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Preface 

In  the  preceding  decade  we  have  witnessed  an  explosive  growth 
in  microprocessor  technology.  The  earliest  microprocessors  were 

calculator-like  4-bit  devices,  which  had  limited  processing  capa- 
bility, but  made  cost-effective  controllers  for  industrial  and  com- 

mercial equipment.  With  improvements  in  design  and  fabrication 

techniques,  the  4-bit  microprocessors  were  followed  by  8-bit  de- 
vices, which  offered  increased  processing  power  at  prices  that  made 

them  viable  alternatives  for  applications  at  the  low  end  of  the  tra- 
ditional minicomputer  market. 

By  the  late  1970s,  4-bit  microprocessors  were  in  wide  use  in  a 
variety  of  applications,  including  microwave  ovens,  hand-held  games, 
calculators,  scanner  radios,  and  industrial  scales.  More  sophisticated 

applications  were  left  to  8-bit  microprocessors.  Indeed,  these  devices 

proved  to  be  the  foundation  of  today's  booming  personal  computer 
market  in  which  inexpensive  table-top  microcomputers  are  being 
used  in  the  home  to  provide  leisure  time  activities,  balance  the 
checkbook,  and  regulate  energy  usage.  Microcomputers  are  also 

being  used  by  small  businesses  for  inventory  control  and  account- 
ing, and  in  a  wide  range  of  educational,  medical,  scientific,  and 

other  functions. 

Despite  the  versatility  of  the  4-  and  8-bit  microprocessors,  there 
are  certain  types  of  operations  that  these  devices  cannot  do  well, 

or  cannot  do  at  all.  For  instance,  even  the  fastest  8-bit  microproces- 

sors are  an  order  of  magnitude  slower  than  minicomputers  in  per- 

forming "number-crunching"  operations  on  large  numbers.  This  be- 
comes crucial  in  time-critical  applications,  where  a  result  may  be 

required  in  several  microseconds,  rather  than  milliseconds.  Speed  is 
also  a  factor  in  many  multiprocessing  and  multitasking  operations, 



where  control  must  be  transferred  from  one  processor  or  task  to 
another  in  a  very  short  amount  of  time.  Further,  the  hmited  ad- 

dressing range  of  8-bit  microprocessors  ( typically  64K  bytes )  makes 
them  awkward  for  manipulating  large  data  bases.  If  attempted  at 

all  with  an  8-bit  microprocessor,  such  applications  are  likely  to  re- 
quire a  lot  of  expensive  hardware  or  (even  more  likely,  and  even 

more  expensive)  software.  For  these  high-speed,  sophisticated,  and 
complex  applications,  the  solution  often  lies  in  using  a  16-bit  micro- 

processor, such  as  the  68000. 

Although  it  was  not  the  first  16-bit  microprocessor  on  the  market, 
the  68000  is  significant  for  several  reasons.  Designed  by  Motorola, 

Inc.,  the  68000  is  the  first  16-bit  microprocessor  to  have  a  32-bit 
internal  architecture,  and  the  first  to  provide  16M-byte,  nonseg- 
mented  direct  memory  addressing.  This  means  that  a  user  can 

access  the  entire  16M-byte  memory  map  without  segmentation  or 

special  address  registers.  Besides  these  "firsts,"  the  Motorola  de- 
signers have  given  the  68000  an  impressive  array  of  software  and 

hardware  features.  In  fact,  as  you  shall  see  in  this  book,  the  68000 

is  not  "just  another  processor,"  but  rather  a  minicomputer  on  a  chip. 
This  book  has  nine  chapters.  Chapter  1  gives  an  overview  of  the 

68000  microprocessor,  including  descriptions  of  the  various  registers 

contained  within  the  integrated  circuit.  Also  included  is  some  back- 
ground material  on  the  design  of  the  68000,  to  give  you  an  apprecia- 

tion of  why  Motorola  implemented  this  microprocessor  as  they  did. 
Chapter  2  describes  the  Motorola  68000  Cross  Macro  Assembler, 

an  assembler  that  many  readers  will  use  to  develop  assembly-lan- 
guage programs  for  the  68000. 

Chapter  3  presents  descriptions  of  the  addressing  modes  and  in- 
struction set  for  the  68000.  In  this  book,  instructions  are  described 

in  functional  groups  (add  with  subtract,  multiply  with  divide,  and 

so  on),  rather  than  alphabetically,  to  help  you  understand  the  in- 

structions and  how  they  "fit  together."  Chapter  3  contains  a  few 
short  example  programs,  too,  but  more  complex  programming  exam- 

ples are  saved  for  Chapters  4  and  5,  where  routines  for  math,  list, 

and  look-up  table  operations  are  given. 
Chapter  6  presents  descriptions  of  each  of  the  pins  on  the  68000 

integrated  circuit  (again,  in  functional  groups),  to  give  you  some 
background  in  the  hardware  characteristics  of  this  processor  and  to 

define  signals  which  are  mentioned  in  subsequent  chapters.  Chap- 
ter 7  describes  the  processing  states,  privilege  states,  and  extensive 

"exception"  structure  of  the  68000.  Then,  Chapter  8  presents  a  brief 
summary  of  the  support  circuits  that  can  be  interfaced  to  the  68000, 
as  well  as  the  fundamentals  of  programming  I/O  operations  with 
attached  peripheral  devices.  The  final  chapter.  Chapter  9,  surveys 

the  system  hardware  and  software  support  products  that  are  cur- 



rently  available  for  the  68000.  This  chapter  is  followed  by  four  ap- 
pendixes, which  provide  reference  information. 

The  arrangement  of  this  book,  starting  with  very  fundamental 
material  and  gradually  introducing  more  complex  topics,  is  intended 
to  increase  your  understanding  of  the  68000  microprocessor  in  an 
orderly  manner.  You  are  expected  to  have  just  a  basic  understanding 
of  the  rudiments  of  computer  architecture  ( binary  and  hexadecimal 
numbering  systems,  Boolean  logic,  etc.)  and  familiarity  with  some 
type  of  assembly  language. 

The  author  is  indebted  to  many  dedicated  people  at  Motorola, 
Inc.,  and  Rockwell  International  Corporation  for  valuable  assistance 
during  the  preparation  of  this  book. 

Leo  J.  ScANLON 
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CHAPTER  1 

An  Introduction  to 

The  68000  Microprocessor 

This  chapter  presents  an  introduction  to  the  features  of  the  68000 
microprocessor.  Before  looking  at  any  of  these  features  in  detail,  let 
us  take  a  brief  survey  of  them  in  general. 

OVERVIEW  OF  THE  68000 

The  68000  has  17  general-purpose  registers,  each  32  bits  long, 
plus  a  32-bit  program  counter  and  a  16-bit  status  register.  Eight  of 
the  general-purpose  registers  are  used  as  data  registers  for  byte  (8- 
bit),  word  (16-bit),  and  long-word  (32-bit)  operations.  The  other 
nine  general-purpose  registers  are  address  registers,  which  can  func- 

tion as  stagk  pointers  and  base  address  registers.  All  17  general- 
purpose  registers  can  serve  as  index  registers. 

Although  the  program  counter  is  32  bits  long,  only  the  low-order 
24  bits  are  used  in  the  chips  currently  being  produced.  These  24  bits 
provide  the  68000  with  an  addressing  range  of  16M  bytes  (that  is, 

16,777,216  bytes )-the  same  range  as  an  IBM  System/370!  This  ad- 
dressing range,  when  coupled  with  an  auxiliary  memory  manage- 

ment unit,  permits  large,  modular  programs  to  be  developed  and 

executed  without  being  bogged  down  with  cumbersome  ( and  time- 
consuming)  software  bookkeeping  and  paging. 

Software  Features 

The  software  capabilities  of  the  68000  are  impressive  by  any  stan- 
dard, and  reflect  the  fact  that  this  microprocessor  has  been  designed 

13 



by  programmers,  for  programmers.  As  you  will  discover  in  Chap- 
ter 3,  many  of  the  instructions,  when  combined  with  the  versatile 

addressing  modes  of  the  68000,  more  closely  resemble  high-level 
language  statements  than  the  assembly-language  instructions  of  tra- 

ditional 4-bit  and  8-bit  microprocessors. 
The  68000  can  operate  on  five  different  types  of  data— bits,  4-bit 

binary-coded-decimal  (BCD)  digits,  8-bit  bytes,  16-bit  words,  and 
32-bit  long  words.  Byte  data  may  be  addressed  on  even-  or  odd- 
address  boundaries,  whereas  word  and  long-word  data  must  only 
be  addressed  on  even-address  boundaries. 

The  instruction  set  contains  a  modest  56  basic  instruction  types, 

but  14  different  addressing  modes  are  available  for  accessing  oper- 
ands. The  combination  of  the  56  instruction  types,  14  addressing 

modes,  and  5  data  types  means  that  there  are  more  than  1000  in- 

structions that  the  68000  can  execute.  And,  if  that's  not  enough,  two 
of  the  16  possible  op-codes  are  currently  unused,  which  makes  them 
available  for  users  who  wish  to  add  instructions  of  their  own,  such 

as  floating-point  math  and  string  instructions. 
The  68000  is  offered  in  4-,  6-,  8-,  and  10-MIiz  versions,  which  have 

clock  periods  of  250,  167,  125,  and  100  ns,  respectively.  The  fastest 

instruction— for  example,  an  instruction  that  copies  the  contents  of 
one  register  into  another— executes  in  four  clock  cycles,  or  500  ns 
at  8  MHz.  The  slowest  instruction— a  32-bit  by  16-bit  signed  divide 
—can  take  up  to  170  clock  cycles,  or  21.25  fxs  at  8  MHz,  to  execute. 

Privilege  States 

To  support  multiuser  and  multitasking  applications,  the  68000  op- 
erates in  two  different  states— a  user  state  for  normal  functions  and 

a  supervisor  state  for  system  control.  All  instructions  can  be  exe- 

cuted in  the  supervisor  state,  but  a  few  "privileged"  instructions 
(such  as  RESET  and  STOP)  are  unavailable  in  the  user  state.  This 
feature  provides  a  certain  measure  of  system  security  by  preventing 

one  user  or  task  from  trespassing  upon  another's  space  or,  worse  yet, 
botching  up  the  entire  system  through  some  inadvertent  blunder. 

Built-in  Debugging  Aids 

Realizing  that  software  generally  takes  more  time  to  debug  than 
to  write,  the  designers  of  the  68000  built  in  a  variety  of  debugging 

and  error  features.  For  example,  illegal  instructions,  privilege  viola- 
tions, illegal  addressing,  traps  (operating  as  system  calls),  divide 

by  zero,  and  illegal  memory  accesses  all  cause  the  microprocessor 
to  trap  and  switch  to  the  supervisor  state. 

The  68000  also  provides  a  trace  mode  for  software  debugging. 

In  the  trace  mode,  the  68000  "single-steps"  through  a  program  by 
trapping  to  a  service  routine  after  each  instruction  is  executed. 

14 



Memory  Allocation 

Very  few  memory  locations  are  dedicated  to  a  specific  task  by  the 
6(S()0().  The  lowest  eight  bytes  of  memory  hold  the  reset  vector  and, 

therefore,  must  reside  in  read-only  memory  (ROM).  Additional  lo- 
cations in  the  low  1024  bytes  are  allocated  to  interrupt  vectors,  error 

vectors,  and  vectors  for  various  other  types  of  "exceptions,"  but  these 
locations  can  reside  either  in  ROM  or  in  read /write  memory.  The  re- 

mainder of  the  16M-byte  memory  map  of  the  68000  can  be  used  any 
way  the  user  wants. 

Certainly,  some  memory  addresses  will  need  to  be  assigned  to  I/O 
devices  in  the  system,  because  with  the  68000  ( as  with  all  Motorola 
microprocessors )  input/ output  is  memory  mapped.  That  is,  the  68000 

has  no  separate  I/O  instructions,  but  "sees"  peripheral  devices  as 
memory  locations  in  its  16M-byte  memory  map.  In  programming 
I/O  operations,  the  instructions  used  to  transfer  data  to  and  from 
peripheral  devices  are  the  same  instructions  that  are  used  to  move 
data  in  and  out  of  memory. 

Interrupt  Structure 

The  interrupt  structure  of  the  68000  is  like  that  of  most  minicom- 
puters. It  provides  seven  levels  of  vectored  interrupts,  with  a  mask 

in  the  status  register  to  lock  out  interrupts  at  or  below  the  current 
priority  level.  When  the  68000  receives  an  enabled  interrupt  request, 
it  issues  an  acknowledge  signal  to  all  devices  in  the  system.  Upon 

receiving  this  acknowledge,  the  interrupting  device  must  put  a  vec- 
tor number  on  the  data  bus.  This  vector  selects  one  of  192  interrupt 

service  routines  in  memory. 
Devices  that  cannot  generate  a  vector  number  can  interrupt  the 

68000  also.  These  devices  cause  the  microprocessor  to  "autovector" 
to  an  interrupt  service  routine  for  the  priority  level  of  that  device. 

Thus,  the  68000  provides  seven  unique  autovectors;  earlier  micro- 
processors provided  only  one. 

Buses  and  Other  Lines  on  the  Chip 

The  68000  microprocessor  is  housed  in  a  64-pin  dual  in-line  pack- 

age (DIP)  roughly  the  size  of  a  disposable  cigarette  lighter.  Ad- 
dresses for  instructions  and  data  come  out  of  the  package  on  25 

address  lines— a  23-line  address  bus  (which  selects  a  word  in  mem- 
ory )  and  two  byte-select  lines  ( one  to  select  the  upper  byte  of  the 

word,  the  other  to  select  the  lower  byte).  Data  is  transferred  on  a 

16-hit  data  bus.  Like  most  8-bit  microprocessors  (but  unlike  the  16- 
bit  Intel  8086  and  Zilog  Z8000),  the  data  bus  and  address  bus  occupy 
separate  lines;  they  are  not  multiplexed.  The  Motorola  designers 
realized  that  multiplexing  these  buses  would  have  resulted  in  a 
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smaller  package,  but  would  also  have  reduced  performance  by  as 
much  as  30%. ^ 

The  68000  can  be  interfaced  to  both  asynchronous  peripheral  de- 
vices and  slower  synchronous  peripheral  devices  ( such  as  those  that 

are  used  with  the  6800  and  other  8-bit  microprocessors ) ,  and  has  a 
separate  set  of  control  lines  to  support  each  type  of  device.  The 

68000  operates  from  a  +5-volt  power  supply,  and  has  two  pins  for 
power  and  two  pins  for  ground.  And  since  the  processor  needs  a 

single-phase  TTL-level  clock,  one  more  pin  is  used  for  the  clock 
input. 

Sources  for  the  68000 

Introduced  in  1979,  the  68000  is  now  in  full  production.  It  is  avail- 
able from  Motorola  (as  the  MC68000)  and  from  licensed  alternate 

sources-Rockwell  International  (R68000),  Hitachi  (//D68000), 
Mostek  (MiC68000),  and  Signetics/ Phillips  (SP68000).  In  Europe, 

the  68000  is  available  from  EFCIS,  which  is  65%  owned  by  Thom- 
son-CSF  and  35%  owned  by  the  French  Atomic  Energy  Commis- 

sion. The  addresses  are: 

Motorola  Semiconductor,  Inc. 
3501  Ed  Bluestein  Boulevard 

Austin,  TX  78721 

Rockwell  International 
Electronic  Devices  Division 

P.O.  Box  3669,  RC55 
Anaheim,  CA  92803 

Hitachi  America,  Ltd. 

1800  Bering  Drive 

San  Jose,CA  95112 

Signetics/ Phillips 
811  East  Arques  Avenue 

Sunnyvale,  CA  94086 

Mostek  Corp. 

1215  West  Crosby  Road 
Carrollton,  TX  75006 

EFCIS 

45  ave.  de  I'Europe 
78140  Velizy-Villacoubaly 
France 

INTERNAL  REGISTERS 

Since  this  book  is  primarily  devoted  to  programming  the  68000, 
the  most  logical  place  to  begin  is  by  discussing  the  internal  registers 

that  are  available  to  programmers.  Fig.  1-1  shows  the  17  general- 
purpose  registers,  the  32-bit  program  counter,  and  the  16-bit  status 
register  of  the  68000. 

General-Purpose  Registers 

Eight  of  the  general-purpose  registers  are  data  registers,  seven  are 
address  registers,  and  two  are  stack  pointers  ( one  for  user  programs, 
the  other  for  supervisor  programs ) . 
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Fig.  1-1.  Programming  model  for  the  68000. 
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The  eight  data  registers  ( D0-D7 )  can  be  used  to  operate  on  byte 
(8-bit),  word  (16-bit),  and  long-word  (32-bit)  data;  the  appHcable 

length  is  specified  by  a  "data-size  code"  in  the  instruction.  Byte  op- 
erations are  always  performed  on  the  low-order  eight  bits  of  a  data 

register  (bits  0  through  7),  and  word  operations  are  always  per- 
formed on  the  low-order  16  bits  of  a  data  register  (bits  0  through 

15),  as  indicated  by  the  dashed  lines  in  Fig.  1-1.  When  a  byte  or 
word  operand  is  referenced  in  an  instruction,  only  the  low-order  byte 
or  word  of  the  data  register  is  used;  the  remaining  information  in 
the  register  is  unaffected. 

The  seven  address  registers  (A0-A6)  can  function  as  base  ad- 
dress registers  and  software  pointers  to  user-defined  stacks  in  mem- 

ory. They  can  also  be  used  to  hold  temporary  address  values,  so 

these  addresses  won't  need  to  be  recalculated  elsewhere  in  the  pro- 
gram. 

The  address  registers  can  be  used  to  access  bytes,  words,  and  long 

words  in  memory.  As  Fig.  1-2  shows,  this  data  is  stored  in  high- 
to-low  order.  Thus,  byte  0,  word  0  and  long  word  0  are  most-signifi- 

cant. Bytes  can  have  either  even  addresses  (bytes  0,  2,  and  4  in 

Fig.  1-2)  or  odd  addresses  (bytes  1,  3,  and  5),  but  words  and  long 
words  can  have  only  even  addresses.  That  is,  ivords  and  long  words 
must  always  start  at  an  even  address.  Therefore,  if  a  word  is  located 

at  address  n  ( n  even),  the  next  word  is  located  at  address  n+2.  Simi- 
larly, if  a  long  word  is  located  at  address  n  (n  even),  the  next  long 

word  is  located  at  address  n+4. 

Referring  again  to  Fig.  1-1,  the  dashed  line  between  bits  15  and 

16  indicates  that  information  in  an  address  register  can  be  refer- 

15 
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n BYTEO BYTE  1 n  +  1 n WORD  0 

n  +  2 BYTE  2 BYTES 
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n  +  2 WORD  1 

n  +  4 BYTE  4 BYTE  5 n  +  5 n  +  4 WORD  2 

{A)  Byte  format. 
15  0 

n  +  4 

n  +  8 

•LONG  WORD  0- 

•LONG  WORD  1 

■LONG  WORD  2- 

(e)  Word  format. 

(C)  Long-word  format. 

Fig.  1-2.  Byte,  word,  and  long-word  formats  in  memory. 
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enced  as  a  16-bit  word  (in  bits  0  through  15)  or  a  32-bit  long  word. 
Many  68000  instructions  refer  to  two  operands— a  source  operand 
and  a  destination  operand.  When  an  address  register  is  used  as  a 

source  operand,  either  the  low-order  word  or  the  entire  long  word  is 
used,  depending  on  the  operation  size.  When  an  address  register  is 

used  as  a  destination  operand,  the  entire  register  is  affected,  regard- 
less of  the  operation  size. 

Further,  operations  on  an  address  register  do  not  affect  the  status 
register  of  tJie  68000.  This  design  feature  allows  your  program  to 
operate  on  data,  change  an  address,  then  resume  operating  on  the 
data  without  worrying  about  whether  program  status  has  changed. 

The  68000  contains  two  stack  pointers,  but  only  one  of  them  is 
active  at  any  given  time.  The  user  stack  pointer,  which  saves  return 
addresses  during  subroutine  calls,  is  active  when  the  68000  is  in  the 
user  state.  The  supervisor  stack  pointer,  which  saves  return  addresses 

and  status  register  contents  during  trap  and  interrupt  routines,  is  ac- 
tive when  the  68000  is  in  the  supervisor  state.  Because  the  two  stack 

pointers  cannot  be  accessed  simultaneously,  they  are  depicted  as 

"sharing"  designator  A7  in  Fig.  1-1. 
Any  of  the  17  general-purpose  registers  may  be  used  as  an  index 

register.  Indexing  will  be  covered  when  we  discuss  the  addressing 
modes  of  the  68000  in  Chapter  3. 

The  Program  Counter 

Like  all  microprocessors,  the  68000  executes  programs  by  fetching 
an  instruction  from  memory,  executing  it,  and  then  fetching  the  next 
instruction.  In  the  68000,  instructions  can  occupy  from  one  to  five 

words  in  memory,  and  the  program  counter  determines  which  in- 
struction word  will  be  accessed  next. 

The  program  counter  is  32  bits  long,  but  only  the  low-order  24  bits 
are  used  in  the  chips  currently  being  produced.  Since  instructions 
consist  of  words,  rather  than  bytes,  the  program  counter  will  always 
hold  an  even  address.  With  24  bits,  the  program  counter  can  access 

memory  addresses  0  through  $FFFFFE  (where  the  $  prefix  indi- 
cates hexadecimal ) ,  a  range  of  8M  words  ( or  8,388,608  words ) . 

The  Status  Register 

The  68000  status  register  is  divided  into  a  user  byte  and  a  system 

byte,  as  shown  in  Fig.  1-3.  The  contents  of  the  entire  status  register 
can  be  read  at  any  time,  but  the  system  byte  can  be  modified  only 
when  the  68000  is  in  the  supervisor  state. 

The  user  byte,  often  referred  to  as  the  condition-code  register, 
contains  five  flag  bits  that  provide  information  about  the  result  of  a 

previously  executed  instruction  (in  most  cases,  the  preceding  in- 
struction). The  five  flags  in  the  user  byte  are: 
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1.  Bit  0,  Carry  (C)— This  bit  is  set  to  1  if  an  add  operation  pro- 
duces a  carry  or  a  subtract  operation  produces  a  borrow;  other- 

wise it  is  cleared  to  0.  Carry  also  holds  the  value  of  a  bit  that 
has  been  shifted  or  rotated  out  of  a  data  register  or  memory 
location,  and  reflects  the  result  of  a  compare  operation. 

2.  Bit  1,  Overflow  (V)— This  bit  is  meaningful  only  during  opera- 
tions on  signed  numbers.  It  is  set  to  1  if  the  addition  of  two 

like-signed  numbers,  or  the  subtraction  of  two  opposite-signed 
numbers,  has  produced  a  result  that  exceeds  the  2s-complement 
range  of  the  operand;  otherwise  it  is  cleared  to  0.  Overflow  is 

also  set  to  1  if  the  most-significant  bit  of  the  operand  is  changed 
at  any  time  during  an  arithmetic  shift  operation;  otherwise  it 
is  cleared  to  0. 

3.  Bit  2,  Zero  ( Z )  —This  bit  is  set  to  1  if  the  result  of  an  operation 
is  0;  otherwise  it  is  cleared  to  0. 

4.  Bit  3,  Negative  (N)— This  bit  is  meaningful  only  during  opera- 
tions on  signed  numbers.  It  is  set  to  1  if  an  arithmetic,  logical, 

shift,  or  rotate  operation  produces  a  negative  result;  otherwise 

it  is  cleared  to  0.  In  other  words,  the  N  flag  follows  the  most- 
significant  bit  of  an  operand,  regardless  of  whether  the  operand 
is  8,  16,  or  32  bits  long. 

5.  Bit  4,  Extend  (X)— This  bit  functions  as  a  carry  bit  for  multiple- 
precision  operations.  It  is  affected  by  add,  subtract,  negate, 
shift,  and  rotate  operations,  during  which  it  receives  the  state 
of  the  carry  ( C )  bit. 

The  68000  has  conditional  branch  instructions  that  test  the  state 

of  the  C,  V,  Z,  and  N  flags,  and  cause  program  execution  to  continue 
in-line  or  at  some  other  location  in  memory,  based  on  the  result  of 

SYSTEM  BYTE 

TRACE  MODE 

SUPERVISOR 
STATE 

interrupt! MASK  J 

CONDITION 
CODES 

EXTEND 
NEGATIVE 

ZERO 
OVERFLOW 

CARRY 

USER  BYTE 

15 
13 10 

8 4 0 

T S h 

li 

lo 

■ill 
X N Z V c 

Courtesy  Motorola,  Inc. 
Fig.  1-3.  The  68000  status  register. 
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this  test.  The  condition-code  flags  are  always  affected  by  operations 
that  alter  the  contents  of  a  data  register  or  memory,  but  (as  men- 

tioned earlier)  are  never  affected  by  operations  on  an  address  reg- 
ister. 

The  system  byte  of  the  status  register  has  three  fields : 

1.  Bits  8-10— These  bits  hold  an  interrupt  mask  (lo,  Ii,  and  I2) 
which  determines  the  level  of  interrupt  requests  that  will  be 

serviced  by  the  microprocessor.  This  3-bit  mask  can  be  used  to 
establish  any  of  seven  interrupt  priority  levels  ( the  eighth  level, 

all  Os,  indicates  "any  priority  accepted"),  and  causes  all  inter- 
rupt requests  at  or  below  that  level  to  be  ignored  by  the  68000. 

2.  Bit  13,  Supervisory  (S)— This  bit  indicates  whether  the  68000 
is  operating  in  the  supervisor  state  ( S  =  1 )  or  the  user  state 
(S  =  0). 

3.  Bit  15,  Trace  Mode  (T)— This  bit  controls  the  built-in  debug 
circuitry  in  the  68000.  When  the  T  bit  is  set  to  a  1,  the  68000 

will  "single-step"  through  a  program.  That  is,  after  each  instruc- 
tion is  executed  the  68000  will  enter  the  supervisor  state  (set- 
ting S  =  1 )  and  vector  to  a  special,  user-written  trace  service 

routine.  The  service  routine  can  be  used  to  examine  the  con- 
tents of  selected  memory  locations  and  registers,  look  at  status, 

or  perform  any  number  of  other  debugging  tasks. 

If  the  contents  of  the  status  register  are  ever  read,  all  of  its  un- 
used bits  will  be  read  as  Os. 

BACKGROUND  ON  THE  DESIGN  OF  THE  68000 

At  this  point,  you  have  a  general  understanding  of  the  features 
of  the  68000  microprocessor.  The  remaining  chapters  in  this  book 
will  discuss  these  features,  and  others,  in  greater  detail,  and  provide 

some  information  on  how  the  68000  can  be  used  in  a  variety  of  ap- 
plications. Before  moving  on  to  those  topics,  however,  it  is  worth- 

while to  examine  the  rationale  behind  the  design  of  the  68000,  to 
see  why  Motorola  implemented  this  microprocessor  as  they  did. 

The  State  of  Microprocessor  Technology 

The  powerful  microprocessors  and  support  chips  of  today  are  the 

outgrowth  of  the  rapid  evolution  in  integrated  circuit  ( IC )  technol- 
ogy in  the  recent  past.  Since  the  development  of  the  metal-oxide 

semiconductor  ( MOS )  transistor  in  the  late  1950s,  device  complex- 
ity doubled  every  year  through  the  1970s.  As  a  result,  whereas  early 

microprocessors  contained  from  5000  to  10,000  transistors  on  a  chip, 

today's  processors  contain  up  to  110,000  transistors!  The  primary  con- 
tributing factors  to  this  growth  have  been  higher  circuit  density  and 
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advances  in  circuit  design,  which  produced  corresponding  improve- 
ments in  circuit  speed  and  power  dissipation.  The  rate  of  evolution 

has  slowed  somewhat  because  some  technological  limits  are  being 
approached,  but  the  advances  are  still  dramatic.  Today,  circuit  den- 

sities and  circuit  speeds  are  doubling  every  two  years,  while  at  the 

same  time,  speed-power  products  are  improving  by  a  factor  of  four.^ 
Further,  yield  enhancement  techniques  are  driving  production  costs 

down  and,  hence,  reducing  product  prices,  thereby  increasing  de- 
mand and  opening  up  new  applications  and  new  markets. 

Motivations  Behind  the  68000 

The  advances  just  described  make  a  complex  microprocessor  tech- 
nically feasible,  but  several  additional  factors  also  motivated  Motor- 

ola to  develop  the  68000.  According  to  Edward  Stritter  and  Tom 

Gunter,^  the  two  principal  architects  of  the  68000,  one  of  these  mo- 
tivations arose  from  the  demand  for  products  to  deal  with  the  many 

new  ( and  often  sophisticated )  applications  for  microprocessors.  This 
demand  is  reflected  in  the  overall  market  for  microprocessors,  which 
will  have  a  compound  growth  rate  of  about  25%  through  the  early 

1980s,  approaching  an  annual  volume  of  200  million  units  by  1983, 

with  a  market  value  approaching  $500,000,000.^  In  fact,  the  micro- 
processor revolution  is  truly  an  applications  revolution.  It  is  esti- 

mated that  by  the  year  2000,  5  to  10  billion  microprocessors  and  mi- 
crocomputers will  be  in  service— about  one  for  each  living  person 

on  earth!  In  planning  the  68000,  the  architects  knew  that  their  prod- 
uct must  satisfy  applications  best  suited  to  16-bit  microprocessors, 

such  as  those  involving  multiprocessing,  multitasking,  or  high-speed 
complex  calculations. 

A  second  motivation  for  the  68000  came  from  the  hig,h  costs  of 

developing  software.  With  programs  currently  costing  $10.00  to 
$20.00  for  each  line  of  debugged  code,  it  is  not  unusual  for  a  single 

program  to  run  up  software  development  costs  of  $100,000  or  more— 
which  is  clearly  incompatible  with  hardware  costs  of  a  few  hundred 
dollars.  To  help  reduce  these  expenditures.  Motorola  made  a  strong 

commitment  to  support  high-level  languages  and  disciplined  pro- 
gramming practices,  and  to  make  68000  software  easy  to  debug  and 

self-testing  in  nature. 
A  third  factor  influencing  the  design  of  the  68000  was  the  high 

cost  of  designing  and  manufacturing  a  new  microprocessor.  The 

amount  of  money  a  manufacturer  must  spend  for  engineers,  design- 
ers, scientists,  and  other  personnel,  as  well  as  for  design  and  fabri- 

cation equipment,  is  staggering  and  costs  major  manufacturers  tens 
of  millions  of  dollars  each  year.  Obviously,  designers  must  attack 
this  problem  in  several  ways.  First,  straightforward  designs  using 

"regular"  structures  are  easier  to  implement,  test,  and  manufacture. 
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thereby  making  them  less  expensive  than  exotic  designs.  (Of  course, 
straightforward  designs  also  tend  to  speed  up  the  overall  production 

cycle,  giving  the  manufacturer  an  edge  over  his  competition.)  Sec- 
ond, each  new  architecture  must  be  planned  to  last  as  long  as  pos- 
sible, and  must  be  easy  to  expand  in  the  future. 

