

Electronic Projects
For Your

Commodore™
 64 and 128

To my father who was always there for me:
 Frank L. Iovine

 Sept. 28,1925 - Aug. 21,1980

 To my mother who still is:
 Ann M. Iovine

Electronic Projects
For Your

Commodore™
64 and 128

John Iovine

TAB BOOKS Inc.
Blue Ridge Summit, PA

FIRST EDITION
FIRST PRINTING

Copyright © 1989 by TAB BOOKS Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. The publisher takes no responsibility
for the use of any of the materials or methods described in this book, or for the

products thereof.

Library of Congress Cataloging in Publication Data

 lovine, John.
Electronic projects for your Commodore 64 and 128 I by John

 lovine.
p. cm.

Includes index.
ISBN 0-8306-0483-9 ISBN 0-8306-9383-1 (pbk)

1. Computer interfaces-Amateurs' manuals. 2. Commodore 64
(Computer)-Amateurs'manuals. 3. Commodore 128 (Comp�

-Amateurs' manuals. I. Title
TK9969.I581989

004.6-dc19 89-4320
CIP

TAB BOOKS Inc. offers software for
sale. For information and a catalog,

please contact TAB Software Department,
Blue Ridge Summit, PA 17294-0850.

Questions regarding the content of this book
should be addressed to:

Reader Inquiry Branch
TAB BOOKS Inc.

Blue Ridge Summit, PA 17294-0214
Cover illustration by Mia Bosna

Contents

 Introduction vii
 1 Computer Fundamentals 1
 Memory · Bank Switching · Input/Output Devices · Interfacing
 · Building Projects · How to Use This Book

 2 User Port Fundamentals 7
 6526 Chip · Memory Mapped I/O · Binary · DDR Register
 · Peripheral Data Register · Input · Output · Circuit Construction
 Logic · Setting a Bit with " OR " · Electronic Logic · Parts List

 3 Speech Synthesizer 22
 Speech Synthesis · The Speech Chip · A Little on Linguistics · Circuit
 Construction · The Program · Example · Basic Crunch · Conclusion
 · Parts List

 4 Analog to Digital Conversion 34
 Analog Events · Digital Events · Serial A/D Converter Chip · Test
 Program · Resolution · Programming · Transducers · Light · Ap-
 plications · Temperature · Applications · Toxic Gas Sensor · Ap-
 plications · Biofeedback · Applications · 60 Hz Interrupt Vector
 Demo Interrupt · A/D Interrupt

 5 Digital Audio Recording and Playback 55
 Applications · Sound Sampling · Digital Oscilloscope · Circuit De-
 scription · Programs · Applications · Parts List · Advanced Sound
 Digitizer Program

6 Subliminal Communication 73
 History · Orwellian Mind Control · Audio · Visual · Subliminals
 and the Law · Circuit Construction · Hookup · Circuit Oper-
 ation · Message Screens · Troubleshooting · Bibliography · Parts
 List

 7 Appliance Controller 82
 Real World Environment · Inductive and Resistive Loads · Dc
 Loads · Ac Loads · Circuit Construction · Test · Program · Smart
 Control · Parts List

 8 Monitor Projects 91
 80 Column to TV · Circuit Construction · Screen Saver C-128

 9 Digital Camera 96
 D-Cam Chip · Photoelectric Effect · Matrix Unscramble · Limitations
 of System · Low Resolution Screen · Extended Field of View · Black
 and White Camera · Gray Scale · 256 Shades of Gray · Color-
 ation · Timing · Construction · Lenses · Preassembly Test · Final
 Assembly · Lighting · Program Operation · Hi-Resolution Digital
 Camera · Artificial Vision · A Little History · D-Cam · Conclusion
 · Parts List

10 Dynamic Equations 139
 Dynamic Equations and Nature · Beginning of Chaos · Population
 Growth Model · Graphing Programs · Order Out of Chaos · Self-
 Similarity · The Butterfly Effect · Nature · Usefulness · Fractals ·
 Why Now?

11 Mandelbrot Graphics 150
 Complex Numbers · Plotting · First Mandelbrot Picture · Program
 Features · Program Operations · Advanced Operations · Classic
 Fractals · Properties of Complex Numbers · Algebraic Opera-
 tions · Computer Choke

12 Additional 6526 Functions 167
 Timers · Control Registers (ICR) · Interrupt Control Register · Time
 of Day Clock (TOO) · Frequency Counter · Frequency Generator

 Index 177

Introduction

 Commodore computers are versatile machines that represent a landmark
 in the era of personal computers. The use of large-scale integrated (LSI)
 circuits in these computers enabled millions of people to purchase
 Commodore computers as their first home computer.
 The purpose of this book is to show you how to build electronic
 projects that will enhance your computer. But more than this, the
 information can provide a foundation upon which you can build. Per-
 haps this book will provide the spark to ignite your own creativity. Many
 projects lie on the frontiers of technology. The projects represent a start-
 ing point for the basic tools with which you can explore on your own,
 and perhaps make a contribution to emerging technologies.
 As an example, the sound-digitizing project can be expanded for work
 on speech-recognition programs. The digital camera can be used for ma-
 chine vision and recognition.
 I'm sure you will be delighted to learn how simple and inexpensive
 it is to build these projects. This is a "learn-by-doing" approach. You
 will also see how certain avenues are taken to accomplish various feats;
 this will help resolve your interfacing tasks when they arise.
 In the design of their computers Commodore engineers gave the
 computer an extremely versatile user port. Although the user port is not
 the only port capable of interfacing, it is the one on which I concentrate.
 This book assumes no previous electronic or digital interfacing experience.
 The projects can be constructed by novices. The schematics

vii

viii

are kept simple, block components-such as ICs that function Iike
complete electronic circuits-where possible. In addition, ICs are drawn
as they physically appear, rather than in standard electronic schematic
form. This is to make it easier for you to wire the circuits.
 For those of you with prior electronic experience, you will enjoy a
feast of circuits that are not only simple in construction, but perform as
good or better than their commercial counterparts. Quality has not been
compromised in order to keep the circuits simple.
 Many of the programs used to run the projects are written succinctly,
with little embellishments. This approach to the programming is
intentional; it allows you to enter these programs as subroutines into your
own programs. In many cases, machine language (ML) subroutines
became essential, as BASIC is too slow to adequately handle some of the
projects.
 All the ML routines are written with a BASIC loader. A BASIC loader
is a small BASIC program that pokes an ML program into memory, where
it can be called upon (SYS XXXX) by another BASIC program.
 All the circuits within this book have been constructed and tested.
I have tried to anticipate difficulties that might be encountered and provide
troubleshooting information. Naturally wiring errors, bad components,
and programming errors will prevent the projects from functioning prop-
erly. So do take your time, double check your work, and you will find
the rewards well worth it.
 Most of the projects are open ended (meaning that they can be built
on). Descriptions of practical applications of circuits are given where
applicable. Avenues of research are opened for those of you who wish.
Neural networks, character and pattern recognition, fractals, and speech
recognition are just a sampling of the types of research you can pursue.
The tools are enclosed.

1

 Computer Fundamentals
__

Each one of the computers we will be interfacing, the C-128, C-64, and
Vic-20 has a 8 bit microprocessor. The MicroProcessor Unit (MPU) is the
heart and brain of the computer. The MPU performs the following
functions; internal math and logic operations, directs data to and from
memory, and can execute a sequence of commands, previously stored
in memory, that we call a program. The microprocessor can also be called
the Central Processing Unit (CPU).
 Although all the computers we will be working with use an 8-bit MPU
that functions pretty much the same, they are not the same MPU chip.
The C-128 computer which has the latest and most enhanced MPU, a 8502,
the C-64 MPU is a 6510 and the VIC-20 MPU is a 6502.
 Each of these microprocessors has 16 address lines (see Fig.1-1) that
are capable of addressing up to 65535 unique memory cells or locations.
Also each MPU has 8 data lines to read/write information in memory that
has been addressed by the addressing lines. Each memory cell or location
can contain one byte (8-bits) of information, which matches eight of the
data lines (one line per bit). The 16 addressing lines are commonly called
the Address bus, similarly the 8 data lines are called the Data bus.

MEMORY
 Memory can be divided into two main groups, RAM and ROM. RAM
is an acronymn for Random Access Memory. RAM memory is a read/write

2 Computer Fundamentals

Fig.1-1. Internal computer structure.

memory. When you type in a BASIC program it is held in RAM. As long
as power is maintained the program will remain in memory. When you
turn off the computer, anything that was written into RAM will evaporate.
 ROM is an acronymn for Read Only Memory. ROM is permanent
memory. The program or data in ROM has been burned in. New
information cannot be written into ROM because the old information is
permanently programmed in. The MPU can execute a program that is
stored in ROM. And this is what happens every time you power-up your
computer. The ROM contains a bootstrap program that initializes the
computer and becomes the operating system (OS) called the Kernal.

BANK SWITCHING
 In the C-128 and C-64 the total number of memory cells exceed the
65535 capacity of the address lines. To access this additional memory,
a technique known as bank switching is employed. How bank switching
works is simple. Imagine two sets of memory, each containing 65535
identically numbered memory locations. Label one set of memory cells
Bank #1 and the other Bank #2. By using a computer controlled electronic
switch (logic circuits) you can read or write into either one of the memo-
ry banks, (but not both at the same time). I admit this is an over
simplification of the actual process, but it is correct.

INPUT/OUTPUT DEVICES
 Our computers come with standard interfaces that communicate with
the outside world. The two main devices are the keyboard (an input de-
vice) and the monitor (an output device). All Input/Output (I/O) devices
including the projects in this book are connected to the MPU as if they
are memory. By accessing these memory locations the computer can ei-
ther instruct (write operation) an interface to do something, or read (read
operation) to see if anything happened.

2 Computer Fundamentals

Fig.1-1. Internal computer structure.

memory. When you type in a BASIC program it is held in RAM. As long
as power is maintained the program will remain in memory. When you
turn off the computer, anything that was written into RAM will evaporate.
 ROM is an acronym for Read Only Memory. ROM is permanent
memory. The program or data in ROM has been burned in. New
information cannot be written into ROM because the old information is
permanently programmed in. The MPU can execute a program that is
stored in ROM. And this is what happens every time you power-up your
computer. The ROM contains a bootstrap program that initializes the
computer and becomes the operating system (OS) called the Kernal.

BANK SWITCHING
 In the C-128 and C-64 the total number of memory cells exceed the
65535 capacity of the address lines. To access this additional memory,
a technique known as bank switching is employed. How bank switching
works is simple. Imagine two sets of memory, each containing 65535
identically numbered memory locations. Label one set of memory cells
Bank #1 and the other Bank #2. By using a computer controlled electronic
switch (logic circuits) you can read or write into either one of the memo-
ry banks, (but not both at the same time). I admit this is an over
simplification of the actual process, but it is correct.

INPUT/OUTPUT DEVICES
 Our computers come with standard interfaces that communicate with
the outside world. The two main devices are the keyboard (an input de-
vice) and the monitor (an output device). All Input/Output (I/O) devices
including the projects in this book are connected to the MPU as if they
are memory. By accessing these memory locations the computer can ei-
ther instruct (�vrite operation) an interface to do something, or read (read
operation) to see if anything happened.

file:///C:/temp/EPC64128_html_1c114269.gif

 Building Projects 3

INTERFACING
 Connecting a computer to an external device or circuit is known as
interfacing. Interfacing can involve controlling, reading or exchanging data
from your computer to an external device, circuit, or another computer.
Commodore computers use a number of standard interfacing devices to
communicate to the outside world. A keyboard allows you to input
information, a monitor to output or display information. Additional I/O
devices available are a disk drive for permanent program and file stor-
age, and retrieval, modems to connect to mainframe computers or
information services, joysticks, mouses, etc.
 We will build our own interfaces, whose applications range from
computer control of appliances and electronic devices, computer vision
systems, robotics, and biofeedback devices. You will learn to utilize simple
transducers with an analog to digital converter to allow the computer to
monitor, measure, or react to light, sound, temperature, pressure,
vibrations, and more. The applications are limited only by your
imagination and determination.

BUILDING PROJECTS
 The number of tools needed to construct the projects in this book are
minimum, they are:

 · prototype breadboard
 · wire cutters/strippers
 · soldering iron

Fig.1-2. Experimenters breadboard.

4 Computer Fundamentals

 The prototyping breadboard is important, it allows us to construct
the projects with a minimum amount of soldering. (See Figs.1-2,1-3,
and 1-4.)
 The prototyping breadboard is solderless, 22-gauge wire is used to
connect the components on the board. If you have never used a
prototyping breadboard the holes on the board are plug points. The plug
points are internally wired as shown in Fig.1-3 and 1-4. T'he column points
on each half are connected as shown as well as a row on each half. The
rows are usually used as power supply connections, one being ground
the other the positive voltage supply.

Fig.1-3. Cut away view of experimenters breadboard.

 Building Projects 5

Fig.1-4. Internal wiring of experimenters breadboard.

 The board is excellent for constructing the projects in this book. By
assembling the circuits first on the board, wiring changes, and/ or
corrections are easily accomplished. After you have finished a project and
have it working you can decide whether you wish to make that project
permanent. If you do decide to do this you will find it easier to transfer
the project onto a standard printed circuit board and solder it together.
At that point you could add any components such as power switches or
phono-jacks that will enhance the operation of a permanent version. You
will also have the knowledge that the project works perfectly beforehand.
 The breadboard is reusable, after you have finished a project you can
simply pull the components out and begin on your next project. Although
our board is solderless, some of the components that are used must have
wires soldered to them. The largest component I can think of is the card
connector that plugs into the commodore user port, but there are also
switches, battery holders and an odd assortment of other parts.
 As you continue working with electronic projects you will find a VOM
and a digital logic probe helpful aids. Although neither of these tools are
required to construct the projects in this book. You will find you'll suffer
less brain damage when troubleshooting a circuit if you have the ability
to check if a circuit is receiving power with your VOM, or check that the
computer is really outputting logic signals on the proper wire with your
probe. This will become even more important as you advance beyond
the projects in this book and design your own interfaces.

6 Computer Fundamentals

HOW TO USE THIS BOOK
 This book provides a step by step guide to build electronic
enhancement projects for your computer. The projects are arranged so
that each chapter builds upon information in previous chapters. No
previous electronics experience is assumed, the projects are outlaid so
that novice beginners can construct these projects. Pictorial views of ICs
are used instead of the standard schematic drawings to help beginners
wire the projects. A working knowledge of BASIC language is assumed.
Each project requires a program to run the interface circuit. In some cases
it became imperative to use machine language (ML) subroutines to utilize
the projects to their fullest capabilities. In these cases BASIC program
loaders that poke the ML subroutines into memory are provided.

2

 User Port Fundamentals
__

Commodore engineers have been generous in their design of computers,
allowing users access to various I/O (input/output) ports. This I'm sure,
is a major reason for Commodores immense popularity and profusion
of aftermath hardware and software. Our concentration will focus on the
user port located at the back of the following computers; the VIC-20, C-64
and C-128. These computers have similar user ports (see Fig. Z-1) that
are functionally about the same.
 We will be accessing Port B of the user port labeled PBO through-PB7.
This is an 8-bit parallel port. Each bit on the port is bidirectional.
Programmable as either an input or output bit. Each bit on the port can
be programmed independently from all the other bits.

6526 CHIP
 Commodore computers use an integrated circuit chip between the
central processing unit (microprocessor) and the I/O ports. The C-64 and
C-128 computers both use a 6526 CIA (complex interface adapter) chip.
The Vic-20 uses a 6522 VIA (versatile interface adapter) chip.
 (In order to avoid confusion, further descriptions of the 6526 CIA chip
will be the only one given, and should be assumed to be the same for
the 6522 chip unless otherwise noted.)
 All input and output requests and functions transmitted by the MPU

are buffered by the 6526 chip. Each 6526 CIA chip contains 2 parallel,

7

8 User Port Fundamentals

Fig. 2-1. User port.

8-bit input/output ports, two 16-bit counter/timers, clock, and a serial shift
xegister. The chip is responsible for the 60 Hz interrupt routine, keyboard
scanning, game port reading, and serialized data input. As you can see,
in addition to being a buffer the CIA has its own specialized functions
that compliment the microprocessors and relieve it of many housekeeping
chores.
 We will learn to use the timers, interrupt routines, and serialized data
input later on in the book. For now we will concentrate on the basic
functions.

MEMORY MAPPED I/O
 All accessing of our user port is through the 6526 chip. To access the
user port we must be able to set and read bits on the 6526 chip registers.
A register is a one byte (8-bit) memory location providing direct access
to the 6526 chip. By placing specific numbers into the register we can
program the chip to perform the functions we require.
 The registers on the CIA chip are memory mapped. Meaning that
the chips registers are located in the computers memory at certain
addresses. This is an important concept. We can read or write the registers
on the CIA from BASIC with simple peeks and pokes. We are control-

 Binary 9

 ling our interfacing device with the same BASIC commands peek and
 poke.
 In order to program the registers on the CIA chip to perform the
 functions we require, we must be able to read and write to the 8

 individual bits (one byte) that make up a register. This isn't as
 difficult as it may sound, but it does require a basic understanding of
 the binary number system.

 BINARY
 Binary means "based on two" as in two numbers, 0 and 1. Or like
 an electrical switch that has two values off (0) and on (1). In binary a

digit is called a bit, which stands for "binary digit." A byte is a digital
expression containing 8 bits.

The microprocessor used in the computers we're working with are 8-bit
microprocessors. The registers we will read from and write to are 8-bit
registers.

 We will investigate the binary relationship controlling various I/O
 functions. All the information, however, is applicable to controlling oth-
 er chips in Commodore computers. A fuller understanding of the binary
 number system can be acquired by reading any of the many fine books
 available on machine language.

 Examine Fig. 2-2, for each progression of the binary "1" to the left,
 the power of 2 is increased by 1. These are relevant numbers, because

Fig. 2-2. Binary numbers relating to user port.

10 User Port Fundamentals

each progression identifies a bit location and weight. Notice the correlation
between the user port lines, bit weights, and register location, we will be
using this often. There is a one to one correspondence between bit number
and the PB line. Bit 0 is equal to PBO, bit 1 is equal to PB1 on through
to bit 7 is equal to PB7.
 Examine Table 2-1. This table shows the binary numbers 0 through
20. This chart will come in handy later on. When a bit in the port is
configured for input, the computer uses electrical voltages present at the
pin/bit to determine whether that bit is set (on) "1" or clear (off)"0".
Binary "1" can also be called "high" and a binary "0" called "low".
A binary "1", is equal to a voltage level between 2 and 5 volts, and a
binary "0", is equal to a voltage level between 0 and 0.8 volts. Voltages
between 0.8 and 2 volts are undefined. When a bit in the port is configured
as an output, the computer will output 5 volts.

DDR REGISTER
 The DDR (data direction register) is a programmable register on the
6526 chip that controls the direction of the lines in Port B (input or output).
The direction refers to whether you will be reading information off a line
(inputting) or writing information to the line (outputting). A binary "1"
placed at a bit location will turn that bit into an output bit. Conversely,
a binary "0" will make that bit an input bit. Most interfacing tasks require
a combination of input and output lines. In addition we have the ability
to switch lines from output to input or input to output in the middle of
a program.
 The DDR occupies one byte in memory. The location of the DDR for
Port B on the user port is 56579 for the C-64 and C-128, for the Vic-20
the location is 37138 (see Table 2-2).

 Table 2-1 Binary Numbers.
Decimal Binary Decimal Binary

0 = 00000000
1 = 00000001
2 = 00000010
3 = 00000011
4 = 00000100
5 = 00000101
6 = 00000110
7 = 00000111
8 = 00001000
9 = 00001001
10 = 00001010

11 00001011
12 00001100
13 00001101
14 00001110
15 00001111
16 00010000
17 00010001
18 00010010
19 00010011
20 00010100
 AND SO ON
255 11111111

 Input 11

 Table 2-2. DDR Registers and PDR Registers.

Register Computer Memory Location
Data Direction Vic-20 37138
Peripheral Data Vic-20 37136
Data Direction Com-64 & Com-128 56579
Peripheral Data Com-64 & Com-128 56577

 We use our bit weights (Fig. 2-2) to output binary 1's at the corre-
sponding pins to create output pins. Any pins that aren't programmed
as outputs automatically have 0's placed at their bit location and are
configured as input pins. POKE 56579,20 would turn PB2 and PB4 into
output bits, as PB0,PBl,PB3,PB5,PB6 and PB7 automatically became input
bits. To see this more clearly, transfer the binary equivalent of 20 into
the empty register location spaces on Fig. 2-2. The binary 1's are in PB2
and PB4 bit locations.
 POKE 56579,3 makes PBO and PB1 output bits transfer the binary
equivalent of 3 into the location spaces. Doesn't the number 3 in binary
place binary 1's at the location of PBO and PB1? As you can see by pokeing
this location with various bit weights we can configure any pin in the
port to be an input or output bit in any combination we might require.
Any unused bits can be ignored.
 To summarize let's state by pokeing a binary 1 in the DDR correspond-
ing to a bit, it turns that bit into an output bit. Likewise, pokeing a binary
0 will turn the bit into an input.

PERIPHERAL DATA REGISTER
 Only after we have configured our port with the DDR, can we start
using it. The user port lines are configured as inputs on power up, if this
is the configuration you need you can begin immediately without setting
up the DDR register. The peripherals data register (PDR) memory location
56577 is where we poke and peek to physically output or input (pull data)
off the pins.
 The procedure for the PDR is the same as described far the DDR.
Only now when we output a binary "1" at a pin location a +5 volt signal
will be present. (Provided we configured that pin as an output pin.) We
will build a display circuit to demonstrate input and output procedures
and techniques.

