for key closure and will generate a valid code

only if only one key is pressed. Whenever more than one key is pressed, it

will simply keep scanning until only one is held down. This has the added

advantage of providing intrinsic automatic debouncing for the key.

6 -BIT

COUNTER

' 1
'

'' ' !'

J \

ROW-

SCANNING

/\

1 OF 8 DECODER

CLOCK
OSCILLATOR

1

'
}
" Mr

:
fj ''

'
'

<

1 , ^
i

OF

8

DE-

CO-

DER

8X8
KEYBOARD

_
1

r

* V
Scanning Keyboard

The above discussion was, in fact, simplified. In order to provide the

reading of the key down, it is necessary to supply the voltage on the col-

umns. If all columns were activated at the same time, it would be impossible

INTERFACING THE PERIPHERALS 93

to determine which column was pressed. In reality, a one is supplied on a

column, then on the next one, then on the next one. Whenever a key closure

is detected, the column is known, and the rows are scanned for another

closure.

The operation of the scanner is usually the following: a single 6-bit

counter is used. The top three bits of the counter are decoded by a 1 to 8

decoder and are used to activate sequentially each one of the 8 columns in

turn. The lower three bits of the counter, which change faster than the other

ones, are also decoded by a 1 to 8 decoder which is used to scan the rows.

This guarantees that every time a one is generated on one of the columns,

the 8 rows are scanned in turn. Then the next column is activated.

Whenever a key-closure occurs, the detection will occur whenever the row

is selected, and this will stop the six-bit counter. The contents of the

counter can then be read. They identify the column and the row which

correspond to the key closure.

Good keyboard-encoders are equipped with a read-only memory which

automatically supplies the output code corresponding to the key pressed.

They should also have separate shift and control inputs. In particular this

eliminates false output codes whenever wrong keys are pressed.

ADDING MEMORY TO SCANNED KEYBOARD CREATES FINAL CODE

7(PARIT>

6

5

4

3) CODE

2

1

ROM

SHIFT ~~

CTRL

STROBE-

LATCH PROVIDES n - KEY ROLLOVER PROTECTION

ROM and Latch

As an example, the NECUPD 364D-02 keyboard incoder appears on

illustration 4-6.

It provides n-key lock-out, n-key rollover + debounce, frequency con-

trol oscillator, and 4 mode selections: shift, control, and shift plus control.

94

WiYAViYn

z, -.-.:... -.., . .

4-6 NEC Keyboard Encoder

It is equipped internally with a 3600 bit ROM, It provides a 1 0-bit output for

90 keys in 4 modes. The 90 keys of the keyboard must be organized as a 9 by

10 matrix. It is equipped internally with a 10-stage ring counter for the

columns, and a 9-stage ring counter for the rows. In addition, its memory
output is equipped with an output data buffer, This guarantees that there

will be no random code outputs, while scanning occurs with no keys

pressed. Other similar encoders are available from a variety of manufactur-

ers, such as General Instruments and others. The on-chip ROM can be

mask programmed to provide any desirable coding scheme—such as ASCII
or EBCDIC

This device may be used in a microprocessor system as an input port

during the bus. The data ready line can be used to flag the processor when a

keystroke is ready lo be read.

4-7 ASCII Keyboard

INTERFACING THE PERIPHERALS 95

Intel 8279:

a-BiT
MICROPROCESSOR
SYSTEM DATA

BUS

ADDRESSi
BUS j

^ TJT1
r

C/D

w w

'RFTURN
LINES

KEYBOARD
MATRIX

8 COLUMNS

8 ROWS

±2L
5V

SHIFT R8-7
CONTROL VDD

V
SS "1

IOR

IOW

RESET

CS

C/D ?

CLK'

8279

S0-3

A0-

I
1 of 8 DECODER

3F

1 of 16 DECODER

BLANK
DISPLAY

1L

h/

$
$

TOdkES!Aiironyy

(DECODED)
DISPLAY
CHARACTERS
DATA

DISPLAY

4-8 8279 Keyboard/Display Interface

Pictured in Fig. 4-8, this LSI circuit provides for an 8 x 8 keyboard

matrix with shift and control keys. In this way, up to 256 codes can be

generated. For example, pressing control and shift and the letter "p" would

be one of the. codes.

In addition to encoding the keyboard, the device will also scan a display

and light the display to display data stored in a RAM bank in the 8279

Similar devices are available from Rockwell and GI.

ASCII Keyboard

Keyboards may be purchased with the standard teletype or typewriter

layouts that generate the seven bit ASCII code. These keyboards contain

the keys, plus the LSI keyboard-controller chip. The output is usually

seven parallel bits with a strobe pulse. To interface this to a standard serial

input, a UART and clock may be added. The complete design appears in

Fig. 4-11.

The UART takes the seven bits of data and transmits them in a serial 10

or 11 bit format when the stroke pulse occurs. The keyboard is locked-out

96

CASH ORAW
KEY SWITCH
TOTALS

AUDIO INDICATOR 5

-N

8748/8048

PROM/ROM
RAM

I/O TIMER TV"

\s

z:
TO OPTIONAL

COMMUNICATIONS
INTERFACE
READER
STORE AND FORWARD

DATA 1 STROBE
STEFFER MOTOR
CONTROL
FAFER ADVANCE
STATUS

-\ 8279
KEYBOARD DISPLAY

a2_

MATRIX FRINTER*
WITH FAFER
ADVANCE

Az.
CASH REGISTER KEYtOARD

• NUMERIC
• DEFT.
• ITEM
• TAX
• ETC.

I8IB18I
±L I (SPLAT

"fc-

4-9 8048 Point of Sale Terminal with 8279

BIT NUMBERS

1

1 1

1

1 1

1

1

1

1

1

1
'

'

1

b7

1

«>6

1

*>5

*

*>4

*

b3

*

*>2

hex rv
1 2 3 4 5 6 7

NUL DLE SP 1 P » P

1 1 SOH DC1 ! 1 A Q a q

1 2 STX DC2 it 2 B R b r

1 1 3 ETX DC3 f 3 C S c s

1 4 EOT DC4 4 D T d t

1 1 5 ENQ NAK X 5 E U e u

1 1 6 ACK SYN t ^ 6 P V f V

1 1 1 7 BEL ETB i 7 W g w

8 BS CAN (8 H X h X

1 9 HT EM) 9 I Y 1 y

1 10 LP SUB • J Z J z

1 1 11 VT ESC i K [k
1

1 12 PP PS . < L \ 1 !

1 1 13 CR GS - - M] m
1

1 1 11 SO RS > N A n —
1 1 1 15 SI US / ? O DEL

4-10 ASCII Table

INTERFACING THE PERIPHERALS 97

while transmitting. The serial clock runs at 16 times the bit rate. For 110

baud, the oscillator is tuned to 1760 hertz. For 300 baud, it is tuned to 4800

hertz.

data lines
S1883 EIA driver

from keybd

strobe timer-
baud-rate
oscillator

iB1J_ B2

Baud-rate selection

4-1

1

ASCII Keyboard Serial Interface

LED DISPLAYS

Light-emitting-diodes (LED's) are commonly used to indicate status or

other information to the user. LED displays may take a number of forms.

Three of these are: single LED, seven-segment LED, and dot-matrix LED
displays.

The single LED is a diode with a voltage drop of 1 .2 to 2.4 volts, depend-

ing on the type. It is a device that emits a narrow wavelength band of visible

or infrared light. The most-used LED's are red LED's. Others used, al-

though more expensive and sometimes not as efficient, are green, orange,

yellow, and infrared LED's.

Fig. 4-12 shows an LED interface to an output port bit.

The current, I, that passes through the LED will determine its intensity.

The formula given can be simplified to: I = 3.5/R for a five volt supply.

Typical currents are from two to twenty milliamps. When the input is less

than 0.6 volts, the transistor is off and no current flows. When the input is

greater than 0.6 volts, the transistor turns on and allows current to flow,

lighting the LED.

98

TTLIN

Seven-Segment LED

sS

NPN Transistor

I
=
5-(Vd + Vcesat)

4- 1

2

Single LED Interface

A seven-segment LED display consists of a group of seven elementary

LED's arranged as in Fig. 4-13.

**-»*

4-13 Seven Segment LED

With these segments, we can display the numerals through 9 and some

letters of the alphabet. In this way, we have a readout of the seven drive

signals.

A common interface device is a BCD-to-seven-segment decoder/driver.

It will convert 4-bit BCD directly into the proper numerals and also drive

INTERFACING THE PERIPHERALS 99

LED USES 7 SEGMENTS:

/ /
/

i

ir /

_/
1

1

i

r

/
D

/
ro

~7

/

Ou n
i

n
u

n
1

1

iu /

/_
iu rr rr

7 Segment Characters

the LED's directly with internal driver transistors. An example is the 7447

pictured in Fig. 4-14. An output port may drive the 7447 with four bits of

BCD data to light the proper segments.

4-14 7447 Seven Segment Decoder/Driver

In order to save the cost of having one decoder for each LED digit

display, the displays may be multiplexed. Each digit is on for a short time

before a new digit is selected and turned on. In this way, one decoder can

serve a number of displays. There are many ways to multiplex. Two are

presented here:

Fig. 4-15 shows the first scheme, which scans both digit and data. Note

how external drivers are used. This is because, when multiplexing, each

100

o
z

t- »- CM CO *

09

n t-»-00000'i-0©0©©0©t-'*-'-0

- o^»-t-oo©^oo t~ t"©©© t" t"^'©

• ©T-©T»»-^©T-©^0 ,^^»-©^ T~'r"©

"O 0^©0^©©^0^©© T"©© T" ,~^©

«>

o

A ©0©©Ot-^©0©t-t-©t-»-^t-t-©

m 0»-0©t-0'-000'- ,~ t"O t" t" t~ t"©

O
a
K
>»

S

< OT-0^0»-0»-0'r*0'"0 ,~0'r* x o x

oo»-*-©ot-t-oo»-»-©o»-»- X O X

o oooo»- ,^»-»-©©oo»-»-'-»- X O X

s
z o

S i-XXXXXXXXXXXXXXXXOX

-1
Ill

-1
CD
<
ZHD
DC
1-

DECIMAL OR FUNCTION

©T-CMCO^inWt-COOOr-CMCO^Wjggt-

7447 Decoder Truth Table

INTERFACING THE PERIPHERALS 101

display must be N times as bright as when it operates alone since it is on 1/N
times as long. Thus, currents needed are N times as large. Most integrated

circuits cannot provide this current, so external discrete transistors must be
used.

DATA

BCD

7
T0

/-SEGMENT
DECODER

<r <p <r u ,, ,
r w

•p<pjp vv 7 'p ip v w 'P t

SEGMENT
DRIVERS

TZ

V if ip ip ip ip

DI
I
IT

DIGIT
SELECT

DIGIT
DRIVERS

4-15 Multiplexing LED's

The second scheme, in Fig. 4-16, uses a counter to advance the digit

count. The count is input to the processor and used to address the proper

data for the digit. The data are placed on an output port which drives the

7447 decoder. Note again that current-buffering is needed to increase the

brightness.

4-16 Multiplex Drivers in Scanning Scheme

102

Matrix LED

The LED matrix consists of five rows of seven columns of LED's.

These 35 LED's can display upper and lower case letters and numbers. A
typical arrangement appears on Fig. 4-17.

7X5 DOT MATRIX

CHARACTER
ROM

RO
AO

R6

A8 A9 A1J

a n i

CHARACTER
TO BE DISPLAYED

DATA

7 ROWS

4-17 7 x 5 Dot Matrix LED

-TL

CLOCK

D D D

D D D D

D D Q

D D D

r-r-rr-

crr C4

DECODER

COUNTER

OUTPUT

PORT

zr

!=>
OUTPUT

PORT

4-18 Counter Multiplexed 7x5 Matrix LED

INTERFACING THE PERIPHERALS 103

The first output port selects the column data and the second output port

selects the row, through the decoder. With this technique, the program will

step through the five rows, displaying whatever character has been pro-

grammed into the 2048-by-8 read-only-memory.

Another technique is to have external hardware step through the rows
and display the proper data. Such a method is illustrated in Fig. 4-18.

The counter will start at and count to 4. The character-ROM is being

addressed to the character "S". Column addresses the row data to be
displayed. They are from R6 to RO: 1001 lll a . The clock advances the

counter to column 1. The row data are now 1001001 2 . This continues
through row Column 4 and then repeats. All the letters of the alphabet may
be generated this way. A typical character-ROM is shown in Fig. 4-19.

Note that this part is for improved-resolution 7 x 9-displays. Also, this

character-ROM may be used with ASCII, Bandot or EBCDIC code, de-

pending on the table ordered.

Summary of Displays

There are many other displays. However, LED type displays are reli-

able, easy to interface, and illustrate the techniques used in most all other

display interfacing techniques. CRT-interfacing will be covered also in this

chapter, and the dot-matrix methods will be presented in that section.

BLOCK DIAGRAM
OUTPUT ENABLE

4-19 Dot Matrix ROM

104

S25261

CHARACTER FONT

ASCII SET, VERTICAL SCAN 7X9 WITH CODE CONVERSION

Dot Matrix ROM

TELETYPE

A teletype is a serial mechanical input-output device which usually oper-

ates at 110, 150 or 300 baud depending on the model and manufacturer.

Three methods of interfacing will be presented here: one for a UART, using

a model 33 Teletype®, one for a Motorola ACIA, using a model 33 Tele-

type® with opto-isolation, and one RS232EIA interface. A model 33 Tele-

type operates at 10 characters per second. Each character is encoded by

eleven bits: one start bit, 8 data bits, and 2 stop bits. The resulting transfer

rate is, therefore, 110 baud. The only significant interfacing problem is to

INTERFACING THE PERIPHERALS 105

assemble the 8-bit parallel data-byte from these 11 bits. Transmission is

asynchronous. The universal interface for a TTY is the UART, which was
described in the previous section. It performs automatically all the required
functions, and may operate in both directions.

-H>o

SET TO:

-20 MA LOOP

1-FULL DUPLEX

4-20 UART TTY Interface

In Fig. 4-20, the UART is used for serial to parallel and parallel to serial

conversion ot the data. Fig. 4-21 illustrates the serial format, and 4-22
illustrates the timing sequence. The schematic of the interface shows how

MARK

SPACE
"""I hl ? lll«M«l7hl '

' LSR MSB

STOP1 STTJP2

9.09 ms - »
l (

4-21 Serial Data Format

DATA READY

READER RUN
RECEIVE FROM TTY

TRANSMIT Rl

LOAD

TRANSMIT TO TTY

4-22 Timing of UART

106

the TTL signals are converted into 20 milliamp current loop signals required

by the TTY.
In Fig. 4-23 , opto-isolators are used to isolate the teletype electrically

from the microcomputer system. This requires that the + and - 12 volts

levels also be isolated from the microcomputer. The ACIA performs the

conversion and interfaces directly with the 6800 bus.

$
+ 5V

2K

6850

ACIA

Rx DATA<
|4-]2V|

* I '

Tx DATA
{>>^\A 1-

.+5V

+12V

|
1N33

i

4-23 Opto-Isolated TTY Interface

Some teletypes are equipped with EIA-RS232C in a serial configuration.

In RS232C teletypes, + and - 12 volt pulses rather than the presence or

absence of 20 milliamp currents are used. Fig. 4-24 illustrates a common set

of devices for EIA to TTL and TTL to EIA level conversion. These are the

MC1489 and MC1488 integrated circuits. There are four translators in each

package so a number of lines may be interfaced.

4-24 MC1448 and MCI489

INTERFACING THE PERIPHERALS 107

NEXT 1 LDA A STACON LOAD STATUS

ASR A SHIFT RDRF BIT TO C-BIT POSITION

BCS FRAM CHECK RDRF BIT

ASR A

ASR A SHIFT DCD BIT TO C-BIT POSITION

BCC NEXT 1 CHECK DCD BIT

BR ERROR 2 CARRIER LOSS - BRANCH TO ERROR ROUTINE
FRAM ASR A

ASR A SHIFT FE BIT TO C-BIT POSITION

BCC OVRN CHECK FE BIT

BR ERROR 3 FRAMING ERROR - BRANCH TO ERROR ROUTINE
OVRN ASR A SHIFT OVRN BIT TO C-BIT POSITION

BCC PAR CHECK OVRN BIT

BR ERROR H OVERRUN ERROR - BRANCH TO ERROR ROUTINE
PAR ASR A SHIFT PE BIT TO C-BIT POSITION

BCC R DATA CHECK PE BIT

BR ERROR 5 PARITY ERROR - BRANCH TO ERROR ROUTINE
R DATA LDA B TXRX LOAD B REGISTER WITH DATA

RTS RETURN FROM SUBROUTINE

6800 Transmit Subroutine (1)

NEXT LDA A STACON LOAD STATUS

ASR A

ASR A SHIFT TDRE BIT TO C-BIT POSITION

BCC TX DATA CHECK TDRE BIT

ASR A

ASR A SHIFT CTS BIT TO C-BIT POSITION

BCC NEXT CHECK CTS

BR ERROR 1 CARRIER LOSS - BRANCH TO ERROR ROUTINE

TX DATA STA B TXRX STORE CHARACTER IN ACIA

RTS RETURN FROM SUBROUTINE

6800 Transmit Subroutine (2)

Mechanically, the teletype appears complex, but is really quite simple.
To help understand the serial data format, an explanation of what happens
internally will be presented.

When the start bit comes in, two things happen: the clutch engages all

108

mechanical linkages so that a print cycle will occur, and prepares the decod-

ing selector-magnet for the decoding process. The next eight bits come in,

9.09 milliseconds apart. They each trip the selector-magnet, which stops

eight notched wheels from spinning—one after the other. In turn, the print

bars which select the character on the print-head are raised, or lowered, due

to the combination of notches on the wheels. The print-head selects the

proper character and the print-hammer strikes the head onto the ribbon and

paper. The stop-bits are required to allow enough time to finish the present

character before another comes along.

If the punch was on, the selection of the print-bars would also send

punches through the paper-tape, while printing the character.

When a key is pressed, the proper bit pattern is placed on eight contacts

on the distributor. The distributor is like the spark-distributor in an au-

tomobile. Fig. 4-25 illustrates the simplicity of this scheme. The motor is

engaged to turn the commutator once around, which opens and closes the

loop generating the 11 -bit pattern for that key.

TTV DISTRIBUTOR

4-25 Distributor in Teletype

Note that the synchronous motor is the timing source for the machine,

and an accurate line frequency is necessary, or else the machine will lose

sync due to old age, no oil, or other mechanical problems.

INTERFACING THE PERIPHERALS 109

A Teletype Output Subroutine

ENTER

"

SEND START

BIT

<r

SEND DATA

BITS

v

SEND STOP
BIT

1 i

EXIT

ENTER

SET BIT
COUNTER TO

ELEVEN

OUTPUT
A BIT

DELAY
9.1 MSEC

DONE

YES

4-26 ACIA Transmit Software
RET

It is assumed here that the teletype is connected to bit of port 2. This
simple program will shift-out the 1 1 bits necessary to represent the charac-
ter in teletype format. The flow-chart appears on Fig. 4-26, the actual con-
nection appears on 4-27. The program appears below. Register B is used as

TJB.liJB.Tii'E OUTPUT 3UBR0UT1 NE (ASSUME TTY CONNECTED TO PORT 2 BIT
0)

; THIS SUBROUTINE ENTERED WITH CHARACTER TO BE OUTPUT IN THE
3 C REGISTER
TYOUT: MVI B,ll SET COUNTER FOR 11 BITS

MOV A,C CHARACTER TO ACCUMULATOR
ORA A CLEAR CARRY-POR START BIT
RAL MOVE CARRY TO A(0)

MORE: OUT 2 SEND TO TTY
CALL DELAY KILL TIME
RAR POSITION NEXT BIT
STC SET CARRY-POR STOP BITS
DCR B DECREMENT BIT COUNTER
JNZ MORE DONE?
RET YES

J 9 MSEC DELAY (ASSUME I10 WAIT STATES)

DELAY: MVI D,6
DLO: MVI E,2000
DL1: DCR e

; 1.5 MSEC
JNZ DL1 ; INNER LOOP
DCR D
JNZ DLO
RET 8080 TTY Output Program

110

a counter. It is initially set to 11. The contents of register B will be decre-

mented every time that the bit is shifted out, i.e. transmitted to port 2. It is

important to remember that only bit of the accumulator matters in this

example. All other bits will be ignored. This is the right-most bit, or least

significant bit (LSB) of the accumulator. Initially the accumulator contains

the 8 bits to be transmitted. In addition, both the start-bit and the stop-bit

must be transmitted. This will be accomplished by using a feature of the

rotation instruction of the 8080. The carry bit, which is in fact the ninth bit

of the accumulator, in shift operations, will be set to 0. It will then be

rotated into the accumulator in bit position 0. This will be the start bit. The

crux of the operation is to use a rotate instruction. If the contents of the

accumulator were simply shifted left, the left-most bit would be lost. In this

case the left-most bit is preserved in the carry, while a gets written in bit

position 0. It will be noted, in the program, that the next operation in the

accumulator will be a right rotation. It will re-install the former bit 7, which

had been preserved in the carry bit, in its correct position. Finally once this

has been done, successive rotations will rotate into the left of the ac-

cumulator successive ones created in the carry bit. This will guarantee that

the stop bits get transmitted at the end. The sequence of the program is

straight forward:

PORT 2

TTY TX DATA

430/W

4-27 Hardware TTY Connection

The counter register B is set at value 11, the character which was pre-

served in register C is loaded into the accumulator A. The accumulator is

ored with itself (third instruction). This does not change its contents, but

guarantees that the carry is set to 0. This will be the start bit. A right rotate

is performed: RAR. This moves the carry into bit position of the ac-

cumulator. The output then occurs: OUT 2. The bit is sent to the teletype.

Everytime that the bit is sent to the teletype, a delay-loop must be executed

to guarantee a 9 ms delay. The delay-routine is implemented as subroutine,

INTERFACING THE PERIPHERALS 111

and appears at the bottom of the program. Next, an RAR is executed to
shift into bit position the correct next bit. The carry is set in anticipation of
ulterior rotations to guarantee that eventually the start bits will be correctly
transmitted. The bit-counter (register B) is then decremented and tested. If
the counter reaches the value 0, the program ends. If not, the program loops
by going back to address MORE, where the next output occurs.

Software Example for ACIA:

This subroutine sends a character to the teletype. If it is not ready to
transmit, the subroutine waits until ready. It also checks the clear-to-send
input (CTS) on the ACIA. This will be used with an EIA-RS232C interface

system.

CTS

TRANSMIT

ROUTINE

1 YES N

= ^>
READ STATUS

LOSS OF
CARRIER ERROR

ROUTINE

4-28 ACIA Flowchart

The first instruction loads the status of the ACIA into accumulator A.
The ready-to-transmit flag is in bit position 1 , so it must be shifted twice to
the right, into carry, to be tested. If we are ready to transmit, the program
goes directly to DATA where the contents of accumulator B are sent to the
ACIA.

If the ACIA was not ready to send, the CTS bit would be checked; if it

was clear-to-send, a carrier-loss would be indicated and the program would
branch to an error routine. If the ACIA is clear-to-send, the transmit-ready
flag would be checked until ready. This is a polling technique. Interrupts
could also be used.

112

NEXT

TX DATA

LDA A STACON LOAD STATUS

ASR A

ASR A SHIFT TDRE BIT TO C-BIT POSITION

BCC TX DATA CHECK TDRE BIT

ASR A

ASR A SHIFT CTS BIT TO C-BIT POSITION

BCC NEXT CHECK CTS

BR ERROR 1 CARRIER LOSS - BRANCH TO ERROR R

STA B TXRX STORE CHARACTER IN AC I

A

RTS RETURN FROM SUBROUTINE

ACIA Software

PAPER-TAPE-READER

The teletypewriters usually are slow for reading punched tapes. One

helpful peripheral would be a high-speed paper-tape reader. Such a device

would optically detect the code pattern on the paper-tape and advance to

the next frame quickly. A typical reader has the schematic shown on Fig.

4-29.

I+BV

}-•(£

SCHMIDT TRIGGER EDGE

JV."^ CLEANUP BUFFER

•^ ONE OFF

IR LED LIGHT -SOURCE

MOTOR DRIVER

TOR ^^

4-29 Paper Tape Reader
MOTOR TO DRIVE
PINCH ROLLERS TO
PULL TAPE THROUGH
LEO -TRANSISTOR
SENSORS

INTERFACING THE PERIPHERALS 113

Our microcomputer must turn-on the motor, sense a feedhole (which are

smaller than the data, indicating the center of a bit frame), sense the frame-
pattern and store the data before the next feed-hole passes by. When an
end-of-tape character is sensed, the reader-motor should turn-off.

8 LEVEL - PAPER TAPE

O O o

§ § °§ °
oooooooooooooooooooooo

o FEEDHOLES
ooooo
o
o
ooo

oo
o o
o o
o

4-30 8 Level Bit Frame

A bit-frame for our 8 level tape appears in Fig. 4-30. A typical problem is

caused by the ragged edges of the holes, or by dirt on the tape. The hole
data appears on Fig. 4-31. Due to this, the feedhole sensing might need
some extra delay so that the middle of the feedhole will be the time at which
the other holes are sampled. One must know the motor speed to do this.

Some systems can go forward and backwards so that blocks of data with
errors may be re-read.

The flowchart for this reader appears on Fig. 4-32.

ji

4-31 Hole Data

LINE PRINTER

Usually, a teleprinter is too slow for printing long files. In this case, a
line-printer must be used. There are many types of line-printers. The one
described here is a dot-matrix type which uses seven print wires to make
seven dots on the page. By stepping the print wires across the page and
advancing the paper, characters are formed. The basic diagram of our
printer appears on Fig. 4-33.

To control this device, we need to step the platen, step the head position,
and specify the right combination of seven dots. In addition, we should
monitor the head position so that it does not print off the paper.

114

READ A TAPE

TURN ON MOTOR

(NO TAPE IN

REACTOR) n

READ IN DATA, STORE

IN TABLE IN MEMORY

4-32 Reader Flowchart

PAPER PRESSURE ROLLERS

£ mm

HEAD I

1
POSITION I

STEPPER I

MOTOR
I

3
PRINT HEAD

xsssssssxsssssssx

It]
RIGHT AND LEFT LIMIT SWITCHES

heaq pos|T|ON

SCREW SHAFT
(HEAD AT END OF PAPER I

4-33 Line Printer Diagram

INTERFACING THE PERIPHERALS

FLATTEN
STEPPER
MOTOR

115

To move the head and platen, stepping motors will be used. These
motors can move by a small amount, each time they are pulsed. Some are
accurate to over 1000 steps per rotation. The ones used here will have 32
steps for the head-motor, and 32 steps for the platen-motor.

Each character printed will be on a 7 x 9 dot-matrix. The head will step
once to put it at the next character position. The print wires will print the
top dots of the character. Then the platen will step once. The head wires
will print again. The process will repeat until the character is finished. When
a character has been printed, the head will position itself for the next
character.

wmw

7 IRON ALLOY WIRES

7 solenoids

PRINT HEAD

_PRINT HEAD POSITION
SCREW SHAFT

Print Head Detail

But wait—the platen is no longer at the top of the character. To prevent
unnecessary stepping, the whole row of the tops of characters will be
printed before advancing. The same will be true for each row of dots.

Because of this, we will need to buffer a complete line before starting to

print.

Now, complete 7 by 9 characters may be typed 32 per line. In addition,

pseudo-graphics may be added by using only the top row as dots and using
the full range of platen steps. Fig. 4-34 illustrates the flowchart for the
printer interface.

The program will advance to the new line starting position after checking
if enough data is present to print. The program will then print dot row by dot
row each character on the line.

One important hardware consideration for this printer is that the print

wire solenoid will be damaged if left on too long. If our control program
were to "crash", or any hardware were to malfunction, the print solenoids

116

PRINT A LINE

FIND BEGINNING
OF NEW LINE

INITIATIVE
POINTERS

RETURN, BUFFER EMPTY

1 STEP

STEP HEAD TO

LEFT MARGIN

STEP PLATTEN 10

STEPS UP

(1 CHARACTER/
LINE)

SET CHARACTER
PRINTER TO
FIRST CHARACTER

SET ROW COUNT
TO

FIRST ROW

4-34A Line Printer Flowchart

6
may be damaged. To prevent this, special charge dump drivers are used to

trigger the solenoids. This is illustrated for one solenoid on Fig. 4-35.

When the transistor conducts, the energy stored in the capacitor will be

used to fire the solenoid and drive the print wire against the ribbon. If the

input remains on for too long, the current is limited by the charging resistor.

When the transistor stops conducting, the capacitor will charge through

the charging resistor so that the circuit will be ready for the next pulse to

fire.

INTERFACING THE PERIPHERALS 117

NO

PRINT DATA
FOR ROW AND
CHARACTER
POINTED TO

1

INCREMENT
CHARACTER
COUNT

^^^LASl
< CHARA

r ^V^

DONE WITH
LINE

INCREMENT ROW
COUNT AND SET
CHARACTER COUNT
BACK TO THE FIRST

4-34B Line Printer Flowchart, Continued

+ 24 VOLTS

CHAB.GING RESISTOR

4-35

Change Dump Solenoid Driver

/

1
IT

CAPACITOR

118

4-36 Stripe Reader

INTERFACING THE PERIPHERALS 119

The diode across the solenoid protects the transistor and capacitor from
the inductive voltage spike caused by the collapse of the magnetic field in

the solenoid, when it is shut-off.

This type of printer is most common in the new point-of-sale terminals.

It is inexpensive, has few moving parts and the interface can be done mostly
with software routines.

MAGNETIC-STRIPE-CREDIT-CARD CARD-READER

One of the latest developments in the technology has been the use of

encoded stripes on the backs of charge or bank-cards to carry information

about the bearer's account. Described here is an interface for just such a

stripe reader. Fig. 4-36 shows the block diagram of the interface.

The program will control the decoding of the information on the stripe

and the movement of the card in the reader. In normal operation, the card

will be sensed at the pressure roller, the drive will be turned on, and the

card will be read. If the data is bad or represents a forgery, the card will be

"eaten" by the reader. If valid, the card will be returned.

We will assume that the card has been recorded in F2F coding,

("frequency-double frequency"), where each "1" bit is two transitions,

and each "0" bit is one transition, per bit cell. Thus, the data off the head
may appear as in Fig. 4-37, second trace down.

^i_ru^r^_^-LJTj

4-37 Recorded Data

In order to use this signal, it must be conditioned. An analog pulse
amplifier-detector will produce an output like the one in Fig. 4-38. The
software, through timing loops, may then decode the waveform, back into

serial bits, and then into characters. In order to insure proper data, and
security, data should be written three times in a scrambled form, with
various parity checks and heading, and trailing blocks of ones or zeroes.

OUTPUT OF
COMPARATOR
CONDTTIONER
-TLTiSU L_J—LTU

4-38 Final Data, Read Back and Filtered

120

If it is necessary to write on the card, it can be read while going in and

written while being returned. One must have a special software routine to

reverse the sense of the data so that it can be read again upon reentry.

The control necessary will be three inputs: card-in sense, serial-data

read, end-of-card sense (reverse motor to return); and two outputs: motor-

on (automatically will reverse, unless turned-off), and serial-data-to-be-

written. Thus, one half of a 6820 PIA or 8255 PPI will be sufficient input-

out hardware!

THE KIM CASSETTE INTERFACE

In order to save programs and reload them when needed, some form of

long-term storage is necessary. The inexpensive portable cassette tape-

recorder can be used without modification to store and load digital informa-

tion. The interface required is simple to build, and easy to program. De-

scribed here is the KIM-I® interface to a cassette-recorder.

The format for transmission will need to convert the binary information

in memory into a serial stream of bits that can be recorded on the tape. The

logic conditions will be represented by the combination of two tones: 3700

hertz and 2400 hertz. The signals for a "1" or a "0" are illustrated on Fig.

4-39.

9 PULSES | 9 PULSES | 6 PULSES

JlMJUUUulRMJuTJUUmnnJTRjrL^

j 1 r
LOGIC

9 PULSES »U 6 PULSES »W 6 PULSES

juuuijuuuuuuijijir^^
LOGIC

I

I BIT

4-39 Bit Format for KIM-I Cassette

Two Tone Combination Recording

®MOS Technology Registered Trademark.

INTERFACING THE PERIPHERALS 121

The program will generate these tones by counting loops that will gener-

ate either tone. This will use one output bit from the programmable inter-

face and ROM-chip on the board. This output bit will be buffered and
filtered to conform to the input specifications of most tape recorders.

When a tone is sensed, the phase lock loop circuit on the board will

differentiate between a 3700 hertz or 2400 hertz tone. By timing the duration

of the tones, the data bits may be decoded. Fig. 4-40 is the complete tape
recorder interface schematic.

vcc
o

PB7

CONT

« . | y *!
le-JW\r-rJWV-pM^--]

4-40 Tape Interface Schematic

122

Note that different means of modulation exist that will result in higher

densities. Because all timing for transmit and receive is done in software,

different timing schemes may be implemented. However, the method de-

scribed here is the most reliable, as the tape-recorders are not well suited to

any higher density recording, due to wow and flutter problems. A high

quality tape-deck may be used at higher densities if necessary.

The software breaks each byte of data into two 4-bit nibbles. Each nibble

is then converted to a seven-bit ASCII character, plus parity. Two such

ASCII characters now represent the original data byte. In order that the

recorded block of data be identified, a header and trailer are added. The
format appears on Fig. 4-41.

J U-100
1

" (16H)|2A H|

R
,|
C

|

L8 |H8| „i{Av -». |2F H
|

CKL
|

CKH|04J04H |
V

\ 1 f J
1 1

-
I 1 ' H 1 < 1 1 ' 1 >

I RECORD

441 Tape Data Format

The long block of one hundred 16 hexadecimal bytes allows the software

to synchronize to the data rate and find the first bit of each byte without any

other timing information. Following the sync characters, come the start-of-

record character, and record-number bytes. After that, the starting address

of the data-block, and the block itself are written. At the end, a "2F"

hexadecimal is written, as well as two check-characters. After that, two
"04" hexadecimal are written, to indicate the end of the block.

This format is typical of many block-synchronous transmission schemes

used. Other examples are the floppy-disk, magnetic-stripe card-reader, and

inter-machine communications links (see Chapter 6 for the latter).

SC/MP Cassette Interface

Peripheral decoding is illustrated on Fig. 4-41.1, and the interface cir-

cuit on 4-41.2. Memory address decoding appears on Fig. 4-41.3. Finally,

the message format is illustrated on 4-41.4. The message format starts

with a leader containing 128 bytes of 0's. It is followed by a single byte

identification word containing hexadecimal "85". It is then followed by

the user-defined addesses entered in 16-bit locations. They are the starting

addess of the program being stored, the entry-point address, and the

length. The program itself follows, and is terminated by a one byte

check-sum. The actual routines used for this interface are presented in

Figs. 4.41.5.

INTERFACING THE PERIPHERALS 123

Overall SC/MP Interface

124

oo
en "~~\ zt~lr '

\ 1 t""!
o Io .
•=3" 1

s: .o 1
r5XC)!