Manufacturers  can  no  longer  afford  to  produce  new  architectures 

every  year.  Experience  with  trying  to  extend  and  improve  earlier  8- 
bit  microprocessor  architectures  demonstrates  the  need  for  planned 
expansion.  Designers  must  have  the  least  number  of  limitations  in 
their  designs,  so  that  future  enhancements  of  the  chip  can  be  made 
with  the  greatest  possible  ease.  Among  the  common  mistakes  in  the 
past  have  been  limiting  address  size  and  failing  to  provide  unused 
operation  codes  for  additional,  future  instructions. 

Design  Implementation  of  the  68000 

The  designers  of  the  68000  had  a  sizeable  task  responding  to  the 

motivations  we  have  just  described.  In  order  to  fit  all  of  the  re- 
quired functions  onto  the  microprocessor  chip,  they  adopted  a  fast, 

n-channel  silicon  process,  called  HMOS  (high-density,  short-channel 
MOS),  which  was  originally  developed  by  Intel  Corporation.  The 
HMOS  process  provides  circuit  densities  twice  those  of  standard 

NMOS,  and  a  speed-power  product  four  times  better  than  standard 
NMOS.  As  a  result,  the  current  version  of  the  68000  has— perhaps 
coincidentally— about  68,000  transistors  on  the  chip  (Fig.  1-4). 

To  serve  the  potential  applications  market,  the  Motorola  design- 
ers gave  the  68000  a  general-purpose  architecture,  rather  than  an 

architecture  aimed  at  a  specific  class  of  applications.  And  because 

j     the  68000  (like  other  high-performance  processors)  will  typically 
be  used  in  large,  memory  intensive  applications,  the  designers  pro- 

;     vided  this  microprocessor  with  a  I6M-byte  addressing  capability, 
and  complemented  it  with  special  features  to  support  multiprocess- 

ing and  multitasking,  such  as  separate  supervisor  and  user  modes. 

;        To  address  the  high  expense  of  software  development,  the  design- 
ers made  every  effort  to  ensure  that  the  68000  would  be  easy  to  pro- 

gram. One  way  they  did  this  was  to  give  the  software  and  hardware 

'     features  found  in  the  6v8000  a  high  degree  of  consistency,  or  ortho- 
gonality. All  data  registers  function  identically,  as  do  the  address 

I     registers,  and  all  data  and  address  registers  may  serve  as  index  reg- 
isters. Further,  most  instructions  can  operate  on  bytes,  words,  or 

1     long  words. 

'  The  number  of  mnemonics  in  the  instruction  set  was  intentionally 

kept  to  a  minimum  by  grouping  similar  functions  within  a  sin- 
gle mnemonic.  This  resulted  in  multipurpose  instructions,  such  as 

MOVE,  which  can  transfer  data  "from  anywhere  to  anywhere," 
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Courtesy  Motorola.  Inc. 
Fig.  1-4.  Photomicrograph  of  the  68000  microprocessor  chip. 

rather  than  a  large  number  of  specialized  load,  store,  and  transfer 

instructions,  a  la  the  6800  and  other  8-bit  microprocessors. 

Furthermore,  in  developing  the  instruction  set,  the  designers  con- 

sidered not  only  "statically  jfrequent"  instructions  (those  that  ap- 
pear most  often  in  a  program  listing),  but  went  a  step  further  and 

looked  for  "dynamically  frequent"  instructions  (those  that  get  exe- 
cuted most  often).  With  these  statistics  in  mind.  Motorola  tried  to 

create  instructions  that  were  as  short  as  possible. 

In  support  of  high-level  languages.  Motorola  provided  instructions 
that  perform  operations  which  normally  require  several  lines  of  code. 
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The  most  prominent  examples  are  the  link  (LINK)  and  unlink 
(UNLK)  instructions,  which  allocate  and  deallocate  space  on  the 
stack  for  nested  subroutine  calls,  and  the  check  register  against 
bounds  ( CHK )  instruction,  which  allows  the  size  of  an  array  to  be 
checked  for  an  overflow  condition.  The  instruction  set  was  also  de- 

signed so  that  most  instructions  could  be  used  with  all  of  the  pos- 
sible addressing  modes,  thereby  allowing  compilers  to  generate  effi- 
cient code. 

Finally,  to  minimize  the  costs  of  futiu'e  design  changes  and  en- 
hancements, Motorola  specified  an  architecture  that  would  allow  a 

number  of  different  microprocessors  to  he  produced.  We  alluded  to 

this  fact  earlier  in  mentioning  that  although  the  68000  is  a  16-bit 
microprocessor,  it  is  designed  around  a  32-bit  internal  architecture. 
That  is,  within  the  chip,  the  data  bus,  address  bus  and  all  program- 

mable registers  (except  the  status  register)  are  32  bits  wide.  In  1982, 
Motorola  announced  three  new  microprocessors  that  use  this  same 
architecture.  They  are: 

•  The  68008,  a  hardware/software  compatible  version  of  the 
68000  with  an  8-bit  external  data  bus. 

•  The  68010,  the  first  true  "virtual  machine"  microprocessor.  This 
device  provides  the  ability  for  one  super  operating  system  to 
handle  the  supervisory  chores  for  any  number  of  subordinate 
operating  systems. 

•  The  68020,  which  has  all  the  features  of  the  68010,  but  operates 
on  a  32-bit  external  data  bus. 

Motorola's  eye  toward  the  future  is  also  reflected  in  their  deci- 
sion to  implement  the  68000  with  a  microprogrammed  architecture, 

rather  than  with  random  logic.  Within  the  industry,  the  battle  over 

microcode  versus  random  logic  is  a  never-ending  controversy.  Which 
is  the  better  choice?  Well,  it  depends  on  who  you  are  asking.  Some 
popular  microprocessors  use  random  logic  ( Motorola  6809,  Intel 
8089  I/O  Processor,  Zilog  Z8000),  some  use  microprogramming 
(Motorola  &000,  DEC  LSI-11,  National  Semiconductor  16032,  TI 
9900),  and  at  least  one  (Intel  8086)  uses  a  combination  of  the  two 

approaches.^ 
It  can  be  argued  that  random  logic  can  cram  more  functions  into 

the  same  area  than  a  microcoded  structure,  and  it  is  faster.  Micro- 
code, on  the  other  hand,  is  easier  ( and  therefore  faster  and  cheaper ) 

to  design  and  to  change.  Microcode  also  produces  a  clean,  symmet- 
rical instruction  set  and  a  broad  range  of  addressing  modes,  which 

can  boost  programming  efficiency.  In  fact,  the  ability  to  combine  the 

most  memory-efficient  addressing  modes  with  the  most  time-efficient 
processor  operations  can  reduce  overall  system  cost  substantially. 
Still,  the  time  lost  in  internal  decoding  can  negate  the  software  gains 
that  microprogramming  has  to  offer,  so  compromise  remains . 
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With  these  considerations  in  mind,  Motorola  chose  the  micro- 

programmed approach  for  several  reasons  i^  **-^ 

1.  The  regular  structure  of  the  decoding  logic  makes  design,  lay- 
out, detailed  simulation,  and  testing  easier.  This  results  in  con- 

siderable time  savings  and  allows  a  more  complex  controller  to 
be  designed  at  a  given  design  cost. 

2.  The  processor  architects  can  delay  making  some  binding  deci- 
sions. Once  the  basic  overall  chip  design  is  determined,  the 

circuit  designers  can  go  to  work,  even  though  actual  microcode 
may  not  be  written.  This  reduces  the  inherent  sequentiality  of 
the  design  process  by  allowing  more  overlap  of  the  efforts  of 

microcoders  and  circuit  designers  and,  therefore,  shortens  de- 
sign time. 

3.  Small  "glitches"  or  programming  problems  that  are  inevitably 
found  during  the  first  silicon  run  can  usually  be  corrected  rap- 

idly by  changing  the  microcode,  and  without  affecting  other 
logic  circuits  on  the  chip.  In  contrast,  changes  to  random  logic 
designs  could  unintentionally  cause  many  other  problems, 
which  would  slow  down  the  introduction  of  the  processor. 

4.  Microcoding  the  processor  makes  future  improvements  and  ad- 
ditions to  the  circuit  easier  to  insert.  New  instructions  that  are 

programmed-in  will  probably  work  correctly  the  first  time. 
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CHAPTER  2 

Cross  Macro  Assembler 

Readers  of  this  book  can  be  expected  to  use  any  of  a  variety  of 

computers  to  develop  programs  for  their  68000-based  appHcations. 
Some  will  develop  those  programs  on  computers  from  Motorola, 

such  as  an  EXORciser®  or  EXORmacs®  development  system,  others 

will  use  a  minicomputer,  mainframe  computer,  or  "universal"  devel- 
opment system.  Regardless  of  the  base  system,  however,  we  will 

assume  that  all  readers  will  write  their  programs  in  assembly  lan- 
guage, rather  than  machine  language.  Therefore,  some  kind  of  as- 

sembler will  be  required  to  translate  an  assembly-language  user  pro- 
gram, or  source  program,  into  a  machine-language  program,  or 

object  program,  which  the  68000  can  execute. 
There  are  two  basic  types  of  assemblers.  A  cross  assembler  is  an 

assembler  that  runs  on  a  computer  other  than  the  one  for  which 
it  assembles  object  programs.  The  computer  on  which  the  cross 
assembler  runs  is  typically  one  with  extensive  software  support  and 
fast  peripherals,  such  as  an  IBM  System/360  or  System/370,  or  a 

Digital  Equipment  Corp.  PDP-11.  A  resident  assembler  is  an  assem- 
bler that  runs  on  the  computer  for  which  it  assembles  programs. 

The  Motorola  EXORmacs®  development  system  has  a  resident  as- 
sembler for  the  68000. 

Rather  than  attempting  to  describe  all  of  the  various  assemblers 
that  readers  may  use  for  the  68000,  this  chapter  will  concentrate  on 

the  features  of  just  one  assembler.  Motorola's  Cross  Macro  Assem- 
bler. The  Cross  Macro  Assembler  is  a  cross  assembler  than  can  run 

on  an  M6800-  or  M6809-based  EXORciser®  development  system,  or 

®  EXORciser  and  EXORmacs  are  trademarks  of  Motorola,  Inc. 
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on  an  IBM  System/ 370  or  a  DEC  PDP-11.  It  is  also  a  macro  assem- 
bler, because  it  allows  the  programmer  to  define  sequences  of  in- 

structions as  "macros/'  Macros  are  discussed  in  more  detail  later  in 
this  chapter. 

This  chapter  is  not  intended  to  be  an  exhaustive  description  of  the 
Cross  Macro  Assembler  (hereafter  referred  to  as  assembler),  but 
rather  just  a  summary  of  its  features  for  easy  reference.  For  the  full 

details  on  this  program,  see  the  Motorola  MC68000  Cross  Macro  As- 
sembler Reference  Manuals 

ASSEMBLER  STATEMENTS 

A  source  program  is  a  logical  sequence  of  source  statements  de- 
signed to  perform  a  specific  task.  A  source  statement  may  be  either 

an  assembly-language  instruction,  a  comment,  or  an  assembler  di- 
rective. 

ASSEMBLY-LANGUAGE  INSTRUCTIONS 

Assembly-language  instructions  are  comprised  of  up  to  five  fields, 
as  follows: 

Line  Number    [Label]    Mnemonic    [Operand]  [Comment] 

The  line  number  is  an  editor-  or  assembler-generated  source  line 
identifier  of  up  to  four  decimal  digits.  The  other  four  fields  are  user- 
generated.  Of  these,  only  the  mnemonic  field  is  always  required  in 
an  instruction.  The  label  and  comment  fields  are  always  optional 
(and  are  so  identified  by  showing  them  enclosed  in  brackets)  and 
may  be  used  at  the  discretion  of  the  programmer.  The  operand  field 
is  only  used  with  instructions  that  require  an  operand;  otherwise  it 
must  be  omitted. 

The  68000  assembler  uses  a  free  format  in  which  the  fields  may 
appear  anywhere  on  a  line.  However,  each  field  must  be  separated 
from  the  preceding  field  by  at  least  one  blank  space. 

The  Label  Field 

The  label  field  is  the  first  user-generated  field  in  a  line.  Any  as- 
sembly-language instruction  can  be  labeled,  but  labels  are  most 

often  used  in  conjunction  with  jump,  jump  to  subroutine,  and  branch 
instructions.  These  instructions  place  a  new  value  in  the  program 
counter,  and  thereby  alter  the  sequential  execution  of  a  program. 
The  label  identifies  the  instruction  to  which  program  control  is  to 
be  transferred. 

If  present,  a  label  will  be  a  string  of  from  1  to  30  alphanumeric 

characters  in  which  the  first  character  must  be  alphabetic  (A-Z). 
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All  30  characters  are  significant,  but  only  the  first  8  characters 

will  be  listed  on  the  symbol  table  printout.  The  symbols,  AO  through 
A7,  DO  through  D7,  CCR,  SR,  SP,  and  USP  are  register  designators 
used  by  the  assembler  and  must  not  be  used  as  a  label. 

If  a  label  starts  in  the  first  column,  it  must  be  terminated  with  at 

least  one  blank  space.  If  the  label  starts  in  any  other  column,  it  must 
be  terminated  with  a  colon  ( : ) . 

The  Mnemonic  Field 

The  mnemonic  field  holds  the  three-,  four-,  or  five-letter  acronym 
for  the  assembly-language  instruction.  The  assembler  uses  an  inter- 

nal look-up  table  to  translate  this  acronym,  called  a  mnemonic,  into 
its  binary  equivalent. 

Some  instructions  for  the  68000  require  one  operand,  others  re- 
quire two  operands,  and  still  others  require  no  operands.  The  mne- 

monic "tells"  the  assembler  how  many  operands,  and  which  types 
of  operands,  should  be  obtained  from  the  operand  field.  We  will  not 
list  the  legal  mnemonics  here,  but  they  are  listed  and  described  in 
Chapter  3. 

As  mentioned  in  Chapter  1,  the  68000  can  operate  on  byte,  word, 

and  long-word  data.  Some  instructions  can  operate  on  just  one  size 
of  data,  others  can  operate  on  two  sizes  of  data,  and  still  others  can 
operate  on  all  three  sizes  of  data.  For  instructions  that  can  operate 

on  more  than  one  size,  the  68000  must  be  "told"  which  size  of  data 
is  being  operated  on.  This  is  done  by  appending  a  special  assembler 
sufiix,  called  a  data  size  code,  to  the  mnemonic.  For  example,  an 
instruction  that  adds  a  value  in  data  register  DO  to  a  value  in  data 
register  Dl  will  have  the  form 

ADD.X  D0,D1 

where  the  suffix,  .X,  specifies  the  length  of  data  being  added,  and 

may  be  .B  (for  byte),  .W  (for  word),  or  .L  (for  long  word). 

If  the  data  size  code  is  omitted,  the  assembler  assumes  that  word- 
size  data  is  being  processed.  Therefore,  our  add  instruction  can  have 
any  of  four  variations: 

ADD.B    DO, D1— Adds  the  low-order  byte  of  DO  to  the  low-order  byte  of  Dl. 
ADD.W  DO, D1 -Adds  the  low-order  word  of  DO  to  the  low-order  word  of  Dl. 
ADD      D0,D1-Also  adds  the  low-order  word  of  DO  to  the  low-order  word  of 

Dl. 
ADD.L    D0,D1-Adds  the  entire  32-bit  long-word  contents  of  DO  to  the  entire 

32-bit  long- word  contents  of  Dl. 

The  Operand  Field 

The  operand  field  may  or  may  not  be  omitted,  depending  on  the 

instruction.  If  present,  the  operand  field  will  contain  either  one  or 
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two  operands,  separated  from  the  mnemonic  field  by  at  least  one 
blank  space.  If  two  operands  are  required,  they  must  be  separated 
by  a  comma.  For  these  instruction  types,  the  first  operand  is  the 
source  operand  and  the  second  operand  is  the  derdimition  operand. 
The  source  operand  references  the  value  that  will  be  added  to,  sub- 

tracted from,  compared  to,  or  stored  into  the  destination  operand. 

For  this  reason,  the  source  operand  is  never  altered  by  the  opera- 
tion, whereas  the  destination  operand  is  almost  always  altered  by 

the  operation.  In  Chapter  3,  we  will  discuss  the  addressing  charac- 
teristics of  operands  for  each  of  the  instructions  in  the  instruction 

set  for  the  68000. 

The  Comment  Field 

The  optional  comment  field  is  used  as  a  personal  convenience  by 
the  programmer  to  make  the  program  easier  to  follow.  The  comment 
field  is  ignored  by  the  assembler,  but  is  included  in  the  listing.  If 
used,  comments  must  be  separated  from  the  preceding  field  by  at 
least  one  blank  space. 

STAND-ALONE  COMMENTS 

In  addition  to  providing  brief  explanations  for  individual  lines  in 
a  program,  comments  are  also  used  by  themselves  to  introduce  a 

program  or  a  portion  of  code,  to  list  the  registers  and  memory  loca- 
tions affected,  or  for  a  variety  of  other  documentation  tasks.  To  in- 
clude stand-alone  comments  in  a  source  program,  enter  an  asterisk 

(  *  )  into  column  1;  at  assembly  time,  the  assembler  will  recognize 
the  asterisk  as  the  beginning  of  a  comment  line  and  will  ignore  that 
line. 

ASSEMBLER  DIRECTIVES 

Assembler  directives,  or  "pseudo-operations,"  provide  directions 
to  the  assembler.  They  assign  the  object  program  to  certain  areas 
in  memory,  define  symbols,  allocate  memory  locations  for  temporary 
storage,  control  the  format  of  the  printout,  and  perform  a  variety  of 

minor  housekeeping  functions.  With  the  exception  of  the  define  con- 
stant ( DC )  directive,  directives  are  not  translated  into  object  code. 

Like  assembly-language  instructions,  assembler  directives  are  com- 
prised of  up  to  five  fields,  as  follows: 

Line  Number    [Label]    Directive    [Operand]  [Comment] 

As  previously  mentioned  for  assembly-language  instructions,  the  line 
number  is  an  editor-  or  assembler-generated  source  line  identifier  of 

up  to  four  decimal  digits.  The  other  four  fields  are  user-generated. 
Of  these,  only  the  directive  field  is  always  required.  Note  that  the 
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label,  operand,  and  comment  fields  are  enclosed  in  brackets,  which 

designates  them  as  "optional"  fields.  This  needs  some  clarification, 
however.  The  comment  field  is  the  only  field  that  is  always  optional; 
it  may  be  used  or  omitted  at  your  discretion.  Labels  and  operands 
are  a  different  story.  Labels  can  be  used  with  only  five  directives, 
and  operands  are  used  only  with  directives  that  require  an  operand. 
Table  2-1  summarizes  the  assembler  directives  and  shows  their  valid 
formats. 

As  with  assembly-language  instructions,  assembler  directive  state- 
ments can  be  entered  with  a  free  format  in  which  the  fields  may  ap- 

pear anywhere  on  a  line.  However,  each  field  must  be  separated 
from  the  preceding  field  by  at  least  one  blank  space. 

Assembly  Control  Directives 

The  assembler's  two  "origin"  directives,  absolute  origin  (ORG) 
and  relative  origin  (RORG),  allow  the  programmer  to  locate  pro- 

grams, subroutines,  or  data  anywhere  in  memory.  Programs  and  data 

may  be  located  in  different  areas  of  memory  depending  on  the  mem- 
ory configuration  of  the  system.  Startup  routines,  interrupt  service 

routines,  and  other  required  programs  may  also  have  to  be  scattered 
throughout  memory  to  meet  system  requirements. 

The  assembler  maintains  a  location  counter  (comparable  to  the 

internal  program  counter  of  the  68000  microprocessor)  which  "points 
to"  the  memory  location  that  is  to  receive  the  object  code  for  the 
next  instruction  or  data  item.  Both  ORG  and  RORG  cause  the  as- 

sembler to  place  a  new,  specified  address  in  the  location  counter, 

and  then  use  that  value  to  assign  the  memory  locations  of  subse- 
quent statements.  However,  ORG  causes  the  subsequent  statements 

to  be  assigned  to  absolute  memory  locations,  whereas  RORG  causes 
these  statements  to  be  assigned  to  relative  memory  locations. 

The  ORG  directive  is  used  when  you  want  to  select  the  starting 

address  at  which  programs  or  data  are  to  be  stored.  The  two  avail- 
able forms  of  this  directive,  ORG  and  ORG.L,  affect  how  instruc- 
tions that  make  forward  references  in  the  program  are  assembled. 

If  ORG  is  used,  instructions  that  make  forward  references  are  as- 
sembled in  a  short,  quick-executing  form,  but  all  forward  references 

must  be  to  locations  in  the  address  range  0  to  hexadecimal  location 
7FFF.  If  ORG.L  is  used,  instructions  that  make  forward  references 

are  assembled  in  a  longer,  slower-executing  form,  but  the  forward 
references  can  be  to  anywhere  in  memory. 

The  RORG  directive  is  useful  for  a  variety  of  applications,  includ- 
ing the  following: 

•  Mixing  assembly-language  programs  with  high-level  language 

programs,  in  which  you  don't  care  where  the  object  code  is stored. 
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•  Developing  relocatable  subroutines,  which  can  be  executed 
from  anywhere  in  memory. 

•  Constructing  program  components,  which  will  later  be  com- 
bined into  one  large  program. 

The  remaining  assembly  control  directive,  end  of  source  program 
( END),  tells  the  assembler  that  it  has  reached  the  end  of  the  source 

program. 

Symbol  Definition  Directives 

These  two  directives,  equate  symbol  value  ( EQU )  and  set  symbol 
value  (SET),  are  used  to  assign  numeric  values  to  symbols  in  the 
program.  In  both  cases,  the  assembler  evaluates  the  expression  in 
the  operand  field  and  assigns  the  result  to  the  symbol  in  the  label 

field.  However,  symbols  assigned  with  a  SET  directive  may  be  re- 
defined later  in  the  program,  whereas  symbols  assigned  with  an 

EQU  directive  cannot  be  redefined. 
Expressions  and  symbols  are  fully  described  later  in  this  chapter, 

but  briefly,  an  expression  is  a  combination  of  symbols,  constants, 
algebraic  operators,  and  parentheses  (comparable  to  the  right  side 
of  an  algebra  equation ) ,  while  a  symbol  is  a  string  of  alphanumeric 
characters,  like  a  label.  For  the  EQU  and  SET  directives,  the  result 
of  the  expression  must  be  an  integer  that  will  be  used  to  represent 
an  address  or  a  data  value. 

Since  EQU -generated  assignments  are  permanent,  this  directive 
is  often  used  to  define  subroutine  addresses,  device  addresses,  often- 
used  constants,  and  the  like.  Here  are  some  examples: 

SUBR      EQU  $2000 
CONST    EQU  5634 
PIA2        EQU  $FEFFOO 

You  can  also  define  one  symbol  in  terms  of  another.  For  example: 

LAST      EQU  FINAL 
STRT3    EQU  START+3 

The  symbol  in  the  operand  field  must,  of  course,  have  been  previ- 
ously defined. 

Since  SET-generated  assignments  can  be  temporary,  this  directive 

is  used  to  define  variable  data,  such  as  masking  patterns  or  conver- 
sion factors.  For  example,  the  following  SET  directives  may  appear 

in  the  same  program: 

MASK1  SET  $FFFE 
MASK1    SET  $FFFD 

In  this  example,  as  the  program  is  assembled,  any  reference  to 
MASKl  will  be  replaced  with  the  value  $FFFE  until  the  second 
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SET  directive  is  encountered.  At  that  time,  any  reference  to  MASKl 
will  cause  the  value  $FFFD  to  be  used. 

Memory  Allocation  Directives 

The  define  constant  (  DC )  and  define  storage  ( DS )  directives  are 
used  to  allocate  one  or  more  consecutive  locations  in  read/ write 

memory.  The  referenced  locations  can  be  either  initialized  with 

some  specified  set  of  values  (with  a  DC  directive)  or  simply  re- 
served for  later  use  by  the  program  (with  a  DS  directive).  Note  from 

Table  2-1  that  like  some  assembly-language  instruction  mnemonics, 
the  DC  and  DS  directives  require  data-size  codes  to  specify  whether 
bytes  (.B),  words  (.W),  or  long  words  (.L)  are  being  allocated. 

The  DC  directive  can  be  used  to  set  up  data  tables,  ASCII  mes- 
sage tables,  indirect  addresses,  and  the  like.  To  do  this,  the  assem- 

bler will  evaluate  each  expression  in  the  operand  field  as  a  numeric 
value,  and  place  that  value  in  the  associated  location  in  memory. 
Multiple  operands  must  be  separated  by  commas.  Here  are  a  few 
examples: 

TABLE  DC.W  10,5,7,2-Worcl  locations  starting  at  TABLE  receive  the  binary 
equivalents  of  the  decimal  values  10,  5,  7,  and  2,  respectively. 

ALBL  DC  LABEL+1-Word  location  ALBL  receives  the  address  of  LABEL 
plus  1,  in  a  word-size  operand. 

TABL1  DC.L  10,5,7,2-Long  words  starting  at  TABLl  receive  the  binary 
equivalents  of  the  decimal  values  10,  5,  7,  and  2,  right-justified. 

Characters  in  an  ASCII  string  need  not  be  separated  with  commas, 

but  simply  enclosed  within  smgle  quotes  (').  For  example,  the  di- rective 

ATBLE  DC.B  'A2EF' 

will  store  the  ASCII  values  for  the  characters  A,  2,  E,  and  F  into 
the  four  byte  locations  that  start  at  label  ATBLE. 

If  you  enter  an  odd  number  of  byte  operands,  either  ASCII  or 

non-ASCII,  the  assembler  will  attempt  to  eliminate  a  possible  ad- 
dress misalignment  by  filling  the  remaining  odd  byte  with  zeros. 

For  example: 

STRNG  DC.B  'ABCDE'-Memory  receives  ASCII  codes  for  the  characters  A 
tlirough  E  in  five  contiguous  bytes.  The  sixth  byte  will  be  0  unless  the  next 
source  statement  is  another  DC.B. 

CONST  DC.B  43-Location  CONST  receives  decimal  43.  The  odd  byte  will 
receive  0  unless  the  next  source  statement  is  another  DC.B. 

If  you  enter  an  odd  number  of  ASCII  operands  with  a  DC.W  or 
DC.L  directive,  the  assembler  will  fill  unallocated  bytes  on  the  right 
with  zeros.  For  example: 
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NUMBR  DC.L  '12345'-Memory  will  have  '1234'  and  'S'OOO  in  eight  contigu- ous bytes. 

N1  DC  'X'— Memory  will  have  'X'  and  0  in  two  contiguous  bytes. 
The  DS  directive  allows  you  to  assign  a  name  to  a  memory  area 

and  declare  the  number  of  locations  to  be  allocated,  without  initial- 
izing those  locations  in  any  way.  Consider  these  examples: 

TEMPO  DS.B  10-Allocate  10  contiguous  bytes. 
TEMPI  DS.W  10-Allocate  10  contiguous  words. 

Unlike  the  DC  directive,  the  DS  directive  has  no  built-in  protec- 
tion against  address  misalignment.  If  you  wish  to  force  alignment  on 

a  word  boundary,  follow  a  DS.B  directive  with  DS  0. 
The  listing  control  directives  will  not  be  described  here  because 

they  are  mostly  self-explanatory,  and  because  they  are  fully  de- 
scribed in  the  Motorola  MC68000  Cross  Macro  Assembler  Refer- 

ence ManuaV  However,  before  continuing  on  it  is  worthwhile  to 

discuss  the  characteristics  of  expressions  that  can  appear  in  the  op- 
erand field  of  an  assembly-language  instruction  or  an  assembler  di- 

rective. 

EXPRESSIONS  IN  THE  OPERAND  FIELD 

An  expression  is  a  combination  of  symbols,  constants,  algebraic 
operators,  and  parentheses  that  is  evaluated  (by  the  assembler)  as 

an  integer-valued  data  or  address  operand. 

Symbols 

Like  labels,  symbols  are  strings  of  from  1  to  30  alphanumeric 

characters  that  begin  with  a  letter  (A-Z).  All  30  characters  are 
significant,  but  only  the  first  8  characters  will  be  listed  when  the 
symbol  table  is  printed.  The  symbols  AO  through  A7,  DO  through 
D7,  CCR,  SR,  SP,  and  USP  are  special  register  names  used  by  the 
assembler  that  can  appear  in  the  operand  field,  but  not  in  the  label 
field. 

A  symbol  can  have  an  absolute  value  or  a  relative  value.  A  sym- 
bol will  have  an  absolute  value  if  ( 1 )  it  is  assigned  an  absolute  value 

by  an  EQU  or  SET  directive  or  (2)  if  an  ORG  statement  has  pre- 
ceded the  definition  of  the  symbol.  A  symbol  will  have  a  rehtive 

value  if  ( 1 )  it  is  assigned  a  relative  value  by  an  EQU  or  SET  di- 
rective or  (2)  if  an  RORG  directive  has  preceded  the  definition  of 

the  symbol  or  (3)  if  neither  an  ORG  nor  an  RORG  has  preceded 
the  definition  of  the  symbol  (which  defaults  to  RORG  0). 

Constants 

The  assembler  will  accept  both  numeric  constants  and  ASCII  lit- 
erals. A  string  of  decimal  digits  (e.g.,  12345)  is  interpreted  as  a 
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decimal  number,  and  a  string  of  hexadecimal  digits  preceded  by  a 
dollar  sign  (e.g.,  SABCD)  is  interpreted  as  a  hexadecimal  number. 
An  ASCII  literal  is  a  string  of  up  to  four  ASCII  characters  enclosed 

within  single  (quotes  (e.g.,  'ABCD'). 

Algebraic  Operators 

The  assembler  allows  you  to  combine  terms  of  an  expression  with 
the  use  of  four  arithmetic  operators,  four  logical  operators,  and  one 

special  operator.  The  arithmetic  operators  are:  +  (add),  —  (sub- 
tract), *  (multiph  ),  and  /  (divide).  For  example,  the  equate  se- 

({uence 

START         EQU  $2000 
STARTP6     EQU  START^6 
STARTM1     EQU  START-1 

assigns  symbols  STARTP6  and  STARTMl  with  the  addresses  S2006 

and  SIFFF,  respectively.  The  logical  operators  have  the  following 
definitions: 

•  Logical  AND  (&)  causes  each  bit  in  the  left  expression  to  be 

logically  AXDed  with  the  corresponding  bit  in  the  right  ex- 
pression. 

•  Logical  OR  ( I )  causes  each  bit  in  the  left  expression  to  be  ORed 
with  the  corresponding  bit  in  the  right  expression. 

