
The 68000 and its interface 
Alan Clements introduces the way in which a 68000 chip is interfaced 

to other system components 

The 68000 represents the new generation of mature 
microprocessors. It is mature because it is powerful 
both in terms of its facilities and its computational 
throughput, and yet it is neither difficult to program nor 
to design systems around. This paper provides a simple 
introduction to the way in which a 68000 is interfaced 
to the other components of a microcomputer system. 
As the 68000 has so many facilities, only the basic 
details of its interfacing capabilities are provided. 

microprocessors pin functions 68000 

BASIC PIN FUNCTIONS OF THE 68000 

The 68000 has 64 pins which may be grouped together 
as shown in Figure 1. There are nine logical groupings of 
pins: power supply and clock, address bus, data bus, 
asynchronous bus control, synchronous bus control, 
bus arbitration control, system control, function code, 
and interrupt control. Each of these groups will be dealt 
with in turn. 

The current trend in microprocessor systems design 
is to use an asterisk to denote that a sil~nal is active-low, 
so that what was once written as HALT is now written as 
HALT*. Furthermore, in the past a signal was often said 
to be 'forced high' or 'forced low' to effect a particular 
action. This meant that the reader had to remember 
whether the signal was active-high or active-low before 
he could figure out what was happening. Today, the 
term 'asserted' is used to indicate that a signal is put in a 
state which will cause its named action (eg HALT, 
RESET, STOP) to take place. Conversely, 'negated' 
means that the signal is placed in the opposite state in 
order to stop the named action. The reader does not 
have to know the actual physical state of an input or 
output  when he is reading about the function of 
that line. 

Each pin of the 68000 can be classified as an input, 
an output, or a dual-function input /output  pin. When 
designing interfaces to the 68000, it is necessary to 
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know the electrical characteristics of the processor's 
pins. Table I lists the pins of the 68000 and defines 
their electrical nature. A pin labelled I/O can act as an 
input or an output  - -  but not at the same time. All out- 
puts are labelled TS (tristate), TP (totempole) or OD 
(open drain) outputs. 

POWER SUPPLY AND CLOCK INPUT 

In common with most other digital logic elements 
found in microprocessor systems, the 68000 requires a 
single +SV power supply. Two Vcc (ie +SV) pins and 
two ground (ie 0 V) pins are provided. This reduces the 
voltage drop between the Vcc terminals of the chip 
and the Vcc conductors within the chip itself. 

The clock input is a single-phase TTL-compatible 
signal from which the 68000 derives all its internal t im- 
ing. As the 68000 uses dynamic storage techniques 
internally, the clock input must never be stopped or its 
minimum or maximum pulse widths violated. Current 
versions of the 68000 have maximum clock rates bet- 
ween 4 MHz and 12.5 MHz. Basic read or write 
accesses require four clock cycles. 

ADDRESS BUS 

The address bus is provided by A01 to A23 , permitt ing 
223 16-bit words to be uniquely addressed. The pro- 
cessor uses the address bus to specify the location of 
the word it is writ ing data into, or reading data from. 
Like several other processors, the 68000 treats all 
input /output  transactions exactly like read/write opera- 
tions, because it has no explicit input/output mechanism 
in either hardware or software. Because of its tristate 
outputs, the address bus can be control led by a device 
other than the CPU under certain conditions. Whenever 
the 68000 is interrupted, it uses address lines A01, A02 
and A03 tO indicate the level of the interrupt being ser- 
viced. During this so called acknowledge phase, 
address lines A04 to A23 are set to a logical one 
level. 
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DATA BUS 

The data bus is 16 bits wide and transfers data between 
the CPU and its memory and peripherals. It is bidirec- 
tional, acting as an input during a CPU read cycle and as 
an output  during a CPU write cycle. The data bus has 
tristate outputs which can be floated to permit other 
devices to access the bus. When the CPU executes an 
operation on a word, all 16 data bus lines are active. 
When it executes an operation on a byte, only D00 to 
D07 or D08 to Dis are active. During an interrupt 
acknowledge cycle, the interrupt ing device identif ies 
itself to the CPU by placing an interrupt vector number 
on Doo to Do7. 

A S Y N C H R O N O U S  BUS C O N T R O L  

One important difference between the 68000 and 
many other microprocessors is the 68000's abi l i ty to 
carry out asynchronous data transfers between itself 
and memory or peripheral components. Asynchronous 
data transfers between the CPU and memory (or 
peripherals) are control led by five signals: address 
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strobe (AS*), upper and lower data strobes (UDS*, 
LDS*), read/write (R/W), and data transfer acknow- 
ledge (DTACK*). In order to understand the nature of 
asynchronous data transfers, it is worth looking at syn- 
chronous data transfers first. 

In a synchronous data transfer, the processor pro- 
vides an address and some form of t iming signal. Figure 
2 demonstrates a simple synchronous data transfer - -  
a CPU read from memory. At point A, a read cycle 
begins with the falling edge of the clock. At B the CPU 
generates an address corresponding to the memory 
location being accessed. 
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Figure 2. Synchronous data transfer 
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Table 1. The input/output characteristics of the 68000's pins; TS = tristate output, TD= totempole output, 
OD = open-drain output 

Signal name Mnemonic Type Output  

Power supply Vcc Input - -  
Ground GND Input - -  
Clock GLK Input - -  
Address bus Ao1-A23 Output  TS 
Data bus Doo-D1 s I/O TS 
Address strobe AS* Output  TS 
Read/write R/W Output  TS 
Upper data strobe UDS* Output  TS 
Lower data strobe LDS* Output  TS 
Data transfer acknowledge DTACK* Input - -  
Enable E Output  TP 
Valid memory address VMA* Output  TS 
Valid peripheral address VPA* Input - -  
Bus request BR* Input - -  
Bus grant BG* Output  TP 
Bus grant acknowledge BGACK* Input - -  
Bus error BERR* Input - -  
Reset RESET* I/O OD 
Halt HALT* I /O OD 
Function code output  FCo, FC1, FC2 Output  TS 
Interrupt priority level IPLo*, IPLI*, IPL2* Input - -  