L
Li_O

LV V_J
i

o
1—

t Si k

SC/MP Peripheral Decoding

INTERFACING THE PERIPHERALS 125

rr

J-

SC/MP Interface Circuit

126

^w1

Memory Address Decoding

INTERFACING THE PERIPHERALS 127

STARTING ENTRY LENGTH
LEADER IDENTIFICATION ADDRESS POINT OF PROGRAM CHECKSUM

128 BYTES OF WORO OF ADDRESS PROGRAM
OS X'AS PROGRAM

(X'8203)

(X-8204)

(X'820C)

(XB20D)
(X'820A)

(X820B)

V
GENERATED

BY BLOCK TRANSFER
ROUTINE

V * J\ 16 BITS EACH /

USER ENTERS HIS
ADDRESSES IN THESE
6 SPECIFIC LOCATIONS

Message Format

128

EH
aMo
Ph

KW K
^ O
a PhMO CO
Ph CO
w

K «O Q
*9
CO (-3 co oj >—

K P5

=*= =fc =«=

Q W p5 « «WWW
M BBBa a a

|@ HUMo o o
2 Ph Ph On Ph

.« .*

Ph PSW CO
K Eh CO

CO CO CO CO
la a a ao o o oM M M M
Eh Eh En En 03 K
«< < < < W WO O CJ O Ph 3O O O O Qh oJ J JJ t> (J

w w w w K PS
C3 O O O W CO CO

05 2 S 2 P-. o CO CO

o p p O
Eh fc-i t-i Eh

M P3 P3

03 £H a
a HI
M o PhO Ph W
Ph

Ph
a Ph a Mo <) H Oo Ph

a M Ph
Ph

.-1 l-l a Pho O
w w
Ph
< £M
EH EH iJ 1-1

Ph Ph « w
CJ CJ C) u
Pa o Ph

3
Si

w CO CO

^61
IS

<Sl

SI

a -a

cm m
co co

>< X town

03 Ph

oj m
co co

00 CVJ H
Ph Ph Ph

CO OJ H
ensna
T&-SHSL

£

OHwm
•aHNm^riAy3t-coo\HriHH

ii ii ii ii ii ii it n it ti i) ii ii ii

eh eh a

CJOOCOCOPQEhEhEhEh

QHWonjiA\Ot-ooo\<;pqoP
si'Si'Si.is.'SJ.is.'Si'Q.'a.TSi^sns.-si 1®.
tSl-SI ,S>.-SITQ. 1Sl 1SI-SI"SI'®i"Si-S>."Ql-SI
^nSTSL-S».-SL-Sl1SLTS. 1SlTSL«l.TSL-SnQL

PS Ph a PnW a U, o CJ
Ph o o « PC

H £ O wo PS o
•" w w CO to

tSl H Ol en
sns. "SI o
TSnQ-Kl O«ns^o

HHrHHHHHHHHOJOJOJOJOJCMOJOJOiOJOOOOrOCnon

SC/MP CASSETTE PROGRAM

INTERFACING THE PERIPHERALS 129

si
Si g
«l K O K
^£h °g
Mo o K CO o

eh eu o W P-.

Eh u
o <2 3M K
Eh w
< W W «O tsl N PhO M O H M
W <!

< 3 W
K M" CM m P-, en

Eh Pu 2 Eh P-<

K MO 12! a h^l s S a
P"4 H M O t-H Ph M

CM W W n.
Ph P-. P-, -3-^ H M 125

<i <l gg
CO Pi Ph u•^ CM --^ CM Vjv_- ro -^ ro egW Ph COjft w ftiaohi Ph

pl,h<!m<;m mchmQQCL.OCL.OEHqgQ

TS.
-Si CM 13. CM TSl m CM
-Si OO -SuiSiSi CO SI

to J CM-3-VO-^- P5 J- fO-* t— PSlauooomooomucoo
iSHCUVOf-CMH O W^SH
TSiSnSi"SlSl 1SnS.''3. 1!S'Sl H h
St 1Sl 1Si"Si'SnS.Sl'Si'SL 1Si"Sl.TS
iS'SfS'Sis'sns'sco co co oo

OO O\0 H W onj IA\D t-COCAOHWfnjiAVDt-COONOHWM-H* iA^C t-

SC/MP CASSETTE PROGRAM

130

PS W KW O O
En W
CO CQM CQ Eh
O W MW K FP
K O Eh

W <!
W
C3

O
Eh

33*O Ph H

« o . .OHOO
O W W PSO O H Ph

CQ CO CO
CQ CO COWWWK K K
P O Q

3 P-.O Ph
l-H- t>

O CO <!

Ph W^ fH
W »-<

§S
EH P-.

W i-h"

pq

i-q Pl, K Ph P-i

Ph I ^^
EH W > >S Q O O O

ir\ Ph h « w w
<at Eh O O K PS
- p£|OP5^-H--'HH0rlH0r)H
XCQi-h'CQJPhWPhPhPhPhPhPh

CVJ CM ^-^

Ph Ph OJ CM
Ph Ph

h" ^>

S3 S Pk § B
° Q r-i~rtQ®
? ft ? Ph C3) O O

(-3 W o t-qmoJoaoooo oMWM<H<3PhWM Ph H<^H^<;<li<;«lift r fc r fri
r
Ph^ Ph

ir\ cm oo ro QH "S- W ^Si

pq^H-J-H-*i^G 1»-^-oo^SLCP-*H-d-LrvQrnot-o<a;Q«3;Q«j;Q«ajp-|^a- r-H -^ r-| _=T l/^M ^* -J UJ Ol W J t-l-j u \

UOtSlOOOUOOOO^CWOnOnOCJOOOOO

rHHHHHHHHHCMCMCMCVJWWCVOJCMCUCnOOOOOOOOrnonon^rn
TSL-«a^Sl'SlTSi-<STSLiSL 1SlTSLTE»iSi 1SnS^SL-S.'QLiSiTSLTSLTQ.«l1STSiTgi}S}S^iS
coooooooooco cooooococooois'Sioooooooeooooocooococooo coooto

H CM CM

o w cm <
oo o w u

on wj -3-

TSl t» -61 1®
oo co co co

(0(JlOr|W(OJIAVDhCOO\Or|Wtn4 1AVCt-000\OrlWITlJlA\Ot-COCAOH
VOVOt— t— t— t— t— t— t— t— t— t— OOcOOOOOOOOOOOOOOOaO 0\0\0\0\0\0\0\0\0\CJ\0 o

SC/MP CASSETTE PROGRAM

INTERFACING THE PERIPHERALS 131

@

E-. S Hw o R

CO
COw«

s.
W HO PL,

OJ EC K ro

£«ft ft £
UOOOmWCL, PL, EhQQfiOHSM^m^cio
^pqtxpqpL,owjPL,tr!PL,pq

fr? & p a
tn w on pl, *-^ cm
pL, ft, PL, — C\J pl, ^-*
m m *-* <a, pl, >— mK K BO— I=> PL,W W OKPh &j —
Pl, fL, EH O S 2 H
^PL,WPL,WCO'-3PL|t-3pL,Ca)PL(

Q Csl Q tSJ PL, « H <J M <(j M <! H <! <! < PL, M^

mir\<H ojontsi en tsl
Si fe is. Pl< TSlTSlTSl CO "Si<U<lL)OC\ioojonjt-fq'a Si CO tS.1SiTSl i®. E

oonocooouoooroooo
m t— o\ cq o pt)TS.c\j^i- i/\ t— co <
-^•-^J--^-^t-^- ir\ ir\ ir\ ir% i/\ i/a lp,

cooooooooooooocooooooooooo

m ocqisrH ooiakoo <; m o
l/\l/Nir\VOVOVOVO\OV£>VOVOVO
•QiTSLTSL'Sl ,SL 1Sl ,SLTQiiSlTSnSL'Si
oooooooooooooooooooooooo

WTSl
vo t-

CO CO

CM OOJ 1A\D t-OO 0\O rl CM OIJ- IA»X) HOOO\Orl(Mt»1J- 1AVO (-COONOHWMJIAoqoooooodHHHHHririHriwftiaiwaiwwwwwmnMmirin
i-HHr-lr-lr-li-IHHHHHHi-IHi-lr-i—J—"—'—J_j_i_j_i_i_i_f_i .

_i . i _i
.

iH H H H H H H H H H

SC/MP CASSETTE PROGRAM

132

~.—

.

^~. CM
OJ Eh CM P^
(U M CU^ ffl

CM En ^H

£g & EH

CM
Ph

Eh CM

O P5 P-.

Eh Eh O 2
W^-'HW H rHMWQWH
EHWPHEHCOpqTSi (m pq K ^ BP<

<H n m w Pn q-ehqeho«»;p43nSSg9B9aftSBS98aft9&S
^

!<«* <! w

CM W CM
CU (U Pi

Si u
CM O
- J
X! O

O < M
PPhEhQPmEhmcq

P.O 13O w
i-P P5

t-- is. \ocoir\TSt l^<\i o\t- vo w
QiOO TSiTSlTSiTSi TSnSi fe TSi TS. „Q

H 00 ITNVO CO < OW fe^iCM-^VOCO Os pq U Q W
t— t— t— t— t— t— t— t— t— COCOCOCOOOCOCOCOCOCO
cocooococcoooococococococococooocococo

si on on co "s. cm
iSi iSi CO "Si CM "Si
-H/CM<;-3-t-«aiONVO-H;aDOC100C10rl 18PO\

swmiAt-cooimuiii
TS.TsnSLTs.TS.'Oi^SLTSLiQnsi
COOOOOOOOOOOOOCOOOOO

vo t^-oo o\ o H cm mj- i^vot-ooaxOHCMroj- lavo t-oo on o H cm ro -=!; ir\ vo t-- eo on

H H H H

SC/MP CASSETTE PROGRAM

INTERFACING THE PERIPHERALS 133

< o Si W
CV1 W CO-awx o « x

&< n.

Eh J- CO M
«i H a, a, pq
CM CO S S Eh
- H E ro W m h WXKEhPIhEhPhPhCS

a, m >h h jmS Q J Eh « 1-3 „
h> 3 Q CQ ^q Q O

2 <2 pl) iii

P^Sd^^ 01 -si cvu- ^a -a- iso\o\ oo on& 15^L^'SL '

1Sl W^StlS OO -SI CVIIxi'O. TSt ot»J- fc m^t hvo^too^susio <H pqvo^foo CM m CM t- Q •<&ftooooo<osoo\ on-* ««* oso o\onom<nov

OOOOOOCOOOCOOOOOOO
i >S "SUSi «l 5> "St TSi «. i& t» -Si 1

cooooooococococooococoi

p h cm cn^t i^vo t—coo\OHCMm-3-tr\vot-ooo\OHCMcn-* i/\vo t— co o\ o h cmt— t— t— t--t— t— t— t— t— l— cococooooocococococo 0\O\O\O\0\ O\0\0\0\0\000HHHHHHHHHl-IHr-tr-IH<-lrHrHr-|rHHHHHHH rHi-HHi-HiHCMCMCM

SC/MP CASSETTE PROGRAM

134

w

£m
Ph K
Ph WP Ph

W onO Ph

Ph H

^^ ^^ CM <M
m ffi Ph Ph
Ph PhH H P i-q

s S
EH Eh

Ph Ph _ o u

CM 00
Ph Ph

1-3 «l D O
EH CO EHDO KO S=5 - S3 J 8 S3 S5 P555SwtOUXOh'S-3'OOOtn

Ph S3^ O
CM P H «
EH Eh EH O
S3 S3 S3 OS

S&9&9&S&98SS9S Eh En EH
M HPNO

Eh«EhEhQ.-h'S3PPhEh

o

pa. CM "S. CO -Sl pQpDTS<!<i;0OH0OrH 1SLTS.-*'<S.-^l-"lS. vJO<-lWCM

OUOOUOOOO00PQ0nPP0\O

OoSoOO«QOQQQSpQWWWWWaWW^.fefe^^^
si-^-QL-siLTs-si -S'<SL-QiTSiLTSLTaTaTSiTaTs«.^^-siTS]s^^is^^}s.^
OTfflCOffiCOOOOOOOoOCOOOCOCOOOOOOOCCOOOOCOCOOOCOCOQOCOOOCOOO

(«j ir.ui K(D n\Q H (\l flJ lAVO t-oo O\0 H W MJ IAU) t- OO ON O H W 0OJ- IA^
OO O O O O O H H H H H r- H HHHNCMCMNCMCMCMCMNCMCnrOonoornrOrnwwwwwwwwwcgwwwwwwwwwwcviwwwwwwwwwwcvicyw

SC/MP CASSETTE PROGRAM

INTERFACING THE PERIPHERALS 135

CO 02 CO ra K> CQ
EH H EH Eh EH EHM M M M M H
pq pq pq pq pq pq

co co co oo oo oo

K K K K K PhW H W M W W
Ph O Ph O O, O

on j- <; pq o p
Sl •«. is -si tsi»
CM CM OJ CM CM CM
OO CO CO OO CO OO

U U U x >< U

CM—
Oh W

< M _

13

CQ S g ^ l l^howph^Ph'xpJcqScqp!

CM CM
Ph Ph

R
53 »O o

5T1 t? d B H P H
Ph hi P, £* PL, £s P,

WJOOOOUOOM M < M < M 0-, Pl, PL, Pl, pL, (U a,

TSlTSlCO •<Sl^.ts.co _=r < bi s is « is s
ouocnocnocoor^ocoocoocnoonoon

° PS! OlAVDCO ONWOWl^HOJ^ lAt-OO < PP

fefe^'^^'S^^^^^'i H H H H H 3 H
S£?S-£i l3 n! '"I ^ <-! <~i r-l >-* r4 >~i r-i H r-i H r-i H r-icooococococococooococooococococococococo

CMCMCMCMCMCMCMCMCMCM<MCMCMCMCMCMCMCMCMCM<MCMCMCMCMNCMCMWWNWWCM

SC/MP CASSETTE PROGRAM

136

a w

P-.

CM

^w
1-3 EH
E-i H
|S I

CO P-. CQ P-t ®> hhPhCOWPL.CO

CM CM
PL. P-.

£3

Ph CM
•—

'

P-.

E-l & H^
EH O H CQ
W Q W W

P-. PO—- PM

O S3W OO EH
„ „ . . K O
O O P-i CO w

9fc
3 HHrf H^ WQ WPnQSlQtC] PL, (£1 W

EH

O

-f CO ,-1 _* -3-H CO CMCVJ pQ CM < W. CM .£??§-

u coo coo^o coSocno^feS-^co^ON^cjNOcooo^a

dpiP^^J° ^^.^ co co rococo coco oooooo »OvO)0)0;0;o\onon^ooooo

CO l/\

LT\VO OO
J- -* J-
H H H
co co oo

SC/MP CASSETTE PROGRAM

INTERFACING THE PERIPHERALS 137

O

3 33
Pn Q feQ
W M W
tH S3 Ej

ggg < g

PULSE DELAY PULSE

o

•Si(Morocopqo<!cvjTSi

OO-SITSlOOOOOOISiOOTSlCO

PM (^

HCQTSlfe-J-CQTSipiL, CMfeTSlCVJ

OpqoOTSl.lSL'S.QfeH^Sl

oooooo^o.'SLOOTSioo-eioo

W M t3 M X
tDQhibSb

Eh WW _ _ S3 M 1-3 PL,

tJW&i&iOWpOHW
ffl o o o w o b j mi.

ra

HOOTSi-*-* IJ1SJ' CM -=J" TSi C\J
TSLTSLTSfSL-sinsnsLisisi-SLTsnsL

is-4 o-=r PQ P^isu- pq fc « j- fe-3-QO\OO000\OO00OC_>00

<<PQPIil HniA[-o\(qQ|i,H
-^-=f-*J- \t\\r\ u\ its u\ uwswrwo
oooocooooooooooooooooocooo

LPi CVi "Si OO «
•S.]Si M O -St

0\ <j OO TSi Q iSl TSlH m o\ o\ oo o\ oo

on j- vo oo «aj pp
vo vo vo vo vo vo
r-t H H H H H
00 CO OQ OO CO CO

ia^i-oo o\OHC\i(n^tiA\ot-ooo\OH wooj ia\o

ooooooooonooroooooooonooooooonoooornoooornro

•SLOi^'QiTS.TS.CJHWQL
•SlOOOOTSHSlTSOOOOOOTS.

OHOi-qoc5HHEhOOEhEh<;hoWmOi-^!z;oJbo&jooflBOOHfcHhlOd,

SC/MP CASSETTE PROGRAM

138

<t H onwvo OMA
VD l/N MD TSl^QiIS. J"
H r-H H TSlTSi«L H
OO OO OO •«. ^Si "SI OO

ao H "? W
05 O [in a g& EH

£ S3 H o H
w a 05 w w g05 CO CO CO Eh Eh

t— w vo oo ro co <c
pq pq OJ -xSi -Si ^Qi "s
"Si IS. "Sl "Si "Si "'S- 'Ql
CO CO 00 ^Qi "Si T®. "Sl

P5 K co co co o w
00 CO

W MD t— -* -3- t- PQ
VO CO LT\ W TS-^SlTSi
TS -Si H -si ia TS ^SL
CO CO CO CO iQ. -Q. "Sl

OJ 05 1-H 1-3

a H 9 EH OJ EH

> 05 o % Qh SO EH IS o S CJ
W W w a EH ISPC a CO CO CO

0\
MD 05 05O O O

II Eh Eh

co 5 w wW CO CO CO

M O Ej EHa h p D
Ph Ph

M H
EH 1-3

co <;
05 SM H
Pn Pn

05 OO
05 W

o o
S3 CO

SC/MP CASSETTE PROGRAM

INTERFACING THE PERIPHERALS 139

ONE CHIP DIGITAL CASSETTE CONTROLLER

The NEC UPD371D provides in a single chip most of the functions
required for interfacing a digital cassette-transport. It uses the ISO format
and performs:

— Parallel-to-serial and serial-to-parallel data-conversion (functions

normally accomplished by a UART)
— Error-detection, including CRC (CRC will be explained in the disk

section)

— Data-encoding two-phase encoding format

— It can control up to two cassette-transports with read/write or rewind
on one unit, or simultaneous rewind. It interfaces directly to the

8080A. The structure of the system is illustrated on -41.6, and its

interface to the 8080 appears on 4-41.7.

m INTCWRUPT BEQUEST

INPUT/OUTPUT Sti££T.

i__i
MO-D87 R«(

m REAP DA TA iwceiTiwri

F==l

UHIT SELECT IUHIT *™«tflH

„ SAMfLIHG UTf «rt

Fig. 4-41 .6 NEC UPD37ID Cassette Interface

140

rtiffl

-O—<--

6 • rr- b
• 1

-o—o-

-0-
-0-

-o-
-t>-

-0-

-0—

TIT

v-

&

-t>

-t=

«}" i

;_n."'

_.±zT

Fig. 4-41 .7 8080 Interfaced with UPD37ID

INTERFACING THE PERIPHERALS 141

CRT DISPLAY INTERFACE

A number of CRT's displays have been created, to be used specifically

as computer terminals. In the microprocessor world, the cost of peripherals
is of critical importance. Therefore, the most-often-used CRT-device, in

the case of microprocessor systems, is the home television-set. Higher
quality CRT-displays are used in the case of development systems, in order
to permit the user to display more characters, more lines, or more dots per
character. In addition, full graphics capability exists on specialized and
expensive displays. We will concentrate here on the direct interface to a

television-type display.

Fig. 4-42 A Television Block Diagram

The organization of a typical television appears on Fig. 4-42. The signal

is fed from the antennae into the tuner, which outputs a video i-f frequency,
at 4.5 MHz. The signal is fed into a filter-amplifier which is transformer-
coupled to the video-detector. The output of the detector is the video-signal

proper, with a 2-volt swing. It is fed to a filter, in order to remove the carrier

frequency, and then to the video-amplifier. The signal is then split three
ways. The video signal is directed to the CRT through a sound trap which
eliminates the sound-carrier frequency. The FM sound-carrier is fed to a
sound i-f amplifier (4.5 MHz) and the output is fed into the loud-speaker.

142

Finally, the sync pulses are separated from the video signal, and identified

as H (horizontal) sync, and V (vertical) sync. The H-sync and the V-sync

are used to synchronize the display on the screen.

The microprocessor system can interface to the television at two points:

it can be coupled directly to the television-set antennae—this is the RF

modulation method, or else the video signal can be fed directly at the output

of the video-detector. This is the direct video input method. The advantage

of the RF modulation method is that it does not require any connection

inside the set. The output wires of the microprocessor system are simply

connected to the antennae screws.

Besides requiring compliance with FCC regulations, the RF modulation

method has a bandwidth limitation problem. Using standard television sets,

the limit would be from 3 to 3.5 MHz. This limit could be, in fact, signifi-

cantly lower with lesser quality sets. The bandwidth of the set will severely

limit the definition on the screen as well as the total number of characters

which can be displayed.

The disadvantage of the direct video input is naturally that it requires a

connection within the television-set itself. A few sets are equipped with an

external connector for a direct video entry. This is often the case on color

television-sets in Europe, but not yet the case in the US.

In order to interface to the television-set, we will review here briefly the

principles of television operation, and then present the techniques used to

display characters on a screen.

30 Hz
OR

60 Hz

262.5

OR
512 LINES

PER FRAME.

15,750 Hz (B&W)

or 15,735 Hz (COLOR)

Fig. 4-43 TV Timing

INTERFACING THE PERIPHERALS 143

A raster-scan television uses a beam of electrons which is deflected
horizontally across the screen, with a varying intensity. When it reaches
one end of the screen, the beam is blanked off and it flies back to the other
side of the screen, while going down one line. This is called the
"horizontal-fly-back" phase. It is illustrated on Fig. 4-43. Two types of
scan are used, called respectively the direct-scan and the interlaced-scan.
In the interlaced scheme, the screen is scanned twice. The second scanning,
or field, is made on lines between the previous ones. 262.5 lines are avail-
able in each field. An interlaced scheme therefore provides 525 lines per
frame. In the case of a TV display connected to a microprocessor, the usual
method is not to use interlace, and to use a straight single-scan of the screen
on 262 lines. The frame rate is then 60 Hz. Interlaced could be used to
provide titles or to superimpose messages or titles on a TV broadcast. Two
synchronization signals are used to synchronize the motion of the dot
across the screen: The line-sync supplies the flyback signal, and the
vertical-sync provides the vertical flyback signal to the beginning of the first

line. Some limitations are imposed, which are illustrated on Fig. 4-44. The
horizontal scan is usually longer than the screen-size. The amount by which
the dot deflects past the end of the screen is called the screen-overscan. In
addition, the message displayed on the screen is shorter than the screen
itself. This is shown as the display -time on the illustration. Whenever the
dot reaches the end of the display-time, it goes black. The time from the end
of the display-time to the line-sync is called the blank-time. (See Fig. 4-44.)

VERTICAL
FLYBACK

144

*^""-——

SCREEN SIZE I2\

flyback . . >

^-3-

BLAflK DISPLAY TIME

LINE SYNC

/

L!

BLANK

l

J
SCREEN
OVERSCAN

Fig. 4-44 TV Blank Time

H
SCREEN
OVERSCAN

Generating Characters

Characters are represented on the screen by a pattern of dots called a

dot-matrix. Two standard formats are used to represent characters. The

most frequently used is the 5 x 7 dot-matrix. A lesser-used system is the 7

x 9 dot-matrix. The advantage of a 7 x 9 dot-matrix is a better definition of

characters, and a more pleasing representation of lower-case letters. How-

ever, a 7 x 9 dot-matrix requires the use of a high bandwidth, and, for this

reason, is much less used. A 5 x 7 dot-matrix represents each character

with 35 dots. It uses 7 rows of 5 dots, and each character is represented by a

sequence of dots and un-dots (blank dots or rather "black" dots). The

representation of characters is illustrated on Fig. 4-45. Each scan of a TV

line will present on the screen the five dots belonging to all the characters of

the line. Then, it will present the next row of dots for these characters, and

so on. At a minimum, a 5 x 7 dot-matrix will require eight lines on the

screen, since one blank line must be used between the characters. In prac-

tice, for good visual presentation, ten lines are used, and sometimes twelve,

to present a line of characters.

CHARACTER
ASCII
CODE

ROW

ADDRESS

A0

Al

A2

a
CHARACTER

GENERATOR

?
ROW CODE

• • •._

~~ZZZ *ZJ££Z zz±z
—
zZi *zzzz zz^._

••• ••••• •••

Fig. 4-45 Dot - Matrix Characters

(5x7 dot matrix)

INTERFACING THE PERIPHERALS 145

Each character is represented within the microprocessor system by its

code, normally ASCII. The table of ASCII codes appears on Fig. 4-46.
This seven bit ASCII code must be converted into the dot-matrix repre-
sentation. This can be accomplished simply by a ROM look-up mechanism.
Or a specialized chip may be used, a dot-matrix character-generator. When
using the generator, the first line of dots for each successive character will
be output, then the next one, then the next one, up to the seventh one. A
simple counter is used to keep track of the row of dots being currently
output. It will be shown in the next sections how the dots are converted into
video signals that will be fed to the television-set.

CHARACTER
ADDRESS i>

I

6 TO 8 BITS

CODE

>
CHARACTER

GENERATOR

CURSOR

EDITOR LOGIC

IF

p
VIDEO

OUTPUT

Raster Generation

In addition, the whole picture, or frame, needs to be refreshed at a 60Hz
frequency, i.e., 60 times per second to avoid flicker. This implies the neces-
sity of a refresh-memory. The timing for refreshing the screen is usually so
fast, that a standard microprocessor cannot be used. External circuits such
as a DMA, or other special circuits, must be used. The advantage of using a
DMA is that the main memory of the microprocessor system can be shared
with the screen refresh. However, it slows down the microprocessor's op-
eration. In many cases, dedicated memory is used to refresh the screen. In
this case, there is no slowdown of the microprocessor's operation.

Character-generators are available from most semiconductor manufac-
turers, such as Fairchild, General Instruments, Monolithic Memories,
MOS Technology, American Microsystems, Electronic Arrays, Signetics,

and Texas Instruments.

146

The number of characters that can be displayed on the screen is limited

by the bandwidth of the set being used. Assuming the use of a standard

television without modifications, a 5 x 7 dot-matrix will usually be selected,

and the popular combination is to use 10 lines of 32 characters, or up to 16

lines of 32 characters, for a total of 512 characters. A complete scan line will

require approximately 63.5 microseconds. The usable portion of the scan

line will be perhaps 43 microseconds. Displaying 32 characters in 43 micro-

seconds will leave us approximately 1 .3 microseconds per character. This

leaves plenty of time for using a relatively slow memory. If we were using

80 characters per line, an access time of less than 0.5 microsecond would be

required for the memory.

CHAR
GEN

n i> ii

LINE SELECT

LATCH
I 1

I I

III It I tl
SERIAL"" OUT

Fig. 4-46 Shift Register Serializes Characters

Converting to Serial Video

The dots coming out of the character generator must how be shifted out

into serial form, to be presented as a video signal to the television. This is

illustrated on Fig. 4-46. The character-generator provides a row output for

each character of the line. The 7-bit ASCII is presented on the left of the

character-generator on the illustration, and the three line-select lines, ap-

pearing at the bottom of the character-generator, specify which one of the 7

rows of the dot-matrix is being output on the right. The five dots corre-

sponding to the row contents are then gated into the shift-register, and are

being clocked out in serial form to the video output.

B4TERFACING THE PERIPHERALS 147

Four kinds of data must be encoded into a composite video signal:

1

.

the dots representing the character

2. the eventual blinking signal (usually for the cursor)

3. the cursor

4. finally the H and V Sync signals.

A simple analog switch will normally be used to form this composite
video signal and the mechanism is illustrated on Fig. 4-47.

JL

Si

IS

IS

ANALOG

SWITCH

^lr

Fig. 4-47 Mixing to Produce Video with Sync

Typical video interface levels are to 2.0 volts, .5 to .75 for the black
level, and .15 to 2 volts for the white level. This is illustrated on Fig. 4-48.

The sync signal is referred to as the sync tip. Its duration is 4.7 us. It is

followed by the black and white dot signals encoded as a voltage swing
between .5 and 2 volts. The timing appears on Fig. 4-49. On a standard
television, white is 100% level, black is 25 to 30%, and sync is 0%. Typical
voltage swing is 2 volts. Standard television line time is 45 us.

Finally, the composite video output can be connected to the television
set either directly, at the level of video entry which has been presented, or
through an RF modulator, for connection to the television antenna. This is

illustrated on Fig. 4-50.

148

GRAY
(OPTIONAL)

Fig. 4-48 Composite Video and Sync

TRANSISTOR
INTERFACE TV
LEVEL LEVEL

1.562 V 3 V

V + 1 V

DISPLAY ON SCREEN

(FLYBACK)

I

t
V7us 18.34s I t

45.7us

RIANKTIME USABLE DISPLAY TIME M
I"" LINE TIME '

2!

rj
25 to 30%

Fig. 4-49 TV Timing

CHARACTER
GENERATOR

VIDEO
OUTPUT TV VIDEO ENTRY

Fig. 4-50 Video vs RF Entry

RF
MODULATOR TV ANT ENTRY

(RF)

INTERFACING THE PERIPHERALS 149

MEMORY TIMING

32 or 64

COUNTER
DOT

COUNTER
*- 10 or 11

Character Memory Timing Generation

Refresh Memory

For simplicity in the design, the refresh is usually performed from a
dedicated memory. However, a microprocessor system equipped with a
DMA can be directly used to refresh a screen. In this case, dual line buffers
are used during the DMA transfers between the microprocessor's memory
and the television display. This is illustrated on Fig. 4-51. The DMA will

first fill line buffer 1. During this time, line buffer 2, which was presumed to
be full, will empty itself into the output paths, on the right of the illustration.

Typically line buffer 2 will empty itself during time 2T or more, where T is

the time necessary for the DMA to fill one of the buffers. Whenever line

buffer 2 will have finished emptying itself, line buffer 1 , which was long
since full, will be switched on, and will start emptying itself through the
multiplexer. As soon as line buffer 1 is switched on, the DMA will quickly
refill line buffer 2. This dual buffering scheme guarantees continuous sys-

tem operation. The only timing requirement is that the DMA be capable of
filling one of the line buffers in less time than it takes the other to empty
itself. Clearly the DMA should do better than this. The DMA should be
capable of loading one of the line buffers much faster than the other empties
itself. Otherwise, the memory and the DMA would practically be used
exclusively for memory refresh, and no program could execute on the mi-

croprocessor itself.

150

USING A u P MEMORY REQUIRES LINE BUFFERS

ft n
^^-\ LINEBUF2 p'

Fig. 4-5 1MPURequires Line Buffers

One-Chip CRT Controllers

The new one-chip CRT-controllers (CRTC's) simplify the interfacing of

a microprocessor system to a CRT. However, despite their name, they do

not implement in a single chip all the functions required to interface to a

CRT. They are intended for raster-scan CRT, and usually require a RAM
page-buffer. This RAM page-buffer may have a size of 2K words or more

(requiring then 11 address outputs, at least). A 2K RAM is sufficient for 25

lines of 80 characters.

The CRTC provides the logic for cursor control, sync pulse generation,

and dot-row selection in an external character-generator. All present

CRT's require an external refresh, a ROM character-generator, and the

downstream logic which has been described, including essentially the shift-

register and video output. The use of such a typical CRTC is illustrated on

Fig. 4-52.

NPU
31

feATA 6US

31
TO

TIMING

CRTC !^>x zC>

LP -
H *.
V -«-

3E
PRESS BVS

REFRESH

RAM
=T7^>

IE
:>

BUFFER

iz

N CHARACTER

V| GENERATOR 3 REGISTER3 OUTPUT

Fig. 4-52 CRT Controller Block Diagram

INTERFACING THE PERIPHERALS 151

The Motorola 6845 CRTC

The chip pinout appears on Fig. 4-53. It generates the row-count for the
character-generator, the V and H sync, the blanking signal, and a 14-bit

refresh address for the RAM buffer. In addition, it provides scrolling and
paging. Scrolling refers to the vertical shifting of lines across the screen.
Paging refers to the automatic display of the next screen-full of characters.

It is equipped with a cursor register, a light-pen register, and
does not need a line buffer.

Programmable features are:

— Dot/rasters per character

— Characters per line

— Lines per sync

— Horizontal/vertical sync position

— Cursor appearance.

R/W —

DCLK-

RESET-

LPSTP -
CURSOR-*-

* * i

RS CS E

R0-4

D0-7 C

A0-13

"n row count to character
Vgen -----

6ENERAT0R (ROM)

VSYNC

" HSYNC

»• BLANK

^S DATA BUS

^ REFRESH ADDRESS

V
SS

V
CC

Fig. 4-53 CRT Chip Pinout

152

Q 5 m> •->- S'_ —to can ["

=>i

> to a: uj t

3=*=" Z «*
75 UJ I— £; <=> Li-

n
CD

5£

X

X
CO
CM
i—

1

S\ /%
I

c

C9

7S

O
LU

r->» fc o
OO *-* I—

CD

I cc 3: *szszir ou
dquioujov)o:<
easr — zr —oxx

Fig. 4-54 Using DMA to Refresh CRTC Memory

INTERFACING THE PERIPHERALS 153

The Intel 8275 CRTC

Similarly, the Intel 8275 CRTC will interface to a 5 x 7 or 7 x 9

character-generator, and generate all the usual video controls. The basic

interconnect of the chip in a system appears in Fig. 4-54.

As usual, the CRTC provides 11 address lines to address the buffer. It

includes logic for cursor control, (CM0/CM2 inputs on Fig. 4-54) and sync

pulse generation (COMP SYNC, VRT SYNC).
It is programmable:

— Display format (FS0-FS2 control inputs)

— Matrix size (5 x 7 or 7 x 9 dot-matrix)

— Scroll-mode (this is controlled by the scroll input)

— Auto-feeding of new line

— Refresh rate (50 Hz/60 Hz - RR input)

Other output signals are:

— DLC0-3 is the dot line counter: it provides the line-address in a

character.

— LDV is "loaded video". It is the output dot into the external shift-

register.

— Blank is the blanking signal

— Blink is for flashing the cursor or any other symbol on the screen.

As an example, the 8 code-combinations allowed by CMO-CM 1-CM2
for cursor motion-control appear on Fig. 4-55.

FLOPPY DISK

A floppy-disk and its controller appear on illustration 4-57. Afloppy-disk

is simply a disk coded with a magnetic material, and divided into sectors

and tracks, on which data is recorded. It provides a very low-cost storage

medium with high-speed access and a large capacity. Two types of floppy

disk exist today: the regular floppy-disk and the mini-floppy.

A regular floppy-disk such as the SHUGART SA800 provides the fol-

lowing facilities: (It can be either single-density or double-density. We as-

sume single density here.)

— Total capacity per disk: 3.2 Megabits.

— Capacity per track: 41.7 kilobits (unformatted).

154

POWER

FS0
FSl

FS2

MTX

SCROLL

RR

WR

CM2

CMS

CP

MR

AL

DE

WE

»
A2

A3

M
A5
A6

A7
A8
A9

A10

DLC0
DLCl
DLC2
DLC3

LDV

CRSR
FLG

BLINK

BLANK

COMP SYNC

VERT SYNC

)ATA ENABLE

miTE ENABLE

FORMAT
SELECT

5x7/7x9
scroll/page

60hz/50hz

WRITF RFQUF^T

CURSOR

fc

MOTION

CURSOR
10TION STORAGE DOT LINE COUNT

CLOCK
LOAD VIDEO
SHIFT REGISTER
CURSOR FLAG

BLINK

BLANK

COMPOSITE SYNC

VERTICAL SYNC

RESET

AUTO
LINE FEED

Fig. 4-55 CRTCPinout

CM2 CM1 CM0 FUNCTION

L L L UP

L L H RETURN

L H L LEFT

L H H HOME

H L L DOWN

H L H NEW LINE

H H L RIGHT

H H H OUTPUT CURSOR ADDRESS

(ADDRESS IS VALID WHEN

DE OUTPUT IS LOW)

Fig. 4-56 Cursor Functions

INTERFACING THE PERIPHERALS 155

\

156

Fig. 4-57 Shugart Mini-Floppy

PREAMBLE 46 BYTES

ADDRESS MARK 1 BYTE

PREAMBLE 32 BYTES

INDEX.

26 SECTIONS

POSTAMBLE 241 BYTES

Fig. 4-58 Floppy-Disk Format

In IBM format, capacities become:

— per disk: 2.0 megabits

— per track: 26.6 kilobits.

— Transfer rate is 250 kilobits/sec.

The access times are:

— track to track: 8 ms
— Average access time: 250 ms
— Settling time: 8 ms
— The head load time is: 35 ms.

— The rotational speed of the disk is 360 rpm and the recording density

(inside track) is 3200 bpi for single density, and 6400 bpi for double

density.

— The track density is 48 tpi and the number of tracks is 77.

For a mini-floppy, the characteristics are:

— capacity:

— Unformatted: 109.4 kilobytes per disk and 3125 bytes per track.

— Formatted: Two cases must be distinguished: soft-format and

hard-format.

INTERFACING THE PERIPHERALS 157

Fig. 4-59 Floppy-Diskette with Drive

158

3.25 in

(82.6mm)

Fig.4-60 Size of Mini-Floppy

In a hard-format , actual holes are punched on the disk, to mark the begin-

ning of the new sector. In a soft-format , only one hole is punched to indi-

cate the beginning of every track, but the length of sectors on the track is

left up to the designer, or the programmer.

Soft Hard

Per disk: 80.6 Kbytes 72.03 Kbytes

Per track: 2304 bytes 2058 Kbytes

Per sector: 128 bytes 128 bytes

Sectors/track: 18 16

The transfer-rate is 125.0 kilobits per second.