•  Shift  left  (<<)  causes  the  left  expression  to  be  left-shifted  by 
the  number  of  bit  positions  specified  in  the  right  expression. 
The  left  expression  is  filled  with  zeros  from  the  right. 

•  Shift  right  (>>)  causes  the  left  expression  to  be  right-shifted 
by  the  number  of  bit  positions  specified  in  the  right  expression. 
The  left  expression  is  filled  with  zeros  from  the  left. 

The  special  operator,  unary  minus  (  — ).  causes  a  term  in  the  ex- 
pression to  be  negated,  or  subtracted  from  zero.  This  operator  can 

only  occur  at  the  beginning  of  an  expression  or  immediately  before  a 
left  parenthesk. 

How  Expressions  Are  Evaluated 

As  mentioned  at  the  beginning  of  this  section,  expressions  are  a 

combination  of  symbols,  constants,  algebraic  operators,  and  paren- 
theses. At  assembly  time,  the  assembler  evaluates  parenthetical  ex- 

pressions first,  and  processes  the  innermost  parentheses  before  the 
outer  ones.  Xext.  the  operators  are  processed  in  this  order:  unary 
minus,  shift,  axd  and  or,  multiply  and  divide,  add  and  subtract. 

Operators  of  the  same  precedence  (for  example,  and  "/")  are 
evaluated  from  left  to  right.  All  intermediate  values  are  truncated  to 

a  32-bit  integer  value.  The  result  of  an  expression  is  also  a  32-bit 
integer. 
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CONDITIONAL  ASSEMBLY 

The  conditional  assembly  feature  of  the  assembler  allows  you  to 
include  or  exclude  portions  of  the  source  program,  depending  on 
conditions  existing  at  assembly  time.  Typical  uses  of  conditional  as- 

sembly are: 

1.  To  include  or  exclude  certain  variables. 

2.  To  place  diagnostics  or  special  conditions  in  test  runs. 
3.  To  create  specialized  versions  of  a  multiuse  program. 

In  the  68000  assembler,  the  portion  of  the  source  program  to  be 
included  or  excluded  must  be  preceded  by  either  of  two  directives, 

IFEQ  or  IFNE,  and  terminated  by  an  ENDC  directive.  When  pre- 
ceded by  an  IFEQ  directive,  the  portion  is  assembled  only  if  the 

expression  in  the  operand  field  is  equal  to  zero.  When  preceded  by 
an  IFNE  directive,  the  portion  is  assembled  only  if  the  expression 
is  not  equal  to  zero. 

For  example,  using  conditional  assembly  it  is  possible  to  write  a 

program  whose  I/O  section  varies,  depending  on  whether  the  pro- 
gram is  used  in  a  disk  environment  or  in  a  paper-tape  environment. 

To  do  this,  you  might  assign  a  flag  called  DORT  as  a  disk  I/O  or 
tape  I/O  indicator.  If  DORT  is  zero,  the  program  will  be  assembled 
for  a  disk  environment;  if  DORT  is  nonzero,  the  program  will  be 

assembled  for  a  paper-tape  environment.  Fig.  2-1  shows  the  struc- 

ture of  this  program's  I/O  section. 

MACROS 

You  will  often  find  the  need  to  perform  a  particular  task  several 
times  within  a  program.  Rather  than  writing  out  the  sequence  of 
instructions  for  this  task  each  time  it  is  needed,  you  can  write  out 
the  sequence  just  once  in  one  of  two  ways:  as  a  subroutine  or  as 
a  macro.  As  most  readers  already  know,  a  subroutine  is  a  sequence 
of  instructions  that  appears  just  once  in  a  program.  Each  time  the 

subroutine  is  "called,"  program  control  is  transferred  to  the  sub- 
routine. When  the  subroutine  has  completed  its  task,  a  return  in- 

struction (RTS,  in  the  68000)  transfers  control  back  to  the  calling 
program.  Subroutines  are  discussed  in  detail  in  Chapter  3. 

Like  a  subroutine,  macros  allow  you  to  assign  a  name  to  an  in- 
struction sequence.  Each  time  you  use  that  name  in  an  operand 

field  of  your  source  program,  the  assembler  will  replace  the  macro 
name  with  the  associated  sequence  of  instructions.  Therein  lies  the 
difference  between  a  subroutine  and  a  macro.  The  instructions  in  a 

subroutine  are  invoked  when  the  program  is  executed;  the  instruc- 
tions in  a  macro  are  inserted  into  the  program  when  the  source  pro- 
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IFEQ  DORT DISK  I/O  STATEMENTS 

DISKIO  • 

Fig.  2-1.  Conditional  assembly 
chooses  between  disk  I/O 

and  tape  I/O. 

ENDC 

IFNE  DORT TAPE  I/O  STATEMENTS 
TAPEIO 

ENDC 

gram  is  assembled.  You  will  not  see  a  stand-alone  macro  sequence 
in  an  object  program,  as  you  will  a  subroutine.  Macros  have  the  fol- 

lowing advantages: 

1.  Shorter  source  programs. 
2.  Better  program  documentation. 
3.  Use  of  debugged  instruction  sequences.  Once  the  macro  has 

been  debugged,  you  are  assured  of  an  error-free  instruction  se- 
quence every  time  you  use  the  macro. 

4.  Easy  to  change.  Change  the  macro  definition  and  the  assem- 
bler will  make  the  changes  for  you  every  time  the  macro  is 

used. 
5.  Macros  can  be  used  to  establish  macro  Wmiries  which  one 

programmer  or  a  group  of  programmers  can  use  in  generating 

programs. 
6.  Quicker  execution.  The  microprocessor  is  not  delayed  by  call 

and  return  instructions,  as  it  is  for  subroutines. 

The  disadvantages  of  macros  are : 

1.  Repetition  of  the  same  instruction  sequences,  since  the  macro 
is  expanded  every  time  it  is  used. 

2.  A  single  macro  may  create  a  lot  of  instructions. 
3.  Lack  of  standardization. 

4.  Possible  effects  on  registers  and  status  flags  that  may  not  be 
clearly  described. 

Defining  a  Macro 

Every  macro  definition  consists  of  three  parts: 

1.  Macro  Header— The  MACRO  directive,  with  the  macro  name 
in  the  label  field. 

2.  Macro  Body— The  statements  that  constitute  the  macro  code. 
3.  Macro  Terminator— The  ENDM  directive,  which  marks  the  end 

of  the  macro  definition. 
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Fig.  2-2.  Standard  object  listing  format 
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The  assembler  allows  you  to  pass  up  to  nine  parameters  to  the  macro 
by  placing  these  parameters  in  the  operand  field  of  the  macro  call. 

The  assembler  also  allows  you  to  define  a  macro  that  includes  in- 
structions with  variable  data-size  codes! 

One  more  macro-related  directive  that  has  not  yet  been  mentioned 
is  MEXIT.  This  directive  is  used  with  conditional  assembly  state- 

ments to  cause  all  remaining  statements  in  a  macro  to  be  skipped. 

The  Motorola  MC68000  Cross  Macro  Assembler  Reference  Manual^ 
includes  the  full  details  on  the  use  of  macros  with  the  68000,  so  read- 

ers who  plan  to  use  macros  should  refer  to  this  document.  Additional 

information  on  macros  can  be  found  in  Campbell-Kelly's  book.^ 

LINE  LISTING  FORMAT 

Fig.  2-2  shows  the  line  format  for  object  listings  that  will  be 
printed  out  by  the  assembler.  The  listing  for  each  page  may  also 
have  a  page  header,  comment  lines,  expansion  lines,  and  error  lines. 

The  final  page  of  the  listing  will  have  a  "total  errors"  line  and  the 
symbol  table. 
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CHAPTER  3 

The  68000  Instruction  Set 

This  chapter  gives  a  detailed  description  of  the  68000  instruction 
set  and  its  14  addressing  modes.  Many  books  treat  the  instructions 

individually,  discussing  them  one  by  one  in  alphabetical  order.  Al- 
though that  approach  has  definite  merit  in  a  reference  manual,  it 

tends  to  leave  the  reader  somewhat  bewildered  (and  probably 
bored)  after  the  fifth  or  sixth  instruction.  Here,  instructions  are 

grouped  by  function,  with  similar  instructions  together.  That  is,  add 
instructions  are  grouped  with  subtract  instructions,  shift  instructions 
are  grouped  with  rotate  instructions,  and  so  on.  This  approach  is 

intended  to  help  you  understand  the  instruction  set,  and  how  indi- 

vidual instructions  "fit  together,"  rather  than  simply  learning  them 
as  disjointed  entities. 

Later  on,  after  you  have  run  a  few  programs,  you  will  only  have 

to  use  the  information  in  this  chapter  occasionally,  to  look  up  de- 
tails about  specific  instructions.  Once  you  feel  comfortable  with  the 

instruction  set,  most  questions  can  be  resolved  by  referring  to  Ap- 
pendix D,  where  the  instructions  are  summarized  alphabetically. 

INSTRUCTION  FORMAT  IN  MEMORY 

Instructions  can  occupy  from  one  to  five  words  in  memory,  as 

shown  in  Fig.  3-1.  The  first  word  is  an  operation-code  word,  which 

the  manufacturers'  literature  refers  to  as  an  op-word.  The  op-word 
contains  the  binary  bit  pattern  that  the  68000  decodes  to  determine 
the  instruction  type,  the  operand  addressing  mode(s),  and  the  length 

of  the  instruction.  Additional  extension  words  are  required  for  oper- 
and addressing  modes  that  use  constants  (immediate  values),  abso- 
lute addresses,  or  displacement  oflFsets.  Therefore,  the  longest  instruc- 
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tion  would  consist  of  an  op-word  followed  by  two  pairs  of  extension 
words— one  pair  for  the  source  operand  and  the  other  for  the  desti- 

nation operand. 

Two-word  immediate  operands  and  two-word  (or  "long")  abso- 
lute addresses  in  an  instruction  will  be  assembled  into  hi^h-word/ 

OPERATION  WORD 
(FIRST  WORD  SPECIFIES  OPERATION  AND  MODES) 

IMMEDIATE  OPERAND 

 (IF  ANY,  ONE  OR  TWO  WORDS) 
SOURCE  EFFECTIVE  ADDRESS  EXTENSION 

 (IF  ANY,  ONE  OR  TWO  WORDS) 
DESTINATION  EFFECTIVE  ADDRESS  EXTENSION 

(IF  ANY.  ONE  OR  TWO  WORDS)  

Courtesy  Motorola,  Inc 

I  Fig.  3-1.  Instruction  format  in  memory. 

j    low-word  order  in  memory.  That  is,  if  the  high-order  word  of  the 
!    operand  is  stored  at  ADDR,  the  low-order  word  will  be  stored  at 

ADDRH-2.  This  is  the  standard  convention  in  the  68000,  so  any  long- 
word  data  or  address  operand  referenced  by  your  programs  must 

also  be  stored  in  high-word/ low-word  order  in  memory. 

ADDRESSING  MODES 

The  68000  has  14  operand  addressing  modes,  seven  more  address- 
ing modes  than  the  Intel  8086  and  four  more  than  the  Zilog  Z8000, 

giving  it  perhaps  the  most  flexible  addressing  capability  of  any  16- 
bit  microprocessor  on  the  market.  As  Table  3-1  shows,  these  14 
modes  fall  into  six  basic  addressing  groups— register  direct,  address 
register  indirect,  absolute,  program  counter  relative,  immediate,  and 

implied.  Table  3-1  also  presents  the  formula  by  which  the  effective 
address  ( the  actual  address  of  an  operand )  is  calculated,  the  as- 

sembler format  for  each  operand  that  employs  that  mode,  and  the 
number  of  extension  words  (if  any)  the  mode  adds  to  an  instruction. 
If  you  wish  to  know  how  a  particular  addressing  mode  affects  the 

execution  time  of  an  instruction,  refer  to  Table  B-1  in  Appendix  B. 
If  an  operand  in  memory  is  being  addressed  ( as  it  will  if  you  use 

any  of  the  address  register  indirect,  absolute,  or  program  counter 
relative  modes ) ,  you  must  ensure  that  the  effective  address  does  not 
violate  the  addressing  rules  of  the  68000.  These  rules  are  as  follows : 

1.  Byte  operands  can  be  accessed  from  either  an  odd  or  even  ad- 
dress. 

2.  Word  and  long-word  operands  must  he  accessed  from  an  even 
address. 
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If  you  attempt  to  access  a  word  or  long-word  operand  using  an  odd 
address,  the  68000  will  generate  an  address  error  exception  (see 
Chapter  7).  These  address  boundary  considerations  are  something 

that  programmers  of  4-bit  and  8-bit  microprocessors  never  had  to 
contend  with. 

Most  of  the  addressing  mode  descriptions  in  this  chapter  include 
an  example  of  the  usage  of  the  mode  with  the  move  instruction  of 
the  68000.  The  move  instruction  has  the  general  format 

MOVE.X       (EA.sour.o),(EAaest. nation) 

where  the  suffix  ".X"  represents  the  data  size  code  (.B,  .W,  or  .L, 
per  Chapter  2)  for  the  data  being  moved.  Note  that  the  move  in- 

struction always  has  two  operands— one  operand  addresses  the  mem- 
ory location  or  register  that  contains  the  data  to  be  moved  (the 

source),  the  other  addresses  the  memory  location  or  register  that 
the  data  is  to  be  moved  to  (the  destination) . 

The  move  instruction  is  one  of  the  most  impressive  in  the  reper- 
toire of  the  68000.  It  can  move  anything,  from  anywhere  to  any- 

where. Depending  on  which  modes  are  used  for  source  and  desti- 
nation addressing,  the  move  instruction  can  move  data  between  two 

registers,  from  register  to  memory,  from  memory  to  register,  or  di- 
rectly from  one  memory  location  to  another  (without  affecting  any 

register).  It  can  also  move  an  immediate  value  into  a  register  or 
memory  location. 

Register  Direct  Addressing 

Register  direct  addressing  fetches  a  data  operand  from  (or  loads 
it  into)  either  a  data  register  or  address  register.  For  example,  the 
instruction 

MOVE.L  A0,D1 

copies  the  32-bit  contents  of  address  register  AO  into  data  register 
Dl,  without  affecting  the  contents  of  AO.  Note  that  register  direct 
addressing  is  used  here  to  both  fetch  the  source  operand  from  AO 
and  to  load  it  into  destination  register  Dl. 

Address  Register  Indirect  Addressing 

In  these  modes,  the  contents  of  an  address  register  "points  to"  the 
operand.  That  is,  the  specified  address  register  holds  a  base  address 
which  the  68000  will  use  to  calculate  the  effective  address  of  the 

operand.  (The  operand  will  be  a  data  value  unless  the  instruction 
is  a  jump  or  jump  to  subroutine,  in  which  case  the  operand  will  be 

an  address. )  The  relationship  between  the  base  address  and  the  ef- 
fective address  depends  on  which  of  five  addressing  modes  is  being 

employed. 
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For  the  simplest  of  these  five  modes,  called  address  register  in- 
direct addressing,  the  address  register  holds  the  eftective  address 

itself.  For  example,  the  instruction 

MOVE.W  (A0),D1 

will  load  the  low-order  16  bits  of  data  register  Dl  with  the  word 
whose  memory  address  is  in  address  register  AO.  Fig.  3-2  shows  how 
this  instruction  operates  if  AO  points  to  location  $53F00,  and  loca- 

tion $53F00  contains  the  value  $1C9A. 

MOVE.W  (AO).Dl 
 ^  MEMORY 

Fig.  3-2.  Address  register  indirect  addressing. 

Indirect  Addressing  With  Postincrement  and  Predecrement 

Many  applications  involve  operating  on  a  block  of  contiguous  data 

in  memory,  such  as  a  data  table  or  a  string.  With  most  microproces- 
sors, this  involves  accessing  an  operand  and  then  incrementing  or 

decrementing  the  address  pointer  (depending  on  whether  the  next 

operand  lies  higher  or  lower  in  memoiy).  The  68000  frees  the  pro- 
grammer from  the  increment/ decrement  task,  by  providing  post- 

increment and  predecrement  modes  with  address  register  indirect 
addressing. 

The  first  of  these  modes,  address  register  indirect  with  postincre- 
ment, uses  the  operand,  then  adds  1,  2,  or  4  to  the  address  register. 

The  value  that  is  added  to  the  address— 1,  2,  or  4— depends  on 

whether  a  byte  (1),  word  (2),  or  long  word  (4)  is  being  oper- 
ated on.  For  example,  if  the  source  block  is  being  pointed  to  by  AO 

and  the  destination  block  is  being  pointed  to  by  Al,  the  instruction 

MOVE.W    (A0)  +  ,(A1)-|- 

will  copy  one  data  word  from  the  source  block  to  the  destination 
block,  then  automatically  increment  each  pointer  by  2  (to  point  to 
the  next  source  and  destination  word  locations ) .  Of  course,  this  move 
instruction  can  be  used  in  a  loop  to  transfer  any  number  of  data 
words  from  one  part  of  memory  to  another,  in  order  of  increasing 
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ADDRESS  REGISTERS 

AO  I  $00053FQ0 

Al $00060000 

$53EFE 

$53F00 
$53F02 

$5FFFE 
$60000 

$60002 

MEMORY 

$1C9A 

{A)  Before  executing  MOVE.W  {AO)  -\-,{A1) 

(B)  After  executing  l\/IOVE.W  (AO)  +,  {A1)  +. 

Fig.  3-3.  Postincrementing  an  address  register. 

addresses.  Fig.  3-3  shows  how  instruction  MOVE.W  ( AO)-f ,( Al)-f- 
operates  if  AQand  Al  initially  point  to  locations  $53F00  and  $60000, 
respectively,  and  source  location  $53F00  contains  the  value  $1C9A. 

A  similar  mode,  address  register  indirect  with  predecrement,  sub- 
tracts 1,  2,  or  4  from  an  address  register  before  the  register  is  used. 

Therefore,  this  mode  is  also  useful  for  moving  blocks  of  data  from 
one  area  of  memory  to  another,  but  the  move  is  performed  in  order 
of  decreasing  addresses.  For  example,  the  instruction 

MOVE.W    -(AO) -(A1) 

will  copy  one  data  word  from  the  source  block  to  the  destination 
block,  but  decrement  each  pointer  by  2  (to  point  to  the  next  source 
and  destination  word  locations)  before  doing  so. 

As  mentioned  in  Chapter  1,  all  eight  address  registers  of  the  68000 
are  available  for  use  as  stack  pointers.  One  of  these  registers,  A7, 
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acts  as  the  system  stack  pointer  (SP),  which  leaves  the  other  seven 
address  registers  ( AO  through  A6 )  free  for  configuring  user  stacks 
in  memory.  Therefore,  the  68000  can  maintain  up  to  eight  separate 
user  stacks  in  memory!  From  the  preceding  paragraphs  you  can  see 
that  the  postincrement  and  predecrement  modes  are  useful  for  ma- 

nipulating these  stacks. 

Since  stacks  "build"  in  the  direction  of  address  0,  the  predecre- 
ment mode  is  used  to  push  a  value  onto  the  stack  and  the  postincre- 
ment mode  is  used  to  pull  a  value  off  of  the  stack.  If  address  register 

AO,  for  instance,  is  being  employed  as  a  user  stack  pointer,  the  in- 
struction 

MOVE.L  DO,-(AO) 

causes  the  32-bit  contents  of  DO  to  be  pushed  onto  the  stack,  and  the 
instruction 

MOVE.L  (AO)+,DO 

restores  the  32-bit  contents  of  DO  from  the  stack.  Incidentally,  a 
variation  of  the  move  instruction,  called  move  multiple  registers 
(MOVEM) ,  is  available  for  moving  a  group  of  registers  to  and  from 
a  stack. 

Indirect  Addressing  With  Displacements  and  Indexes 

At  this  point,  we  have  described  three  of  the  five  address  register 
indirect  addressing  modes.  The  remaining  two  modes  support  data 
tables  by  permitting  displacements  and  indexes  to  be  added  to  the 
address  pointer. 

One  of  these  modes,  address  register  indirect  with  displacement, 

adds  a  16-bit  signed  integer  to  the  contents  of  an  address  register, 
then  uses  the  result  to  address  an  operand  in  memory.  This  mode 
is  especially  useful  for  accessing  a  selected  element  in  a  list  or  table. 

For  these  applications,  the  address  register  holds  the  starting  ad- 
dress of  the  table,  and  the  displacement  in  the  instruction  specifies 

the  relative  position  of  the  element  in  the  table. 
The  displacement  is  given  in  bytes,  so  for  tables  comprised  of  byte 

data  the  displacement  is  simply  the  element  number  (0,  1,  2,  etc.). 

For  tables  comprised  of  word  or  long-word  data,  the  displacement 
must  be  an  even-numbered  integer  that  represents  the  element  num- 

ber multiplied  by  2  or  4.  For  example,  if  address  register  AO  holds 

the  starting  address  of  a  word-based  table  in  memory,  the  instruction 

MOVE.W  14(A0),D1 

will  load  the  value  of  the  eighth  element  ( Element  7 )  into  the  low 

word  of  data  register  Dl.  Fig.  3-4  shows  how  this  instruction  oper- 
ates for  a  table  that  starts  at  location  $53F00.  Adding  the  displace- 
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MEMORY 

$53F00 

MOVE.W  14(A0).D1 

$53F0E 
Dl $1C9A $1C9A 

ELEMENT  0 
1 

2 

3 

4 

5 

6 

7 

Fig.  3-4.  Applying  a  displacement  to  an  address  register. 

ment,  decimal  14  (hex  $E),  to  the  starting  address  in  AO  yields  an 
effective  address  of  $53F0E,  which  is  assumed  to  contain  the  value 
$1C9A. 

Note  that  because  the  displacement  is  a  16-bit  signed  integer,  the 
address  register  indirect  with  displacement  mode  can  span  up  to 

32,767  bytes  higher  in  memory,  or  up  to  32,768  bytes  lower  in  mem- 
ory, than  the  address  in  the  address  register.  If  you  are  operating  on 

word  or  long-word  data,  these  displacement  limits  translate  to  16,383 
words  or  8191  long  words  forward,  and  to  16,384  words  or  8192  long 
words  backward. 

The  final  addressing  mode  of  this  group,  address  register  indirect 
with  index,  derives  the  effective  address  of  the  operand  by  adding 

an  8-bit  signed  integer  and  the  contents  of  an  index  register  ( a  data 
register  or  an  address  register )  to  an  address  register.  Therefore,  the 
effective  address  equation  looks  like  this: 

EA=  (An) -f  (Ri) -fds 

The  assembler  gives  you  the  choice  of  applying  the  entire  32-bit 
contents  of  the  index  register  or  just  its  low-order  word,  by  append- 

ing either  an  ".L"  or  a  ".W"  data  size  code  to  the  index  register  sym- 
bol. Either  way,  the  size  of  the  index  register  does  not  affect  the 

execution  time  of  the  instruction. 

Because  it  offers  two  separate  offsets,  this  particular  addressing 

mode  is  useful  for  accessing  two-dimensional  arrays.  For  such  appli- 
cations, an  address  register  usually  holds  the  starting  address  of  the 

array,  and  the  displacement  and  index  register  provide  row  and 
column  offsets  (or  column  and  row  offsets,  depending  on  how  the 
array  is  structured).  Normally,  a  data  register  holds  the  index  (in 
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hytes)  and  a  symbol  is  used  to  specify  the  displacement  (also  in 
bytes ) . 

For  example,  suppose  you  have  a  68000-based  system  that  moni- 
tors six  different  pressure  valves  in  a  chemical  processing  plant.  This 

system  takes  a  reading  of  each  valve  once  every  half-hour,  and  re- 

cords these  readings  in  memory.  In  one  week's  time,  these  readings 
will  form  an  array  that  has  336  blocks  (48  readings/ day  for  seven 
days)  of  six  elements  each,  for  a  total  of  2016  data  values.  If  the 

starting  address  of  the  array  is  held  in  AO,  the  block  displacement 
( reading  number  times  twelve )  in  DO  and  the  valve  number  in  the 
symbol  VALVE,  the  instruction 

MOVE.W  VALVE(A0,D0.W),D1 

can  be  used  to  enter  any  selected  pressure-valve  reading  into  the 
low  word  of  data  register  Dl.  In  Fig.  3-5,  this  instruction  is  used 
to  extract  the  value  of  the  third  reading  (Reading  2)  of  Valve  4 
from  an  array  that  starts  at  location  $53F00. 

Absolute  Data  Addressing 

In  absolute  data  addressing,  the  effective  address  itself  is  speci- 
fied as  the  operand.  The  68000  has  two  absolute  addressing  modes— 

absolute  short  addressing,  in  which  the  operand  is  a  16-bit  address 
(sign-extended  to  32  bits),  and  absolute  long  addressing,  in  which 
the  operand  is  a  full  32-bit  address. 

The  absolute  short-addressing  mode  allows  you  to  access  only 
the  lowest  32K  bytes  in  memory  (addresses  0  through  $7FFF)  or 
the  highest  32K  bytes  in  memory  ( addresses  $FF8000  through 

$FFFFFF),  whereas  the  absolute  long-addressing  mode  allows  you 
to  access  any  location  in  the  16M-byte  addressing  range  of  the  68000. 
However,  absolute  short-addressed  instructions  occupy  one  less  word 

in  memory,  and  execute  in  four  less  cycles,  than  absolute  long-ad- 
dressed instructions.  With  two  separate  absolute  addressing  modes, 

the  68000  supports  applications  that  need  a  very  large  addressing 
space  without  penalizing  the  efficiency  of  applications  that  need  only 

a  small  addressing  space.  Of  course,  the  large-address  applications 
will  make  use  of  absolute  short  addressing,  too,  to  access  frequently 
used  data  and  temporary  data  that  is  stored  in  the  extreme  32K 
bytes  of  memory. 

For  example,  to  load  the  word  in  location  $3F00  into  the  low- 
order  half  of  data  register  Dl,  we  can  use  the  instruction 

MOVE.W  $3F00,D1 

which  is  the  absolute  short-addressed  ( 2-word,  12-cycle )  equivalent 
of  the  absolute  long-addressed  (3-word,  16-cycle)  instruction 

MOVE.W  $03F00,D1 
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$53F00 

MOVE.W  VALVE(A0,D0.W).D1 

READING  335 

Fig.  3-5.  Extracting  a  data  value  from  a  two-dimensional  array. 

Note  that  the  data  size  code  ( .VV,  in  this  case )  refers  to  the  size  of 
the  data  being  moved,  rather  than  the  length  of  the  absolute  address. 

Quite  often,  the  absolute  address  operand  is  specified  as  a  label 
rather  than  a  hexadecimal  number,  as  in  the  instruction 

MOVE.L  TABLE,AO 

This  instruction  will  load  the  contents  of  the  long  word  starting  at 
TABLE  into  address  register  AO.  (To  load  the  address  of  TABLE 
into  AO,  you  must  use  either  the  immediate  data  addressing  mode 
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—the  description  is  upcoming— with  the  move  instruction,  or  the 
68000  load  effective  address  instruction,  LEA.) 

Will  the  preceding  move  instruction  translate  address  TABLE 

into  an  absolute  short  address  or  an  absolute  long  address?  That  is, 
will  the  object  code  for  the  move  instruction  occupy  two  words  in 
memory  and  take  12  cycles  to  execute,  or  occupy  three  words  in 
memory  and  take  16  cycles  to  execute?  The  answer  depends  on 
whether  TABLE  is  located  at  a  lower  address  or  a  higher  address 
than  the  move  instruction.  The  rules  are  as  follows: 

•  If  TABLE  has  a  lower  address  than  the  move  instruction  (a 
backward  reference  is  being  made ) ,  the  assembler  will  generate 
the  appropriate  absolute  short  or  long  address. 

•  If  TABLE  has  a  higher  address  than  the  move  instruction  (a 

forward  reference  is  being  made ) ,  and  the  instruction  falls  un- 
der an  ORG  directive,  the  assembler  will  attempt  to  generate 

an  absolute  short  address.  You  can  force  the  assembler  to  gen- 
erate absolute  long  addresses  for  forward  references  by  using 

an  ORG.L  directive. 

Note  that  the  assembler  generates  absolute  addresses  for  instructions 
that  are  origined  with  an  ORG  directive.  It  will  generate  relative 
addresses  for  instructions  that  are  origined  with  an  RORG  directive. 
With  this  fact  in  mind,  let  us  move  on  to  a  discussion  of  relative 
addressing. 

Program  Counter  Relative  Addressing 

The  program  counter  relative  addressing  modes  are  useful  for  de- 

veloping position-independent,  or  "relocatable,"  programs.  These  are 
programs  that  once  written  and  assembled  can  be  executed  any- 

where in  the  memory  space.  Programs  sold  in  ROM,  for  instance, 
are  often  relocatable. 

With  this  form  of  addressing,  the  68000  calculates  the  effective 

address  by  adding  a  displacement  value  to  the  address  contained 
in  the  program  counter.  What  address  does  the  program  counter 
contain?  It  contains  the  address  of  one  of  the  words  in  the  instruc- 

tion—an extension  word  that  holds  a  signed  displacement.  There- 
fore, program  counter  relative  addressing  is  used  to  access  operands 

that  are  situated  some  number  of  bytes  higher  or  lower  in  memory 
than  the  current  instruction. 

The  68000  has  two  program  counter  relative  addressing  modes- 
relative  with  displacement  and  relative  with  index.  In  the  simpler 

mode,  relative  with  displacement,  the  effective  address  is  the  sum 

of  the  address  in  the  program  counter  and  a  sign-extended  16-bit 
displacement  in  the  extension  word  of  the  instruction.  That  is, 
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EA=  (PC)  +dio 

Fortunately,  with  an  assembler  you  need  not  speeify  the  displaee- 
ment  direetly;  the  assembler  will  caleulate  it  for  you.  For  example, 
the  instruetion 

MOVE.W  LABEL,D1 

will  cause  the  assembler  to  calculate  the  displacement  (in  bytes) 
between  the  extension  word  of  the  move  instruction  and  location 

LABEL,  and  store  this  displacement  in  the  extension  word.  At  exe- 
cution time,  the  68000  microprocessor  will  load  the  contents  of  lo- 
cation LABEL  into  the  low-order  16  bits  of  data  register  DL  You 

will  note  that  because  the  displacement  is  a  16-bit  signed  integer, 
LABEL  must  be  no  more  than  16,383  words  higher  in  memory,  or 
no  more  than  16,384  words  lower  in  memory,  than  the  extension 
word  of  the  instruction. 

Incidentally,  note  that  the  preceding  move  instruction  gives  no 

indication  as  to  whether  the  assembler  will  use  program  counter  rela- 
tive addressing  or  absolute  addressing  to  calculate  the  effective  ad- 

dress of  LABEL.  The  answer  is,  quite  simply,  that  labels  preceded 
hy  an  RORG  directive  will  cause  the  assembler  to  generate  program 
counter  relative  addressing,  whereas  labels  preceded  by  an  ORG 
directive  will  cause  the  assembler  to  generate  absolute  addressing. 