At C the memory yields its data for the CPU to read. 
At D the current cycle ends with the falling edge of the 
clock. The t ime between C and D is called the data 
setup t ime of the CPU and is the t ime for which the 
CPU demands that the data be valid before the end of 
the cycle. In this arrangement the clock must allow 
enough t ime for the memory to access its data. If suffi- 
cient t ime is not al lowed and the setup t ime is violated, 
the data obtained by the CPU may be invalid. 

An asynchronous data transfer is rather more com- 
plex as can be seen from Figure 3. At point A the pro- 
cessor generates a valid address. This leads to an 
address strobe being asserted at B. When the memory 
detects the address strobe, it places data on the data 
bus which becomes valid at point C. The memory then 
informs the processor that it has valid data by asserting 
a data acknowledge signal at point D. The processor 
detects that the data is now ready, reads it, and negates 
its address strobe to indicate that it has read the data 
(point E). The memory then negates its data acknow- 
ledge signal to complete the cycle. Below is a brief des- 
cription of the asynchronous data transfer control 
signals of the 68000. 

• AS*: The address strobe is active-low and indicates 
that the contents of the address bus are valid. 
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Asynchronous data transfer 

• R/W: The R/VV (read/write) signal provided by the 
68000 determines the nature of a memory access 
cycle. Whenever the CPU is reading from memory 
R/W= 1, and whenever it is writ ing to memory R/ 
W =  0. If the CPU is performing an internal opera- 
t ion R/W is always true. That is, R/W is never in a 
logical zero state unless the CPU is executing a write 
to a memory location or a peripheral. 

• UDS* and LDS*: The 68000 accesses memory via a 
16-bit wide data bus. However, special provisions 
have to be made to enable it to access a byte of data 
instead of a word. When the 68000 accesses a word, 
both UDS* and LDS* are asserted simultaneously. If 
it wishes to access a single byte, U DS* is asserted if it 
is the upper byte (D08 to Dis), or LDS* if it is the 
lower byte (D00 to D07). Table 2 defines the 
relationship between UDS*, LDS*, R/W and the data 
bus. 

• DTACK*: The active-low data transfer acknowledge 
input to the 68000 is generated by the device being 
accessed and indicates that the contents of the data 
bus are valid, and that the 68000 may proceed. 
When the processor recognises that DTACK* has 
been asserted, it completes the current access and 
begins the next cycle. If DTACK* is not asserted, the 
processor generates wait-states until DTACK* is 
asserted, or unti l an error state is declared. 

S Y N C H R O N O U S  BUS C O N T R O L  

The 68000 also has a built- in provision for synchronous 
transactions between itself and memory or peripherals. 
Strictly speaking, the synchronous bus control group of 
signals is not n e e d e d - - a l l  data transfers may take 
place asynchronously. The synchronous bus control 
group has been included entirely to simplify the inter- 
face between the 68000 and peripherals designed for 
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Table 2. The control of the data bus by UDS* and LDS* 

R/W U DS* LDS* Operation Do8 - DIs Doo - Do7 

0 Negated Negated No operation Invalid Invalid 
0 Negated Asserted Write lower byte Note 1 Data valid 
0 Asserted Negated Write upper byte Data valid Note 2 
0 Asserted Asserted Write word Data valid Data valid 
1 Negated Negated No operation Invalid Invalid 
1 Negated Asserted Read lower byte Invalid Data valid 
1 Asserted Negated Read upper byte Data valid Invalid 
1 Asserted Asserted Read word Data valid Data valid 

Notes 1 and 2: During a write to a byte the processor places a copy of the data being written onto both bytes of the data bus. Thus, if a byte is written 
to DO0 to D07, a copy of this byte is also placed on D08 to Dis. Motorola does not guarantee this feature on all future versions of the 68000. 

use with the 6800, 6809 (or 6502) 8-bit synchronous- 
bus microprocessors. That is, this group of signals 
makes the 68000 look like a 6800 to certain types of 
peripheral. Three signals are included in this group 

• VPA* (valid peripheral address) 

• VMA* (valid memory address), and E (enable) 

• VPA*: The active-low valid peripheral address input 
is used by a device to indicate to the 68000 that a 
synchronous peripheral is being accessed. When 
the processor recognises that VPA* has been asser- 
ted, it initiates a synchronous data transfer by means 
of VMA* and E. 

• VMA*: This is an active-low output from the 68000 
and indicates to the peripheral being addressed that 
there is a valid address on the address bus. The 
assertion of VMA* by the CPU is a response to the 
assertion of VPA* by an addressed peripheral. 

• E: The enable output from the 68000 is a timing 
signal required by all 6800-series peripherals, and is 
derived from the 68000's own clock input. One E 
cycle is equal to ten 68000 clock cycles. The E clock 
is non-symmetric: it is low for six clock cycles and 
high for four. There is no defined phase relationship 
between the processor's own clock and the E clock. 
The E clock runs continuously, independently of the 
state of the 68000. 

A synchronous data transfer is effected by detecting an 
access to a 6800-series peripheral and then asserting 
the processor's VPA* input. This must be done by user- 
supplied hardware. The 68000 then asserts VMA* and 
E which are used to select the peripheral. 