INPUT
 Examine the diagram of the user port again. Beneath the user port
are labels PB0, PBl, PB2, . . . PB7 corresponding to the pins on the user
port. Under the port is the corresponding bit weight for each pin. Let's

12 User Port Fundamentals

configure all the bits on the port as inputs:

 Poke 56579,0 Data Direction Register (DDR)
 Places binary 0's at all bit locations.

Now we apply +5 volts to pins PB2 and PB4. By applying the 5 volts
to these pins we are inputting a binary 1 at each pin, if we then peek
the port:

 Print Peek (56577) Peripheral Data Register

the number 20 would be returned. This is the added bit weights (4 +
16 = 20) of pins PB2 + PB4. Look at Table 2-2, transfer the binary
equivalent of the number 20 into the bit locations on Table 2-1 it is the
same. The binary 1's are in the same bit positions we inputted. If we
applied +5 volts to just PB5 then peeked the port the number 32 would
be returned. This is true for all pin/bit combinations.

OUTPUT
 Let's reconfigure the user port so that all the bits are now outputs:

 Poke 56579,255 Data Direction Register (DDR)
 Places binary 1's at all bit locations

Now poke the number 20 into the port.

 Poke 56577,20 Peripheral Data Register

What do you think will happen? If you reasoned that +5 volts would
appear on PB2 and PB4 you are right! By pokeing the number 20 into
the port we are essentially outputting a binary 1 at those two pins.
 It is important to understand that the voltage being outputted is a
signal voltage and has very little power. It cannot be used to run a de-
vice. But by adding a simple circuit later you can use the signal to control
most any electrical appliance you'd like.
 If you feel a little confused at this point don't worry it will all come
together very quickly once you gain_ some practical experience by utilizing
and experimenting with the port. In order to do this you will need to
build the demonstration circuit.

CIRCUIT CONSTRUCTION
 Look at Figs. 2-1, 2-3, and 2-4. This is a simple circuit that we can
use to experiment inputting and outputting information on the user port.
Figure 2-3 is the same as Fig. 2-1. In Fig. 2-3 a pictorial rather than a
schematic is used. This shows how the components are arranged on the

 Circuit Construction 13

Fig. 2-3. User port wiring diagram.

Fig. 2-4. User port connections.

14 User Port Fundamentals

prototyping breadboard. When wiring use Fig. 2-1. Most of the soldering
has been eliminated by using our experimenters plug-in breadboard (see
Fig. 2-5). By using this board we can simply plug in our components and
control lines. This board also facilitates changing the circuit by being able
to pull out the components and replacing them with different ones.
 Most of the parts required are available at your local Radio Shack store,
except for the 12I24 card connector. This is available from Mousser
Electronics (see parts list). You can utilize a 44-pin connector that is
available at Radio Shack by cutting off one end, leaving 12 pins.
 Begin by soldering 22-gauge stranded wire to the card connector. Sol-
der a wire to each PB line and to one of the grounds (see Fig. 2-6). If you
have any difficulty matching what card connector terminal corresponds
to the PB lines hold the card connector to the drawing of the user port
(Fig. 2-1). The drawing is a rear view and is how the user port looks from
the back of the computer.
 Do not substitute the LEDs specified. The LEDs are microminiature,
these were chosen because they don't require much power, and can be
lit directly from the current available at the port. When you have
completed the soldering and wired the circuit as shown (see Fig. 2-5),
we are ready to continue. Turn off your computer (if it is on) and plug
the card connector into the user port (see Fig. 2-7). Power-up your
computer, all the LEDs should be dimly lit. If they are not, turn off the
computer immediately, you've made a wiring error. .Recheck your wiring
and make sure the LEDs are in properly, facing the right polarity. (The
reason the LEDs are dimly lit is that, although the computer configures

Fig. 2-5. Basic completed project.

 Circuit Construction 15

Fig. 2-6. Wiring for user port connector.

Fig. 2-7. Advanced project connected.

all bits as inputs on power up, the 6526 chip pulls the bits to 5 volts
through a 10 k resistor. There is sufficient current to dimly light the LEDs.)
If everything checks out you're ready to continue. Enter Command:

 Poke 56579,255 Set up DDR (data
 direction register) This turns all the bits
 into output bits

16 User Port Fundamentals

 Poke 56577,20 peripherals data register lights
 LEDs connected to PB2 and PB4
 Poke 56577,0 Turns off LEDs

In order to become familiar with the bit weights and their correlation to
the pins, type in this simple program. Any number you input will light
the LEDs corresponding to the bit weight.

 10 POKE 56579,255
 20 INPUT"[down 4) INPUT BIT WEIGHT ";BW
 30 PRINT "[CLR], down 4 THE NUMBER " BW " IS
 BEING DISPLAYED IN BINARY ON YOUR INTERFACE"
 50 POKE 56577,BW
 60 GOTO 20

 This second program will count in binary. To make it run faster or
slower change the value of T accordingly. To count to a value less than
255 change X accordingly.

 10 POKE 56579,255
 20 FOR X=0T0255
 30 POKE 56577,X
 40 FOR T=1T0255; NEXT T
 50 NEXT X
 60 G0T030

 We now have some experience outputting binary 1's. Now let's
reconfigure the port. First turn off the computer. Remove the four LEDs
connected to PB4 through PB7 and replace it with the 4 position dipswitch
(see Fig. 2-4 and Fig. 2-8). Enter command:

 Poke 56579,15 DDR set-up
 configures PBO through PB3 as outputs; PB4
 through PB7 as inputs

Turn all the switches on. Enter command:

 Print Peek (56577) < return >

 A "0" will be returned. Turn off the switch connected to PB4 and
reenter command:

 Print Peek (56577) < return >

Now the number "16" has been returned. You should know by now that
the number "16" represents the bit weight for that pin. But the question

 Circuit Construction 17

Fig. 2-8 Advanced project.

begs to be asked, "Why is it when you turn the switch off that the
computer reads a binary "1" at the bit location?" The answer is the same
as why the LEDs are dimly lit on power-up. When our switch is turned
on it is connected to, and pulled down to ground (0 volts). When the
switch is turned off, the line is pulled up to +5 volts (binary 1) by the
6526 chip though a 10 k ohm resistor. To become more comfortable with
inputting enter the following program:

 10 Poke 56579,15
 20 D=Peek (56577)
 30 Print "clr/home 7 right,7 down" D "This
 is the bit weight of your interface"
 40 GoTo2O

By turning various switches on and off, the bit weights are displayed on
the screen. Let's do something a little interesting press the RUN/ STOP
key and enter: Poke 56577, 5. The LEDs connected to PBO and PB2 are lit,
enter RUN notice the bit weight of 5 is added to the display.
 Now let's try something a little more interesting; enter the following
program. When bit 8 (dipswitch connected to PB7) is turned on, the LEDs
connected to PBO to PB3 will start counting. No other bit has any effect.
This is accomplished by masking all bits except bit 8, and reading its bit
weight.

18 User Port Fundamentals

 10 Poke 56579,15
 20 For x=0to15
 30 D=Peek(56577)ANDl28
 40 If D=OGoTo3O
 50 Poke56577,X
 60 For T=1to100:nextT
 70 NextX
 80 GoTol0

To fully understand this we must look at some logic instructions. You
may skip this section if you feel it's too difficult, go directly to the circuits.
But do come back after you feel comfortable with all the other material
presented. This logic section will enrich your ability to design and
configure the user port to your needs with the minimum amount of
instructions.

LOGIC
 There are two logic instructions available to us from BASIC, that can
be used to set (binary 1) or clear (binary 0) specific bits on the port with-
out affecting the other bits. They are " AND " and " OR " instructions.
 When using these instructions, we are comparing the number in the
register to the number we PEEK or POKE in the register. The results ,
can be used to make useful decisions and perform functions. For each
set of bits compared there are four possible combinations.

 0 0
 0 1
 1 0
 1 1

 Refer to Table 2-2 to see the results of these two instructions. By
studying the table, two conclusions can be drawn. The results of an
"AND" instruction is "1" only if both bits are "1", otherwise the results
are "0" . The results of an "OR" instruction is "0" only if both bits are
"0", otherwise the results are "1". Our computer uses eight bit binary
numbers, examine the following examples.

 AND OR
 11010011 register 11010011 register
 10000101 AND 133 10000101 OR 133
 ________ ________
 10000001 RESULT 11010111 RESULT

 Setting a Bit with " OR " 19

 In the fourth program we used the "AND" instruction to test a bit.
 Then made a decision based upon the results. Let's analyze how the
 program accomplishes this.

 30 D=Peek(56577)ANDl2B

 OXXXXXXX register X= any Value 0 or 1
 ________ AND 128
 00000000 RESULT PrintPeek(56577)ANDl28=0

 This instruction compares the AND 128 with the number in the register.
 The only bit that can have an impact on the result is bit #7. Because all
 other bits are "AND" with 0, their results are 0. By setting bit #7 we have
 the following scenario.

 lXXXXXXX register X = any value 0 or 1
 10000000 AND 128

 10000000 RESULT PrintPeek(56577)ANDl28=128

 With these two possible results, we cari use a familiar basic decision
 command:

 40 If D=0 Then GoTo 30

 SETTING A BIT WITH "OR"
 We can use an "OR" instruction to set various bits. It is very useful
 when we wish to set specific bits without disturbing the status of the other
 bits on the port. Examine Table 2-2, any number that is ' `OR" with a "0"
 remains unchanged. Therefore, if we wish to set bit 4, we can "OR" bit
 4 with a binary "1" as our example illustrates.

 10100010 register
 00001000 OR 8 Command=Poke56577,Peek(56577)OR8

 10101010 RESULT

 Try entering the following commands to get a better understanding.
 Poke 56579,15 DDR Setup
 Poke 56577,3 lights LEDs to PBO and PB1
 Poke 56577,Peek(56577)OR8 Sets bit 4 on without disturbing
 the status of the other bits

20 User Port Fundamentals

When we enter our last command the status on the interface has the two
LEDs lit. This status remains unchanged as we set bit four on, as indicated
by the lit LEDs.

ELECTRONIC LOGIC
 We have electronic circuit ICs that perform logic operations with
voltages. Fi re 2-9 shows four common logic circuits. Each line input
on the IC behaves as a bit. As before a binary "1" is +5 volts and a binary
"0" is 0 volts. As you can see the logic results are identical to the
computer's internal logic functions.
 There are other interesting bit manipulations, I advise you to
experiment on your own by purchasing a couple of logic ICs, setting them
up on your experimenter's board and testing their operations. Use a VOM
or logic probe to check the inputs and test the outputs. A small battery

 Fig. 2-9. Logic gates.

 Electronic Logic 21

pack or power supply can supply the +5 volts for the binary 1's, ground
the inputs for binary 0's. You can find logic IC's in Radio Shack stores.

 Parts List
Quantity Item/Description Part Number
 RS = Radio Shack
 8 Subminiature Red LED RS# 276-0268
 1 Experimenters Breadboard RS# 276-175 or
 RS# 276-174
 1 12/24 Card Connector 568-50-24A-30

Mouser Electronics
11433 Woodside Ave.
Santee, CA 92071
(619) 449-2222

3

Speech Synthesizer
__

In this chapter we will begin to apply what we learned in the last chapter
with the practical application of synthesizing speech.

SPEECH SYNTHESIS
 Speech synthesizers (or processors) appear in two main formats. One
approach (format #1) uses digitally recorded speech stored in a ROM chip.
The second approach (format #2) uses phonemes of English to construct
words and sentences (a phoneme is a speech sound).
 The main advantage in Format #1 is a excellent speech reproduction
and fidelity. Its main disadvantage is a limited vocabulary of English that's
been preprogrammed into the chip.
 Format #2's strength is an unlimited user defined vocabulary. Its
disadvantage is that the speech fidelity isn't as good as with the
preprogrammed speech ROM. Even so, the speech fidelity of format #2
is quite acceptable in all but the most critical circumstances. We are taking
this second approach to speech synthesis.
 The speech synthesizer we will build, plugs into, and is powered by
the user port. The cost is less than $25.00, and for that price it includes
its own audio amplifier, filter, volume control, and speaker. Since it has
an unlimited vocabulary, you can program any word you desire. You have
the option to either modify existing programs to include speech, or, of
course, to write new programs with speech.

22

 The Speech Chip 23

 THE SPEECH CHIP
 General Instruments Company manufactures the 28-pin speech
 synthesizer chip (5P0256-A12) that is distributed by Radio Shack.

 This chip can generate 59 allophones (speech sounds) and five
 pauses (no sound) of various lengths (see allophones, Table 3-1).
 By adding(concatenating) allophones together, you can construct
 words and sentences. This may sound rather difficult at this point
 but it is not, the program does most of the work.

Table 3-1. Allophones.

24 Speech Synthesizer

A LITTLE ON LINGUISTICS
 An allophone is the computer equivalent to English phonemes (speech
sounds). There are two main points you should keep in mind when you
are programming new words. First, in English there isn't a one to one
correspondence between letters and sounds. This point is amply
demonstrated by the younger members of our society who are learning
to read and write. They are likely to spell cat as Kat and phone as fone,
imitating in writing the way the words are pronounced. This is a very
interesting point, because in order to program words to sound correct,
you must spell the words phonetically. More about this later, let's
continue on to the second point. Placement of a speech sound in a word
can change the pronunciation. As an example, take a look at the two D
letters in the word depend. The D's are pronounced differently. If we were
to program this word using our table of allophones, the allophone DD2
would sound correct in the first position (Depend) and the allophone DD1
sounds correct in the second position (depend). We will return to pro-
gramming technique later on. A booklet with more information on
linguistics, allophones, and usage is included with the speech synthesizer
chip.

CIRCUIT CONSTRUCTION
 The circuit is comprised of two sections (see Fig. 3-1), separated by
a dotted line. Section A on the left is the basic circuit: Section B contains
the amplifier, low-pass filter, volume control and speaker added to the
basic circuit.
 The two sections A and B make up a stand-alone unit that only
requires power and control signals from the user port to function. In
contrast to section A of the circuit, which requires the use of the Sound
Interface Device (SID) chip and a monitor or TV speaker.
 By utilizing the SID chip in the C-64 or C-128 computer, you can elim-
inate section B, the audio amplifier, filter, volume control, and speaker
(see Fig. 3-2), reducing the amount of parts required by more than half,
simplifying the circuit, and saving a couple dollars. However, if you're
using a Vic-20 computer you will have to build the entire circuit (see
Fig. 3-3).
 The C-64 and C-128 can use either section A, or the entire circuit.
To use just section A, we eliminate section B and take the output of the
circuit (at pin 24) and input the signal to the SID chip. We accomplish
this with a wire to the "audio in" pin of the composite video connector
(see pin 5 of the C-64 and C-128). Pin 24 is the digital output of the speech
synthesizer chip. You can purchase the correct din plug for your computer
or use a short wire pushed into the correct pin socket connected by a
jumper wire to pin 24. You can use our experimenters breadboard for
this circuit. See Fig. 3-2. Plug in your components as diagrammed and
you're ready to begin programming.

 The Program 25

 For the Vic-20 I constructed the entire circuit on a modified
experimenters card (see Fig. 3-3). The card is modified by cutting the end
terminals on both sides leaving the center 12 positions. Use a 12I24 card
connector and solder the lugs on the connector to the fingers on the board.
If a 12I24 card connector isn't readily available you can modify a
22-position card connector into a 12-position connector by cutting 10
positions off as I have done. Only 10 connections are needed for this proj-
ect. I did, however, solder all the connections to improve the mechanical
strength of the unit. Pin 24 is connected into the B section circuit through
a low-pass audio filter to a 10 k volume control pot. User either a trimmer
pot that you can set once and forget about or eliminate the pot completely.
The volume of sound with the pot removed isn't so great as to be
objectionable. You'll probably use the speech synthesizer with the pot
fully closed anyway.
 Power for the entire unit is provided from the top side of the user
port. The bottom side (Port B) accesses and controls the speech processor.
If in wiring you get confused tracing the leads from the user port to the
speech chip, I suggest holding the card connector (or experimenters board)
to the diagram of the user port. This will help match where each wire
connects. The diagram of the user port can be used this way because it
shows how the user port appears when looking directly into it from the
back. When completed the card connector plugs into the user port.
 The manufacturer of the speech chip recommends using a 3.12 MHz
crystal at pins 27 and 28. I recommend using a 3.57 MHz colorburst crystal
instead. The reason is cost and availability. The 3.57 MHz colorburst
crystal is approximately 1/4 the cost of the 3.12 MHz crystal, and is more
readily available. This change will increase the timbre of the speech
slightly, but has no other effect on circuit operation.

THE PROGRAM
 Type in the program (see Fig. 3-4). Assign a value to "PB" in line
60 depending on which computer you are using.
 For the Vic-20: PB = 37136
 For the Com-64: PB = 56577
 For the C-128 : PB = 56577

If you are using a C-64 or C-128 with section A only, type in this additional
line:

 55 S=54272:F0RL=0to24:POKES+L,0:NEXT:POKES+24,15

 When the program is run, the computer should say hello. Adjust the
trimmer pot if you built the entire circuit, and have included the pot in
the circuit.

 26 Speech Synthesizer

 Fig. 3-1. Speech synthesizer sections A and B.

 The Program 27

28 Speech Synthesizer

Fig. 3-2. Section A.

Fig. 3-3. Sections A and B on PC board.

The Program 29

Fig. 3-4. Speech synthesizer program.

30 Speech Synthesizer

 If the computer fails to speak, you have either a typing error in the
program or a wiring error in the circuit. Check over the program to see
that you entered it correctly. Recheck your wiring. If everything checks
out, verify circuit operation by checking for clock pulses at pins 27, 28,
and 24. If you show pulses the problem is in the audio section.
 Although it isn't necessary to understand how the program operates
to use it. Here is a brief description:
STEP 1 Lines 60 to 100: Sets up Data Direction Register and
 allophone table
STEP 2 Lines 150 to 157: Speech Module-reads speech in
 program
STEP 3 Lines 10000 to 10065: Subroutine sends instructions to speech
 chip and returns

Until you gain some experience and feel comfortable designing your own
speech program. STEP 2, lines 150 to 157 is the model to use to program
speech in your basic programs. We will do a line by line analysis and
an example will ensure a good understanding of the procedure.

Line 151 Is a REM statement labeling the word or phrase contained
 in the following data statements. This is useful in the event
 you wish to correct, change or eliminate words. By clear
 labeling you can locate the word quickly.
Line 152 Data statement; containing allophones for the word hello.
Line 153 Counting line; enabling the computer to read the proper
 number of allophones in the data statement then jump to the
 end of the speech module upon completion. G=(number of
 allophones)+1. Therefore if our word uses 6 allophones then
 G=7. If a sentence uses 31 allophones, then G=32.
Line 154 Reads allophones in data statement.
Line 155 Takes data read; jumps to subroutine line 10000. There
 computer compares to table, decodes and provides necessary
 electrical pulses to the speech chip; returns.
Line 156 Return program to counting; incrementing G; reading the
 next allophone. Process is repeated until G equals its assigned
 value.
Line 157 Line number called in line 153, C then 157 > -Resets G to 0,
 enabling G to be used again in other modules of the program.
Example
 The booklet provided with the chip has a dictionary with over 200
words, with their proper allophone data. These words can be put into
your program at once. Some of the words included are:

● numbers 0 to 1 million
● days of the week

 The Program 31

● months
● letters
● common words

For our example we will construct a sentence concatenating 4 words and
entering it in our program.

 200 Rem See You Next Tuesday
 201 Data SS,SS,IY,PA1
 202 Data YYl,UWl,PA1
 203 Data NNl,EH,KKl,SS,TT2,PA1
 204 Data PA1,TT2,UW2,ZZ,PA2,DD2,EY,PAl

The REM statement describes what is contained in the following data
statements. You can use or start with any line number you'd like, just
remember to be consistent.

 205 Let G=G+1: If G=22 Then 225

Count the allophones in the above data statements. You should count
21 allophones. Since G=(# of allophones)+1 therefore G=22. Note line
number 225 call out <Then 225 > in this line, it marks the end of the
speech module. You can easily predict this number since it is always 4
lines down from this line.

 210 Read A$

Reads allophone in data statement.

 215 GoSub 10000

Program goes to subroutine at line 10000.

 220 GOTO 205

When program returns from subroutine this line returns program to line
205 the counting line. G is incremented, next allophone is read, until G
equals its assigned value.

 225 G=0

This is the line called when G reaches its assigned value. This line resets
G to 0 so it can be used again for other speech modules.
 The allophone table correlates each allophone with its approximate
sound. This table is essential for programming words that aren't in the
provided dictionary. Please be aware that there are a few typographical

32 Speech Synthesizer

errors in the dictionary. Such as in the following words:
 Hello-HH,EH,LL,AX,OW,AW,ER1

 AND

 Computer-KK1,AX,MM,PP1,YY1,UW1,TT2,ER

 In the word hello; the first allophone hh doesn't exist in the table.
You should use HHl, or the word will sound like ello. In the word
computer; the last allophone er doesn't exist. You must use ER1 or the
word will sound like compute not computer.
 If you use a word from the dictionary that doesn't sound correct, first
check the allophones to see if there is a typo. Always end a word or phrase
with one of the pauses PA1 to PA5. This is necessary to stop the computer
from enunciating the last allophone.