The access-time is:

Track-to-track: 40 ms
Average: 463 ms

Settling time: 10 ms
The head loading time is: 75 ms
Rotational speed is: 300 rpm
Density is 2581 bpi (for the inside track)

The total number of tracks is: 35

Track density is: 48 bpi

INTERFACING THE PERIPHERALS 159

Base Casting

Mounting Plate

Capstan Fig. 4-61 Detail of Head Positioning

Mechanism for Double-sided Floppy

These numbers are based on the SHUGART SA400 disk drive. The disk

itself is 130.2 millimeters and recording method is FM.
— Reliability data are:

Life is rated at 10.3 6 passes per track. MTTR is 30 minutes. MTBF is

8000 POM.
— Errors rating are:

— Soft: 10
"8

— Hard: 10'

"

— Seek: 10 6

Consumption is: 15 watts is continuous duty, and 7.5 watts in standby

power. Required power supply is 12 and 5 volts DC.

160

A disk can be simply protected against accidental erasure by using a

write protect tab on the disk cardboard envelope. This is illustrated on Fig.

4-62.

Permanent Label Temporary ID Label

8.00 in.

(200mm)

©©•— Index Holes

Drive

Spindle
Hole

Write

Protect—

7

Notch /
fl

6.25 in. (159mm) <

8.00 in. (200mm)-

SA 104/105/124

5.25 in.

(133mm)

Write

. Protect

Notch

3.93 in.

(100mm)

J-5.25 in. (133mm)-

Fig. 4-62 Comparison: "Floppy" vs "Flippy"

The Disk Drive

The disk drive itself includes the following facilities:

1. Read/write control, plus control electronics (2 PC boards)

2. The drive mechanism

3. The read/write head positioning mechanism

4. The read write head

INTERFACING THE PERIPHERALS 161

The read-write facilities, mentioned in 1 above, include:

— index and sector detection

— R/W head position actuator drivers

— R/W load actuator drivers

— Write drivers

— Read amplifier, plus transition detectors

— Write-protect detector

— Drive-select circuits

— Drive-motor control circuits

Accessing a Track

The head moves over the disk surface from track to track. It is moved
along a radius of the disk by a stepping motor. In order to access a track, the

following sequence will occur:

1. the drive-select must be activated. Usually a disk controller may control

more than 1 unit, and will enable the drive-select of the mechanism

which is selected for access.

2. the direction-select will be set, resulting in a latching of the direction of

the movement of the head. The head will move either towards the center

of the disk, or towards its periphery.

3. the write-gate goes inactive. During head movement, no writing should

occur.

4. the step-line will be pulsed until the desired track is reached. Each pulse

will result in a step of the head over to the next track, in the direction

which has been latched.

Reading and Writing

Reading is simply accomplished by:

— activate the drive-select

— write-gate inactive.

Writing is accomplished by:

— activate the drive-select

— activate the write-gate

— pulse data in on the write data-line.

162

(CLOCK + DATA)

DRIVE
SELECT

MOTOR ON

DIRECTION SELECT

STEP

WRITE GATE

TRACK 00

INDEX/SECTOR

WRITE PROTECT

READ DATA

WRITE DATA

SA 400

X
+5V +12V —

Fig. 4-63 SA 400 Floppy-Disk Drive

Signals of the Disk Drive

The signals required by, or generated by, the SA 400 mini-floppy disk-

drive appear on illustration 4-50. Six essential signals are used to communi-

cate with the disk drive:

MOTOR ON

The signal will turn the motor on, or off. When turning the motor on, 1

second should be allowed after activation. Conversely, the disk-drive

should be deactivated after 2 seconds (or 10 revolutions), whenever no

further commands are issued. This will extend the life of the drive.

DIRECTION SELECT

This input selects the direction in which the read/write head will be

moved. The actual motion will be accomplished by pulsing the step line.

STEP

This moves the head by 1 track position towards the center or away from

it. The movement occurs on the trailing edge of the pulse.

WRITE GATE

Write is enabled when this line is active. Read is specified when the line

is inactive.

INTERFACING THE PERIPHERALS 163

TRACK 00

The signal indicates that the head has reached the outside of the disk,

i.e., its outermost track or track 0. The head will move no further even if

additional step commands are issued.

INDEX/SECTOR

A signal is issued whenever a hole is sensed in the disk. Two types of

holes may be used, index-holes, and sector-holes. Every disk will provide

an index-hole marking the beginning of the first sector on the disk.

A hard-formatted disk, which will be described below, has an addtional

number of holes marking the beginning of every sector. When soft-sector is

used, one pulse is issued per revolution at the beginning of a track. This is

every 200 ms. When using a hard-sectored disk, 11 or 17 pulses are issued

per revolution.

I „_ I __ I .»_ I . I _»-| _^ I ^ |OXIDE RECORDING

RECORDED BIT

Fig. 4-64 Recording A Bit On A Disk

_M_R_R_R_R Tl_
' BIT CELL BIT CELL ' BIT CELL 1

I I
1

I 2 |

Fig. 4-65 Representing Check and Data

164

Disk Formatting

Both clock and data information are encoded into the same signal. Clock

pulses are issued for every bit. A "0" data is indicated by no further pulse

during the bit cell time. This is illustrated on Fig. 4-65. A "1" is indicated

by a data pulse occurring in the middle of the bit cell interval.

UNIQUE
10 RECORD

UNIQUE
10 OTHER RECORD(S)

Fig. 4-66 Record Identifier

Soft-sectoring refers to the fact that the division of the disk or track into

sectors is performed by software. This is opposed to hard-sectoring, where

the beginning of each sector is physically delineated by a hole punched in

the disk. In soft-sectoring, each track is started by a physical index-pulse,

corresponding to the detection of the index-hole on the disk. Every record

is preceded by a unique identifier. See Fig. 4-46. Successive records are

separated by gaps. Gaps are necessary in order to upgrade information

without erasing the following or the preceding record. Because of minor

speed variations in the disk drive motor, whenever a record will have all or

part of its contents rewritten, the end of the record might extend beyond the

previous record end.

DATA: (HEX:B)

Hexadecimal F

Fig. 4-67 Identifier Format

INTERFACING THE PERIPHERALS 165

DATA

—

CLOCK

INDEX ADDRESS MARK FC DT

ID ADDRESS MARK FE C7

DATA ADDRESS MARK FB C7

DELETED DATA AM F8 CT

ADDRESS MARKS

INDEX HOLE

GAP 1 IQ 1 GAP 2 GAP 3

PRE

(18)

17 18 21 (BYTES)

USER DATA - 128 BYTES CRC ¥

ID
ADDR
MA£j£

track! SECT
AUDR | ADDR

CRC
1

CRC
2

1 2

GAP
3 4 5

SYNC

16 17 20

Fig. 4-68 IBM Floppy-Disk Format

166

For this reason, a blank gap must be provided between the end of one

record, and the beginning of the next one. In fact, a gap must be provided

between any two zones which might be updated separately. Most often, the

IBM disk-track format is used, sometimes with minor variations. This for-

mat is illustrated on Fig. 4-68. Four kinds of gaps are used:

Gap 4 is used only once on the track. It is the free-index gap. It appears

at the end of the track just before the index-hole position.

Gap 1 is called the index-gap, and is used at the beginning of every track.

It contains 20 bytes: the first 16 bytes contain the hexadecimal pattern

"FF" followed by 4 bytes containing "00". These four bytes of 0's are the

classical way to provide the synchronization for the data-separator. The

length of gap 1 may never vary in length. The index-gap is followed by the

identification of the first record.

ID 1 is the identification-field of the first record. It uses 5 bytes: the ID

address-mark, the track-address, the sector-address, and two CRC check-

sum bytes to verify the integrity of the field. The track-address and the

sector-address provide a verification that the right track and sector have

indeed been accessed.

WRITE SIGNAL

READ BACK

u

Fig. 4-69 Timing

INTERFACING THE PERIPHERALS 167

Gap 2 is called the ID-gap and separates each successive identification

field from its data field. It uses 10 bytes. The first 6 bytes contain the
hexadecimal pattern "F". It is followed by the four usual synchronization
bytes containing "00". The length of gap 2 may vary in length after file

updating.

The first record, or data-field follows. It uses 131 bytes (see Fig. 4-47).

The first bytes contains data or deleted address-mark. It is followed by the
actual 128 bytes of user data. It is terminated by the two usual CRC check-
sum bytes.

Finally, Gap 3 terminates the first record. It is called the data-gap and
uses 18 bytes. The first 17 bytes are set to the pattern "FF", and the four
last bytes contain "00", for the sync. Every successive record on the disk,

or sector, will start with ID, gap 2, and so on.

Hard-sectoring

When using hard-sectoring, a special diskette and drive are used. A hole

is punched at the beginning of every sector on the disk. Each sector is then
started by a physical sector pulse. In the case of the mini-floppy disk, two
configurations are used: 16 sectors of 128 bytes or 10 sectors of 256 bytes
per track. The track is started by the index pulse. This is illustrated on Fig.

4-70.

N I SECTOR 1
I SECTOR ,2

X, V6ECTO XECTOR

INDEX

X SECTOR PULSE

N - 16

N = 10

t » 12.5ms

t - 20ms

Fig. 4-70 Hard-Sectored Disk Timing

168

Error Detection and Correction

Three types of errors are distinguished:

Write Error

This corresponds to the case where the data being written on the disk is

not written correctly. The way to verify whether data has been correctly

written is to use a "write-check" procedure, where the data is read again

during the next revolution of the disk. Normally, the user will simply write

again data which has not been correctly written on the disk, and attempt to

do so repeatedly (up to 10 times). If this effort fails continuously, the sector

or the track must be considered as damaged and not usable.

Read Errror

Two types of read errors must be distinguished:

1

.

Soft: this corresponds to the case where the error has been transient and

is corrected by simple re-reading (up to 10 times) or by moving the head

back and forth once.

Typically the head is moved one more step in its previous direction, then

moved back. Usually this corrects most reading errors. If this procedure

fails, we have a hard error:

2. Hard: Whenever usual correction procedures fail to read data from the

disk, it must be deemed unrecoverable. This is a fatal error. Data is lost.

SEEK ERROR

This corresponds to the case where the head does not reach the correct

track. This can be verified by reading the ID field at the beginning of the

track. It contains the track address. Whenever an error is detected, the

track-counter of the disk drive must be recalibrated. The head is moved

back to track 00 and a new Seek order is issued.

DETECTING ERRORS

Universally, the error-detection for any data written on a disk is ac-

complished by using a check-sum method. Cyclic-redundancy-check

(CRC) is used for this purpose. Each field is terminated with two CRC
bytes. The data bits are divided by a generator polynominal G(X) such as

G(X) = X16 + X 12 + X3 + 1. The remainder of this division is called the

CRC. It is written in the two bytes that follow the data. When reading back

data from the diskette, everything is read, including data in the CRC bytes.

INTERFACING THE PERIPHERALS 169

170

Fig. 4-7 1 Picture of Double-Sided Floppy

If the remainder of the division by the G(X) polynomial is not 0, an error

has been detected.

Single-chip CRC's exist such as the Fairchild 9401, the Motorola 8501,

and others, that will detect such failures in a single chip. One-chip floppy-

disk-controllers (FDC) also accomplish the CRC generation and checking,

within the single chip.

® - -1

e -i

O

*>FF

D Q

>FF

L_ D Q

r->FF

D

Fig. 4-72 CRC Check Hardware Detail

Cyclic Redundancy Check

CRC is the favorite method for varifying the integrity of memory areas

with a minimal waste of bits. Parity will detect a single-bit error within a

word. Whenever parity is not available, or would be too costly to provide,

CRC is used to detect errors in a block of words. In particular CRC is

almost always used in the case of floppy-disks, and tape-cassettes. In addi-

tion, it is often used to verify the integrity of a ROM. The principle of a

CRC technique is the following: the eight bits of the word are treated as

coefficients of a polynomial of degree 7.

The bit pattern B 7 Be Bs B 4 B3 B2 Bi Bo is interpreted as B? X 7 + Be X6

+ B5 X5 + B4 X4 + B 3 X3 + B2 X2 + Bi X 1 + Bo X°.

X is called here a dummy variable.

For example, the binary word: "10000011" will represent:

B(X) = 1 X 7 + X6 + X5 + X4 + OX3 + X2 + 1 X 1 + 1 x°

= X 7 + X2 + 1.

INTERFACING THE PERIPHERALS 171

I Q

w
a >*~1

Q

<L

6
» c >•—"

Q

4_

z

1 •
1 •

t '

ac >*—

c

u-

XW

<

Q

4_

A
,

T*
I

« E

Q

X—

<

a 1

— w a.

a

X-H'

4_ —1

1

'6
f

fi t o

Fig. 4-73 CRC Generation Hardware Detail

172

A generator polynomial G(X) will be used. The polynomial B(X) corre-

sponding to the binary word is divided by this generator G(X). The result is

the quotient Q(X) and a reminder R(X).

B(X) = G(X) Q(R) + R(X)

The value of CRC-redundancy-checking is to append to a bit string an

extra byte (or bytes), equal to R(X), so that the total string will be exactly

divisible by the generator polynomial. The above equation can be rewritten:

B(X) - R(X) = Q(X) • G(X). The string formed by B and the remainder R

is exactly divisble by G(X). The extra bits appended to the string B are

called the CRC bits (or bytes). When receiving for the first time a string B,

the CRC generator will compute the remainder R which will be appended to

the string. When the string will be retrieved another time, the complete

sequence of bits, including the CRC bits will be read. They should then be

exactly divisible by the generator polynomial G(X). If they are not, an error

has been detected. If they are divisible, no error has occurred, or else a

non-detectable error has occurred.

As usual, the CRC algorithm can be implemented either in hardware, or

in software. One-chip CRC generators are available. An example of a pro-

grammed CRC, using the Signetics 2650 appears on Fig. 4-52. The program

which implements an emulation of the hardware appearing in Fig. 4-53. The

hardware division is accomplished there by the shift-register with feedback.

The CRC generator corresponding to the illustration is G(X) = X 16 + X 15

+ X2 + 1. The exclusive-OR feedback accomplishes the division during the

successive shifts through the flip-flops of the register.

Summary of Disk Operation

The complete principles of floppy-disk operation have now been pre-

sented. The signals necessary to drive the disk, its operation, the formatting

of data, as well as the error-checking mechanisms that must be im-

plemented. We will now describe the implementation of a disk-drive con-

troller to be interfaced to a microprocessor system.

Example: The SHUGART SA 4400 Mini-floppy Controller

This controller-board is implemented with the SMS/Signetics 300 bipolar

controller chip. It is designed to control 1, 2, or 3 SA 400 mini-floppies. It

will be briefly described here, in order to show the capabilities of a full

mini-floppy controller. Then other compact designs will be presented, using

the new FDC chips.

This controller is compatible with the IBM 3740 format, but uses a

modified gap structure (the pre-index gap, gap 4, is shorter). It provides a

128-byte buffer for the data. Eight control functionssare supplied:

INTERFACING THE PERIPHERALS 173

* CYCLIC REDUNDANCY CHECK SUBROUTINE (SIGNETICS 2650)

* THIS ROUTINE CENERATES A 16-BIT CHECK CHARACTER FOR
* THE DATA CHARACTER IN R0; VARIOUS POLYNOMIALS
* CAN BE ACCOMODATED BY CHANGING THE CONSTANTS
* SPECIFIED AT PROGRAM LOCATIONS CK0 AND CK1 AS PRR
* THE TABLE BELOW

DEFINITION OF SYMBOLS

EQU
EQU
EQU
EQU
EQU
EQU
EQU

PROCESSOR REGISTERS

H'08' PSL: 1=WITH,0=WITHOUT CARRY
H '

01
' CARRY/BORROW

3 BRANCH CONDITION UNCONDITIONAL
EQUAL

TABLE OF POLYNOMIALS

CRCF0 EQU H'1»0 CRC16 FORWARD
CRCF1 EQU H'02
CRCR0 EQU H'20 CRC16 REVERSE
CRCRI EQU H'01
CCIF0 EQU H'08 CCITT FORWARD
CCIF1 EQU H'10
CCIR0 EQU H'01j CCITT REVERSE
CCIR1 EQU H'08

BEGINNING OF SUBROUTINE

CRCGEN PPSL WC
L0DI.R2 8

L0DA.R1 CRC+l
EORA.R0 CRC

TEST CPSL C

TMT.R0 H'80'
BCFR.EQ SHIFT
PPSL C

CK0 EORI.R0 CRCF0
CK1 E0RI.R1 CRCF1

SHIFT RRL.R1
RRL.R0
BDRR.R2 TEST
STRA.R0 CRC
STRA.R1 CRC+l

#
RETC.UN

« RAM AREA

ORG H'500'
CRC RES 2

END CRCGEN

INITIALIZATION
OPERATIONS WITH CARRY
INITIALIZE BIT COUNTER
GET OLD REMAINDER LSB
EX- OR OLD REMAINDER MSB WITH DATA

CLEAR CARRY
TEST MS-BIT OF R0
BRANCH IF NOT A '1'

PRESET CARRY
APPLY 'FEEDBACK'

SHIFT THE DOUBLE CHARACTER

CHECK IF DONE
SAVE THE NEW REMAINDER

REMAINDER MSB IN CRC

Fig. 4-74 2650 Check Program

174

IN IT: it resets the controller in the disk

SEEK: steps ahead to the specified track

READ: reads a sector (128 bytes)

READ ID: reads the nest sector-identification

WRITE: writes a sector of data (128 bytes) with data AM

1 Floppy - 80.6 Kbytes

MPU

SYSTEM

SA 4400
Controller

S : : "^
» Status

Busy

Xfer

(Data or Status available) Direction

FDCOn

Command

Acknowledge

Halt

Reset

DISK DRIVEo
Fig. 4-75 Interface Signals

The previous three commands will read or write data between the host-

processor and the disk-buffer, or between the buffer and the disk.

— WRITE — DDL: accomplishes the same as the WRITE command

but with deleted data AM (address mark)

— FORMAT: writes address-marks, gaps, data on the entire track in

3740 format

— STATUS: gets status for the drive

The signals used by the 4400 interface to communicate with the host

microprocessor system appear on illustration 4-75. The basic sequence of

events implemented by the controller is simply:

1. Seek track.

2. Find sector.

3. Shift and transfer the desired number of sectors.

4. Check the CRC.

Few commands are necessary for the controller's operation and most

controllers provide six to ten commands only.

INTERFACING THE PERIPHERALS 175

IX

u
5 S

I&& k i. Ph a. In la

ttUlllltUlti

Uttttft t

IS IS

g 3

Fig. 4-76. FDC Chip: Western Digital

176

Western Digital FD1771D FDC

This one-chip floppy-disk controller — formatter will interface to most

drive manufacturers and is naturally IBM 3740 compatible. It provides:

— automatic track-seek with verification. This feature must be provided

on all FDC's.
— soft-sector format compatibility. This feature should be standard on

an FDC.
— read or write with:

— single or multiple records

— automatic sector search

— entire track read or write

Again, these features should be standard in an FDC.

— programmable controls:

— track to track stepping time

— head-settling time

— head engage time

— three-phase or step-plus-direction motor-control

— DMA or program transfers

The alert reader will notice that all of the above features are essentially

standard for all FDC's. The differences are usually the level of the number

of disk-drives that one chip will control simultaneously.

The internal architecture of the FD1771B appears on illustration 4-76. It

will be described in detail now. It contains five essential functional circuits,

six registers, and two interfaces: a processor-interface and a floppy-disk

interface. Each will now be examined.

The Four Functional Circuits

The four essential circuits, which appear on the illustration, are:

— the CRC logic which generates the check-character.

— the ALU (Arithmetic-Logical-Unit), which was used for the obvious

arithmetic functions, in particular, to compare characters for incre-

menting or decrementing contents.

— the disk-interface control.

— the computer-interface control.

Both interfaces will be described below.

INTERFACING THE PERIPHERALS 1 77

u. _) o o. q. > q — go:*: q oe •— > uj

(=5

OO
. i , i i i I i I 1 1 i I A

$? rf+
1-
O

a h II— oo

Q_
LU
f—

\ \
I

W U_Q
•-.UJ

UJw</>

(
£ 3=

te fe
a

LU
a:

a-
(23

l-t CM

Q.

Q_

If
z

Z 3o

TV*
\

n 1

1

Ci '

i
r

i
F

1 ' ' ' i r
1

la '
<

Q
* o

Fig. 4-77 Floppy-Disk Interface Using FD 1 77 1

.

178

The Six Internal Registers

From left to right in illustration 4-76, one can distinguish:

1. the data-shift register: assembles 8 bits from the floppy-disk data, or

serializes 8 bits received from the microprocessor data-bus into the

floppy-disk data-line.

2. the data-register is a simple holding register for a byte during read and

write operations. Communicates with the data-out buffer, and may re-

ceive data directly from the microprocessor data bus.

3. The command-register is used to hold the 8 bit command being exe-

cuted. This register is loaded by the programmer and specifies the mode

of operation of the disk.

4. The sector-register holds the address of the desired sector position.

5. The track-register holds the track number of the current head position. It

is incremented towards the inside (up to track 76 on the regular-size

disk), and decremented otherwise.

6. The status-register simply holds the status information of the controller.

Processor Interface

The processor-interface and the floppy-disk interface are illustrated on

4-77. The FDC communicates with the processor via 8 bi-directional data

lines labelled DAL (Data-Access-Lines). An input is specified when CS

and WE (write-enable) are active. An act is specified when CS and RE

(read-enable) are active. The internal destination is specified by A1-A0

according to the table below:

The data-request-output (DRO) is used for the DMA. The interrupt-

request (INTRT) is activated by various conditions.

(COMMAND WORD) RATE

BIT 1 BIT PERIOD (MS) (STEPS/S)

6 166

1 6 166

! 8 125

1 1 10 100

Fig. 4-78 Command Word Bits

INTERFACING THE PERIPHERALS 179

A 1 A RE WE

1

1

1 1

STATUS REG.

TRACK REG.

SECTOR REG.

DATA REG.

COMMAND REG.

TRACK REG.

SECTOR REG.

DATA REG.

Fig. 4-79 Register Addressing

Floppy Disk Interface

The signals appear on the right of illustration 4-77. They provide head-
positioning controls, write controls, and data-transfers. The clock is a
2MHz square-wave clock, internally divided by 4, yielding 500 KHz. It

provides three programmable stepping-rates, controlled by bit and bit 1 of
the command word according to the table below:

The head-settling time is additional and involves 10 milliseconds.

Disk Operation

A read-operation on the disk is performed in five steps:

1. Load the track-register

2. Give the Seek-command

3. Wait for verification

4. Transfer data to the microprocessor under interrupt control.

5. Check for interrupt after the correct number of transfers.

Conversely, awrite-operation is performed in seven steps:

1. Load the track-register

2. Give the seek-command

3. Wait for verification

4. Give the write-command

5. Load the first data after the data-request is received.

6. Load the remaining data

7. Check BUSY and CRC-error flag

180

PROCESSOR INTERFACE DISK DRIVE INTERFACE

REGISTER
SELECT
COMMANDS

REGISTER WRITE/READ SELECT -

REGISTER DATA STROBE -

REGISTER SELECT 2 -

REGISTER SELECT I
-

REGISTER SELECT •-

INTERRUPT REQUEST

DATA BUS<

DATA BUS ••

OAT* BUS 1 -

DATA BUS 2 •

DATA BUS S •

DATA BUS «
DATA BUS 5-

OATA BUS 6-

OATA BUS 7 •

WRITE CLOCK -

UPD372

DBS

OBI

DB2

DBS

DB4

0B3

DB6

087

HLO

LCT

WFR

WE

SOS

SID

UBI

UBS

UA1

UAB

IDX

WFT

Tea

RYA

RYB

-WRITE DATA
"\ T0
./DISK DRIVE

-HEAD LOAD

•LOW CURRENT

• WRITE FAULT RESET

• WRITE CURRENT ENABLE

• STEP OUT OR STEP

• STEP IN OR DIRECTION

• DISK ORIVE Bl SELECT

»OISK DRIVE B» SELECT

• DISK ORIVE Al SELECT

• DISK DRIVE A* SELECT

DISK ORIVE
COMMANOS

- READ CLOCK

-REAO DATA

- INDEX

- WRITE FAULT

-TRACK ZERO

DISK ORIVE A REAOY

-DISK ORIVE 8 REAOY

}

TT

CKS 2—m CLOCK STATUS

AWL — "• ALWAYS LOW

VOO

.DISK DRIVE
STATUS

}

Fig. 4-80 NECUPD372FDC

INTERFACING THE PERIPHERALS 181

Fig. 4-81 NEC 8080 Disk Controller

182

*=:

ifc:

zS**-
{-InTA -

c-t^a * -

C-tNT* -

RESET -

=B>-

UI4
UPD372D

r<J-

-rlsrO-

|ffl£ unsAK

^ READY

4TSJ5Til

Inras

Jam MTA

I I

CK IP LIST

OTT MUTT NO.

1 |K>3720

2 tPDT.101AI.-4

1 UTO2J04

t 7400

2 7404

740*

2 741C

1 7430

2 7432

4 7474

2 74123

3 74123

1 74137

4 743C3

1 uPOtOtO*

2 ||PM2I(

1 UP6K24
1 PM2M
1 M02

1

RESISTOR
NETWORK
spwmueno.
•14C13IXS7*

M TOTAL

Fig. 4-82 NEC 8080 Disk Controller

INTERFACING THE PERIPHERALS 183

Summary

The FD1771D illustrates how it is possible to integrate most of the

functions required for the control of a regular floppy-disk into a single chip.

It provides essentially all the facilities needed to control and format the

disk.

OTHER FDC's

The NEC FDC is called the UPD372D. It is compatible with the IBM
3740 as well as the SHUGART mini-floppy. It provides the usual facilities,

such as CRC-generation, programmable step-pulse, track-stepping rate,

sector-size, data-transfer rate. In addition, it controls up to 4 disk drives,

but with read/write limited to one drive, with simultaneous track-seek on
the others.

Other disk drives are:

CAL COMP 140, CDC BR 803, GSI 050, and 110, INNOVEX 210,

ORBIS 74, PERSCI 75, PERTEC FD400, POTTER DD4740,
SYCOR 145.

TheUPD 372D chip appears on Fig. 4-47. A complete interface using the

372D appears on Figs. 4-62 and 4-63.

The Motorola 6843FDC

This FDC is designed for direct interface to the 6800. It provides 10

macrocommands

:

1. Seek track (STZ)

2. Seek (SEK)

3. Single-sector-write (SSW)

4. SSW with delected address-mark (SWD)

5. Single-sector read (SSR)

6. Read CRC (RCR)

7. Multiple-sector-write (MSW)

8. Multiple-sector-read (MSR)

9. Free-format-write (FFW)

10. Free-format-read (FFR)

184

RS0

RSI

RS2

CS

R/W

E

D7

Tro

RESET

CLOCK

BUS DIRECTION

MA END (DM™

DATA OUT-W CURRENT TRACK ADDRESS-I

I 1 I I 1 1 I I
i i i i i i i 1

1

DATA IN-R CAPSTAN STATUS-R

I ' I I M I I I I I I I I I I I

SET-UP-W

I I I I I I I I]

ERROR STATUS-R

I I I I I]

SECTOR ADDRESS-W

I I 1 I M
SEARCH TRACK ADDRESS

I M 1 I 1 I I

in
GENERAL COUNT-W

I I I I I I I I I

INTERRUPT STATUS-R_
CRC CONTROL-H

CD
R-READ ONLY REGISTER

W-WRITE ONLY REGISTER
R/W-READ/WRITE REGISTER

•FILE INOPERABLE (f)

- INDEX (IDX)

TRACK ZERO (TRZ)

•WRITE PROTECT (WPT)

READY (RDY)

-STEP (STP)

FI RESET (FIR)

HEAD DIRECTION (HDR)

HEAD LOAD (HLD)

WRITE GATE (WGT)

-LOW CURRENT (LCT)

-WRITE DATA (WDT)

DATA CLOCK (DCK)

READ DATA (RDT)

VFO CONTROL (VFOC)

+6V

-GND

Fig. 4-83 Register Format

It is naturally equipped with two programmable delays for seek-time and

for settling-time. The chip signals are illustrated in 4-65. This FDC requires

three DMA channels. It uses an average of three percent MPU time. As-

suming 256 KPS transfer rate, the maximum MPU load is 12.5%.

Rockwell 10936 FDC.

The basic interconnect of this FDC in a Rockwell system appears on

Fig. 4-84. It uses three DMA channels (see Fig. 4-85), where channel 7

refreshes channel 1. The FDC I/O instructions appear in Fig. 4-86. Typical

floppy disk routines for the Rockwell PPS-8 appear on Fig. 4-87.

INTERFACING THE PERIPHERALS 185

Fig. 4-84 PPS-8 FDC

186

TT77 (=5

Fig. 4-85 PPS-8FDC DMAC Block Diagram

INTERFACING THE PERIPHERALS 187

01550000 NOOP

01550001 START

01550010 LOAD

01550011 CLEAR

1 S S 1 1 READ DATA

OlSSllOO READ STATUS

1 S S 1 1 1 READ STATUS

1 S S 1 NOOP

1 S S 1 1 1 NOOP

1 S S 1 - UNDEFINED READ

OOOOIOOO READ INTERRUPT STATUS

Fig. 4-86 Commands

188

CPU ENTRY
SERVICE ROUTINE

(POWER ON
J

T
/ INITIALIZE \
V SYSTEM /

(NEWFDC "\
I

COMMAND J T—

—

S I in.

HEAD MOVED
INITIALIZE \ TO TRACK
SYSTEM / REGISTERS

INITIALIZED

9 ^
CPU INTERRUPT

SERVICE ROUTINETINE
I

/ LOAD 7
^/COMMAND/
V TRACK /
/ SECTOR/

~EL
/ SET UP \
(DMAC)\ CHANNEL /

!

FROM FDC
CONTROL

ENTER FROM
DMA BLOCK
FORMAT

FDC
GENERATED
INTERRUPT

I/ACKO IS /
Automatic/

restart

FROM
"RETRY"

VQ
i__»

TRACK MOTION
AND HEAD

LOAD ROUTINE

CPU STORES
REGISTERS

IN HACK

,r
/ OUTPUT 7

»£. ^ U "START" /
"Vjy 7commanct

/ TO FDC /

COMMAND
TO FDC

, r~
_J__

/ READ 7
/INTERRUPT/
/ STATUS /

FDC
RESPONDS
WITH
ADDRESS &
STATUS

STANDARD
PPS-8CPU

' INTERRUPT
SERVICE

ROUTINE

PROCESS
APPLICATION

UNTIL
INTERRUPT

6

1>
TO FDC

CONTROL

TO CPU
INTERRUPT

SERVICE

ROUTINE

DISK

OPERATION
NOT v^WHY""
COMPLETE y^ DID

RETRY
DISK

OPERATION
ROUTINE

CPU RETRY/TERMINATE ICPU RETRY/TERMINATE
SERVICE ROUTINE

SERVICE

OTHER
INTERRUPT

z

ENTER ERROR
PROCESSING
SUBROUTINE

DISK
OPERATION
COMPLETE

RETURN
TO

INTERRUPTED
PROGRAM

l_
c
3=1
EXIT 1

J

Fig. 4-87 Software Flowchart

INTERFACING THE PERIPHERALS 189

190 INTERFACING THE PERIPHERALS

CHAPTER 5

ANALOG TO DIGITAL
AND DIGITAL TO

ANALOG CONVERSION

INTRODUCTION

In any system, two basic kinds of signals must be measured, or gener-

ated. They are analog and digital signals. Analog signals assume a continu-

ous range of values, whereas digital signals assume only afinite number of

values. As an example, a binary signal is a digital signal which assumes one

of two values, either "on" or "off ("1" or "0"). A typical example of an

analog signal is the value of the temperature in an oven. The temperature,

being an analog variable, can assume an infinite number of intermediate

values.

In view of the finite precision and limited storage of a computer, a digital

representation will be used. The precision of the measurement is said to be

limited to n significant digits. In addition, sampling will be used to reduce

the overall storage required. The concept of sampling will be presented

below.

This chapter will explain how to perform analog-to-digital conversion

(A/D) and digital-to-analog conversion (D/A). In addition, the specific

components required to build a complete data collection system will be

introduced. We will consider successively:

— a real D/A converter (or DAC)
— a real A/D converter (or ADC)
— the sampling process

— analog multiplexing.

Finally, all these techniques will be used to design a complete data

collection system.

A CONCEPTUAL D/A

Let us consider the problem of converting a binary number into an

analog voltage. This is the typical problem of digital-to-analog conversion.

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 19 *

A simple solution is the following: a voltage is generated for each bit-

position of the binary number. The value of the voltage is proportional to

the binary weight of the bit.

For example, bit will generate a voltage V(2°); bit 1 will generate a

voltage 2V(2*); bit 2 will generate a voltage 4V(22
); and, bit n will generate a

voltage 2n x V. The resulting voltages are simply added. The result is

proportional to the original binary number.

A simple 4-bit D/A appears on Fig. 5-1. This D/A consists of: four

switches, four proportional summing resistors, an operational amplifier, and

a proportional feedback-resistor. The values of the resistors are in the

proportion 1, 2, 4, 8. This results in gains of: —Vs, -V4, -Vi, and -1. Let us

examine the function of this circuit.

10.000 VOLTS - STABLE REFERENCE

5-1

V
A Simple 4-Bit D/A

OPERATIONAL
AMPLIFIER

Let us begin with all the switches in the open position. Since there is no

input to the operational amplifier, the output will be "0". Closing the bit

switch numbered "0" will apply the -10V reference to the input of the

operational amplifier, through the resistor marked 8R. This will result in an

output voltage of 1.25V (due to the gain of -Vs at this point). Closing the

switch marked "bit 1" will then add 2.5V to the previous value (1 .25V) (due

to the gain of - XA at this point). The resulting output is 3.75V. If all

switches are closed, the resulting output voltage is 10.0 + 5.0 + 2.5 + 1.25

or 18.75 volts. Here, we have converted a 4-bit binary number, represented

by the four switches, into a voltage. It is the analog representation of one of

the 16 possible digital values.

We will now examine the structure of a practical D/A converter.

192

A Practical D/A

The practical design in Fig. 5-2 illustrates the typical design for a

monolithic D/A converter. This device has four bits of resolution. Practi-

cally, currents are summed instead of voltages, due to the fact that currents

are easier to switch on and off accurately. To provide a voltage output, the

last stage of the converter is a current-to-voltage converter. This is easily

done by an operational amplifier. Typical converters have eight bits of

resolution.

DATA LINES

v
BIT SWITCH

BIT SINK
r~r

RES. NET

5-2 A Practical Converter Schematic

Fig. 5-3 illustrates the functional elements of our converter. They are:

the reference-current source, the bit-sink transistors, the ladder-resistor-

network, the bit-sink switches, and the voltage-current converter.

The bit-sink current reference establishes a stable reference current. The
bit-sink current sources will be proportional to this reference current. The
current in each bit-sink transistor is established by its position on the R-2R
ladder-resistor-network. The R-2R resistor-network produces a 2

_n
series

of currents flowing through each bit-sink collector. The switches will route

the current either to the bit-sink bus, which connects to the current-to-

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 193

voltage converter—or to ground. In our example, these currents are V20

ampere, lUo ampere, Vso ampere, and Vieo ampere. These elements com-
bine to perform the conversion from a 4-bit binary number into an analog

voltage.

LOGIC
INPUTS °"

BIT SINK
SWITCH

o

nilNIK T T

REFERENCE
CURRENT

OUT

n n
LADDER NETWORK

5-3 Monolithic Converter Functional Elements

n
1 1 1 1 1

q^o o^o 0^0 qSo

y]/

ON "V
ALL ^

EMITTEBlS

\
+ 5V

100

]/2oV i^SV

200
VW-r

1/40 | 1/80

100

rt>

100

..25V
t.625

ICO
~

-10V -10V

5-4 Completed Monolithic Converter

194

An actual monolithic converter uses transistors as switches to route the

current between the bit-sink bus to the amplifier and ground. Fig. 5-4 shows
the logic-signal-to bit-current-sink switches interface circuitry. When the

input is a logic "0", which corresponds to 0V, the bit-sink will draw current

through Q4 to the bit-sink bus. When the input is a logic "1", which corre-

sponds to an input voltage greater than 2V, the bit-sink will draw current

through Q3, instead of Q4, disconnecting the bit-sink bus from this sink bit.

The four binary signals will switch the four bit-sinks on and off the bit-sink

bus. The resulting current is converted to the output voltage.

BIT SINK BUS

K' 1 1 P
FROM OTHER
SINKS

Detail - The Bit Switches

By extending the R-2R ladder network and adding more bit-sink transis-

tors, we can increase the resolution of our converter to more than 10 bits.

Any more than 14 bits results in stability problems that this simple circuit

cannot overcome. In fact, 16-bit converters are usually certified to be cali-

brated against a national standard. (One must remember that 16 bits results

in an accuracy of 1 part in 65,000!).