BUS ARBITRATION CONTROL 

When the 68000 has control of the system address and 
data buses it is said to be the bus master. Modern 
microcomputer systems include a mechanism whereby 
other microprocessors (or DMA controllers) can also 
take control of the system bus. The 68000 has three 
pins dedicated to bus arbitration control: bus request 
(BR*), bus grant (BG*), and bus grant acknowledge 
(BGACK*).'Arbitration' is the term used to describe the 
sequence of events which take place when a number 
of potential masters request the bus simultaneously 
and one of them must be selected as the next bus mas- 
ter. The logic necessaryto perform the arbitration does 
not form part of the 68000 and must be designed to 

suit the user's own application. Some 68000 users 
employ the processor's bus arbitration control signals 
to facilitate the design of dynamic memory refresh 
circuitry. 

• BR*: All devices capable of being a bus master may 
drive the active-low bus request input with open- 
drain outputs. Whenever a device wishes to take 
control of the bus, it first asserts BR*, signalling its 
intent to the 68000. 

• BG*: The 68000 asserts its active-low BG* (bus grant) 
output in response to the assertion of the BR* input. 
This indicates to the potential bus master that the 
current bus master is going to release control of the 
bus at the end of the current bus cycle. 

• I~GACK*: Bus grant acknowledge is an active-low 
input to the 68000 and indicates that some other 
device has now become the bus master. A potential 
master must not assert BGACK* until the following 
four conditions have been satisfied. 
o a bus grant has been issued by the current bus 

master 
o the address strobe, AS*, is inactive (ie negated) 

indicating that the microprocessor is not using 
the bus 

o data transfer acknowledge is inactive indicating 
that neither memory nor peripherals are using the 
bus 

o bus grant acknowledge is inactive indicating that 
no other device is still claiming bus mastery 

In any system implementing a multimaster arrange- 
ment, some logic is necessary to arbitrate between 
competing bus masters. A 68000 microcomputer 
without other devices capable of taking the role of bus 
master does not need the bus arbitration control lines. 
Under these circumstances both BR* and BG* are per- 
manently connected to a logical one level. 

SYSTEM CONTROL 

The 68000 has three active-low control inputs which 
are used to reset or halt the processor, or to indicate to 
the processor that a 'bus error' has occurred. 

Whenever power is first applied to the 68000 (or 
any other microprocessor) it must execute some 
initialization process in order to start up in an orderly 
manner. It may also be reset while it is running. 
However, this action is taken only when a system crash 
has occurred and no other mechanism can be used to 
regain control of the processor. Although many 8-bit 
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microprocessors have a front-panel reset control, I feel 
that a sophisticated microprocessor such as the 68000 
should be relatively diff icult to reset by the user. An 8- 
bit microprocessor frequently has a simple, single-user, 
single-task operating system and resetting it causes no 
great harm. A more sophisticated 16-bit processor, on 
the other hand, may have a mult iuser or multitasking 
operating system. In this case a manual reset by one 
user may cause untold harm to another user or task. 

A microprocessor is said to be halted whenever it 
temporari ly ceases to perform useful calculations. A 
microprocessor does not halt in the normal plain 
language sense of the word. It goes into an idle state 
(rather like an automobile in neutral) and relinquishes 
control of the bus. Some microcomputer systems use 
the halt state to allow other processors to control the 
system bus. 

• RESET*: The active-low reset input of the 68000 
forces it into a known state on the initial application 
of power. For correct operation during the power-up 
sequence, RESET* must be asserted together with 
the HALT* input for 100 m s - - a n  incredibly long 
t ime by most microprocessor standards. At all other 
times, RESET* and HALT* must be asserted for ten 
clock periods. When a reset input is recognised by 
the 68000, it loads the system stack pointer, A7, 
from memory location zero ($00 0000), and then 
loads the program counter from address $00 0004. 

RESET* can also act as an output  from the 68000 under 
certain circumstances. Whenever the processor executes 
the software instruction ~',I:SET, it asserts the RESET* 
pin for 124 clock cycles. This resets all external devices 
(ie peripherals) wired to the system RESET* line, but 
does not affect the internal operation of the 68000. 

• BERR*:The active-low bus error input is used by the 
microcomputer system to inform the 68000 that 
something has gone wrong with the bus cycle 
currently being executed. It may be argued that this 
feature is one of the attributes distinguishing the 
68000 from all 8-bit microprocessors and some 16- 
bit microprocessors. The provision of a BERR* input 
permits the 68000 to recover gracefully from events 
that would spell disaster to other processors. 

Sometimes an access is made to a memory location 
which is either faulty or nonexistent. The latter case 
may occur when a spurious address is generated due to 
a software error, or it may be that the actual memory in 
the system is less than the operating system 'thinks'. 

Whenever external logic detects such an anomaly, 
it asserts BERR*. The precise nature of the action taken 
by the 68000 on recognising that BERR* has been 
asserted is rather complex and is also dependent on 
the current state of the HALT* input. The 68000 will 
either try to repeat (ie rerun) the faulty cycle, or will 
generate an exception and inform the operating sys- 
tem of the bus error. 

• HALT*: Like the RESET* input, HALT* is bidirectional 
and serves two distinct functions. In normal opera- 
tion HALT* is an active-low input to the 68000. 
When asserted by an external device, HALT* causes 
the 68000 to stop processing at the end of the 
current instruction. Then all control signals are made 
inactive and all tristate outputs floated. 

The recommended use of the HALT* input is to permit 
the 68000 to execute a single instruction at a time. If 
HALT* is negated, the 68000 will recommence normal 
operation. However, if HALT* is asserted early in the 
first cycle of the instruction sequence, the processor 
will be forced into a halt state after a single instruction 
has been executed. By negating HALT* just long 
enough to permit the processor to execute a single 
instruction, the 68000 can be stepped through a pro- 
gram instruction by instruction. This can be used to 
debug a system. 