BASIC CRUNCH
 BASIC can run the speech processor, but it is a little slow. One of
the easiest ways to bring BASIC up to speed is to use multiple statement
lines and eliminate all unnecessary REMs. Effective programming has
been known to help also. Experiment by crunching the program as much
as possible. I would do this one step at a time or you stand a good chance
of crashing.
 Machine language is very quick and ideal to use with the circuit. If
you're a machine language programmer here is a great opportunity to
test your mettle. I advise running an ML wedge and implementing a new
BASIC command such as "say" or "speak" that would completely elim-
inate all BASIC programming.
 A good in between program could be implemented using a binary
jump search routine for the data comparison after the data read, as this
is the most time consuming portion of our program.

Conclusion
 You now have the tools you need to program speech. To utilize the
basic program into an existing program or to help organize a new
program, think of the program as existing in three distinct modules; the
data table, speech module, and speech routine. Set up the data table
before it will be used by the program. Put the subroutine for speech near
the end of the program. The speech modules are placed anywhere in be-
tween, where you want the computer to speak.
 Examine the speech routine section of the program, with the knowl-
edge and information given in the last chapter you should be able to fig-
ure out how this program is operating. If you have any problem you may
want to place your LED interface at the user port and run the speech
synthesizer program to observe the controlling bits, it'll definitely help.

 Basic Crunch 33

What has been written in this installment is the bare essentials. Feel free
to experiment and develop your own program.
 For those of you who are more adventurous, Radio Shack sells a
companion chip that's an ASCII text to speech converter. Practical
applications for the chip are a text reader or verbal modem.

 Parts List
Quantity Item Description Part Number Cost
 1 SP0256-AL2 RS# 276-1784 $12.95
 1 LM386 RS# 276-1731 1.09
 1 100k ¼ watt RS# 271-1311 .39
 2 33k ¼ watt RS# 271-1341 .39
 3 .1 µF Cap RS# 272-135 2 @ ·49
 2 .022 µF Cap RS# 272-1066 4.69
 2 22pF Cap
 2 100 µF Cap RS# 272-1016 2 @ .79
 1 10k Trimmer Pot RS# 271-335 .49
 1 8 ohm speaker RS# 40-245 1.89
 1 1 µF Cap RS# 272-996 .79
 1 10 µF Cap RS# 272-999 .99
 1 Experimenters
 Board RS# 276-168 1.95
 1 Card Connector
 12/24 or Module RS# 276-1551 2.99
 1 3.57 MHz Crystal RS# 272-1310 1.69

All parts are available from Radio Shack.

4

Analog
to Digital Conversion___

We are going to examine analog to digital conversion with a serial input
to the user port. Then we will add a 60 Hz interrupt routine to have our
project work continuously and transparently in the background of BA-
SIC. This may sound a little complicated right now, but we shall take
it one step at a time.
 With these tools at your disposal you will be able to utilize your
computer to monitor the real world environment. The real world
environment is where we live, to the computer it's everything external
to its circuit board. To whet your appetite, this is a list of projects we
will cover in this chapter.

 · Biofeedback monitor
 · Transducers-light and heat
 · Toxic gas detector

 Before we begin, examine Fig. 4-1 to refresh our memory of the basic
definition of binary signals. A binary "1" is equal to approximately 5 volts,
a binary "0", approximately 0 volts. There are basically two types of
interfacing schemes commonly used in personal computers today, serial
and parallel.
 Previously, we used parallel interfacing without explicitly stating so.
Since you already have a working knowledge of parallel interfacing we'll
begin with this, and then move on to serial interfacing.

 34

 Analog Events 35

Fig. 4-1. Binary voltages "1" and "0".

 Parallel interfacing transmits or receives eight data bits (Fig. 4-2)
simultaneously on eight parallellines called a data bus. As we have seen
when using Port B of the user port, we have the added advantage of being
able to configure a combination of input/ output lines on our 8-bit paral-
lel port.
 Figure 4-2 details our PB lines off the user port. To read the binary
number you add the decimal values represented by each bit. The binary

 Fig. 4-2 Parallel 8-bit voltage to binary conversion.

36 Analog to Digital Conversion

number in this example is 10011010. Translating this binary number you
would obtain a decimal value of 89. (1 + 0 + 0 + 8 + 16 + 0 + 64 + 0)
 Figure 4-3 shows how the same information can be transmitted or
received over a serial line. A serial bus need only consist of two lines.
As its name implies the information is transmitted serially one bit at a
time. The first bit transmitted or received is bit 7. The clocking line
correlates the precise moment to receive or transmit data on the line.
 Commodore computers have a built in serial register and clocking
line that can receive or transmit data in such a fashion. This greatly
simplifies our programming task.

ANALOG EVENTS
 What is an analog event? This may appear to be an easy question
to answer. We deal with analog events everyday. Such as time;
temperature, speed. To define briefly, an analog event ,is one in which
the reading or measurement is infinitely variable between any two points.
Let's examine one example, the voltages existing between 1 volt and 2
volts. The possible number of voltage readings between these two points
is infinite, it can have virtually any value, such as 1.1 volts or 1.00000001
V. or 1.0000000000000000001 V. As you can see, voltages can vary by
infinitesimal amounts. The same is true for temperature, time, gravity,
and a number of other natural phenomenon.

DIGITAL EVENTS
 Digital events occur in discrete predefined steps. A simple example
is an electric light switch that has two predetermined states, on or off.
A rising voltage digitally plotted against time, would not trace as a straight
line (analog event), but would jump in increments in a staircase fashion.
See Fig. 4-4.

Fig. 4-3. Serial 8-bit binary number.

 Serial A/D Converter Chip 37

Fig. 4-4. Analog to digital and sine wave conversion.

SERIAL A/D CONVERTER CHIP
 We will use an off the shelf serial analog to digital converter, available
at Radio Shack.
 An analog to digital converter does exactly what its name implies.
It reads an analog voltage then converts it to the proportional digital
(binary) value for use by the computer. In our case this digital value is
transmitted serially into the computer (see Fig. 4-3).
 Radio Shack sells a serial A/D (analog to digital or ADC) converter
chip manufactured by Texas Instruments for $6.95 (see parts list) (see Fig.
4-9). This is an 8-pin chip that is extremely easy to interface to our user
port. Some of the chips capabilities are as follows; max 40,000 samples

38 Analog to Digital Conversion

per second, internal clock and 8-bit conversion resolution. (See AID chip
drawing and pinout description.)
 We will utilize this chip extensively. To interface, we must solder
additional lines on our card connector. These lines are the +5V, serial
line and clocking line. See Fig. 4-5 for the Commodore 64 and C-128 (SP-2)
is the serial and (CNT-2) clocking line we'll use. For the Vic-20, the serial
line is CB2 and clocking line (CB1), (see Fig. 4-6).
 Construct the circuit on your experimenters breadboard. A 10 k
potentiometer is inserted between the +5 volt line and ground (pins 1
and 4 (see Fig. 4-5 or Fig. 4-6 and Fig. 4-8). The wiper of the pot is
connected to pin 2, analog input of the A/D chip. This is a testing pot,
(see Fig. 4-7) for you to test the circuit and the program.

TEST PROGRAM
 Type in the respective program (Fig. 4-10 for C-128 and C-64 or Fig.
4-11 for Vic-20) for your computer and run. Vary the control knob on the
pot and observe the results on the screen. The numbers represent the

Fig. 4-5. Test circuit, C-128 and C-64.

 Test Program 39

Fig. 4-6. Test circuit, Vic-20.

This section is where to place out
transducer or circuit. To test, we
insert a 10 k-ohm pot between the
+5 volts and ground. The wiper is
connected to Pin 2 (Analog In), by
varying pot we corresponding by
vary the voltage on Pin 2. The

range is from 0 volts to 5 volts.

Fig. 4-7. Detail of variable resistor.

40 Analog to Digital Conversion

Fig. 4-8. Test circuit.

digital equivalent of the voltage present on pin two. If you have a volt
meter handy you can connect the meter between pin 2 (analog in) and
ground to observe the correlation of volts to the digital read out.

RESOLUTION
 The serial register in Commodore computers and the A/D chip is one
byte (8 bits) long. The largest number one byte can contain is (binary
11111111) decimal 255. Since we are reading the computers register to
see what the serial AID chip is transmitting about our circuit, the readings
can vary from a minimum of 0 to a maximum of 255.
 We know that this number transmitted represents the digital
equivalent of the voltage present on pin 2. The relationship between them
is this, our reference voltages (ref + minus ref -) divided by 255
(resolution) equals volts per binary step (see Fig. 4-4). In circuits, Fig. 4-5
and 4-6, our reference voltages are +5 volts and ground 0 volts. So 5/255
- .0196078431 volts per incremented step. Each time the voltage varies
by this amount our reading of the serial port would vary 1 point. It follows
then, if the computer is reading 100, we can take this number multiply
it by our volts per step and calculate what the voltage on pin 2 is. Let's
do it, assume that our BASIC program is running and we're reading dec-
imal 100 from the chip. We calculate the voltage thusly:100 x .0196078431
= 1.96078431V or approximately 2 volts.

 Resolution 41
 Serial A/D Converter IC

Radio Shack
PN# 276
Cost $6.95

 *Note - Radio Shack does not supply Pin-Out description with their data sheets.
Fig. 4-9. Pin out serial A/D chip.

Fig. 4-10. Test Program, C-128 and C-64.

42 Analog to Digital Conversion

Fig. 4-11. Test Program, Vic-20.

 This chip has an 8-bit resolution. There are other chips on the market
that have greater and lesser resolutions. These chips are classified by their
bit resolutions such as 4-bit resolution, 12-bit resolution, and 16-bit
resolution. It isn't practical for us to use these chips right now, but be
aware that they are available for your use.

PROGRAMMING
 The BASIC test program we used is slow and cumbersome, later we
will use a machine language program that works with the 60 Hz interrupt.
In the C-64 and C-128 BASIC program, we are using 2 addition registers
aside from the ones we discussed in Chapter 1. They are the 56588 serial
register and the 56589 interrupt control register. In the former we peek the
register to see what number our A/D chip transmitted, the latter we mask
all interrupts.
 The CRA control register, located at 56590, controls whether the serial
line will be an input or output. This register has the proper configuration
we need on power up so it isn't necessary to change it.
 We use PBO line to provide the clocking pulse to both the CNT line
and the A/D chip. PB1 provides the high to low pulse every 8 clock cycles
to start the chip transmitting its latest conversion.
 The Vic program operates in a similar manner. To understand the
serial register, interrupt register, and CRA, detailed information is
provided in the Programmers Reference Guides.

TRANSDUCERS
 By substituting different transducers for our testing pot, we can have
the computer sense and measure light, heat, toxic gas, and galvanic skin
resistance. The first of the transducers we will work with are variable
resistor types (see Fig. 4-12) meaning as the sensor detects, the resistance
of the sensor will change. This change in resistance changes the voltage

 Light 43

Fig. 4-12. Three transducers.

drop across the transducer and is picked up as a varying voltage on pin
2 of our A/D chip. The voltage on pin 2 will be displayed as before with
the transducer resistance tracking like varying the pot did before.

LIGHT
 Cadmium sulfide (CdS) photocells, (Radio Shack PN# 276-1657) re-
spond to the intensity of light that falls on them. Their resistance is greatest
in complete darkness, and decreases in proportion to the light made
available. Examine Fig. 4-13 circuit C1. This shows the simplest method
of connecting the cell into the circuit.
 The disadvantage in this particular application is that we are utilizing
just one half (128-255) of our possible range 0-255. We easily correct this
situation in Fig. 4-13 circuit C2 by adding two resistors that make up a
voltage divider. This changes our ref- from 0 volts to 2.5 volts. Our volts
per step also changes (ref+ minus ref- = ref Voltage) 5V - 2.5V = 2.5V.
Using the new ref voltage we get 2.5/255=0.00980392157 volts per step.
With circuit C2 we are reading voltages between 2.5 volts (ref-) and 5
volts (ref+). This gives us full scale operation with the photocell (see Fig.
4-14).

44 Analog to Digital Conversion

Fig. 4-13. Light cell C1 and C2.

 Temperature 45

Fig. 4-14. Light cell circuit C1.

APPLICATIONS
 Now that we have a method of measuring light intensity, what are
some applications for this device? If you are a photographer and do your
own printing you could use this as an exposure meter for your enlarger.
In the high tech end of applications, a spectrophotometer is possible (see
Fig. 4-15). Spectrographic analysis is a method used by scientists to
determine what elements are in an unknown compound. This technology
was used to determine the composition of the Sun and stars.

TEMPERATURE
 To measure temperature simply replace the photocell with the heat
transducer (thermistor) in Fig. 4-13 circuit C2 (see Fig. 4-16). The
thermistor is an NTC (negative temperature coefficient) type, that
decreases in resistance as temperature increases (see Fig. 4-16). Resistance
at 25ºC (ºF) is 10,000 ohms. Maximum operating temperature is 150ºC.
(302ºF). (Digi-Key PN # KC006N-ND)
 The resistor R1 that is in series with the transducer is good for sensing
ambient room temperature and above. To change the scale and improve
its response in the 0º to 120º F range replace R1 with a 47 k resistor.
 Note at this time, although we are changing the reading range of
temperatures by changing the resistor R1, the volts per incremented step
and the voltage reading range on pin 2 remains the same. The only way
to adjust this is by changing the voltage divider resistors. If you should
decide to change the voltage divider make sure to remain within the range
detailed in the spec sheet and pin out description.

46 Analog to Digital Conversion

 * Note - Cds photocell output isn't
 linear throughout spectrum.
Fig. 4-15. Spectrographic analysis of light.

APPLICATIONS
 Calibration is necessary before using this sensor for any critical
operation. One method of calibration is to submerge the sensor first in
cold ice water then in boiling hot water marking each readout. The first
number recorded is the equivalent of 32oF the second 212oF. The most
obvious applications are an electronic thermometer and thermostat
control.

TOXIC GAS SENSOR
 The toxic gas sensor responds to a large number of airborne toxic
compounds. Its operation is similar to the thermister in that as the sensor
detects compounds the resistance of the device decreases.
 Examine Fig. 4-17. Pins 2 and 5 connected to a heater coil inside the
transducer. The heater coil requires 5 volts at approximately 115 mA. This
current is beyond what the user port can supply. This mandated the
addition of a battery power supply with a 7805 5V voltage regulator.
 Pins 4 and 6 are internally connected, as are pins 1 and 3. When you
make your solder connectors to the sensor you need only connect to one
pin of each pair (see Fig. 4-17 and Fig. 4-18).

 Toxic Gas Sensor 47

 TEMPERATURE

 Same as Cad cell use circuit C2
 Replace Cad cell with thermistor
 Toxic Gas Sensor
 Fig. 4-16. Thermister circuit and graph.

 7805 5V
 Voltage
 Regulator Gas Sensor

Fig. 4-17. Toxic gas sensor.

48 Analog to Digital Conversion

Fig. 4-18. Back view of toxic gas sensor.

 Polarity isn't important for either the heater coil or sensor any way
 you connect the wires the unit will function properly. You may notice
 that the sensor feels quite warm when operating, don t be alarmed, this
 is normal and is a result of the internal heating coil.
 Change R1 in Fig. 4-13 circuit C2 to a 47 k resi5tor and connect the
 circuit as shown in Fig. 4-17. Since the sensor has been in storage prior
 to you receiving it, it will require an initial 2 minute warm up period.
 This warm up period decreases with use. After the warm up period you
 can test the sensor with a number of household items. I first used a butane
 gas lighter, by releasing gas by the sensor (unlit), the sensor reacted
 immediately jumping from a base line of 0 to 255. By breathing on the
 unit it will detect the carbon dioxide. You can test and experiment with
 other items such as cleaning fluids.

 APPLICATIONS
 You can use the toxic gas sensor for an automatic ventilator control
 or gas leak detector and alarm.

 BIOFEEDBACK
 The biofeedback device (Fig. 4-19 and Fig. 4-21) has two uses. One
 as a lie detector, and as a stress level measurement device. The device
 operates by detecting changes in the galvanic skin resistance of the person
 connected to the device.
 A persons' galvanic skin resistance at any particular time is an
 indicator of his or her state of arousal (emotional stress and tension level).
 This is called the base line conductance. The base line conductance will vary

 Biofeedback 49

Fig. 4-19. Biofeedback circuit.

 Fig. 4-20. Dime electrodes on wrist.

 slightly as you use the biofeedback device making it necessary to
 adjust the device occasionally.

 The electrodes are made by soldering a wire to a dime
 (see Fig.4-20).

 To use, place a rubber band that fits snugly around the subjects
 wrist, and place the dime electrodes underneath the rubber band.

50 Analog to Digital Conversion

Fig. 4-21. Biofeedback circuit.

 Set both pots at mid-position when beginning, attach both electrodes,
use the R1 pot to adjust the reading. When adjusting R1 you notice a
point when a small movement on the pot causes the reading to jump up
or down a good amount. This is the trigger point. Depending upon what
application (lie detector / stress level monitor) you have in mind at the
time determines where to adjust the R1 pot. The R2 pot adjusts the gain
of the 741 op-amp. Normally you won't need to adjust this.
 To use as a lie detector adjust R1 till your reading is a little below
255. At this point press the electrodes further against the skin, the reading
on the monitor should jump down. (Remember to attach the electrodes
before you begin adjusting R1.) When you release the pressure on the
electrodes the reading should rise to approximately what it was before.
If this test works you're ready to begin. If riot, recheck all your wiring.
 When you ask a question that evokes an emotional response the
readings will increase. A simple test to perform with a deck of cards is
to have your subject pick a card. And you try to ascertain which card
was picked using the biofeedback device. A card player may respond to
an Ace or Joker card even though it was not the card he picked. A highly
emotional subject may respond in anticipation of you showing the target
card. Anything that evokes a strong emotional response can be detected
by this device, it could be the nature of a question regardless of the answer
that causes the response. Please keep this in mind.

 60 Hz Interrupt Vector 51

 To use as a biofeedback device to reduce stress, adjust R1 till your
almost reading 0. Now sit back and relax, imagine yourself to be in any
place or situation you find soothing. As you respond the readings will
start to rise. It is interesting to note that you can remain in a high state
of awareness and be totally and completely relaxed. With practice your
ability to relax quickly will develop and use of the machine will become
unnecessary. You may also reset the device to approximately 0 after you
topped it out and tried to make it rise again, bringing yourself to new
levels of relaxation.
 The reason you don't set the device to 0 or 255 when adjusting R1
is that you could overcompensate. This could make reading the changes
in skin resistance impossible if all the changes are happening below 0
or above 255. Another point to note is that as your body relaxes its resis-
tance increases. Under stress the resistance will decrease. Until you
become familiar using the device, it can be frustrating to set the pots for
a good reading, give yourself a little time to learn.

APPLICATIONS
 The biofeedback device, as stated before can be used as a lie detector
and stress management device. More than this, it should be considered
an exercise in physiological measurement. You are not limited to this de-
vice, other devices such as EKG's and EEG's can be interfaced to the
computer also.

60 Hz INTERRUPT VECTOR
 Commodore computers use one of the 6526 timers to issue an
interrupt every 1/6o of a second. The interrupt routine that follows scans
the keyboard to see if a key has been pressed, updates the real time clock
and performs a number of housekeeping functions. Our interest is not
in the routine, but in utilizing the interrupt procedure for our own benefit.
 A simple explanation of what happens when an interrupt is generated
is as follows. When the microprocessor receives an interrupt signal the
program instruction that is currently being performed is finished. The
address of the next instruction is stored, then the program is directed
into the interrupt subroutine program. Upon completion of the interrupt
routine the address that was stored at the beginning of the interrupt
routine is pulled and our program continues at this address, which is
exactly where it left off.
 This process happens continuously and transparently in the
background of BASIC. This is how, when you are running a program
you can stop it in the middle of operations by pressing the RUN/ STOP
key before it is finished. The interrupt routine scans the keyboard 60 times
a second, when it sees that you pressed the Run/Stop key, it knows to
stop the program and return control. In fact everytime you press a key
and see it appear on your monitor you're looking at the interrupt routine

52 Analog to Digital Conversion

at work. Our reason for bringing this up is to utilize this routine by adding
our own Serial AID program to it. This is called implementing a wedge.
It's called that because we are wedging or adding our own short program
to the interrupt routine. By doing so our program will be executed 60
times a second and is transparent to any program running in BASIC. We
can accomplish this by changing a vector in the interrupt routine, (A vector
is an address that directs the program to its next instruction.) to point
to our program before continuing to the standard interrupt routine.

DEMO INTERRUPT
 To gain an appreciation of what we are doing I've written a demo
program. This program will transfer one of the MPUs registers, the
Y-Reg, into the user port. For the C-64 see Fig. 4-22, for the C-128 see
Fig. 4-23, and Vic-20, Fig. 4-24. By connecting our LED interface from
Part I we can examine the operation of the register as BASIC is running.
This program must be written in machine language so I've written a BA-
SIC loader for it. Save the program before you run because it erases itself
from BASIC. The program reads and displays the Y-Reg 60 times a sec-
ond. Observe what happens as you type in a program, run a program
or load from a disk.

Fig. 4-24. Interrupt Vic-20.

 A/D Interrupt 53

 A/D INTERRUPT
 These programs read the A/ D chip 60 times a second and place the
 information in memory location 255. All you need to do is peek the
 location for the current value, the BASIC program we used before will
 not be needed when using this machine language version.
 For the C-64 see Fig. 4-25, for the C-128 see Fig. 4-26, and Vic-20 see
 Fig. 4-27. After you have typed in and saved the program, run it, and
 type in this line.

 10 X=Peek(255):Print X:GoTol0

 Fig. 4-27. A/D interrupt Vic-20.