Real Products

Table 5-5 represents a sampling of some real products that perform D/A
conversion. Cost increases with speed.

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 195

TABLE 5-5 D/A Converters

Manufacturer Type# Resolution Speed

Motorola MCI 408 8 300ns

PMI DAC-08 8 100ns

PMI DAC-03 10 250ns

Analog Devices AD7520 10 500ns

Datel DAC-4Z12D 12 lus

Burr-Brown DAC70/CSB 16 75us

THE A/D

Now that we have converted the binary representation of a number into

an analog signal, we must solve the reverse problem. We must measure an

analog signal and convert it into a binary number. There are three methods

of conversion: successive approximation, integration, and direct compari-

son. Before discussing these, we must first examine the concept of

sampling.

Sampling

The binary number representing our analog signal represents a value at

one point in time. This is known as a sample. In the following waveform, in

Fig. 5-6, we have sampled where indicated. The sample values will not give

us any information as to the true shape of the analog signal. We must collect

samples which will accurately represent the signal. The frequency at which

we sample is known as the sampling rate . In order to represent accurately

we must sample more frequently. How often must we sample?

5-6

**time

Infrequent Sampling

196

The Sampling Theorem

The answer lies in the sampling theorem: We must sample at least twice

as fast as the fastest occurring signal in our system. As a rough rule, in

order to represent our signal, we must sample at least 10 times as fast as our

average frequency. Fig. 5-7 illustrates the results of more frequent

sampling.

5-7 Frequent Sampling

Sample and Hold

The analog input to a converter must be stable for the duration of the

time it takes to complete the conversion. This may be accomplished by

using a sample and hold circuit. This device will sample the analog input

and hold it constant until the next sample of the input. The device holds the

sample in a high-quality capacitor, buffered by an operational amplifier.

Sample-and-holds are available in both monolithic and hybrid forms.

SUCCESSIVE APPROXIMATION A/D CONVERSION

By using a D/A we can perform A/D conversion. Let us compare our

unknown analog input signal to a "guess". Increasing or decreasing our

guess, based upon the knowledge of our guess being too large or too small,

allows us to converge towards the correct value of the analog input signal.

In Fig. 5-8, we have connected the output of our 4-bit D/A converter to the

UNKNOWN
COMPARE

= IF LESS THAN
1 IF GREATER THAN

Successive Approximation Hardware

MSB LSB

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 197

input of a comparator. The other input is connected to our unknown analog

signal. The output of the comparator will be "0" if the unknown is less than

the D/A output, or "1" if the unknown is greater than the D/A output.

The algorithm for "guessing" is to turn-on each successive bit in our

binary number starting with the most significant bit (MSB). As we turn on
each bit, we test to see ifwe are greater than, or less than, at the comparator

output. If less-than, we leave the bit on; if greater than, we turn the bit off.

In either case, we go to the next least-significant-bit until we reach the last

bit. Fig. 5-9 illustrates such a guessing procedure for our 4-bit converter.

Fig. 5-10 illustrates the flowchart for the same guessing procedure. This

procedure is known as successive-approximation analog-to-digital conver-

sion.

INPUT

1/2

-JUL

.625 .6875

1 2

GUESS #

TIME

5-9 Guess Versus Time: Successive Approximation

Using this method, we must make as many guesses as there are bits in

the binary number being converted to. This is the most common method for

A/D conversion.

There are two ways to perform successive approximation: using

hardware, and using software mixed with hardware. Fig. 5-11 illustrates a

practical A/D design using a successive-approximation register or SAR.
This successive-approximation-register performs the bit-shift and test-

function in hardware. The other alternative is to perform the function of the

successive-approximation-register by a software algorithm. A complete

198

START WITH MSB

OUTPUT A BIT
TO D/A AS A

YES

OUTPUT TO SAME
BIT AS BEFORE
A "0"

SIGNIFICANT

GO TO NEXT
LEAST SIGNIFI-
CANT BIT

5-10 Successive Approximation Flowchart

monolithic A/D converter without reference, but with the successive-

approximation-register, is illustrated in Fig. 5-12. Besides successive-

approximation, two other essential techniques are used for conversion:

integration, and direct comparison.

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 199

ANALOG
INPUT

TO +10V

CLOCK INPUT
2.25 MHZ

5-1

1

A/D Using a SAR

COW
strt a
ctK a

,,,,.8$ o
g;SS : FTTl

•IgVcc DGND Vpo A6N0i

5-12 Monolithic A/D

OOS9
<
"

! O DB8

+rr-L D8 1

ffs—ososv
OSRO

+~— 8SEN
O HBEN

+£•—OLBEN
OSYNC

r

200

INTEGRATION

The second way of performing the analog-to-digital conversion is analog

integration. Measuring the time that it takes for a capacitor to charge to the

unknown voltage, and to discharge under a known reference voltage, form

the basis of this method. The time-ratio between our known and unknown

voltages is equal to the ratio of the values of the two time measurements.

In practice, we integrate a positive unknown voltage and a negative

known reference. The positive voltage will result in the charge increasing

on the capacitor. After a known period of time, the reference voltage will be

applied to the integrator and we will measure the time required for the

charge to reach "0". Fig. 5-13 illustrates the timing diagram of such a

technique.

CHARGE

TIME PULSES

1000 1000 + N

• INTEGRATING CAPACITOR CHARGES AT CONSTANT RATE PROPORTIONAL TO

INPUT VOLTAGE

• DISCHARGES BY CALIBRATED REFERENCE CURRENT

5-13 Integration Timing

Fig. 5-14 illustrates a monolithic conversion device using a modification

of this dual-slope integration technique known as quad slope. In addition to

integrating the known and unknown voltages, it also integrates inaccuracies

caused by offset and ground errors that may be present.

The dual-slope integration technique results in high accuracy measure-

ments. This accuracy comes at the expense of the time that it takes to

convert the analog signal. Thus, dual-slope conversion is slow, compared to

a successive-approximation conversion technique discussed earlier, but

more accurate.

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 201

wmm
5-14 Quad Slope Monolithic Converter

DIRECT COMPARISON

Direct comparison is used only where extreme speed is required. Usu-
ally less than five bits of resolution are needed in such applications. The
circuitry contains 2"" 1

comparators (where n is the number of bits in the

binary output word desired). Let us examine how this works.
We have a 3-bit direct comparison converter. Our input can he measured

in terms of eight levels. Fig. 5-15 illustrates the structure of our converter.
The seven comparators will establish if our input voltage is greater than, or
less than, each of the possible eight reference values. For example, if ail

comparators below the fifth one are on, and all above it are off, then the
priority encoder will encode the eight inputs into a 3-bit binary number,
1 00a. Other inputs will be encoded into other 3-bit representations.

Such systems provide a resolution of five bits in less than 100 ns per
conversion. The need for many comparators and reference voltages, and a
complex priority scheme, results in this method being the most expensive
for anything beyond 3-bils of resolution.

However, AMD has announced a 4-bit monolithic device for less than
$50 that will perform this direct comparison in less than 50 ns.

202

PRIORITY ENCODER

\V7Vx
V REF7 ^^

Direct Comparison Converter

Output Control

8 to 3 Priority Encoder

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 203

TYPICAL DEVICES

Table 5-16 lists examples of conversion devices and the technologies
used to implement them. In general, the faster the conversion, the more
expensive; the more accurate, the more expensive; and, the more external
components required, the more expensive.

TABLE 5-16 A/D CONVERTERS

Manufacturer Type# Resolution Speed

Type of

Conversion Cost

National MM5357 8 40us SA $10
PMI AD-02 8 8us SA
Analog Devices AD7570 10 18us SA $70
Datel

Analog Devices

ADC-EK12B
AD7550

12

13

24ms

40ms

Integrating

Integrating $25

A/D SUMMARY

The three techniques of A/D conversion, successive approximation, in-

tegration, and direct comparison, are all available as monolithic LSI mod-
ules. The trade-offs among the three techniques are simple. The direct
converter is fast, but with little accuracy. The successive-approximation
converter is of medium speed, and average resolution. Dual-slope integra-
tion conversion has the highest accuracy, but requires the most time to
perform this conversion. The time the analog signal must be held stable, and
the time it takes to convert, determine the maximum sampling frequency
and the need for a sample-and-hold circuit.

CONSTRUCTING ANALOG-DIGITAL DATA COLLECTION SYSTEMS

To interface these analog conversion products to our digital system to
collect, analyze, and control analog signals, we must find out how to use
these products optimally. Usually more than one signal needs to be moni-
tored. This indicates that more than one A/D and D/A are required. In
some systems, many hundreds of analog signals need to be measured. The
techniques used to design a cost-effective system are: simple interfaces,
multiplexing, and scaling.

Interfacing the D/A

The D/A converter requires a parallel digital word that will remain stable

as long as the analog output is needed. This is easily accomplished for eight

204

or less bits since most microcomputers have output-latches eight-bit wide.

Fig. 5-17 shows such an interface. In the case where the D/A has more than

eight bits of resolution, special techniques may be required for interfacing:

8 BIT

D/A

ANALOG OUTPUT

DATA
BUS

A
^t.i

STROBE

8 BITS

5-17 Parallel Output D/A Interface

DATA BUS J\

~v

HIGH
LATCH

MSB

JS

V

LOW
LATCH J\

V

LOW
HOLD
LATCH

V

J\

V

13 BIT

D/A

5 HIGH
BITS

8 LOW
BITS

5-18 Adding the Extra Latch

For example, take the case of interfacing a 12-bit D/A converter. If we

use two separate 8-bit latches, using 8 bits from the first, and 4 bits from the

second, there is a problem. When the first latch is loaded, the D/A convert-

er immediately begins converting to the new value presented. However,

some microseconds later we change the second latch, so as to complete the

needed bits for the D/A. The effect causes a glitch on the D/A output

because of the input change. All input bits to a D/A converter must be

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 205

changed at the same time in order to prevent output glitches. Fig. 5-18

indicates how an extra latch is added to the low-order latch path, in order to

prevent the low bits from changing, until the bits on the high latch change.

The low-byte is sent first, and the high-byte is sent second, with the most-
significant-bit equal to "1". When the temporary holding low latch is

strobed by the "1" from the high latch, the low order bits will pass through
to the converter, delayed by the delay of the latch. If this delay is also too
severe, a fourth latch may be used in the high bit path to equalize delays.

The new D/A converters include an on-chip latch for ease in interfacing.

Example of D/A Interfacing

Fig. 5-19 is the schematic for a D/A interface to the SC/MP microproc-
essor. The 74LS374 octal latch is used to hold the information while the
D/A performs the conversion. Even though this converter has 12 bits of
resolution, only 8 are used in this example. The unused inputs are tied to

+ 5V. Unused inputs may be tied to either +5, or 0.0V depending on the
binary coding scheme used.

ANALOG
OUT

5-19 SC/MP D/A Interface

(DA 1200)

1

206

Interfacing the A/D

As D/A's require an output port, A/D's require an input port. In addi-

tion, the A/D requires an output to initiate a new conversion, and an input

to indicate when that conversion is complete. The A/D may take as long as

100 ms to complete its conversion. To prevent the processor from execut-

ing instructions while waiting, would waste valuable time for processing.

The A/D as an input device should operate on a polled or interrupt basis.

Five A/D interface examples are presented here:

Examples of A/D Interfacing

Fig. 5-20 illustrates a National MM5357 A/D converter. The device has

eight bits of data output, a start-conversion input, an end-of-conversion

output, an output-enable, and a clock signal input. The start-conversion line

(SC) may be activated from an output port bit, or it may be tied to the

end-of-conversion signal (EOC). If SC is tied to EOC, as soon as a conver-

sion is complete, a new one will immediately begin. The end-of-conversion

signal can be connected to an input-port bit, so it may be polled. EOC can

also activate an interrupt input, depending on the software considerations.

+5V

8-BITS

OUTPUT ENABLE
SC

EDC

CLOCK

5-20

-5V -12V

The MM5357 Converter

Fig. 5-21 illustrates the use of an A/D converter, where the status of the

conversion can be read on the data bus, without the use of bus drivers, or a

separate input port. The Analog Devices' AD7550 accomplishes this by

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 207

using internal tri-state output buffers, that may be independently enabled
for the low byte, high byte, and status outputs. The only signal required is

the start-conversion signal, which must be generated from an output port
bit.

1 1 |

8-BIT DATA BUS (DC - D7)

> HBEN (HIGH BYTE ENABLE)

>LBEN (LOW BYTE ENABLE)

jSTEN (STATUS ENABLE)

5-21 Analog Devices' AD7550 Interface

Most systems require more than one analog input. To provide these
inputs, we can connect a number of A/D's to the bus and select them with a
decoder. Each input would have its own A/D. Fig. 5-22 shows the schema-
tic for four converters in an 8080 system. The 8205 decoder selects the data
read from ports "F8", "F9", "FA", and "FB" hexadecimal. The ports
"FC", "FD", "FE", and "FF", when read, trigger the start conversion
lines on the corresponding A/D. Input port "F0" is the end-of-conversion
status word, with the lower four bits corresponding to the end-of-
conversion outputs of the four A/D's. This port is polled by the program to
control the A/D's.

Fig. 5-23 shows a technique for successive-approximation using a D/A
comparator. The peripheral input adapter (PIA) controls the D/A converter
and has the output of the comparator as its input. By monitoring the output
bit of the comparator, we can tell whether the byte output on PA0-PA7 was
either too large or too small. The successive-approximation flowchart may
be coded in software and used to control the progress of the conversion.

Through these five examples, we have examined the techniques for in-

terfacing the A/D to our microprocessor system. Other A/D converters
have similar interfacing requirements. Careful study of the data sheets and a
programmable input-output port solve most A/D interfacing problems.

208

DATA BUS

8 BITS

8205

r4LS04A OE A S(

MM4357

TE 71 W

§£>
-i/o rfl.

*2-^>o-

D—•-

5-22 Four MM5357 on an 8080 Bus

V
|N

(FULL SCALE) = —Mf— <RI

Pace

+ R2) I

+5V -15V
<?

500 (FULL SCALE
OHMS

(+5V)

30 PF T
l-VN/V*

CALIBRATION)

VrEF(YF VeE
,

10MPENSATION

VREF()

GN
RANGE

A1A9A3AdARAfiA7 A«
i ,, ,, ,i ,. i,

n
z=[>^-

"R3

+5VO-W*-0-15V
+5V 10K

TT

i)

ca u

HI

OFFSET

PAC PB1

MPU/PIA SYSTEM

5-23 Using a D/A for Successive Approximation A/D

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 209

More Channels

If the need arises for more analog input channels, or it is too expensive to
have a single A/D per channel, another alternative exists for design. More
channels can be added through the use of analog multiplexing. The multi-
plexer acts as a switch so that the input of the A/D is selected from many
sample inputs. It is illustrated in Fig. 5-24. The entire A/D system will
contain other components as well. We will now closely examine a hybrid
device from Burr-Brown that interfaces directly with the 6800 bus.

INPUT

OUTPUT

11111
A3 • A2 A1 A0 ENABLE

5-24 An Analog Multiplexer

The MP21

The MP21 module contains all necessary components to provide a com-
plete A/D system for a 6800 microprocessor. The block diagram in Fig. 5-25
illustrates the internal functions of the MP21 module. The module has a
16-channel multiplexer, that can be wired to provide eight differential inputs

210

or 16 single-ended inputs. The channel-number is selected by the lower four

address-bits and latched on a read-command by the control-logic.

MP21 BLOCK DIAGRAM ANALOG INPUTS

8=T

R/W~ o—

ADDRESS
DECODER
AND
CONTROL
LOGIC

[HALT O*.
*INT CH-

Q+—|TRI-STATI
OUTPUT

S=

???????? ????????
8 CHANNEL
ANALOG
MULTIPLEXER

CONTROL

LOGIC

8 CHANNEL
ANALOG
MULTIPLEXER

INSTRUMENTATION'
AMPLIFIER

CONTROL LOGIC

8 BIT A/D

CONVERTER

6ia
a <

GAIN
lOFFSET

, ADJUST
{amplifier

-o-l

IA OUT

POSSIBLE
SAMPLE
AND
HOLD
HERE

5-25 The Internal MP21 Schematic

The instrumentation amplifier provides the differential-to-single-ended

conversion (if required), and can be programmed by external resistors to

provide different gains and offsets. If required, a sample-and-hold may be

inserted in between the multiplexer and the instrumentation amplifier. Ad-

ditional multiplexers can be added at this point also to increase the number

of input channels.

The heart of the unit is the 8-bit A/D converter which performs the

conversion. The end-of-conversion will interrupt the 6800 through the

internal interrupt control logic on the hybrid module.

All necessary interfacing has been done for the user so that the module

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 211

will be as simple to use as possible. Fig. 5-26 indicates the necessary signals
for a typical application utilizing a 650X or 6800 processor.

W
I-

D
0.

z

o
o

ADDRESS BUS

v F
RESET

VMA
NR/W
Q.

5 02
<NT
HALT

17 40

42 34

z

45

44

46 37

VMA*
oo

R/W o

02
IRQ

2u5
DATA BUS

s

5-26 6800 and 650X Interface

Techniques for Increasing the Resolution

There are two basic techniques for extending the resolution of our A/D
conversion without changing the basic accuracy of our A/D converter.

These are scaling and offset.

Scaling

If the input signal is 1.0 volts and the full scale input of the A/D is + 10.0

volts, we should increase the gain of the amplifiers before the A/D conver-
ter, so as to take advantage of the full-scale resolution of the A/D. By
increasing the gain by a known amount, we can measure smaller signals

more accurately. If the input was 20.0 volts, we could decrease the gain of
the input amplifier in order to attenuate the input signal. This will allow us
to measure larger voltages than could otherwise normally be measured. By
these examples, the need for scaling becomes evident. We scale the input to

obtain maximum information upon conversion from our AID converter.

Offset

By connecting the output of a separate D/A to the offset input before our
amplifier, we could automatically correct for offset errors, or we could

212

offset a voltage to increase the accuracy further. If the input is 10.0 volts

and we are interested in small changes around this value, we can offset the

input by an equal and opposite amount. The output of the offset D/A is then

-10.0 volts. Adding the two together, we get some small value which

depends upon the difference between the offset D/A and our input voltage.

Now, we increase the gain of the input amplifier so that any difference

between the input 10.0 volts and the offset 10.0 volts can be measured with

the full accuracy of the A/D converter.

Summary of Enhanced Resolution Techniques

By these methods, an 8-bit resolution A/D can be enhanced to provide

many more bits of magnitude information in a coded form. The form of our

information for this example is listed in Table 5-27.

OFFSET GAIN A/D OUTPUT

IXXXXXXXXXXXXXXXXXXl
+ 10 VOLTS x 1/2 (+ 10 VOLTS)

x 1

x 10

x 100

5-27 Scaling, Offset A/D Data Format

Of course, the accuracy of the amplifier and offset D/A must be suffi-

cient not to introduce errors of their own in the measurement process.

SUMMARY

Our microprocessor can now be used to gather information, process it,

and output that information in a new form in the analog world through the

use of these conversion products. The D/A or digital-to-analog-converter

providing the microcomputer with the means for generating the analog sig-

nals, and the A/D or analog-to-digital-converter providing the means for

measuring the analog signals, form the basis of any conversion system. The

use of sample-and-hold, multiplexers, and scaling/offset techniques, allow

us to quantify any signal, process it, and pass it back in most any form we

require.

One last constraint may be to supply interface signals in a standard form.

This will be examined in Chapter 6.

ANALOG CIRCUITRY - A/D AND D/A CONVERSION 213

ANALOG CIRCUITRY - A/D AND D/A CONVERSION

214

CHAPTER 6

BUS STANDARDS
AND TECHNIQUES

INTRODUCTION

Connecting more than one module requires a communication path. Each

module must be able to talk and listen to its neighbors. The components on

a module need to communicate with one another. The problem of compo-

nent interconnection has been addressed in Chapters 2 and 3. The

techniques of module-to-module, and system-to-system communication will

be covered in this chapter on busing techniques.

Two bus types will be distinguished: parallel buses and bit-serial buses.

They are:

— parallel

— microprocessor SI00 Bus

— microprocessor 6800 Bus

— IEEE-488 general interface bus

— IEEE-583 CAMAC interface system

— serial

— EIA-RS232C asynchronous communications

— EIA-RS422&423 asynchronous and synchronous

communications

— ASCII information standard

— synchronous communication

Parallel buses are useful for high-speed module-to-module communica-

tion in the case of microprocessor buses, and for system-to-system com-

munication in the case of IEEE-488. CAMAC is the only exception—the

CAMAC standard covers all communications from the component level

on up.

Serial buses require fewer lines, and are used to connect communica-

tions terminals to the computer system. Terminals such as, CRT's,

(cathode-ray-tube terminals), teleprinters, teletypewriters, and remote data

collection devices, all rely on some form of bit-serial communication.

Serial standards cover the bit-rates, electrical characteristics, and data

format. There are basically two types of standards: asynchronous and syn-

chronous. The asynchronous standard is used for data rates of less than

BUS STANDARDS 215

20,000 bits-per-second, and the synchronous standard is used for data rates

of more than 10,000 bits-per-second. In the overlapping region, both types

may be used.

An example of an SI00 bus interface to an inexpensive analog-to-digital

converter will be presented at the end of this chapter.

PARALLEL BUSES:

Parallel buses transfer all bits of information across separate wires, at

the same time. Lines must be provided for the data-bus, lines for the

address-bus, and lines for the control-bus. Each set of lines contains infor-

mation on the current cycle of operation.

A typical microprocessor system, will need 8 data, 16 address, and 5-12

control lines.

— The 8 data lines are for all transfers in and out of the processor.

— The 16 address lines determine what memory location or I/O port the

transfer is for.

— The 5 basic control lines will be a read or write cycle line, a valid

address present line, an interrupt line, a DMA request line, and a

wait line.

In this basic system, the control bus will have the timing shown in

Fig. 6-1.

ADDRESS V////M *x\\\\\^
VM

R/W / ! \
DATA MUST BE 1

DATA V//////K S£sr-<xs^^
MEMORY FETCH

ADDRESS

R/W

w///k x^m
\ /

VM

DATA WILL REMAIN

DATA J\^ W RISES. J\

MEMORY STORE

6.1 Timing on the Control Bus

216

These 29 signals are all that are needed for most simple parallel buses.

Timing will vary, and separate read and write lines may be used, but all

buses function in a similar fashion.

Future systems will require at least 16 data lines and perhaps as many as

24 address lines. In addition, many additional control lines are desirable for

flexible input-output management.

THE S100 BUS

The "hobby-computer" market was revealed at the Atlantic-City con-

ference in August 1976. The impact of one company, however, was greater

than most at the time. This was MITS, the producers of the Altair mi-

crocomputers. The bus they used in their 8080-based system had 100 lines.

Other manufacturers (in particular IMSAI) realized that making their

memories and peripherals compatible would help them sell in this new
market. Now there are over 600 different types of boards and systems

available for this bus from over 100 manufacturers.

The bus signals and definitions are presented in Tables 6-2 through 6-8.

Some problems of this bus are: clock lines adjacent to control signals,

pin layout problems, and power supply distribution.

The Ol , 02, and 2MHz clock signals are near nine other control signals.

All of these clock-pulses have sharp rise and fall times and occur continu-

ously. Because of this, these clock-signals are most easily coupled to the

other lines, unless unusal shielding measures are taken. Because of the

2MHz clock present, the bus must be designed for 4MHz noise immunity
when no other signal occurs at that rate.

What if a board is unplugged with the power on? The possibility of the

-18 volts touching the +8 volts, due to misalignment, is great. If this

happens . . . well, let us hope it doesn't. At best, only the regulators may
blow out; at worst, every chip tied to +5 volts may be damaged.

Ideally, boards should be protected against being unplugged or reversed

with power on. A symmetric arrangement of power pins that will shut down
all power if boards are inserted improperly is one good idea, and the careful

distribution of voltages in between grounded pins is another good idea.

Variations in supply voltage from module to module reduces noise immun-
ity and may cause difficulties. The solution is to use high quality regulators

costing more or matching those used (an impossible job). There is no best

way to solve this problem—and a central power distribution scheme has its

own problems.

The interrupt lines are reserved for interrupt requests to an interrupt-

controller board on the bus. No standard way of using these is established

BUS STANDARDS 217

THE S-100 BUS (ALTAIR)

PIN

NUMBER SYMBOL

1 +8V

+18V

XRDY

VIO

VI1

VI2

VI3

8 VI4

VI5

10 VI6

11 VI7

12 *XRDY2

NAME

+8 Volts

+18 Volts

FUNCTION

Unregulated voltage on

bus, supplied to PC
boards and regulated

to 5V.

Positive pre-regulated

voltage.

EXTERNAL READY External ready input to

CPU Board's ready cir-

cuitry.

Vectored Interrupt

LineO

Vectored Interrupt

Line 1

Vectored Interrupt

Line 2

Vectored Interrupt

Line 3

Vectored Interrupt

Line 4

Vectored Interrupt

Line 5

Vectored Interrupt

Line 6

Vectored Interrupt

Line 7

EXTERNAL READY 2 A second external

ready line similar to

New bus signal for 8800b. XRDY.

13

to TO BE DEFINED
17

18 STAT DSB STATUS DISABLE Allows the buffers for

the 8 status lines to be

tri-stated.

6.2 Altair Bus

218

PIN
NUMBER SYMBOL

19 C/C DSB

20 UNPROT

21 SS

22 ADD DSB

23 DO DSB

24 02

25 01

26 PHLDA

NAME

COMMAND/CONTRO L

DISABLE

UNPROTECT

SINGLE STEP

ADDRESS DISABLE

DATA OUT DISABLE

PHASE 2 CLOCK

PHASE 1 CLOCK

HOLD ACKNOWLEDGE

27 PWAIT WAIT

FUNCTION

Allows the buffers for

the 6 output command/
control lines to be
tri-stated.

Input to the memory
protect flip-flop on a

given memory board.

Indicates that the

machine is in the pro-

cess of performing a

single step (i.e., that SS
flip-flop on D/C is set).

Allows the buffers for

the 16 address lines to

be tri-stated.

Allows the buffers for

the 8 data output lines

to be tri-stated.

Processor command/
control output signal

that appears in response

to the HOLD signal;

indicates that the data

and address bus will

go to the high imped-
ance state and pro-

cessor will enter HOLD
state after completion
of the current machine
cycle.

Processor command/
control signal that

appears in response to

the READY signal

going low; indicates

processor will enter a

series of .5 microsecond

WAIT states until

READY again goes

high.

BUS STANDARDS 219

PIN

NUMBER SYMBOL NAME FUNCTION

28 PINTE INTERRUPT ENABLE Processor command/
control output signal ;

indicates interrupts are

enabled, as determined

by the contents of the

CPU internal interrupt

flip-flop. When the flip-

flop is set (Enable

Interrupt instruction),

interrupts are accepted

by the CPU; when it

is reset (Disable Inter-

rupt instruction), inter-

rupts are inhibited.

29 A5 Address Line 5

30 A4 Address Line 4

31 A3 Address Line 3

32 A15 Address Line 15 (MSB)

33 A12 Address Line 12

34 A9 Address Line 9

35 D01 Data Out Line 1

36 DO0 Data Out Line (LSB)

37 A10 Address Line 10

38 D04 Data Out Line 4

39 D05 Data Out Line 5

40 D06 Data Out Line 6

41 DI2 Data In Line 2

42 DI3 Data In Line 3

43 D17 Data In Line 7 (MSB)

44 SM1 MACHINE CYCLE 1 Status output signal

that indicates that the

processor is in the fetch

cycle for the first byte
of an instruction.

220

PIN

NUMBER SYMBOL NAME FUNCTION

45 SOUT OUTPUT

46 SINP INPUT

47 SMEMR

48 SHLTA

49 CLOCK

50 GND

51 +8V

52 -18V

53 SSWI

MEMORY READ

HALT

CLOCK

GROUND

+8 Volts

-18 Volts

SENSE SWITCH INPUT

b) Enable the Display/

Control Board
driver's Data Input

(FDI0-FDI7);

Status output signal

that indicates the ad-

dress bus contains the

address of an output
device and the data bus
will contain the output
data when PWR is

active.

Status output signal

that indicates the ad-

dress bus contains the

address of an input

device and the input
data should be placed
on the data bus when
PDBIN is active.

Status output signal

that indicates the data

bus will be used to
read memory data.

Status output signal

that acknowledges a

HALT instruction.

Inverted output of the

02 CLOCK'

Unregulated input to 5
volt regulators.

Negative pre-regulated

voltage.

Indicates that an input

data transfer from the

sense switches is to take
place. This signal is

used by the Display/

Control logic to:

a) Enable sense switch

drivers;

c) Disable the CPU
Board Data Input
Drivers (DI0-DI7).

BUS STANDARDS 221

PIN

NUMBER SYMBOL

54 EXTCLR

NAME

EXTERNAL CLEAR

FUNCTION

Clear signal for I/O

devices (front-panel

switch closure to

ground).

55

56

fRTC

'STSTB

REAL-TIME CLOCK

STATUS STROBE

60HZ signal is used as

timing reference by the

Real-Time Clock/

Vectored Interrupt

Board.

Output strobe signal

supplied by the 8224
clock generator. Pri-

mary purpose is to

strobe the 8212 status

latch so that status is

set up as soon in the

machine cycle as

possible. This signal

is also used by
Display/Control logic.

57 f DIGI DATA INPUT GATE 1 Output signal from the

Display/Control logic

that determines which

set of Data Input

Drivers have control of

the CPU board's bidi-

rectional data bus. If

DIGI is HIGH, the CPU
drivers have control; if

it is LOW, the Display/

Control logic drivers

have control.

58

59
to

67

hFRDY FRONT PANEL READY

TO BE DEFINED

Output signal from D/C
logic that allows the

front panel to control

the READY lines to

the CPU.

fNew bus signal for 8800b.

222

PIN

NUMBER SYMBOL NAME FUNCTION

68 MWRITE MEMORY WRITE Indicates that the data

present on the Data
Out Bus is to be written

into the memory loca-

tion currently on the

address bus.

69 PS PROTECT STATUS Indicates the status of

the memory protect

flip-flop on the

memory board current-

ly addressed.

70 PROT PROTECT Input to the memory
protect flip-flop on the

board currently ad-

dressed.

71 RUN RUN Indicates that the 64
/RUN flip-flop is Reset;

i.e., machine is in RUN
mode.

72 PRDY PROCESSOR READY Memory and I/O input

to the CPU Board wait

circuitry.

73 PINT INTERRUPT REQUEST The processor recog-

nizes an interrupt re-

quest on this line at the

end of the current
instruction or while

halted. If the processor

is in the HOLD state

or the Interrupt Enable
flip-flop is reset, it will

not honor the request.

BUS STANDARDS 223

PIN
NUMBER SYMBOL NAME FUNCTION

74 PHOLD HOLD Processor command/
control input signal

that requests the

processor enter the

HOLD state; allows an

external device to gain

control of address and
data buses as soon as

the processor has com-
pleted its uses of these

buses for the current

machine cycle.

75 PRESET RESET

76 PSYNC SYNC

Processor command/
control input; while

activated, the content

of the program
counter is cleared and
the instruction register

is set to 0.

Processor command/
control output; pro-

vides a signal to indi-

cate the beginning of

each machine cycle.

77 PWR WRITE Processor command/
control output; used

for memory write or

I/O output control.

Data on the data bus

is stable while the PWR
is active.

78 PDBIN DATA BUS IN Processor command/
control output; indi-

cates to external

circuits that the data

bus is in the input

mode.

79 A0

80 A1

Address Line

Address Line 1

(LSB)

81 A2 Address Line 2

224

PIN

NUMBER SYMBOL NAME FUNCTION

82 A6 Address Line 6

83 A7 Address Line 7

84 A8 Address Line 8

85 A13 Address Line 13

86 A14 Address Line 14

87 A11 Address Line 1

1

88 D02 Data Out Line 2

89 D03 Data Out Line 3

90 D07 Data Out Line 7

91 DI4 Data In Line 4

92 DI5 Data In Line 5

93 DI6 Data In Line 6

94 DM Data In Line 1

95 DIO Data In Line (LSB)

96 SINTA INTERRUPT
ACKNOWLEDGE

Status output signal;

acknowledges signal for

INTERRUPT request.

97 SWO WRITE OUT Status output signal;

indicates that the oper-

ation in the current

machine cycle will be a

WRITE memory or

output function.

98 SSTACK

99 POC

100 GND

STACK

POWER-ON CLEAR

GROUND

Status output signal ;

indicates that the ad-

dress bus holds the

pushdown stack address

from the Stack Pointer.

BUS STANDARDS 225

as Z-80's, 6502's (and even 6800' s) can also be used (and are used) in S100

systems.

The other host of signals are control signals. The S100 bus has far more

than anyone will ever need of these, and suffers from being designed before

a system-controller chip was made available for the 8080. Because of this,

many of the signals are due to the original Intel problem with pin limita-

tions, as discussed in Chapter 2. Obviously, a new S100 bus would be

needed, with these control signals reduced to a managable number. This

will probably never happen. A standard can always be improved: but it

won't be—this is why it is a standard!

The SI00 bus is a practical bus, and will perform well in most applica-

tions. The problems mentioned here should be avoided, when new bussing

schemes are being considered in the next few years for fu-

ture systems.

Mg M
3

T
3 |

T
x |

T
2 ,

T,

01 J\
02

T.5-0

7-0

PSYNC

PDBIN

BYTE
TWO

T—"
„/ BYTE \ /

ONE

/ STATUS _kSB ?_S/ /STATUS \mSBM3./

/ ^_

^

N

s~^.

PWR

STATUS

INFORMATION XSMEMR XSMEMR

6.9 Memory Read Cycle on SI 00 Bus

226

The bus provides: 8 data in, 8 data out, 16 address, 3 power-supply, 8

interrupt and 39 control lines. Other pins are unused or reserved for future

use.

The data-bus has been changed from the normal bidirectional 8080 bus
to two unidirectional data buses. One for data-input to the processor, and
one for data-output from the processor. In this system, there is no real

advantage to this, as many peripherals actually hardwire the two buses

together. There is also no real disadvantage, except the need for eight

more pins.

The address-bus is the typical buffered 16-address-lines, which are

found in every standard microprocessor system.

The power-supplies are most interesting. There are two philosophies for

15-0

7-0

PSYNC

PDBIN

\

PWR

STATUS

INFORMATION

\

X wo

6.10 Memory Write Cycle on SI 00 Bus

BUS STANDARDS 227

power distribution: regulate at a control location and distribute power, or

regulate locally on each module. Altair chose the latter. It is a good choice

because power distribution to the modules is simplified, and noise cross-

coupling between the modules is reduced. It is a more expensive choice in

that the regulators cost must more than a single good regulator would cost,

and it is a marginal choice due to the variations in regulated voltages be-

tween modules.

The design of an SlOO-bus-compatible peripheral is discussed in the

example at the end of this chapter. Timing diagrams for memory-fetch and

store cycles are presented in Fig. 6-9 and 6-10. They illustrate the basic

timing of the 8080 system, and the basic signals used for these transfers.

Note how the most important signals are PWR and PDBIN. These two
signals control the direction of the data on the buses: fetching or storing. In

conjunction with the status information, all memory transfers can be iden-

tified by these few lines.

A 6800 SYSTEM BUS:

Described here is the Altair-680B 6800-system-bus. This bus was well

thought-out, by comparison to the problems of the SlOO-bus.

The system has eight bidirectional lines for data, sixteen unidirectional

lines for address, and nine control lines.

The data and address buses are quite the same as any other system's

buses. The control lines contain the minimum number of useful lines

needed. They are: clock $2, reset, halt, R/W, VMA, DBE, R/W-P, BA,

and TSC. These are summarized in Table 6-11. Not described in the Table

are the IRQ and NMI interrupt-request lines. They appear also on the

control bus.

This bus provides clean, concise signals for fetching and storing informa-

tion. It is an example of a well thought-out design. Unfortunately, the <1>1,

and <E>, drive and 4>2-drive clock signals are present on this bus for no

reason, except presumably to decrease noise-immunity. One well-isolated

high-speed clock is all that most buses can have, without resorting to un-

usual and expensive shielded backplanes.

IEEE-488-1975

This bus is intended for connecting systems, rather than modules. Such

devices as computers, voltmeters, power-supplies, frequency-generators,

and others can be equipped with a 488 bus. The 488-bus was a result of three

years of discussion in the IEC (International Electrotechnical Commis-

228

SYSTEM CONTROL BUS

The System Control Bus consists of the following signals:

CLOCK: The system clock is a 500 KHz asymmetrical, two phase,
non-overlapping clock that runs at the vcc voltage level. Phase
one (01) is used for internal chip operations. All data transfers

take place during Phase Two (02). Therefore, 02 is used
throughout the system to enable memory and interfaces such
as the Asynchronous Communication Interface Adapter
(ACIA).