Whenever the 68000 finds itself in a situation from 
which it cannot recover (the so-called double bus 
error), it stops and asserts HALT* to indicate what 
has happened. 

FUNCTION CODE 

In principle a microprocessor simple reads instructions 
from memory, interprets them, and operates on data 
either within the processor itself or within the 
memory system. In practice the operation of the pro- 
cessor is rather more complex because it may have to 
interact with external events through the interrupt 
mechanism. Moreover, the processor accesses dif- 
ferent types of information in memory: instructions, 
data, the stack etc. There are many occasions when it 
would be helpful to know what the computer was 
up to. 

This information is called function or status informa- 
tion, and is provided by microprocessors (directly or 
indirectly) in varying amounts. For example, the Intel 
8080A mult iplexes status information on its data bus 
for a part of a cycle. The 68000 has three processor 
status outputs, FC0, FC1, and ]=C2, which indicate the 
type of cycle currently being executed. The function 
code becomes valid at the same time as the address 
strobe (AS*) indicates a valid address. As a matter of 
fact, it is not always necessary to use the function code 
provided by the 68000 to build a working microcom- 
puter. Equally, the function code can be used to 
enhance the operation of the system. Table 3 shows 
how FC0, FC1, and FC2 are interpreted. 

Of the eight states in Table 3, three are marked 
'undefined, reserved'. This is Motorola's way of tell ing 
us that these states may be reassigned in future versions 
of the 68000. Function code output  FC2 distinguishes 
between two modes of operation of the 68000: super- 
visor and user. 

Table 3. Interpreting the 68000's function code 
output 

Function code output  Processor cycle type 
FC2 FC1 FC0 

0 0 0 (Undefined, reserved) 
0 0 1 User data 
0 1 0 User program 
0 1 1 (Undefined, reserved) 
1 0 0 (Undefined, reserved) 
1 0 1 Supervisor data 
1 1 0 Supervisor program 
1 1 1 Interrupt acknowledge 
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It can be seen from Table 3 that the 68000 is always 
in one of two states: user or supervisor. The concept of 
user and supervisor states does not exist for 8-bit 
microprocessors or for some 16-bit devices. User and 
supervisor states have a meaning only in the world of 
multitasking systems, where a number of different pro- 
grams are running concurrently. The supervisor state is 
said to be the state of highest privilege, and certain 
instructions may be executed only in this state. In 
general, the supervisor state is closely associated with 
the operating system, while the less privileged user 
state is associated with user programs running under 
the operating system. 

By restricting the privileges available to user state, 
individual programs are capable of causing less havoc if 
they crash. The supervisor state is in force when the S- 
bit of the processor status word is true. All exception 
(interrupt and reset) processing is performed in the 
supervisor state, regardless of the state of the pro- 
cessor before the exception occurred. Consequently, 
the 68000 always powers up in the supervisor state. A 
change from supervisor to user state can be carried out 
under program control, but it is impossible to move 
from the user to supervisor state by any sequence of 
instructions. Only by the generation of an exception 
can a transfer from user to supervisor mode by 
made. 

Table 3 also shows how it is possible to determine 
whether the processor is accessing program or data. 
The region of memory containing data is called 'data 
space' and the region containing instructions 'program 
space'. The meaning of the word 'space' in this context 
is closer to the mathematician's use of the word (eg 
vector space) than to the everyday meaning. 

The advantage of dividing memory space into pro- 
gram and data spaces is that it becomes possible to 
prevent a program from corrupting the data space of 
another program by detecting any access to program 
space which would corrupt the program. 

The function code denoted by FC0 = FC1 = FC2 = 1 
is called interrupt acknowledge, and is used as an 
indication that the 68000 is currently acknowledging 
an interrupt. 

INTERRUPT CONTROL 

Three interrupt control inputs (IPL0* , IPLI*, IPL2*) are 
used by an external device to indicate to the 68000 
that it requires service. These interrupts are encoded 
into eight levels (0 to 7). Level zero has the lowest 
priority and indicates that no interrupt is requested. 
Level seven is the highest priority interrupt. The status 
register contains three bits, 12, I1, and 10, called the 
interrupt mask, which determine the level of interrupt 
that will be serviced. 

An interrupt request indicated by a 3-bit code on 
I PL0*, I PLI*, I PL2* will be serviced if it has a higher value 
than that currently indicated by the interrupt mask bits 
in the status register. A level-7 interrupt is handled 
rather differently because it is always serviced by 
the 68000. 

Many peripherals capable of generating an interrupt 
have only a single interrupt request output. Con- 
sequently, most 68000-based microcomputer systems 
must use a priority encoder circuit to convert up to 

seven levels of interrupt request into a 3-bit code, 
which can then be fed into IPL0* to IPL2*. 

THE TIMING DIAGRAM 

The timing diagram represents the most fundamental 
transactions between a processor and its external 
environment. Traditionally, the timing diagram has 
been used to illustrate the detailed operation of a 
microprocessor or a memory component. A timing 
diagram shows the relationship between the signals 
involved in a read/write cycle and time. Although the 
timing diagram is an educational tool, because it pre- 
sents visually the relationship between a number of 
signals, it is principally a design tool. It enables an 
engineer to match components of different charac- 
teristics so that they will work together. 

In recent years the timing diagram has been supple- 
mented by what may best be called a 'protocol 
diagram' or 'timing flowchart'. The protocol diagram is 
an abstraction of the timing diagram which seeks to 
remove all detail in order to provide only the most 
essential information to the reader. The read and write 
cycles of the 68000 will be explained in terms both of 
protocol flowcharts and timing diagrams. 