The  assembler  does  not  restrict  you  to  labels  in  order  to  specify 

a  relative  address.  You  may,  if  you  wish,  specify  the  address  in  re- 
lation to  the  location  counter  of  the  assembler  (see  the  Assembler 

Directives  section  of  Chapter  2 ) .  The  location  counter  is  referenced 

by  using  an  asterisk  (  *  )  character  in  the  operand  field.  For  exam- 
ple, the  instruction 

JMP  *+10 

causes  program  control  to  be  transferred  to  the  instruction  that  lies 

10  bytes  ( five^words )  past  the  extension  word  of  this  jump  instruc- 
tion. However,  if  at  all  possible,  references  to  the  location  counter 

should  be  avoided  and  labeled  references  should  be  used  instead. 

With  the  more  complex  form  of  program  counter  relative  address- 
ing, relative  with  index,  the  effective  address  is  the  sum  of  three 

terms— the  address  of  the  extension  word  in  the  program  counter, 
a  sign-extended  8-bit  displacement  integer  in  the  extension  word, 
and  the  contents  of  an  index  register  (either  a  data  register  or  an 
address  register).  That  is, 

EA=  (PC)  +  (Ri)  +  d8 

This  mode  is  particularly  useful  for  reading  values  from  a  list  or 
data  table.  For  such  applications,  the  sum  of  the  program  counter 
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MEMORY 

PC  POINTS  HERE- 

OP  WORD 
EXT.  WORD 

<>  <> 

START'^IG  ADDRESS  OF  DATA  TABLE (PC  +  dfi) 

DATA TABLE 

DESIRED  DATA  IN  TABLE  (PC  +  Ri  +  dg) 

Fig.  3-6.  Program  counter  relative  with  index  addressing. 

and  8-bit  displacement  addresses  the  beginning  of  the  table,  and  the 
index  register  provides  the  offset  to  the  desired  data  element.  This 

is  illustrated  in  Fig.  3-6. 
You  can  use  either  the  low  word  of  the  index  register  or  its  entire 

32-bit  contents  by  appending  a  .W  or  .L  data  size  code  to  the  reg- 
ister symbol  in  the  instruction.  (As  usual,  omitting  the  data  size 

code  defaults  to  word  size.)  As  an  example,  if  a  data  table  starts 
at  location  TABLE,  the  instruction 

MOVE.W  TABLE{D0.L),D1 

will  cause  the  assembler  to  calculate  the  displacement  between  the 
extension  word  of  the  instruction  and  location  TABLE,  and  use  this 

displacement  to  form,  the  extension  word.  At  execution  time,  the 

68000  microprocessor  will  add  the  32-bit  contents  of  data  register 
DO  to  the  calculated  starting  address  of  the  data  table,  then  load  the 

16-bit  contents  of  the  memory  location  addressed  by  the  result  into 
the  low-order  16  bits  of  data  register  Dl.  Because  the  displacement 
is  an  8-bit  signed  integer,  TABLE  must  be  no  more  than  63  words 

higher  in  memory,  or  64  words  lower  in  memory,  than  the  exten- 
sion word  of  the  instruction. 

Immediate  Data  Addressing 

Immediate  data  addressing  is  used  to  specify  a  constant  value 
as  a  source  operand.  This  value  will  be  contained  in  the  instruction, 

rather  than  in  a  register  or  a  memory  location.  There  are  two  im- 
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Fig.  3-7.  Extension  word  formats  for  immediate  data. 

mediate  data  addressing  modes,  called  immediate  and  quick  imme- 
diate. 

The  immediate  mode  allows  you  to  specify  a  byte,  word,  or  long- 
word  constant.  If  the  constant  is  a  byte  or  a  word  value,  it  will  re- 

side in  an  extension  word  that  follows  the  operation  word.  If  the 

constant  is  a  long-word  value,  it  will  reside  in  two  extension  words 
that  follow  the  operation  word.  The  formats  of  these  words  are 

shown  in  Fig.  3-7. 
Further,  the  data  will  be  sign-extended  if  the  destination  is  an 

address  register,  but  will  not  be  sign-extended  if  the  destination  is 
a  data  register.  For  example,  the  instruction 

MOVE.W  #$834E,D0 

loads  the  value  $834E  into  the  low  word  of  data  register  DO,  with- 
out affecting  the  high  word.  However,  the  similar  instruction 

MOVE.W  #$834E,A0 

loads  the  value  $FFFF834E  into  address  register  AO,  affecting  all 
32  bits. 

The  quick  immediate  mode  can  be  used  with  only  three  instruc- 
tions—add quick  (ADDQ),  subtract  quick  (SUBQ),  and  move  quick 

(MOVEQ).  The  ADDQ  and  SUBQ  instructions  allow  an  unsigned 
integer  value  between  1  and  8  to  be  added  to  or  subtracted  from  a 
register  or  memory  location.  These  are  the  increment  and  decrement 
instructions  of  the  68000.  The  MOVEQ  instruction  allows  a  signed, 

byte-length  value  (-128  to  +127)  to  be  loaded  into  a  data  register; 
the  data  is  sign-extended,  so  all  32  bits  of  the  register  are  affected. 
For  example,  the  instruction 

MOVEQ  #-2,D0 

causes  the  value  $FFFFFFFE  (the  2s-complement  representation 

of  -2,  sign-extended  to  a  long  word )  to  be  loaded  into  data  register 

DO.  These  three  instructions  are  characterized  as  "quick"  because 
they  occupy  only  one  word  in  memory  (the  immediate  data  is  em- 
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bedded  in  the  operation  word)  and,  therefore,  execute  much  faster 
than  their  immediate  mode  equivalents. 

Implied  Addressing 

Some  instructions  use  a  certain  internal  register  to  perform  an 
operation,  without  identifying  that  register  in  the  operand  field. 
That  is,  the  addressing  of  these  registers  is  implied.  For  example, 

the  jump  (JMP)  instruction  always  loads  an  address  into  the  pro- 
gram counter,  although  the  program  counter  is  not  explicitly  iden- 
tified as  a  destination  register  in  the  instruction.  Besides  the  pro- 
gram counter  (PC),  the  system  stack  pointer  (SP),  the  user  stack 

pointer  (USP),  supervisor  stack  pointer  (SSP),  and  status  register 

(SR)  are  also  used  as  implied  registers.  Table  3-2  lists  the  instruc- 
tions that  use  implied  addressing,  and  the  registers  implied. 

Addressing  Modes  That  Sign-Extend  Addresses  or  Data 

Although  the  data  registers  and  address  registers  of  the  68000  are 

general-purpose  in  nature,  the  data  registers  are  primarily  used  to 
hold  data  and  the  address  registers  are  primarily  used  to  hold  32-bit 
memory  addresses.  For  this  reason,  the  addressing  modes  do  not 

sign-extend  information  loaded  into  data  registers,  hut  ahvays  sign- 
extend  information  loaded  into  address  registers.  Table  3-3  sum- 

marizes the  addressing  modes  that  cause  information  to  be  sign- 
extended.  Later  in  this  chapter  we  will  discuss  the  instructions  that 

cause  information  to  be  sign-extended. 

EFFECTIVE  ADDRESSING  MODE  CATEGORIES 

As  you  have  seen  in  the  preceding  portion  of  this  chapter,  each 
of  the  14  addressing  modes  of  the  68000  is  designed  to  perform  a 
particular  addressing  function.  Some  modes  can  be  used  to  access 
an  operand  in  a  register,  others  can  be  used  to  access  an  operand 
at  a  known  memory  address,  or  at  a  given  displacement  from  a 
known  memory  address,  and  so  on.  Further,  some  modes  can  be 
used  to  refer  to  any  of  several  information  types  (e.g.,  the  address 

register  indirect  modes  can  access  either  data  or  addresses  in  mem- 

ory), whereas  other  modes  have  more  restricted  usage  (e.g.,  the  ad- 
dress register  direct  mode  can  refer  to  an  address  operand,  but  not 

to  a  data  operand).  For  this  reason,  the  individual  addressing  modes 
can  be  characterized  in  terms  of  four  different  addressing  categories, 
as  follows: 

1.  Data—li  an  effective  addressing  mode  can  be  used  to  refer  to 

data  operands,  it  is  considered  a  data  addressing  mode. 

2.  Memory— U  an  effective  address  mode  can  be  used  to  refer  to 

memory  operands,  it  is  considered  a  memory  addressing  mode. 
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Table  3-2.  Implicit  Instructions 
Instruction Implied  Registerts) 

Dr3nOil  v-»UI  lUI  IIUI  lal  ̂ DO»_</,  CJlallLfll  rMWciyo  ^DnrN^ 

Qronrh  to  c^iihrniitinp  ^R'^R^ PP  QP 

f^biorU  RfiniQtpr  AnAin<%t  Rniinri<5  /riHK\ On"Or\  llt^UIOLCI   AA^CIIIIOl   D^UIILJo  ^Vi/lirX^ 
CCp  CR 
oor ,  on 

Toct  rinnHitinn  Dprrpmpnt  anrl  Rranrh  ^DRrr^ fool  V^Ul  Idl  IILII  1,    L^CV^I       1         1 1   allVJ    LJiailV^II  \LJLJK^Kjf pp. 

ciinnpfi  Dividp  ̂ DI\/S^ SSP  SR 

Unsigned  Divide  (DIVU) SSP,  SR 

PC 

liimn  tn  Riihrnutinp  MSR^ PC,  SP 

1  ink  and  Allocate  ^LINK^ SP 

on 
KAriMo  QtatiiQ  Rpnictpr  /MOWF  ^R\ iviuvc  olaiuo  ncyioici  \iviwvc.  o 

CiR 

on 

mOve  user  oidOK  roinier  ^ivnw/vci  uor^ 1  IQP 
Uor 

Diich  Pffpoti\/o  A/HHrocc  ^PPA\ lUoll  CllcOllVC  MUUIcoo  \rCr^l 

c;p 

Or 
neiurn  rrom  cxcepiion     i  c) PP    Cp  OR rO,  or,  on 
neiur n  ano  nesiore  oonaiiion  v^ooeo  i PP   QP  QR r*^,  Or,  on 

Rptiirn  Frnm  Siiihrniitinp  ^RTS^ PC,  SP 

Trap  (TRAP) SSP,  SR 

Trap  on  Overflow  (TRAPV) SSP,  SR 

Unlink  (UNLK) 
SP 
Courtesy  Motorola,  Inc. 

3.  Control— li  an  effective  addressing  mode  can  be  used  to  refer 

to  memory  operands  without  an  associated  size,  it  is  consid- 
ered a  control  addressing  mode. 

4.  Alterable— If  an  effective  addressing  mode  can  be  used  to  refer 
to  alterable  (writable)  operands,  it  is  considered  an  alterable 
addressing  mode. 

Table  3-4  lists  the  effective  addressing  mode  categories  for  each 
of  the  addressing  modes  of  the  68000.  This  table  will  be  important 

to  you  as  a  68000  programmer,  because  many  of  the  instructions  re- 
strict operands  to  certain  categories,  or  combinations  of  categories. 

For  example,  the  add  quick  instruction  has  the  general  form 

ADDQ  #<data>,<ea> 

in  which  only  alterable  addressing  modes  are  allowed  in  the  effec- 
tive address  field.  This  means  that  any  addressing  mode  except  pro- 

gram counter  relative  and  immediate  can  be  used  in  the  effective 
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Table  3-3. 
Addressing  Modes  That  Sign-Extend  Addresses  or  Data 

Addressing  Modes Type  of  Sign-Extension 

Address  register  direct  (as  a 
destination). 

Word  address  extended  to  long  word. 

Address  register  indirect 
with  displacement. 

Word  displacement  extended  to  long 
word. 

Address  register  indirect 
with  index. 

1.  Byte  displacement  extended  to  long 
word. 

2  Word  indpx  pxtpndpd  to  lonn  word 

Absolute  short  address. Word  address  extended  to  long  word. 

Program  counter  relative 
with  displacement. 

Word  displacement  extended  to  long 
word. 

Program  counter  relative 
with  index. 

1.  Byte  displacement  extended  to  long 
word. 

2.  Word  index  extended  to  long  word. 

address  field.  Therefore,  ADDQ  #2,A0  is  a  legal  instruction,  but 
ADDQ  #2,#2  is  not  legal  (for  obvious  reasons,  in  this  case). 

An  instruction  that  can  use  a  combination  of  categories  in  an  op- 
erand field  is  the  move  instruction,  which  has  the  general  form 

MOVE  <ea>,<ea> 

For  this  instruction,  all  addressing  modes  are  allowed  for  the  source 

field,  unless  the  operation  size  is  byte  (in  which  case  the  address 

register  direct  addressing  mode  is  not  allowed ) .  For  the  destination 

field,  only  "data  alterable"  addressing  modes  are  allowed.  This  means 
that  for  the  destination  field,  the  allowable  addressing  modes  are 

those  which  are  categorized  as  both  a  data  addressing  mode  and  an 

alterable  addressing  mode.  So  the  data  alterable  addressing  modes 

include  data  register  direct,  the  address  register  indirects,  and  the 

absolute  modes.  Conversely,  the  address  register  direct,  program 

counter  relative,  and  immediate  modes  are  excluded  from  the  set 
of  data  alterable  modes. 

Since  address  register  direct  is  not  a  data  alterable  addressing 

mode,  may  we  presume  that  nothing  can  be  moved  into  an  address 

register?  Of  course  not;  there  must  be  some  way  to  initialize  these 

registers!  The  answer  is  that  nothing  can  be  moved  into  an  address 

register  using  a  MOVE  instruction,  but  the  68000  has  another  in- 
struction, called  move  address  {MOVE A),  that  can  be  used  for  this 

purpose.  Incidentally,  although  the  manufacturers'  68000  users'  man- uals define  MOVE  and  MOVEA  as  two  distinct  instructions,  most 

68000  assemblers  (including  those  from  Motorola)  permit  an  ad- 
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Table  3-5.  The  68000  Instruction  Set 

Mnoinonic Description 

ABCD Add  Decimal 
With  Extend 

ADD Add 
AND Logical  and 
ASL Arithmetic  Shift 

Left 
ASR Arithmetic  Shift 

Right 

Bcc Branch 
Conditionally 

BCHG Bit  Test  and 
Change 

BCLR Bit  Test  and 
Clear 

BRA Branch  Always 
BSET Bit  Test  and  Set 
BSR Branch  to 

Subroutine 
BTST Bit  Test 

CHK Check  Register 
Against  Bounds 

CLR Clear  Operand 
CMP Compare 

DBcc Test  Condition, 
Decrement  and 
Branch 

DIVS Signed  Divide 
DIVU Unsigned  Divide 

EOR Exclusive-OR 
EXG Exchange 

Registers 
EXT Sign  Extend 

JMP 
Jump 

JSR Jump  to 
Siihrniitlnp 

LEA Load  Effective 
Address 

LINK Link  Stack 
LSL Logical  Shift 

Left 
LSR Logical  Shift 

Right 

MOVE Move 

Mnenrionic DescriDtlon 

IVI  W  V  LIVl IVIUVc  IVIUIlipic 

Rpni<5tpr<i 
MOVER Movp  Pprinhpral 

Data 
MULS Signed  Multiply 
MULL) Unsigned Multiply 

NBCD 
With  pYtPnH 

NEC 
Negate 

NOP No  Operation 
NOT 

One's 

Complement 

OR Logical  or 
PEA Push  Effective 

Address 

RESET Rpcpt  Fytprnal 

Dpvirp*? 
\~y  \^  V  1  o  o 

ROL Rntatp  Lpft 
Withniit  Fvtpnfi 

ROR Rntatp  Rinht 
Withniit  Fvtpnfi 

Rntatp  1  pft  With riL'lCllC  1— CI  I  Willi 
F  YtpnH l^A  ICI  \\i 

ROXR Rotatp  Rinht 
With  FYtpnd Willi    I^A  Id  lU 

RTF Rptiirn  Frnm nc  I  u  1 1 1  1  1  L/i  1 1 
Fv^or»tinn CAOcpilUI  1 

RTR Return  and 
Restore 

RTS Return  From 
Subroutine 

SBCD Siihtrart  Dpcimal 
With  Fxtpnri Willi  L.ALwllU 

^pt  rinnrlitinnfll O v7  I           1  l\<l  1  L  1     1  1  d  1 
STOP 

Stop 

SUB Subtract 
SWAP Swap  Data 

Register  Halves 

TA*^ 

Tpot  and  Spt 
1  wO  L  Cll  IvJ  Od 

Operand TRAP 

Trap 

TRAPV Trap  on  Overflow 
1  o  1 Toct 1  col 

UNLK Unlink 

Courtesy  Motorola,  Inc. 
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dress  register  to  be  specified  in  the  destination  field  of  a  MOVE 

instruction.  These  assemblers  will  simply  interpret  your  MOVE  in- 
struction as  a  MOVEA,  and  generate  the  object  code  accordingly. 

INSTRUCTION  TYPES 

As  mentioned  previously,  the  68000  has  56  basic  instruction  types. 
The  assembler  mnemonics  and  the  description  of  these  instructions 

are  summarized  in  Table  3-5.  Further,  eight  of  these  instructions 
have  variations  to  perform  special  operations;  the  variations  are 
summarized  in  Table  3-6. 

Table  3-6.  Variations  of  Instruction  Types 

Instruction 
Tvoe Variation Description 

ADD ADD Add 
ADDA Add  Address 
ADDQ Add  Quick 
ADDI Add  Immediate 
ADDX Add  With  Extend 

AND AND Logical  and ANDI AND  Immediate 

CMP CMP Compare 
CMPA Compare  Address 
CMPM V./IVI  1  ivi Onmnarp  Mpmr»r\/ 
PMPI v./  IVI  1  1 \jKj\\\yjo.\\i  lilllllcUldiCi 

EOR EOR FYPlll^ivP-nR 
EORI Exclusive-OR  Immediate 

MOVE MOVE Move 
MOVEA Move  Address 
MOVED Move  Quick 
MOVE  from  SR Move  From  Status  Register 
MOVE  to  SR Move  to  Status  Register 
MOVE  to  OCR Move  to  Condition  Codes 
MOVE  USP Move  User  Stack  Pointer 

NEC NEG 
Negate 

NEGX Negate  With  Extend 

OR OR Logical  or ORI OR  Immediate 

SUB SUB Subtract 
SUBA Subtract  Address 
SUBI Subtract  Immediate 
SUBQ Subtract  Quick 
SUBX Subtract  With  Extend 

Courtesy  Motorola,  Inc. 
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The  instruction  set  can  be  divided  into  eight  functional  groups. 
Here  is  a  Hsting  of  the  groups,  and  a  general  description  of  what 
functions  they  perform: 

1.  Data  movement  instructions  move  information  between  mem- 

ory locations,  I/O  devices,  and  general-purpose  registers,  in 
any  combination. 

2.  Integer  arithmetic  instructions  perform  single-precision  and 
multiple-precision  arithmetic  operations  on  binary  numbers. 

3.  Logical  instructions  perform  logical  and,  or  and  Exclusive-OR 
operations  on  memory  locations  and  registers. 

4.  Shift  and  rotate  instructions  shift  and  rotate  the  contents  of 
memory  locations  and  registers. 

5.  Bit  manipulation  instructions  test  the  state  of  individual  bits, 
and  perform  some  operation  based  on  the  result  of  that  test. 

6.  Binari/-coded-decimal  (BCD)  instructions  add  and  subtract 
BCD  digits. 

7.  Prof^ram  control  instructions  perform  branches,  jumps,  and  sub- 
routine calls,  to  control  the  sequence  of  program  execution. 

8.  System  control  instructions  include  privileged  instructions, 

trap-generating  instructions,  and  instructions  that  use  or  modify 
the  status  register. 

In  this  chapter,  we  will  describe  the  68000  instruction  set  by 
groups,  in  the  order  just  presented.  Let  us  begin  by  describing  the 
data  movement  instructions,  which  include  the  now-familiar  MOVE 
instruction. 

DATA  MOVEMENT  INSTRUCTIONS 

The  data  movement  instructions  (Table  3-7)  are  used  to  transfer 
information  between  memory  and  the  data  and  address  registers. 
This  group  actually  includes  two  additional  instructions,  link 
(LINK)  and  unlink  (UNLK),  but  these  are  primarily  used  with 

subroutines,  so  they  will  be  described  separately,  following  the  dis- 
cussion of  the  program  control  instructions. 

Move  Instruction 

The  fundamental  instruction  in  this  group  is  the  move  ( MOVE ) 

instruction,  which  can  be  used  to  transfer  byte,  word,  or  long-word 
data  between  two  memory  locations,  between  a  memory  location 
and  a  data  register,  or  between  two  data  registers. 

With  the  68000  in  the  user  state,  the  move  instruction  allows  you 

to  update  the  condition  code  register  (MOVE  <ea>,CCR)  or  read 
the  entire  status  register  (MOVE  SR,<ea>).  In  the  supervisor 
state,  the  move  instruction  allows  you  to  update  the  status  register 
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(MOVE  <ea>,SR),  read  the  user  stack  pointer  (MOVE  USP,An), 
or  write  to  the  user  stack  pointer  (MOVE  An,USP).  In  the  pre- 

ceding effective  address  fields  (those  labeled  as  <ea>),  an  address 
register  may  not  be  used  as  a  source  or  destination. 

Using  Move  With  Stacks 

The  move  instruction  can  also  be  used  to  transfer  data  to  and 

from  stacks  in  memory.  These  include  the  system  stacks  ( the  super- 
visor stack  and  the  user  stack )  and  user-defined  stacks.  Since  stacks 

build  toward  memory  location  0,  the  address  register  indirect  with 
predecrement  mode  is  employed  to  push  data  onto  the  stack.  For 
example,  the  instruction 

MOVE  DO,-(SP) 

pushes  the  low  word  of  DO  onto  the  active  system  stack.  Conversely, 
the  address  register  indirect  with  postincrement  mode  is  employed 
to  pull  data  from  the  stack,  so  the  instruction 

MOVE  (SP)+,DO 

retrieves  the  next  word  from  the  active  system  stack,  and  loads  it 
into  the  low  word  of  DO. 

Move  Multiple  Registers  (MOVEM)  Instruction 

Quite  often  you  will  want  to  move  the  contents  of  more  than  one 
register.  The  most  common  example  of  this  is  saving  a  number  of 

general-purpose  registers  on  the  stack  while  a  subroutine  is  being 
executed,  to  make  that  subroutine  reentrant.  A  subroutine  is  re- 

entrant if  it  can  be  interrupted  and  reentered  by  the  interrupting 

program. 
The  move  multiple  registers  ( MOVEM )  instruction  can  be  used 

to  transfer  up  to  16  registers  (data  registers  D0-D7  and  address 
registers  A0-A7)  to  or  from  memory.  Register-to-memory  transfers 
have  the  format 

MOVEM  <list>,<ea> 

and  memory-to-register  transfers  have  the  format 
MOVEM  <ea>,<list> 

In  both  cases,  <list>  represents  the  list  of  registers  to  be  moved. 
The  assembler  allows  registers  to  be  listed  in  two  ways.  One  way 

is  to  list  individual  register  names,  separated  by  slash  ( / )  charac- 
ters. For  example,  the  instruction 

MOVEM  D3/D4/D5/A1,$53F00 

moves  the  low  words  of  D3,  D4,  D5,  and  Al  into  the  four  consecu- 
tive words  that  start  at  location  $53F00.  (In  this  case,  the  registers 
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will  be  stored  in  the  order  they  are  listed  in  the  instruction,  but  that 

won't  always  be  true;  we  will  discuss  this  point  shortly. ) 
If  the  register  list  includes  consecutive  data  or  address  registers, 

the  assembler  permits  you  to  list  just  the  first  and  last  registers,  sep- 

arated by  a  hyphen  (-).  Therefore,  the  preceding  example  could 
also  be  written  as 

MOVEM    D3-D5/ A1  ,$53F00 

The  MOVEM  instruction  always  transfers  register  contents  to  and 
from  memory  in  a  predetermined  sequence,  regardless  of  the  order 
used  to  specify  them  in  the  register  list.  For  address  register  indirect 
with  predecrement  addressing,  registers  are  transferred  in  the  order 
A7  through  AO,  then  D7  through  DO.  However,  for  all  control  modes, 

and  for  address  register  indirect  with  postincrement  addressing,  reg- 
isters are  transferred  in  the  reverse  order— DO  through  D7,  then  AO 

through  A7.  These  differences  allow  you  to  build  stacks  and  lists  in 

one  direction  and  access  them  in  the  opposite  direction.  Fig.  3-8 
shows  some  examples. 

Address-Moving  Instructions  (MOVEA,  LEA,  PEA) 

The  68000  has  three  instructions  that  are  specifically  designed  to 
transfer  addresses,  rather  than  data.  Two  of  these  instructions,  move 

address  {MOVEA)  and  load  elective  address  {LEA),  are  similar 
and  can  be  easily  confused  by  programmers.  Both  cause  an  address 
to  be  loaded  into  an  address  register,  but  whereas  LEA  loads  the 
effective  address  of  the  referenced  operand  (a  memory  location), 
MOVEA  loads  the  contents  of  the  referenced  operand  (a  memory 

location,  a  register,  or  an  immediate  value),  and  assumes  that  it  con- 
stitutes an  address.  Further,  LEA  always  obtains  a  32-bit  address, 

while  MOVEA  can  access  either  a  16-bit  word  address  ( loaded  sign- 
extended  to  32  bits )  or  a  32-bit  long  address.  Fig.  3-9  shows  two  ex- 

amples of  the  LEA  instruction. 

As  you  can  s^e,  LEA  and  MOVEA  are  extremely  useful  instruc- 
tions. If  your  program  requires  a  certain  calculated  address  in  sev- 

eral different  instructions,  you  can  use  LEA  to  calculate  the  address 
just  once,  and  place  that  address  in  an  address  register.  Thereafter, 
each  reference  to  the  addressed  operand  can  be  made  with  address 

register  indirect  addressing.  This  will  not  only  save  programming 
time,  but  v/ill  also  generate  programs  that  occupy  less  space  in 

memory  and  execute  faster.  How  is  that  so?  Because  address  reg- 
ister indirect  addressing  adds  no  extension  words  to  an  instruction, 

which  will  conserve  memory  space.  It  also  executes  four  to  eight 
cycles  faster  than  the  address  register  indirect  with  displacement 

or  offset,  absolute  or  program  counter  relative  mode  used  to  pre- 
calculate  the  address. 
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MOVEM    D3-D5/A1 -(SP) 

D D D D D D D D A A A A A A A A 
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 

-7 

SP 

AFTER  - 
EXECUTION 

SP 

BEFORE - 

EXECUTION 

D3 

D4 D5 

Al 

(A)  Stacking  register  contents,  with  predecrement  addressing. 

MOVEM  (SP)+.A1/D3-D5 

D D D D D D D D A A A A A A A A 
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

SP 

BEFORE - 
EXECUTION 

SP 

AFTER  - 
EXECUTION 

D3 

D4 D5 

Al 

(8)  Unstacking  register  contents,  with  postincrement  addressing. 

MOVEM  D3-D5/A1.$53F00 

D D D D D D D D A A A A A A A A 
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

$53F00 

$53F02 

$53F04 
$53F06 

D3 

D4 D5 Al 

(C)  Storing  register  contents,  with  absolute  addressing. 

Fig.  3-8.  Examples  of  the  MOVEM  Instruction. 

MOVEA  is  useful  for  accessing  addresses  that  are  stored  in  mem- 
ory. For  example,  if  you  have  a  linked  list  in  memory  in  which  each 

node  begins  with  a  pointer  to  the  next  node,  the  address  of  the  sec- 
ond node  could  be  obtained  with  the  instruction 

MOVEA.L  LIST,AO 

and  the  address  of  the  third  and  successive  nodes  could  be  obtained 
with  the  instruction 

MOVEA.L  {AO),AO 

Note,  incidentally,  that  a  MOVEA  instruction  whose  source  op- 
erand is  an  immediate  label  is  equivalent  to  an  LEA  instruction.. 
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That  is,  MOVEA.L  #LABEL,AO  and  LEA  LABEL,AO  are  equiva- 
lent instructions.  Although  both  instructions  will  take  the  same 

amount  of  time  to  execute  (12  cycles),  LEA  is  preferred  for  this 

application  because  it  is  more  readily  understandable. 

The  last  of  these  three  address-moving  instructions,  push  effective 
address  (PEA),  is  similar  to  LEA,  insofar  as  it  moves  a  computed 
effective  address,  rather  than  the  contents  of  the  addressed  location. 

With  PEA,  however,  the  address  is  pushed  onto  the  active  system 

REGISTER     AO  00053F00 
CONTENTS 
BEFORE 
LEA  Al xxxxxxxx 

AO  00053F00 

DO 

Al 

00008000 

XXXXXXXX 

INSTRUCTION    LEA  (AO),Al 

EXECUTION  00053F00 

REGISTER     AO  00053F00 
CONTENTS 
AFTER 
LEA  Al 00053F00 

LEA  4(A0,D0),A1 

00053F00 
FFFF8000 
00000004 
10004BF04 

AO  00053F00 

DO 00008000 

Al 
0004BF04 

Fig.  3-9.  Examples  of  the  LEA  instruction. 

stack  ( user  stack  or  supervisor  stack ) .  The  PEA  instruction  is  handy 

for  passing  parameters  to  a  subroutine,  by  pushing  the  address  of  a 

parameter— or  the  starting  address  of  several  consecutively  stored 
parameters— onto  the  stack.  For  example,  the  push-then-call  opera- 

tions may  be  performed  with  this  instruction  sequence: 

PEA  PARAM 
JSR  SUBR 

Because  the  JSR  pushes  a  4-byte  return  address  onto  the  stack  after 
the  PEA  has  pushed  its  4-byte  address  onto  the  stack,  the  parameter 
address  must  be  accessed  by  skipping  over  the  return  address,  as  in 
this  instruction: 

MOVEA.L  4{SP),A0 
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With  the  parameter  address  removed  from  the  stack,  the  subroutine 

should  "clean  up"  the  stack,  by  moving  the  return  address  one  long 
word  higher  in  memory  and  then  updating  the  stack  pointer.  Both  of 
these  tasks  can  be  performed  with  one  instruction, 

MOVE.L  (SP)+,(SP) 

Communicating  With  8-Bit  Peripherals,  Using  MOVER 

As  was  mentioned  in  Chapter  1,  the  68000  can  be  interfaced  to 

older  8-bit  synchronous  devices  as  well  as  to  new  16-bit  asynchro- 
nous devices,  and  has  separate  control  lines  for  each  type  of  device. 

Readers  who  have  programmed  8-bit  systems  know  that  the  attached 

peripheral  devices  usually  have  registers  which  "occupy"  a  number 
of  consecutive  bytes  in  memory. 