RESET: This input is used to initialize the system after a power down
condition due to either an initial start-up or power failure.

It is also used to reinitialize the MPU at any time after start

up. When a positive edge is detected on the RESET input,

which is caused by a manual front panel reset, the MPU will

begin the restart sequence. Within the restart sequence, the

Program Counter is loaded with the contents of the reset

vector location (FFFE, FFFF), which contains the starting

address of the System Monitor.

HALT:

R/W:

VMA:

DBE:

The Halt line is used for external control of program execution.

When in the high state (RUN), the MPU will fetch the instruc-

tion addressed by the program counter and begin program
execution. When the Halt line is low, all of the activity within
the MPU will be halted. The Bus Available (BA) signal will

then go high and the Read-Write (R/W), Address and Data lines

will all be in the high impedance state. With BA high, the front

panel addressing and data deposit functions will be enabled.

Read/Write controls and indicates the direction of data trans-

fer. When in the high state (READ), data is read into the MPU
from memory and peripherals. When in the low state (WRITE),
data is written into memory or peripherals. When the processor
is halted, R/W will turn to the off (high impedance) state.

The VMA output indicates to the memory or the peripherals,

such as an ACIA, that a stable, valid memory address is on the

bus.

The DBE input is the three-state control signal for the MPU
data bus and will enable the bus drivers of the 6800 when in

the high state. Phase 2 is used to directly drive this input.

During an MPU read cycle, the data bus drivers are disabled

internally, i.e., within the MPU.

R/W-P: Read/Write-Prime is developed by NANDing the Read/Write
signal and 02. The Read/Write-Prime signal assures that data

will always be read or written while the data bus is enabled and
not during period of invalid data.

BUS STANDARDS 61
* 229

sion). In 1974, the IEEE approved the IEC draft, resulting in IEEE-488-
1975. Hewlett-Packard was one of the prime influences in the development
of this bus, and the handshake technique used is patented by Hewlett-

Packard. All producers of a 488 compatible interface must purchase the

license to use the bus handshake circuitry (The bus is sometimes called

HPIB or Hewlett-Packard Interface Bus).

DATA BUS (8)

DAV
NRFD

NDAC

ATN
SRQ

REN

DEVICE A

- TALK
- LISTEN
- CONTROL

iz ±1 5Z.

^>
DATA

BYTE

TRANSFER
CONTROL

GENERAL

INTERFACE

MANAGEMENT

iZ
DEVICE D

EX: COUNTER

6.12 488 Bus Signals

The basic bus connects to devices that can do one or more of the

following:

1

.

control other units — controller

2. take information from the controlling unit — listener

3. give information to the controlling unit — talker

The bus consists of eight bidirectional data lines, three byte-transfer

control lines, and five general control lines.

The eight data lines will carry: device commands (only 7 bits used),

address and data (8 bits).

Since this system has no address or complete-control buses, the data bus

is used to perform all these functions. The rest of the lines control the

function of the data-bus and how it is used.

The transfer-control lines are used to implement the "handshaking"

required between the device outputting and the device inputting.

The last five lines control the general conditions of the system. These

are: Attention, Interface Clear, Service Request, Remote Enable, and

End-or-Identify.

230

Attention, when false, indicates that the data-lines contain data from one

to eight bits. When true, the data-bus contains a seven-bit command or

seven-bit address.

Interface Clear puts the system in a known state. It is similar to a

system-reset.

Service Request, when set true, flags the controlling unit to indicate a

device needs attention.

Remote Enable sets the mode of each device, in conjunction with other

codes, to operate remotely or locally.

End-or-Identify is used to flag the controlling unit, as to the end of a data

transfer.

The "handshaking" function is used when devices must wait for infor-

mation to become available. One line says, "How do you do?" The other

replies, "Fine, thank you, I have something for you". In return, the reply

is: "Please give it to me, I am ready". The dialogue continues with, "OK,
here it is", and ends with, "Thank you, nice meeting you."

In our case, we have three lines: DAV (data valid on data lines), NFRD
(not-ready-for-data; true indicates information accepted by listening de-

vice), and NDAC (not-data-accepted; true indicates system module ready

to accept data). The timing of the handshake appears in Fig. 6-13.

FIRST DATA BYTE SECOND DATA BITE

DI01-8

(COMPOSITE)

6.13 488 Handshake Timing

Note how all listening devices must accept the transfer of data before the

next transfer is initiated. If it appears complex— it is! Use of this standard

BUS STANDARDS 231

requires complete knowledge of all the states allowed by the protocol.

Some simple examples are presented in Fig. 6-14.

C 7>

iz

DEVICE
DATA

i_jl
SOURCE

HANDSHAKE

LAST

BYTE

INDICATOR

7T

7>

iz

IE
&

$
ATN

-EOI

-»- I BYTE
-+- XFER
-*. JDAV, NRFD, NDAC

-I LISTEN I

I I

6.14 Talker

<: 7^ $
-* ATN

—*-E0I

BYTE

XFER

rr
6.14^ Listener

In the "talk" example, the controller sends the address and command-
to-talk to the talker, by using ATN and the data-bus. Upon recognizing its

address, and the command, the talker will then send information to a lis-

tener, via the data-bus, using the handshake signals. When the transfer is

finished, the EOI line may be used to indicate the end of the block.

The "listen" example works similarly. The controller sends the address

via the data-bus, using the ATN line as before. In this case, the command
sent next is for the device to listen to a talker. The transfer of data, byte by
byte, is then begun using the data-bus, and handshake signals. The EOI
then indicates that the transfer is complete.

In summary, the IEEE-488 bus represents quite an advancement in intel-

ligent data acquisition systems. As more manufacturers produce compatible

equipment, the standard will become even more widespread. In fact, the

Commodore Business Machines home microcomputer system is equipped

232

with an IEEE-488 bus interface. This may indicate a new trend in home

computing as well as in industry.

The example presented here illustrates how a 6800 system can be inter-

faced to the 488 bus. The schematic appears in Fig. 6-15, and contains two

PIA's, bus transceivers, and some random logic for the control lines. The

software uses over 800 bytes of ROM for the program, and 1024 bytes of

RAM for buffer space.

data

address

control

6.15

C LL
D =>

TT
)L_D[

buffers

c—

)

n

data

control

dJ
mode switches

Ti

l_y_y_y_

n
y y y—21—2L

6800 to 488 Bus Interface

T-"l°-°-
-L-a|o-o>-

CAMAC

The IEEE-583 standard describes what is known as the "Computer-

Automated-Measurement-and-Control-Standard or CAMAC. These also

cover CAMAC related standards.

The CAMAC concept covers all areas of instrument interfacing. There

is the rack and card-cage standards for physical dimensions, there is the

power-supply standards, and there is the "dataway" bus standard. In addi-

tion, there are standards for the inter-rack bus: the "parallel highway," and

serial inter-rack communications: the "serial highway."

It was developed for the nuclear industry, and all domains of the

CAMAC standard contain rigorous specifications. CAMAC systems are

required to be built to quite exacting standards.

Physical Dimensions:

Fig. 6-17 illustrates a CAMAC "crate". The crate is the basic system

sub-unit. It contains a controller, and up to 24 peripheral interfaces. The

BUS STANDARDS 233

6.16 HP 1600S Analyzer

234

© # a * * ate 5** * ** ? ?

6.17 CAMAC CRATE with Modules

BUS STANDARDS 235

-\ P p «\.%* p p *\ *•

a
I

6. 1

8

CRATE and Power Supply

236

size of each card, and the connector types, are all specified.

Power-Supply

The power-supply is a four-voltage type, supplying regulated ±6 and ±24

volts. Stability, regulation, and transient suppression are all covered in the

standard. Remember that the power supply, while often ignored, is the

basic most important unit in any system. Any flaws in the power supply will

show up everywhere else in the system. Thus, CAMAC does something no

other standard does: it guarantees the user that the power supply will be the

least of all problems in the system. Fig. 6-18 illustrates the crate and

power-supply (Pictures are courtesy of Lawrence Berkeley Laboratory).

Dataway

The CAMAC Dataway bus consists of the following lines: three control,

five command, five address, twenty-four read, twenty-four write, two tim-

ing, and four status. The lines are described in Table 6-19.

The three controls are: initialize, inhibit and clear. These signals are

used to put all devices on the dataway into a known state.

The five command lines determine the function to be performed. The 32

possible functions are all defined in the standard. Some functions are for

read, write, and status transfers. Others are either reserved for future use,

or not defined.

The 24 read and write lines form the data bus. If extra address informa-

tion is required, the data buses may be used to load further address informa-

tion. 24 bits allows for simultaneous transfer of three 8-bit bytes for efficient

operation. Since some CAMAC systems contain microprocessors, these 24

lines could carry the address and data from the microprocessor. Since data

transfers may occur as fast as 106 period second, this bus has a greater

bandwidth than the other buses so far described.

CAMAC can transfer: 24 bits x 106 transfers/second, or 24 million

bits/second. This is important in nuclear applications, where large amounts

of data must be transferred quickly during each experiment.

The two timing signals provide the information necessary to indicate

when data are valid.

The status lines are used to monitor the requests for service to the

controller from the peripheral dataway interfaces. There can be 24 separate

requests in a single crate.

In summary, the CAMAC standard truly implements a concept. It cov-

ers all aspects of the communication problem. It includes standards for

data-formatting and crate-to-crate communications, as well as software

conventions.

BUS STANDARDS 237

A list of Dataway signals available at each of the normal
atations 1 through. 2U of a 25-station CAMAC orate

Title Designation Use in Module

Common Control Signals

Initialize

Inhibit

Clear

Commands , addressed
Function codes

Addressing
Station number

Fl,2,l»,8,l6

Al.2,4,8

R1-B21*

W1-W2U

Timing
Strobe 1 and Strobe 2 S1.S2

Status

Look-at-Me

Q-Response

Command Accepted

Busy-

Sets registers or control functions in a module
to an initial state, particularly when power
turned on.

Disables features for duration of signal.

Clears registers, or resets flip-flops.

Carried on Dataway in binary code. Defines the
function to be performed in a module during
command operations.

Selects the module. There is an individual line
from crate controller to each station.

Also binary coded. Selects a location, within
the module, to which the command is directed.
There are 16 possible subaddresses

.

Transmits digital information from module to
Crate Controller. Format is bit-parallel words,
2k bits maximum.

Transmits digital information from Crate
Controller to module. Format is same as for
Read bus.

These strobes are generated by CC during every
Dataway operation. Used by modules for timing
acceptance of data or execution of features of
an operation.

A signal from module to Crate Controller indicating
request for service or attention. There is an
individual line from each module to control
station.

A one-bit reply by module to certain commands
issued by Crate Controller.

Indicates the ability of a module to execute the
current command operation.

Indicates a Dataway operation is in progress

.

6.19 Dataway Signals

238

SERIAL STANDARDS:

Serial transmission requires only one or two wires to carry all necessary

signals between modules or systems. In order to transmit address, data, and

control, they must be sent bit by bit.

Described here are the RS232C, RS422 and 423, asynchronous and syn-

chronous communication standards. In addition, data standards such as

ASCII and SDLC will be covered.

EIA-RS232C

The Electronics Industry Association (EIA) standard RS232C covers

the electrical specifications for bit-serial transmission, as well as the physi-

cal specifications. It defines the handshaking signals used to control stan-

dard telephone connection equipment, and standard modulator-demod-

ulators (modems).

Electrically, the standard uses nominal plus and minus 12 volt pulses to

effect information transfer. The RS232C standard specifies a 25-pin connec-

tor with the signals shown in Table 6-20. All 25 lines are specified, but only

the first fifteen in the Table will be described.

GROUND

XMIT DATA (TO COM EQUIPMENT)

REC DATA (FROM COM)

REQUEST TO SENT (TO COM)

CLEAR TO SEND (FROM COM)

DATA SET READY (FROM COM)

DATA TERMINAL READY (TO COM)

RING INDICATOR (FROM COM)

RECEIVED LINE SIGNAL DETECTOR (FROM COM)

SIGNAL QUALITY DETECTOR (FROM COM)

DATA RATE SELECTOR (TO COM)

DATA RATE SELECTOR (FROM COM)

TRANSMITTER TIMING (TO COM)

TRANSMITTER TIMING (FROM COM)

RECEIVER TIMING (FROM COM)

SECONDARY DATA AND REQUESTS

6.20 EIA RS232C Signals

The secondary lines provide the data and control paths for a second

serial channel running at a much lower speed than the primary channel. The
second channel is then identical to the first, except for speed. The second

channel is hardly ever used, but when it is, it contains control information

for the modems connected at each end of the communications line.

The main signal lines are transmit data and receive data. These lines are

BUS STANDARDS 239

used to send serial information between the two systems. The bit rate may
be any one of the following standard rates:

19,200 1,200 110

9,600 600 75

4,800 300 50

2,400 150

Other rates are also occasionally used. The teletypewriter terminals run at

110, 150, or 300 bits/second. CRT terminals typically use any of the speeds
above 1,200.

Quite often, serial data are transmitted over telephone voice-grade lines.

The data must first be modulated, so that they may be transmitted. For bit

rates of less than 300, the method of modulation is known as FSK:
frequency-shift-keying. The "marking" or logic "1" condition is repre-
sented by a tone of given frequency, and the "spacing" or logic "0" condi-
tion is represented by a second, different, frequency. Bit rates above 300
must use phase-modulation techniques, due to the lack of available
bandwidth. Quite often, voice-grade lines are too noisy for high-rate com-
munications. More expensive data-grade lines must be used.

The other signals are used to indicate the status of the modulator-
demodulator (modem) communications link. Signals such as: "request-to-
send", "clear-to-send", "data-set-ready", "data-terminal-ready", are
used to control the modem link.

PHONE LINE ANSWERED

(2)

REQUEST TO SI ID

CLEAR TO SEND

DATA TERM READY

A/VIA
6.21 EIA RS232C Modem Handshake

240

The timing in Fig. 6-21 is meant to show a typical communications

transaction. Note how the signals between the modem (communications

equipment) and the computer (or terminal) implement a similar kind of

handshake to that used in most buses—especially the IEEE-488. The dif-

ference, in this case, is that the handshake is used only at the beginning, and

end, of a block of serial data.

RS232C is popular, as almost all dial-up time-share systems use this

standard in their communication subsystems. A similar standard is current-

loop. This is used in the mechanical teletypewriters. A good thing to do is to

convert all loop devices to EIA-RS232C via a loop-to-EIA converter. In

this way, all communications become standardized. A loop-to-EIA con-

verter for a teletype is shown in Fig. 6-22. Also useful is what is known as

auto-loop back, shown in Fig. 6-23 . This is where the computer, terminal,

or modem, does not have the full standard implemented. The jumpers

specified will usually allow the devices to believe that all conditions are

"OK" for data to pass.

TTY
LOOP

+ o-
KEYBOARD

- o~

+ 15V

-v/vr TO COMPUTER

+ o-
PRINTER

2Nl(0l»

I
10K

vv
1N91U

FROM COMPUTER

JT"

L-LKi-tSS U, 5, 8, 20 TOGETHER
ON EACH PLUG

6.22

X
y\

6.23

BUS STANDARDS

RS232C LINK

N

MODEM
OR

TERMINAL

Auto Loop Back Connection

241

RS422 and 423:

RS232C transmits signals as single-ended voltages. The "mark" or
"space" condition is represented by the voltage between two wires. Thus,
the transmit path has two wires, and the receive path has two wires. The
advantage is that the path may be physically longer between devices, due to
the noise immunity of a differential channel. In the same way, the data rate

may be higher, due to reduced noise effects.

CHARACTERISTIC RS232 RSU22 RSU23

MAXIMUM LIKE LENGTH 100 ft. 5000 ft. 5000 ft.

MAXIMUM BITS/SEC. 2 x 10 1* 106 105

DATA "1' * MARKING
DATA "0' » SPACING

-I.5V -36V
+1.5V +36V

VA VB

VA VB
VA = -

VB = +

SHORT CIRCUIT 100 100 100
fflWER-OFF LEAKAGE,
MAXIMUM VOLT APPLIED
TO UHPOWERm

300 100 A 100 A

RECEIVER INPUT,
MINIMUM 1.5V (single-ended) 100 mV (differential) 100 mV (differential)

6.24 Comparison of RS232C, RS422, and RS423

Fig. 6-24 illustrates the difference between the three standards. Fig. 6-25

shows the types of drivers and receivers used for the lines. RS422 and 423
are not used often due to the already widespread use of RS232C and the

infrequent need for such high data rates and line lengths.

Of course, the data sent back and forth may be formatted in many ways.
The topics of asynchronous, and synchronous data transmission and stan-

dards for information exchange will be covered next.

ASYNCHRONOUS COMMUNICATION

When data are sent in bursts of equal duration, without clock informa-

tion, they are being sent asynchronously, without a clock. When data are

242

TTL

~L
{>— -it

12 VOLTS

MC1U88 MC ll*89

>
JT"

COMMON GROUND

RS!+22

y° ^t=%>
X

MCI It

X

NO COMMON GROUND
(UNBALANCED DIFFENTIAL

TRANSMISSION)

RSi*23

4f-

I

=>
(BALANCED LINE)

6.25 Drivers for RS422 and RS423

TTL

sent with synchronizing character codes imbedded within the blocks, they

are being sent synchronously: with a clock.

The most common asynchronous data structure, shown in Fig. 6-26, is

used by most CRT's and teletypewriters. It consists of the 10 (or 11) bits

described in Chapter 4. The start bit, eight data, and one or two stop bits,

comprise a character. The most popular standards for character codes are

ASCII and EBCDIC.
ASCII stands for "American Standard Code for Information Ex-

change". It uses seven bits to encode 128 possible characters. An eighth bit

HARK

SPACE

9.09 ms

~^~
)
lihhUlsUHsl

I ISB MSB

STDP1ST0P2

*H

DATA READY

6.26 Serial Data Format

BUS STANDARDS 243

may be used for parity. Note that many codes are used for controlling the

functions of a data link. Codes such as: "Begin Text", "End of Text", etc.

are used to format and transfer blocks of characters.

EBCDIC is similar except that the 128 codes are encoded differently.

Simple code-conversion ROM's can convert ASCII to EBCDIC, and
EBCDIC to ASCII. Such a ROM has 8 inputs: seven address-lines for the

data input, and one address-line to specify the conversion (either ASCII to

EBCDIC or EBCDIC to ASCII). It has seven outputs for the converted
character. The size of this ROM would be 256 bytes by 7 bits/byte. This is a
small ROM by today's standards and it is relatively inexpensive to program
or purchase.

Who uses EBCDIC? IBM. Who uses ASCII? Practically everyone
else. Other codes exist, such as the five-bit Baudot code (obsolete today)

which can also be converted also by a look-up ROM.
Naturally, a program may be also be used to convert from one code to

another.

BIT NUMBERS

1

1 1

1

l 1

1

1

1

1

1

1
'

' *

b7

1

*>6

1

b5

* 1

b
3

1

b2

1

»>1 \hex 1

HEX ^V 1 2 3 4 5 6 7

NUL DLE SP • P * P

1 1 SOH DC1 ! 1 A Q a q

1 2 STX DC2 2 B R b r

1 1 3 ETX DC 3 # 3 C S c s

1 1 EOT DC 4 $ 4 D T d t

1 1 5 ENQ NAK X 5 E U e u

1 1 6 ACK SYN k v 6 P V f V

1 1 1 7 BEL ETB i 7 w g w

8 BS CAN (8 H X h X

1 9 HT EM) 9 I Y 1 y

1 10 LP SUB • J Z J z

1 1 11 VT ESC ; K [k
1

1 12 PP PS . < L \ 1
!

1 1 13 CR as - - M] m
1

X 1 IK SO RS > N A n ~
1 1 1 15 SI US / ? O DEL

6.27 ASCII Code Table

244

I X K o a. ffi

u QUkOHMmx^\ei-o»<eucub.o ,£5 J?5 ^ ^ 5"2 5" *5 jt 5 j? jt £ S\ S

i

v o«cm nj uv»^«> o><«!ooMfc.3-<jj «.5 5« £2 SSSiiSSisSSSiE™ iCS «S ft 3 8

!

6.28 EBCDIC CODE TABLE

BUS STANDARDS 245

SYNCHRONOUS COMMUNICATION

An asynchronous transmission format contains at least two extra bits per
character: start and stop. When data are sent as a continuous stream of bits,

with no start or stop, the receiver might loose its timing, and scramble the

incoming data. To prevent this, synchronizing characters are sent every

hundred or so bytes. There exists the necessary logic, at the receiving end,

to resynchronize the decoding circuitry, often enought to remain locked in.

Using this method, known as synchronous communication, there will only

be eight extra bits, for every 800 bits. This is 1% extra data versus 20%
extra data in the asynchronous case.

Various protocols are used for synchronous data links. A simple one that

was described earlier is the data-format for the floppy-disk, or the KIM-1
tape-recording standard. The format for the disk is similar to most syn-

chronous formats. In general, the transmission begins with a few syn-

chronizing characters, continues with long data blocks interspersed with

synchronizing characters, and ends with a parity or check-sum character,

plus end-of-record character. Upon receiving a block, if the check-

character does not agree with the data, the receiving end will ask the trans-

mitter to retransmit or try again.

[SYNC CHARS I
REC ID

I DATA I - I DATA |CHECk|eN0 I

1 'PREAMBLE «""»" -»-

Synchronous Data Format

SYNC CHARS

POSTAMBLE

•SYNC AS OFTEN "MAY NOT BE NECESSARY
AS NEEDED MAY
NOT BE NECESSARY

IBM Bi-sync, SDLC, and other protocols differ in complexity and

communications control abilities. Basically, they are all synchronous for-

mats. An important point of synchronous communications is that the error

checking schemes are much more complex than in asynchronous communi-
cations. Since synchronous communication saves as to the number of bits

transmitted, extra bits are sometimes added to each block so that, not only

errors can be detected, but they can be corrected. This means retransmis-

sion may not be necessary.

A CASE-STUDY: INEXPENSIVE ANALOG BOARD FOR S100 BUS:

This circuit in Fig. 6-29 shows a digital-to-analog converter with analog-

to-digital conversion capability. The circuit has 6 integrated circuits: one

246

6~\f->

HF*

6.29 S100 A/D, D/A Board

BUS STANDARDS 247

triple three-input nand-gate, one 74LS138 decoder, one 74LS125 tri-state

bus-driver, one 8212 octal-latch, one MCI 408 D/A converter, and one
LM324 quad operational amplifier. With these components, an SI 00 bus
analog measurement assembly has been designed.

Features of this module are:

— S100 bus compatible, only 1 LSTTL load per bus-line

— 8-bit resolution for both D/A and A/D
— D/A conversion in 20us

— A/D conversion in 1ms

— 0-10 volt input and output with extra 1 to 1000 gain stage for low-level

inputs.

The circuit will be described part by part, to explain the function of each

component.

The Hardware:

The output data-bus which performs all data transfers to memory or

output ports is connected to an 8212 latch. Each bit is loaded by an input of

the latch. Each input represents % of a low-power-Schottky input load.

The 74LS138 decoder, along with the 74LS10 and 74LS04 decodes the

output to port "F8" (hexadecimal). The address is partially decoded by Vt,

of the 74LS10 so that bits A7, A6, A5 must all be "l's" to enable the

74LS138 decoder. Then the bits A0, Al, A2, A3, and A4 are decoded by
the 74LS138. The first output represents "F0" on the low eight address-

bits. This enables one of the chip-selects on the 8212 latch.

The other chip-select is driven by the condition PWR false and SOUT
true. This is done by inverting PWR and "NANDing" it with SOUT. The
output of the NAND is passed through an inverter to the second chip-select

of the 8212.

This way, the output data-bus is latched into the 8212 latch when the

address is "F0", and the control signals indicate an output instruction is

being executed. The timing is shown in Fig. 6-30.

The latched data is sent to a MCI408 digital-to-analog converter. At the

output of the converter, a current proportional to the binary input is pres-

ent. In order to convert it to a voltage, a current-to-voltage converter circuit

is used. It is implemented with V\ of the LM324 quad op-amp.

The output is now a voltage between and 10 volts for inputs between
"00" and "FF" (hexadecimal). The next op-amp, in the LM324, is used to

buffer the output so that an output may be driven, without affecting the

comparator section.

248

|

Ml Ml Ml M,

T, Tl Tj T, Tl
1

T» T) T, ! Tl Tl T|

.. A n r\ n A A A A 1

0» ' / \ I—v i
—\

!

~
1 \ !

r BYTE
ONE

\jimknown/
BYTE
TWO

—p-
I/O DEVICE
NUMBER \

o,. r v..
FLOATING

/ 'u
/

J
' n"IT ACCUft ULATOR \

SYNC /
\ / \ r~ \ j

OBIN
/

~~\
|

1

1

1

1

\
WB

STATUS
INFORMATION /©

X 1°

6.30 S100 Output Write Cycle Timing

The third op-amp is used as a comparator for the analog-to-digital con-

version. The op-amp compares the unknown input with the output of the

D/A. If the unknown signal is too small, a variable-gain amplifier, im-

plemented with the fourth op-amp is used to boost the signal. Note the

protection diodes, that are used, so that no damage will be caused to the

inputs, as long as voltage transients there are kept below 100 volts.

The output of the comparator is clamped to TTL levels by the resistor-

diode combination, so the 74LS125 tri-state driver can be driven. The driver

is enabled by an input command, and the address "F9" (hexadecimal). The
decoding is done similarly to the output port, except that the second output
of the 74LS138 is used to decode the address "Fl." In addition, the control

lines PDBIN and SINP are "ANDed" with the address, to enable the

driver to bit 7 of the data-bus.

By driving bit 7, we can input from port "Fl", rotate bit 7 into the carry

bit, and test the carry, to see if we are above, or below, the unknown input

voltage. Outputting a new value to port "F0", and checking "F7" again,

will form the basis of our analog-to-digital converter. Timing for an input

operation appears in Fig. 6-31.

Power is supplied by the +5 volt voltage-regulator for all Vcc pins, and
the Zener-diode regulators for the + and - 15 volts voltages, required for

the op-amp package.

Note that three of the bus drivers were used as inverters. Fig. 6-32

shows how this is done.

BUS STANDARDS 249

M, M, M]
|

T, Tj T,
! T. T, T2 T, T,

I
T,

|
T, i

r\ rn n n n n r\ n n n
01

. i

I/O OEVICE NUMBER
*l»-0 / "i BYTE

ONE

\unknown/
!

BYTE
TWO "~"7

INPUT DATA TO
ACCUMULATOR 'i

Ojo / . FLOATING 1 i
.

n '
V. _

•

SYNC J

i

v_ __v~~ \ r-
\

r \

oeiN
\ r~ \ /

'

v_
READY

I" i

WAIT
..„..

i

WR
..,..

i

'

STATUS
INFORMATION

/

f

o

1

X© X®
:

6.3

1

S 1 00 Input Read Cycle Timing

-|-5V

INPUT

1^18125

OUTPUT

240

6.32 Use of 74LSI25 As An Inverter

When the input is low, the driver is enabled, and the output will be pulled

up to a logic "1". When the input is high, the driver is disabled and the

240-ohm resistor pulls the output to a logic "0". We could have used a hex

inverter for these functions, but it would have increased the parts count.

The Software

For digital-to-analog conversion, the binary value to be converted is

output to port "F0". Each step represents 10.0 volts/256 = 39.0625 milli-

volts. This means that if you want 2.5 volts out, the binary number is:

vout convert

39.0625 x 10
-3

= Numi
to

binary

- Bin2

250

2.5

= 64io OIOOOOOO2
39.0625 x 103

or 40 hexadecimal. 80 hex will be 5 volts, because the converter is linear. In
software we need:

MOV A, M : get value from memory to output

OUT FOH : output

QUESTION: What is the highest frequency we could generate with this

converter?

ANSWER: Since the sampling theorem states we need to sample, or, alter-

natively, to output a value, at least at twice the rate of the highest

frequency—we would have:

Vi = fmax
conversion

1

20 x 10~ 6

or

V2 = 250 Khz

In practice, our program will not be able to fetch information fast enough to

use this bandwidth; but, we will be able to generate music or voice range
sounds.

Analog-to-Digital Conversion

To perform the A/D conversion, we need to implement the successive-

approximation algorithm in software. Another technique which can be used

is the counting conversion technique. Both will be discussed.

Successive-approximation was presented in Chapter 5. In order to code
this into an 8080 assembly-language subroutine, we need to examine the

flowchart of Fig. 6-33.

A program that will perform this conversion appears on Fig. 6-34. Note
how this program uses the "NOP" and "CMP E,M" instructions to bal-

ance the timing of the "JC" instruction. This is done so that the conversion

will take the same amount of time to execute through either path of the

flowchart.

BUS STANDARDS 251

CALL CONV:

Set Bit Mask

Set Guess = HI

^IS IT BIGGER
NO

last guess
to small _

~YES last guess to,_big

Driv. old Bit Mask and
AND with guess

6.33 Successive Approximation Flowchart

The conversion time is 373.5 uS according to the instruction execution

times, without a wait state. We can only sample every 380 uS approxi-

mately.

QUESTION: What is the highest frequency we can sample?

252

MVI D, 80H : temp mask in D
MVI B, 80H : mask in B
MVI C, 80H : guess in C

GUESSOUT: MOV A,C

OUT DAC : OUTPUT GUESS

MOV A,B
RRC
RC done if carry bi

set
MOV B,A

IN SENSE
RLC
JC bigger
MOV A,D
RRC
MOV D,A
MOV A,C
ORA B
MOV C,A
CMP E,M
JMP GUESSOUT

BIGGER: MOV A,D
CMP
AND C

MOV A,D
RRC
MOV D,A
NOP
JMP GUESSOUT

6.34 Program For A/D Conversion

BUS STANDARDS 253

ANSWER: Again, according to the sampling theorem it is:

1

• Vi = fmax
conversion time

1

380 x 10~ 6
!/2 = 1316 HZ

This means our converter can just barely go fast enough to digitize speech.

If we know our input is a slowly-varying waveform, we can convert in a

simple fashion. The flowchart appears on Fig. 6-35.

y>
cow
DOW

rr

1

S
STORE IN

TABLE

6.35 Slow Conversion Flowchart

The routine, as coded in Fig. 6-36 will place a new guess in memory
every 45 uS. As soon as 256 samples have been taken, the program will exit.

Note how instructions to store guesses, and "check for the end-of-table",

254

LXI H, TABLE START

MVZ A, 80H

LOOP: OUT DAC

MOV M,A

INX H

MOV B,A

MOV A,L

CPI

RZ

MOV A,B

IN SENSE

RRC

JC BIGGER

INR A

CMP E,M

JMP LOOP

OUT GUESS

STORE GUESS

ADVANCE TO NEXT ENTRY
POINT

BIGGER DCR A

NOP

JMP LOOP

6.36 Software For Slow Guess Table Converter

BUS STANDARDS
255

are placed before the "IN" instruction, to allow for the settling time of the

comparator.

This scheme does not really convert to a number, for each sample: it

merely tries to track the slope of the input-signal. This means that, as long

as the input changes no more than:

39.0625 x 10
6

volts

45.0 x 10 seconds
= .86 volts/second,

the numbers in the table will be accurate. How fast does a lKHz sine wave

change at its steepest slope? In Fig. 6-37 we find that it is 1000 volts/second:

So, we are limited by this method to sampling low frequencies, much below

1 Hz.

6.37 1000 volts/second lKHz sine wave

SUMMARY

We have designed an analog data-collection and control board. It was

designed to be connected to the SI 00 bus. Software was written to use the

features of this D/A and A/D-converter.

The buses and standards described are intended to make the job of

interfacing easier. To plug the device into a system with no extra work is

every interface designer's dream. We have seen how the many users of the

SI 00, CAMAC, IEEE-488 and EIA-RS232C standards create a large need

for standard-compatible devices, modules, and systems. If at all possible

—

stay within a standard. The design will be easier and your time may be

spent on the harder problems.

Parallel and serial bus standards, methods of communication between

256

modules, and an actual bus-interface example were presented. The S100
bus is the most popular parallel bus used now, with over 600 different types

of compatible boards being produced. The serial RS232C standard is the

most popular standard for data communications, and versions of data for-

matting are used, with modems, to store and retrieve data from cassettes

and cartridges, as described in Chapter 4.

BUS STANDARDS 257

9 *

fa**f»»^

2S8

CHAPTER 7
THE MULTIPLEXER —

A CASE STUDY

INTRODUCTION

This system is intended to concentrate 32 EIA RS232C compatible ter-

minals onto a single two-way high-speed transmission line. Each terminal

has buffered output and character-by-character input. Thus, the host com-
puter can spend less time executing the multiplexing task.

Designed for a PDP 1 1/70 , the system is also applicable, with only code

changes in the host machine, to almost any host computer. The cost of

providing this function is $50 per channel, as compared to usually around

$250 per channel. The system is also cost-effective in clusters of less than 32

terminals.

PROGRAM
*"

BOOT ROM

SERIAL

INTERFACE

CENTRAL

PROCESSOR

DATA BUFFERS

CORE OR RAM

t
1

7.0

AUTO-RESTART
POWER FAIL

'

SERIAL LINKTO THE

HOSTCOMPUTER

'

N-CHANNEL
TERMINAL

SERIAL INTERFACE

|

• • • |

/

o]
USER

A _^^J TE***** Z- RMINALS

[,, '—

System Ovei•view

CASE-STUDY: A 32-CHANNEL MULTIPLEXER 259

The system uses the 8080 microprocessor, 8251 USRT, 8259 interrupt

controller, and other components in the 8080 family. The system has no

modem-control features, as it was intended to be at the sight of the termi-

nals, saving even more money in man-hours of time, and cost of wire for

connection. This does not even include the cost-benefit of fewer telephone

lines and modems.

THE SPECIFICATIONS

The ability to connect a large umber of terminals to a time-sharing facil-

ity always presents the engineer with a number of problems. Most have to

do with the interconnection headaches of modems, telephone wiring,

patchboards for testing, and internal machine interfacing.

Remotely-located concentrators would eliminate many problems. The
new problem: cost. The design goal here is to service 32 terminals at an

input rate never exceeding 30 characters-per-second, and an output rate as

fast as possible. Given that the 8080A could execute roughly 300 instruc-

tions in the time between characters at 9600 baud, if it were to service 32

terminals on input, it would have to have less than 300 instructions in the

polling loop for the terminals. Any time left over would be used for output.

The code would have to be thought out byte-by-byte, with all coding being

carefully optimized. A prototype was built, under the assumption that it

could at least service 16 terminals in a degraded mode.
The typical statistics of our input was a maximum of 150 baud for any

second, and a rate of 50 baud, for all 32 terminals combined. Thus, when
completed, the multiplexer could handle a maximum of 150 baud on all 32 at

once, or a maximum of 300 baud on one. The output was a minimum of 300
baud for all 32 at once, and a typical 6000 baud, when there was a specific

demand from a single user.

ARCHITECTURE

The architectual block diagram is presented in Fig. 7-1. Each terminal

has its own USART, because each needs a dedicated serial interface. The

USART's are grouped into fours, and then placed onto cards, which are on

the 8080A system bus. There are 8,192 bytes of RAM for data storage, and

1,024 bytes of EAROM for program, in the system. Lastly, there is an

interrupt-controller and high-speed-channel card, which is on the bus.

Each terminal, through its USART, has a 128-character buffer as-

sociated with it, for buffering output to the terminal. This takes 4,096 bytes

of the available RAM. The terminals-to-host queue is 256 characters long.

These lengths were chosen to optimize the communication-channel trans-

fers. The method will not be discussed here.

260

CHANNEL

USART

(8151)

INTERRUPT

CONTROL

(82S9)

^

CPU

(8080)

(8224)

(8228)

ROM

(8708)

jt 37

RAM

32-

91L02

Jt

i A A n

USART

CARD

4

8251

AND

STATUS

E1ARS232C LINES
TO

TERMINALS

31

• • •

UPT08
USART
CARDS

llli
USART

CARD

8251

AND

STATUS

it IW

7.1

-DATA
-ADDRESS
-CONTROL

Multiplexer Block Diagram

There are three processes, running one at a time: input-output service

polling routine, host-to-terminal buffer interrupt process, and terminal-

holding-queue to host interrupt process. They will be described in the fol-

lowing section.

SOFTWARE

A flowchart of the software appears in Figs. 7-2, 7-3, 7-4 and 7-5. The
software can be divided into four parts: the initialization routine, the polling

routine, the interrupt routine to fill terminal buffers from the host, and the

interrupt routine to empty the terminal-to-host waiting-queue.