54 Analog to Digital Conversion

 This one line will print serial A/D conversion. The program is not
affected by the RUN/STOP key, but a RUN/STOP and RESTORE will reset
the vector. To reinitiate the program, Sys (the number in program). Nat-
urally, after the A/D interrupt is initiated you can peek this location
anytime or anywhere in a program to read the latest conversion from the
chip.

5

Digital Audio
 Recording and Playback

By interfacing numerous transducers to the user port, we gave the
computer the ability to sense the environment. To restate: the analog
information (signal) from the transducer was converted to its binary
equivalent by the A/D chip then transmitted serially to the MPU via the
user port. This time we will add another step. We will store the binary
information in the computer's memory then take binary information from
the computer's memory and reconvert it to its analog voltage equivalent.
 You may wonder what good is such a procedure? One application
we'll accomplish is that we can record an audio signal into the computer's
memory and then play it back, kind of like an electronic tape recorder.
But to look at this procedure from a broader viewpoints, once an analog
signal is converted to a binary equivalent there is less of a chance of losing
information through signal degradation and distortion when transmitting
the signal.
 And what good is that? Have you ever thought of the technology
behind NASA's triumphant photographs of Mars, Saturn, and Jupiter?
The procedure used to obtain those pictures is similar to what we are
going to do.
 Let's first look at what NASA does. Aboard NASA space probes, the
image information is read from the on-board camera, pixel by pixel. Each
pixel is converted into binary information. This binary information is
transmitted via radio to Earth. Earthbound receivers receive and store

 55

56 Digital Audio Recording and Playback

the information. The information is then reconverted from binary back
to its analog equivalent pixel image. The pixels are reconstructed to form
the original picture. Again, the reason for the conversion to binary before
transmission is to prevent signal distortion.
 Why aren't binary signals distorted? Well they are, they are just not
as susceptible to distortion as analog signals are. Remember binary
numbers and signals are made up of bits. Bits that are either 1 (+5V) or
0 (0V), so even with a great deal of distortion, let's say enough distortion
to completely obliterate an analog signal, you can still determine during
transition if a serial binary signal is a bit 1 or 0. And when you build up
the 8 bits per byte, you will have recovered a close approximation to your
original signal.
 The project we'll construct to demonstrate our digital to analog (DAC
or D/A) conversion is a digital audio recording and playback unit. The
procedure is similar to the one described for NASA picture taking. First
our sound information is converted to its binary equivalent. This
information is stored in our computers memory. After the sound is
completely recorded, we then reconvert the binary information back to
its analog equivalent sound.

APPLICATIONS
 At this point, you may say to yourself, so what! The bottom line is
I could accomplish the same thing with a $10.00 tape recorder without
going through all this analog to binary-binary back to analog jazz.
 What makes this technique useful and unique is our ability to
manipulate the binary information before we play it back. By doing so,
we can get various special effects like echo, reverb repeat, frequency, and
timing changes. These digital effects are being used by many rock and
roll artists.
 On the scientific end, you could work on algorithms for speech
recognition by computers, or you may want to add a human voice to some
of your programs. How about a voice in tutorial programs for foreign
language or for educating preschoolers. These are new doors for
entrepreneurs. The advantage this has over our speech synthesizer is a
higher quality of sound. The quality of sound becomes critical in a number
of important areas. For instance, when teaching a foreign language,
inflection and subtle pronunciation becomes very important. The
disadvantage to using digitized sound all the time however, is the
tremendous amount of memory required.

SOUND SAMPLING
 To understand how we measure the sound sample to obtain its binary
equivalent, look at Fig. 5-1. This presents the waveform of a typical voice
trace as would appear on an oscilloscope. Figure 5-2 shows a magnified
section of the same waveform. On the left hand side of Fig. 5-2's (Y-axis)

 Sound Sampling 57

Fig. 5-1. Oscilloscope trace, voice or sound.

vertical axis, notice the voltage level and the binary equivalent of those
voltage levels. On the horizontal axis (X-axis), each division represents
one sampling cycle.
 When we are recording, our serial A/D chip reads the voltage of the
waveform at that particular instant, and transmits the binary number to
the computer. The computer stores this number in memory and returns
to the chip to get the next number. When it receives the next number,
it stores that number in the next memory location. This continues for as
long as we are recording. As you can see, it is following and recording
the basic shape of the original waveform into memory.
 When we playback, the computer reads the first binary number in
memory and pokes it into the volume register of the computer sound
interface device (SID) chip. The volume register of the SID chip outputs
a voltage proportionate to the number we poke into this register. Although
under usual circumstances the volume control by itself does not produce
any sound, but we are varying the output voltage so fast that it does
generate sound in synchronization to our recorded signal.
 In summary, we can say our computer reads the sound encoded
binary number then outputs the analog equivalent voltage through the
SID chip. The computer retrieves the next number and goes through the
same procedure until it is finished playing back the sample. Examine Fig.
5-2 again, notice that the chip will be outputting a close approximation
of the original waveform.
 Sampling cycle time is very important. It determines the fidelity and
maximum frequency the computer can record. For the C-64 and C-128

58 Digital Audio Recording and Playback

Fig. 5-2. Sound trace with A/D conversion.

(in slow mode), we will be sampling at approximately 5,000 samples a
second. The 128 will sample at 10,000 samples a second in fast mode.
We use one byte of memory for each sample we store, so we will use
up our available memory pretty fast. You have about 10 seconds of rec-
ord time at 5,000 rate, and 5 seconds at 10,000.
 At 5,000 samples a second, the computer can record a maximum
frequency of 2,500 Hz. This is easy to see by looking at Fig. 5-2 again.
If our waveform jumped up and down between two sample points, the
computer would not see it. It follows then, at 10,000 samples/second, we
can record a maximum frequency, 5,000 Hz.
 The slower rate is adequate for recording voice. At the higher rate,
we can observe an interesting phenomenon called polyphonics. What this
means is that the sampling rate is high enough to record more than a
single sound. As is the case with music, both voice and instruments are
recordable and played back. You can experiment with polyphonics with
the 128 in fast mode.

 Circuit Description 59

DIGITAL OSCILLOSCOPE
 After you have accomplished sound recording and playback, let's go
a little further and display our sound sample information by converting
the 128 computer into a digital oscilloscope.
 By loading a small program after we're done recording, we can create
a digital oscilloscope using the 128 graphic screen. We can use the scope
to analyze our voice or music prints that we have placed in the computer
memory. And as long as you stay within the input voltage requirements
of our serial A/D chip (0 to +5V), you can perform a waveform analysis
of any signal you'd like.
 It is interesting to note that the image formed on screen is an exact
real time rendition of Figs. 5-1 and 5-2. Our scope shows 320 sample cycles
per screen. That's equal to about .064 seconds of sound in the slow mode,
and about .032 seconds of sound in the fast mode. The program will
continue displaying the entire waveform by automatically clearing the
screen and plotting the next 320 points in memory.

CIRCUIT DESCRIPTION
 The circuit is simple and straightforward (see Fig. 5-3). Most of the
components are plugged into our breadboard (see Figs. 5-4 and 5-5).
 We will again utilize our serial analog to digital chip from the last
chapter to input the audio information into the computer memory. You
can use audio information from any source you like, such as radio, tape
deck etc. This article, however, will detail using a standard microphone
for you to record your own voice.
 The second chip in this project is the SID chip that is built inside your
computer. This we are using as our DAC chip (the digital to analog chip).
The SID chip reads the binary number and outputs the equivalent analog
voltage. This voltage is our sound information, and will play through your
monitor or TV speaker. This simplifies our circuit by requiring us to use
only one amplifier at the input stage. (You could also connect an amplifier
to the audio out wire and a ground wire to playback through it rather
than the monitor.)
 I decided that it would be more conducive for the project to purchase
a small battery powered amplifier complete from Radio Shack. The
amplifier cost is $11.95, which brings the total for this project to
approximately $20.00. (This does not include the serial analog to digital
chip that is assumed to have been purchased for the last chapter.) This
allows us to concentrate on the main theme of what we are to accomplish,
without being distracted or digressing into explanations of amplifier
design. This also prevents our schematic from becoming unnecessarily
and overtly complex.
 The microphone plugs into the input jack of the amplifier. A similar
plug (see parts list), that two wires are soldered to, plugs into the external

60 Digital Audio Recording and Playback

Fig. 5-3. Schematic of circuit.

speaker jack on the amp. These output wires from the amp go to the input
of our serial A/D chip. Although this project is inexpensive to build, it
is not short on performance. I'm sure you will be quite surprised by the
accuracy and fidelity of the reproduction.

PROGRAMS
 First, let me apologize to the Vic-20 users. Because of the high sample
rate needed and therefore large memory required, it is not practical to
attempt this project.

Programs 61

62 Digital Audio Recording and Playback

 Type in and save the basic loader and controller programs for your
particular computer (Figs. 5-6 and 5-7 for the C-64, and Figs. 5-8 and 5-9
for the C-128). Make sure you save the basic loader program before run-
ning it, because it erases itself after it pokes the machine language program
into memory. If you're using the C-128 computer, save the Digital Scope
program also.
 Load and run the Loader program, then load and run the Control
program. Turn on the amp, full volume, then Sys number in program to
record. To playback, Sys number in program. On playback, if there is
a lot of static, it is due to overmodulation. Turn down the volume on the
amp or hold the microphone further away from your mouth. Keep varying
the volume control until you get a perfect recording. Once you find the

Fig. 5-6. Basic control for C-64.

 Programs 63

64 Digital Audio Recording and Playback

Fig. 5-9. Basic control for C-128.

right setting, it's really easy to get good recordings. If you're operating
the 128 computer, you can go try the fast mode at this point, and notice
the higher fidelity of sound.
 If you like, try recording music to hear polyphonics sound. Vary be-
tween the slow and fast modes, and you'll see how important sampling
time cycles are. Remember, if you're recording music the microphone
itself will add some static and distortion. If you should make direct
connections to the digitizing circuit, WATCH THOSE INPUT
VOLTAGES.
 For the 128 users, after you have a good sound sample in memory,
load and run the Digital Scope program Fig. 5-8. You' may have to sit
through a few screens before you start to see some activity. This would
depend on how long it took you to speak after you Sys to record.
Remember, you have over 40 k of memory to look at, and each screen
holds only 320 bytes of information.
 I would also advise to record at the 10,000 sample rate. This keeps
the waveform more concise when plotting. If you want to do waveform

Fig. 5-10. Digital camera, C-128.

 Advanced Sound Digitizer Program 65

analysis with the digital oscilloscope, tie in your signal to the input of
the serial chip and record. Again, watch the voltages.
 The Digital Scope program as it stands, plots points. When doing
waveform analysis of complex waves, the dots break up into a disconnect
pattern. To alleviate this problem, change lines 50 and 60, and add line
55 as follows.

 50 bank O:h=(peek(ba+g)+05
 55 h1=(peek(ba+g+1)+05)
 60 Bank l:Draw ,g,h to g+1,h1

This change allows the program to draw lines connecting the dots, and
will help a great deal when studying waveforms.

APPLICATIONS
 It should be obvious that there is a lot more you can do with this proj-
ect. This includes digital special effects, waveform analysis, and loading
and saving the binary sound information on disk to be used to put sound
or words in your programs.

 Parts List
 Part
Quantity Item/Description Number Cost
 1 Microphone Radio Shack
 PN# 33-1054 4.99
 1 Audio Amp Radio Shack
 PN# 277-1008 11.99
 1 ⅛" phono plug Radio Shack
 PN# 274-286 1.39
 1 .1 µF cap Radio Shack
 PN# 272-135 .49
 1 1 k resistor ¼ watt .39
 10-ohm resistor ¼ watt .39

ADVANCED SOUND DIGITIZER PROGRAM
 This is an advanced program for the sound digitizer that will provide
maximum performance for minimal investment and minimum fuss, plus
kick in a couple of special effects to boot. The principles of sound
digitizing, as described in the previous chapter, remains the same. For
those of you who are interested in the basic principles of sound digitizing,
see the previous chapter.
 I have made substantial improvements in the program. As with most
things, we have advantages and disadvantages by taking any particular
route, and this is no exception. One disadvantage to using the SID chip
is that the SID chip can only output sound with a 4-bit resolution. But

66 Digital Audio Recording and Playback

Advanced Sound Digitizer Program 67

68 Digital Audio Recording and Playback

Fig. 5-15. C-128 Advance program.

 Advanced Sound Digitizer Program 69

Fig. 5-15. Continued.

this in turn gives another advantage for using the SID. Since the SID
requires 4-bits we can pack two 4-bit nybbles of information into each
byte of memory. And what that boils down to is a doubling of our record
or playback time.
 The register on the SID chip that we are using to generate sound is
the 4-bit volume control register. Normally, this register doesn't produce
any sound by itself, but we are varying the output voltage so quickly,
5,000 to 10,000 times per second, that it does generate sound. And since
our output voltage is an approximate value of what our input voltage was,
we get back our original sound.
 The ML program performs a couple of bit manipulations to increase
our record and playback time. As I stated previously, the SID chip can
only use 4 bits of information in our application. This provides us with
the opportunity to double our record and playback times by packing two
4-bit nybbles of information into each memory byte. The program
accomplishes this by first reading the 8-bit value left in the serial register
from the circuit, then performs 4 (LSR) Logic Shift Right, which moves
the hi-nybble to the lo-nybble position.

70 Digital Audio Recording and Playback

 The next sample is pulled from the serial register. This byte is first
ANDed with decimal 240 (hex FO), which effectively erases the lo-nybble
while preserving the hi-nybble value.

 2nd Sample

 1 0 1 0 x x x x
 1 1 1 1 0 0 0 0 AND 240
 1 0 1 0 0 0 0 0 Result

 Then this result is ORed with the first sample. This combines both
4-bit nybbles.

 1st Sample 0 0 0 0 1 0 0 1
 2nd Sample 1 0 1 0 0 0 0 0 OR
 1 0 1 0 1 0 0 1 Result

This result is stored into memory. This entire process is repeated and
stored into memory sequentially, until our allotted memory is full.
 The playback works in a similar manner; first pulling the byte from
memory and storing the lo-nybble into the SID volume register, then shift-
ing the hi-nybble into lo-nybble position and transferring it into the SID.
 Type in and save both programs under their proper names. This is
essential, since the programs chain to one another. When you run the
basic program, you are presented with a menu.
 Item 1 of the menu loads in, then runs the BASIC loader for the ML
program and returns to the menu. This is the first thing you should do
when starting the program. The ML program is the driving force that
operates the circuit and performs all the digitizing functions.
 Item 2 selects the recording function. Upon entering 2 and pressing
the return key, the computer will immediately begin recording.
 Item 3 selects the playback function. By pressing the "R" key as the
computer is in playback, your sound sample will enter into a half a sec-
ond repeating loop until you release the key. It may take a second or so
before the computer "sees" you've pressed the "R" key, so be a little
patient.
 Item 4 puts the 128 computer into the fast mode. You will achieve
your best recordings in this mode.
 Item 5 places the 128 in the slow mode. This will give the longest
recording time.
 Item 6 prompts you for a filename of a sound sample, then loads that
sound sample you have recorded to your disk into memory for playback.
Do not add the prefix SND. to the filename, as the program will do that
automatically (see Item 7).

 Advanced Sound Digitizer Program 71

 Item 7 prompts you for a filename to save a sound sample in memo-
 ry to disk. The program adds a prefix SND. to your filename before

 saving for easier identification of sound sample files you have
 stored on your disk. The save function uses a dynamic keyboard
 technique to BSAVE the file. In order to accomplish this the program
 will end after every save. Just enter run after the computer is
 finished, saving your sound sample to reenter the program.

 Item 8 adjusts the pitch of the playback. This function has no
 effect on the record function.

 Item 9 views the directory of the disk currently in the drive.
 The directory is selective and will only display the sound sample
 files on the disk.

 Item 10 ends the program.
 When you're ready to record, turn the audio amp on to full, press
 #2, then return. When the program finishes recording, it will return

 to the main menu. Press #3 and return for playback. If there is a
 lot of static, it is probably due to overmodulation. Turn down the
 volume on the amp or hold the microphone further away from your
 mouth. After you have a satisfactory recording, press the "R" during
 playback to hear the digital repeat. The computer will continue
 playing the same half-second trackover and over, until you release
 the "R" key. You will get better sound recording by staying in the
 fast mode. The rest of the menu is really self explanatory.
 Have fun.

Fig. 5-l6. C-64 Advance program.

72 Digital Audio Recording and Playback

Fig. 5-16. Continued.

6

Subliminal
Communication

 Let's begin an exploration into the world of subliminal phenomena. I'm
 sure a lot of you have an idea or familiarity of what subliminals are. For
 the uninitiated, subliminals are information (usually audio/visual)
 presented in such a manner as to not be consciously perceived. Therefore
 the person listening or viewing the subliminal is not consciously aware
 of it being present. Subliminal techniques are targeted to motivate a
 persons behavior or thought.
 What we will construct is a video switch that works in conjunction
 with a VCR and your computer. Essentially what we will do is create a
 message screen on the computer's monitor and flash this message screen
 subliminally onto the VCR monitor's (usually a TV set). The VCR can
 either be playing a tape or, by using the built in TV tuner, receiving
 broadcast television. The subliminal switch will work in either
 configuration.
 Using subliminal technique you can explore the prospects of self pro-
 gramming the human biocomputer, your brain. You may want to try this
 technique to shed a few pounds of extra weight, or to help you relax.
 I'll go into greater detail on the mechanics of the message screens later

 on.

 HISTORY
 As far back as the the turn of the century in 1894 W.R. Dunham M.D.,
 wrote commentaries on subliminal communication. I believe that it was

73

74 Subliminal Communication

the claim of a New Jersey theater owner in the 1950's who flashed
refreshment subliminals over Kim Novak in the movie Picnic and reported
a 58 percent increase in the sales of Coca-Cola, which brought subliminal
communication out into public view. More recently subliminals are found
in advertising, popular music and theater.

ORWELLIAN MIND CONTROL
 The reason subliminal techniques are feared, is that subliminals
effectively bypass our normal conscious mind. For instance, let's suppose
someone wants to sell you a widget. After you listen to their sales pitch
you make a conscious decision whether you want to purchase the widget,
you analyze if it will perform as claimed or worth the money it cost, no
problem here. But if we are unconsciously bombarded with subliminals
that tell us this widget will make us wealthy, sexy, popular, intelligent,
our conscious decision making process is short circuited. If our subcon-
scious mind becomes convinced of the subliminal affirmations, we find
ourselves wanting to buy this widget. We may think it's our own idea
that we need or want it.
 Various advertisements and their progenitor agencies have been
accused of making free use of subliminals to generate a greater profit per
advertising dollar. I will not try to justify this Orwellian concept of mind
control by media but I have supplied a bibliography to this article for those
who wish to pursue this interesting topic further.

AUDIO
 Another area that is currently making a large splash in subliminal
techniques are self-help audio cassettes. These tapes have subliminal
messages masked into the background of music. The tapes are designed
to help the listener to stop smoking, lose weight; relax, gain self
confidence, etc. I don't know how effective the tapes are at helping people
accomplish their goals and I am not advocating their use. But let me call
to your attention the fact that this type of subliminal is being used in
industry, a case in point, some large department stores use subliminals
to help reduce customer and employee theft, and naturally, to increase
sales. You may have heard music being played in stores and malls, what
you can't hear is if there are any subliminals encoded into the music. Many
popular rock groups insert subliminal messages into music.

VISUAL
 Visual information can be encoded with two basic methods. The first
is the subliminal cut. Here an image or phrase is inserted in between two
corresponding film images as in a movie film; more of a cut and paste
operation. When the movie is shown the subliminal images pass too
quickly for them to register consciously, but our subconscious picks them

 Circuit Construction 75

up. This is the method that we will be using, although we are working
with video tape and/ or broadcast TV, the basics are the same. This is the
tachistoscopic method.
 The second method is more advanced and much harder to detect.
Here an image or phrase is overlaid onto the film image. The phrase is
held at a slightly lower illumination level than the overall picture. Again
this image or phrase is not consciously picked up. This would be the meth-
od of choice, it s technologically more advanced, harder to detect, and
effective.

SUBLIMINALS AND THE LAW
 Currently there are no laws prohibiting the use of subliminals. There
are no laws that anyone subjected to subliminals must be informed. The
reason I am making a point of this is that I believed that such laws were
in place. Upon doing research for this article I discovered that there are
not.
 The FCC has a regulation concerning deceptive advertising on
television, but it relies on the FTC to make the determination on what's
deceptive. The bottom line is that the use of subliminals are not checked,
except for a cursory look see for the most basic tachistoscopic images.

CIRCUIT CONSTRUCTION
 Check your VCR for video and audio output jacks. Most VCRs have
separate video and audio inputs, and outputs. If your VCR doesn't, stop,
you can't use this circuit. (You cannot use the RF out that is connected
to the TV antenna leads.)
 The circuit is quite simple and inexpensive. We are using a 4066 quad
bilateral switch to block and steer our video image to the monitor. The
program takes the video signal from the computer and displays it onto
the screen for 1/60 of a second every three or four seconds. Whatever you
put on your computer screen, will be flashed to your subconscious mind.
All the remaining time the standard picture from the VCR will be playing.
 Look at Fig. 6-1. Our two control lines PBO and PB1 are connected
to the electronic switches. The line controls control the switches on and
off operation. When we output a binary "1" on the line that switch will
turn on allowing that video signal to be transmitted. It's important that
only one switch be turned on at a time or you will display a rather messy
picture.
 The entire circuit is constructed, (see Fig. 6-3) in a small circuit box
(see parts list). The circuit board that comes with the box may be a little
difficult to construct the circuit on. I purchased another board that made
the construction much easier and fit it into the box (see parts list). First
drill all the holes required for the switches and phono-jacks. Cut a slot
in the bottom of the box large enough to fit the user port connector
terminals inside. I used crazy glue to mount the card connector to the
box. Solder your wires to the card connector before you mount it.