THE 68000 READ CYCLE 

This section considers the sequence of events taking 
place when the 68000 reads a word from memory 
using its address and data buses in conjunction with the 
asynchronous group of bus control signals. The 68000 
can read either a 16-bit word or an 8-bit word in a single 
read cycle. As there is very little difference between 
these operations, only a word operation is described. 

Figure 4 gives the protocol flowchart for a 68000 
read cycle. Any read cycle involves two parties: the 
reader and the read. The reader is the 68000, and is 
represented bythe bus master in Figure 4.A bus master 
is the active device that is currently controlling the sys- 
tem bus and at any instant there may be only one bus 
master. There may be several 68000s in a system, but 
only one may be the master at a time. Equally, a device 
other than a CPU may simulate a 68000 to gain control 
of the bus. The lefthand side of the diagram displays 
the actions carried out bythe master (the 68000). Each 
block is labelled by the words in its top line. The num- 
bered lines below the header describe the sequence of 
actions carried out by that block. 

The righthand side of the diagram displays the 
actions carried out by the slave during the transfer of 
information. The slave is, of course, the memory being 
accessed by the master. The protocol diagram is read 
from top to bottom so that the action 'Address the 
slave', carried out by the master, is followed by the slave 
with the action 'Input the data'. Note that actions 
within boxes may, or may not, take place simultaneously. 

What is lacking from this diagram are precise timing 
relationships, and details of critical events. For exam- 
ple, in the block labelled 'output the data', it is the action 
of asserting DTACK* which allows the master to con- 
tinue with the action 'Acquire the data'. This is not evi- 
dent from Figure 4, and therefore the diagram does not 
tell the whole story. 
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I 

Protocol flowchart for a read cycle 

The essential feature of a 68000 asynchronous read 
cycle is the interlocked handshaking procedure taking 
place between the master and the slave. A read cycle 
starts with the master indicating its intentions by set- 
ting up an address and forcing R/W true. By asserting 
AS*, UDS* and/or LDS*, the CPU is saying, 'Here's an 
address from which I wish to read the data'. The slave 
detects the valid address strobe (AS*) together with 
the data strobe(s), and starts to access the data. It 
asserts DTACK*, informing the processor that it may 
proceed. DTACK* is the handshake from the slave to 
the processor, and acknowledges that the slave has (or 
is about to have) valid data available. The micro- 
processor systems designer must provide suitable 
circuitry to generate the appropriate delay beween the 
start of a read (or write) cycle and the assertion of 
DTACK*. If DTACK* is not asserted, the master will 
theoretically wait forever. The 68000 has provision for 
dealing with the failure of a slave to complete a 
handshake by asserting DTACK*. When the master 
recognises DTACK*, it terminates the cycle by negating 
the address and data strobes. This invites the slave to 
terminate its actions by removing data from the bus 
and negating DTACK*. 

A highly simplif ied version of a 68000 read cycle is 
presented in Figure 5. Each machine cycle consists of a 
minimum of four clock cycles, and is divided into eight 
states labelled So to $7. All machine cycles start in state 
So with the clock high, and end in state $7 with the 
clock low. The machine read cycle may be extended 
indefini tely by the insertion of wait states (each of one 
full clock cycle duration) between clock states $4 and 
Ss. This allows the 68000 to be operated with any mix- 
ture of fast and slow memory or peripherals. 

Figure 5 is designed to show the relationship bet- 
ween the 68000's asynchronous bus signals, and bet- 
ween these signals and the states of the clock. During 

the first state, So, all signals are inactive with the excep- 
tion of R/W, which becomes true (ie read) for the 
remainder of the current machine cycle. In the follow- 
ing description of the 68000, all times given are for the 
8 MHz version, unless stated otherwise. 

In state S~ the address on A01 to A23 becomes valid 
and remains so until state So of the fol lowing cycle. In 
state $2 the address strobe, AS*, goes low, indicating 
that the contents of the address bus are valid. At this 
point it is tempting to ask why we need AS*, as the fall- 
ing edge of $2 can be used to indicate that the address 
is valid. The answer to this question lies in the varia- 
tions between different versions of the 68000. In the 
12.5 MHz version, it is possible that AS* wil l not go low 
until state $3. It is not the relationship between the 
clock and the 68000's signals that matters to the 
designer. It is the relationship between the signals 
themselves. 

In a read cycle, the t iming specifications of the 
upper and lower data strobes (UDS* and LDS*) are the 
same as AS*. The falling edge of UDS* and/or LDS* 
initiates the memory access and at the same time, or 
after a suitable delay, triggers a data transfer acknow- 
ledge, DTACK*. Remember that it is up to the designer 
of the microcomputer system to provide logic to control 
DTACK*. The delay between a data strobe going low 
and the falling edge of DTACK* must be sufficient to 
guarantee that there is enough t ime to access the 
memory currently being accessed. If DTACK* does not 
go low at least 20 ns before the end of state $4, wait 
states are introduced between $4 and Ss unti l  DTACK* 
is asserted. 

The assertion of the data strobe causes memory to 
be accessed, and data to appear on the data bus. In 
Figure 5 this happens in state $5, although the actual 
t ime depends on the access t ime of the memory 
being accessed. 

During the final state of the current machine cycle, 
$7, both AS* and LDS*/UDS* are negated, and the data 
latched into the deep 68000 internally. The negation 
of these strobes causes the memory to stop putt ing 
data on the data bus, and to return the bus to its high 
impedance (floating) state. DTACK* must be negated 
after the strobes have been negated. 

CLK -- 

AI-Az3 
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LDS* 
U DS* / 
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DTACK*: 

Data 
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memory. 