The initialization runs only when reset, then the latter processes may
run, one at a time. They communicate only through the output data-buffers

and share no other common memory space, other than pointer tables.

The initialization routine clears all memory, sets up tables, finds which

boards are plugged in, resets all USART's, and will print out errors, if a

debug board is installed. This is roughly all the system housekeeping. It sets

the stack-pointer, resets and sets the mode, speed, and number of bits-

per-word on the USART's. This section of the program is 60% of the code

used for the whole application.

CASE-STUDY: A 32-CHANNEL MULTIPLEXER 261

INITIALIZATION PROGRAM
ANDAUTO RESTART
DETECT AND ALARM

CHANNEL SERVICE

INTERRUPT SUBROUTINE

INTERRUPTS

INTERRUPTS

TERMINAL TO BUFFER
AND BUFFER TO TERMINAL
POLLING ROUTINE (MAIN)

BUFFER TO CHANNEL

FULL INTERRUPT ROUTINE

TOTAL 8080A BYTES FOR PROGRAM; S26 BYTESI LESS THAN X OF THE 2708 USED

7.2 Multiplexer Software : Overall Program Flow

262

Try next USAKT
tuffer area

7.3 Multiplexer Software: Polling Loop

Fetch character
waiting in host

USART

Status Request
Send status
Update status

Place in last
tuffer pointed

Update last
tuffer pointer

7.4 Multiplexer Software: Host to Mux Interrupt

CASE-STUDY: A 32-CHANNEL MULTIPLEXER 263

RETURN

Empty queue by
one character

RETURN

7.5 Multiplexer Software : Mux to Host Queue Interrupt

264

The polling routine goes through the list set up by the initialization

program, testing to see if there has been a character typed by a terminal, or

if there is data in a buffer, to be output to a terminal. Thus, each of the 32

terminals is serviced once during each pass. If the channel-to-host is busy

(it takes 1 millisecond to transmit a character at 9600 baud), the characters

are put into a waiting queue, that will be serviced when the "channel-not-

busy" interrupt comes in. If the channel is not-busy, the waiting queue is

emptied by one character, and the character currently waiting is placed at

the end of the line, in the queue. In this way, the queue-service routine is

primed and will continue to interrupt, when not busy, to empty all the

characters waiting for the channel. The format used for data transmission is

the following: the tag for that terminal is sent first, and then the character is

sent to the host, via the queue routine. Each board has its own priority

table, so that only one input is processed, per pass, per board. After a

character is transmitted, or, if a board has no characters, the buffer area for

each terminal is then checked to find if there is an output character pending.

These are placed in the buffer by the host-interrupt routine. If so, the buffer

gives its character to the USART, to be transmitted, and all the pointers are

updated. When there are no incoming characters, and no buffer is full, the

system still polls each board for input, and each USART buffer for output.

The channel-queue-interrupt routine looks at the queue, and transmits a

character, if there is one waiting; otherwise it returns. This routine will not

be called again by interrupt, until the polling routine primes it by sending a

character.

The host-interrupt routine waits for information to come from the 1 1/70,

or host-machine, before it executes. When a character is received, and

ready, an interrupt is generated, that then starts this interrupt process. This

process checks the incoming character and, if it is data, places it in the

appropriate output buffer area. After this, polling resumes. Other charac-

ters from the host perform status requests, data-tag-switch, and soft-restart

commands.

The host-interrupt routine may interrupt at any time during polling. It

first saves the status-vector of the machine, then picks up the character that

caused the interrupt. If the most-significant-bit (MSB) is a "1", the charac-

ter is a tag, or a command. If it is a tag, it is stored, so that the following data

characters are loaded into the buffer pointed to by the last tag.

The most-significant-bit could also mean that it is a command. The

commands allowed are: "status-request", "status-change", and "soft-

restart". "Status-request" will send back a status-tag followed by the

status of that USART. "Status-change" will take the next character, and

CASE-STUDY: A 32-CHANNEL MULTIPLEXER 265

transfer it to the USART control register. This can be used to turn ports on
or off, and change baud-rate by a factor of four. "Soft-restart" will re-

initialize the entire system. Caution is advised in the use of these controls:

do not expect the data buffers to be unaffected by their use! This is because
these commands require more time than is allowed to poll all the terminals.

Thus, interrupts are locked-out and characters may be lost. These com-
mands are usually used to re-initialize the system from the host, after the
host crashes.

The most-significant-bit being "0" means that the character presents
data. This character is then loaded into the last place in the buffer pointed to

by the last tag. All following characters will load into the same buffer, until

a new tag is sent.

The CPU and PROM Module

In Fig. 7-6, we see the 8080 CPU-board schematic. This board contains
all of the necessary CPU interface circuitry along with one 2708 program-
mable ROM, and the necessary bus buffers.

-< Int Req

7.6

V
CPU Board Schematic

266

The 8080 needs a clock, and a system-controller. These functions are

provided by the 8224 and the 8228 chips, respectively. The 8224 provides

the necessary timing from the 18 megahertz crystal to drive the two-phase

clock of the 8080. It also provides the reset signal synchronization

necessary.

The 8228 system-controller provides the system with the control-bus and

also buffers the data-bus, so that all of the modules in the system can be

driven with no load limitations.

Also on this board are 1,024 bytes of EPROM provided by the 2708.

Notice that the selection of this device is fully decoded. The EPROM will

only respond to addresses from "0000" hexadecimal to "03FF" hexadeci-

mal. This is where the multiplexer program resides.

The selection is done as follows: all address bits A10 through A15 must

be low, to enable the EPROM, as well as the MEMR signal. The first four

of those signals, along with this MEMR, go to a l-of-8 decoder, an 8205. If

all of these are zero, then the first output is selected. Then this output is

7.7 RAM Board

CASE-STUDY: A 32-CHANNEL MULTffLEXER 267

checked with the last two address lines. If all are zero, then the~CS is held
low, selecting the EPROM. The EPROM bus driver, an 8212, is also ena-
bled at this time to drive the appropriate cells' data onto the data-bus, to be
read by the processor.

RAM Modules

There are two memory-cards in this system. They are both identical,

except one is for addresses "1000" hexadecimal through "1FFF" hexadec-
imal, and the other is for addresses "2000" hexadecimal through "2FFF"
hexadecimal. These two cards provide 8,192 bytes of RAM storage.

Each card contains 32 static 1,024 x 1-bit RAM chips, bus-drivers and
receivers, and address-selection logic.

A single RAM chip can store 1 ,024 bits of information. In order to store

4,096 x 8 bits, we need to organize these chips into a memory array. Note
that we need one chip for each bit, and that we need four sets for 4,096
bytes.

^-Ds=

-Cs=

ROW
SELECT

CELL ARRAY

32 ROWS

A9 A8 A7 A6 A5

7.8 Detailof91L02C

268

Since, for any group of 1,024 bytes, eight 91L02's will need to be ena-

bled, the chip-selects for each of the groups of eight are tied together. From

there, these four group-selects go to a l-of-8 decoder.

3
3'

3'

3'

3°

3 C

A6 c
A5 c
RAN c
A1 c
A2 c
A3 c
A4 c
AD c

3*

~\gno

Pinoutof91L02C

di

DO0

di 1

DO 1

DI 2

D02

DI 3

DO 3

£
^
£
3-

s
^
£
^

n DB

,, DB 1

,, db2

(l DB 3

DIEN

CS

7.9 8216 Bidirectional Bus Drivers

CASE-STUDY: A 32-CHANNEL MULTIPLEXER 269

The data bits are bussed from each group in the direction perpendicular
to the chip select. All bit O's should be tied together, as well as bit l's, bit

2's, bit 3's, etc. Since 91L02's cannot drive the bus directly, all input data
lines come from an 8216 bidirectional bus-driver-and-receiver. In a similar
fashion, all data outputs from the 91L02's go to the 8216 bidirectional bus-
drivers. An illustration of the 8216 appears on Fig. 7-9.

Two of these devices will provide a standard method of listening to, and
driving, the data-bus. The DIEN signal controls whether the bus is driven
by the 8216, or whether the bus is listened to. The~CS enables the outputs to
drive both the bus, and the DO outputs. IfCS is high, all of the DB and DO
pins are in the high-impedance state.

The direction of data-flow is determined by the MEMR signal. When it is

low, the RAM will put data out onto the DI lines of the 8216's. The bus-
drivers will be enabled, to drive the 8080 data-bus with this data. At all

other times, the memory-array listens to the bus. The only time it will write
data into the memory is when the MEMW signal goes low, and the chips are

selected.

The address-selection is performed in a way so that the address of the
board may be selected by jumper wires. The low ten address bits go directly

to the 91L02's. The next two bits go to a l-of-8 decoder (8205) to select one
of the four sets of eight memory chips. The enable line of the 8205 comes
from a wire-ANDed combination of exclusive-or (XOR) gates.

Only when all of the outputs from these four gates are high, will the
memory board be enabled. Each XOR gate compares an address-bit with a
jumper wired to "1" or "0". If both are identical, the output will be "0". If

they are different, the output will be "1". To set these jumpers for the right

address, we set thejumper to the opposite of what the high four address-bits

should be. If we want "0010", for A15-A12, the jumpers should be tied to
"1", "1", "0", "1", respectively. In this way, the board will respond only
when an address lies in the area of 0100XXXX XXXXXXX2 . This is pages
"20" through "2F" hexadecimal, or "2000" through "2FFF" hexadeci-
mal. Exercise for the alert reader: What should the jumpers be for "1000"

through "1FFF"?

The USART Board

In Fig. 7-10, the basic card for all the terminals' interface is shown. This
card contains four 8251 USART's, a baud-rate clock-generator, and a
priority-encoded status-generation PROM.

270

A A
« «j a

o 8 5 =

OC

C

KNI

=>

3

cc

£ o

I <
OC a;
Q HI

D Z
<
m a

Q Q O o
OC I- oc P

c EF
V

u>r

7.10 USART Board

CASE-STUDY: A 32-CHANNEL MULTIPLEXER 271

The 8251 is the basic serial interface element. Grouped four to a card,

they are connected together on their data-buses to form an on-card data-

bus. Similar to the memory card, this on-card bus is buffered by 8216's onto
the system-bus. This is because the 8251 cannot drive more than eight other
LSTTL loads. The 8251 is selected by implementing an address-decoding
technique, using an 8205. Note how these devices are memory-mapped
input-output. That is, since the same signals that control memory (MEMW,
MEMR) control the USART's, they appear as memory locations. Accord-
ing to our memory map, when bit A15 is high, we are addressing input-

output. This corresponds to locations from "8000" to "8FFF" hexadeci-
mal. Note that since the lower eight address-lines are not decoded, these
are "don't cares" in our memory-mapped I/O map.

The first card starts at "80XX" (where "XX" means that these bits do
not matter) and, since each USART has two registers (input-output and
control), the address ends at "87XX" hexadecimal. The next card goes
from "88XX" to "8FXX", and so on, with the last card addressed by
"B8XX" to "BFXX". The even page-addresses are the status-registers,

and the odd ones are the data-in and data-out registers.

Note also that there is a special PROM on the card, which is decoded by
a separate decoder. Its address is "70XX" for the first card and "77XX"
for the last card. The function of this PROM is to place on the data-bus the

actual address of the USART which has received a character from its

terminal. How is this done? Each of the "RxRdy" lines on the USART's
indicate whether a character has been received. These four lines, one from
each USART, are tied to the address-lines of the PROM.

One of 16 possible bytes may be selected by the decoding. The fifth

address-bit is jumpered to a one or a zero. In this way, the same PROM can
be used for board or board 1, by placing in the other 16 locations the

addresses for board 1, and setting the jumper on the fifth address bit to a 1.

(Jumper to zero for even, one for odd). What are these 16 locations? They
are simply a table of the addresses "81", "83", "85" and "87" hexadeci-
mal for board zero, and "89", "8B", "8D", "8F" for board one. Similar

PROM's are made for the other six boards.

The values are placed in such a way that the first location in the PROM
is a byte of zeroes. That way, when no USART has a character, and all

RxRdy lines are low, the byte of status is all zeroes, indicating that there is

"nothing" to do for this board. If it is not zero, then a character is waiting.

To make sure that it is easy to tell which USART is waiting, the next
location contains the value "81": if the first USART is waiting, and all the

others are not, the program will receive an "81" from the status PROM.
The program can then use this value to directly address the actual character

272

waiting. What is more, the value "81" can be masked, to form the tag for

the data fetched.

The next two locations contain "83", the next four "85", and the next

eight, "87". In this way, a priority table is formed so that, as each USART
is serviced, the next one waiting will be serviced in turn.

This method of addressing the status-PROM allows the program to use

only a few instructions to identify which USART, out of 32 possible ones,

is ready with a character, fetch the character, and generate the proper tag

from that status information.

There are two interface chips to take the TTL serial inputs and outputs

from the USART's and convert them to EIA RS232C +12 and -12 volt

serial pulses. These are simple level-translator integrated circuits.

XTAL

COUNTERS

T

2's

19,200

9600

4800

2400

1200
600

300
150

110

7.11 Baud Rate Generator

The last section consists of an astable multivibrator, synchronized by a

crystal to provide the timing for the serial bit clocks. Two simple dividers

are on each board to provide the USART's with all of the common serial

rates. This is shown in Fig. 7-11.

The Host Interface Board

This module contains: the host USART, the interrupt-controller, and a

baud-rate generator for the host-to-multiplexer communication rates. It ap-

pears in Fig. 7-12.

CASE-STUDY: A 32-CHANNEL MULTIPLEXER 273

CONTROL

WIBKB

int2 ikt7 int!

T X RDY

POWER
UP

7.12 Host Interface Board

The units on this board are addressed as input-output ports, instead of
memory locations. The USART is addressed as ports "F9" and "FA"
hexadecimal, for control and data, respectively. There is a duplicate of the

baud-rate circuit here to generate the "TxC" and "RxC" signals for the

host-to-multiplexer USART, as these rates may differ from any of the

others in a typical system.

The interrupt-controller takes the "RxRdy" and "TxRdy" signals from
the USART, and generates two interrupt-vectors, number 1 and number 7.

Number 1 is to signal that a character has been received from the host, and
should be processed, and number 7 indicates that the USART can be re-

loaded to transmit another character to the host.

The 8259 interrupt-controller is set up by the initialization routine, to call

the service routines at the proper locations, and service the interrupts on a
rotating basis. After an interrupt has been serviced, the software will reset

the corresponding bit-flag in the 8259, and proceed with polling, until a new
interrupt arrives.

Fig. 7-13 illustrates the initialization procedure of the PIC and Fig. 7-14

presents the interrupt-handling code at the beginning of memory.

274

PORTs F7 and F8 are PIC

CONTROL

WRITE I/O

WRITE I/O

WRITE I/O

WRITE I/O

WRITE I/O

WRITE I/O

F8

F7

F8

F7

F7

F8

OPERATION

sets low address for call

sets high address for call

sets low address for call

sets high address for call

enables only INT 1 and INT 7

sets rotating priority reset mode

7.13 PIC Software Load Format

0000
0000 00
0001 31FF2F
000U F3
0005 C3D700
0008 C5

0009 D5

000A E5
OOOB F5
000C CDU900
OOOF 3E08
0011 D3F8
0013 Fl
OOllt El
0015 Dl
0016 CI

0017 EF
0018 FB

ORG OH
NOP
LXI SP.2FFFH
DI
JMP INIT
PUSH B
PUSH D
PUSH H
PUSH PSW
CALL INT70
MVI A.0008H
OUT 00F8H
POP PSW
POP H
POP D
POP B

RST 5

EI

INITIALIZATION STARTS

SET THE STACK POINTER
DISABLE THE INTRRUPTS
SYSTEM RESTART UPON RESET
HOST TO MUX RST VECTOR
PUSH STATUS VECTOR

INT70 GETS THE CHARACTER FROM
HOST—DECODES IT AND RETURNS.
INTERRUPT CONTROLLER RESET INT 1

FLAG
POP STATUS VECTOR
PRIME QUEUE

0019 C9

0020
0020 CDC700
0023 C7

0028
0028 F5
0029 DBFA
002B E601
002D CA3100
0030 FF

0031 Fl
0032 C9
0038
0038 C5

0039 D5
003A E5
003B F5
003C CD1802
003F 3E08
OOUl D3F8
00U3 Fl
OOUU El
0OU5 Dl

RSTU:

RET
ORG 0020H
CALL SND50
RST

ORG 0028H
PUSH PSW
IN OOFAH
ANI 0001H
JZ POPAF
RST 7

POP PSW
RET
ORG 0038H
PUSH B
PUSH D
PUSH H

PUSH PSW
CALL OINT
MVI A.0008H
OUT 00F8H
POP PSW
POP H
POP D

; SOFTWARE RESET

SAVE A AND FLAGS
READ THE USRT STATUS
CHK FOR TXRDY
IF USRT IS BUSY RETURN
ELSE CALL RST7 FOR FIFO SERVICE
TO CHK IF ANYTHING IS IN THE
FIFO TO SEND TO 11/70

;MUX TO HOST RST VECTOR

; CHANNEL NOT BUST

;OINT IS OUTPUT A CHARACTER

;FROM QUEUE

7.14 Example of Interrupt Control

CASE-STUDY: A 32-CHANNEL MULTIPLEXER 275

RST0; Hardware Initialize

RST1; Character from Host
has arrived.

RST4; Soft-reset on pro-
gram fail ROM detect

RST5; Channel to Host is
not-busy check. Mux
to Host buffer queue
should be emptied.

RST7; Channel to Host is
not-busy. Check
buffer queue for
characters, if any
transmit, if not,
return.

7.15 Vectors in Software

276

The channel-to-host was set to 9600 baud in both directions. The charac-

ters from each terminal must be echoed, as this is a full duplex system. For

every character generated, the host must process and return the echo.

There are 24 Lear-Siegler ADM3s terminals, set to 9600-baud input and

output. There are also four 300-baud terminals and four 300-baud dial-up

lines on the multiplexer.

Typical averaged input rate is ten characters-per-second. Average out-

put rate is 200 characters-per-seeond. Buffers in the host, for characters

waiting for output channel are 95% of the time empty, indicating the host

can get rid of data as fast as the channel can handle it, rather than as fast as

the terminals can print. Maximum rates measured are 15 characters-per-

second on input, and 620 eharacters-per-second on output. The maximum

and typical figures were obtained over a 17-hour period, when 90% of the

terminals on the multiplexer were in use.

Error rates were entirely due to the channel, or at least indistinguishable

from other errors, such as operator errors, and host errors.

Photographs of the printed-circuit boards appear in Figs. 7-16, 7-17,

7-18, 7-19.

PICTURES OF MULTIPLEXER PROTOTYPE P.C. BOARDS

7J6 CPU

CASE-STUDY: A 32-CHANNEL MULTIPLEXER 277

7.17 RAM

c.M)a.H mm

ill I

7.18 TERMINALS' USARTS

278

31 1
_

Bflfl

—
\

7.19 HOST AND INTERRUPT CONTROL

CONCLUSION

In this chapter, a complete interface was described. A step-by-slep dis-

cussion of how each component was integrated into a module, how the

modules created a subsystem and then the overall system, should enable the

reader to follow through most any other microprocessor interface applica-

tion. This particular application utilizes most of the techniques discussed in

previous chapters: interrupts, memory and I/O management, integrating

special techniques for software reduction in hardware, and external device

interface were used here.

CASE-STUDY: A 32-CHANNEL MULTIPLEXER 279

THE SYSTEM OVERVIEW

TIME-SHARE SYSTEM

1. CENTRAL PROCESSOR

2. MAIN MEMORY

J. DISK STORAGE
4. TAPE DRIVES

5. COMMUNICATIONS PROCESSOR
6. PRINTER

7. REMOTE MULTIPLEXER

COMMUNICATIONS CHANNELS

REMOTE MULTIPLEXER

k
on o

USER TERMINALS

7.20 OVERALL SYSTEM

280

CHAPTER 8

TESTING

INTRODUCTION

What do you do when it doesn't work? What went wrong and why? The
debugging process, also known as testing or trouble-shooting, is an integral

part of any system design. Murphy's Law usually holds: if anything can go

wrong, it will.

When faced with a misbehaving system, there are a number of

techniques available to the designer to identify and correct problems. In this

chapter, the causes of common problems, and their solutions, will be pre-

sented. Problems such as: component failure, software failure, noise-

induced failure, will be analyzed, and methods for identifying them will be

presented.

The tools necessary to identify and locate these problems will also be

described: voltmeter, logic probe, signature analyzer, oscilloscope, digital

analyzer, in-circuit emulator, emulator, and simulator.

Finally, a case history of the "One Bit in 16,384" will be presented. The
example illustrates the debugging phase in the actual design of the multi-

plexer presented in Chapter 7.

WHAT GOES WRONG?

Four essential problems may arise in a system: wiring fault—a short or

open circuit; component failure—including wrong value components;

software bugs; and noise or interference—either internal or external.

Wiring faults are detected by a resistance-check from point to point in

the system. Check each wire: make sure it goes to the right pin and no other

on the integrated circuit. Make sure you look-up circuit pin-outs twice. Do
not be confident that the schematic is without fault until the system works.

Wiring faults are the most common and troublesome problems. They are

easily solved—although they take time. Most circuit boards are "buzz-

tested" with a simple continuity-checker that emits a tone for a short, and

no noise for an open. Such a tester leaves both hands and eyes free to keep

track of the wiring.

Component Failure

Components such as resistors, capacitors, inductors, transformers,

DIGITAL TROUBLE-SHOOTING 281

transistors, diodes, integrated circuits, and connectors may all experience

failures. Resistors crack open, capacitors leak out their electrolyte. In

short, no component is perfect. Everything fails sooner or later. Each com-

ponent is given a figure of merit, known as its mean-time-between-failures

or MTBF. This is a statistical prediction, in hours, ofhow long the part will

last in a given environment. A table of percent/1000 hours failure-rate is

shown in Table 8-1 for applications in military avionics.

TABLE 8-1

Component

1. Capacitor

2. Connector contact

3. Diode

4. Integrated circuits, SSI, MSI, and LSI

5. Quartz crystal

6. Resistor

7. Soldered joint

8. Transformer

9. Transistor

10. Variable resistor

1 1

.

Wire-wrapped joint

(%/l,000 hr)

Failure Rate

0.02

0.005

0.013

0.015

0.05

0.002

0.0002

0.5

0.04

0.01

0.00002

Some parts last longer, on the average, than others. Of course, this table

assumes that all parts are being used properly. These figures are based on

accelerated-life-tests on a large sample for each part.

Failure-rate is defined as 1/MTBF. Knowing the failure-rate of each

component in a system will yield the failure-rate for the entire system. The
rule is to add the failure-rates of all of the components in the system. This

gives the system failure-rate—the inverse of which is the system mean-

time-between-failures

.

For example, suppose we have three LSI chips, one crystal, ten resis-

tors, ten capacitors, a printed circuit board with connectors, a transformer,

four diodes, and an IC voltage-regulator. This system is to be used in the

same environment as the components that were tested. What is the system

failure-rate? Using Table 8-1, we find:

282

four IC's .06

crystal .05

ten resistors .02

ten capacitors .50

P.C. board — .60 (10 connectors, 500 soldered points)

transformer .50

diodes .052

TOTAL 1.82%/ 1,000 hours

This yields a MTBF for the system of:

1/1.82%/1,000 hours or « 60,000 hours

Suppose we made 1000 of these systems, and used them in the specified

environment? After 1000 hours, it would be most probable that 18 would
have failed. After 10,000 hours, 180 would have failed.

How often do parts fail? This simple question, which we have answered

on an average basis, tells us nothing about the distribution offailures. It

gives the mean. Most components exhibit the following lifetime characteris-

tics shown in Fig. 8-2.

#/l000 HR.

FAILURE

INFANT MIDDLE-AGE OLD AGE

LIFE

8.2 %/1000hr Failure versus Age

Most failures occur when new, or when old, and fewer failures occur in

the "middle-age" of the components.

"New" and "old" differs for each component. In-depth analysis of the

entire system involves simple, but time-consuming calculations, concerning

each component's lifetime failure history.

DIGITAL TROUBLE-SHOOTING 283

A "burn-in" test tries to weed out the "infant-mortality" part of the

curve before parts are shipped to the buyer.

The Table is accurate only for the environment specified. Commercial,

industrial, and military applications, all lead to different ways of measuring

the MTBF. A unit designed for a child's toy may last five years, if used as a

toy; if shot into space, it would not last five minutes. The application's

environment determines the basic reliability statistics to be used.

We have only addressed so far the topic of reliability . A separate prob-

lem is quality. Contrary to intuition, high quality doesn't always mean high

reliability. Quality refers to how well a component will last, doing its job.

The part may be noisy, dissipate lots of heat—but it may also work longer

than a part that is quiet and dissipates less heat. Only thorough statistical

analysis can determine reliability. Quality is easily measured on a part-by-

part basis.

Software

Software can be at fault. For example, suppose there is a special routine

in the program to handle a power failure. The problem is that, when coding,

a mistake was made in the part of the program which restores the machine

when power returns. If you never tested this routine, it may not be used

until the power fails. Only then, will you know that your machine does not

meet specifications.

A second example is when an arithmetic calculation causes an

overflow-and-halt condition only when some measured input value is "0".

The system may work well for months, and then stop mysteriously, every

two days after that. Software problems, or bugs, are often the hardest to

identify.

Tools for finding who is at fault, engineer vs. programmer, will be after

the noise discussion. However, software problems are the most common in

a microcomputer system. No program is ever perfect. A program is limited

in precision, speed, and flexibility. The smart programmer is a complete

pessimist about his software until it has been running for a number of years.

Noise

Noise is everywhere. Whenever there is a current in a wire, there is an

electromagnetic field. Thus, fields from power transformers, motors, and

electrical wiring are everywhere. In addition, with all the radio, television,

citizens' band, and amateur radio transmitters—any length of wire becomes

an antenna. Not only can noise come from the outside, but it can be gener-

ated inside your system.

284

Four examples are:

1. When integrated circuits switch, they generate small current changes in

their power requirements because of internal circuit characteristics. If

too many circuits switch at once, the power-supply voltage may change

enough to affect other parts of the circuit. There are usually bypass-

capacitors near each integrated circuit to prevent this type of noise.

2. If two wires are close together, a pulse traveling along one induces a

pulse in the other, because of the transformer action between the two.

The induced pulse may reflect, and toggle a flip-flop, or cause the data to

be incorrect. To prevent this, twisted and shielded pair transmission

lines are used.

3. The power-supply may not be properly designed. There is a small

amount of 60-cycle ripple on the 5-volt supply. This may affect the

contents of memory, and cause an improper read or write. Proper

power-supply design accounts for the droop in voltage under heavy load

before the regulation circuits.

2>
Regulator

-*- +6.0 vo

Ractifiar

8.3 Noise Spike on Power Line

4. In Fig. 8-3, there is a typical noise spike from turning on a teletype on the

power line. Notice what happens to that noise spike in a plain power

supply in Fig. 8-4, without noise filters. If that glitch happens at a crucial

moment, data are lost and the machine fails.

117 VAC
line voltage

2000 V p-p

nioM <pike
Azr.

1 .0 V p-p

noisa spike

10.0 V p-p

nolta after ractifiar

8.4 Power Supply Without Line Filter

DIGITAL TROUBLE-SHOOTING 285

The solution here is to use a line filter, and a shielded transformer, that

prevents high-frequency noise pulses from getting through as in Fig. 8-5.

Shielded Transformer
Isolated Grounds in Equipment-

prevents ground noise

8.5 Power Supply With Line Filter

Summary of Common Failures

Components fail at predictable rates, software may not be reliable and

correct, and noise may be happening all around and inside the system. How
do we go about finding the fault in a rational fashion?

The next section will deal with the tools used to find the faults and

identify them. In this discussion of tools, the tell-tale signs of each problem

will be discussed.

The Trouble-Shooting Tools

We will present here the, tools available, and the kinds of problems

which can be identified with them. Tools will be examined closely as to their

own limitations.

Table 8-6 presents a short summary of problems and tools. The discus-

sion will follow this Table and expand on each problem—what a tool can $&

to find it, and how long it would take.

Simple Problems

Short and open conductors, wrong voltages—these are the most com-

mon problems. Luckily, they are the easiest to detect. Any ohm-meter can

check for gross conditions such as open, or short, and a digital voltmeter

(DVM) or volt-ohm-milliampmeter (VOM) will suffice, to check voltage

and currents. If you know your components and design, it is an easy matter

(although time-consuming) to make sure everything goes where it belongs,

and draws the right currents from the proper voltages.

286

THE DEBUG MATRIX: PROBLEMS k TOOLS

You can solve
problems like:

You have
Equipment

PROBES SGH.ANA. OSC. D.D.A. I.C.E. EMU.

shorts, opens, yes te
wrong voltages

bad resistors, ,,._ „„' yes no
caparitors

unknown logic signals
bad- fault tree yes yes
already generated

unknown logic signals yes yes
bad-fault tree time
available consuming

software problem no no

no yes maybe maybe no

no yes no no no

yes yes yes no no

no yes yes yes no
time

consuming

no maybe yes yes yes

You need at least
To fix a typical
Problem

:

Eventually yes

In an average time yes

Fastest way possible yes

yes yes

yes yes

TABLE OF ABBREVIATIONS

VOM
PROBES
SGH.ANA.
OSC.
D.D.A.
I.C.E.
EMU.

VOLT-OHM-MILLIAMPMETER
LOGIC PROBES
SIGNATURE ANALYSER
OSCILLOSCOPE
DIGITAL DOMAIN ANALYSER
IN CIRCUIT EMULATOR
SOFTWARE EMULATOR OR SIMULATOR

8.6 Problems and Tools

DIGITAL TROUBLE-SHOOTING 287

The VOM

To measure a voltage, the meter is placed in parallel with the circuit

element. Fig. 8-7 shows the measurement of the power-supply voltage at

the output of a regulator. The VOM will easily measure all such voltages,

but be warned that it will not detect excessive ripple or noise on the power

supplies.

1.5 AMPS MAX. .75 AMPS TYPICAL

+5 VOLTS + %

8.7 Measuring Voltage and Current With a VOM

To measure a current, the meter must be placed in series with the com-

ponent. This means the circuit must be broken. If possible, connections

should be made, so that in-circuit current measurements need not cut wires

or traces. Any dynamic behavior of the circuit may not be measurable, yet

could cause problems.

In the power-supply example, the meter measured the voltage across the

load, and then by disconnecting the load, and reconnecting it through the

meter, the current was measured. Be sure to check that these measure-

ments are within the required tolerances. Improper values may indicate

later trouble.

Bad Components

Resistors, capacitors, diodes, and transistors can all be checked against

known good devices. They can be measured with the DVM or VOM to

determine whether they are basically functional. Other special test equip-

ment is needed for diodes and transistors to establish device characteristics.

288

Integrated circuits are difficult to test without expensive equipment.

When debugging, several of each device used should be kept in stock, in

order to replace a device with an inherent malfunction. Once the entire

circuit is working, all devices in stock should be tested in the prototype

system to make sure that no marginal problems occur in production, due to

component tolerance changes.

Simple problems usually prevent the system from working at all. Inter-

mittent failures are most often due to connector or bad solder joint prob-

lems. These should be checked first, before assuming something else is a

fault. All intermittent problems will require an oscilloscope (preferably with

storage) or a logic-analyzer for quick, effective debugging.

All static problems can be solved. This is the first step: be completely

confident about this stage before continuing.

Design Problems

You thought you knew what you wanted—but you didn't. Yes, we all

make mistakes so we might as well admit it. Design errors are divided into

two general categories: improper specification and improper use. Examples

of each follow.

Improper Use:

Passing too much current through a resistor will cause it to burn up.

Applying too much voltage to a capacitor will cause it to short. Every

device has its limits. The "too much" problem is the most common. For

example, too many loads on a single output line may cause the system to

read or write improper data values intermittently depending on temperature

variations.

Improper Specification

Ifwe believe a part to be able to drive 30 bus loads when it can only drive

20—this is improper specification. It simply was not noticed in the data-

sheet upon specification.

More subtly, the timing of a particular part may be misunderstood. For

example, if the address gated to a memory part must be stable 20

nanoseconds before the data and write pulses, this may have been over-

looked and the system timing design violates this condition.

Design problems require a full range of equipment for proper trouble-

shooting, but a VOM-oscilloscope combination will suffice if time is of little

concern. These problems manifest themselves primarily in an intermittent

fashion in the case of overloading bus lines, and in burning and smoking

parts, in the case of overvoltage/current.

DIGITAL TROUBLE-SHOOTING 289

290

8.8 Logic Probes

The burning parts problems are simple—get a bigger part or improve the

design so it will work with the parts you have.

The intermittent problems require that all input-output loading be

checked, all device specifications be checked, and the system operated at

different temperatures to localize the sensitive component(s).

A can of freeze spray and a heat lamp can locate temperature sensitive

problems quickly and easily, by selectively heating and cooling the sus-

pected parts.

Logic Probes

Logic probes can verify logic levels quickly so as to isolate any static

conditions efficiently. The probes will indicate whether a signal is a 0, 1, or

undetermined by using an LED indicator or light bulb. Watch out for unde-

termined states: unless it is a tri-state bus floating, and it is supposed to be

floating, something may be wrong. Fig. 8-8 illustrates a logic probe in use.

DYNAMIC PROBLEMS

In operation, the system doesn't work. The VOM, logic probe etc. will

not indicate time. Thus, they are of little use in the dynamic case. We need

devices which will indicate that the logic level timing is correct.

The Oscilloscope

To obtain timing information, the oscilloscope is most commonly used.

With one or more traces, events may be measured accurately in amplitude

and duration, in function of time. In microprocessor systems, events as

short as 10 nanoseconds should be observable with an oscilloscope. A 10

nanosecond square wave will appear as a sine wave on a 10 megahertz

oscilloscope. Thus, to see these events clearly, a 50 or 100 megahertz scope

is desirable. Fig. 8-9 illustrates the trace on a typical oscilloscope of aTTL
logic control signal.

The logic zone definitions here are for standard TTL. The logic "0"

signal is for any voltage between -0.6 and +0.8 volts. The logic "1" signal

is from +2.0 volts to +5.5 volts. Anything in the zone from +0.8 to +2.0 is

considered undefined. Transitions from one level to the other should occur

in much less than one microsecond to avoid noise problems. The oscillo-

scope will indicate if a bad logic level is present. For example, if two TTL
outputs are connected together, we have violated a design rule. If the condi-

tion occurs, where the two outputs wish to go in opposite directions, one of

DIGITAL TROUBLE-SHOOTING 291

S v

lVOLT/DIVJSION

10 ns PEE DIVISION 8.9 TTL Logic Signal

the gates may be destroyed. If the condition occurs for only a few micro-

seconds at a time, no harm will be done; however, the fault will cause

problems. Fig. 8-10 shows a trace for such a condition. Note how the logic

"0" level is not correct.

t>7^
10 TTL LOADS

8.10 TTL OUTPUT FAULT

RISE DUE TO 20 ma
1.2 VOLTS EXTRA CURRENT-NO LONGER BELOW 0.8

VOLTS

Such a measurement, along with the knowledge of the logic family drive

specifications, will indicate to the trouble-shooter where the fault lies.

Observing chip-select, control and bus lines with the oscilloscope will

clue you to load problems, timing problems, and noise problems. Make sure

that the logic levels are well defined. TTL "0" should be from -0.6 to +0.8
volts. TTL "1" should be from 2.0 to 5.5 volts. Anything else means
trouble.

292

•a hi

.

****** ^ — ^
'

' * I *

1600S Analyzer

DIGITAL TROUBLE-SHOOTING 293

STATE MEASUREMENT

All system timing and system logic levels are correct when observing

any single bit or line—but we need to observe all the lines at once in time.

We could gather 16 oscilloscopes together, and early analyzers were simply

multi-channel oscilloscopes, but is is not specially convenient to observe 32

tiny traces on the face of an oscilloscope tube. For this reason, we de-

veloped logic analyzers, or more accurately, digital-domain analyzers.

6800

T^.

RAM

128*3

T^—T^h

Connecting the Analyzer

Logic Analyzer

What does a digital-domain analyzer do? It allows to observe up to 32

nodes in the system, simultaneously. It will display these bits in binary,

octal, hexadecimal, or in the form of conventional oscilloscope traces. It

will begin displaying the information when a given combination of bits, or

trigger occurs. It will store every clock cycle, or more often a new set of

signals, and be able to display a few sets of signals before and after the

trigger set. Each set of signals in time is known as a state.

Available analyzers fall into two categories: those that emphasize timing

information, and those that emphasize state information.