The  move  peripheral  data  (MOVEP)  instruction  is  designed  to 
transfer  information  between  a  68000  data  register  and  an  attached 

8-bit  peripheral  device,  in  "bursts"  of  two  or  four  bytes.  In  the  68000 
system,  8-bit  peripherals  must  be  connected  to  either  the  high  eight 
bits  of  the  data  bus  (lines  D8-D15)  or  the  low  eight  bits  of  the  data 
bus  (lines  D0-D7).  The  MOVEP  instruction  communicates  with  pe- 

ripherals on  the  high  half  of  the  bus  by  issuing  even-numbered  ad- 
dresses, and  communicates  with  peripherals  on  the  low  half  of  the 

bus  by  issuing  odd-numbered  addresses.  In  a  memory  map,  these 

peripherals  would  "occupy"  alternate  bytes  in  memory—consecutive 
even  bytes  or  consecutive  odd  bytes. 

Two-byte  transfers  are  made  by  specifying  a  word  operand 
(MOVEP  or  MOVEP.W)  and  4-byte  transfers  are  made  by  specify- 

ing a  long-word  operand  (MOVEP.L).  Peripherals  must  be  ad-  i 
dressed  using  the  address  register  indirect  with  displacement  mode.  , 

Fig.  3-10  shows  two  examples  of  the  MOVEP  instruction— a  long  ) 
transfer  with  an  even  address  and  a  word  transfer  with  an  odd  ad-  i 
dress.  Note,  incidentally,  that  MOVEP  is  the  only  68000  instruction 

that  permits  you  to  use  an  odd  address  with  a  word  or  long-word  < 
operand! 

The  execution  time  of  the  MOVEP  instruction  depends  on  whether 

data  is  being  transferred  to/ from  an  asynchronous  device  or  a  syn-  : 
chronous  device.  Transfers  to  and  from  asynchronous  devices  will  ' 

take  16  CLK  cycles  for  a  two-byte  transfer  or  24  cycles  for  a  four-  ' 

byte  transfer.  These  values  are  taken  from  Table  B-12  in  Appendix  . 
B.  Transfers  to  or  from  synchronous  devices  will  take  quite  a  bit  J 

longer,  because  the  68000  must  synchronize  with  a  clock  that  is  j 

running  at  one- tenth  the  speed  of  CLK.  Chapters  6  and  8  provide  ' 
more  information  on  this  subject. 
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AO 

MOVER  L    D0  2(A0) 

31 24 

30  I    HI  ORDER 

23  16 15  8 7  0 

MID  UPPER MID  LOWER LOWORDER 

EVEN ODD 

HI  ORDER 

MID  UPPER 

MID  LOWER 

LUW  UKUlK 

{A)  Long  transfer  with  an  even  address. 

MOVEP.W  D0,2(A0) 

31  24 23  16 15  8 7  0 

D0| HI-ORDER LOW-ORDER 

EVEN ODD 

HI  ORDER 

LOW-ORDER 

-AO 

(B)  Word  transfer  with  an  odd  address. 

Fig.  3-10.  Byte  transfers  with  MOVER. 

Move  Quick  (MOVEQ),  a  Handy  Move-Immediate 

Because  programmers  often  need  to  operate  with  a  small  constant, 

the  designers  of  the  68000  provided  three  "quick"  instructions— move 
quick,  add  quick,  and  subtract  quick— that  allow  you  to  specify  such 
a  constant  in  the  op-word.  The  first  of  these  instructions,  move  quick 
(MOVEQ) ,  causes  a  specified  byte-length  value  to  be  sign-extended 
to  32  bits  and  loaded  into  a  data  register.  Because  the  constant  is 

eight  bits  long,*  any  integer  value  between  —128  and  -+-127  can  be 
moved  into  a  data  register. 

The  MOVEQ  instruction  occupies  only  one  word  in  memory  and 

executes  in  four  cycles.  By  contrast,  its  move-immediate  counterpart 

(MOVE.L  #ds,Dn)  occupies  two  words  in  memor\'  and  executes  in 
20  cycles.  Most  assemblers,  including  those  from  Motorola,  take  ad- 

vantage of  these  savangs  by  actually  interpreting  a  properly  config- 
ured move-immediate  instruction  as  a  MOVEQ,  and  generating  the 

object  code  accordingly. 

Register  Swap  (SWAP)  and  Exchange  (EXG)  Instructions 

These  two  similar  instructions  have  very  different  uses.  The  sivap 

register  halves  (SWAP)  instruction  exchanges  the  high-order  and 
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low-order  16  bits  of  a  32-bit  data  register.  This  instruction  provides 
access  to  the  contents  of  the  upper  word  of  a  register,  and  is  neces- 

sary because  (as  you  will  recall)  word  operations  are  always  per- 
formed on  the  lower  word.  Similarly,  SWAP  can  be  used  to  access 

the  upper  two  bytes  of  a  data  register.  SWAP  alone  will  set  up  ac- 

cess to  the  mid-upper  byte;  a  SWAP  plus  a  rotate  will  set  up  access 
to  the  high-order  byte. 

The  exchange  registers  (EXG)  instruction  exchanges  the  entire 
32  bits  of  two  registers.  It  can  have  three  formats: 

1.  To  exchange  two  data  registers,  use  EXG  Dx,Dy. 
2.  To  exchange  two  address  registers,  use  EXG  Ax,Ay. 
3.  To  exchange  a  data  register  and  an  address  register,  use  EXG 

Dx,Ay. 

The  No-Operation  (NOP)  Instruction 

The  no-operation  (NOP)  instruction  is  a  simple  one-word  implied 

addressing  instruction  that  is  generally  used  only  during  program  ■ 
development.  The  NOP  instruction  performs  no  operation— it  does 
not  alter  any  status  flags,  registers  (other  than  the  program  counter), 

or  memory  locations,  but  it  does  perform  the  very  useful  function  • 
of  reserving  space  in  memory.  ! 

Programmers  often  code  NOPs  into  a  source  program  being  de-  5 
veloped,  to  leave  room  for  instructions  that  may  have  to  be  added  i 

later.  Since  each  NOP  instruction  occupies  only  one  word  in  mem- 
ory, at  least  two  NOPs  (preferably  three  NOPs)  should  be  inserted  ' 

at  the  spot  where  space  is  to  be  reserved. 
NOP  instructions  may  also  be  inserted  into  object  programs,  to 

replace  instructions  that  have  been  deleted,  so  that  the  program  - 
does  not  have  to  be  reassembled.  In  this  case,  you  should  replace  ' 
each  word  of  the  deleted  instruction  with  $4E71,  the  hexadecimal  « 
value  that  represents  a  NOP  instruction. 

INTEGER  ARITHMETIC  INSTRUCTIONS  \ 

The  68000  can  add,  subtract,  multiply,  divide,  and  compare  two  i 

binary  operands.  It  can  also  clear,  test,  sign-extend,  and  negate  (2s-  j 
complement)  a  single,  specified  operand.  The  instructions  that  per- 

form these  tasks  are  summarized  in  Table  3-8.  ' 

Add  Instructions  - 

There  are  five  instructions  that  can  be  used  to  add  binary  num- 
bers. The  first  of  these,  add  binary  (ADD),  adds  two  byte,  word, 

or  long-word  data  operands.  Because  the  operands  are  assumed  to  |l 
be  d/Jta  values,  one  must  be  in  a  data  register;  the  other  may  be  in 
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a  memory  location,  an  address  register  (unless  byte  operands  are 
being  added),  or  another  data  register.  The  ADD  instruction  can 
affect  all  five  condition  codes,  as  follows: 

1.  Carry  (C)  is  set  if  the  result  cannot  be  contained  in  the  desti- 
nation operand;  otherwise  C  is  cleared. 

2.  Overflow  ( V )  is  set  if  two  like-signed  numbers  ( both  positive 
or  both  negative)  are  added  and  the  result  exceeds  the  oper- 

and's 2s-complement  range  of  numbers,  which  causes  the  sign 
bit  to  be  changed;  otherwise  V  is  cleared. 

3.  Zero  (Z)  is  set  if  the  result  is  zero;  otherwise  Z  is  cleared. 
4.  Negative  (N)  is  set  if  the  sign  bit  of  the  result  is  a  logic  1; 

otherwise  N  is  cleared. 

5.  Extend  ( X )  is  set  to  the  same  state  as  the  carry  ( C )  bit. 

For  add  operations,  the  status  of  the  V  and  N  flags  is  pertinent 

only  if  signed  numbers  are  being  added.  Incidentally,  if  the  desti- 
nation operand  is  an  address  register,  the  condition  codes  are  not 

affected.  In  fact,  the  assembler  recognizes  this  form  of  the  add  in- 
struction as  a  variation,  called  add  address  (ADDA). 

The  ADD  instruction  is  useful  for  adding  two  byte,  word,  or  long- 
word  operands,  if  at  least  one  of  the  operands  lies  in  a  data  register. 

However,  many  applications  involve  adding  multiple-precision  op- 
erands, or  operands  that  are  both  contained  in  memory.  For  these 

applications,  the  68000  has  an  instruction,  add  extended  (ADDX), 

that  adds  the  contents  of  two  data  registers  or  two  memory  loca- 
tions. The  ADDX  instruction  affects  the  C,  V,  N,  and  X  flags  in  the 

same  way  the  ADD  instruction  does.  However,  with  ADDX,  zero 
(Z)  is  cleared  if  the  result  is  nonzero;  otherwise  Z  is  unaffected! 
This  feature  is  very  handy  in  multiprecision  operations,  because  it 

causes  Z  to  reflect  the  zero/nonzero  status  of  an  entire  add  opera- 
tion, rather  than  the  status  of  just  the  high-order  term. 

If  the  operands  are  in  data  registers,  the  ADDX  instruction  is 

normally  preceded  by  an  ADD  instruction.  For  example,  the  follow- 
ing sequence  adds  a  64-bit  integer  in  DO  and  Dl  to  another  64-bit 

integer  in  D2  and  D3: 

ADD.L      D0,D2  Add  low  32  bits. 
ADDX.L    D1,D3  Add  high  32  bits. 

If  the  operands  are  in  memory,  you  must  clear  X  and  set  Z  before 
adding  them  (remember,  Z  will  remain  set  if  each  subsequent  add 

produces  a  zero  result).  Memory-to-memory  adds  always  use  pre- 
decrement addressing,  so  the  address  registers  must  initially  point 

one  byte,  word,  or  long-word  higher  in  memory  than  the  low-order 
operands.  For  example,  if  AO  and  Al  point  to  two  64-bit  operands 
in  memory,  these  operands  could  be  added  with  this  sequence: 
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MOVE      #4,CCR  Make  Z  =  1,  all  other  bits  =  0. 
ADDX.L    -(AO) -(A1)  Add  low  32  bits. 
ADDX.L    -(AO) -(A1)  Add  high  32  bits. 

Fig.  3-11  shows  the  arrangement  of  the  operands  in  memory,  and 
how  the  pointers  are  affected  by  the  addition  operation. 

MEMORY 

Al 

AFTER  - ADDITION 

Al 
BEFORE 
ADDITION 

AO 

AFTER  - ADDITION 

AO 

BEFORE 
ADDITION 

HIGH-ORDER 

MID-UPPER 

MID-LOWER 

LOW-ORDER 

DESTINATION 
OPERAND 

HIGH-ORDER 

MID-UPPER 

MID-LOWER 

LOWORDER 

Fig.  3-11.  Adding  two  64-bit  operands in  memory. 

SOURCE 
OPERAND 

The  last  two  add  instructions,  add  immediate  (ADD!)  and  add 
quick  (ADDQ),  are  used  to  add  a  constant  value  to  an  addressed 

operand.  With  ADDI,  the  constant  can  be  a  byte,  word,  or  long- 
word  value,  and  the  instruction  occupies  from  two  to  five  words  in 
memory.  With  ADDQ,  the  constant  can  only  have  a  value  between 
1  and  8,  but  the  instruction  occupies  only  one  to  three  words  in 
memory.  Further,  ADDQ  can  be  used  to  add  a  value  to  an  address 

register,  whereas  ADDI  cannot.  Note  that  ADDQ  replaces  the  in- 
crement instruction  found  in  8-bit  microprocessors. 

Subtract  Instructions 

The  68000  has  a  subtract  equivalent  of  each  of  the  five  add  in- 
structions. Three  of  these  instructions,  subtract  binary  (SUB),  sub- 

tract immediate  (SUBI),  and  subtract  quick  (SUBQ),  affect  the 
condition  codes  in  the  same  way.  Specifically, 

1.  Carry  (C)  is  set  if  the  subtraction  generates  a  borrow,  which 
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indicates  that  the  result  cannot  be  contained  in  the  destination 

operand;  otherwise  C  is  cleared. 

2.  Overflow  (V)  is  set  if  two  unlike-signed  numbers  (one  posi- 
tive, the  other  negative)  are  subtracted  and  the  result  exceeds 

the  operand's  2s-coniplement  range  of  numbers;  otherwise  V is  cleared. 

3.  Zero  (Z)  is  set  if  the  result  is  zero;  otherwise  Z  is  cleared. 
4.  Negative  (N)  is  set  if  the  sign  bit  of  the  result  is  a  logic  1; 

otherwise  N  is  cleared. 

5.  Extend  ( X )  is  set  the  same  as  the  carry  ( C )  bit. 

The  multiprecision  subtract  instruction,  subtract  extended  (SUBX), 

affects  C,  V,  N,  and  X  in  the  same  way,  but  clears  Z  only  if  the  re- 
sult is  nonzero;  otherwise  Z  is  unaflFected.  The  fifth  subtract  instruc- 
tion, subtract  address  {SUB A),  affects  no  flags. 

Negate  Instructions 

Two  subtract-like  instructions  allow  you  to  2s-complement  a  byte, 
word,  or  long-word  operand  in  memory  or  in  a  data  register.  These 
instructions,  negate  (NEG)  and  negate  extended  (NEGX),  take  the 

2s-complement  by  subtracting  the  operand  from  zero. 
The  NEG  instruction  affects  the  condition  codes  in  the  same  way 

as  the  SUB  instruction,  but  since  one  operand  is  zero  here  we  can 
be  more  explicit  about  the  conditions  that  set  the  individual  flags. 
Therefore,  for  NEG: 

1.  Carry  (C)  and  negative  (N)  are  set  if  the  addressed  operand 
is  a  nonzero  positive  number;  otherwise  C  and  N  are  cleared. 

2.  Overflow  ( V )  is  set  if  the  addressed  operand  has  the  value  $80 

(byte),  $8000  (word),  or  $80000000  (long  word);  otherwise 
V  is  cleared. 

3.  Zero  (Z)  is  set  if  the  addressed  operand  is  zero;  otherwise  Z 
is  cleared. 

4.  Extend  ( X )  is  set  the  same  as  the  carry  ( C )  bit. 

The  NEGX  instruction  has  the  same  affect  on  the  C,  V,  N,  and  X 

flags,  but  clears  Z  only  if  the  result  is  nonzero;  Z  is  unaffected  if  the 
result  is  zero.  As  was  explained  with  ADDX,  this  feature  causes  Z 

to  reflect  the  zero/ nonzero  status  of  an  entire  multiprecision  opera- 
tion, rather  than  the  status  of  just  the  high-order  term. 

Multiply  and  Divide  Instructions 

The  68000  has  two  multiply  instructions— ^ign^cZ  multiply  (MULS) 
and  unsigned  multiply  {MULU).  These  instructions  multiply  two 

word  operands,  and  return  the  32-bit  product  in  a  data  register. 
Numbers  longer  than  16  bits  can  also  be  multiplied  using  MULS 
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and  MULU.  We  will  see  examples  of  this  in  Chapter  4,  where  a 
32-bit  by  32-bit  multiply  routine  is  given  for  both  signed  and  un- 

signed numbers. 

The  68000  also  has  two  divide  instructions— ^gn^cZ  divide  ( DIVS ) 
and  unsigned  divide  (DIVU).  These  instructions  divide  a  32-bit 

dividend  (in  a  data  register)  by  a  16-bit  divisor  (in  memory  or  a 
data  register),  and  return  the  16-bit  quotient  and  16-bit  remainder 
in  the  lower  half  and  upper  half  of  the  data  register,  respectively. 

If  you  attempt  to  divide  by  zero,  the  68000  will  generate  a  trap 

( described  in  Chapter  7 ) .  Otherwise,  a  division— signed  or  unsigned 
—will  have  the  following  effect  on  the  condition  codes: 

1.  Carry  (C)  is  always  cleared. 
2.  Overflow  (V)  is  set  if  division  overflow  is  detected;  otherwise 

V  is  cleared. 

3.  Zero  (Z)  is  set  if  the  quotient  is  zero;  otherwise  Z  is  cleared. 
The  state  of  Z  is  undefined  if  overflow  occurs. 

4.  Negative  (N)  is  set  if  the  quotient  is  negative  (for  DIVS)  or 

the  most-significant  bit  of  the  quotient  is  set  (for  DIVU); 
otherwise  N  is  cleared.  The  state  of  N  is  undefined  if  overflow 
occurs. 

5.  Extend  (X)  is  not  affected. 

If  overflow  occurs,  the  68000  sets  the  V  flag  and  terminates  the  oper- 
ation, without  affecting  the  divisor  or  dividend.  Overflow  occurs 

when  the  dividend  is  so  much  larger  than  the  divisor  that  the  quo- 
tient cannot  be  contained  in  16  bits. 

For  an  unsigned  divide,  the  dividend  must  be  at  least  65,536 
times  larger  than  the  divisor  for  overflow  to  occur.  For  a  signed 

divide,  the  quotient  must  exceed  +32,767  or  —32,768  for  overflow 
to  occur.  It  is  possible  to  write  a  program  that  will  always  return 

a  valid  quotient  and  remainder,  regardless  of  whether  or  not  over- 
flow occurred.  Such  a  program  is  given  in  Chapter  4. 

Sign  Extend  (EXT) 

The  68000  makes  it  possible  to  operate  on  mixed-size  data,  with 
an  instruction  called  sign  extend  (EXT).  This  instruction  extends 

the  sign  bit  ( the  most-significant  bit )  of  a  number  in  a  data  register 
from  a  byte  to  a  word,  or  from  a  word  to  a  long  word,  as  shown  in 

Fig.  3-12.  Thus,  the  EXT  instruction  makes  it  possible  to  perform 
such  operations  as  adding  a  byte  to  a  word  or  multiplying  a  word 
by  a  byte. 

Clear  Instruction  (CLR) 

Another  '^housekeeping"  instruction  in  this  group,  clear  (CLR), 
resets  the  addressed  byte,  word,  or  long  word  to  zero.  It  can  be  used 
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31 16  15  8  7 0 
EXT.W  Dn 

(A)  Sign-extending  a  byte  to  a  word. 

31  16  15  0 

Dn EXT.L  Dn 

(8)  Sign-extending  a  word  to  a  long  word. 

Fig.  3-12.  How  the  EXT  instruction  sign-extends  data. 

to  clear  a  data  register  or  a  memory  location,  but  not  an  address 
register.  ( There  are  not  too  many  instances  in  which  you  will  want 
to  clear  an  address  register  but,  for  those  cases,  instruction  SUBA.L 
An,An  is  the  most  effective  way  to  do  the  job. ) 

Readers  with  time-critical  applications  should  be  aware  that  CLR 
is  only  faster  than  the  equivalent  MOVE  #0,<ea>  instruction  when 

I  the  low  byte  or  low  word  of  a  data  register  is  being  cleared!  Clear- 
ing all  32  bits  of  a  data  register  is  two  cycles  faster  with  MOVEQ 

#0,Dn  than  with  CLR.L  Dn  and,  in  most  cases,  clearing  a  memory 

location  with  MOVE.x  #0,<ea>  (where  x  =  B,  W,  or  L)  takes  the 
same  amount  of  time  as  clearing  it  with  CLR.x  <ea>.  In  fact,  if 
you  are  using  the  address  register  indirect  with  predecrement  mode 

to  address  memory,  instruction  MOVE.x  #0,— (An)  will  clear  the 
memory  location  two  cycles  faster  than  CLR.x  —(An). 

The  Compare  Instructions 

Most  programs  do  not  execute  all  instructions  consecutively,  as 

they  are  stored  in  memory,  but  include  jumps,  branches,  loops,  sub- 
routine calls,  and  other  factors  that  cause  program  execution  to  be 

transferred  from  one  place  to  another  in  memory.  The  instructions 
that  actually  cause  this  transfer  to  occur  will  be  described  later  in 
this  chapter  when  we  discuss  the  program  control  instructions  for 
the  68000.  At  this  point  we  will  discuss  the  compare  instructions, 
which  are  commonly  used  to  configure  the  condition  codes  upon 

which  program  control  instructions  make  their  transfer/no-transfer 
"decisions." 

The  four  compare  instructions  for  the  68000  perform  very  much 

like  subtract  instructions.  That  is,  each  of  these  instructions  sub- 
tracts a  source  operand  from  a  destination  operand,  and  sets  or  clears 

the  condition  code  flags  based  on  the  result  (see  Table  3-9).  How- 
ever, unlike  subtract  instructions,  the  compare  instructions  do  not 

save  the  result  of  the  subtraction.  Their  sole  purpose  is  to  configure 

the  condition  codes  for  tiansfer/ no-transfer  decision-making  by  sub- 
sequent program  control  instructions. 
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Table  3-9.  Compare  Instruction  Results 

Condition X 

N* 

z c 

Source  <  Destination 0 0 
0/1 

0 
Source  =  Destination 0 1 0 0 
Source  >  Destination 1 0 

0/1 
1 

*Pertinent  only  when  connparing  2s-complement  numbers. 

The  compare  (CMP)  instruction  compares  a  source  operand  with 

a  byte,  word,  or  long-word  operand  in  a  data  register.  Word  or  long- 
word  addresses  can  be  compared  to  an  address  register  using  a  vari- 

ation of  CMP,  called  compare  address  (CMP A).  The  compare  im- 
mediate (CMPI)  instruction  compares  a  byte,  word,  or  long-word 

immediate  value  with  a  destination  operand.  The  compare  memory 

(CMPM)  instruction  compares  two  operands  in  memory,  using  ad- 
dress register  indirect  with  postincrement  addressing.  This  particu- 

lar instruction,  CMPM,  is  especially  useful  for  comparing  strings; 

an  example  is  upcoming  later  in  this  chapter  (Example  3-3). 

A  Compare-With-Zero  Instruction,  TST 

You  will  recall  that  the  negate  instructions,  NEC  and  NEGX,  are 

actually  subtract  instructions  that  perform  a  specialized  task— they 
subtract  an  operand  from  zero.  Similarly,  the  68000  has  a  specialized 

compare  instruction,  test  an  operand  (TST),  that  compares  an  op- 
erand with  zero.  Like  the  compare  instructions,  TST  subtracts  the 

operand  from  zero,  and  sets  or  clears  the  condition  code  flags  based 
on  the  result,  but  does  not  save  that  result.  Here  is  how  the  TST 
instruction  affects  the  condition  code  bits: 

1.  Carry  (C)  and  overflow  (V)  are  always  cleared. 
2.  Zero  (Z)  is  set  if  the  addressed  operand  is  zero;  otherwise  Z 

is  cleared. 

3.  Negative  (N )  is  set  if  the  addressed  operand  is  a  negative  num- 
ber; otherwise  N  is  cleared. 

4.  Extend  (X)  is  not  affected. 

Test  and  Set  an  Operand  (TAS) 

The  test  and  set  an  operand  ( TAS )  instruction  performs  the  same 

basic  operation  as  the  test  an  operand  (TST)  instruction— it  com- 
pares the  operand  with  zero  and  sets  or  clears  the  condition  codes 

based  on  the  result— but  TAS  also  unconditionally  sets  the  most- 
significant  bit  of  the  operand.  Further,  TAS  can  only  operate  on  byte 
operands,  so  it  will  set  bit  7  of  the  byte. 

Despite  their  operational  similarities,  TST  and  TAS  have  very 
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SECTION  0 
FLAG  BYTE 

SECTION 
0 

SECTION 
1 

SET  POINTER 
TO  TOP  ADDRESS 

SECTION  1 
FLAG  BYTE 

SECTION 
N-2 

SECTION  N-2 FLAG  BYTE 

SECTION 
N-1 

<> 

SECTION  N-1 FLAG  BYTE 

EXECUTE TAS 

YES 
USE  THIS  SECTION 

OF  MEMORY 
AS  DESIRED 

SUBTRACT  ONE 
SECTION  LENGTH 
FROM  POINTER 

YES NO  SPACE 
AVAILABLE 

*   Fig.  3-13.  Using  TAS  to  allocate  memory. 

dissimilar  functions.  As  we  saw  in  the  preceding  section,  TST  is  used 
to  find  out  whether  an  operand  has  a  value  of  zero.  However,  TAS 
is  primarily  used  to  test  the  state  of  a  flag  in  memory,  then  set  that 

flag.  This  is  particularly  useful  in  multitasking  applications,  to  allo- 
cate memory  space  to  the  various  tasks.  It  is  also  useful  in  multi- 

processing applications,  to  prevent  one  processor  from  accessing  a 
portion  of  memory  that  is  currently  being  used  by  another  processor. 

Fig.  3-13  illustrates  the  use  of  TAS  in  a  multitasking  application. 
This  illustration  shows  a  portion  of  memory  that  has  been  divided 
into  N  sections,  and  also  gives  a  simple  flowchart  of  an  algorithm 

that  could  be  used  to  locate  the  next  available  section.  This  algo- 
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rithm  requires  two  address  registers— one  to  hold  a  pointer  to  the 
section  being  tested  and  another  to  hold  a  pointer  to  the  last  section 
(Section  0).  The  program  for  this  algorithm  will  include  several 

instructions  that  have  already  been  described— MOVE  A  or  LEA  ( to 
initialize  the  test  pointer),  SUBA  (to  decrement  the  test  pointer), 
and  CMPA  (to  compare  the  two  pointers).  It  will  also  include  some 
conditional  branch  instructions,  which  will  be  described  with  the 
program  control  instructions. 

In  a  multiprocessing  application,  TAS  allows  a  processor  to  inter- 
rogate a  test  byte  ( via  the  condition  codes )  and  then  place  a  1  into 

the  most-significant  bit  of  the  byte.  If  the  memory  is  busy,  the  pro- 
gram can  keep  checking  until  it  is  free.  The  following  routine  per- 
forms this  task: 

MFREE     TAS      TEST  Test  and  set  the  byte,  TEST. 
BNE       MFREE  If  TEST  not  =  0,  test  again. 

(Processor  program  instructions.) 

CLR.B    TEST  Clear  TAS  byte. 

It  is  important  to  note  that  TAS  is  the  only  68000  instruction  that 

performs  an  indivisible  read-modify -write  cycle.  This  prohibits  an- 
other processor  from  interfering  with  the  TAS  operation  once  it  has 

been  initiated. 

LOGICAL  INSTRUCTIONS 

There  are  seven  logical  instructions,  shown  in  Table  3-10.  The  ba- 
sic instructions  in  this  group  are  and  logical  (AND),  Exclusive-OR 

logical  (EOR),  and  Inclusive-ov^  logical  (OR).  These  three  instruc- 
tions can  operate  on  byte,  word,  and  long-word  operands,  one  of 

which  must  be  in  a  data  register.  The  second  operand  can  be  in 
memory,  a  data  register,  or  an  address  register  for  the  AND  and  OR 

instructions,  or  in  memory  or  a  data  register  for  the  EOR  instruc- 
tion. EOR  cannot  operate  on  an  address  register. 

Another  instruction,  logical  complement  (NOT),  can  be  used  to 

Is-complement  a  data  register  or  memory  location.  Thus,  you  can 
employ  NOT  to  complement  unsigned  operands,  and  NEC  or  NEGX 
to  complement  signed  operands. 

Variations  of  the  AND,  OR,  and  EOR  instructions  permit  a  con- 
stant to  be  used  as  the  source  data.  These  variations,  and  immediate 

(ANDI),  Exclusive-OB.  immediate  (EORI),  and  Inclusive-OB  imme- 
diate (ORI),  can  operate  on  a  memory  or  data  register  operand  of 

any  length.  These  instructions  can  also  be  used  to  operate  on  the 
status  register  or  condition  codes.  Operations  on  the  status  register 
( SR )  are  privileged. 
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SHIFT  AND  ROTATE  INSTRUCTIONS 

The  68000  has  four  shift  instructions  and  four  rotate  instructions. 

Table  3-11  summarizes  these  instructions  and  Fig.  3-14  shows  how 
they  operate.  As  Table  3-11  shows,  each  instruction  has  three  van- 

ASL  C 

ASR 

LSL 

LSR  0 

ROL  C 

ROR 

ROXL  C 

ROXR 

Fig.  3-14.  How  the  shift  and  rotate  instructions  operate. 
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ations— two  that  operate  on  a  data  register  (byte,  word,  or  long 
word )  and  one  that  operates  on  memory  ( word  only ) . 

If  the  operation  is  being  performed  on  a  data  register,  the  shift 
or  rotate  count  may  be  specified  as  the  contents  of  another  data 

register  ( count  0  to  63,  where  0  produces  a  count  of  64 )  or  as  an 
immediate  value  between  1  and  8.  A  word  operand  in  memory  may 
be  shifted  or  rotated  by  only  one  bit  position. 

Shift  Instructions 

Signed  numbers  can  be  shifted  using  the  arithmetic  shift  left 
(ASL)  and  arithmetic  shift  right  (ASR)  instructions.  ASR  preserves 
the  sign  of  the  operand,  by  replicating  the  sign  bit  throughout  the 
shift  operation.  For  ASL,  the  sign  bit  is  not  preserved,  but  overflow 
(V)  is  set  if  the  sign  bit  is  ever  changed. 

Unsigned  numbers  can  be  shifted  using  the  logical  shift  left 

(LSL)  and  logical  shift  right  (LSR)  instructions.  For  all  four  in- 
structions, bits  shifted  out  of  the  operand  are  entered  into  the  carry 

(C)  and  extend  (X)  condition  code  flags.  In  addition  to  their  value 
in  general  data  manipulation,  the  shift  instructions  can  also  be  used 

as  fast-executing  multiply  and  divide  instructions,  because  each  left 
shift  multiplies  an  operand  by  two,  and  each  right  shift  divides  an 
operand  by  two! 

Rotate  Instructions 

In  all  four  of  the  rotate  instructions,  bits  displaced  out  of  the 
operand  are  entered  into  carry  (C).  However,  for  the  rotate  left 
(ROL)  and  rotate  right  (ROR)  instructions,  the  bit  displaced  out 
of  one  end  of  the  operand  is  entered  into  the  opposite  end  of  the 
operand.  With  the  rotate  with  extend  left  (ROXL)  and  rotate  with 
extend  right  ( ROXR )  instructions,  the  bit  displaced  out  of  one  end 
of  the  operand  is  entered  into  the  extend  ( X )  flag,  as  well  as  carry 
(C),  and  the  previous  value  of  X  is  entered  into  the  opposite  end 
of  the  operand. 