 76 Subliminal Communication

Fig. 6-1. Subliminal circuit.

HOOKUP
 Look at the drawing (Fig. 6-2) for the hookup. The RF modulator
(Radio Shack PN# 15-1273) accepts video and audio inputs. Use stand-
ard phono cables to connect the switch to the VCR and RF modulator.
You will have to make a short cable for the computer to the switch. I tried
using an 8-pin din plug to connect to the video-out of my C-128, it didn't
fit. I had to insert two wires stripped about %z" into the appropriate socket
holes and tape them to the computer. To the other end of the wires I
soldered a standard phono plug (see parts list).

CIRCUIT OPERATION
 Before installing the circuit in the user port, make sure both switches
are in the off position. After installing, turn the computer on and configure
the port with a poke 56579, 255. This, as you should know, turns our
port into output bits. Now turn on the subliminal circuit power switch.
One reason the switch is included is to power-up the user port although

 Circuit Operation 77

Fig. 6-2. Layout of hookup.

 configured as an input device, outputs enough current through its
 pull up resistors to turn the subliminal circuit switches on.

 Poke 56577,1 turns channel one on.
 Poke 56577,2 turns channel two on.

 By using the two pokes you should be able to switch screens
 between the computer video and the VCR video. If you encounter a
 problem at this point see troubleshooting.

 Another reason the power switch is included is for you to be able
 to operate your computer without turning on the subliminal circuit.

 This is where the bypass switch also comes into effect. Rather than
 constantly

78 Subliminal Communication

Fig. 6-3. Completed circuit.

Fig. 6-4. Basic controller, C-128 and C-64.

switching cables, the bypass switch allows you to bypass the circuit and
feed directly into your RF modulator. To bypass simply turn the switch
on, for subliminal operation keep the switch in off position. (Note when
you bypass make sure your power switch is off also.)
 I have included two programs for each computer. One program is
written entirely in BASIC. This program is to show how the system works,
(see Fig. 6-4) in using it you'll see a noticeable flicker when the screens
change. That problem is eliminated in the second program (Fig. 6-5 for
the C-128 and Fig. 6-6 for the C-64) which contains a short ML program
that does the screen cut.
 The ML program switches the computer video onto the monitor for
1/60 second every three or four seconds. With the program up and run-

 Message Screens 79

 Fig. 6-5. Machine language for C-128.

 Fig. 6-6. Machine language for the C-64.

 ning, if you find yourself looking at the computer video, switch the
 VCR and computer cables. At any time you can stop the program, and by using
 the appropriate poke command get back to your computer screen. Of course
 this command will be given in the dark.

 MESSAGE SCREENS
 You have as much latitude as you want. All message screens should
 try to convey the message in a positive way. As an example suppose you
 wanted to use this technique to lose a couple of pounds. You should not

80 Subliminal Communication

use negative messages like "I'm fat", rather use a message that states
"Not hungry" or "I like to exercise".
 Whatever you have printed to the screen will be flashed via the circuit
switch. If you have a program that prints to the screen in large letters
that would be beneficial, or you can design your own using Commodore
graphics.
 For C-64 users the video out screen is the same as the RF out screen.
For the C-128 users who are using an 80 column RGB (or Monochrome
connected to the RGB) your video out is the graphics screen. I suggest
to use the Graphics 3 screen to print type.

TROUBLESHOOTING
 You would think that such a simple circuit wouldn't require any
troubleshooting, and for the most part it doesn't. But there are a few
points to keep in mind. First and foremost keep the ground wires straight.
If you inadvertently criss-cross these wires that portion of the video won't
work. If this happens on the video out, the entire circuit will not work.
The ground wire is connected to the outside of the jacks and also the
outside of the plug connector you'll be using from the computer. I advise
that you buy standard phono cables for the rest of the hookup rather than
making the cables.

BIBLIOGRAPHY
Subliminal Seduction By Wilson Bryan Key
Signet Books

Subliminal Communication
By Eldon Taylor
JAR Books
Box 7116
Salt Lake City, Utah 84107

Applications of Subliminal Video and Audio Stimuli in Therapeutic,
Educational, Industrial, and Commercial Settings.
Eighth Annual Northeast Bioengineering Conference, Massachusetts
Institute of Technology, Cambridge
(1980)

 Parts List
Quantity Item/Description Part Number Cost
 RS = Radio Shack
 2 Submini switch RS# 275-645 ea/ 1.79
 4 Phono-jacks RS# 274-246 pkg/4 l.99
 2 Phono plugs RS# 274-339 pkg/2 1.49

 Bibliography 81

Quantity Item/ Description Part Number Cost
 1 Box w/ PC board RS# 270-291 3.99
 1 4066 Quad bi-switch RS# 276-2466 1.19
 1 IC Board (optional) RS# 276-159 1.49
 1 6 foot audio/video cable RS# 15-1537 6.95
 1 RF Modulator RS# 15-1273 26.95
 1 Card Connector 568-50-24A-30 3.49

Mouser Electronics
11433 Woodside Ave.
Santee, CA 92071
(619) 449-2222

7

Appliance Controller
__

In the previous chapters the concentration has been on interfacing +5
volt TTL (Transistor-Transistor Logic) devices to the user port, with which
the computer could sense, display, speak or make some form of decision.
The limitation however was that the computer could not directly impact
on the real world environment.

REAL WORLD ENVIRONMENT
 The "real world environment" is where we live. We have equipped
the computer with sensors that can partially inform the computer of our
environment. Now it is time to equip the computer with control devices
that allow it to impact on the real world environment.
 In this chapter we will employ the user port to control high power
electrical devices. By using the TTL voltage (+5V) off one PB line of the
user port, the computer will be able to turn on or off electric power. The
circuits described control either standard 115V ac electricity from your
home or dc electricity. Naturally, by controlling the electric current to a
device we are therefore controlling the device.
 You can use these circuits to control any number of household
appliances. In addition, by utilizing the sensors from Chapter 4 we can
program the computer to impact directly based on sensor readings. This
could be something as simple as turning on a light when the computer
senses dusk or senses someone walking into the room.

 82

 Ac Loads 83

 For our example however, we will interface the toxic gas sensor from
Chapter 4, to make an automatic ventilation control system. The operation
of the system is simple. When the computer senses a toxic gas it will turn
on an electric fan and keep it on until the gas concentration returns to
a safe level.

INDUCTIVE AND RESISTIVE LOADS
 Any device we are powering or controlling is called a load. Whatev-
er the electrical device is will fall into one of two main electrical categor-
ies, inductive or resistive loads.
 It is pretty easy to distinguish an inductive load from a resistive. An
inductive device has coils or electrical wire windings in it such as motors,
transformers, relays, solenoids. A resistive device doesn't have any coils
or windings as in electric lights (not fluorescent), coffee makers, heaters.
 The distinction between loads is important because, when electric
power is turned off an inductive device, an electric pulse (transient) is
generated. This electric pulse must be absorbed by a capacitor-diode
combination in our circuit. Failure to do so may damage our circuit or
computer. Fortunately, adding the capacitor-diode is very easy to do.

Dc LOADS
 Examine Fig. 7-1. This circuit can control dc or ac loads up to 120 volts
at 2 amps. Tn this particular circuit we are not concerned whether the
main load is resistive or inductive it could be either. But notice the diode
and capacitor connected across the relay. The relay itself is an inductive
load connected directly to our computer. The diode and capacitor are
necessary to prevent any damage to the computer. You can if you wish
use a LED in place of the diode (make sure polarity of LED is correct)
and see the LED flash every time you turn the circuit off with your
computer. This flash represents the voltage pulse being absorbed. The
reason you can replace the diode with the LED is that the LED is a diode.
LED is an acronym for Light Emitting Diode.

Ac LOADS
 Figures 7-2 and 7-3 circuits are exclusively for ac loads, resistive and
inductive respectively. The six pin chip MOC 3010 Fig. 7-9 is an
optocoupled triac. This device senses when the PB line connected to it
is outputtin:g a binary "1" (+5V) with an internal LED. T'he internal LED
triggers a photosensitive internal triac that in turn triggers the external
triac, that powers our load. See Fig. 7-4 pin out.

84 Appliance Controller

Fig. 7-l. Dc 120V controller.

CIRCUIT CONSTRUCTION
 Be careful when building these circuits. The power available from your
household electric is more than enough to reduce your computer to a cin-
der or to give yourself a nasty shock.
 I advise constructing the inductive load circuits since they can be used
for both types of devices. This will alleviate any potential problems in
the future. I am however, including the schematics for resistive loads that
you can use for either comparison with the inductive circuits or if you
wish, as dedicated resistive load controllers.

Fig. 7-2. Ac resistive load 120Vac.

 Circuit Construction 85

Fig. 7-3. Ac inductive load 120Vac.

 Since I believe that most readers will be interested in controlling ac
 appliances or devices in their home, Fig. 7-3 is the circuit we will build.
 If you go on to the other circuits on your own, remember to take the same
 amount of care in building them.
 Since it is important that this unit is put together properly, I am doing
 step by step instructions for the construction of this project. I don't want
 anybody accidentally electrocuting themselves, so please be careful.
 We can't use our prototype breadboard for these projects. The
 voltages and currents are greater than what can be safely handled on the
 breadboard. Instead we will use a small plastic experimenters box available
 from Radio Shack. The box comes with a printed circuit board (PCB) that
 fits inside nicely. All the screws and hardware necessary to secure the
 PC board into the box and put the box together are also included.

 Fig. 7-4. Close up circuit.

86 Appliance Controller

 All the components must be soldered to the PC board. We will use
a 15-foot extension cord that we cut in half. The plug half of the line cord
will bring power from the outlet to the circuit. The socket half of the line
cord will lead from the box to the device you wish to power/control. See
Fig. 7-3 and Fig. 7-4.
 To begin, drill the holes in the plastic top of the experimenters box.
You will need a hole on each side to accommodate the line cord going
in and out. Four holes on the top surface for the push-button terminal
strip (see Fig. 7-5). Use the terminal strip to mark the holes before drill-
ing. You will have to ream the holes in the terminal strip to accommodate
the 6-32 machine screws. Add one small hole in front of the terminal strip
for the LED indicator light.
 After you're finished drilling the box, get the PC board. Lay out the
2 terminal barrier strips as they are in Fig. 7-4, mark and drill the holes
for the screws.
 Assemble the barrier strips to the PC board with machine screws and
hex nuts. Assemble the push-button terminal strip to the top of the box.
Glue the LED indicator light into the hole. Solder a 22-gauge red wire
from the red terminal to the LED. Check the polarity on the LED to make
sure you solder the wire to the (anode) proper LED terminal. Then sol-
der another red wire from the opposite side of the LED. Solder 22-gauge
black wire to the black terminal. Make the lead length about 6 to 7 inches
long off the LED and black terminal so that you will have sufficient wire
to make the final assembly easy.

Fig. 7-5. Top view of box.

 Test 87

 In Fig. 7-4 you can see that I used a 16-pin IC socket, for the
MOC-3010. I used that socket because I had it lying around, an 8-pin
socket would be fine. I advise you to use. an IC socket for soldering the
unit together then placing the MOC unit in after you're finished. This
will prevent you from overheating the IC with your soldering iron.
 Lay out your parts on the PC board and begin soldering them point
to point. Look at the picture diagram of the triac. The face up picture is
how the triac looks straight on. Notice the lead numbers at the bottom,
and compare them to the lead numbers on the schematic. Take extra care
that you connect these leads properly.
 Attach the line cords to the barrier strips. Notice that the wires that
are carrying the main load current to and from the triac are heavier gauge
wire than we usually use. Use 16- or 18-gauge wire for these connections.
 Solder the red wire from the LED to pin 1 of the optocoupler, the
black wire from the terminal to pin 2. Recheck all of your wiring at this
point. Make sure you don't have any accidental solder bridges. If you're
satisfied, assemble the PC board into the box and put the bottom plate
on (see Fig. 7-6). Make sure none of your wiring on the bottom is touching
the bottom plate. If it is, correct it.

TEST
 Plug the line cord into your home electric socket, the device you want
to power in the other end of the extension. Attach PBO line to the red
push-button terminal. Attach a ground wire from the computer to the
black terminal. Turn on the computer.

Fig. 7-6. Finished project.

88 Appliance Controller

 C-64 and 128 Vic-20
 Poke 56579,255 DDR set up Poke 37138,255
 Poke 56577,1 turn device on Poke 37136,1
 Poke 56577,0 turn device off Poke 37136,0

 This should allow you to turn on and off a device with the above
pokes. If it doesn't, you have a wiring error, disconnect the plug from
your home socket before opening the box to find the error.
 The triac is rated at 200 volts at 6 amps which means that it is capable
of handling 1200 watts. In order to pass that much current would require
heat sinks which we haven't put in. I advise to keep the maximum power
under 500 watts.

PROGRAM
 Now we shall incorporate the toxic gas sensor from Chapter 4. My
reason for doing this is twofold. First as an exercise in computer control
and second as an exercise in logic instructions. It is essential that we use
logic instructions in the program, so that we can read and then react
through the user port. At the same time, being able to maintain or change
the status of individual bits without disturbing the status of any other
bits. If we fail to do this we could lose the integrity of our sensor readings
and we would be constantly stopping and starting the power to the de-
vice, which in this case happens to be an electric fan.
 So for all you people who glossed over the logic instructions in
Chapter 2, it's time to go back and read it over.

Fig. 7-7. Program Vic-20.

 Smart Control 89

Fig. 7-8. Program C-64, C-128.

 Construct the toxic gas sensor as described in Chapter 4. Attach PB2
 to the red terminal on our electric control box and a ground wire to the
 black terminal. Enter the following program for the Vic-20, see Fig. 7-7
 or Fig. 7-8 for the C-128 and C-64.
 When the sensor detects gas it will automatically turn on the fan, and
 keep the fan on until the gas concentration returns to a safe level.
 For the doubting Thomas's out there, who question the validity and
 necessity of the logic instructions, enter the program as they originally
 appeared in Chapter 4. Add the two program lines for decision making
 (If / Then) and see for yourself how inadequate simple poke commands
 operate the device.

 SMART CONTROL
 In most cases I would have finished at the last paragraph. I would
 like to make one more point on basic computer control circuits. To make
 this point I wish to draw an analogy.
 Let's say that you've just returned from your local newspaper stand
 with the latest edition of your favorite magazine. You sit in your favorite
 easy chair, reach over to turn on the lamp to read by and behold, no light.
 "Darn", you say to yourself. You look down to the socket, check to make
 sure the lamp is plugged in, it is. You look over to the clock on the wall
 that's on the same fuse as the lamp. The clock is ticking away so you
 know you have juice going to the lamp. You flick the lamp switch a couple
 of times to make sure the switch isn't stuck. Now you take the lampshade
 off the lamp, and sure enough that black spot on the bulb lets you know
 that it's burn out. You replace the bulb, the lamp works fine, and you
 finally get to read the magazine you justly deserve.

90 Appliance Controller

Fig. 7-9. MOC 3010 pin out.

 Now what just happened in this incident? To you it may mean
nothing, but it is a good example of a smart control, the person knew
after he turned on the lamp that the light wasn't lit. Then went through
various steps to locate and correct the problem. But what about the
computer? Had it been the computer's job to turn on the lamp would
it have known whether the light was on, probably not. To build a smart
control we must give the computer some procedure or device (feedback)
to check to see if the action it took was successful. For the light example
we might use a photocell or a photoresistor for a feedback signal. If the
feedback gave a negative response the computer could, if we want, go
through testing and corrective procedures to find and possibly correct
the fault. Naturally we wouldn't go through the time, trouble, or expense
for a simple light. But in other circumstances such as with robotics,
security systems, nuclear reactor controls, in-flight navigation systems,
etc., you would. You would want feedback and redundancy built into
every system.
 Keep this information in mind so if you find someday that you have
a need for a smart controller somewhere, your computer can handle it.

 Parts List
Quantity Item/ Description Part Number Cost
 RS = Radio Shack
 1 Push Button Terminal Strip RS# 274-315 $.99
 2 Terminal Barrier Strips (2/pk) RS# 274-656 $1.29
 6 32 Machine Screws RS# 64-3012 $.99
 6 32 Hex Nuts RS# 64-3019 $.99
 1 1.2 k resistor (2/pk) RS# 271-024 $.19
 1 180 ohm resistor (2/pk) RS# 271-014 $.19
 1 Subminiature Red LED (2/pk) RS# 276-026B $.79
 1 Triac 6 amp 200 Volts RS# 271-1001 $1.29
 1 .22 �F Cap (2/pk) RS# 272-1070 $.89
 1 15 Foot Extension Cord RS# 61-2748 $2.39
 1 Experimenters Box w/PC Board RS# 270-284 $3.79
 1 Opto-coupler MOC.-3010 RS# 276-134 $1.00

 8

Monitor Projects
__

Here are a few short, simple monitor projects. For those of you who
own a C-128 and would like to use an inexpensive composite monochrome
monitor, and have the 80 columns inherent with the RGB, we'll construct
an adapter. The adapter uses two lines off the RGB socket, (see Fig. 8-5)
at the back of the C-128 and feeds the lines directly into your composite
monitor to give you 80 column screen. See Fig. 8-1.
 The adapter is a stand-alone project, but if you wish you can add a
simple switch that will allow you to manually switch from the RGB to
Composite (Graphics Screens) whenever you like. You have to use the
video out rather than the RF out (see Fig. 8-2). I have not found any stand-
ard plug that fits into this socket, so if you wish to use this circuit simply
insert wires into the appropriate socket holes and tape it into place.

80 COLUMN TO TV
 Here's another circuit you might want to entertain using. See Fig.
8-3. This circuit uses the RGB adapter to an RF Modulator (Radio Shack
PN# 15-1273) to a standard TV set. The resolution isn't perfect, but it is
quite usable when you sharpen it up with the following program lines.

 10 Rem Use this program for 80 Col TV
 20 POKEDEC("D600"),26 : POKEDEC("D601 "),2
 30 POKEDEC("D600"),25 : POKEDEC("D601 "),0

91

92 Monitor Projects

Fig. 8-2. Composite out wiring and switch.

 I tested this circuit with a color TV, it's possible that a B/W TV may
work better. Again you may have to adjust the TV to obtain the best
picture possible.

CIRCUIT CONSTRUCTION
 The circuit (Fig. 8-1) is practically self explanatory. Solder short leads
from the RGB pin plug to the phono socket. Use a video/audio cable from

 Screen Saver C-128 93

Fig. 8-3. RGB to TV

 Fig. 8-4. RGB to composite monitor adapter

 the phono socket to your monitor. You may have to adjust the intensity
 of your monitor, but you should find the setup quite satisfactory. You
 can cover the adapter wires with heat shrink tubing or a molded plastic
 cover, both of which are available at Radio Shack (see Fig. 8-4).

 SCREEN SAVER C-128
 This is a utility program designed to relieve potential damage to your
 video-monitor. How many times have you left your computer unattended

94 Monitor Projects

Fig. 8-5. RGB socket on C-128.

for awhile, returning to find a static image left on the screen. If you have,
then you should be aware that you are slowly etching its image
permanently on your monitor screen. Well this short memory resident
program will prevent that from happening.
 The program automatically turns off the monitor after three minutes
of unattended use. Now the program doesn't actually turn off the
monitor's power, it blanks the screen to prevent any damage. Turning
the monitor back on is as simple as pressing a key, any key. This will
snap the image back as it was before the blanking was evoked (see Fig.
8-6).
 Although the screen saver program operates off the 60 Hz interrupt
routine, it differs in one important aspect from standard interrupt routines.
Standard routines are usually reset after pressing a RUN/STOP/RESTORE
key combination, becoming inoperative until a Sys command reinvokes
it. This routine however is unaffected by the RUN/STOP/RESTORE key
combination, it goes merrily along, as if nothing happened.

Fig. 8-6. C-128 screen-saver program.

 Screen Saver C-128 95

 When the program is run, it will appear as if nothing has happened.
And nothing will happen unless the computer keys aren't pressed for
three minutes. The program is operating though, in the background,
counting the seconds between key presses. The computer's count is reset
to zero after each keypress. When the program does time out (reaches
three minutes), the screen is blanked, until a key is pressed.
 The program is set at three minutes, you can change the timing by
pokeing 4902. The program will wait approximately 4.25 seconds for each
digit above zero. So if you poke a 10 at this address (poke 4902,10) the
program will wait 42.5 seconds before blanking the screen.
 The program resides at memory location 4864 to 4993. If you're using
a program that also uses these addresses, there is going to be a conflict.
But for most of your programming you shouldn't find any problem.

9

Digital Camera

 In this chapter, we will construct a digital camera for the computer. With
 it, we can explore various leading edge topics such as machine vision,
 pattern recognition, and neural networks.
 This is a low cost digital camera, do not confuse this with a digitizer
 for video cameras. A digitizer is a completely different animal. It takes
 a signal from a video source, converts the signal to binary values, then
 displays the information on a monitor.
 Our project is a digital camera that our computer reads and displays
 on it's monitor. The cost for this project is under $65.00. The maximum
 resolution of our camera chip is 128 pixels by 64 pixels. Some features
 some grey scaling, false coloration, and user adjustable timing.
 One unique feature of this camera is that we are not using any support
 circuitry. The computer is handling all the timing, addressing, and
 refreshing. This makes our circuit quite simple. The power for the chip,
 however, is provided by two batteries and a couple of resistors. Let's begin
 by examining the main functional component of the project, namely the
 digital camera chip.