Timing-oriented analyzers are merely multi-channel oscilloscopes.

These devices are useful where logic glitches, noise, or logic level problems
are suspected.

State-oriented analyzers attempt to present the flow of the system's

program by monitoring all important circuit points. State-analyzers are ef-

fective in debugging software and complex software-hardware faults.

294

Example of a State Analyzer

The Hewlett-Packard 1600S Analyzer has 32 channels, two clacks, four

trigger qualifiers, and many other features. The instrument will take a

"snapshot" of the state of the system on every clock cycle. We will use the

HPf600S to observe the interrupt cycle in a 6800-based processing system.

Table 8-11 lists the format of the data displayed on the I600S. The

probes were attached to the lines indicated. The clock was connected to <t>2.

Ifi ADDRESS n
/
H

fEB L&B CB
^
™ DAM

1 | |
MSB LEBxxxx xxxx xxxx XXXX XXX XXXX XXXX

CLOCK SB OlfjLS OF SYSTEM CPU

8J

1

HP1600S Display Format for 6800 Interrupt

The 1600S was triggered by the interrupt signal. In Fig, 8-12, the state

flow is displayed. The data displayed are:

1. The current instruction cycle is finished. Instruction is an "F2" hex at

location "1385" hex.

2. The status is now pushed onto the stack, before going to the service

routine vector location. Note the stack is at locations "3FF" hex

downward. The program-counter, index-register, accumulators, and

flags, are stored in successive locations in the stack.

8.12 Interrupt Sequence

ADDRESS

CB2
READ /WRITE
VMA
DATA

0001 0011 1000 0101
0001 0011 01 1 1 01 1

1

0001 001 (01 tl QUI
looo i oomi rum ut i n
oooo ooii mm nil
oooo ooii mi i no
oooo ooii mi moi
OOOO 001 1 1 1 1 1 MOO

OOOO OOII Mil 1011
oooo ooii nil loio

oooo ooii mi loot
0000 OOII Mil 1000

mi nil tin iooo
1001

t5lf\\FFFIKSSS\
v] rn >"! i0001 oou

Mil 0010
no oooo oooo
III oooo oooo
1 1 I oooo oooo

[•hikjUii

[KKK*Pil!!liIil

|Hk3f:«
|i*:*»x*i*»j

|I*MK*U1

fjP STORES
INTERNAL
REGISTERS
ON STACK

FETCH INTERRUPT

\

SERVICE ROUTINE
] ADDRESS

FIRST LOCATION OF
INTERRUPT
SERVICE ROUTINE

LOAD PCH
LOAO PCL

DIGITAL TROUBLE-SHOOTING 29S

3. The microprocessor now fetches the contents of addresses "FFF8" and

"FFF9" hex. The contents are transferred to the program-counter.

4. Interrupt-service routine begins at "1351" hex. Execution continues

from this point.

With such a device we have a roadmap of where the system was, where
it is, and where it is going.

Some analyzers store a proper sequence of states, continuously compare
those with the current states, and stop upon a mismatch. Others display a
"1", "X", or "0" for each bit in a page of memory, and indicate if that bit

has been read or written. Some store more states than others. However, all

of these analyzers have similar basic characteristics of being able to observe

a number of states in a system, in a time sequence.

The digital domain analyzer allows the designer to monitor software

execution so that wrong data, wrong addresses, or wrong instructions, may
be found. If a digital-domain analyzer is used to trigger an oscilloscope,

noise problems and subtle timing problems may also be identified.

In-Circuit Emulation

In-circuit emulation allows to "get inside" the microprocessor itself,

dynamically watch where it is going, what it is reading and writing. It makes
it possible to monitor the processor itself. It includes breakpoints and test

routines to allow you to "catch" a specific section of code as it goes by, and
display the contents of the internal registers. By checking these against

what you expected, the fault may be located.

Signature Analysis

There are a whole range of special tools usable only once an initial

system has been built and tested. These systems rely on the known be-

havior of the original system in order to predict what went wrong in the

system, in the field.

These techniques rely on a. fault-tree. That is: everything that could go

wrong has been made to go wrong, and in each case, nodes in the circuit

were measured to discover just how such a failure would manifest itself.

Some fault-trees are short: if the fuse blows, replace it; if the fuse blows

again, call the service department. Some trees walk the service person

through the entire system, depending on measured values.

296

Biomation Logic Analyzer

DIGITAL TROUBLE-SHOOTING 297

8.13

298

HP ICE for 8080 System

Mnemonic AnaJyzer

HP Signature Analyzer

DIGITAL TROUBLE-SHOOTING 299

A Signature Analyzer

This device relies on the fact that any repetitive sequence of signal

values may be stored in a recirculating shift-register, whose value, clocked
into a display each time around, will have a certain value. A device can be
designed so that the probability of two bit streams having the same value or
"signature" is extremely small.

Thus, each node in a system will have its own signature when it is

working correctly. It will also have a special signature for each possible
problem. By using a fault-tree method, developed by using the analyzer, all

faulty equipment can be debugged quickly down to a faulty component.
It will not find initial software problems, or the cause of intermittent

failures in a system.

In Fig. 8-14, we see the trouble-shooting flowchart, using an HP5004A
Signature Analyzer. These signatures were generated on a good instrument
and the chart developed to speed repair.

SOFTWARE TESTING TECHNIQUES

The underlying principle of all testing techniques is to compare an
existing board, component, or system, to "what it should be". The
problem may naturally be to know what it should be, or else to imple-
ment a reasonable procedure for performing this comparison in a

systematic manner. In addition, two supplementary problems arise:

making the measurements themselves, and recording the history of
the last n signals. For this purpose, a number of new hardward and soft-

ware tools have been developed. The test instruments and techniques
used in performing such comparisons have been described in the pre-
ceding section. As usual in the computer world, either hardware or soft-

ware methods can be used. The purpose of this section is to explain
the software testing techniques.

The four basic methods used in testing microprocessor-related equip-
ment are: comparison testing, self-diagnostic, stored-response, algorith-

mic pattern generation.

Comparison Testing

In this method, a device, or a board, is compared to a known "good"
device, or "good" board. They share the same common input, and out-
puts are compared. This is a hardware method, and the required tools
have been presented. The next three techniques are essentially software
techniques.

300

C=D
Be Ce la.r- Thai The Tesl

Junipe 0- The A3 Assem
blv Is D.4connected. The
Pluq Is DiSconnected f .om
A1J7 An a All HP IB

Sv^.tcn ev Aie Sin To The

•o
•

nos> ion Turn The

Inst.u """ ON

I
Connect the SIGNATURE
ANALYZER START and

STOP Inputs to A3TP3 Con
nect the CLOCK Input lo

AjTPo and Hie GND Input

to the Chassis.. (See Note 1

lot SIGNATURE ANALY-
ZER Contiol Settings.)

A2S1. A2W? O- A1U57

While observing A1U57
Pin 14 with the SIGNA-
TURE ANALYZER, press

each o* the Math Enny
Keys (those marked in

blue and the STORE keys)

'.u,i: Latii. A1U51

G.-i T„ Th,. D-

While observing A1 US7
Pin 14 with the SIGNA-
TURE ANALYZER, press

each of the remaining keys

(except the LINE and
GUARD keys).

T

Inve.ie. AlUb3. Sw tch.-s

SI S6. S10 SI 3. S23

S?8. C 31.1.' A2W2 o.

A1U57

8.14 Fault Tree

DIGITAL TROUBLE-SHOOTING 301

Self-diagnostic

In the self-diagnostic method, the microprocessor system itself deter-

mines whether it is operational, and if not, which part of the system is

defective. The basic principle of self-diagnostic is to execute a "worst-
case" sequence, and to observe the results. In the case of the MPU it-

self, a worse -case sequence of instructions is usually available from the
manufacturer. Typically such a sequence will exercise all the machine's
instructions, in a pre-determined order. In addition, it may include some
critical sequence of instructions which has been found to fail in some
cases. Clearly this information is usually available only from the manu-
facturer. Most of them are cooperative in supplying such a program.
Naturally, the following question arises: what if the MPU itself is indeed
defective? If it is defective, it is likely that the program will not terminate
successfully, and that the system will "crash", with no external warning.
When performing such a self-diagnostic, an automatic warning mechanism
must be used. For example, the system will print a message on the prin-
ter saying "undergoing diagnostic testing at time X". At time X plus
one minute, the system should have completed diagnostic testing, and
should print the message "diagnostic-testing completed successfully".
If such a message is not printed, the system will be assumed to have
failed. Optionally, external devices may be set. For example, an external
alarm, with its own timing mechanism may be actuated at the beginning
of the test. Unless the timer is reset within a specified amount of time,
the alarm will go off, signaling an MPU failure automatically.

Such self-diagnostic programs are extensively used on systems enjoy-
ing idle time. It is a simple matter to write the basic test program using
most of the machine instructions, and residing in some unused portion
of the ROM. Whenever the microprocessor is idle, such a program may
be run, and thus verify the machine integrity. In addition, if it is run
continuously for a period of time, it will help isolate intermittent
failures of the system. Naturally, it need not reside in ROM, and may
be loaded in RAM from an external device.

Self-diagnostic is also used to test memory or input/output facili-

ties. The topic of memory-testing will be addressed in detail, in a
paragraph below on algorithmic pattern-generation. In the case of a
ROM memory, the simplest form of self-diagnostic is called checksum-
validation. In this technique, each block of data such as 16, 32, or
256 words is followed by a one byte or two-byte checksum. Typically,
such a checksum is computed by summing the n half-bytes of the
block of n words, using hexadecimal arithmetic. This sum is then trun-
cated to the last four binary digits, and the checksum character is the
ASCII encoding of the resulting hexadecimal digit. A simple program

302

executing in a secure area of the ROM (a portion of the ROM which is

assumed to be good) can read the contents of the rest of the ROM, re-

compute the. checksum, and then compare it to the value which has

been stored. If a mismatch is detected, a ROM failure has been

identified.

Testing input-output interfaces and I/O devices is usually complex,

in view of the delicate timing relationships involved. However a rough

checking is possible as to the correct overall operation of the devices them-

selves. Provided that feedback information is available from the device,

an order will be issued by the program such as: "close relay A." Provided

that the feedback path be available, relay closure can be verified within n

milliseconds. In this way, the system can exercise all of the external con-

trol devices, and verify their proper overall operation. In addition, during

systems operation, "reasonableness-tests" are usually run on all input

devices (see book C20 for a complete discussion). Such tests will compare

the value of input parameters to values in a table, stored in the memory,

and determine whether this input data is "reasonable." For example, when

measuring the temperature of water, temperatures below C and over

100° C will be deemed "unreasonable." Similarly, for a microprocessor

controlling a traffic light at an intersection, detecting vehicle speeds over

200 mph will be deemed unreasonable. Naturally tests can be much finer

than the simplified examples, in a specific environment. Such reasonable-

ness-testing will detect intermittent and permanent failures of input de-

vices and will set-off an external alarm.

Stored-response

In the stored-response method, a large-scale computer system is used

to emulate, or simulate, the device, or the board, under test. First, a pro-

gram is used to measure the characteristics of the device, or system, under

test, preferably under dynamic circumstances. This data is then recorded,

and will be used by the comparison program. The comparison program

is then applied to the device. It will generate input signals. The outputs

are measured, and compared to the previous response of the system, as

stored in the tables. In such a system, two phases are necessary. The first

phase is a characterization phase where the computer system is used to

record essential responses of the system that will be later used as referen-

ces. Once these responses are obtained, in phase two, the system will only

run in comparison mode by executing a specific test program and measur-

ing the response.

This method is used essentially in production, and for incoming testers.

The cost of the system required to provide efficient stored-response

testing, plus the programs, can range from $50,000 to $500,000.

DIGITAL TROUBLE-SHOOTING 303

Algorithmic pattern generation

Algorithmic pattern-generation is essentially used for testing RAM
memory. The principle is to write a pattern in the memory, and then
verify that:

1 : it was written correctly, and
2: that nothing was written anywhere else because of a RAM malfunc-

tion. The two basic pattern generation techniques used in RAM testing
are fixed-pattern tests, and galloping-pattern tests.

Fixed-pattern Testing

In a fixed-pattern test, identical, alternating, cyclical patterns are succes-
sively written, then read, at each memory location. This will detect gross
RAM failures. However, this will not detect pattern-sensitivity problems.
Pattern-sensitivity is a typical source of failure in high density chips. Be-
cause of the geometrical layout of the chip, some combination of bits

written at some instant of time in memory cells might cause some other
bit position elsewhere in the device to turn on or off. This problem can

happen in RAM memories or in microprocessors themselves. Whenever
this problem occurs in a microprocessor, it is a basic design failure, and
there is not much the user can do about it. The best that can be done
by the user is to run a worst-case program, supplied by the manufacturer,

which has been shown to make similar units fail because of the specific

sequence of instructions involved. This problem will not be considered

here as it is deemed highly infrequent, once a chip has been in the field

for more than a year. In the case of memory, however, especially in the

case of high-density memory, pattern-sensitivity is a frequent problem
which can be diagnosed relatively easily using an algorithmic pattern-

generation test. This will be described in the following section.

Galloping-pattern testing

The galloping pattern test is usually abbreviated "galpat." The princi-

ple of this technique is to write successive binary values into memory
cells, then compare them to all of the rest of the memory, before moving
on to the next memory location. In this way, if writing into memory
cell zero affected the contents of memory cell 102, this will be detected

by the test. In a typical galpat, the memory will be initialized with a

known content, such as all ones, or all zeros. The basic test algorithm

is the following:

304

1. The contents of a location L-l are tested against the contents of

all other memory locations. They should match.

2. The address L-l is then incremented by one, and step one is carried

out until all memory locations are tested.

3. The initial data pattern is then complemented, and one goes back

to step one.

Many variations are possible on this basic galput. They have been

nicknamed "marching ones and zeros," "walking ones and zeros," and

"galloping patterns" (galpat one and galpat two).

Ideally, one should write all possible patterns in each memory loca-

tion, and after writing a pattern in every word, check every other word

of the memory, to verify whether it might have been changed. In addi-

tion, after checking each of the other memory words, one should imme-

diately come back to the original memory location under test in order

to verify that its pattern has not been changed by the tests performed

on another memory location. It could happen that the fact of checking

every other memory location would modify the original contents of the

memory cell, then modify them again so that eventually they would

have the correct initial contents. A possible failure would then not be

detected if one did not come back every time to verify the contents of

the initial cell. It is easy to see that such exhaustive testing will require

a very high number of operations. A simple memory exerciser, checking

a 32 K memory will typically run for several minutes. It will, for example,

write all zeros, or all ones, or write its own address in each memory

location, and then rotate these addresses through the available memory.

If the test uses galpat techniques, it could easily run for half an hour,

or even for several hours. For this reason, these tests are usually run

only during the initial debugging phase of the system, or when a mal-

function is suspected. It is not practical to consider their use once the

microprocessor system is operational, unless a simplified version is used.

SIMULATION AND EMULATION

Let us first introduce the basic definitions. Simulation refers to the

functional replacement of a hardware device by a program. It is said

that the device is simulated by software. The program will generate the

same outputs as the hardware device, in response to the same inputs.

Unfortunately, it will perform such a simulation much slower than the

original device.

DIGITAL TROUBLE-SHOOTING 305

Emulation refers essentially to a simulation performed in real-time.

In fact, many emulators will simulate the operation of a complete system
even faster than the model. For example, many bit-slice systems emulate
the instruction-set of another computer. They will execute all the instruc-
tions of the processor being emulated at the same speed, or sometimes
even faster.

Simulation is used for two essential devices: the microprocessor itself

and the ROM memory. ROM simulation, or emulation, is performed by
executing programs out of RAM, as if they were in ROM. This is normally
done during the development phase of all programs. Clearly an initial

program will contain a number of bugs, and should not be directly placed
in a final ROM or PROM. In a typical development-system, such a pro-
gram will be installed in RAM memory and be tested and debugged there.

The two main problems are to convert the addresses of the final program
into those required by the ROM and to maintain speed compatibility.

Typically the RAM-board resides at a specific physical address which
will not correspond to the actual address of the ROM chip in the final

system. The second problem is a synchronization problem whenever
a slow RAM is used initially, and a program is then installed on a faster

ROM. Such ROM emulation or ROM simulation facilities are a normal
part of any microcomputer development system and will not be addressed
in greater detail here.

Simulation and emulating the microprocessor itself is much more
complex. Simulating the microprocessor is used in two cases:

1

.

when the MPU itself is not available

.

2. for convenience in debugging.

These two cases will not be detailed. When programs are developed
on a large-scale system, cross programs are used. A cross-assembler will

create for example 8080 code on an IBM 370. It is necessary to test the
correct execution of the resulting 8080 code. This will be performed
with a simulator. An 8080 simulator will be used, which executes all

the 8080 instructions in simulated time. In this way the complete logic

of the program will be tested. The essential limitation of such a simulator
is the fact that no input-output can be tested, unless the user deposits
known data at the right time into selected memory locations. Input-
output registers are then simulated by memory locations. Unfortunately
the timing of input-output is often random, and almost always complex.
For this reason, a simulator is only used to test the overall logic of a
program. This is fine for testing numerical algorithms, such as a floating-

point package. This is inadequate for debugging a complex input-output
interface.

306

In any system where the user must test real input-output in real time,

one of the most significant aids in testing is the emulation of the micro-

processor, itself. This is called "in-circuit-emulation."

8.15

Software Development

In-Circuit-Emulation

In-circuit-emulation was originally introduced by INTEL on its MDS

system, and is now available on every leading microprocessor development

DIGITAL TROUBLE-SHOOTING 307

system, as well as on independent systems. The picture of an actual

"in-circuit-emulator" ("ICE") appears on the illustration. A special board
has been inserted on the INTEL MDS system on the left which provides

the in-circuit-emulation facility. On the right appears a system under

development. The board with the microprocessor itself has been pulled

out of the rack and plugged into an extension board so that its com-
ponents be easily accessible. The 8080 itself has been removed from its

socket, and a special cable called the "umbilical cord" has been plugged

into the socket. This is the cable appearing in the illustration. This 40-

line cable is terminated by a 40-pin connector identical to an actual

8080. The essential difference is that all the signals carried by this cable

are generated by, or under the control of, the in-circuit-emulator, rather

than the real 8080. What is the purpose of replacing an actual 8080
by a software emulator? The essential facility provided by the emulator

is to completely control and test the system under development (on the

right) from the console. It is possible to stop the operation of the 8080.
It is possible to examine the registers or change them. Doing this on an

actual 8080 would require opening up the package, removing the lid,

and placing microprobes under a microscope, to obtain the contents

of the registers, if indeed this were possible. The contents of the regis-

ters are not available in an actual 8080. Only the values on the busses

are. Using an emulator, it is possible to stop the operation of the 8080
automatically, using breakpoints in the program. This facility will be

clarified below. It is possible to examine, or change, registers, as well

as the contents of the memory. It is possible to sit at the keyboard,

and execute actual input-output instructions, such as closing a relay,

by hitting a key on the keyboard. It is then possible to stop again the

processor and examine the busses, the registers, or the memory. In

addition, all the operations may be performed in conjunction with the

powerful software-aids available in a development-system. Examining,

or changing, memory can be performed in symbolic form, rather than

in binary or hexadecimal. This is called symbolic debugging.

Breakpoints are a facility to specify and address where the program

will automatically stop. Addresses are selected, and a list of breakpoints

is given to the emulator. When the specified location is reached during

execution, the emulated microprocessor will automatically stop, and

allow the user to verify contents of registers, busses or memory. In addi-

tion, an in-circuit-emulator provides an essential capability called trace-

back. It provides essentially a snapshot of the history of the signals on
the busses during a specified length of time. In the case of the INTEL
ICE, it provides a 44 machine-cycle trace-back. Whenever a breakpoint

308

is encountered, the in-circuit-emulator stops the execution, and pro-

vides the user with a symbolic debugging facility. Typically, when an

error is detected at the breakpoint, it was not caused by the instruction

at the breakpoint, but was the result of a previous instruction in the

program. The essential problem is to locate the previous instruction

which caused the problem. This is a tracing problem. With the traceback

capability, it is possible to examine the previous signals, and to determine

which were the instructions executed before the detection of the error.

If this historical record is not long enough, an earlier breakpoint can be

set-up and an additional segment of the history of the system will be-

come available. This process can be repeated until the error is finally

identified.

An in-circuit-emulator does not require an important configuration

for software or hardware to execute. It is an essential debugging

capability, as it provides for the first time a tool for checking the opera-

tion of the complete system including the actual input-output devices,

in real time. In any system involving debugging of actual input-output

boards, or interfaces, the availability of an in-circuit-emulator is essential.

DEBUGGING A CONCEPTUAL PROCESSOR

After all logic levels are verified to be reasonable, the system is ready for

some simple test programs. Do not get too ahead of yourself here! Try

simple things such as: address sequentially every possible memory location,

jump to "0000" hexadecimal continually, input from a port, and output the

data input to an output port. Put these tests in separate PROM's so that

they can be executed individually.

The address-test should result in each of the address bit lines toggling at

increasing long time with square waves.

The jump-test is so short, that it is usually possible to observe all lines

with an oscilloscope to check all dynamic conditions. Also, all of the ad-

dress bits—from bit A2 to bit A15—should be all zeroes in the suggested

test.

The input-output will allow each input bit to be tested. If the bit is held

high, the corresponding bit on the output should also go high. If it does not,

there is a fault with the input-output scheme in the system, or the micro-

processor.

Now it can get interesting. Try larger programs, working your way up to

the final applications program. At this point, all problems should be

software ones. If you are sure it is hardware—why? Go back and write

different simple test programs to establish whether you are right or wrong.

Remember: if a few instructions work OK, usually they all work OK.

DIGITAL TROUBLE-SHOOTING 309

/^\

8.16 Debug Flowchart

s i
si

KJr\
CD
CD
en

o
CO
co
LU
C_>
CD
en
Q_

c_>

310

A helpful point here is that small debugging systems' software ROM's

are available for most prototyping situations. They are usually called Hex

(or Octal) Debug and Test Programs, or System Monitors. Fig. 8-16 illus-

trates the debug flow for a typical situation.

Typical Problems Unique to Micros

The following is a list of some interesting problems the authors have

found:

— A bad address bit on the microprocessor causing any program be-

yond "1FFF" hex to not execute properly.

— Excessively leaky EPROM lost its data before you could plug it back

into the system from the PROM-programmer.

— PMOS and NMOS circuits cannot always be connected without buf-

fering. This is true of all logic families. "TTL-compatible" means it

will connect to TTL

—

not that it connects to something else labelled

TTL-compatible! This may cause serious problems. As an example:

a PMOS address-line to an NMOS RAM may cause one bit in the

RAM to go bad at random ! These problems are usually heat and

power-supply sensitive. Your system should work over a wide range

of temperature and over a specified power-supply range. Check all

specifications closely.

— Dynamic RAM's can and do go bad at one single bit location at

random. This is the reason for error-detection, parity, and error-

correction in large memory systems.

— Know your buses. As a rule, connect no more than one input and one

output to any bus line. Overlooking this may cause noise sensitivity

problems due to overloading. The most common line that violates

this rule is the RESET line.

— Don't plug it in upside down or skewed down by one pin. Know which

way is up, down, right and left. If in doubt, measure your circuit at

the socket and call the manufacturer to find where pin one is.

A trouble-shooting flowchart is present in Fig. 8-17.

THE ONE BIT IN 16,384

The multiplexer design described in Chapter 8 took six man-months

to debug completely, with two full-time engineers assigned to this task,

with all of the tools mentioned in this chapter available to them. Thus,

the real cost of debugging this system was:

— 6 months salary: $10,000

— 6 months equipment: $15,000 (if rented)

$ 8,000 (five-year use).

DIGITAL TROUBLE-SHOOTING 3 1

1

1.
, i

"V
HAS THE SYSTEM
BEEN CHECKED FOR
ALL WIRING ERRORS?

BUZZ-TEST—
CONTINUITY Aid
OPEN CHECK
WITH VOM

no

w yes

WITHOUT PARTS IN

THE SYSTEM - APPLY
POWER. ARE ALL
VOLTAGES CORRECT
ON EACH IC?

CHECK POWER
SUPPLIES

< n°

u yes

INSERT COMPONENTS
WITH POWER OFF.
Check twice-they
are where they
belong! POWER ON
IS ANYTHING TOO
WARM7IS THERE SMOKE?

POWER OFF!

(Replace burned
out part)

^yes

'

,no
- WIRING ERROR
- TWO OUTPUTS
TIED TOGETHER

- BAD I.C.
- NOISE PROBLEM*

CHECK ALL BUS LINES
FOR PROPER LOGIC
LEVELS. IS THERE
A BAD LEVEL?

yes

no

il
* ' '*

- SOFTWARE BUG IN
TEST PROGRAM

- WIRING ERROR
- DESIGN ERROR
- NOISE PROBLEM*

*(IF SO, CORRECT)

TRY EXECUTING
SIMPLE SOFTWARE
TEST PROGRAMS-
DO THEY WORK?

FIX

no
I

- SOFTWARE BUG
- MISUNDERSTANDING

OF COMPONENT
FUNCTION

- HARDWARE NOISE*

i r

yes

TRY APPLICATION-
PROGRAM WORK? ho

*"

<

yes

8.17 Trouble-Shooting Flowchart

This section will focus on actual problems, as they were found.

Week 1:

Wire-wrapped version of design finished. Buzz-testing begun.

Week 2:

Buzz-test finished. Each module has about 20 errors out of 1000 connec-
tions. Power applied and one board had a short between power and ground.
Power supply blew up. Wire found by applying large current to board with
no parts in it, and "burning out" the short. It was a shorted bypass
capacitor on a memory board.

312

Week 3:

Each board being checked for logic signals, etc., separately. Average of

one more error per board found in wiring. Printed-circuit boards being made

for wire-wrap modules.

Week 4:

Prototype system executes all simple test routines. Bad memory chip

found in RAM boards upon a memory test program that wrote alternate

ones and zeroes into every cell.

Week 5:

Bus loading problem with system program. EPROM on CPU card, a

buffer added to this card. Applications program can do input and output for

a while without crashing.

Week 6:

Looks like only software problems now. P.C. layouts are ready for

wiring check before boards are made.

Week 7:

P.C. board layout approved, about 5 errors per board found. System has

a baffling problem: will run for a few hours then give garbage to host

system.

Week 8:

P.C. boards back and debugged. Replaced wire-wrap boards with P.C.

boards, one at a time, to check for errors.

Week 9:

Still fixing wiring errors on P.C. boards. System still acting funny. Logic

Analyzer is being used extensively to find the problem.

Week 10:

Bad bus driver on host USART card found. Now only crashes every day

or so. P.C. boards finished. System will sometimes pick up improper data

from terminal. In-circuit emulator being used to check the data pick-up

routine on a trace-back basis. Problem only happens every 8 hours or

so—thus, truly difficult to catch.

Week 11:

Argument between programmers and designers—unhealthy finger-

pointing session. Friday the fault is found. Two problems.

Week 12:

There was a bad bit in the EPROM used for the program, and the carry

bit was not cleared upon entering the interrupt routines, where an add with

carry instruction was used, instead of an add with no carry instruction. The

DIGITAL TROUBLE-SHOOTING 313

instruction determined the location of the data to be transmitted, hence it

would occasionally get the wrong data upon encountering a carry set after

an interrupt. The problem of the bad bit came by checking the PROM
against the listing four times (it escaped detection that long!). The problem

of the wrong instruction was traced back using the Logic Analyzer when it

triggered on a read from the wrong place.

Epilog:

Except for statistical failures, three identical systems have been in use

since the end of Week 12. There have been fewer failures in the multiplex-

ers, with ten times less downtime, than in the main computers to which they

are connected.

SUMMARY

Components, software, and noise are the only "things to blame" if a

problem occurs. The flowcharts presented have described a simple method

of approaching typical microprocessor-related problems. The equipment

needed for a good microprocessor debugging station was presented, and

examples of each have been given. For reference, all of the equipment

required in a prototyping situation is illustrated in Fig. 8-18. Note the cost:

typically $45,000. Use anything less, and the time required to fix things, or

find out what is wrong, will increase.

/ IMJMutf "S —

i i/ g^g^iOT 1 1 A\ V *

WOmCMNCH Y ^H' *

z
MSttMLtR-CDITOn SYSTEM

8.18 Prototyping Equipment

314

Future hardware debugging tools will be oriented towards the state-type

of analyzer discussed. A large number of state, trace, and trigger-

capabilities, as well as the ability to format the display of the states in any

machine's mnemonics will be features of the new machines. Also their use

on minicomputers and large computers will become widespread with some
systems including an analyzer in the unit for self-diagnosis.

DIGITAL TROUBLE-SHOOTING 3 1

5

316

CHAPTER 9
EVOLUTION

TECHNOLOGICAL EVOLUTION

Beginning with the fundamentals of system interconnection, we have

traveled through the interfacing techniques. Throughout, the direction

of the evolution has been towards the use of completely integrated inter-

faces. The original racks, full of circuitry, previously required, have now

been reduced to a small number of LSI chips. The future will bring more

intelligent peripheral-chips which will result in increased performance

and flexibility.

The central processor at the heart of every system, is now a single

LSI chip. The interconnection of the memories and processor will be

eliminated in the future by one-chip microcomputers. These one-chip

devices will contain adequate ROM, RAM, and input-output facilities

to perform most interface tasks. Such devices are already being intro-

duced: the Texas Instrument 9940, the Intel 8048, Fairchild Mostek

3870, and others. They are characterized by a IK to 2K ROM, plus

64 to 128 words of RAM, plus clock and timer on the MPU chip. The 16

pins freed by the unnecessary address bus become available as two 8-bit

input-output ports.

The Texas Instrument 9940 is a 16-bit microcomputer with IK ROM,

RAM, and input-output in a single chip. The power of a 16-bit instruction

allows the implementation of a complete instruction-set, including hard-

ware multiply and divide. Unfortunately, the small ROM is a major limi-

tation.

The Intel 8048 integrates a IK by 8 PROM and a 32-byte register

file on a single chip, and provides 27 lines of input-output. An EPROM
version, the 8748, allows the program to be erased and reprogrammed

during development. The versatility gained by using an eraseable ROM,
on the same chip as the processor and input-output, makes 8748 easily

adaptable to changing interface requirements.

The 8041 is a "slave-version" of the 8048, intended as a "universal

peripheral interface." It can be programmed to act as any device con-

troller, and interfaces easily to a standard microprocessor system.

CONCLUSION EVOLUTION 317

The Mostek Fairchild 3870 integrates a 2K ROM, plus RAM, and is

software-compatible with the F8.

PROGRAMMABLE INTERFACES

Because of the low-cost of one-chip processors, device interface chips

are becoming "intelligent," i.e. processor-equipped. They receive instruc-

tions from the MPU, and implement all required control and sequencing.

The decoding and sequencing are usually accomplished by a micropro-

gram internal to the chip.

It is interesting to note that the complexity of a standard MPU is

about 6000 transistors. The complexity of an FDC or CRTC is 15000

to 22000 transistors.

One-chip interfaces are special-purpose processors for device control.

As integration progresses, the complete controller will eventually be

shrunk in a single-chip.

COST

The cost of interfaces will probably remain higher than the cost of a

processor, because of higher complexity, and lower volume. However,

it has become almost negligible compared to the cost of peripherals.

"PLASTIC SOFTWARE"

As soon as a software algorithm becomes well-defined, it can now be

solidified into LSI at low-cost. This is "plastic-software": programs can

be purchased as a plastic LSI chip.

In the next step of evolution, it is likely that many of the algorithms

or programs which have been presented throughout this book will be

implemented as part of complex LSI chips. They will have become plastic

software.

Interfacing will then have been essentially reduced to the simple inter-

connect of the required chips. When this time comes, it is hoped that the

techniques presented here will contribute to understanding it.

318

APPENDIX A
MANUFACTURERS

AMD (Advanced Micro Devices)

901 Thompson Place

Sunnyvale, CA 94608
(408) 732-2400
Telex: 346306

AMI (American Microsystems)
3800 Homestead Road
Santa Clara, CA 95051
(408) 246-0330

DATA GENERAL
Southboro, MASS 01772
(617)485-9100
Telex: 48460

ELECTRONIC ARRAYS
550 East Middlefield Road
Mountain View, CA 94043
(415)964-4321

FAIRCHILD SEMICONDUCTOR
1 725 Technology Drive
San Jose, CA 951 10
(408)998-0123

Gl (General Instruments)
600 West John Street
Hicksville, NY 16002
(516) 733-3107
TWX: (510)221-1666

HARRIS SEMICONDUCTOR
Box 883
Melbourne, FLA 32901
(305) 724-7430
TWX: (510) 959-6259

INTEL
3065 Bowers Avenue
Santa Clara, CA 95051
(408) 246-7501
Telex: 346372

INTERSIL
10090 North Tantau Avenue
Cuppertino, CA 95014
(408) 996-5000
TWX: (916) 338-0228

MM I (Monolithic Memories)
1165 East Arques Avenue
Sunnyvale, CA 94086
(408) 739-3535

MOS TECHNOLOGY
950 Rittenhouse Road
Norristown, PA 19401
(215)666-7950
TWX: (510)660-4033

MOSTEK
1 21 5 West Crosby Road
Carollton,TX 75006
(214) 242-0444
Telex: 30423

MOTOROLA SEMICONDUCTOR
Box 20912
Phoenix, ARIZ 85036
(602) 244-6900
Telex: 67325

NS (National Semiconductor)
2900 Semiconductor Drive
Santa Clara, CA 95051
(408) 732-5000
TWX: (910)339-9240

RAYTHEON SEMICONDUCTOR
350 Ellis Street

Mountain View, CA 94042
(415)968-9211
TWX: (910) 379-6481

RCA SOLID STATE
Box 3200
Somerville, NJ 08876
(201) 722-3200
TWX: (718)480-9333

ROCKWELL INTERNATIONAL
Box 3669
Anaheim, CA 92803
(714) 632-3698

SIGNETICS
811 East Arques Avenue
Sunnyvale, CA 94086
(408) 739-7700

SYNERTEK
3050 Coronado Drive
Santa Clara, CA 95051
(408) 984-8900
TWX: (910) 338-0135

319

Tl (Texas Instruments)

Digital Systems Division

P.O. Box 1444
Houston, TX 77001
(713)494-5115

WESTERN DIGITAL CORP.
3128 Redhill Avenue
Newport Beach, CA 92663
(714) 557-3550
TWX: (910) 595-1139

ZILOG
1 70 State Street

Los Altos, CA 94022
(415) 526-2748
TWX: (910) 370-7955

320

APPENDIX B
S-100

MANUFACTURERS

COMPUTER SYSTEMS

Byte Shop Byt-B 349.00

Computer Power & Light COMPAL-80 (assembled) 2,300.00

Cromemco Z-1 (assembled) 2,495.00

Cromemco Z-2K 595.00

Electronic Control Technology ECT-100-8080 320.00

Electronic Control Technology ECT-100-Z80 420.00

Equinox 100 699.00

Forethought Products KIMSI connector and KIM (6502) 370.00

IMSAI 8080 Computer (chassis, power, & CPU) 699.00

IMSAI PKG-1 4,444.00

IMSAI PKG-2 9,013.00

MITS Altair8800B 875.00

Morrow's Micro Stuff Signa 100 250.00

PolyMorphic Systems POLY-88 System 525.00

PolyMorphic Systems POLY-88 System 2 735.00

PolyMorphic Systems POLY-88 System 6 1,575.00

PolyMorphic Disk System (1 disk) 3,250.00

Processor Technology SOL-PC Single Board 475.00

Processor Technology SOL-10 Terminal Computer 795.00

Processor Technology SOL-20 Terminal Computer 995.00

Processor Technology System I 1,649.00

Processor Technology System II 1,883.00

Processor Technology System III 4,237.00

Quay Al Z-80 CPU, SIO, PIO, ROM, Programmer Board 450.00

Technical Design Labs XITAN Alpha 1 769.00

Technical Design Labs XITAN Alpha 2 1,369.00

Vector Graphics Vector I 699.00

Vector Graphics Vector I without PROM/RAM 519.00

Vector Graphics Vector I without CPU 499.00

Vector Graphics Vector I without CPU, PROM/RAM 349.00

Western Data Systems DATA HANDLER (used MOS 6502) 179.95

Western Data Systems DATA HANDLER (bare bones) 79.95

321

SECOND OR REPLACEMENT CPU BOARD

Affordable Computer Products AZPU (uses Z-80) 249.00
Alpha Micro Systems AM-100 (16 bit) 1,495.00
CGRS6502 ?