Figure 5. 
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A simplified version of the 68000 read cycle 
timing diagram 
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Figure 6. A more detailed version of the 68000 read 
cycle t iming diagram 

The address bus is floated in the fol lowing So state 
and the read cycle is now complete. 

The microcomputer designer needs to know the res- 
trictions placed on his design by the t iming diagram of 
a microprocessor. Figure 6 provides a more detailed 
read cycle t iming diagram of the 68000. Table 4 gives 
the value of some of the read cycle t iming parameters 
for the 68000L8. 

The 68000 clock input  is specified by three para- 
meters: 

• its period, tcy o must not be less than 125 ns (for a 
8 MHz clock) or more than 500 ns 

• the maximum l imit is determined by the way in 
which the 68000 stores data internally as a charge 
on a capacitor 

• if the 68000 is not clocked regularly, internal data is 
lost, leading to unpredictable behaviour of the 
processor 

Limits are also placed on the times for which the clock 
may be in either a high or a low state. Table 4 reveals that 
the clock input should have an approximately symmet- 
rical waveform with equal up and down times. 

The address bus is floated within tCHAZ x S (80 ns max) 
of the start of So. No more than tCLAV S (70 ns max) 
from the start of $1, the new address is placed on the 
address bus. The address strobe, AS*, is asserted no 
less than tAVSLS (30 ns rain) after the address has 
stabilized. This is a key parameter, because if the 
designer uses AS* to latch the address, he must choose 
a device with a setup t ime less than tAVSL. 

R/W is set high at the beginning of a read cycle no 
more than tCHRH x S (70 ns max) after the start of state 
So, and stays high for the remainder of the current cycle. 
In practice, this means that the designer can forget 
about R/W during a read cycle, as it is true well before 
the other parameters are valid and remains true until 
well after they have changed. 

The 68000 puts out its function code no more than 
tCHFC v S (70 ns max) after the start of state So, and no 
sooner than tFCVSL S (60 ns rain) before AS* is asserted. 
Consequently, the function code behaves like an 
address, and can be latched by AS* at the same t ime as 
an address. 

The key parameter governing DTACK* is its setup 
time, tASl (20 ns rain) before the falling edge of state 
$4. If DTACK* is asserted before its minimum setup 
time, the next state wil l be Ss. If DTACK* does not meet 
this setup time, the processor introduces wait states 
after $4, unti l DTACK* is asserted at least tAslS before 
the falling edge of the next 68000 clock input. 

The data from the memory being accessed is placed 
on the data bus and must satisfy setup and hold times 
similar to the input of any D fl ip-flop. The data must be 
valid at least tDICL S (15 ns min) before the beginning 
of state $7. 

C O N N E C T I N G  T H E  H M 6 1 1 6 P  R A M  T O  A 
6 8 0 0 0  C P U  

As an example of how the 68000 read cycle parameters 

Table 4. Basic read/write cycle timing parameters (ns) of the 68000L8; DS = UDS* or LDS* 

Parameter name Symbol Min Max 

Clock period tcy c 125 500 
Clock width (low) tCL 55 250 
Clock width (high) tCH 55 250 

Clock high to address bus high-impedance tCHAZ x 80 
Clock low to address valid tCLAV 70 
Address valid to AS* valid tAVSL 30 
Clock low to AS*, DS* high tcmsH 70 

Clock high to R/W high tCHRH x 70 

Clock high to FC valid tCHFC v 70 
FC valid to AS*, DS* low tFCVSL 60 

Asynchronous input DTACK* setup t ime tASl 20 
AS*, DS* high to DTACK* high tSHDA H 0 245 

Data in to clock low setup t ime tDICL 15 
DS* high to data invalid (data hold t ime) tSHDI 0 
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affect its operation, consider the interface between the 
68000 and a typical static RAM. Figure 7 shows how 
two HM6116P 2k × 8 RAMs can be connected to a 
68000 CPU. This circuit will work, although most micro- 
computer systems isolate memory components from 
the 68000's address and data buses by means of buffers 
or data bus drivers. The data bus of the 68000 is con- 
nected directly to the data buses of the HM6116Ps. 
RAM1 is connected to D00 to D07, and RAM2 to D08 to 
Dis. 

Address lines A01 tOAl l  from the 68000 are connec- 
ted to the address inputs of the two HM611P RAMs. 
The address inputs of the RAMs are wired in parallel, so 
that the same location is accessed in each chip simul- 
taneously. 

The R/W input__ of each RAM is connected directly to 
the 68000's R/W output  via an O R gate strobed by AS*. 
Each OE* is connected to the processor's R/W output  
via the inverter. It is only the active-low chip select, CS*, 

inputs of the two RAMs that are treated differently. 
Before dealing with CS*, a litt le has to be said about 
address decoding. 

Address lines A01 to A11 of the 68000 select one of 
2k unique locations within the RAMs. The higher-order 
address lines A12 toA23 define 212 or4k possible blocks 
of 2k (note that 4k blocks of 2k words = 8 M words). In 
order to uniquely assign the 2k words of RAM to one of 
these 4k possible blocks, address lines A12 to A23 must 
take part in a decoding process whereby only one of 
the 4k possible values spanned by these address lines 
is used to generate CS*. 

The simplest possible address decoder is formed 
from a 13-input NAN D gate, whose output  is active-low 
only when all address inputs are true. Thus, the SELECT* 
output of the NAND is asserted whenever an address 
in the 2k word (ie 4 kbyte) range $FF FOOO-$FF FFFF 
appears on the address bus. 