 D-CAM CHIP
 The chip that we are utilizing for our camera chip is a modified
 dynamic RAM memory chip, It is a lesser known fact that the memory
 cells of these chips are photosensitive. To use these cells for image
 processing, they must be accessed in a certain manner.

96

 D-Cam Chip 97

 Information in the form of binary bits are stored in arrays of memory
cells in the dynamic RAM. The memory cells are arranged in a matrix
array (see Fig. 9-1) or honeycomb structure. Using standard graphing
techniques, the Y-axis would represent the rows and the X columns. Each
box in the graph represents one memory cell whose location is identified
by its row and column numbers. Addressing to any cell in the chip is
accomplished by multiplexing the address lines. (See D-Cam chip pin out
address lines A0-A6, Fig. 9-2.) Multiplexing simply means that we are
using the same lines for both the row and column addresses. This is
achieved using the RAS (Row Address Strobe) pin and the CAS (Column
Address Strobe) pin as follows. The row address is placed on the address
pins and the RAS pin is asserted. Next the column address is placed on
the address pins and the CAS pin is asserted. Depending on the status
(binary "1" or "0" of) the WE (Write Enable) pin, the operation will be
either a read form or write to the cell utilizing the Data in or Data out
pin respectively.
 Each cell in the matrix is like a tiny capacitor. When a binary "0"
is written to a cell no voltage (OV) is stored on the cell. When a binary
"1" is written to a cell within the chip, that cell is charged to +5V level
and held. No capacitor is perfect however, and the capacitor within our
RAM chip is no exception. The charge on the cell will eventually leak
away. Dynamic memory circuits handle this problem by issuing what is

Fig. 9-1. Matrix array.

98 Digital Camera

Fig. 9-2. IM-16 chip pin out.

known as a refresh cycle that recharges all the binary "1" cells to an
appropriate +5V level. The amount of time allowed between refresh cycles
to retain the integrity of the data will vary with the type of chip, but it
is safe to say that it usually lies between 2 and 4 milliseconds (thousandths
of a second).
 Refreshing is a little easier than what it may first appear. A read or
write operation to any cell will refresh the entire row that the cell lies
in. Also, many chips have an RAS refresh mode that allows one to address
the row only to refresh that entire row. Refreshing, I'm afraid, is still a
hassle that must be contended with.
 Our chip contains two banks of 128 by 64 pixels. Unfortunately, these
banks are separated by a dead space area. To keep our picture continuous,
we are only using one of the two banks available to us.

PHOTOELECTRIC EFFECT
 When a memory cell of the D-RAM chip is holding a binary 1 or is
charged to +5V, light falling upon the cell will increase the rate of
discharge in proportion to light intensity and duration. With this
information, we can see that by filling the entire memory matrix with
binary 1's and exposing it to light, the areas with higher illumination will
lose their charge and areas with little or no illumination will retain their
charge. If this illumination happens to be an image projected onto the

 Low Resolution Screen 99

array by a lens you would now have a binary image stored in the chip
that the computer could read.
 This is exactly what we are doing. Our program first writes a binary
"1" to all the memory cells, waits, then reads back the information and
displays it on the monitor. Any cell thats charge fell below a certain thresh-
old would be read as a binary "0". The binary Os would denote areas
of high illumination. These cells would be displayed as white pixels on
the monitor. The binary "1"'s show areas of little or no illumination, and
would be displayed as black pixels.

MATRIX UNSCRAMBLE
 With all our program has to do, addressing, writing to then reading
from the individual cells and displaying the information, there is one xnore
task it has to accomplish for us. Our dynamic camera chip began its life
as a memory chip for computers, not as a light imaging component.
Therefore, the matrix of memory cells do not lie in order as shown in
Fig. 9-1: Our program must also unscramble the matrix and put it in or-
der, so that we can process images from it. Although that in itself isn't
too much of a problem, it does decrease the overall speed of the program.

LIMITATIONS OF THE SYSTEM
 As stated before, we are not using any support circuits for our cam-
era. This keeps our unit inexpensive and simple, but it does impose
limitations. The most important limiting factor is speed. The
microprocessor in our computer operates at approximately a million clock
cycles per second. A millionth of a second is equal to one microsecond.
Depending upon the instruction the computer is executing, it will usually
take a couple of clock cycles per instruction in machine language to
complete.
 The dynamic RAM chip operates in nanoseconds, billionths of a sec-
ond. The chip is also very critical about timing. Naturally, with our
computer operating in microseconds and doing all the work, some of the
data can become corrupted. This corruption takes the form of image
resolution degradation and unstableness. Of course, we will attempt to
keep this to a minimum.

LOW RESOLUTION SCREEN
 The low resolution screen we will start with is 40 pixels by 2(16) pixels.
The reason I gave the row quantity as 2(16) is that the program divides
each test screen byte into two vertically stacked pixels. This makes our
overall vertical resolution 32. Therefore, our effective resolution is 40 x
32, which equals 1,280 pixels per screen.
 I plan to jump into the bit map hi-resolution screen with a 128 by
64 pixel screen. You may be thinking to yourself "fine; but why are we

100 Digital Camera

bothering with the low resolution in the first place." The reason is that
experiments in edge detection, character and pattern recognition, and
neural networks will be much easier to accomplish with the low resolution
(1,280 pixel) screen.
 It should be obvious that manipulating 1,280 pixels (or 640 bytes) of
lo-resolution screen information is much easier and quicker than 8,192
bits of information on the hi-resolution screen. Additionally the lo-
resolution text screen addresses proceed in an orderly fashion, starting
at address 1024 in the upper left hand corner thru address 2023 (bottom
right). In contrast to the bit map screen where pixel to screen location
criss-crossing over the entire screen. Since the addresses on the lo-
resolution screen precede in an orderly fashion, this makes programming
subscanning programs for edge detection, pattern recognition, and neural
networks that much easier.
 Did you notice that the entire lo-resolution screen is composed of only
1,000 bytes, yet we are reading 1,280 pixels. The 1,280 pixels is our effective
resolution: remember we are splitting our text bytes into two pixels. This
means that we are using just 40 by 16 bytes of screen memory.

EXTENDED FIELD OF VIEW
 The photosensitive area of our chip is rather tiny, and with the lo-
resolution screen we are compounding the problem by using only 1/6 (40
x 32) of the pixels available to us in either one of the 128 x 64 pixel banks.
This could make our image processing difficult, because it would be hard
to fit a complete projected image onto that tiny section of the matrix. To
alleviate the problem somewhat, I decided to extend the field of view (FOV)
of the camera. I accomplished this by accessing every other pixel,
horizontally and vertically on the camera chip. So although our resolution
is still 40 by 32 pixels on the screen, we are reading the image off the
chip as if it were 80 by 64 pixels. The skipped pixels make the edges of
the object a little choppy, but as you can see from the photo it's not too
bad. I also centered the FOV on the matrix rather than leaving it to either
side. This makes aiming the camera easier.

BLACK AND WHITE CAMERA
 The black and white camera (B/W) operates at three (3) to four (4)
frames per second. This is substantially faster than the gray scale camera
and affords a real time image.
 Besides being an excellent camera in itself, it is also useful for aiming
and adjusting the camera before going into the gray scale or hi-resolution
mode. In fact, I advise not to enter the gray scale camera any other way,
especially when you are still a beginner. Because of the additional time
the gray camera requires, images will smear across the screen if the cam-
era is moved during image processing. This can make aiming the camera
somewhat frustrating. It therefore behooves you to have the camera at

 Gray Scale 101

Fig. 9-3. IM-16 chip.

least partially aimed, and adjusted beforehand. As you gain experience
using the camera, you may find that preadjusting the camera in the BI W
mode is no longer necessary before entering the gray or hi-resolution
modes.
 As stated, the program splits each text byte into two pixels. Let's take
a closer look at this and see how it operates. To divide each text byte I
implemented four programmed characters. One white, one black, one
top white/bottom black, and finally, one top black/bottom white. Depend-
ing on the scan number and feedback from the camera, the computer will
choose the appropriate byte and store/display it on the screen.

GRAY SCALE
 The gray scale camera gives us four shades of gray with one
background color. How the camera interprets the binary information from
the camera chip for the gray scale is based on the individual timing cycles
of each gray scale scan. To achieve four gray scales, we are using four
separate scans, each with its own timing cycle.
 If you remember, we stated that after a memory cell was charged to
+5 volts, light falling on the cell would increase the rate of discharge in
proportion to intensity and duration.
 If the light intensity is such that a cell is discharged below the binary
"1" threshold, let's say in the first scan/cycle, that memory cell (pixel)
is read as a binary "0" and displayed as a white pixel on our monitor.
Further, let's say that another memory cell lying next to it (2nd pixel)
discharged just above the threshold. Remember during any read or write
to a cell, all memory cells lying in the row are refreshed, so at the same
time our computer is reading the information, all the memory cells are
refreshed. This means our 2nd pixel is recharged to a full 5 volts. The
cells that fell below the binary "1" threshold are refreshed at 0 volts. So
the computer reads that 2nd pixel as a binary "1", displays a black pixel
and continues. When the 2nd scan begins for the 1st gray scale, all the

102 Digital Camera

pixels that were partially discharged like the 2nd pixel are at +5V,
therefore the timing of the program must wait a little longer than the first
scan time to read any new information.
 So what this boils down to is that the timing cycles are not additive.
On our second scan, we cannot add a little time to the first scan and expect
to read anything new. Our second scan must start from scratch (as far
as timing is concerned) and last longer than the preceding one. To
continue, let's say the computer is now running the second scan, and
has waited 50 percent longer than the first scan, now that 2nd pixel (mem-
ory cell) has fallen below the binary "1" threshold. The computer reads
that memory cell as a binary "0" and displays it as a light gray pixel.
This procedure is followed for all shades of gray. After the four shades
of gray have been scanned, the program resets and starts over.
 One point I would like to mention on the display procedure is that
once a pixel has changed, subsequent scans will not alter the pixel any
further, until reset. This must be included in the program or the screen
would constantly go black. The computer would read all previously
changed pixels and currently changed pixels as the same, and would
therefore display all of them at current gray level that would progressively
advance to black.
 I hope I didn't bore you with the above on timing, but this information
is critical when you begin adjusting the timing on the gray scale camera.
I've provided on-the-fly timing changes, as well as a menu option on the
main program. At the time I was writing the program, I was undecided
whether I should allow the user to adjust and control the timing of the
scans. I could have taken the easy way out by plugging in what I thought
was a general default value. But I realized that all lighting conditions
couldn't be met with one timing. Since flexibility breeds innovation and
experimentation, and inflexibility obsolescence, I opted to have the timing
user adjustable.

256 SHADES OF GRAY
 Although we are using only four shades of gray in our program, you
should be aware that it is possible to generate 256 shades of gray. Before
I describe the procedure to do this, let's first examine our four gray-scale
generation. We are using the extended background mode as described
in the Programmer's Reference Guide. Each gray scale scan is associated
with one of the background color registers. This is how we also provided
coloration, but we will come back to this later. In the default mode, we
begin scanning with white, then light gray, medium gray, and dark gray,
all with a black background.
 To generate a 256 gray scale you must employ a technique known
as dot dithering. How dot dithering works is similar to the procedure
we use to split our text byte into two vertical stacked pixels. They both
employ programmable characters. Each character the computer generates

 Timing 103

is generated on an 8 x 8 dot matrix. That equals 64 dots per character.
Which dots are turned on or off generate the character pattern displayed.
By turning off the standard character generator and programming our
own characters, we can generate 64 shades of gray. We do this by
progressively turning on the dots one at a time for each character, start-
ing with one dot turned on in the center and progressively adding dots
for each new character, until we end up with all the dots turned on for
character #64. (If this section on programmable characters is confusing,
see the Programmer's Reference Guide.)
 To continue to our 256 shades, we employ the extended background
mode with our 64 dot dithered, programmed characters. Now we have
four backgrounds white, light gray, medium gray, and dark gray, with
the 64 dot dithered gray scale for each background. This comes to 4 x
64 = 256 gray scale. Although it is possible to do this, it would increase
the processing time tremendously. A more realistic attempt would be a
16 or 32 gray scale.

COLORATION
 Coloration is simple, once we have the gray scale in place. A color
is assigned to each extended background register instead of the default
gray scale. This option is provided in the main program. By choosing this
option on the menu, each color you enter in the submenu for a particular
scan will be displayed. It is interesting to note that the coloration can be
implemented with the fast-scan black and white camera. The first and
last colors picked in the coloration menu will be displayed with the black
and white camera.
 This is the kind of technology used by astronomers and movie
producers. If you have ever seen an astronomical photograph that had
colors assigned to each B/ W density, for improved image resolution, this
is how they accomplished it. The photograph runs thru an image enhancer
that assigns a color to each density. The machines sensitivity is much
greater than the human eye in determining B/W density. Similar
techniques are used in coloration of old black and white movies.
 The CCD technology used in video camera, eye in the sky satellites,
text readers, image enhancers, and a host of other applications is very
closely related to our D-Cam chip and what we are doing with it.

TIMING
 Timing changes can be implemented on-the-fly during camera
operation, or from the main program. The > key will increase timing,
the > key will decrease the timing. The timing is changed by one
millisecond for each screen scan that the key is held. If you are operating
in the gray camera mode, each one of the timing cycles will be affected.
 There is a kink in on-the-fly timing changes that you should be aware
of. If you decrease the timing beyond 0 milliseconds, the timing will roll

104 Digital Camera

over to 255 milliseconds. This will show itself as a tremendous increase
in scan time. On the other hand, if you increase the timing past 255, you
will roll over to 0. At any time, if you should get stuck or lost in the timing,
pressing the "R" key will return you to the main menu. There you can
check, adjust or correct the timing by choosing the timing option for the
camera you're currently operating. The menu option has the added
advantage of reading the current scan times, which enables you to see
where you are before modifying.
 Since the program uses every microsecond available for processing,
the keyboard is only checked once per screen scan. So you will have to
hold down the key until the computer sees it, this may take one or two
screens scans. In the fast scan B/W mode, the menu will appear almost
instantaneously. Alas, in the gray cam, a couple of screen scans take
longer.

CONSTRUCTION
 The most critical aspect of constructing the camera is the lens. The
lens must be at the proper distance to be focused on the matrix of the
digital camera chip. If you use the same components I have, then all the
measurements have been taken care of. But in the future, if you would
like to use a better or different lens or case, you will have to redesign
the camera a little, and place the lens at the proper focal length.

LENSES
 The lens we are using for the camera is a surplus lens available from
Edmund Scientific Co. (see parts list). I chose this surplus lens because
it is very inexpensive for the quality (see Fig. 9-4). It is much easier to
mount than a standard lens, as you can see from the picture, and it has
its own housing, which means we don't have to build one. We can easily
mount this lens on our camera housing with little or no hassle. The lens
has an adjustable iris (f-stop) that controls the light entering the camera,
a valuable aid for various lighting conditions. This feature by itself is worth
the cost of the lens. It expands the operational latitude of the camera.

Fig. 9-4. Lens.

 Lenses 105

 The lens has a focal length of ½ inch. This means our matrix must
lie ½ inch down from the bottom of the lens. Notice I said matrix, not
the top of the chip.
 Begin construction by drilling the holes in the case for the lens and
switch. The lens hole (⅝" dia.) is centered on the face of the case. (See
Fig. 9-5.) Try for the best fit possible. With a good close fit, you can actually
screw the lens on, instead of gluing it on with epoxy. Do not install the
lens at this time, just drill all the holes. If you plan on adding a small
tri-pod as I have, drill an additional hole in the bottom of the case.
 We are using two PC boards with this project (see Fig. 9-6); one that
comes with the case, and an additional PC board that facilitates soldering
and wiring the IC socket. Later, these two PC boards will be mounted
together.
 Using ribbon cable, begin soldering the card connector to the IC socket
(see Fig. 9-8). Make sure the IC socket is centered on PC board RS#
276-159. (See Fig. 9-6 and Fig. 9-7 schematics.) Solder the wires from the
IC socket to the joystick plug. Solder in the capacitors to the IC socket.
Note that both ground wires from the power supply and the user port
must be connected to the chip for operation.
 Now begin construction of the power supply: (See Fig. 9-9 and Fig.
9-10.) Use a small piece of perf board to mount the four resistors, then
make all the connections to the mounted resistors. It will be installed in
the camera housing permanently, therefore neatness counts, especially
when you're installing in a small space.

Fig. 9-5. Case with holes.

106 Digital Camera

Fig. 9-6. 2 PC boards.

Fig. 9-7. Wired D-Cam chip.

 The power supply is bipolar, meaning it supplies both positive volt-
age and negative voltage to the camera chip. Notice that the switch we
use to turn the power on and off is a double pole. Do not substitute this
type of switch, since both grounds for each battery must be turned on
and off for proper operation. If you try to use a single pole switch and
disconnect the main ground, electricity will still flow through the circuit,
killing the battery and possibly destroying the camera chip.

Lenses 107

Fig. 9-8. Digital camera.

 108 Digital Camera

 Notes
 Decoupling capacitors should be located on PC board holding
 IC camera chip not on P.S. Board

Fig. 9-9. Power supply.

 You can check switch operation and the power supply with an
inexpensive VOM from Radio Shack. If you have been following this book
and building the projects, it's time you get one if you haven't already.
Radio Shack sells an inexpensive VOM for $7.95, catalog #28-4012.
 When you wire the power supply to the IC socket, use a minimum
of 6 inches of wire inbetween. This will make changing the batteries easier
when they wear out.

PREASSEMBLY TEST
 When you have gotten this far, you're ready to check out the cam-
era. Do this first before installation, in case you need to correct any wiring

 Final Assembly 109

 Fig. 9-10. Case with power supply.

 error. Get the second IC socket that came in the package and install the
 camera chip onto it. Then install this little subassembly onto the wired
 PC board. Yes, that s correct, we are using two IC sockets this brings
 the camera chip to the correct height in the final assembly. Insert the
 joystick socket into joystick port #2. Insert the card connector into the
 user port, then turn on the computer. Load the main program, from the
 main menu load the B/W camera. When you are returned to the main
 menu, run the camera. At this point the camera screen should appear
 on the main screen. Turn on the power to the camera. Depending upon
 the amount of light available, the screen could be either black, white, or
 some combination. If black, make some light available to the chip; the
 entire screen should go white. If it's white to begin with, cover the chip
 with your hand to block the light; the screen should go completely black.
 If the chip passes this test, you can congratulate yourself, you're almost
 finished. If it didn't turn everything off, start checking the power supply
 wires. Check batteries to make sure they are fresh. Finally, check the
 wiring from the user and joystick ports to the IC.

 FINAL ASSEMBLY
 We start with installing the power supply. Wrap some scotch tape
 or electrical tape around the perf board holding the resistors, this is to
 prevent accidentally shorting anything out. Glue or epoxy the battery
 holders on both sides of the lens hole. (See Fig. 9-10.) install the switch
 in the top hole with the perf board underneath it. Take your time with
 the installation. You only have to do this once, so don't force any
 components in. You have ample space.

110 Digital Camera

Fig. 9-11. D-Cam chip on 2 PC boards.

 Now get the PC board that came with the housing, and cut a channel
in one end of it for the wires to pass through (see Fig. 9-6): Place the IC
wired PC board on top of this board and center it, making sure that you
don't install the IC wired PC on the copper-clad side of the second PC
board (see Fig. 9-11). This could short out the unit. With the one board
centered on the other, glue or epoxy them together. You will notice on
my prototype, I used two rubber bands to secure the boards together.
You can do this, if you wish.
 Now mount the entire board assembly into the housing, using the
two screws that came with the housing for the boards (Fig. 9-12). Finally,
mount the lens. If you succeeded in making a good fit, you can screw
it in. If not, glue or epoxy it (see Fig. 9-13).

LIGHTING
 When you start using the camera, start with simple lighting conditions
and objects. In other words, start in a dimly lit room, with a light on a
simple white object, such as the cup I have used for illustration (see Figs.
9-14, 9-21, 9-22, 9-23, 9-24, and 9-25). If you arbitrarily start aiming the
camera everywhere, you won't be able to see the forest from the trees.
You need to gain some experience adjusting the timing and f-stops of
the camera.

 Final Assembly 111

112 Digital Camera

Final Assembly 113

114 Digital Camera

Fig. 9-15. Continued.

Final Assembly 115

Fig. 9-15. Continued.

116 Digital Camera

Fig. 9-16. B/W camera program C-128.

Final Assembly 117

118 Digital Camera

Fig. 9-17. Continued.

 Program Operation 119

Fig. 9-17. Continued.