Cromemco ZPU (uses Z-80/4 microprocessor) 295.00
IMSAI MPU-A (requires additional boards) 190.00
MRS AM6800 CK (uses 6800 MPU) 110.00
MRS AM6800 (without the 6800 MPU chip) 78.00

MRS AM6800 PC Board 30.00
R .H .S. Marketing Piggy-Back Z80-80 (assembled) 1 59.95

SD Sales Z-80 CPU 149.00
Technical Design Labs Z-80 (uses Z-80) 269.00

READ/WRITE MEMORY BOARD

Advanced Microcomputer Products Logos 8K RAM 219.95
Advanced Microcomputer Products 801C 8K RAM 207.95
Advanced Microcomputer Products 32K RAM 1 ,150.00

Artec 32K Memory Board (8K, 250 nS) 290.00
Artec 32K Memory Board (32K, 250 nS) 1 ,055.00

Associated Electronics 15K Pseudo-Static 349.95

Base-2 BKS-A 98.00

Base-2 BKS-B (450 nS) 123.00

Base-2 BKS-Z 143.00

BISI CCK Board (64K) 190.00

Crestline Micro Systems (8K, low power, assembled) 1 79.00

Cromemco 4KZ (4K 4MHz) (Bank selectable) 195.00

Cromemco 16KZ (16K 250 nX access and cycle) 495.00
Cybercom MB6A Blue Board (8K static) 250.00

Cybercom MB7 (16K low power static) 525.00

Data Sync 16K (assembled) 298.00
Duston 8K Memory Board (bare) 29.00

Dutronics 4KLST (4K low power static) 139.00

Dutronics 8KLST (8K low power static) 285.00

E.E.& P.S.8K (8K static) 295.00

E.E.& P.S. 16K (16K dynamic) 599.00
E.E. & P.S. 32K (32K dynamic) 895.00
Electronic Control Technology 8KM (8K 215 nS) 295.00

Electronic Control Technology 16K RAM (16K static) 555.00
Electronic Control Technology 16K RAM (with only 4K) 169.00

Electronic Control Technology 16K RAM (with only 8K) 295.00

Electronic Control Technology 16K RAM (with only 12K) 425.00
Extensys RM64-32 (32K) 895.00

Extensys RM64-48 (48K) 1,195.00

Extensys RM64-64 (64K) 1,495.00

Franklin Electric 8K Static RAM 225.00

Godbout Econoram (4K static) 99.95

322

Godbout Econoram II (8K) 163.84

IMSAI RAM 4A-4 (4K without sockets) 139.00

IMSAI RAM 4A-4 (4K with sockets) 159.00

IMSAI 65K (dynamic) 2,599.00

IMSAI 32K (dynamic) 749.00

IMSAI 16K (dynamic) 449.00

Kent-Moore 4K (assembled) 107.00

Microdesign MR8 (EPROM/RAM) 124.95

Micromation JUMP START (4K static) 145.00

Midwest Scientific Instruments PROM/RAM Board 95.00

Mikro-D MD-2046-4 (4K static) 205.00

Mikro-D MD-2046-8 (8K static) 345.00

Mikro-D MD-2046-12 (12K static) 485.00

Mikro-D MD 2046-16 (16K static) 625.00

MiniMicroMart C-80-4K-100 (4K blank board) 39.95

MiniMicroMart C-80-4K-700 (4K blank board plus) 49.95

MiniMicroMart C-80-4K-300S (4K 2102) 79.95

MiniMicroMart C-80-4K-300LP (4K 9IL02A) 99.95

MiniMicroMart C-80-4K-350LP (4K 9IL02C) 129.95

MiniMicroMart C-80-16K-300 (16K E MM4200) 479.95

MITS 88-4MCS (4K static) 167.00

MITS 88-16MCS (16K static) 765.00

MITS 88-S4K (4K dynamic) 155.00

Morrow Intelligent Cassette (512 static) 96.00

Mountain Hardware PROROM (256) 164.00

Omni (16K static) 459.00

Omni with paging option (16K static) 468.00

Prime Rodi x 40K (dynamic) 1,490.00

Prime Rodi x 48K (dynamic) 1 ,580.00

Prime Rodi x 56K (dynamic) 1,670.00

Prime Rodi x 64K (dynamic) 1,750.00

Processor Technology 4KRA (4K static with sockets) 154.00

Processor Technology 8KRA (8K static with sockets) 295.00

Processor Technology 16KRA (16K static assembled) 529.00

PolyMorphic Systems MEM-8K (8K static) 300.00

R.H.S. Marketing DYNABYTE 16K (dynamic, assembled) 485.00

J-K Electronics DYNA-RAM 16 (16K) 339.00

S. D. Sales Company 4K (4K static) 89.95

Seals Electronics 8KSC-8 (8K static) 269.00

Seals Electronics 8KSC-Z (8K 250 nS) 295.00

Seals Electronics 8KSCL M (less memory chips) 124.00

Seals Electronics 16KSC-16 (16K static) 579.00

Solid State Music M8-4 (4K 9IL02A) 129.95

Solid State Music M8-4 (8K 9IL02A) 209.00

Solid State Music M8-4 (board only) 30.00

Solid State Music M8-4 (board only) 35.00

Solid State Music M8-6 (8K 9IL02APC static) 265.00

Solid State Music M8-7 (16K static) 525.00

Technical Design Labs Z8K (4K 215 nS) 169.00

Technical Design Labs Z8K (8K 215 nS) 295.00

323

Technical Design Labs Z12K (1 2K 215 nS) 435.00
Technical Design Labs Z16K (16K 215 nS) 574.00
Technical Design Labs Z Monitor Board with 2K RAM 295.00
Vandenberg 16K RAM (dynamic) 299.00
Vector Graphics 8K RAM 265.00
Vector Graphic Reset and Go PROM/RAM 89.00
Xybek PRAMMER (256 bytes & 1702 PROMs) 189.00

PROM PROGRAMMER BOARD

Cromemco BYTESAVER for 2704 & 2708 145.00

Mountain Hardware PROROM (AMI 6834) 164.00

Quay Al Z-80 with 2708 Programmer 450.00
Szerlip Enterprises The Prom Setter (1702A and 2708) 165.00

Xebek PRAMMER for 1702 (with 1702 & RAM) 209.00

PLUG IN SOFTWARE BOARD

Computer Kits Power-Start 165.00

Cromemco Z80 Monitor Board with PROM Programmer 220.00

Godbout 8080 Software Board 189.95

Microdesign MR8 with MM2K 224.45

Micronics Better Bug Trap (assembled) 180.00

Midwest Scientific Instruments PROM/RAM Monitor 245.00

Mountain Hardware PROROM 164.00

National Multiplex Corp No. 2 SIO with monitor 140.00

Processor Technology ALS-8 (assembled) 425.00

Processor Technology ALS-8 with SIM-I 520.00

Processor Technology ALS-8 with TXT-I 520.00

Technical Design Labs Z System Monitor Board 295.00

Vector Graphics Reset and Go (2 1702A) 129.00

Vector Graphics Reset and Go (3 1702A) 159.00

SERIAL INTERFACE BOARD

Advanced Microcomputer Products (3P + S compatible) 125.00

Cromemco TU-ART (2 parts) 195.00

IMSAISI0 2-1 (one part, without cables) 125.00

IMSAI SIO 2-2 (two parts, without cables) 1 56.00

IMSAI SIO (serial, parallel, & tape interface) 195.00

Morrow Intelligent Cassette with one part 108.00

MiniMicroMart C80-SI/O-300 (TTL) 44.95

M ITS 88-2SIO (one part) 150.00

M ITS 88-2SIO + SP (two parts) 188.00

MITS88SIOB 124.00

National Multiplex Corp No. 2 SIO with ROM 140.00

324

Processor Technology 3P+S (with sockets) 149.00

Solid State Music I/0-2 (two parts) 47.50

Solid State Music I/0-2 (PC board only) 25.00

Technical Design Labs Z Monitor Board (two parts) 295.00

WIZARD PSIOB (3P+S compatible) 125.00

ANALOG INTERFACE BOARD

Cromemco D+7AIO (7analog inputs & 7 outputs) 145.00

Micro Data ADC/DAC 250.00

MITS 88-ADC (assembled only) 524.00

MITS 88-Mux (assembled only) 319.00

MITS AD/DA (assembled) 235.00

PolyMorphic Systems ADA/I (1 analog output) 145.00

PolyMorphic Systems ADA/2 (2 analog outputs) 195.00

MODEM BOARD

International Data Systems 88-MODE M 199.00

Hayes 80-103A (assembled) 279.95

Hayes 80-103A (board only) 49.95

AUDIO CASSETTE INTERFACE BOARD

Affordable Computer Products Triple Standard 135.00

DAJEN Cassette Interface 120.00

DAJEN Universal Cassette Interface (Relay Control) 135.00

IMSAI MIO (tape interface, parallel, & serial) 195.00

MiniTerm Associates MERLIN with cassette interface 298.00

MITS88-ACR 145.00

National Multiplex Corp No. 2 SIO with ROM 140.00

Morrow Intelligent Cassette Interface 96.00

Morrow Intelligent Cassette Interface (3 drives) 102.00

PerCom Data CI-812 89.95

Processor Technology CUTS 87.00

RO-CHE with Tarbell (two parts) 245.00

RO-CHE with Tarbell (four parts) 245.00

Tarbell 120.00

TAPE DRIVE INTERFACE BOARDS

MECA ALPHA-I System 400.00
Micro Design Model 100 (assembled) 600.00
Micro Design Model 200 (assembled) 875.00
MicroLogic M712 DG PhiDeck 69.95

National M.C. 2 SIO (R) 1 ROM 169.95

325

National M.C. 2 SIO (R) 2 ROM 189.95

National M.C. 2 SIO (R) with 3M3 (3M drive) 369.90
National M.C. 2 SIO (R) with 3M3 (mini 3M drive) 339.90

FLOPPY DISK INTERFACE BOARD

Alpha Micro Systems AM-200 Controller 695.00
Alpha Micro Systems AM-201 Controller 695.00
CHP Floppy Disk Controller 300.00
Computer Hobbyist Products Controller 300.00
Computer Hobbyist Products (single drive) 850.00
DigiComm 8040 Floppy Disk Controller 265.00
Digital Systems IBM campatible 1,595.00

Digital Systems dual IBM campatible 2,170.00

iCOM Microfloppy Model FD2411 (assembled) 1,095.00

IMSAI F IF 599.00

IMSAI F DC2-1 & F IF 1,694.00

IMSAI F DC2-2 & F IF 2,789.00

INFO 2000 Adapter (without RAM) 120.00

INFO 2000 Adapter (with 4K RAM) 160.00

INFO 2000 Adapter - Per Sci 1070 Controller 860.00

Micromation Universal Disc Controller 229.00

Micromation MACRO DISC System, Model 164K 900.00

Micromation MACRO DISC System, Model 256K 1,100.00

Micropolis 1053 Mod II (630K) 1,795.00

Micropolis 1043 Mod II (315K) 1,095.00

Micropolis 1053 Mod I (286K) 1,545.00

Micropolis 1043 Mod I (143K) 945.00

MITS 88-DCDD (Controller & disk) 1,425.00

MITS88-DISK 1,215.00

North Star Computers MICRO-DISK 699.00

PerCom Data Co. 695.00

Peripheral Vision interface and floppy 750.00

Peripheral Vision IFF-KC interface 245.00

Pertec RD2411 1,095.00

Processor Applications FDC-1016K Controller 395.00

Processor Technology Helios (dual) 1,895.00

Realistic Controls ZI/25 1,095.00

Synetic Designs interface and floppys 2,690.00

Tarbell Bare Board Interface 40.00

Tarbell Interface 190.00

HARD DISK INTERFACE BOARD

IMSAI DISK-50 12,500.00

IMSAI DISK-80 14,700.00

IMSAI DISK-200 24,500.00

IMSAI Interface (assembled) 3,900.00

326

PROM BOARD

CreaComp M 100/16 (16K, 2116) 485.00

Crea Comp M 100/16 (with parity) 560.00

Crea Comp M 100/32 (32K, 21 16) 885.00

Crea Comp M 100/32 (with parity) 990.00

Cromemco BYTESAVER (8K) 145.00

Cromemco 16KPR-K (16K, Bank selectable) 145.00

DigiComm Byteuser (uses 2708) 65.00

Digiteck PROM CARD (2K assembled without PROMS) 56.95

Electronic Control Technology 2K ROM/2K RAM 120.00

Godbout Econoram (2K) 135.00

Godbout Econoram (4K) 179.95

Godbout Econoram (8K) 269.00

IBEX 16K PROM Board 85.00

IMSAI PROM 4-4 (4K PROM) 399.00

IMSAI PROM 4-512 (I/2K PROM) 165.00

Microdesign MR8 (for 2708) 99.50

Midwest Scientific Instruments PROM/RAM Board 95.00

MiniMicroMartC80-1702-l (all except PROMS) 49.95

MiniMicroMart C80-2708-2 (all except PROMS) 49.95

MiniMicroMart C80-256 (boot strap board, fuse link) 34.95

MITS PMC (2K) 85 -00

Processor Technology 2KRO 65.00

Seals Electronics 4KROM 1 19.00

Solid State Music MB-3 2K (8 1 702As) 105.00

Solid State Music MB-3 4K (16 1702As) 145.00

Solid State Music MB-3 (without PROMs) 65.00

Solid State Music MB-8 (2708) 85.00

Vector Graphic Reset and Go PROM/RAM 89.00

Xybek PRAMMER for 1702 (with a 1702 & RAM) 189.00

MEMORY CONTROL BOARD

IMSAI IMM ROM Control Kit 299.00

IMSAI IMM EROM Control Kit 499.00

HARDWARE MULTIPLY/DIVIDE BOARD

GNAT 8006 Module (5 u-sec. process time) 225.00

GNAT 8006 Module (2.5 u-sec. process time) 275.00
North Star Computers (floating point) 359.00

CALCULATOR INTERFACE BOARD

COMPU/TIME CT 100 195.00

COMPU/TIME C 101 149.00

MiniMicroMart C80-SCI-300 99-9 5

327

SPEECH SYNTHESIZER BOARD

Ai Cybernetic Systems Model 1000 325.00
Computalker Speech Synthesizer CT-I 395.00
Logistics Synthesizer (multipurpose) 525.00

SPEECH RECOGNITION BOARD

Heuristic Speechlab 245.00
Phonics SR/8 (assembled) 550.00

JOYSTICK INTERFACE KITS

Cromemco Joystick Kit & D+7AI/0 210.00
Cromemco Dual Joystick Kits & D+7AI/0 275.00

INTERRUPT BOARD

Cromemco TU-ART 195.00
El Paso Computer Group (board only) 20.00

IMSAI PIC-8 (with internal clock) 125.00
MITS 88-VI/RTC 136.00

REAL-TIME CLOCK

Comptek CL2400 98.00
COMPU/TIME CT 100 195.00
COMPU/TIME T 102 165.00
International Data Systems SMP-88 96.00
Lincoln Semiconductor Clock and Display Driver 95.00

AC POWER CONTROL

Comptek PC3216 Control Logic Interface 189.00
Comptek PC3216 & PC3202 Power Control Unit 228.50
Comptek PC3216 & 16 PC3202 16 Channel System 821.00
Comptek PC3232 Control Logic Interface 299.00
E.E.& P.S. II5V I/O 249.00

Mullen Relay/Opto Isolator Control Board 117.00

BATTERY BACK-UP BOARD

Seals Electronics BBUC (12 amper hours) 55.00

E.E.& P.S. 55.00

328

MUSIC SYNTHESIZER BOARD

ALF Quad Cromatic Pitch Generator (1 channel)

ALF Quad Cromatic Pitch Generator (2 channels)

ALF Quad Cromatic Pitch Generator (3 channels)

ALF Quad Cromatic Pitch Generator (4 channels)

Cybercam 581 Synthesizer Kit

Galazy Systems MG-1
Logistics Synthesizer (multipurpose)

SRS Polyphonic Synthesizer SRS-320 (assembled)

SRS Polyphonic Synthesizer SRS-321 for the SRS-320

1 1 1 .00

127.00

143.00

159.00

250.00

299.00

525.00
175.00

175.00

PRINTER INTERFACE BOARD

Peripheral Vision PRT-KC Printer Kit 495.00

FREQUENCY COUNTER BOARD

International Data Systems 88-UFC

IBM SELECTRIC INTERFACE BOARD

Micromation TYPEAWAY

149.00

225.00

PARALLEL INTERFACE BOARD

Advanced Microcomputer Products (3P+S compatible)

Cromemco D+7AIO (one part with seven analog parts)

Cromemco TU-ART (2 parts)

IMSAI PIO 4-I (one port without cables)

IMSAI PIO 4-I & PIOM (two ports without cables)

IMSAI PIO 4-I & PIOM (three ports without cables)

IMSAI PIO 4-4 (four ports without cables)

IMSAI PIO 6-3 (three ports and bus without cables)

IMSAI PIO 6-6 (six ports and bus without cables)

IMSAI MOI (two ports & serial & tape interface)

MicroLogic M712 (one port)

MiniMicroMart C80-P I/O (two ports)

MiniMicroMart C80-P I/O with cables C80-P I/O-540

MITS 88-4PIO (one port)

MITS 88-4PIO + PP (two ports)

MITS 88-4PIO + 2PP (three ports)

MITS 88-4PIO + 3PP (four ports)

Morrow Intelligent Cassette with one port

PolyMorphic VTI/32 (one input port with video)

PolyMorphic VTI/64 (one input port with video)

125.00

145.00

195.00

93.00

115.00

137.00

156.00
139.00

169.00

195.00

69.95

49.95
57.45

105.00
148.00
191.00
234.00
102.00
185.00

210.00

329

Processor Technology 3P+S (with sockets) 149.00
Solid State Music l/O-l (one port) 42.00
Solid State Music l/O-l (PC board only) 25.00
Solid State Music 1/0-2 (two ports) 47.50
Solid State Music 1/0-2 (PC board only) 25.00
Technical Design Labs Z Monitor Board (one port) 295.00
WIZARD PSIOB (3P+S compatible) 125.00

PROTOTYPE BOARD

Advanced Microcomputer Products Universal Proto 39.95
Artec GP-1 00 20.00
Cromemco WWB-2K 35.00
Electronic Control Technology PB-I 22.00
E.E. & P.S. Wire Wrap 39.00
E&L Instruments Breadboarding/lnterfacing Station 241.50
Electronic Control Technology PB-I 28.00
Galaxy Systems PB-I 30.00
Harnestead Technology HTC-88P (QT sockets) 138.00
Harnestead Technology HTC-88PF (fell pattern) 38.00
IMSAI GP-88 39.80
IMSAI 88C-5 & P106-6 Intelligent Breadboard System 699.00
IMSAI 88C-3 & P106-3 Intelligent Breadboard System 464.00
MiniMicroMart C-80-WW (wire wrap type) 19.95
MiniMicroMart C-80-DIP (for point to point) 18.95
MiniMicroMart C-80-BUS-WW (wire wrap) 21.95
MiniMicroMart C-80-BUS-WW-1 25 (with components) 27.45
MiniMicroMart C-80-DIP-BUS (for point to point) 20.95
MiniMicroMart C-80-DIP-BUS-125 (with components) 26.45
MITS88-PPCB 45.00
MITS88-WWB 20.00
PolyMorphics Poly I/O 55.00
Processor Technology WWB 40.00
Sargent's Dist. Co. 25.00
Seals Electronics WWC 37.50
Tarbell Electronics 28.00
Vector 8800V 19.95
Vector 8800-A 29.95
Vector 8800-B 89.00

EXTENDED BOARD

Advanced Microcomputer Products Extender 34 g 5
Artec EXT-100 1200
Cromemco EXC-2 35 00
E.E. & P.S. Extender W/C 34 00
Galaxy Systems EX-I
IMSAI EXT
MiniMicroMart C-80-EXC

25.00

39.00
24.95

330

Mullen (with logic probe)
"

Processor Technology EXB "

QQ MM
Seals Electronics EXT
Solid State Music (less connectors) 8 -°°

Solid State Music (w/w connector)

Suntronics EXT-I

Vector 3690-12 (assembled) 25.00

ADAPTER BOARD

MiniMicroMartC80-8A (for MOD 8/C-MOD 80 boards) 19-95

Forethought Products KIMSI (for KIM) 125.00

CARD CAGE AND/OR MOTHERBOARD

Advanced Microcomputer Products 8 slot MS w/connectors 79.95

Byte, inc. Byt-8
229 -00

Computer Data Systems Versatile CRT (assembled)

Electronic Control Technology ECT-100

Electronic Control Technology MB-20

Godbout Motherboard (10 slot)

Godbout Motherboard (18 slot)

Integrand Research Corp. 808

Integrand Research Corp. 808A 275.00

MiniMicroMart Expander (4 slots)

MiniMicroMart Expander (9 slots)

Morrow MotherBoard

Objective Design Crate Book (plans only)

PolyMorphic P+S Chassis 235.00

TEI Model MCS-112 316.00

T&H Engineering Low Cost Buses 149.00

Vector 18 Slot Motherboard

699.95

100.00

60.00

85. .00

118.00

200.00

10.95

17.95

76.00

19.95

49.00

25.00

TERMINATION BOARD

Godbout

VIDEO INTERFACE BOARD -BLACK & WHITE

Computer Kits INTELLITERM (characters) 395.00

Computer Graphics GDT-I (graphics and light pen) 185.00

Environmental Interface II (monitor) 245.00

Environmental Interface III (oscilloscope) 495.00

Kent-Moore alpha (assembled) 107.00

Kent-Moore graphic (assembled) 137.00

331

Micro GRAPHICS "THE DEALER" (graphics and characters)
MiniMicroMart C80-VBA
MiniTerm Associates MERLIN (without memory)
MiniTerm Associates MERLIN (with memory)
MiniTerm Associates MERLIN Super Dense Graphics
Polymorphics VTI/64 (graphics and characters)
Processor Technology VDM-I (characters)
Solid State Music 64 x 16 (graphics and characters)

249.00

149.95

269.00

303.95

308.00
210.00

199.00

179.95

VIDEO INTERFACE BOARD -COLOR

Cromemco TV DAZZLER (graphics) 215.00

TV CAMERA INTERFACE BOARD

Cromemco 88-CCC-K
Cromemco 88-CCC-K with Camera Kit 88-ACC-K
Environmental Interface I

Environmental Interface with camera

195.00

390.00

295.00

595.00

Affordable Computer Products
Byte Shop No. 2

3400 El Camino Real

Santa Clara, CA 95051
(408)249-4221

Advanced Microcomputer Products
P.O. Box 17329
Irvine, CA 92713
(714) 558-8813

Ai Cybernetic Systems
P.O. Box 4691
University Park, NM 88003

ALF Products, Inc.

128 S. Taft

Lakewood,CO 80228

Alpha Micro Systems
17875 N. SkyPark North
Irvine, CA 92714
(714) 957-1404

Altair (see MITS)

Artec Electronics, Inc.

605 Old Country Road
San Carlos, CA 94070
(415)592-2740

Associated Electronics

12444 Lambert Circle

Garden Grove, CA 92641
(714) 539-0735

Base-2, Inc.

P.O. Box 9941
Marina del Rey, CA 90291

Byte Shop
1450 Koll Circle, No.
San Jose, CA 95112

CGRS Microtech, Inc.

Unknown

CHP, Inc.

P.O.Box 18113
San Jose, CA 95158

105

332

Comptek
P.O. Box 516

La Canada, CA 91011

(213) 790-7957

Computalker Consultants

P.O.Box 1951

Santa Monica, CA 90406

Computer Data Systems

English Village, Atram 3

Newark, DE 19711

Computer Kits Inc.

1044 University Avenue

Berkeley, CA 94710

(415)845-5300

Computer Graphics Associates

56 Sicker Road
Latham, NY 12110

Computer Hobbyist Products, Inc.

P.O.Box 18113

San Jose, CA 95158

(408)629-9108

COMPU/TIME
P.O. Box 417

Huntington Beach, CA 92648

(714) 638-2094

Computer Power & Light

12321 Ventura Blvd.

Studio City, CA 91604

(213) 760-0405

Crea Comp System, Inc.

Suite 305

4175 Veterans Highways

Ronkonkoma, NY 11779

(516)585-1606

Crestline Micro Systems

P.O. Box 3313

Riverside, CA 92519

Cromemco
2432 Charleston Road

Mountain View, CA 94043

(415)964-7400

Cybercom

2 102A Walsh Avenue

Santa Clara, CA 95050

(408) 246-2707

DAJEN
David C. Jenkins

7214 Springleaf Court

Citrus Heights, CA 95610

(916)723-1050

Data Sync

201 W. Mill

Santa Maria, CA 93454

(805) 963-8678

DigiComm
6205 Rose Court

Roseville,CA 95678

Digital Systems

1 154 Dunsmuir Place

Livermore, CA
(415)4134078

Digiteck

P.O. Box 6838

Grosse Point, Michigan 48236

Duston, Forrest

885 Aster Avenue

Palatine, II 60067

333

Dutronics

P.O. Box 9160
Stockton, CA 94608

E & L Instruments, Inc.

61 First Street

Derby, Conn. 06418
(203) 735-8774

E.E.&P.S.

Electronic Eng. & Production

Route No. 2

Louisville, Tennessee

(615)984-9640

Franklin Electric Co.

733 Lakefield Road
Westlake Village, CA 91361
(805) 497-7755

Galaxy Systems

P.O. Box 2475
Woodland Hills, CA 91364
(213)888-7233

Service GNAT Computers
8869 Balboa, Unit C
San Diego, CA 12123

Electronic Control Technology
P.O. Box 6

Union City, NJ 07083

El Paso Computer Group
9716 Saigon Drive

ElPase,TX 79925

Environmental Interfaces

3207 Meadowbrook Blvd.

Cleveland, Ohio 44118
(216)371-8482

Equinox Division

Parasitic Engineering

P.O. Box 6314
Albany, CA 94706

(800)648-5311

Extensys Corp.

592 Weddell Drive, S-3

Sunnyvale, CA 94086
(408)734-1525

Forethought Products

P.O. Box 386-A
Coburg, Oregon 97401

Godbout Electronics

Box 2355

Oakland Airport, CA 94614

Hayes

P.O. Box 9884
Atlanta, GA 30319
(404)231-0574

Heuristic, Inc.

900 N. San Antonio Road
Suite C-l

Los Altos, CA 94022

Homestead Technologies Corp.

891 BriarcliffRoadN.E.

Suite B-l 1

Atlanta, GA 30306

iCOM Division

6741 Variel Avenue
Conoga Park, CA 91303
(213)348-1391

IBEX
1010 Morse Avenue, No. 5

Sunnyvale, CA 94086
739-3770

334

IMS Associates, Inc.

14860 Wicks Blvd.

SanLeandro,CA 94577

(415)483-2093

INFO 2000

P.O. Box 316

Culver City, CA 90230

Integrand Research Corp.

8474 Avenue 296

Visalia,CA 93277

(209) 733-9288

International Data Systems

400 North Washington Street,

Suite 200
Falls Church, VA 22046

(703) 536-7373

Kent-Moore Instrument Co.

P.O. Box 507

Industrial Avenue

Pioneer, Ohio 43554

(419) 737-2352

Lewis and Associates

68 Post Street, Suite 506

San Francisco, CA 94104

(415)391-1498

Lincoln Semiconductor

P.O. Box 68

Milpitas, CA 95035

(408) 734-8020

Logistics

Box 9970
Marina Del Rey, CA 90291

North Star Computers

2465 Fourth Street

Berkeley, CA 94710

MECA
7344 Warnego Trail

Yucca Valley, CA 92284

(714)365-7686

Micro Data

3199 Trinity Place

San Jose, CA 95124

Microdesign

8187 Havasu Circle

BuenaPark,CA 90621

(415)465-1861

Micro Designs, Inc.

499 Embarcadero

Oakland, CA 94606

(415)465-1861

MicroGRAPHICS
P.O. Box 2189, Station A
Champaign, IL 61820

MicroLogic

P.O. Box 55484

Indianapolis, IN 46220

Micromation

524 Union Street

San Francisco, CA 94133

(415)398-0289

Micronics, Inc.

P.O. Box 3514

Greenville, NC 27834

Micropolis Corp.

9017 Reseda Blvd.

Northridge, CA 91324

Midwest Scientific Instruments

220 West Cedar

Olathe, Kansas 66061

335

MIKRA-D, Inc.

P.O. Box 403
Hollister, Mass. 01746

Mini Micro Mart

1618 James Street

Syrecuse, NY 13203

MiniTerm Associates

Box 268

Bedford, Mass. 01730

MITS (Altair)

2450 Alamo S. E.

Albuquerque, NM 87106

Morrow's Micro-Stuff

Box 6194
Albany, CA 94706

MRS
P.O. Box 1220

Hawthorne, CA 90250

Mullen Computer Boards

Box 6214
Hayward,CA 94545

Mountain Hardware

Box 1133

BenLamand,CA 95005

National Multiplex Corp.

3474 Rand Avenue, Box 288
South Plainfield, NJ 07080

Objective Design, Inc.

P.O. Box 7536 Univ. Station

Provo, Utah 84602

PerCom Data Company
4021 Windsor

Garland, TX 75042

Peripheral Vision

P.O. Box 6267
Denver, Colorado 80206

Phonics, Inc.

P.O. Box 62275
Sunnyvale, CA 94086

Polymorphic Systems

737 S. Kellogg

Galeta, CA 94608

Prime Rodix Inc.

P.O. Box 11245
Denver, Colorado 80211

Processor Applications, Ltd.

2801 East Valley Veiw Avenue
West Covina, CA 91792

Processor Technology

6200-L Hollis Street

Emeryville, CA 94608

Quay Corporation

P.O. Box 386
Freehold, NJ 07728

Realistic Controls Corporation

3530 Warrensville Center Road
Cleveland, Ohio 44122

R.H.S. Marketing

2233 El Camino Real

Palo Alto, CA 94306

RO-CHE Systems

7101 Mammoth Avenue
VanNuys,CA 91405

S. D. Sales

P.O. Box 28810
Dallas, Texas 75228

336

Sargent's Dist. Co.

4209 Knoxville

Lakewood,CA 90713

Scientific Research Instruments

P.O. Drawer C

Marcy,NJ 13403

Seals Electronics

Box 11651

Knoxville, TN 37919

Smoke Signal Boardcasting

P.O. Box 2017

Hollywood, CA 90028

Solid State Music

MIKOS
419 Portofino Drive

San Carlos, CA 94070

Stillman Research Systems (SRS)

P.O. Box 14036

Phoenix, AZ 85063

Tarbell Electronics

20620 South Leapwood Avenue

Suite P

Carson, CA 90746

Technical Design Labs Inc.

342 Columbus Avenue

Trenton, NJ 08629

Vandenberg Data Products

P.O. Box 2507

Santa Maria, CA 93454

Vector Electronics Company, Inc.

12460 Gladstone Avenue

Sylmar,CA 91342

Vector Graphic Inc.

717 Lakefield Road, Suite F

Westlake Village, CA 91361

Western Data Systems

3650 Charles Street, No. Z
Santa Clara, CA 95050

Suntronics Company
360 Merrimack Street

Lawrence, MA 01843

Synetic Designs Company
P.O. Box 2627

Pomona, CA 91766

Szerlip Enterprises

1414 W. 259th Street

Harbor City, CA 90710

TEI Inc.

7231 FondrenRoad
Houston, Texas 77036

T&H Engineering

P.O. Box 352

Cardiff, CA 92007

WIZARD Engineering

8205 Ronson Road, Suite C

San Diego, CA 92111

Xybek
P.O. Box 4925

Stanford, CA 94305

337

INDEX

A

ACIA 58,107,112

acknowledge
1

3

address-bus 8,10,20

analog to digital 191, 197, 204, 207

analyser 287, 293

Ascn 97,147,215,244

asynchronous 13 242

B

band-rate 240, 273

bidirectional 25

bounce 85

breakpoints 308

buffering 24, 25, 269

bus-drivers 48

C

CAMAC 215,233

cassette 85, 121, 123, 140

central processor unit 1

7

dock 26, 34, 43

338

component failure
z,° 1

control-bus

counter

CRC

CRT 85,142,151

direct memory access

drivers

E

EBCDIC

EPROM

9,10

102

171

D

daisy-chain

data-bus 8, 10, 19

69

22
decoders

digital to analog 191,193,196,206,246

direct-comparison 202

75

distributor
J °^

DMAC 75
'
185

>
187

dot-matrix 104, 105, 145

100

dual-slope ^01

DVM ^87, 288

dynamic RAM 23, 3"

245

29

1 6Q
error detection Lyjy

339

floppy-disk 85,154,173,177,180,184,185

fully decoded selection 21

G

glitch 205

I

IEEE - 488 228

in-circuit emulation 296, 306

integration 201

interface chips 10

interrupts 66

I/O mapped I/O 46

H

hard-format 159,168

hardware 8

hexadecimal 44

K

keyboard 85,95,96

L

latches 48

LED 85,98,103

linear selection 20,32

340

line printer 1^

LSI 7

M

magnetic stripe reader 85, 120

268

20

memory-array

memory map

memory-mapped I/O 45

microcomputer-on-a-chip 9,317

microprocessor °

MTBF 282

multiplexer 9,82,83,210,259

N

noise 284, 285

offset 212

one-shot 82, 83

oscilloscope 287,291

P

packaging 1

7

paper tape reader 85, 113

partial-decoding 32

pattern testing 304

341

PIA 50

PIC 69, 74, 274

PIO 50

plastic software 318

polling 62, 64, 68

PPI 54

priority 64, 70

probe 287, 290

programmable 50

programmed I/O 62

Q

quad-slope 201

queue 260

R

RAM 23

refresh 40

refresh address 40

refresh controller 40

rollover 88

ROM 24, 84

RS232C 215,239,259

342

s

S100 215,217

sampling 196, 197

sampling theorem 197

scaling 212

scanning
%"''» 93

self-diagnostic 302

serial I/O 56

signature analysis 300

simulation 305

soft-fail 84

soft-format 1 59

software 8, 284

software-priority 69

stack ^3

state 293, 295

static RAM 23

stored-response 303

substrate material 17, 18, 19

successive approximation 1 97

synchronous 13,243,246

system controller 28

343

85 105

281 300

25, 269

teletype

testing

transceivers

U

UART 56,58,61,106

USART 58, 60, 260, 270

V

vectored-interrupt 69

VOM 287, 288

Y

yield 17, 18

344

MICROPROCESSOR BOOKS

BOOKS
C200 AN INTRODUCTION TO PERSONAL COMPUTING,

by Rodnay Zaks

C201 MICROPROCESSORS, from chips to systems,

by Rodnay Zaks

C4 LES MICROPROCESSEURS: du composant au systeme,

par Rodnay Zaks et Pierre Le Beux

C207 MICROPROCESSOR INTERFACING TECHNIQUES,
by Austin Lesea and Rodnay Zaks

MD INTERNATIONAL MICROPROCESSOR DICTIONARY
(10 languages)

CASSETTES (2 cassettes plus special book)

51 INTRODUCTION TO MICROPROCESSORS
52 PROGRAMMING MICROPROCESSORS

SEMINAR BOOKS
Bl MICROPROCESSORS
B2 PROGRAMMING AND MICROPROGRAMMING
B3 MILITARY MICROPROCESSOR SYSTEMS
B5 BIT-SLICE

B6 INDUSTRIAL MICROPROCESSOR SYSTEMS
B7 INTERFACING TECHNIQUES

IN HOUSE TRAINING AND SEMINARS

SYBEX offers over 12 different seminars which can be

presented at your facility for a minimum group of 15

participants (world-wide). Please contact the nearest

SYBEX office for full details.

345

346

INFORMATION REQUEST (see other side)

FIRST CLASS

Permit No. 2587

BERKELEY, CA

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

SYBEX INCORPORATED

2161 SHATTUCK AVENUE

BERKELEY, CA 94704

347

NAME.

COMPANY.

CITY

INFORMATION REQUEST

POSITION

ADDRESS

STATE. ZIP_

Send me information on:

D BOOKS

HOME STUDY WITH CASSETTES

SEMINARS

TEL:

D IN-HOUSE COURSES

D CONSULTING

D OTHER

D IMMEDIATELY

FOLD HERE, THEN STAPLE

348

C207

SYBEX
SYBEX

INTERFACING
is no longer an art, but a set of

techniques and components.
This book will teach you
how to interconnect a

complete system, and
interface it to all the
usual peripherals. It

covers hardware and
software skills and
techniques,

cludjng the use
of Jm ^
^r -"^

IEEE 488 v
w &W oft

•H —

I

S
to -..

o pn ft

* "*i

—

,

o
js m 3

C6 3> ft

CD

INTERFACING