The  rotate  with  extend  instructions  provide  a  capability  we  have 

not  had  until  now— the  capability  of  accessing  the  three  high-order 
bytes  in  a  data  register.  You  will  recall  that  all  byte  operations  take 

place  on  the  low-order  byte  of  a  data  register.  How  can  you  operate 

on  the  second  byte  ( the  '*mid-lower"  byte )  of  the  register?  You  can 
do  so  by  bringing  that  byte  into  the  low-order  position,  using  in- 

struction ROL  #8,Dn  or  ROR  #8,Dn.  In  fact,  the  mid-upper  and 

high-order  bytes  of  a  data  register  can  be  accessed,  too;  the  mid- 
upper  with  a  SWAP  instruction,  the  high-order  with  an  ROL.L  #8, 

Dn  instruction.  The  upper  three  bytes  can  be  accessed  consecu- 
tively, as  in  string  operations,  by  executing  three  ROR.L  #8,Dn 

instructions. 
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Speeding  Up  Shifts  and  Rotates  on  Memory 

Since  words  in  memory  can  be  shifted  or  rotated  only  one  hit 

position  at  a  time,  an  n-hit  shift  or  rotate  will  take  at  least  "n"  times 
as  long  as  a  1-bit  shift  or  rotate  to  execute.  Table  B-7  ( in  Appendix 
B)  shows  that  shifting  or  rotating  a  word  in  memory  takes  8+  cy- 

cles, where  represents  the  time  reciuired  to  calculate  the  effec- 

tive address  (see  Table  B-1).  Therefore,  a  2-bit  shift  will  take  (2 
X  8-f )  cycles,  a  3-bit  shift  will  take  (3  x  8+)  cycles,  and  so  on. 

Referring  to  Table  B-7  once  again,  you  will  note  that  shifting  or 

rotating  a  data  register  by  "n"  bit  positions  takes  only  ( 6  +  2n )  cy- 
cles. Thus,  a  1-bit  shift  will  take  8  cycles,  a  2-bit  shift  will  take  10 

cycles,  and  a  3-bit  shift  will  take  12  cycles.  Clearly,  for  some  values 

of  "n"  you  can  save  a  considerable  amount  of  execution  time  by 
reading  a  memory  operand  into  a  data  register,  shifting  (or  rotat- 

ing )  the  register,  then  writing  the  result  back  into  memory.  This  will 

require  three  instructions.  Using  Tables  B-2  and  B-7,  we  can  calcu- 
late their  total  execution  time  as: 

Execution 
Instruction  Time 

MOVE    <ea>,Dn  4  + 
ASL    #n,Dn  6  +  2n 
MOVE    Dn,<ea>  4+ 

Total  time  =  ( 14+  )  +  2;i 

In  summary,  then,  an  n-bit  shaft  or  rotate  takes  {n  X  9+ )  cycles 
in  memor)^  and  [(14+)+2n]  cycles  in  a  data  register.  At  what 
point  does  it  become  advantageous  to  perform  the  operation  in  a 

data  register?  Well,  a  1-bit  shift  should  be  performed  in  memory 

(8-f-  cycles  in  memory  vs.  16+  cycles  in  a  register),  as  should  a  2-bit 
shift  (16+  cycles  in  memory  vs.  18+  cycles  in  a  register).  However, 

a  3-bit  shift  takes  24+  cycles  in  memory,  but  only  20+  cycles  in  a 
data  register!  The  conclusion  is  this:  If  you  need  to  shift  or  rotate 

memory  by  three  or  more  bit  positions,  the  operation  should  be  per- 
formed in  a  data  register. 

BIT  MANIPULATION  INSTRUCTIONS 

There  are  four  instructions  that  test  the  state  of  a  specified  bit  in 
a  data  register  or  a  byte  in  memory.  These  instructions,  summarized 

in  Table  3-12,  record  the  state  of  the  specified  bit  in  the  zero  (Z) 
condition  code  flag.  If  the  bit  =  0,  then  Z  1;  if  the  bit  =  1,  then 
Z  =  0. 

Three  of  the  bit  manipulation  instructions  also  change  the  bit  un- 
conditionally, following  the  test,  as  follows: 
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Bit  test  (BTST) 
Bit  test  and  set  (BSET) 
Bit  test  and  clear  ( BCLR ) 
Bit  test  and  change  ( BCHG ) 

Instruction Operation  Performed  on  Bit 
Bit  is  not  affected. 

Bit  is  set  to  logic  1. 
Bit  is  cleared  to  logic  0. 
State  of  bit  is  reversed. 

j  The  bit  number  may  be  specified  as  the  contents  of  a  data  register 
or  as  an  immediate  value.  Either  way,  if  a  bit  in  a  data  register  is 
being  tested,  the  bit  number  may  range  from  0  to  31;  if  a  bit  in 
memory  is  being  tested,  the  bit  number  may  range  from  0  to  7. 

BINARY-CODED-DECIMAL  (BCD)  INSTRUCTIONS 

Besides  the  binary  arithmetic  instructions  we  discussed  earlier, 
the  68000  has  three  instructions  that  can  be  used  to  operate  on 

binary-coded-decimal  (BCD)  values.  All  three  of  these  BCD  in- 

j  structions  (Table  3-13)  operate  only  on  byte-length  data,  where 

I  each  byte  contains  two  4-bit  BCD  digits.  Further,  like  the  "extended" 
binary  arithmetic  instructions,  the  BCD  instructions  include  the  X 
bit  in  the  operation  and  only  change  the  Z  bit  if  a  nonzero  result 

is  generated.  For  this  reason,  you  must  remember  to  initialize  X  =  0 
and  Z  —  1  before  the  first  BCD  operation;  this  can  be  most  easily 
done  with  the  instruction,  MOVE  #4,CCR. 

Add  BCD  (ABCD)  and  Subtract  BCD  (SBCD)  Instructions 

The  add  decimal  with  extend  (ABCD)  and  subtract  decimal  with 
extend  (SBCD)  instructions  can  perform  a  decimal  add  or  decimal 
subtract  on  the  low  bytes  of  two  data  registers  or  on  two  bytes  in 

memory.  The  ABCD  and  SBCD  instructions  can  affect  all  five  con- 
dition codes,  as  follows: 

1.  Carry  (C)  is  set  if  ABCD  generates  a  carry  or  SBCD  generates 
a  borrow;  otherwise  C  is  cleared. 

2.  Overflow  (V)  and  negative  (N)  are  undefined  for  both  in- 
structions. 

3.  Zero  (Z)  is  cleared  if  the  result  is  nonzero;  otherwise  Z  is  un- 

changed. For  multibyte  adds  and  subtracts,  Z  will  thereby  re- 
flect the  status  of  the  entire  operation,  rather  than  just  the 

status  of  the  operation  on  the  last  bytes. 
4.  Extend  (X)  is  set  to  the  same  state  as  the  carry  (C)  bit. 

Although  the  BCD  instructions  have  certain  similarities  to  the 

"extended"  binary  arithmetic  instructions,  the  fact  that  the  BCD  in- 
structions are  restricted  to  byte  operations  means  that  programming 

BCD  operations  will  be  somewhat  different  than  programming  bi- 
nary operations.  For  example,  it  will  obviously  take  more  instruc- 
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tions  to  add  or  subtract  a  multibyte  BCD  number  than  a  multibyte 
binary  number,  because  multibyte  binary  numbers  can  be  added 

using  combinations  of  the  word  or  long-word  forms. 
Less  evident  is  the  fact  that  data  registers  are,  for  the  most  part, 

limited  to  adding  or  subtracting  single-hyte  (two-digit)  BCD  val- 
ues! It  is  difficult  to  add  or  subtract  multibyte  BCD  values  in  a  data 

register  because  to  access  the  mid-order  byte  of  a  data  register,  that 
byte  must  be  rotated  into  the  low-order  byte  position.  However,  the 
rotate  instructions  (ROR,  ROL,  ROXR,  and  ROXL)  always  affect 
the  Z  bit,  which  destroys  the  intermediate  zero  status  of  your  BCD 
operation.  So  unless  you  are  prepared  to  save  the  CCR  before  and 

after  rotate  operations,  you  should  conduct  multibyte  BCD  opera- 
tions in  memory,  rather  than  in  data  registers. 

If  you  are  adding  or  subtracting  multibyte  BCD  operands  in  mem- 
ory, these  operands  must  be  stored  in  high-to-low  order,  just  like 

multibyte  binary  operands  (refer  back  to  Fig.  1-2).  This  ordering 
is  self-evident  when  you  consider  that  the  ABCD  and  SBCD  instruc- 

tions can  only  use  predecrement  addressing  to  operate  on  memory. 
For  example,  the  instruction  sequence 

MOVE  #4,CCR 
ABCD  -(A0)-(A1) 
ABCD  -(A0),-(A1) 
ABCD  -(A0)-(A1) 
ABCD  -(A0)-(A1) 

will  add  two  8-digit  BCD  numbers  (four  bytes)  in  memory.  Fig.  3- 
15  shows  how  these  numbers  are  stored  in  memory,  and  how  source 

MEMORY 

Al  (AFTER) 
ADDITION 

Al  (BEFORE 
ADDITION) 

HI-ORDER MID-UPPER 

MID-LOWER LOW-ORDER 
FOUR-BYTE 

DESTINATION 

AO  (AFTER 
ADDITION) 

AO  (BEFORE 
ADDITION) 

HIORDER MID-UPPER 

MID-LOWER LOW-ORDER 
FOUR-BYTE 
SOURCE 

Fig.  3-15.  Adding  two  4-byte  BCD  numbers  in  memory. 
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pointer  AO  and  destination  pointer  Al  are  altered  by  the  addition 
sequence. 

Negate  BCD  (NBCD)  Instruction 

The  negate  decimal  with  extend  (NBCD)  instruction  subtracts 

the  addressed  byte  operand  ( contents  of  a  data  register  or  memory ) 
and  the  extend  (X)  bit  from  zero.  If  X  is  clear,  it  generates  the  10s 
complement;  if  X  is  set,  it  generates  the  9s  complement. 

PROGRAM  CONTROL  INSTRUCTIONS 

As  mentioned  in  our  discussion  of  the  compare  instructions,  pro- 
gram instructions  are  stored  consecutively  in  memory,  but  programs 

rarely  execute  in  exactly  that  order.  All  but  the  simplest  programs 
include  branches,  jumps,  and  subroutine  calls  that  alter  the  sequence 
in  which  the  microprocessor  executes  the  program.  The  program 

control  instructions  (Table  3-14)  are  the  68000  instructions  that  can 
transfer  program  execution  from  one  part  of  memory  to  another. 

This  group  of  instructions  can  be  subdivided  into  three  categories- 
conditional  instructions,  unconditional  instructions,  and  return  in- 
structions. 

Conditional  Instructions 

The  first  three  entries  in  Table  3-14  represent  the  conditional  in- 
structions for  the  68000.  Their  mode  of  operation  differs  depending 

on  the  state  of  one  or  more  flags  in  the  condition  code  register.  Un- 
like the  previous  instruction  tables  in  this  chapter.  Table  3-14  does 

not  list  the  actual  mnemonics  for  these  instruction  types,  but  instead 

presents  their  symbolic  forms— Bcc,  DBcc,  and  Sec— in  which  the  "cc" 
suffix  represents  the  condition  being  tested.  The  "cc"  suffixes  are 
summarized  in  Table  3-15.  The  Bcc  instructions  will  not  accept  the 
always  true  (T)  and  always  false  (F)  conditions,  but  all  16  of  the 
conditions  are  testable  by  the  DBcc  and  Sec  instructions. 

The  14  branch  conditionally  (Bcc)  instructions  are  the  same  as 
those  implemented  on  the  Motorola  6800  microprocessor.  With  these 
instructions,  if  the  selected  test  condition  is  met,  program  control 
is  transferred  to  the  instruction  at  location  (PC)  +  displacement, 

otherwise  execution  continues  with  the  next  instruction  in  the  pro- 
gram. The  value  in  the  PC  is  the  Bcc  instruction  location  plus  two. 

Displacement  is  a  2s-complement  integer  count  of  the  number  of 
bytes  between  the  PC  value  and  the  location  of  the  label.  If  your 
operand  is  a  label  (as  it  normally  is),  the  assembler  will  calculate 
the  displacement.  If  the  instruction  is  of  the  form 

BNE  *-f10 
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Table  3-15.  Conditional  Tests 

Suffix  "cc" 
Condition True  if 

EQ Equal  to. Z  =  1 
NE Not  equal  to. z  =  o 
Ml Minus. N  =  1 
PL Plus. 

N  =0 

*GT 

Greater  than. 
ZA(NVV)  =  0 

*LT 

Less  than. NVV  =  1 

*GE 

Greater  than  or  equal  to. NVV  =  0 

*LE 

Less  than  or  equal  to. 
ZV(NVV)  =  1 HI Higher  than. CAZ  =  0 

LS Lower  than  or  same  as. 
CVZ=  1 

Carry  set. U  —  1 
CC Carry  clear. c  =  o 

*vs 

Overflow. V  =  1 

*vc 

No  overflow. v  =  o 
T Always  true. 
F Always  false. 

*Two's-complement  arithmetic. 

Symbols:  A=  Logical  AND 
V=  Logical  Inclusive-OR 
V=  Logical  Exclusive-OR 

your  operand  specifies  the  displacement  value  (decimal  10,  in  this 
case),  in  bytes. 

The  Bcc  instructions  can  be  one  or  two  words  long.  If  you  use 

the  form,  Bcc.S,  the  assembler  will  produce  a  one-word  instruction 

with  an  8-bit,  signed  relative  displacement  embedded  in  the  op- 

word.  With  this  form,  the  branch  "target"  instruction  can  be  up  to 
126  bytes  higher  in  memory,  or  128  bytes  lower  in  memory,  than  the 

Bcc  op-word  plus  two.  If  you  omit  the  .S  suflBx,  the  assembler  will 
produce  a  two-word  instruction  with  a  16-bit  signed,  relative  dis- 

placement in  the  second  word.  With  this  form,  the  branch  target 
can  be  up  to  32,766  bytes  higher  in  memory,  or  32,768  bytes  lower 

in  memory,  than  the  Bcc  op-word  plus  two  (the  displacement 
word).  Thus,  if  your  Bcc  instruction  starts  at  location  N,  the  form 

Bcc.S  provides  branch  limits  of  N  +  $80  and  N  —  $7E,  whereas  the 
form  Bcc  provides  branch  limits  of  N     $8000  and  N  —  $7 FEE. 

Here  are  some  examples  of  conditional  branch  instructions: 

1.  The  sequence 

ADD  D0,D1 
BCS  TOOBIG 

branches  to  label  TOOBIG  if  the  add  operation  produces  a 
carry  out  of  the  low  word  of  Dl. 
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2.  The  sequence 

SUB  D0,D1 
BEQ  ZERO 

branches  to  label  ZERO  if  the  subtract  operation  produces  a 
zero  result  in  the  low  word  of  Dl. 

3.  To  merely  check  whether  the  low  words  of  DO  and  Dl  are 
identical,  without  affecting  either  register,  you  could  use  a 
compare  instruction,  rather  than  a  subtract  instruction.  The 

sequence 

CMP  D0,D1 
BEQ  ZERO 

branches  to  label  ZERO  if  the  low  words  in  DO  and  Dl  are 
the  same. 

4.  Some  tests  require  you  to  choose  between  two  different  Bcc 
instructions,  based  on  whether  you  are  testing  the  result  of  an 

operation  on  unsigned  numbers  or  signed  numbers.  To  illus- 
trate this,  suppose  you  want  to  branch  to  label  DIMORE  if 

the  low  word  in  Dl  is  higher-valued  than  the  low  word  in  DO. 
The  sequence 

CMP  D0,D1 
BHI  D1M0RE 

would  be  used  if  the  contents  of  DO  and  Dl  are  unsigned, 
whereas 

CMP  D0,D1 
BGT  D1M0RE 

would  be  used  if  the  contents  of  DO  and  Dl  are  signed. 

The  conditipnal  branch  instructions  are  often  used  as  the  last  in- 

struction in  a  loop,  to  terminate  the  loop  when  a  certain  "cc"  condi- 
tion has  occurred.  Example  3-1  illustrates  this  usage  with  a  program 

that  searches  a  selected  portion  of  memory  for  a  specified  word 
value.  The  starting  and  ending  addresses  in  memory  are  in  AO  and 
Al,  respectively,  and  the  search  value  is  in  the  low  word  of  DO. 

This  program  enters  a  loop  in  v^^hich  it  compares  the  value  pointed 
to  by  AO  with  the  value  in  DO.  If  the  search  value  is  found,  BEQ.S 
DONE  branches  the  68000  to  DONE,  where  AO  is  decremented. 

(This  is  necessary  because  AO  was  postincremented,  and  ends  up 
pointing  one  word  past  the  compare  location.)  If  no  match  occurs, 

CMPA.L  A0,A1  tests  for  out-of-range,  and  returns  to  LOOP  if  AO 
is  less  than  or  equal  to  Al  (true  if  C  =  0,  thus  we  use  the  instruction 
BCC.S  as  the  terminator). 
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Example  3-1.  Searching  for  a  Word  Value  In  Memory 
*  THIS   PROGRAM   CHECKS   WHETHER   A   SELECTED   PORTION  OF 
*  MEMORY  CONTAINS  A  SPECIFIED  WORD  VALUE.   UPON  ENTRY, 
*  AO  AND  A1  MUST  HOLD  THE  STARTING  AND  ENDING  ADDRESSES 
*  TO  BE  SEARCHED,  AND  THE  LOW  WORD  OF  DO  MUST  HOLD  THE 
*  VALUE  BEING  TESTED. 
*  UPON  COMPLETION,  IF  THE  VALUE  IS  FOUND,  Z  =  1  AND  AO  HOLDS 
*  THE  ADDRESS  OF  THE  MATCHING  WORD  LOCATION. 
*  IF  THE  VALUE  IS  NOT  FOUND,  Z  =  0  AND  AO  =  A1. 

ORG  $2000 
LOOP  CMP  (AO)+,DO  VALUE  FOUND? 

BEQ.S         DONE  YES.  EXIT. 
CMPA.L       A0,A1  END  OF  MEMORY? 
BCC.S         LOOP  NO.      KEEP  CHECKING 

DONE  SUBA.L       #2,A0  DONE.       ADJUST  AO. 

Readers  who  have  programmed  any  of  the  popular  8-bit  micro- 
processors are  well  aware  that  repetitive  loops  are  commonly  gov- 

erned by  some  kind  of  decrementing  counter,  usually  a  register. 
After  each  execution  of  the  loop,  the  counter  is  decremented  by  one, 

and  the  loop  is  terminated  when  the  count  reaches  zero,  or  under- 
flows through  zero.  This  process  has  always  required  at  least  two 

instructions— a  decrement  instruction  and  a  conditional  branch  in- 
struction. You  will  be  pleased  to  know  that  with  the  68000  these 

tasks  are  combined  in  a  set  of  test,  decrement,  and  branch  { DBcc ) 
instructions. 

When  a  DBcc  instruction  is  executed,  the  68000  interrogates  the 
condition  codes  to  find  out  whether  the  specified  condition  ( any  of 

the  16  conditions  in  Table  3-15)  has  been  met.  If  the  condition  is 

met,  program  execution  "falls  through"  to  the  next  instruction.  If  the 
condition  is  not  met,  however,  the  68000  decrements  the  low  word 

of  a  specified  data  register  by  one;  if  the  data  register  has  been 

decremented  to  —1,  program  execution  "falls  through"  to  the  next 
instruction,  otherwise  the  68000  branches  to  the  labeled  location  in 

memory.  Do  you  understand  that?  Even  if  you  think  you  do,  read 

this  paragraph  again  to  be  sure,  then  study  Fig.  3-16  to  embed  it 
in  your  mind. 

At  this  point,  you  should  reaUze  that  a  single  DBcc  instruction, 
such  as 

DBNE  D0,LOOP 

performs  exactly  the  same  function  as  a  three-instruction  sequence, 
such  as 

BNE.S  NEXT 
SUBQ  #1,D0 
BPL  LOOP 
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NEXT * 

And,  besides  eliminating  two  lines  of  source  code,  a  DBcc  instruc- 
tion occupies  two  less  words  in  memory  than  its  equivalent  three- 

instruction  sequence  (two  words  for  DBcc  vs.  four  words  for  the 

EXECUTE 
DBcc  Dn.<label> 
INSTRUCTION 

NO 

CONTINUE  TO 
NEXT  INSTRUCTION 

Fig.  3-16.  How  the  DBcc  instructions  operate. 

sequence).  Also,  a  DBcc  instruction  will  usually  execute  about  twice 

as  fast  as  the  three-instruction  sequence.  A  DBcc  instruction  exe- 
cutes in  10  cycles  if  the  branch  is  taken,  and  executes  in  12  cycles 

if  the  branch  is  not  taken.  In  contrast,  the  three-instruction  sequence 
executes  in  22  cycles  if  the  branch  is  taken,  and  executes  in  either 
10  cycles  or  24  cycles  if  the  branch  is  not  taken  (depending  on 

whether  the  "cc"  condition  is  met  or  the  counter  decrements  to  —  1). 
Do  not  make  the  mistake  of  assuming  that  the  DBcc  instructions 

are  just  fancy  Bcc-with-counter  instructions,  however.  There  are 
several  important  differences  between  the  DBcc  instructions  and 

the  Bcc  instructions,  and  you  should  keep  them  in  mind.  These  dif- 
ferences are: 

1.  The  DBcc  instructions  work  in  reverse  of  the  Bcc  instructions. 

That  is,  the  Bcc  instructions  are  branch-on-condition  instruc- 

BRANCH 
TO  <label> 
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tions,  whereas  the  DBcc  instructions  are  dont-branch-on-con- 
dition  instructions.  With  the  DBcc  instructions,  execution  falls 
through  if  the  condition  is  true,  rather  than  false. 

2.  With  the  DBcc  instructions,  there  are  two  paths  out  of  the 
loop.  These  instructions  not  only  fall  through  if  the  condition 

is  true,  but  also  fall  through  if  the  counter  reaches  —1.  There- 
fore, the  DBcc  instructions  can  also  be  characterized  as  do- 

until-equal  (to  —1)  instructions. 
3.  The  Bcc  instructions  may  branch  forward  or  backward  in  a 

program,  but  the  DBcc  instructions  may  only  branch  back- 
ward, to  a  lower  address  in  memory.  The  branch  label  must  be 

no  more  than  32,766  bytes  ( $7FFE )  lower  in  memory  than  the 
DBcc  instruction. 

4.  The  Bcc  instructions  can  be  one-  or  two-word  instructions,  but 

the  DBcc  instructions  are  always  two-word  instructions.  There- 

fore, because  the  DBcc  instructions  have  no  "short"  variant,  the 
suffixed  form,  DBcc.S,  is  illegal. 

As  mentioned  earlier,  the  DBcc  instructions  can  be  used  with  all 

16  "cc"  suffixes,  including  the  suffixes  T  ( always  true )  and  F  ( never 
true).  The  T  suffix  provides  the  instruction  form 

DBT  Dn,<label> 

which  always  fails  ( always  falls  through  to  the  next  instruction ) ;  it 

is  nothing  more  than  a  two-word  no-op  instruction.  The  more-useful 
F  suffix  allows  you  to  omit  the  condition  test  and  base  the  branch/ 

no-branch  decision  solely  on  the  state  of  the  counter.  Example  3-2 
shows  how  the  DBF  instruction  can  be  used  to  move  a  block  of  data 

in  memory.  Note  that  because  the  counter  must  decrement  to  —  1, 
rather  than  zero,  counter  DO  must  be  initialized  with  the  long  word 

count  minus  one.  If  eight  long  words  are  to  be  moved,  DO  must  ini- 
tially contain  the  value  $0007. 

Example  3-2.  A  Block  Move  Program 
*  THIS  PROGRAM  COPIES  A  BLOCK  OF  DATA  FROM  ONE  PART  OF 
*  MEMORY  TO  ANOTHER.   DO  CONTAINS  THE   NUMBER   OF  LONG 
*  WORDS,  MINUS  1,  TO  BE  MOVED.  AO  POINTS  TO  THE  SOURCE  AND 
*  A1  POINTS  TO  THE  DESTINATION. 
* 

ORG  $2000 
BLKMOV        MOVE.L     {A0)  +  ,(A1)+  MOVE  A  LONG  WORD. 

DBF  DO.BLKMOV  LOOP  UNTIL  DO  +  1  BLOCKS 
ARE  MOVED. 

END 

Incidentally,  this  program  should  impress  programmers  who  have 

programmed  a  block  move  on  an  8-bit  microprocessor,  because  it 
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involves  only  two  instructions  and  occupies  only  three  v^ords  in 
memory.  It  is  fast,  too.  The  MOVE.L  instruction  executes  in  20 
cycles  and  the  DBF  instruction  executes  in  either  10  cycles  (if  the 
branch  is  taken )  or  14  cycles  ( if  the  branch  is  not  taken ) .  Therefore, 

moving  N  long  words  takes  (SON  -h  4)  cycles.  Using  this  relation- 
ship, moving  100  long  words  will  take  just  3004  cycles,  or  375.5  fis 

at  8  MHz! 

The  only  conditional  instructions  that  have  not  yet  been  discussed 

are  the  set  accordin<i,  to  condition  (Sec)  instructions.  These  instruc- 

tions test  the  specified  "cc"  condition  (any  of  those  in  Table  3-15), 
and  set  the  addressed  byte  to  all  Is  if  the  condition  is  met  and  to  all 
Os  if  it  is  not  met.  Since  these  instructions  affect  no  condition  code 

flags,  they  are  intended  to  establish  indicators  that  can  be  tested 
later,  rather  than  tested  immediately. 

An  ASCII  String  Search  Subroutine 

Before  moving  on,  it  might  be  instructive  to  discuss  a  more  ambi- 
tious programming  example,  one  that  has  a  good  mix  of  the  instruc- 
tions we  have  discussed  so  far.  Example  3-3  shows  the  program  we 

will  look  at  here,  a  subroutine  that  checks  for  the  first  occurrence 

of  a  string  of  ASCII  characters  (called  the  "test  string")  in  another 
ASCII  string  (the  "main  string")  in  memory.  This  task  is  not  only 
of  academic  interest;  it  is  quite  common  in  text  processing  appli- 
cations. 

In  Example  3-3,  we  have  assigned  address  register  AO  to  point  to 
the  main  string  (the  string  to  be  searched)  and  Al  to  point  to  the 

test  string  (the  string  for  which  we  are  searching).  In  a  text  process- 
ing application,  the  text  string  is  very  likely  to  be  a  word,  a  phrase, 

a  name,  a  telephone  number,  or  some  other  item  that  we  wish  to 
access  for  a  subsequent  operation.  The  only  other  parameter  that 
needs  to  be  specified  is  the  length  of  the  test  string;  this  count,  in 
bytes,  is  entered  in  the  low  word  of  data  register  DO. 

The  result  o?  the  search  is  returned  in  address  register  A2.  If  the 

test  string  is  in  the  main  string,  A2  will  contain  its  starting  address. 
If  the  test  string  is  not  in  the  main  string,  A2  will  contain  zero. 

The  ASEARCH  subroutine  in  Example  3-3  begins  by  moving  two 
data  registers  and  two  address  registers  onto  the  system  stack,  so 

that  they  will  be  intact  upon  return  from  the  subroutine.  The  re- 
mainder of  the  subroutine  is  comprised  of  two  parts.  In  the  first  part, 

the  6(S000  reads  the  first  character  of  the  test  string  into  data  register 
D3,  and  then  enters  a  loop  (CHKEND)  in  which  this  character  is 
compared  to  each  byte  in  the  main  string.  The  character  in  D3  is 
also  compared  to  the  asterisk  terminator,  to  detect  a  nonmatch  if 
the  entire  main  string  has  been  searched. 

If  the  first  character  of  the  test  string  is  encountered  somewhere 
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Example  3-3.  An  ASCII  String  Search  Subroutine 
*  THIS  SUBROUTINE  SEARCHES  AN  ASCII  STRING  IN  MEMORY  (CALLED 

*  THE   "MAIN   STRING")   FOR  THE   PRESENCE   OF  ANOTHER  ASCII 
*  STRING    (CALLED   THE    "TEST    STRING").   THE    MAIN    STRING  IS 
*  TERMINATED  BY  AN  ASCII  ASTERISK  (*)  CHARACTER. 
*  UPON  CALLING  THE  SUBROUTINE,  THE  STARTING  ADDRESSES  OF 
*  THE  MAIN  AND  TEST  STRINGS  MUST  BE  IN  ADDRESS  REGISTERS  AO 
*  AND  A1,  RESPECTIVELY,  AND  THE  LENGTH  OF  THE  TEST  STRING. 
*  IN  BYTES,  MUST  BE  IN  DATA  REGISTER  DO. 
*  THE  RESULT  OF  THE  SEARCH  IS  RETURNED  IN  ADDRESS  REGISTER 
*  A2.  IF  THE  TEST  STRING  IS  FOUND,  A2  WILL  HOLD  ITS  STARTING 
*  ADDRESS  WITHIN  THE  MAIN  STRING.  IF  THE  TEST  STRING  IS  NOT 
*  FOUND,  A2  WILL  BE  ZERO.  A2  IS  THE  ONLY  REGISTER  AFFECTED. 
* 

ASEARCH 
ORG 
MOVEM 
MOVEM.L 

$1000 
D1/D3,-(SP) 
A0/A3,-(SP) 

SAVE  DATA  REGS  AND 
ADDRESS  REGS  ON  STACK. 

SEARCH  FOR  FIRST  CHARACTER  OF  TEST  STRING. 

MOVE.B  (A1),D3 

FIRST  SUBA.L 
CHKEND  CMPl.B 

BEQ.S 
CMP.B 
BNE.S 

*     FIRST  TEST  CHAR  FOUND 
* 

A2,A2 
#'*',(A0) 
RETRN 

(A0)  +  ,D3 
CHKEND 

READ  FIRST  TEST  CHAR  INTO 
D3. 
MAKE  A2  r=  0  TO  START. 
END  OF  MAIN  STRING? 
YES.       GO  EXIT. 
MAIN  CHAR  =  TEST  CHAR? 
NO.       KEEP  SEARCHING. 

COMPARE  REMAINDER  OF  TEST  STRING. 

LOOP 

RETRN 

MOVE D0,D1 MOVE  TEST  STRING  COUNT 
INTO  D1. 

SUBQ 
#2.D1 

D1  =  COUNT  -  2. 
MOVEA.L A1,A3 MOVE  TEST  STRING  ADDR 

INTO  A3. 
ADDQ.L 

#1,A3 
A3  POINTS  TO  SECOND  TEST 
CHAR. 

MOVEA.L A0,A2 A2  =  CURRENT  MAIN  STRING 
ADDR. 

SUBQ.L 
#1,A2 CMPl.B #'*',(A2) END  OF  MAIN  STRING? 