 PROGRAM OPERATION
 Type in the respective program for your computer, (Figs. 9-15, 9-16,
 and 9-17 for the C-128, Figs. 9-18, 9-19, and 9-20 for the C-64). Take

 care in saving the programs under their proper names. This is essential,
 for the main program to load the camera a subprogram into memory, and

 return. You can, if you wish, change the programs' names to whatever
 you like, but remember to change the names inside each individual
 program. For now, the program names are as follows:

 C-64 C-128
 1) 64 main prog 128 main prog
 2) 64 b/w cam 128 b/w cam
 3) 64 gray cam 128 gray cam

120 Digital Camera

 It is also important to type in the entire main program. If you don't,
you may run into difficulties when loading the camera programs because
the start of variable pointer will be overwritten, causing you no end of
problems. Do not leave out any of the lines or shorten the program.
 After you have typed and saved the programs, load and run the main
program. At the menu prompt choose item 2 "load the b/w camera".
The computer will then load the b/w program, return to the main
program, and then start the camera, item 7. In the beginning, I advised
you to use a simple subject to get acquainted with the digital camera.
As a prop, use a white cup as I have for illustration Fig. 9-21. Copy the
lighting arrangement in the diagram (Fig. 9-14). With this set up, you
can vary the f-stop on the lens and/or the timing cycle of the program.
Notice the effects each one has on the image, You should see that the
f-stop has more impact, and should be used to adjust the camera to the
basic lighting conditions. The timing can then be used for fine
adjustments. After you're satisfied with the b/w camera picture, return
to the main menu by pressing the "R" key. Once there, load the gray
scale camera item 3, then start it running. Return to the main menu by
pressing the "R" key again. Now, this will take longer to happen, because
I stated before the keyboard is only checked once per screen scan. Once
you're back at the main menu, choose the gray timing option 5. Change
the timing to 50, 60, and 70. The program automatically returns to the
main menu. Restart the camera. Notice the changes the timing has on
the digital camera picture. Return to the main menu again, and choose
the coloration option 6. The submenu lists all the color codes. You are
prompted for the coloration of each scan. Choose whatever colors you
like; the program will return automatically after your choices are entered.
Restart the camera. If you find you don't like the colors, or wish to change
them, simply return to the main menu as before and change them.
 As you can see, these are just basic camera manipulations. Feel free
to experiment with the timing and lighting as you see fit. If you get stuck
anywhere, remember to return to the basic operations. A trick you might
like to try is generating negative images. You can generate negative images
by reversing the gray scale or the b/w. Remember that the first and last
colors chosen on the coloration menu can be displayed with the black
and white camera.
 This camera can be used for many types of experiments: machine
vision, pattern and character recognition, the front end of a neural
network, and the front end of a vision implantation system for the blind.

HI-RESOLUTION DIGITAL CAMERA
 We will increase the resolution to 6X. The photo illustrations
accompanying this section show what the camera can do at this point
in its development, imaging the covers of magazines, currency, and high-
contrast portraits of people (see Figs. 9-26, 9-27, and 9-28).

 Hi-Resolution Digital Camera 121

Fig. 9-18. Main program C-64.

122 Digital Camera

Fig. 9-18. Continued.

 Hi-Resolution Digital Camera 123

Fig. 9-18. Continued.

124 Digital Camera

Hi-Resolution Digital Camera 125

126 Digital Camera

Hi-Resolution Digital Camera 127

128 Digital Camera

Hi-Resolution Digital Camera 129

Fig. 9-23. D-Cam screen lo-res item, hand “OK” sign.

Fig. 9-24. D-Cam screen lo-res item, hand.

130 Digital Camera

Hi-Resolution Digital Camera 131

132 Digital Camera

 A gray scale is of course possible, and would increase the resolution
further, but hasn't been implemented in the hi-resolution programs. The
hi-resolution programs (Figs. 9-29 and 9-30 for the C-128, and Fig. 9-31
for the C-64) are stand-alone programs. They are not connected to the
lo-resolution programs. These programs are simpler to operate because
they don't have as many features as the lo-resolution programs. Type
in the respective program; the operation is similar to the lo-resolution
programs.
 I have already said that you could explore machine vision systems
and character recognition programs. From the photos, that should be
obvious. Let's push a little further now; stretch our minds and explore

Fig. 9-29. Program hi-res camera C-128.

 Artificial Vision 133

Fig. 9-30. Program hi-res C-128.

 the possibility of interfacing to the brain. We could consider that the
 ultimate interfacing challenge. Our reason to accept such a challenge?
 To provide an artificial vision system for the visually handicapped.

 ARTIFICIAL VISION
 The question of providing sight for the blind is not a question of
 possibility. Over the past few decades, experiments providing electrical
 stimulation of the vision center of the human brain, caused totally blind
 people to see glowing phosphenes. The work that remains to be done

134 Digital Camera

to complete a vision prosthesis, is a refinement in technique and
technology.
 To understand where we are, at the present time, let's first define
a phosphene, the unit of light that has been generated. A phosphene to
sighted individuals can be described as the after image left from a flash
bulb. Perhaps you can remember from a party, when a friend took your
picture, the after image left from the camera flash. That phosphene would
probably be remembered as a glob of light that took a little while to
disappear. The phosphenes generated by electrical stimulation are much
smaller, more pixel like. It is interesting to note that this electrical
stimulation is immediately recognized as visual information from blind
research patients.

Fig. 9-31. Program hi-res C-64.

 Artificial Vision 135

Fig. 9-31. Continued.

136 Digital Camera

 Fig. 9-31. Continued.

 A LITTLE HISTORY
 In 1955, J.D. Shaw was issued a patent (No. 2,721,316). This patent
 detailed a system to provide electrical stimulation to the vision centers
 to inform the blind of ambient light levels.
 In 1968, G. Brindley and W. Lewin developed the first neural
 prosthesis to stimulate the occipital lobe.
 In 1977, another prosthesis, the Dobelle, was created using a matrix
 of 64 computer controlled electrodes. The computer produced patterns
 recognizable by the blind patient. Information obtained from this
 experiment showed that there isn't a one-to-one correspondence between
 electrode placement and phosphenes generated.
 It would appear that the next step would be a matrix decoder of the
 vision center. (Something similar to the matrix decoder I needed to
 perform for the D-Cam chip.)

 Conclusion 137

 Since these pioneering experiments, more information on visual
processes have been acquired. Form, color, and spatial information are
processed by the brain along three distinct pathways. Different areas in
the visual centers of the brain appear to predominantly process the
aforementioned visual information. Since the information I have regarding
the experiments of 1977 are sketchy, it may be that the 64 electrodes were
not implanted in the most favorable area of the vision center. This leads
us to believe that considerable improvement could be obtained with this
single advancement.

D-CAM
 The type of digital camera we built could provide the front end
processing unit for continued experiments. But real hope lies if it may
also be used as the back end. If we could use the memory cells on the
silicon wafer as the electrodes, our resolution would increase dramatically.
The assumption is based on the following.
 If you remember, our memory cells are loaded with a binary "1"'s,
which are equal to +5V. This 5 volts, placed against the brain, may
provide sufficient electrical stimulation to produce phosphenes. If this
is true, then at one end we could be reading the information off of one
chip, and painting the image into the implanted chip with binary "1"'s.
Our chip isn't the state of the art, of course. Superior chips are to be had,
but they cost many dollars. With these chips, we could get an increase
in resolution equal to or exceeding broadcast television. Our chip is using
8,152 pixel elements in bank one, but compared to 64 pixels in the last
mainstream experiment of 1977 would be a major improvement.
 The currents used in the experiments however, did exceed the
capacity of the pint-sized memory cells of the chip. But the current
required may have been the result of the size electrodes used and/or
electrode placement. Since the memory cells are much smaller, it is
possible that less current may be used to stimulate the brain.
 This ends our mental exercise. Type in the program. The menu is
smaller and self explanatory. The timing is controlled by a nested loop.
The first timing number is nested into the second. Have fun, good luck.

CONCLUSION
 Many projects say "you will enjoy this for years to come" or "cutting,
leading, or whatever edge of technology". I'm saying that this is a tool.
With it you can explore leading edge topics like neural networks, and
character and pattern recognition. But it is still only a tool, it is up to you
to use it. I left an open vector for subprograms that you may want to add
for pattern recognition and so forth. Slight modifications in the program
will cause the image to stay the same when you return from the camera,
but that isn t necessary for recognition or networks. That would be
aesthetically pleasing to the user.

138 Digital Camera

 Parts List
Quantity Item/Description Part Number Cost
 RS = Radio Shack
 1 Case RS# 270-283 3.69
 2 Battery holders RS# 270-405 .49
 1 Switch DPDT RS# 275-663 2.49
 1 pkg Circuit board RS# 276-159 1.49
 2 pk
 1 pkg IC Sockets RS# 276-1998 .89
 2 pk
 2 12 volt battery RS# 23-144 .89
 1 Ribbon cable RS# 278-772 3.59
 1 Joystick connector RS# 276-1538 2.49
 3 pkg .1 µF Disc cap. RS# 272-135 .59
 2 pk
 1 IM-16 D-Cam IM-16 32.00

Images Co.
P.O. Box 313
Jamaica, N.Y.11418

 1 Lens E41,146 11.50

Edmund Scientific
101 E Gloucester Pike
Barrington, N.J. 08007

 1 Card connector As had last Digi-Key

10

 Dynamic Equations

A limitation of standard geometry is its inability to describe many of
nature's forms. Landscapes mountains, clouds, coastlines, all exceed the
functions of standard geometry. Nature does not limit itself to the stand-
ard geometric forms such as cones, circles, straight lines and triangles.
 Fractal equations graphed on computer screens can mimic natures
forms. Many popular motion pictures use special effects containing fractal
landscapes and planets. How do fractal equations generate images that
mimic nature's forms? What are the unique aspects of these equations?
 This is what we will start to explore. We will not provide the definitive
answer in this one article, but will begin to build a foundation. A
foundation that is understandable, comprehensive, and most important
can be built upon. This I feel is better than throwing numerous equations
and concepts at the reader, that approach would most likely obscure rather
than illuminate the mathematical concepts we want to explore.

DYNAMIC EQUATIONS AND NATURE
 Dynamic equations mimic nature during transitions from one state
to another. Contrary to what you may have learned in physics, events
do not proceed in an orderly, linear fashion. A case in point is turbulence
that is created when fluids flowing in a pipe reach a critical point.
 Imagine we have a perfectly smooth pipe and an even supply of wa-
ter flowing through the pipe. When the flow is smooth or laminar, small

139

140 Dynamic Equations

disturbances die out. But if we increase the pressure we reach a point
where turbulence is created. Where is this turbulence created, we still
have a smooth pipe and even supply of water, but now the flow is bro-
ken up into whorls and eddies. These disturbances dissipate energy and
create additional drag on the system. The system has become chaotic.
 You may not be impressed with the dynamics of water flowing
through a pipe, since from an engineering standpoint the question always
leads to getting rid of the turbulence. Let's digress a bit and see where
in the real world these systems apply. Turbulent airflow over a wing
destroys lift. Turbulence created by a moving submarine creates additional
drag on the sub and probably makes detection easier. Dynamic equations
can help us understand transition points in nature.

BEGINNING OF CHAOS
 Dynamic equations are self modifying equations. Meaning that the
answer obtained from the first pass through the equation is fed back into
the beginning of the equation and repeated. We start with a seed value
for X, calculate through the equation, then use the resulting X for the
next iteration. It is most convenient to graph each iteration on our
computer screen. This way we can see the results and effects of each
iteration more clearly.
 This type of equation I believe was first defined by P.F. Verhulst in
1845 for growth limitations. He asserted that a given niche can maintain
a certain optimum maximal population, (let's call this number X) further
that as the population approached X the growth rate factor (let's call this
number R) would decrease. This produces a dynamic nonlinear equation
with a variable growth rate. At high growth rate factors however the
equation produces catastrophic consequences (chaos). Let's take a look.

POPULATION GROWTH MODEL
 The Verhulst equation can be broken down into two main functional
parts. The first part (1+r)x is the growth factor. We can see that in each
iteration x is increased by itself (x times 1) and the growth rate factor (x
times r).
 To limit this growth at 1 (the optimum population size) the second
half of the equation (-rx↑2) varies with the value of x to bring the value
of x to 1. This second half of the equation works well for low values of
R (small growth rate factors). But as we shall see as R is increased, the
equation begins to oscillate, first between 2 points, then 4 points then
8,16, and quickly into chaos. When the equation enters chaos, what is
meant is that we have come to the end of predictability. It is no longer
possible to predict the results of the equation except by letting it run.
Before we continue our discussion on chaos let's first graph our population
growth model equation.

 Graphing Programs 141

 GRAPHING PROGRAMS
 The photo illustrations accompanying this article are screen images
 from a C-128. I have included a bit map plotting routine for the C-64.
 This routine plots the identical image of the Chaos 2 program as the C-128,
 for the Chaos 1 program, however, it plots dots without the connecting
 lines. Therefore the image will not appear the same. Although the images
 aren't as clear or dramatic as the C-128 you can still see how the program
 plots the equation. And as this is the method for plotting Chaos 2 they
 both appear the same.
 For the C-64 users, enter and run the C-64 plotting routine before
 entering either of the chaos programs. Do remember to save the plotting
 program before you run it as it erases itself from BASIC.
 Enter Chaos program Fig.10-1 for the C-128. Figures 10-2 and 10-3
 for the C-64. Figure 10-2 is a plotting subroutine for the C-64 that must
 be run before running the program of Fig. 10-3. When you run this
 program it will prompt you for the growth rate factor. Enter 1.9 for our
 first test. Observe the results on your screen. After the program is fin-
 ished plotting, your screen should look like Fig. 10-4. Notice as the
 program is plotting, it approaches the value 1, overshoots slightly,
 compensates, undershoots, compensates etc.. These oscillations dampen
 until it reaches an approximate value of 1. Consider the value 1 as the
 attractor at this point (growth factor) in the equation. The beginning
 oscillations are transient values the equation will go through before it
 finally settles on its attractor.

Fig. 10-1. Chaos #1 C-128.

142 Dynamic Equations

 Order Out of Chaos 143

Fig. 10-4. Graph #l.

 Run the program again and enter 2.4 at the prompt (Fig.10-5). Notice
how the oscillations do not dampen, they continue indefinitely. It is no
longer possible to reach the first attractor (optimum size of 1 for the
population). The program at this point has two attractors. The values of
X are printed on your screen and displayed graphically.
 Run the program again and enter 2.5 at the prompt (Fig.10-6). The
program oscillates at four points. Each point is an attractor. Run and en-
ter 2.98 (Fig.10-7). The program has entered chaos. The value of X jumps
all over now. It is no longer possible to predict the value of X at any
iteration except by letting the equation run to the point in question.

ORDER OUT OF CHAOS
 Enter and run program #2, Fig.10-8 for the C-128, and the programs
of Figs.10-2 and 10-9. Let's analyze the equations in program 2 and look
at the results of the program (Fig.10-10). First notice that we are using
the same equation as in program 1 and that we have this equation repeated
twice within the program. The first section of the program goes through
275 iterations to dampen the random oscillations (transients) as noted in
program 1, test 1. After the transients have settled we then go to the sec-
ond half of the program, using the same equation and plot the next 200
points. These points are the attractors. Then the program increments R
by .0035 and repeats the process.

144 Dynamic Equations

 Order Out of Chaos 145

We can see that when the program begins, it is plotting a single

attractor. Analogous to test 1. The program continues incrementing R and
plotting the attractors. This plots as a single line across the screen. When
R reaches its first critical point it branches into 2 points or attractors,
analogous to test 2. This is plotted as two separating lines. As R is

146 Dynamic Equations

Fig.10-10. Graph chaos program #2.

increased the branching spreads further apart until we reach the next
critical point when the equation begins oscillating between 4 points and
thereby branches into 4 lines, analogous to test 3. Finally we enter chaos.

SELF-SIMILARITY
 If we take an overview of the entire bifurcation (branching)
interestingly, there appears to be a pattern to the chaotic dynamics of

 Self Similarity 147

our nonlinear equation. In addition, the overall pattern is repeated in the
matrix of chaos. This paradoxical organization is our starting point of
fractals.
 Fractals, the word is synonymous with Benoit Mandelbrot, who de-
veloped the concept of fractals. I will return to the discussion of fractals
later, for now I wish to continue with the dynamic equation.
 We can magnify portions of our equation to observe the self-similarity.
By setting the value of R between two points we wish to examine, then
adjusting the step value of R to give a full-screen image. This is accom-
plished by dividing the difference of R (endpoints) by our resolution in
the X line (320). This number is the step value used to increment R. Doing
this, the entire field of view or screen image will begin at the first endpoint
and end at the second. See example below. With our magnified portion
we can see how the overall pattern repeats. See Fig. 10-11.

 End points: R= 2.8125 and R= 2.8829
 Subtraction: 2.8829 - 2.8125 = .0704
 Step: .0704/320 = .00022

 For the example given the above we would start R at 2.8125 in line
15 and change the step value to .00022 in line 100 of Chaos program 2.

 15 R=2.8125
 100 R = R + .00022

Fig.10-11. Magnified section graph program #2.

148 Dynamic Equations

THE BUTTERFLY EFFECT
 Edward Lorenz, a meteorologist, in the early 1960's created a
interesting simulation program of Earth's atmosphere. This program used
12 basic equations, containing the variables for heat, pressure, wind
direction, and other meteorlogic factors tied together in a nonlinear
dynamic fashion.
 The "toy weather" created by the computer varied and remained as
unpredictable as the real world weather. (In a restrained chaotic fashion.)
The weather printed from the computer at a rate of one day per minute.
 In the winter of 1961 Lorenz wanted to examine a section of the weath-
er printout. Rather than start the computations from the beginning, he
fed the computer the midpoint calculations for that particular section.
At first the machine tracked almost identical to the first printout, but with-
in the space of a few months the weather was completely different from
the original run. Lorenz checked his computer for a possible malfunction,
the computer checked out fine, looking back at the numbers he fed into
the machine he noticed that he used a rounded off number .506 instead
of .506127. Lorenz originally felt that the small difference, one part in a
thousand, would be equivalent to small puffs of wind in the atmosphere
that would cancel out. Obviously this was not the case.
 Small differences in the input could quickly become overwhelming
differences in output. This is as we can note with the dynamic equation
we have experimented with, small increments in R can provide catastroph-
ic results. The definition of the butterfly effect is that "A butterfly stirring
the air today in Peking can transform storm systems next month in N.Y.".
Even today weather forecasts are speculative beyond two to three days
due in fact to the "butterfly effect."

NATURE
 Self-similarity in nature appears to be the rule, examples are abundant
everywhere. Let's look at a few. Leaves on a tree are self similar. They
all have the same shape and structure and are replicated thousands of
times on each tree. Branches or branching, although not identical, follow
the same basic rules. If you examine the branching of a bare tree, then
compare it to the branched structure of the human bronchial system of
the lung, you'll find the similarity amazing. DNA contained in the nu-
cleus of cells is the same compound in all living creatures on Earth.
 Let's not forget the atomic structure of matter, the versatility of matter
and energy in our universe is composed of what appears to be a limited
dynamic set of parts.

USEFULNESS
 You may think that the dynamic equation for population growth is
useless outside of being a mathematical exercise. Afterall do we ever find

 Why Now? 149

a growth rate of 200% or 300%. The human population, no of course not,
but insect populations, yes. The equation can accurately predict these
populations.
 Also, bear in mind that although the equation is striving to reach the
optimum value of 1, the number 1 can represent any value such as one
million or one billion. Remember the variable growth rate (R) is positive
when X is less than 1 (X < 1) and negative when X is greater than one
(X > 1). The positive value (R) represents population increases, the
negative value (R) represents population decreases. One way to look at
population decreases is that when the population has exceeded its
optimum size of 1, the decrease (increased death rate) could be attributed
to the depletion of food supplies, or from diseases in an overcrowded
environment.
 I have noted a practical example of the dynamic equation usefulness
with the insight it provides in understanding weather and the butterfly
effect.
 Dynamic equations have much broader applications elsewhere. In
physics, they have been used successfully for theoretical work in lasers,
kinetics of chemical reactions, and hydrodynamics. Other fields include
economics, electrical response of cardiac cells, feedback control of
electronic circuits, and quantum mechanics.

FRACTALS
 The dynamic equation is very similar to fractal equations. They operate
the same way. The difference is that the value R in our equation is a real
number, in a fractal equation it would be a complex number. A complex
number consists of two numbers, a real and an imaginary number. I do
not want to go any further than this. Because we have just scratched the
surface of dynamic equations. Other areas of research and interest are
Fibonacci branching and self organizing equations.

WHY NOW?
 The question begs to be asked. If Verhulst worked on his equations
over one hundred years ago why is it that just recently scientists are work-
ing on dynamic equations and fractals. The answer is that before high
speed digital computers the results of the equations were obscured. No
one could plot millions of complex equations to discover the underlying
pattern to chaos. Although the roots of the mathematics are well
established it is only recently scientists have been able to correlate this
information, thanks to our computers.
 Experiment with both programs to gain further insight into their
workings. Some suggestions are, use Chaos 1 and plot a few low growth
rate factors. Use Chaos 2 and magnify different sections of the matrix and
see what you can find.

 11

 Mandelbrot Graphics
__

Mandelbrot graphics are named after an IBM research fellow Benoit
Mandelbrot, who developed the field of fractal geometry. Mr. Mandelbrot
coined the term fractal to describe this special type of geometry. Basical-
ly a fractal is a geometric object with fractional dimensions.
 Computer graphics have enhanced our understanding of math-
ematics, and added a dimension of beauty. Patterns in chaotic, non-linear
systems that were previously hidden have been brought to light with
computers.
 In Chapter 10 we investigated chaotic equations and plotted their
screen images. Those equations were of the iterative form as are the
equations we'll work with now. The main difference is that in these
Mandelbrot equations we use complex numbers instead of real numbers.

COMPLEX NUMBERS
 A complex number is made up of two parts. The two parts are called
real and imaginary. The number 9 + 3i is a complex number, with the
9 being the real part and the 3i the imaginary. The i next to the 3 shows
which part of the number is imaginary. Complex numbers can be
represented graphically by the point P whose rectangular coordinates are
(x,y). See Fig.11-1. In this form we see the X axis is the axis of reals,
and the Y axis the axis of imaginaries. See the ending paragraphs,

 150

 Plotting 151

 Fig.11-1. Complex number plot (9,31).

 Properties of Complex Numbers, Algebraic Operations and Computer
 Choke for more on complex numbers.