Table 5 shows how the two signals UDS* and LDS* 
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Table 5. Generating CSI* and CS2" from the 68000's 
data strobes 

SELECT* UDS* LDS* C 5 2 "  C S l *  Operation 

1 X X 1 1 No operation 
0 0 0 0 0 Word read 
0 0 1 0 1 Upper byte read 
0 1 0 1 0 Lower byte read 
0 1 1 1 1 No operation 

NB X = don ' t  care (may be 1 or 0) 
1 = t rue (pos i t ive logic) 
0 = false (pos i t ive logic) 

from the CPU are combined with the SELECT* signal 
from the address decoder to generate CSI* and 
CS2". 

READ CYCLE C A L C U L A T I O N S  

Having described the 68000's read cycle and a possible 
connection between the CPU and memory, the next 
step is to determine whether the CPU/RAM combina- 
tion violates any t iming restrictions. 

The principal t iming parameter of the RAM is its 
access t ime tAA, which must be sufficient to meet the 
data setup t ime of the CPU (ie tDICL). Figure 8 relates 
the essential features of the 68000's t iming diagram to 
those of the HM6116P RAM. From the falling edge of 
So to the falling edge of $6, three full clock cycles take 
place, a total t ime of 3tcyo During this time, the con- 
tents of the address bus become valid (tcLAv), the 
memory is accessed (tAA), and the data setup t ime met 
(tDICL). Thus, the total t ime for this action is given by 
tCLAV 4- tAA 4- tD iCL .  Putting the two equations together 
we get 

o r  

o r  

3tcyc > tCLAV + tAA + tDICL 

tAA < 3 t cyc  - -  tCLAV - tD ICL  

(all values ns) t ~ <  3 )< 125 -- 70 -- 15 
< 290 ns 

The RAM must have an access t ime of less than 290 ns 
to work with the 68000L8 at 8 MHz. As the quoted 
value of t ~  for the HM6116P is 200 ns, the access t ime 
criterion is satisfied by a reasonable margin. It is 
interesting to consider what the demands on tM  would 
have been, if a 12.5 MHz version of the 68000 had 
been used. The value of t ~  is now given by 

t M < 3 X 8 0 - 5 5 - 1 0  
< 170 ns 

The HM6116P RAM cannot be used at 12 .5MHz  
wi thout  the addit ion of any wait states. 

The next criterion to be considered is the value of 
the data hold t ime (tSHDI = 0 ns minimum) required by 
the CPU fol lowing the rising edge of AS*. There is no 
problem here, because it can be seen from Figure 6 
that the address does not change until the start of state 
So in the next cycle, which means that the data from the 
RAM will be valid (nominally) throughout state S7. 
Following the rising edge of AS*/UDS*/LDS* the data 
bus drivers are turned off in the RAM. 

However, the data bus driver wil l not be floated 
instantly, and the data hold t ime of 0 ns wil l be met. 

The control of CS* presents no problem. As CS* is 
derived from SELECT*, and LDS*, it is asserted very 
early in a read cycle, approximately 10 ns (tl) after the 
fall ing edge of AS*. This turns on the data bus drivers in 
the RAM early in the cycle, although the data is invalid 
until after the RAM's access t ime has been met. At the 
end of a read cycle, CS* is negated when AS* rises no 
more than tCLSH (70 ns) after the falling edge of state 
$6. The data bus is floated no more than tCLSH 4- t2 4- 
tCH z S after the start of $7. The low to high transit ion of 
the address decoder output  occurs t2 s after the nega- 
tion of AS*. For a 68000L8 and 6116P-4 combinat ion 
with t2 = 10 ns and tCHz = 60 ns, the guaranteed turn- 
off t ime measured from the end of $6 is 70 + 10 4- 60 
= 140 ns. 

As the duration of $7 is nominal ly 62.5 ns, the data 
bus may not be floated unti l  up to 77.5 ns into the 
fol lowing So. Fortunately, the next access does not 
begin until $2, and so there is no chance of bus conten- 
tion occurring. That is, the next access must not try to 
put data on the data bus unti l  all the data bus drivers 
have been turned off fol lowing the current cycle. The 
write cycle of the 68000 is very similar to its read cycle 
and wil l therefore not be dealt with here. 

A M I N I M A L  C O N F I G U R A T I O N  U S I N G  
THE 6 8 0 0 0  

People occasionally ask, how few chips it takes to build 
a microcomputer with a 68000 CPU? In some ways this 
is an unfair question, because it tries to pin down the 
68000 to a largely spurious figure of merit (ie a minimum 
chip-count design). This question takes no account of 
performance and is based on a rather dubious assump- 
tion that low chip count is related to low cost or ease of 
construction. Having given this warning, I am now 
going to look at a low chip-count 68000 microcom- 
puter. My motives are twofold. I wish to demonstrate 
which pins of the 68000 are essential to a simple 
microcomputer and which pins can be 'forgotten 
about' in a minimal design. Second, it is sometimes 
necessary to produce a really small system, either as a 
teaching aid to il lustrate the processor, or as a stand- 
alone controller. 

While it is possible to design a 68000 microcom- 
puter subject to the constraint of a minimum chip 
count, this is a rather pointless exercise, as the addit ion 
of one or two extra chips may result in a vastly 
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Figure 8. The timing diagram of a 68000 and HM6176P-4 
combination 
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increased level of performance. Instead, I intend to 
design a system subject to the following constraints. 

• The microcomputer is to be used in a standalone 
mode and requires only a power supply and an 
external terminal. 

• It is intended to be used as a classroom teachingaid 
to demonstrate the characteristics of the 68000. 