BEQ.S RETRN IF  SO,  RETURN. 
CMPM.B (A3)  +  ,(A2)  + MAIN  CHAR  -  TEST  CHAR? 
BNE.S FIRST NO.       RESUME  THE  SEARCH. 
DBF D1,L00P YES.  CONTINUE 

COMPARISON. 
SUBQ.L 

#A1,A0 
TEST  STRING  FOUND 

MOVEA,L A0,A2 PUT  START  ADDR.  IN  A2 
MOVEM.L (SP)+,A0/A3 RESTORE  REGISTERS. 
MOVEM 

(SP)4-,D1/D3 RTS 
END 
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in  the  main  string,  the  68000  drops  down  to  the  lower  part  of  the 

subroutine,  in  which  the  remaining  test  string  characters  are  com- 
pared with  the  main  string.  To  make  this  comparison,  we  take  the 

byte  count  of  the  test  string  and  put  it  into  Dl,  then  subtract  two, 

because  the  DBF  instruction  checks  for  —1,  rather  than  0,  and  be- 
cause we  are  processing  the  second  byte  of  the  test  string,  rather 

than  the  first  byte.  At  this  point,  the  potential  main  string  matching 
address  is  recorded  in  A2.  The  LOOP  portion  of  this  part  of  the 
subroutine  compares  the  rest  of  the  test  string,  and  branches  back 

to  FIRST  if  the  entire  test  string  has  not  been  located.  The  sub- 
routine ends  with  two  MOVEM  instructions,  to  retrieve  the  saved 

registers  from  the  stack,  and  an  RTS  instruction,  which  fetches  the 
return  address  and  thereby  transfers  control  back  to  the  calling 
program. 

Unconditional  (Jump  and  Branch)  and  Return  Instructions 

As  with  the  earlier,  8-bit  6800  microprocessor,  Motorola  has  pro- 
vided the  68000  with  jump  and  subroutine  call  instructions  in  both 

a  long  form  and  a  short  form.  The  jump  instructions  are  called  jump 
(JMP)  and  branch  always  (BRA).  The  subroutine  call  instructions 
are  called  jump  to  subroutine  (JSR)  and  Inanch  to  subroutine 
(BSH). 
The  long  forms  of  these  instructions,  JMP  and  JSR,  can  be  used 

to  transfer  program  control  anywhere  in  the  16M-byte  memory  map, 
whereas  the  short  forms,  BRA  and  BSR,  are  limited  to  some  dis- 

placement relative  to  the  branch  instruction.  Like  the  conditional 
branch  (Bcc)  instructions,  BRA  and  BSR  can  be  used  with  either 

an  8-bit  displacement  or  a  16-bit  displacement,  where  the  shorter, 

8-bit  displacement  is  selected  by  appending  a  .S  suffix  to  the  instruc- 
tion mnemonic  (BRA.S  or  BSR.S). 

All  four  of  Ihese  instructions  cause  program  control  to  be  trans- 
ferred by  loading  a  new  address  into  the  program  counter.  However, 

the  subroutine  call  instructions,  JSR  and  BSR,  also  provide  a  way 
for  the  68000  to  return  to  the  instruction  following  JSR  or  BSR,  by 
pushing  the  address  of  this  instruction  onto  the  stack.  Unlike  all 
other  stack  operations,  the  JSR  and  BSR  instructions  push  the  high 
word  of  the  address  onto  the  stack  first,  causing  the  return  address 

to  be  stored  in  low-word/ high-word  order. 
The  return  from  subroutine  ( RTS )  instruction  retrieves  the  return 

address  from  the  system  stack,  and  loads  it  into  the  program  counter. 
Therefore,  RTS  must  be  the  last  instruction  to  be  executed  in  any 
subroutine. 

To  illustrate  the  subroutine  call  and  return  operations,  suppose  a 
program  contains  these  two  instructions: 
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Program 
Counter 

$A2000 
$A2004 

Instruction 

JSR  $4EFE 
MOVE  D0,D1 

Comment 

Subroutine  call. 
Next  in-line  instruction. 

Fig.  3-17  shows  the  program  counter  and  system  stack  at  three  points 
in  the  program-before  the  JSR  instruction  is  executed  (3-17A),  af- 

ter the  JSR  instruction  is  executed  (3-17B),  and  after  the  RTS  in- 
struction in  the  subroutine  is  executed  (3-17C). 

PC 
$000A2000 

SP 

MEMORY 

{A)  Before  executing  JSR  $4EFE. 

PC 
$00004EFE 

SP 
$2004 

$000A 

(B)  After  executing  JSR  $4EFE. 

PC 
$000A2004 

SP 

$2004 

$000A 

(C)  After  executing  RTS. 

Fig.  3-17.  Subroutine  call  and  return  operations. 

In  our  earlier  discussion  of  the  data  movement  instructions,  we 
noted  that  the  instruction  form 

MOVEM    <list>,  -(SP) 

is  useful  for  saving  selected  registers  on  the  stack  while  a  subrou- 
tine is  being  executed  in  order  to  make  that  subroutine  reentrant 

(that  is,  interruptible ) .  There  are  many  applications  in  which  the 
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condition  codes  must  also  be  saved,  so  that  the  context  of  the  pro- 
gram is  preserved  during  execution  of  a  subroutine.  This  too  is  pos- 
sible, with  another  previously  discussed  instruction: 

MOVE  SR,-(SP) 

Of  course,  before  returning  from  the  subroutine,  the  saved  values 

must  be  pulled  off  of  the  stack.  This  can  be  done  with  the  instruc- 
tion se(iuence 

MOVEM    (SP)  +  ,<list> 
MOVE    (SP)  +  ,CCR 

However,  the  68000  includes  a  special  version  of  the  RTS  instruc- 
tion, called  return  and  restore  condition  codes  (RTK),  which  pulls 

the  condition  code  register  as  well  as  a  return  address  from  the 

stack.  Thus,  RTR  eliminates  the  need  for  a  pull-into-CCR  instruc- 
tion at  the  end  of  a  subroutine.  Example  3-4  shows  how  the  condi- 
tion codes  and  certain  working  registers  can  be  preserved  during  a 

subroutine,  and  uses  RTR  (rather  than  RTS)  to  initiate  the  return. 

Example  3-4.  Preserving  Condition  Codes  and  Registers  During  a  Subroutine 
JSR  SUBR  CALL  SUBROUTINE. 
MOVE         D0,D1  NEXT  IN-LINE  INSTRUCTION. 

SUBR       MOVE  SR,-(SP) 

MOVEM. L  D3-D5/A1,-(SP) 

MOVEM. L  (SP)-f-,A1/D3-D5 
RTR 

SAVE  STATUS  REGISTER  ON 
STACK. 
SAVE  REGISTERS  ON  STACK. 

Other  subroutine 

J    instructions. ) 
RESTORE  REGISTERS. 
RETURN  AND  RESTORE 
CONDITION  CODES. 

THE  LINK  AND  UNLINK  INSTRUCTIONS 

The  link  (LINK)  and  unlink  (UNLK)  instructions  (Table  3-16) 
are  used  to  allocate  and  deallocate  data  areas  on  the  system  stack 

for  nested  subroutines,  linked  Hsts,  and  other  procedures.  Follow- 
ing a  procedure  call  (e.g.,  a  call  to  a  nested  subroutine),  LINK  sets 

up  an  address  register  pointer  to  the  data  area  and  moves  the  stack 
pointer  down  in  memory,  just  past  the  data  area.  Upon  completion 
of  the  subroutine,  UNLK  reverses  this  sequence,  thereby  restoring 

the  stack  pointer  and  address  registers  to  their  original,  pre-LINK 
values. 

The  LINK  instruction  has  two  operands,  an  address  register,  and 

a  16-bit  signed  displacement.  While  the  nested  subroutine  is  being 
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executed,  the  address  register  holds  the  starting  address  of  that  sub- 

routine's stack  data  area;  this  address  register  is  referred  to  as  the 
frame  pointer  (FP).  The  displacement  value  specifies  the  amount 
of  stack  space,  in  bytes,  to  be  allocated  to  the  data  area.  When  LINK 

is  executed,  the  68000  pushes  the  32-bit  contents  of  the  FP  onto 
the  stack,  decrements  the  stack  pointer  (SP)  by  four,  loads  that 
stack  pointer  value  into  the  FP,  then  adds  the  displacement  value 
to  the  stack  pointer.  Note  that  the  displacement  value  has  two 

characteristics— ( 1 )  because  the  stack  pointer  value  must  always  be 
even,  the  displacement  value  must  be  an  even  number,  and  (2)  be- 

cause the  displacement  value  is  added  to  the  stack  pointer,  it  should 
be  negative  for  most  applications. 

After  LINK  has  been  executed,  the  address  register  holds  the 
starting  address  of  the  data  area,  and  the  stack  pointer  points  to 
the  location  that  follows  the  data  area.  At  this  point,  the  subroutine 
can  easily  use  the  data  area,  by  accessing  it  with  the  address  register 

indirect  with  displacement  (or  index)  addressing  mode.  Figs.  3-18A 
and  3-18B  show  the  system  stack  after  a  subroutine  call  and  after 
LINK,  respectively. 

Fig.  3-18C  shows  the  stack  pointer  addressing  an  even  lower  mem- 
ory location,  due  to  some  subroutine  push  operations.  This  illustra- 

tion is  included  to  demonstrate  that  the  UNLK  instruction  will  af- 

fect an  orderly  return  (shown  in  Fig.  3-18D),  regardless  of  how 
the  stack  pointer  has  been  altered  in  the  interim.  The  UNLK  instruc- 

tion, which  is  normally  executed  just  before  returning  from  the  sub- 
routine, simply  loads  the  stack  pointer  from  the  FP  register,  then 

reinitializes  the  FP  by  pulling  its  original  value  from  the  top  of  the 
stack.  Following  UNLK,  both  the  FP  and  the  SP  contain  the  values 
they  held  prior  to  LINK. 

SYSTEM  CONTROL  INSTRUCTIONS 

Table  3-17  summarizes  the  instructions  that  the  manufacturers' 
literature  identifies  as  system  control  instructions.  Note  that  there 

are  three  types  of  system  control  instructions— privileged  instruc- 
tions, trap-generating  instructions,  and  status  register  instructions. 

All  of  the  status  register  instructions,  and  most  of  the  privileged  in- 
structions, have  been  discussed  previously  in  this  chapter,  so  we  will 

not  repeat  their  descriptions  here. 

Privileged  Instructions 

As  you  know,  privileged  instructions  are  instructions  that  can  be 
executed  only  when  the  68000  is  in  the  supervisor  state.  Any  attempt 
to  execute  one  of  the  privileged  instructions  from  the  user  state  will 
cause  an  exception  to  occur  (discussed  in  Chapter  7). 

103 



The  reset  external  devices  ( RESET )  instruction  causes  the  RESET 
pin  of  the  68000  MPU  chip  to  be  asserted  for  124  clock  cycles.  This 
line  is  usually  wired  to  all  external  devices  in  the  system,  and  will 
cause  those  devices  to  be  reset,  without  affecting  the  processor.  The 
RESET  instruction  can  be  used  to  recover  from  catastrophic  system 
failures. 

As  we  shall  learn  in  Chapter  7,  interrupts  and  other  exceptions 

cause  the  16-bit  status  register  and  the  32-bit  program  counter  to 
be  pushed  onto  the  supervisor  stack,  to  preserve  the  state  of  the 
program  when  the  exception  occurred.  The  return  from  exception 

(RTE)  instruction  pulls  these  values  from  the  stack  upon  comple- 
tion of  the  exception  service  routine.  Thus,  RTE  is  to  exception 

service  routines  what  RTS  (and  even  more  so,  RTR)  is  to  sub- 
routines! 

Stop  program  execution  (STOP)  loads  an  immediate  value  into 
the  status  register,  and  then  causes  the  68000  microprocessor  to  stop 
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fetching  and  executing  instructions.  Execution  will  not  resume  un- 
til the  68000  receives  an  interrupt  of  sufiBciently  high  priority,  or 

an  external  reset.  In  practice,  STOP  is  often  used  to  change  the  in- 
terrupt mask,  and  can  be  considered  an  enhancement  of  the  wait 

for  interrupt  ( WAI )  instruction  of  the  8-bit  6800  microprocessor. 

Trap-Generating  Instructions 

Traps,  like  interrupts,  cause  the  program  counter  to  be  loaded 

with  one  of  several  addresses  in  memory,  based  on  a  "vector  num- 
ber" supplied  to  the  microprocessor.  However,  with  interrupts,  all 

vector  numbers  are  supplied  by  an  external  device,  but  with  traps, 
all  vector  numbers  are  furnished  internally.  As  described  later  (in 
Chapter  7),  traps  will  be  automatically  generated  by  certain  error 
conditions,  but  they  can  also  be  generated  under  software  control, 
with  any  of  the  three  instructions  described  here. 

The  trap  (TRAP)  instruction  initiates  a  trap  operation  uncondi- 

ill 
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local  storage  for  nested  subroutine  and  procedure  calls. 
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tionally,  and  supplies  a  vector  number  (0  to  15)  in  the  operand. 
Thus,  TRAP  can  be  used  to  generate  any  of  16  different  software 
interrupts. 

The  trap  on  overflow  (TRAPV)  instruction  tests  the  overflow  (V) 
flag  in  the  condition  code  register,  and  traps  to  a  specific  memory 
location  if  V  is  set.  If  V  is  clear,  execution  continues  with  the  next 

sequential  instruction. 

The  third  trap-generating  instruction,  check  register  against 
bounds  ( CHK ) ,  also  operates  conditionally.  This  instruction  checks 

the  contents  of  a  data  register,  and  traps  to  a  specific  memory  loca- 
tion if  the  register  contains  a  value  that  is  less  than  zero  or  greater 

than  an  addressed  "upper  bound"  operand.  This  kind  of  testing  helps 
keep  data  arrays  within  their  allotted  bounds. 

SUMMARY 

In  this  chapter,  we  studied  each  of  the  14  addressing  modes  and 
learned  what  each  is  used  for.  These  14  modes  provide  all  of  the 

basic  addressing  capabilities  of  earlier,  8-bit  microprocessors,  plus  a 
variety  of  valuable  options.  The  ability  to  postincrement  or  predec- 

rement an  address,  for  example,  gives  the  programmer  a  fast,  effi- 
cient way  to  operate  on  strings  and  tables.  Further,  the  inclusion  of 

modes  with  offsets  as  well  as  indexes  makes  arrays  readily  accessible. 

This  chapter  also  covered  each  of  the  56  instructions  that  are  mi- 
crocoded  into  the  68000.  As  with  the  addressing  modes,  many  of  the 
instructions  are  familiar  to  readers  who  have  programmed  the  6800 

or  other  8-bit  microprocessors,  but  even  these  instructions  are  offered 
in  easier-to-use,  enhanced  versions.  For  example.  Motorola  took  the 
load,  store,  register-transfer,  push  and  pull  operations,  and  combined 
them  in  a  single  instruction  type,  called  MOVE.  Other  frequently 

encountered^  operations  that  normally  require  several  lines  of  code 
were  also  combined  into  single  instructions.  Therefore,  in  the  68000 

we  see  a  test-decrement-and-branch  instruction  (DBcc),  a  multi- 
increment  instruction  (ADDQ)  and  a  multidecrement  instruction 
(SUBQ). 

Focusing  special  attention  on  support  of  high-level  languages,  the 
Motorola  designers  also  provided  unique  instructions  for  boundary 
checking  ( CHK )  and  for  allocating  and  deallocating  stack  space  for 

local  variables  during  procedure  calls  (LINK  and  UNLK).  Fur- 
ther, the  immense  addressing  range  of  the  68000  (16M  bytes)  is 

intended  to  support  multitasking  and  multiprocessing,  so  a  memory 

I      allocation  instruction  ( TAS )  is  also  provided. 
With  this  fundamental  understanding  and  appreciation  for  the 

programming  capabilities  of  the  68000,  let  us  move  on  to  a  discus- 
sion of  some  of  the  ways  these  capabilities  can  be  applied.  The  next 
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two  chapters  cover  two  types  of  common  programming  applications 

—mathematical  operations,  and  processing  lists  and  look-up  tables. 
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CHAPTER  4 

Mathematical  Routines 

Readers  who  have  gained  their  education  in  microcomputer  pro- 
gramming through  any  of  the  conventional  4-bit  or  8-bit  micropro- 

cessors are  undoubtedly  impressed  with  the  arithmetic  potential  of 

the  68000.  For  instance,  the  very  fact  that  the  68000  has  built-in 
multiply  and  divide  instructions,  in  both  signed  and  unsigned  ver- 

sions, means  hours  (or  days,  or  weeks)  of  time  that  would  be  used 
developing  multiplication  and  division  subroutines  can  be  redirected 
to  more  stimulating  activities,  such  as  playing  tennis. 

In  this  chapter,  we  will  build  iipon  the  potential  offered  by  the 
multiply  and  divide  instructions  in  developing  some  programs  that 

tackle  somewhat  tougher  math  problems.  We  will  begin  with  pro- 
grams to  perform  32-bit  X  32-bit  multiply  operations  on  both  signed 

and  unsignetl  numbers.  From  there,  the  discussion  will  deal  with 
how  to  handle  overflow  situations  in  divide  operations,  then  finish 

up  with  a  program  that  calculates  the  square  root  of  a  32-bit  number. 

MULTIPLICATION 

In  Chapter  3,  we  studied  the  two  multiplication  instructions, 

signed  multiply  (MULS)  and  unsigned  multiply  (MULU),  and 

noted  that  they  operate  only  on  word-length  (16-bit)  values.  How 
difiicult  is  it  to  multiply  values  that  are  32  bits  in  length,  or  longer? 
It  is  not  very  diflBcult  at  all,  as  we  shall  see.  As  anyone  who  has 

written  a  multiplication  program  for  an  8-bit  microprocessor  can 
tell  you,  just  having  a  multiplication  instruction,  of  any  length, 
makes  up  for  any  inconvenience  required  to  extend  its  capabilities. 
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Unsigned  32-Bit  x  32-Bit  Multiply 

Multiprecision  unsigned  numbers  can  be  multiplied  by  using  the 
MULU  instruction  to  generate  a  series  of  32-bit  cross  products, 
which  are  summed  to  form  the  final  product.  This  method  is  the 

same  one  we  used  to  multiply  decimal  numbers  by  hand  with  pen- 
cil and  paper.  As  you  will  recall  ( in  these  days  of  hand  calculators, 

it  may  be  a  little  hazy),  you  write  the  multiplicand  with  the  multi- 
plier below  it  and  perform  a  series  of  multiplications— one  for  each 

digit  in  the  multiplier.  Each  partial  product  is  written  directly  below 
its  multiplier  digit,  causing  it  to  be  offset  one  digit  position  to  the 
left  of  its  predecessor.  When  all  of  the  partial  products  have  been 
calculated,  they  are  added  to  produce  the  final  product. 

For  example,  the  multiplication  of  124  by  103  looks  like  this: 

124  Multiplicand 
X  103  Multiplier 

372    Partial  Product  #1 
000     Partial  Product  #2 

124       Partial  Product  #3 

12772    Final  Product 

The  partial  products  are  offset  from  each  other  to  account  for  the 
decimal  weights  of  the  multiplier  digits.  In  this  example,  the  3  is  a 

"ones"  digit,  the  0  is  a  "tens"  digit  and  the  1  is  a  "hundreds"  digit. 
Therefore,  the  example  could  be  written  in  this  form: 

103  X  124=  (3  x  124)  -}-  (Ox  124)  +  (lOOx  124) 

or 

103  X  124  =  (3  X  W  X  124)  +  (0  x  10^  x  124)  +  (1  x  10-  x  124) 

In  this  section,  we  will  develop  a  subroutine  to  multiply  two  32- 
bit  unsigned  numbers,  which  yields  a  64-bit  unsigned  product.  In 
the  absence  of  a  multiply  instruction,  this  would  involve  32  multi- 

plication operations,  one  for  each  bit  in  the  multiplier.  Fortunately, 

however,  the  68000  has  an  instruction  that  multiplies  16-bit  unsigned 
numbers  directly.  This  instruction,  MULU,  allows  us  to  view  the 

32-bit  multiplier  and  multiplicand  as  two-digit  numbers,  where  each 
digit  is  16  bits  long.  Thus,  just  four  multipHcations  will  be  required 

to  generate  the  64-bit  product. 

Fig.  4-1  contains  a  symbolic  representation  of  the  multiplier  ( dig- 
its AB)  and  the  multiplicand  (digits  CD),  and  illustrates  how  the 

partial  products  are  derived  and  how  they  must  be  aUgned  in  order 

to  calculate  the  64-bit  final  product.  The  circled  numbers  in  Fig.  4-1 
identify  the  four  16-bit  additions  that  must  be  made  in  calculating 
the  product. 
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MULTIPLICAND 

MULTIPLIER 

PRODUCT #1 

PRODUCT #2 

PR0DUCT#3 

PR0DUCT#4 

TOTAL  =  64-BIT  FINAL  PRODUCT 

Fig.  4-1.  Generating  a  64-bit  product  with  four  16-bit  by  16-bit  multiplications. 

Using  Fig.  4-1  as  a  guide,  it  is  possible  to  develop  a  subroutine 
that  can  multiply  two  32-bit  unsigned  numbers.  Example  4-1  shows 
such  a  subroutine,  labeled  MULU32,  in  which  the  multiplier  and 
multiplicand  are  entered  in  data  registers  D2  and  Dl,  respectively. 

The  64-bit  unsigned  product  is  returned  in  these  same  registers,  Dl 
(low  32  bits)  and  D2  (high  32  bits). 
The  operiltions  performed  by  the  MULU32  subroutine  are  fairly 

straightforward  if  you  refer  to  Fig.  4-1  as  you  look  at  the  instruc- 
tions and  their  comments.  The  MULU32  subroutine  begins  by  sav- 

ing the  contents  of  three  general-purpose  registers  (D3,  D4,  and 
D5 )  on  the  stack,  then  makes  a  copy  of  the  multiplicand  in  both  D3 

and  D4.  The  next  instruction  swaps  the  16-bit  halves  of  D4.  This 
swap  is  a  necessary  preparation  for  generating  the  second  and  fourth 

partial  products  (see  Fig.  4-1),  which  involve  the  high-order  word 
of  the  multiplicand.  This  swap  is  necessary  because  the  unsigned 

multiply  (MULU)  instruction  can  only  multiply  the  low-order 
words  of  two  data  registers.  This  particular  SWAP  instruction  is 
the  first  of  several  in  the  subroutine.  A  SWAP  D5  instruction  is  used 

two  instructions  later  to  prepare  for  generating  the  third  and  fourth 
partial  products. 
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Example  4-1.  A  32-Bit  X  32-Bit  Unsigned  Multiply  Subroutine 

*  THIS  SUBROUTINE  MULTIPLIES  TWO  32-BIT  UNSIGNED  NUMBERS,  TO 
*  GENERATE  A  64-BIT  PRODUCT.  ENTER  WITH  MULTIPLIER  IN  D2  AND 
*  MULTIPLICAND  IN  D1.  THE  PRODUCT  IS  RETURNED  IN  D1  (LOW  32 
*  BITS)  AND  D2  (HIGH  32  BITS). 
* 

ORG $1000 
MOVEM.L D3-D5,-(SP) SAVE  SCRATCH  REGISTERS. 
MOVE.L D1,D3 COPY    MULTIPLICAND  INTO  D3 
MOVE.L D1,D4 AND  INTO  D4, 
SWAP D4 IN  SWAPPED  FORM. 
MOVE.L D2,D5 COPY  MULTIPLIER  INTO  D5, 
SWAP D5 IN  SWAPPED  FORM. 
MULU D2,D1 PARTIAL  PRODUCT  #1. 
MULU D4,D2 

#2. 

MULU D5,D3 

#3. 

MULU D5,D4 

#4. 

SWAP D1 SUM1  =  PP  #2  LOW  + 
ADD D2,D1 PP  #1  HIGH. 
CLR.L D5 

ADDX.L D5,D4 PROPAGATE  CARRY  INTO  PP  #4. 
ADD D3,D1 SUM2  =  SUM1  +  PP  #3  LOW. 
ADDX.L D5,D4 PROPAGATE  CARRY  INTO  PP  #4. 
SWAP D1 PUT  LOW  PROD.  IN  CORRECT 

ORDER. 
CLR D2 PREPARE  FOR  SUM3. 
SWAP D2 

CLR D3 

SWAP D3 
ADD.L D3,D2 SUM3  r=  PP  #2  HIGH  -f  PP  #3 

HIGH. 
ADD.L D4,D2 SUM4  =  SUM3  +  PP  #4. 
MOVEM.L 

(SP)H-,D3-D5 
RESTORE  REGISTERS. 

RTS 
END 

Now,  with  all  of  the  multiplication  operands  in  place,  the  actual 

multiplications  can  be  performed.  The  subroutine  has  four  consecu- 
tive MULU  instructions,  which  leave  partial  products  #1,  #2,  #3, 

and  #4  in  data  registers  Dl,  D2,  D3,  and  D4,  respectively.  The  only 
remaining  task  is  to  sum  up  the  partial  products,  with  respect  to 

their  weights,  to  obtain  the  64-bit  final  product. 
The  circled  numbers  in  Fig.  4-1  identify  the  four  pairs  of  16-bit 

words  that  must  be  added,  in  the  order  in  which  the  MULU32  sub- 

routine adds  them.  In  Example  4-1,  the  four  consecutive  MULU  in- 
structions are  followed  by  a  SWAP  instruction,  which  swaps  the 

word  contents  of  Dl  (partial  product  #1).  This  swap  is  a  necessary 

preparation  for  the  first  add  operation  because,  like  the  MULU  in- 
struction, the  add  instructions  can  add  only  the  low-order  words  of 

two  data  registers. 

After  making  this  first  addition,  any  carry  out  of  that  operation 
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(in  X)  is  propagated  into  D4  (partial  product  #4),  using  an  all-zeros 

register,  D5,  as  a  "dummy"  operand  for  the  add  extended  operation. 
In  the  second  add  operation,  the  low  word  of  D3  (partial  product 
#3)  is  added  to  the  low  word  of  Dl,  which  holds  the  result  of  the 
first  add  operation,  and  any  carry  is  again  propagated  into  D4. 

At  this  point,  the  low-order  32  bits  of  the  final  product  are  intact 
in  data  register  Dl,  but  with  the  data  words  out  of  order.  A  SWAP 

Dl  instruction  remedies  the  problem,  and  the  68000  is  ready  to  be- 
gin accumulating  the  high-order  32  bits  of  the  product.  This  will 

require  adding  the  high -word  contents  of  data  registers  D2  and  D3 
(partial  products  #2  and  #3,  respectively)  to  the  low-word  con- 

tents of  data  register  D4  ( partial  product  #4 ) . 
The  low  words  of  both  D2  and  D3  currently  hold  unneeded  data 

from  the  first  two  add  operations,  so  both  words  are  cleared  and 

then  swapped  into  the  high-order  word  position  of  the  registers 
Two  add  long  instructions  place  the  low-order  32  bits  of  the  final 
product  in  data  register  D2.  After  restoring  the  contents  of  data 
registers  D3,  D4,  and  D5  from  the  stack,  the  subroutine  ends  with 
an  RTS  instruction.  The  MULU32  subroutine  will  take  a  maximum 

of  460  cycles,  or  57.5  [xs^  to  execute. 

Because  a  32-bit  operand  can  represent  unsigned  numbers  as  large 

as  4.294  X  10'*,  many  applications  will  not  require  a  multiplication 
subroutine  that  operates  on  larger  numbers.  (And  those  that  do  will 

probably  use  floating-point  math! )  However,  it  is  certainly  possible 
to  write  a  subroutine  that  multiplies  64-bit  (or  longer)  numbers 
with  the  basic  principles  that  were  used  in  Example  4-1,  but  you 
soon  run  out  of  working  registers  and  would  have  to  use  memory 
for  temporary  storage. 

Signed  32-Bit  x  32-Bit  Multiply 

Although  the  multiplication  subroutine  in  Example  4-1  was  de- 

scribed as  a^subroutine  to  multiply  two  unsigned  numbers,  it  will 
also  correctly  multiply  two  signed  numbers,  as  long  as  they  are  both 

positive.  That  is.  Example  4-1  is  indeed  a  "32-bit  X  32-bit  nonnega- 
tive  multiply  subroutine."  This  subroutine  cannot  properly  multiply 
negative  numbers  because  such  numbers  are  represented  in  2s-com- 
plement  form. 

How,  then,  can  two  signed  numbers  be  multiplied  if  one  or  both 
are  negative?  Certainly  one  valid  solution  would  be  to  negate  the 
negative  operand(s),  perform  the  multiplication,  then  adjust  the 
product,  if  required.  If  just  one  of  the  operands  is  negative,  the 

product  must  be  2s-complemented.  If  both  of  the  operands  are  nega- 
tive, the  (positive)  product  is  correct  as  it  stands. 

This  simple  approach  is  employed  in  Example  4-2,  in  which  the 

low  byte  of  data  register  D6  is  used  to  hold  a  "negative  indicator." 
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Example  4-2.  A  32-Bit  X  32-Bit  Signed  Multiply  Subroutine 

*  THIS  SUBROUTINE  MULTIPLIES  TWO  32-BIT  SIGNED  NUMBERS,  TO 
*  GENERATE  A  64-BIT  PRODUCT.  ENTER  WITH  MULTIPLIER  IN  D2  AND 
*  MULTIPLICAND  IN  D1.  THE  PRODUCT  IS  RETURNED  IN  D1  (LOW  32 
*  BITS)  AND  D2  (HIGH  32  BITS  PLUS  SIGN). 
* 

ORG $2000 
MULS32 MOVE.B D6,  — (SP) SAVE  SCRATCH  REGISTER. 

CLR.B D6 NEGATIVE  INDICATOR  =  0. 
TST.L D1 MULTIPLICAND  NEGATIVE? 
BPL.S CHKD2 NO.    GO  CHECK  MULTIPLIER. 
NEG.L D1 YES.    2'S  COMP.  MULTIPLICAND 
NOT.B D6 AND  rS  COMP.  INDICATOR. 

CHKD2 TST.L D2 MULTIPLIER  NEGATIVE? 
BPL.S GOMUL NO.    GO  MULTIPLY. 
NEG.L D2 YES.    2'S  COMP.  MULTIPLIER 
NOT.B D6 

AND  1'S  COMP.  INDICATOR. 
GOMUL JSR MULU32 CALL  UNSIGNED  MULTIPLY  SUBR. 