 PLOTTING
 As stated, the equation is of the iterative variety, and is functionally
 equivalent to the chaotic equations we worked on last chapter.

Z z↑2 + c

 Starting with a seed value for Z, we square z and add c then feed this
 value of z back into the equation, square it add c and so forth and so
 on (Zn+1). Remember z and c are both complex numbers.
 In this iterative process some complex numbers become very large,
 exceeding the capacity of any computer, these numbers we treat as if they
 reach infinity. We shall see later how the computer programs handle this.
 Many complex numbers remain small after many iterations. Depending
 upon the number of iterations it took for the number to reach infinity
 determines what we color that particular coordinate. (See Fig.11-2.) We
 have added another axis, the z axis. The z axis is equivalent to the c
 counting of iterations. It shows us how fast a particular point escapes
 to infinity. As an example, if a point (which is a complex number
 coordinate) takes 4 or less iterations to reach infinity it is colored color
 #1. If the number of iterations it takes is greater than 4 but less than 6
 the point is colored color #2.

152 Mandelbrot Graphics

Fig. 11-2. Z-axis and color relationship.

 Colors are assigned to complex numbers that reach infinity depend-
ing on the number of iterations (C=count) it took. For practical application
see the Advanced Operations section.

FIRST MANDELBROT PICTURE
 Our first Mandelbrot picture uses the standard coordinates -2.25 to
.75 for the x dimension and -1.5 to 1.5 for the y dimension. The graphic
screen resolution for the C-64 and C-128 is a maximum of 320 x 200. We
will use the multi-color mode (160 x 200) however to get some color into
our pictures. Our coordinates are divided by the resolution (-1) of our
screen. Thus:

 DX=(.75-(-2.25)) OR DX=3.00/159(y res) = .0188679245
 DY=(1.5-(-1.5)) OR DY=3.00/199(y res) = .0150753769

These numbers DX and DY become our step values. Our first run through
the equation the coordinates start at -2.25x and -l.5yi. The iterative
process is repeated until either we reach infinity or we reach the maximum
value that we assign to C to repeat the iterative equation.
 Let's assume that for this first number we reached the threshold of
infinity in 3 iterations. We take the number 3 and assign a color value
to it, plot or draw the pixel to the screen. Using the standard coordinates
for the pixel location - 2.25, -1.5i is the uppermost left of the screen.
 Now we increment the Y value by the step value, so the next
coordinate pair is -2.25x and -1.485yi. We repeat the process as de-

 Program Features 153

scribed, assign a color and draw the pixel. This pixel coordinate is one

 pixel down from the last. When we have stepped through the entire range
 of Y, we increment X by its step value and repeat for all the values of
 Y again.
 The program I've written uses a variable CT as a maximum number
 to repeat the iterative process. CT is equal to 48 in the program (line 108),
 which means if the complex number doesn't reach infinity in 48 iterations
 it is assumed to be lying within the Mandelbrot set, and the next number
 is checked.
 As you can see drawing the screen is a time consuming, and labor
 intensive process. It should come as no surprise that it takes approximately
 8 hours to draw a picture in C-128 fast mode.

 PROGRAM FEATURES
 The Mandelbrot programs contain a number of useful features. See
 Fig.11-3 for the C-64 and Fig.11-4 for the C-128. Type in and save the
 respective program for your computer.

Fig-11-3. Mandelbrot program C-128.

154 Mandelbrot Graphics

Fig.11-3. Continued.

 Program Features 155

Fig.11-3. Continued.

156 Mandelbrot Graphics

Fig. 11-4. Mandelbrot program C-64.

 Program Features 157

Fig. 11-4. Continued.

158 Mandelbrot Graphics

 Fig.11-4. Continued.

 Program Features 159

Fig. 11-4. Continued.

160 Mandelbrot Graphics

Fig.11-4. Continued.

 Item 1 of the main menu is for looking at the disk directory, with it
you can see picture files you have saved. Notice all the picture files have
a ".PIC" appended to the file. This will help to remind you of picture
file names you've forgotten.
 Item 2 first prompts you for the picture name, loads the picture and
its coordinates, then returns you to the main menu. The file name that
you assign to your pictures will have ".PIC" appended to them. Do not
include the ".PIC", when prompted for a file name, the program will
do that for you automatically.
 Item 3 put the computer into a view mode, to look at any Mandelbrot
picture you have drawn, pressing any key in view retums you to the main
menu.
 Item 4 prompts you for coordinates to create a new picture. There
are many articles and books on fractals and you may wish to try some
coordinates you found elsewhere. Two excellent books are referred to
at the end of this chapter. .·
 Item 5 puts the computer into a view mode, then by pressing the space
bar changes the colors of the Mandelbrot set. You have over 255
combinations of colors to choose from. Pressing the "Q" key returns you
to the main menu.
 Item 6, this is the most powerful feature of the program. When this
item is selected the computer goes into the view mode and creates a
movable window on the screen. You can move the window anywhere
on the screen with the following commands:

 U = for up
 D = for down
 L = for left
 R = for right

 Whatever area lies under the window can be magnified by
approximately 10 x by pressing the "E" key. By pressing the "E" key
the computer calculates the required coordinates, lists the coordinates,
and prompts you if it should draw the coordinates, change coordinates
or return to main menu. If you go ahead and draw, the section that lay
under the window will now be enlarged to a full screen image.
 It is interesting to note before I leave this item that anyone using this
function say 8 or 9 times in progression will in fact enlarge the original
screen image to the size of the United States. It's also probable that after

Program Features 161

162 Mandelbrot Graphics

that many progressions you'd be exploring an area no one has ever seen
before.
 Item 7 saves the Mandelbrot picture and its respective coordinates
to a disk file, it will prompt you for the file name.

PROGRAM OPERATIONS
 After you've typed and saved the program, start the program and
choose item four from the main menu. Enter the first coordinates in Table
11-1. Answer the prompts to allow program to draw this Mandelbrot
picture. This can take about 12 hours so I'd advise you to start the program
before you retire for the night and the program should be finished drawing
by the morning. When the program finishes drawing a picture it
automatically returns to the main menu. Choose item three to see what
you have drawn. After the drawing is complete save it to the disk using
item 7 at the menu prompt.
 To create additional drawings, from this point you can either enter
coordinates using item four, or you can load any .PIC file on the disk
and explore it using item 6. Naturally any drawings you create with item
6 can also be saved and used as another starting point for your
explorations.

ADVANCED OPERATIONS
 This program can be changed to go further and create more interesting
work. The two main limitations is the variable CT (line 108) and the
banding or transition numbers (lines 128 through 132). I have kept both
pretty low to facilitate drawing speed. More interesting pictures can be
had by increasing CT and changing the banding numbers (see Fig.11-9).
 To get an idea of what this means look at Fig.11-7 and Fig.11-8. These
are actually the same picture. All that was changed are the transition
numbers. For Fig.11-7 the default values used are 4, 6, and 48. For Fig.
11-8 the transition numbers were changed to 13, 27, and 47.

 Table 11-1. Values Reflecting Fig.11-5 Through Fig. 11-9.

Figure XL XR YT YB
11-5 -2.25 .75 -1.5 1.5
 11-6 .193396226 .636792453 .173366834 .203517588
 11-7 .299365136 .366292868 .0578394484 .0104921592
11-8 same as Fig. 11-7
 11-9* .299786065 .309888364 .0278607628 .0228643152

 *The value of CT was incremented to 450 and the values of C changed to 45,190
 and 450 see program.

Advanced Operations 163

164 Mandelbrot Graphics

Fig.11-9. Photo screen image Mandelbrot set capture on border.

 Many Mandelbrot pictures are created by using a ·GT value of 1000.
Be aware this can greatly increase your processing time (see Fig.11-9).
The banding numbers are another complete area of experimentation. As
a rule of thumb the greater the CT value the better the final resolution
of the picture. If you increase the CT value change the C values
accordingly.

CLASSIC FRACTALS
 What we have to play with are classic fractals. These geometric objects
are already 9 years old. New and more powerful fractals, the kinds that
create realistic landscapes, planets and plants are the latest toys in fractal
geometry. What I'm trying to say in a roundabout manner is that there
is still a lot more that lies ahead than what we've covered. Julia sets, IFS
graphics, self-organizing equations, the fields are wide open.

PROPERTIES OF COMPLEX NUMBERS
 There are two properties of complex numbers you need to know in
order to perform algebraic operations.

 1) When you square the symbol i it has the property of it 2 = -1.
 2) The conjugate of a complex number x + yi is the complex number
 x - yi. Therefore the conjugate of the complex numbers 9 + 3i
 and 4 - 7i are 9 - 3i and 4 + 7i.

 Algebraic Operations 165

I will not go further into any other properties or reasons for the above
properties; if you are interested you can purchase a mathematical text-
book on the subject.

ALGEBRAIC OPERATIONS
 In order for our program to work we must be able to perform
mathematical operations. These are not difficult as the following examples
will prove.

 1) Addition. To add two complex numbers first add the real parts
 then add the imaginary parts.

 Ex. 1 (9 + 3i) + (4 - 7i) = (9 + 4) + (3 - 7)i = 13 - 4i.
 Ex. 2 (7 + 2i) + (3 + 4i) = (7 + 3) + (2 + 4)i = 11 + 6i.

 2) Subtraction. To subtract two complex numbers first subtract the
 reals then subtract the imaginaries.

 Ex. 3 (9 + 3i) - (4 - 7i) = (9 - 4) + [3 -(-7)]i = 5 + 11i.
 Ex. 4 (7 + 2i) - (3 + 4i) = (7 - 3) + (2 - 4)i = 4 - 2i.

 3) Multiplication. To multiply two complex numbers, multiply as if
 they are ordinary binomials. Then replace i↑2 by -1.

 Ex. 5 (9 + 3i)(4 - 7i) = 36 – 51i – 2li↑2 = 36 – 51i - 21(-1)= 47 - 51i
 Ex. 6 (7 + 2i)(3 + 4i) = 21 + 34i + 8i↑2 = 21 + 34i + 8(-1) = 29 + 34i

 4) Division. To divide two complex numbers, first take the conjugate
 of the denominator and multiply both numerator and
 denominator.

 Ex. 7

 (9 + 3i) = (9 + 3i) (4 + 7i) = 15 + 75 i = 15 + 75 i
 (4 - 7i) (4 - 7i) (4 + 7i) 16 + 49 65 65

 Note the form of the result is neither 15 + 75i nor 1 (15 + 75i)
 65 65

COMPUTER CHOKE
 I should have titled this paragraph "How not to make". If we attempt
to plug a complex number into our program, the computer will choke
on it. We must rewrite the complex number in a manner that the computer
can work with.
 Our basic iterative function Z z ↑ 2 + c where both z and c are complex

166 Mandelbrot Graphics

numbers. We must reduce z and c to their real and imaginary parts thus
z=x+yi, and c=p+qi. Our iterative function now looks like this:

 x1 = x*x-y*y+p y1 = 2*x*y+q

 See program lines 114 to 122 for complete breakdown.

REFERENCE MATERIAL
The Beauty of Fractals
H. Peitgen & P. Richter

The Fractal Geometry of Nature
Benoit Mandelbrot
W.H. Freeman & Co. N.Y.

12

Additional 6526 Functions

The CIA registers and memory mapped I/O were briefly introduced in
Chapter 2. Glossed over in fact so as to not get boggled down in what
would then have been esoteric concepts that may have discouraged
further exploration. Well as you have gotten this far it's time to take a
giant step back and review the CIA registers in greater detail. Although
we have touched upon a great many of the CIA functions that are
implemented and controlled by the registers we have done so without
explicitly saying so. Some samples you will remember are the 60 Hz
interrupt routine and the AID serial input projects. Learning how to use
these addition registers will increase your versatility to program and
interface your computer. But first let's review what we know thus far.
 Commodore computers contain two CIA chips. Each chip contains
two 8-bit I/O ports, two 16-bit counter/timers, a time of day clock (TOD),
and an 8-bit serial port. The CIA has 16 registers that are addressed as
successive memory locations by the CPU. Below are the memory locations
and descriptions for CIA #2 registers for the C-64 and C-128.

 Memory Mapped Addresses for CIA #2

Address Reg # Register Description
 56576 0 Peripheral data register A
 56577 1 Peripheral data register B

 167

168 Additional 6526 Functions

Address Reg # Register Description
 56578 2 Data direction register A
 56579 3 Data direction register B
 56580 4 Timer A low byte
 56581 5 Timer A high byte
 56582 6 Timer B low byte
 56583 7 Timer B high byte
 56584 8 1/10 second register
 56585 9 Seconds register
 56586 10 Minutes register
 56587 11 Hours register
 56588 12 Serial Data register
 56589 13 Interrupt control register (ICR)
 56590 14 Control register A (CRA)
 56591 15 Control register B (CRB)

 ** Note CIA #1 has the same registers starting at address 56320 **

 CIA #1 is used intensively by the operating system of the computer.
 It is used for the 60 Hz interrupt routine that reads the keyboard, joystick
 port, and updates the real time clock. It is for these reasons we will
 concentrate on CIA #2.
 We have dealt with the peripheral control and data direction registers
 in Chapter 2. You should be familiar with their operations. If not go back
 and reread the chapter. We will begin with the 6526 timers.

 TIMERS
 There are two 16-bit timers in the 6526. Labeled Timer A and Timer
 B. The 16 bits of the timer allow each timer to count to 65535. Since we
 are still dealing with an 8-bit machine, reading from or writing to requires
 us to use two (8-bit) bytes, identified as a low order byte and a high or-
 der byte. To load a timer to count 20,000 pulses, clock cycles, or events
 we would obtain the high byte by:

 20,000/256 = 78.125 remove the fraction to obtain:
 20,000/256 = 78

 The number 78 is our high order byte. To calculate the low order byte,
 multiply the high byte by 256 and subtract the results from the original
 number thus:

 78 x 256 = 19968
 20,000 - 19,968 = 32

 The number 32 is our low order byte.

 Interrupt Control Register 169

The timers are controlled by their respective control registers #14 CRA
and #15 CRB.

CONTROL REGISTERS
 Each bit on the 8-bit register controls a function. We program this
register by poking a one byte control word (number) into it. The first five
bits for each register are identical, their function is as follows:

Bit Function
0 1= starts timer 0 = stops timer
1 1= timer output appears on PB6 for timer A and on PB7 for tim-
 er B
2 1= toggles (inverts) output for PB6 or PB7 each timeout ,
 0= continuous output essentially remains high with a brief
 negative pulse each timeout
3 1= One shot mode, 0=continuous
4 1= forces loads timer

 For CRA only
5 1= counts pulses on CNT line
 0= counts system clock pulses
6 1= serial port is output, 0 = serial port input
7 1= real time clock runs at 50 Hz
 0= real time clock runs at 60 Hz

 For CRB only
Bit 6 Bit 5 Function
0 0 Timer B counts system clock pulses (1 MHz)
0 1 Timer B counts positive transitions on CNT line
1 0 Timer B counts Timer A underflow pulses
1 1 Counts Timer A underflow pulses only while CNT
 is held high
7 1= Sets TOD alarm, 0= set TOD clock

INTERRUPT CONTROL REGISTER (ICR)
 The bits on the ICR signal if an event has occurred, the bits on the
ICR are called flags. The ICR monitors events from 5 different sources.
The ICR can be programmed to issue an interrupt whenever any of the
flags becomes set. Naturally the ICR can also be programmed not to issue
an interrupt. The individual bits function as follows:

170 Additional 6526 Functions

 Bit Function
0 Timer A time out (underflow)
1 Timer B time out (underflow)
2 Set when TOD clock = Alarm
3 Set when serial register is full (input) or when serial register
 is empty (output)
4 Set by negative transition on flag pin
5 8z 6 NOT USED
7 Set when any of the other ICR bits are set

**Note peeking this register erases it, therefore you only have one peek
per event. **

Setting the register for an interrupt is accomplished by writing a binary
"1" to bit 7 along with a binary "1" to whatever bit you wish to generate
the interrupt. For an example to generate an interrupt for timer B time
out you would poke the number 128 + 02 into the register.

 Poke56589,130 binary # 10000010
 To disable
 Poke 56589,2 binary # 00000010

The binary equivalents are poked into the registers, see C�apter 2 if you're
confused.
 In order to capitalize on interrupt routines that can be generated by
the ICR you really must be able to program in ML. Therefore, we will
disable the ICR for our applications. We can however, still read the ICR
to see if an event has occurred. To disable all interrupts we:

 Poke 56589,127 binary # 01111111

TIME OF DAY CLOCK (TOD)
 Let's begin by setting the time of day clock and alarm. We will set
the alarm to go off 5 seconds after we run the program. You could modify
the clock alarm to be set to whatever timebase you'd like. For expediency
I chose 5 seconds. When the alarm time is reached the computer will beep.
The timing of the computer is controlled by a quartz crystal and is very
accurate. See Fig. 12-1 for C-128 and Fig. 12-2 for C-64.
 Let's do a small line analysis: In line 5 we perform a logical "AND
127" with control register B and poke it back into the register. What this
does is effectively set bit 7 to 0. Look at the chart detailing the bit functions
of control register B. To set the time this bit must be 0. Having accom-
plished this we then go on to poke a start time into the TOD registers.
In line 30 we perform a logical "OR 128" with control register B and poke

 Time of Day Clock 171

172 Additional 6526 Functions

it back into the register. This sets bit 7 to a binary "1" so that we can
set the alarm time. Our alarm time is the same except for the TOD seconds
register that we advance by 5. At this point we can take one of two
methods to check when our alarm time has been reached. One is to peek
the ICR register and loop back to the peek statement until our alarm time
is reached. This is detailed below:

 90 x=peek(56589): rem read ICR flag
 100 If x=4 then 115: rem alarm time reached loop out
 110 gotol00: rem alarm time not reached go back and read again

Notice, although we are not generating an interrupt, bit 2 will become
set when the alarm time is reached. (See ICR bit functions above.)
The second method available to us is to use a little known BASIC
command: Wait.
 The Wait command stops program execution until a certain bit pattern
is recognized at a specified memory location. The command structure is
as follows:

 WAIT < location > , < mask >

We utilize this command: Wait 56589,4
If you remember, and you should, bit 3 has a binary weight of 4. The
computer waits until this bit becomes set then continues program
execution. See the Programmers Reference Guide for a more complete
description of the Wait command.

FREQUENCY COUNTER
 By setting the control register B (bits 5 and 6), we can have the
computer count positive transitions on the CNT line. We will utilize this
function along with the 60 Hz interrupt routine to make a frequency count-
er. See programs Fig. 12-3 for the C-128 and Fig. 12-4 for the C-64.
 The timers in the CIA count down from a preexisting number in their
registers to zero. So part of our program loads decimal 255 into the high
and low byte timer registers. In the case we are using, each transition
on the CNT line will decrement the low byte counter by one. Everytime
the low byte counter rolls past zero the high byte counter is decremented
by one and the low byte counter is reloaded with decimal 255 (hex $FF).
 The 60 Hz interrupt routine issues an interrupt every .0166666667 of
a second. We break into the interrupt routine to read the counters and
place those numbers at memory locations 251 and 252. Our basic program
reads the numbers and performs the necessary arithmetic to give the
frequency.
 We have the interrupt routine read the counters every sixth time
around, or ten times a second this is the timebase (TB). The time base

 Frequency Counter 173

174 Additional 6526 Functions

is adjustable by changing one line in the program. You would adjust the
timebase to read faster or slower frequencies. To read faster frequencies
decrease the timebase. To read slower frequencies increase the timebase.
As the program stands it is capable of reading frequencies between 10
Hz and 655340 Hz.
 I have made a small frequency generator that can be connected to
the user port (see Fig.12-5). It generates a frequency of 10,000 Hz. Because
of the rather wide tolerances of the components used the frequency is
only approximate. The circuit is a 555 timer generating square waves that
are counted on pin 6 (CNT line). You can use this circuit to test the
program. Keep in mind when you wish to use this program. Do not
connect anything but a TTL source to the CNT line. A TTL source volt-
age lies between 0 volts and +5 volts. Anything else could damage your
computer.

FREQUENCY GENERATOR
 We can also use our computer to generate square wave frequencies.
In this application we are setting the CRB to toggle the PB7 line on every
timeout of our timer (see Fig.12-6). Therefore by setting up the proper
numbers in the high and low byte registers we can generate frequencies
between 10 Hz and 500,000 Hz.

Fig.12-5. Test circuit.

 Frequency Generator 175

 Pin Function Pin Function
 1 GND A GND
 2 +5 volts B FLAG Max 100 mA.
 3 RESET C PBO
 4 CNT 1 D PB1
 5 SP1 E PB2
 6 CNT 2 F PB3
 7 SP2 H PB4
 8 PC2 J PB5
 9 Serial in K PB6
 10 9Vac L PB7
 11 9Vac M PA2
 12 GND N GND
 Fig. 12-6. Pin out user port.

Fig. 12-7. Frequency generator C-128 and C-64.

 The program does all the math required for setting the registers(see
 Fig.12-7 for C-128 and C-64). It will prompt you for the required

 frequency and go about setting the registers and starting. It is
 interesting to note that the frequency generator once started will
 continue even if you load and run another program. Provided, of course
 that the new program doesn't use the timers or user port. If you have
 access to an oscilloscope you can observe the waveform generated by the
 computer. If you don't, use the LED interface from Chapter 1. The LED to
 PB7 will light, enter

176 Additional 6526 Functions

a low frequency of 10 Hz because if you go too fast the LED will appear
as if it is on constantly. This is an excellent low-cost tool for generating
precise frequencies.
 Examine the program and see how the CRB is set to accomplish this.

Index

178 Index

 Index 179