• It must have a 16 kbyte EPROM-based monitor. 
• Its speed (ie clock cycle time) is of little or no 

importance. 
• It must have at least 4 kbytes of read/write memory. 
• It must have at least one RS232C serial I/O port and 

one parallel port. 
• It must be possible to expand the memory and 

peripheral space of the microcomputer later. 
• Interrupts and multiprocessor capabilities are not 

needed, but again it should be possible to add 
them later. 

The first step in designing our minimal system is to con- 
sider the major components, the ROM, RAM and 
peripherals. The ROM is provided by two 8k × 8 com- 
ponents, the RAM as two 2k× 8 devices and the 
peripherals as a 6821 peripheral interface adaptor 

(PIA) and a 6850 asynchronous communications inter- 
face adaptor (ACIA). Figure 9 shows how they are 
arranged in the microcomputer module. 

The next step is to consider the memory and 
peripheral support circuitry. Clearly, the 16 kbytes of 
ROM and the 4 kbytes of RAM have to be selected out 
of the O~OO0's 16 Mbytes of memory space. The actual 
location of these devices within this space is largely 
unimportant, as long as the reset vectors are located at 
$00 0000. Consequently, the 16 kbytes of ROM are 
situated at $00 0000 to $00 3FFF. 

The circuit diagram of the control circuitry of the 
minimal single board computer is given in Figure I 0. 
Address decoding is carried out by three integrated cir- 
cuits: ICla, IClb, IC2a and IC3. These divide the memory 
space in the region $OO OOOO to $01 FFFF into eight 
blocks of 16 kbytes. The first three consecutive blocks 
at the upper end of the memory space are devoted to 
ROM, RAM and peripherals respectively. 

Whenever the Y0* or YI* outputs of IC3 go active- 
low, signifying the selection of ROM or RAM, the out- 
put of NAN D gate IC2b goes high. This is complemented 
by open-collector invertor ICsa to become the pro- 
cessor's DTACK* input. Note that no delay is applied to 
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DTACK*, so we must match the processor to its 
memory carefully. 

The Y2* output  of IC3 goes active-low whenever a 
peripheral is addressed. This is buffered by ICsb and 
ICsc to permit  the VPA* input of the CPU to be driven 
by an open-col lector gate. In this way other open- 
collector outputs may drive VPA* if they are added 
later. Y2* is further decoded by IC6 t to generate 
peripheral chip selects for the PIA and ACIA. 

The power-on-reset circuit forces RESET* and HALT* 
low when the system is initially switched on. A mono- 

f IC 6 is enabled by VMA ° and LDS*. This means that a peripheral is 
synchronised to a 68000 synchronous cycle operation (triggered 
VPA* being asserted), and that the CPU must address a lower byte 
to select a peripheral. 

lithic DIL clock generator chip supplies the processor 
with its clock signal. 

In this application the interrupt request inputs, I PL0* 
to IPL2*, are pulled up by resistors to their inactive 
state. The function code outputs, FC0 to FC2, are not 
required and are left unconnected. Finally, both the 
bus request (BR*) and bus grant acknowledge (BGACK*) 
inputs are pulled up into their inactive-high states by 
resistors. The bus error input (BERR*) is not used and is 
also pulled up by a resistor. The 6850 AClA requires its 
own clock which is supplied by baud-rate generator 
IC14. Its serial inputs are buffered by a line transmitter, 
lC16 , and its outputs by a line transmitter, ICls. 

In all, this minimal 68000 system contains 18 
integrated circuits. It would work as it stands and can 
be expanded to become a more sophisticated system. 
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A CRITIQUE OF THE M I N I M A L  COMPUTER 

The minimal computer of Figures 9 and 10 is practical, 
but only just. It lacks various features whose inclusion 
costs l itt le in terms of the chip count, but which con- 
siderably enhance the system. Some of the areas in 
which the minimal computer can be improved are 
as follows. 

Control of DTACK* 

As it stands, the circuit of Figure 10 provides a poor 
implementat ion of the DTACK* input to the 68000. 
Two problems have not been considered. The first con- 
cerns the operational speed of the processor. If the 
CPU is to run at its maximum rate and moderately fast 
RAM is used, it is necessary to delay DTAC K* only when 
the slower EPROM-based read-only memory is accessed. 
Figure 11 shows how individual DTACK* delays can be 
generated, one for RAM accesses (if necessary) and 
one for EPROM accesses. The second problem con- 
cerns the possibil i ty of accesses to unimplemented 
memory. If a read or write access is made to memory 
not decoded in Figure 10, the DTACK* input is not 
asserted and the processor wil l hang up indefinitely. In 
Figure 11 a watchdog circuit is used to overcome this 
difficulty. When AS* is asserted, a t imer is triggered. 
The t imer is reset by the rising edge of AS*. If DTACK* 

is not asserted, the t imer is ' t imed-out '  and the BERR* 
input to the 68000 is asserted to indicate a bus error. 
This allows the processor to proceed. 

Control of interrupts 

While it is not necessary to operate the 68000 or any 
other processor in an interrupt-driven mode, it is 
worthwhi le providing some form of interrupt facility in 
a general-purpose digital computer. Figure 11 shows 
how seven levels of interrupt request input can be pro- 
vided by a 74LS148 priority encoder. 

External bus interface 

If a microprocessor system is to be expanded, it must 
be able to communicate with external systems via a 
bus. In a large system with many memory components 
or peripherals, it is impossible to connect the 68000's 
pins directly to a system bus because the CPU cannot 
supply the current necessary to drive the distr ibuted 
capacitance of the bus and all the inputs connected to 
it. Therefore, special-purpose circuits called bus drivers 
or buffers are interposed between the processor and 
the system bus. In addit ion to the bus drivers them- 
selves, it is necessary to provide control circuitry to 
avoid data bus contention, which could occur when 
the CPU reads from memory local to the processor 
module. 
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