TST.B D6 IS  SIGN  ON  PRODUCT  CORRECT? 
BEQ.S DONE YES,  SIGN  IS  OKAY.  EXIT. 
NEG.L D1 NO.  2'S  COMP.  PRODUCT. 
NEGX.L D2 

DONE MOVE.B (SP)  +  ,D6 RESTORE  SCRATCH  REGISTER  D6. 
RTS 
END 

This  indicator,  initialized  to  zero,  is  set  to  all  Is  if  just  one  of  the 
operands  is  negative,  but  will  remain  zero  if  both  operands  are  either 
positive  or  negative.  Then,  after  the  MULU32  subroutine  is  called 

to  perform  the  32-bit  by  32-bit  multiplication,  the  negative  indicator 
is  used  to  determine  whether  the  product  is  correct  ( indicator  zero ) 

or  needs  to  be  negated  (indicator  nonzero).  The  subroutine  in  Ex- 
ample 4-2  (MULS32)  will  have  an  execution  time  that  varies  de- 

pending on  whether  the  operands  are  both  positive,  both  negative, 
or  of  opposite  sign.  The  execution  times  of  MULS32  ( including  those 
of  the  called  subroutine,  MULU32)  are  as  follows: 

Maximum  Time  Maximum  Time 

Operands                 ( Cycles )  (fJis) 

Both  positive                   558  69.75 
Opposite  signs                 576  72.00 
Both  negative                  574  71.75 

A  faster  solution,  and  one  that  does  not  cause  either  operand  to 
be  altered,  can  be  obtained  by  following  this  algorithm: 

If  either  or  both  operands  are  negative,  perform  the  multiplica- 
tion, then  modify  the  product  in  one  of  two  ways: 

1 .  //  one  operand  is  negative,  subtract  the  other  operand 

{i.e.,  the  positive  operand)  from  the  most-significant  part 
of  the  product. 
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2.  //  both  operands  are  negative,  subtract  both  operands  from 

the  most-si<fnificant  part  of  the  product. 

Are  you  skeptical?  Let  us  test  this  algorithm  by  working  out  the 
103  times  124  example  once  more,  but  with  a  negative  multiplier 

(-103).  The  pencil-and-paper  version  will  look  like  this: 

01111100    Multiplicand  =  +124 
X  10011001    Multiplier  = -103 
01111100 

00000000 
00000000 

01111100 
01111100 

00000000 
00000000 

01111100 

0100101000011100    Product  ̂   +18,972 

When  compared  with  the  correct  answer  (—12,772),  our  answer  ap- 

pears to  be  "garbage."  Not  only  is  it  too  large,  but  it  has  the  wrong 
sign  to  boot!  Let  us  see  what  the  preceding  algorithm  can  do  for 
us.  The  algorithm  calls  for  subtracting  the  positive  operand  (+124, 

a  single  byte)  from  the  high-order  byte  of  the  product.  In  binary, 
it  is  easier  for  us  to  add  than  subtract,  so  the  2s  complement  of  the 
positive  operand  is  added  to  the  high  byte  of  the  product: 

0100101000011100    Original  Product  =  +18,972 

+  10000100   2s-Comp.  Multiplicand  =  -124 
1100111000011100    New  Product  =  -12,772 

The  product  is  now  correct.  Readers  are  invited  to  validate  Step 

2  of  the  algorithm  by  applying  this  solution  to  the  paper-and-pencil 
product  of  —103  times  —124.  Fig.  4-2  shows  the  additional  steps  re- 

quired to  multiply  signed  numbers  of  any  length. 

As  you  can  see  from  Fig.  4-2,  this  algorithm  allows  us  to  use  our 
previously  described  unsigned  multiplication  subroutine  (Example 

4-1 )  to  perform  the  initial  multiplication.  However,  there  is  an  addi- 
tional requirement  that  the  original  multiplier  and  multiplicand  be 

saved  for  the  product  "adjustment"  instructions.  Example  4-3  gives 
the  new,  more-efficient  32-bit  X  32-bit  signed  multiply  subroutine. 

This  subroutine,  MLTS32,  is  nothing  more  than  the  MULU32  sub- 
routine from  Example  4-1,  with  a  few  additional  instructions  at  the 

beginning,  to  save  the  multiplier  and  multiplicand  (in  D7  and  D6, 
respectively),  and  a  few  more  instructions  at  the  end,  to  test  the 
operand  signs  and  adjust  the  product,  if  required. 

115 



Example  4-3.  An  Improved  32-Bit  X  32-Bit  Signed  Multiply  Subroutine 
THIS  SUBROUTINE  MULTIPLIES  TWO  32-BIT  SIGNED  NUMBERS,  TO 
GENERATE  A  64-BIT  PRODUCT.  ENTER  WITH  MULTIPLIER  IN  D2  AND 
MULTIPLICAND  IN  D1.  THE  PRODUCT  IS  RETURNED  IN  D1  (LOW  32 
BITS)  AND  D2  (HIGH  32  BITS). 

MLTS32 
ORG 
MOVEM.L 
MOVE.L 
MOVE.L 

$1000 
D3-D7,~(SP) 
D1,D6 
D2,D7 

SAVE  SCRATCH  REGISTERS. 
COPY  MULTIPLICAND  INTO  D6 
AND  MULTIPLIER  INTO  D7. 

PERFORM  A  32-BIT  BY  32-BIT  UNSIGNED  MULTIPLICATION. 

MOVE.L D1,D3 COPY  MULTIPLICAND  INTO  D3 
MOVE.L D1,D4 AND  INTO  D4, 

SWAP D4 IN  SWAPPED  FORM. 
MOVE.L D2,D5 COPY  MULTIPLIER  INTO  D5, 
SWAP D5 IN  SWAPPED  FORM. 
MULU D2,D1 PARTIAL  PRODUCT  #1. 
MULU D4,D2 

#2. 

MULU D5,D3 

#3. 

MULU D5,D4 

#4. 

SWAP D1 SUM1  =  PP  #2  LOW  + 
ADD D2,D1 PP  #1  HIGH. 
CLR.L D5 

ADDX.L D5,D4 PROPAGATE  CARRY  INTO  PP  #4. 
ADD D3,D1 SUM2  r=  SUM1  +  PP  #3  LOW. 
ADDX.L D5,D4 PROPAGATE  CARRY  INTO  PP  #4. 
SWAP 

D1 PUT  LOW  PROD.  IN  CORRECT 
ORDER. 

CLR D2 PREPARE  FOR  SUM3. 
SWAP D2 
CLR D3 

SWAP D3 
ADD.L D3,D2 SUM3  =  PP  #2  LOW  +  PP  #3 

HIGH. 
ADD.L D4,D2 SUM4  =  SUM3  +  PP  #4. 

THE  INSTRUCTIONS  TO  FOLLOW  MODIFY  THE  PRODUCT,  IF 
REQUIRED. 

CHKD6 

DONE 

TST.L D7 MULTIPLIER  NEGATIVE? 
BPL.S CHKD6 NO.   GO  CHECK  MULTIPLICAND. 
SUB.L D6,D2 YES.    SUB.  MULTIPLICAND 

FROM  PROD. 
TST.L D6 IS  MULTIPLICAND  NEGATIVE? 
BPL.S DONE NO.    WE  ARE  DONE. 
SUB.L D7,D2 YES.    SUB.  MULTIPLIER 

FROM  PROD. 
MOVEM.L 

(SP)+,D3-D7 
RESTORE  SCRATCH  REGISTERS 

RTS 
END 

The  execution  times  of  the  MLTS32  subroutine  are  as  follows: 
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Maximum  Time  Maximum  Time 

Operands                   ( Cycles )  (fxs) 
Both  positive                    532  66.5 
Opposite  signs                   536  67.0 
Both  negative                    540  67.5 

DIVISION 

There  are  many  appHcations  for  division,  but  one  of  the  most 

common  is  in  taking  the  average  of  a  set  of  numbers— perhaps  the 
results  of  a  series  of  hiboratory  tests.  Example  4-4  shows  a  typical 
program  for  such  a  task.  This  program,  called  AVERAGE,  averages 
a  specified  number  of  unsigned  word  values  pointed  to  by  AO,  with 
the  word  count  contained  in  the  low  word  of  DO.  The  average  is 

returned  as  an  integer  in  the  low  word  of  Dl  and  a  fractional  re- 
mainder in  the  high  word  of  Dl.  The  AVERAGE  program  uses  two 

scratch  registers,  D2  (to  hold  the  word  count)  and  D3  (to  receive 
word  values  read  from  memory),  but  affects  no  registers  other 
than  Dl. 

Example  4-4.  A  Word-Averaging  Routine 
THIS  ROUTINE  TAKES  THE  AVERAGE  OF  A  SPECIFIED  NUMBER  OF 
UNSIGNED  WORD  VALUES  IN  MEMORY.  UPON  RETURN,  THE  INTEGER 
PORTION  OF  THE  AVERAGE  VALUE  IS  IN  THE  LOW  WORD  OF  D1  AND 
THE  FRACTIONAL  REMAINDER  IS  IN  THE  HIGH  WORD  OF  D1. 
THE  ADDRESS  OF  THE  FIRST  WORD  IS  CONTAINED  IN  AO  AND  THE 
WORD  COUNT  IS  CONTAINED  IN  THE  LOW  WORD  OF  DO. 

AVERAGE 

LOOP 

ORG $1000 
MOVEM.L D0/D2/D3/A0,-(SP) SAVE  SCRATCH 

REGISTERS 
MOVE D0,D2 PUT  WORD  COUNT  INTO 

D2  AND  MAKE  DO  = 
SUBQ 

#1,D0 COUNT  -  1. 
CLR.L Dl CLEAR  DIVIDEND 
CLR.L D3 

REGISTER  AND  WORD- 
HOLDING  REGISTER. 

MOVE 
(A0)4-,D3 

FETCH  NEXT  WORD 
ADD.L D3,D1 AND  ADD  IT  TO  TOTAL 
DBF DO.LOOP ALL  WORDS  NOW 

TOTALED? 
DIVU D2,D1 YES.    TAKE  THE 

AVERAGE. 
MOVEM.L (SP)-f,D0/D2/D3/A0 RESTORE  SCRATCH 
END REGISTERS. 

Clearly,  the  divide  operation  in  Example  4-4  will  be  aborted  if 
DO  holds  zero  upon  entry,  but  can  it  be  aborted  by  an  overflow 

condition?  No,  overflow  cannot  possibly  occur  here,  because  the  ra- 
tio of  the  dividend  (word  total)  to  the  divisor  (word  count)  will 
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PERFORM 
UNSIGNED 

MULTIPLICATION 

MULTIPLIER 

NEGATIVE? 

NO 

YES 

SUBTRACT 
MULTIPLICAND 
FROM  HIGH 
PRODUCT 

Fig.  4-2.  A  signed  multiplication 
algorithm. 

MULTIPLICAND 

NEGATIVE? 

NO 

SUBTRACT 
MULTIPLIER 
FROM  HIGH 
PRODUCT 

never  exceed  65,536!  However,  overflow  could  occur  if  long-word 
values,  rather  than  word  (or  byte)  values,  were  being  averaged. 
For  this  reason,  it  is  worthwhile  to  take  a  look  at  a  procedure  in 
which  a  valid  quotient  can  be  obtained  regardless  of  whether  or 
not  overflow  occurs. 

DIVISION  WITH  OVERFLOW 

As  you  know  from  Chapter  3,  if  overflow  occurs  during  execution 
of  a  signed  divide  ( DIVS )  or  unsigned  divide  ( DIVU )  instruction, 
the  68000  sets  the  overflow  (V)  flag  and  terminates  the  operation, 
without  affecting  divisor  or  dividend.  Overflow  will  occur  when  the 
dividend  is  so  much  larger  than  the  divisor  that  the  quotient  cannot 
be  contained  in  a  16-bit  word. 
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In  some  applications,  an  overflow  represents  an  error  condition. 
In  other  applications,  dn  overflow  condition  is  acceptable,  but  means 

that  a  quotient  longer  than  16  bits  must  be  returned.  Since  the  divi- 
sion is  aborted  when  the  68000  encounters  an  overflow  condition, 

how  can  such  a  longer  quotient  be  obtained?  Perhaps  the  easiest 

way  to  obtain  this  quotient  is  by  spHtting  the  32-bit  dividend  into 
two  16-bit  numbers,  and  then  performing  two  16-bit  by  16-bit  di- 

vide operations  (which  cannot  produce  an  overflow).  If  the  divisor 

is  a  16-bit  number  (X)  and  the  dividend  is  a  32-bit  number  (YiY„), 
the  divide  operation  can  be  represented  as 

or,  more  properly,  as 

Xj(Y,  x2^«)-f  Yo 

This  division  will  generate  two  16-bit  quotient  digits  (Qi  and  Qo) 
and  two  16-bit  remainder  digits  (Ri  and  Ro),  as  follows: 

X  \Y^~xW   andRi  X  2^^' Qo  

X  i  (Ri  X  2^^')  -f  Yo  andRo 

As  you  can  see,  the  net  result  of  these  two  operations  is  a  32-bit 

quotient,  QiQo,  and  a  32-bit  remainder,  OR,,  (interim  remainder  Ri, 
if  generated  at  all,  becomes  zero  during  the  second  divide  opera- 

tion). If  no  overflow  occurs,  Qi  will  be  zero,  and  the  result  will  be 
returned  as  0Q„  and  OR,,. 

From  the  preceding  observations,  it  is  possible  to  develop  a  divi- 
sion subroutfiie  that  will  always  return  a  valid  quotient  and  re- 

mainder, regardless  of  whether  or  not  an  overflow  occurs.  Example 

4-5  gives  a  subroutine,  called  DIVUO,  that  will  do  the  job.  This  sub- 
routine divides  a  32-bit  dividend  in  Dl  by  a  16-bit  divisor  in  DO, 

and  then  checks  for  overflow.  If  overflow  occurred,  the  subroutine 

uses  data  registers  D2  and  D3  to  perform  the  correction. 
Following  these  divisions  ( if  they  are  indeed  required ) ,  the  68000 

executes  the  instructions  at  FORMAT,  in  which  the  32-bit  (quotient 
is  loaded  into  Dl  and  the  16-bit  remainder  is  loaded  into  the  low 

word  of  DO.  If  an  overflow  occurs,  Dl  will  contain  QiQ„  and  DO  will 

contain  OR,,,  as  shown  in  Fig.  4-3A.  If  no  overflow  occurs,  the  low- 
word  of  Dl  and  DO  will  contain  Q  and  R,  respectively,  and  the  high 
words  of  both  of  these  registers  will  contain  all  zeros,  as  shown  in 
Fig.  4-3B. 
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Example  4-5.  A  Division  Subroutine  That  Accounts  for  Overflow 
THIS  DIVIDE  SUBROUTINE  DETERMINES  THE  CORRECT  QUOTIENT 
AND  REMAINDER,  IRRESPECTIVE  OF  OVERFLOW.  ENTER  WITH  THE 
16-BIT  DIVISOR  IN  DO  AND  THE  32-BIT  DIVIDEND  IN  D1.  THE  32-BIT 
QUOTIENT  IS  RETURNED  IN  D1  AND  THE  32-BIT  REMAINDER  IS 
RETURNED  IN  DO. 

DIVUO 
ORG $2000 
MOVEM D2/D3,— (SP) SAVE  SCRATCH  REGISTERS. 
CLR D3 PUT  ZEROS  IN  LOW  WORD  OF 
ni\/i  1 Ul  VU UU,U  1 HAb  OVERFLOW  OCCURRED? 
BVC.S FORMAT NO.    GO  FORMAT  RESULTS. 
MOVE D1,D2 YES.    COPY  YO  INTO  D2. 
CLR D1 

D1  CHANGES  FROM  Y1-Y0  TO 
Y1-0. 

SWAP D1 D1  CONTAINS  0-Y1. 
DIVU D0,D1 DIVIDE  PUTS  R1-Q1  INTO  D1. 
MOVE D1,D3 D3  CONTAINS  Q1. 
MOVE D2,D1 D1  CHANGES  FROM  R1-Q1  TO 

R1-Y0. 
DIVU D0,D1 DIVIDE  PUTS  RO-QO  INTO  D1. 

*  FORMAT  QUOTIENT  (D1)  AND  REMAINDER  (DO) 

FORMAT MOVE.L D1,D0 
DO 

CONTAINS  R-Q  OR  RO-QO. 
SWAP D1 D1 CONTAINS  Q-R  OR  QO-RO. 
MOVE D3,D1 D1 CONTAINS  Q-O  OR  Q0-Q1. 
SWAP D1 

D1 CONTAINS  0-Q  OR  Q1-Q0. 
CLR DO 

DO 
CONTAINS  R-0  OR  RO-0. 

SWAP DO DO 
CONTAINS  0-R  OR  0-RO. 

MOVEM (SP)+,D2/D3 RESTORE  SCRATCH  REGISTERS. 
RTS 
END 

SQUARE  ROOT 

In  this  final  portion  of  the  chapter,  we  will  develop  a  program 

to  calculate  the  square  root  of  a  32-bit  integer  number.  To  make  this 
calculation,  the  program  will  use  the  classical  method  of  successive 
approximations. 

To  illustrate  this  method,  assume  that  the  number  whose  root  is 

to  be  determined  has  the  value  N.  The  first  approximation  for  the 
square  root  is  derived  using  the  value  (N/200)  +  2.  N  is  divided  by 
this  value.  The  result  is  added  to  the  first  approximation  and  the 
sum  is  divided  by  2.  That  result  becomes  our  next  approximation. 
For  example,  to  find  the  square  root  of  10,000: 

N  =  10,000;  first  approximation  is  (10,000/200)  +  2,  or  52 
10,000/52  =  192,    (192  +  52)/2  =  122 
10,000/ 122  =  81,    ( 122  +  81 )  /2=  101 
10,000/101=  99,    (101  +  99)/2  =  100 
10,000/100=  100 
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,  Qo Dl 
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Ro 

DO 
1   0-«  ̂ 0 

Q 

1   ̂0 

R 

(A)  With  overflow.  (B)  Without  overflow. 

Fig.  4-3.  Division  results,  with  and  without  overflow. 

So,  we  see,  the  square  root  of  10,000  is  100.  We  know  that  100  is 

the  square  root,  rather  than  simply  another  intermediate  approxima- 
tion, because  when  100  is  multipHed  by  itself  it  produces  the  origi- 

nal number,  exactly.  This  particular  number,  10,000,  happened  to 
have  an  integer  square  root,  but  we  cannot  expect  the  solution  to  be 

an  integer  for  very  many  numbers.  The  square  root  of  9999,  for  in- 
stance, is  not  an  integer.  This  means  that  if  the  square  root  of  9999 

is  to  be  determined,  the  68000  will  continue  trying  to  determine  the 
square  root  of  this  number.  The  processor  will  continue  looping 
through  the  approximation  instructions,  because  the  square  of  the 
integer  approximation  will  never  be  equal  to  9999.  Therefore,  there 
has  to  be  some  way  to  stop  the  processor  once  it  has  determined  the 

closest  or  "best"  square  root  for  the  number. 
A  number  of  different  methods  can  be  used  to  end  the  approxi- 

mation procedure.  The  method  that  best  suits  your  needs  will  de- 
pend on  how  accurate  your  answer  must  be,  and  how  much  execu- 

tion time  can  be  alloted  to  deriving  that  answer.  One  solution  is  to 
let  the  68000  execute  the  loop  10  times  and  assume  that  answer  is 
accurate  enough.  This  method  will  suit  many  applications,  but  is 
rather  arbitrary  in  nature.  Another,  more  precise,  solution  is  to  let 
the  68000  execute  the  loop  until  two  successive  approximations  are 
identical,  or  differ  by  a  value  of  one.  This  latter  solution  will  be  used 
in  our  software  example. 

Example  4-6  gives  a  subroutine  (SQRT32)  that  calculates  the  in- 
teger square  root  of  a  32-bit  number,  by  successive  approximations. 

In  this  subroutine,  the  32-bit  number  is  contained  in  data  register 
DO  and  the  16-bit  square  root  is  returned  in  data  register  Dl.  The 
subroutine  begins  by  deriving  the  initial  approximation,  using  the 
relationship  (N/200) +2.  The  remainder  of  the  subroutine  is  a 

loop,  starting  at  NXTAPP,  in  which  the  68000  calculates  a  new  ap- 
proximation by  dividing  the  32-bit  integer  by  the  preceding  approxi- 

mation, then  averaging  these  approximations.  Before  averaging  the 

approximations,  however,  the  68000  tests  for  the  "end"  condition, 
by  checking  whether  the  new  approximation  is  either  equal  to,  one 
greater  than,  or  one  less  than,  the  preceding  approximation.  When 
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one  of  these  three  conditions  is  satisfied,  the  68000  returns  from  the 

subroutine,  with  the  16-bit  square  root  in  data  register  Dl. 

Example  4-6.  A  32-Bit  Square  Root  by  Successive  Approximation  Subroutine 
*  THIS  SUBROUTINE  CALCULATES  THE  SQUARE  ROOT  OF  A  32-BIT 

INTEGER  IN  DO,  AND  RETURNS  THAT  SQUARE  ROOT  AS  A  16-BIT 
INTEGER  IN  THE  LOW  WORD  OF  D1.  THE  ORIGINAL  NUMBER  IN  DO 
IS  NOT  AFFECTED. 

SQRT32 

NXTAPP 

DONE 

ORG $2000 
MOVEM.L D2/D3,-(SP) SAVE  SCRATCH  REGISTERS. 
MOVE.L D0,D2 COPY  DATA  VALUE  INTO  D2. 
DIVU 

#200,D2 
DIVIDE  BY  200, 

ADDQ 
#2,D2 

THEN  ADD  2. 
MOVE.L D0,D1 LOAD  DATA  VALUE  INTO  Dl. 
DIVU D2,D1 DIVIDE  IT  BY  LAST  APPROX. 
MOVE D1,D3 AND  PUT  NEW  APPROX.  IN  D3. 
SUB D2,D3 LAST  TWO  APPROXS.  IDENTICAL? 
BEQ.S DONE YES.  EXIT. 
CMPI 

#1,D3 
NO.    CHECK  FOR  DONE. 

BEQ.S DONE 
CMPI #-1,D3 BEQ.S DONE 
ADD D1,D2 ADD  LAST  TWO  APPROXS. 
LSR 

#1,D2 
AND  DIVIDE  SUM  BY  2. 

BRA.S NXTAPP 
MOVEM.L 

(SP)  +  ,D2/D3 RESTORE  SCRATCH  REGISTERS. 
RTS 
END 
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(b)  Stauffer,  M.  K.  "Math  Processing  Chips  Boost  ̂ iC  Computing  Power." 
EDN,  August  20,  1980,  pp.  113-120. 

(c)  Twaddell,  W.  "ICs  and  Semiconductors."  EDN,  July  20,  1980,  pp. 74-94. 
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CHAPTER  5 

Lists  and  Look-Up  Tables 

There  are  many  ways  in  which  information  in  memory  can  be  or- 
ganized for  processing.  These  organizational  techniques  vary  with 

the  apphcation,  and  are  categorized  with  such  names  as  Usts,  arrays, 

strings,  look-up  tables,  and  vectors.  As  expected,  the  subject  can 
(and  does)  fill  many  volumes,  but  we  will  concentrate  on  just  two 

types  of  organization— and  look-up  tables. 
Lists  are  probably  the  most  fundamental  data  storage  technique. 

They  consist  of  units  of  data  ( one  or  more  bytes )  called  elements, 
arranged  sequentially  in  memory.  The  sequence  can  be  consecutive, 

in  which  each  element  occupies  one  or  more  adjoining  memory  lo- 
cations; or  the  sequence  can  be  linked,  in  which  each  data  element 

is  followed  by  a  pointer  to  the  next  element  in  the  list.  Further,  the 
elements  can  be  arranged  randomly,  or  in  ascending  or  descending 
order. 

Look-up  tables  are  data  structures  that  have  one  specific  purpose 
—to  find  information  (either  data  or  addresses)  that  has  a  defined 
relationship  to  a  known  value.  A  telephone  directory  is  a  good  ex- 

ample of  a  look-up  table;  knowing  a  name,  you  can  look  up  an  asso- 
ciated telephone  number. 

UNORDERED  LISTS 

In  our  ordered  society,  where  telephone-book  listings  are  arranged 
alphabetically  and  where  house  numbers  increase  ( or  decrease )  sys- 

tematically as  you  go  up  or  down  a  street,  unordered  anythings  seem 
somehow  inferior  to  us.  Unordered  lists  are  the  bane  of  the  pro- 

grammer too  because  they  are  often  diflBcult  to  process.  To  find  out 
whether  a  certain  value  is  in  an  unordered  list,  you  must  search  the 
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list  from  the  beginning,  element  by  element,  until  you  either  find  the 
value  or  you  reach  the  end  of  the  list.  But  like  it  or  not,  unordered 

lists  are  a  fact  of  life  in  many  applications,  and  represent  a  common 
way  to  store  random,  chronologically  derived,  or  dynamically  chang- 

ing data  ( especially  data  from  an  experiment ) . 

Adding  an  Entry  to  an  Unordered  List 

Subroutine  ADD2UL,  shown  in  Example  5-1,  is  a  sample  of  the 
kind  of  program  that  you  could  use  to  create  an  unordered  list,  or 
to  add  a  new  element  to  an  existing  unordered  list.  For  this  example, 
the  list  is  comprised  of  word  values  (either  signed  or  unsigned). 

Example  5-1.  Adding  an  Entry  to  an  Unordered  List 
*  THIS  SUBROUTINE  ADDS  THE  LOW  WORD  OF  DATA  REGISTER  DO 
*  TO  AN  UNORDERED  LIST,  IF  IT  IS  NOT  ALREADY  IN  THE  LIST. 
*  THE  STARTING  ADDRESS  OF  THE  LIST  IS  IN  ADDRESS  REGISTER  AO. 

*  THE  LENGTH  OF  THE  LIST,  IN  WORDS,  IS  IN  THE  LIST'S  FIRST 
*  WORD  LOCATION. 
* 

ORG $2000 
ADD2UL MOVEM.L D1/A1,-(SP) SAVE  SCRATCH  REGISTERS. 

MOVEA.L A0,A1 COPY  STARTING  ADDRESS  INTO 
MOVE (A1)  +  ,D1 A1  AND  WORD  COUNT 
SUBQ 

#1,D1 
MINUS  1  INTO  D1. 

NXTEL CMP (A1)  +  ,D0 DO  ENTRY  AND  ELEMENT  MATCH? 
BEQ.S ITSIN 

YES.    IT'S  IN  LIST;  DONE. 
DBF D1, NXTEL NO.    LOOP  UNTIL  END  OF 
MOVE D0,(A1) LIST,  THEN  ADD  ENTRY  TO 
ADDQ #1,(A0) THE  END  AND  INCREMENT 

ELEMENT  COUNT. 
ITSIN MOVEM.L 

(SP)4-,D1/A1 
RESTORE  SCRATCH  REGISTERS. 

RTS 
END 

This  subroutine  simply  searches  the  list,  element  by  element,  for 
the  occurrence  of  the  value  that  the  user  wants  to  add  to  the  list, 
which  is  contained  in  the  low  word  of  data  register  DO.  If  this  value 
is  already  in  the  list,  the  68000  returns  from  the  subroutine,  because 
you  do  not  want  the  value  to  be  duplicated  in  the  list.  Otherwise, 

the  value  is  "tacked  on"  to  the  end  of  the  list,  as  a  new  element. 
The  starting  address  of  the  list  is  contained  in  address  register  AO. 
The  first  element  in  the  list  ( a  word )  contains  an  unsigned  number 

that  represents  the  length  of  the  list,  in  words,  so  this  particular  sub- 
routine can  be  used  to  build  a  list  that  is  up  to  64K  words  long. 

There  is  nothing  particularly  unusual  about  this  subroutine.  It 
copies  the  starting  address  of  the  list  from  AO  into  Al  ( so  that  this 
address  is  preserved  in  AO),  and  then  reads  the  element  count  from 
the  first  word  of  the  list  into  Dl.  This  count  is  then  decremented, 

because  the  search  loop  will  terminate  when  the  count  has  decreased 
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to  —1,  rather  than  to  zero.  The  search  loop,  which  starts  at  NXTEL, 
compares  the  elements  in  the  list  to  the  value  in  DO.  If  the  value 
is  already  in  the  list,  the  68000  branches  to  ITSIN,  and  then  returns. 
Otherwise,  if  the  value  is  not  in  the  list,  it  is  added  to  the  end  of 

the  list  and  an  ADDQ  instruction  increases  the  element  count  ( ad- 
dressed by  AO)  by  one. 

How  long  will  it  take  this  subroutine  to  execute?  Obviously,  that 
will  depend  on  the  number  of  elements  in  the  list,  and  whether  or 
not  the  search  value  is  already  in  the  list.  For  all  but  the  smallest 
lists,  the  total  execution  time  of  the  subroutine  is  largely  a  function 

of  how  many  times  the  three-instruction  NXTEL  loop  is  executed. 
Let  us  examine  the  timing  for  both  cases— element  is  not  in  the  list, 
and  element  is  in  the  list— for  a  list  having  N  elements. 

//  the  search  value  is  not  in  the  list,  the  NXTEL  loop  will  be  exe- 
cuted N  times.  For  the  first  N  — 1  executions,  the  loop  will  take  26 

cycles  to  execute;  for  the  last  cycle,  the  loop  will  take  30  cycles  to 

execute.  The  remaining  instructions  in  the  subroutine  will  be  exe- 
cuted only  once,  and  will  require  108  cycles.  Therefore, 

Timetotai  =  108  +  26(N-1)  +  30 

=  26N  +  112  cycles 

Thus,  to  add  an  element  to  a  100-element  list  will  take  2712  cycles, 
or  339.0  fxs. 

If  the  search  value  is  in  the  list,  it  should  take  the  68000  an  aver- 
age of  N/2  comparisons  to  find  it,  because  50%  of  the  time  a  search 

value  will  lie  in  the  lower  half  of  the  list  and  50%  of  the  time  it  will 

lie  in  the  upper  half  of  the  list.  For  all  but  the  last  of  these  N/2  com- 
parisons, the  NXTEL  loop  will  take  26  cycles  to  execute  (as  in  the 

preceding  paragraph);  for  the  last  cycle,  in  which  a  match  is  de- 
tected, the  NXTEL  loop  will  take  only  18  cycles  to  execute.  The  re- 

maining instructions  in  the  subroutine  will  require  an  additional  88 
cycles.  Therefore,  on  the  average, 

Timetotai  =  88  +  26(N/2  -  1)  +  18 
=  13N  +  80  cycles 

Thus,  to  find  an  element  in  an  unordered  100-element  list  will  take 
an  average  of  1380  cycles,  or  172.5  fis. 

Deleting  an  Element  From  an  Unordered  List 

To  delete  an  element  from  an  unordered  list,  you  must  find  the 
element  to  be  deleted,  and  then  move  all  remaining  elements  in  the 

list  up  one  element  ( to  write  over  the  deletion  "victim" ) .  Once  this 
element  has  been  removed,  there  is  one  less  element  in  the  list,  so  the 
element  count  of  the  list  must  be  decremented  by  one. 
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The  DELEUL  subroutine  given  in  Example  5-2  performs  just  such 
an  operation,  using  the  low  word  of  data  register  DO  to  specify  the 
value  to  be  deleted.  As  in  Example  5-1,  the  starting  address  of  the 
list  is  stored  in  address  register  AO.  . 

Example  5-2.  Deleting  an  Element  From  an  Unordered  List 
THIS  SUBROUTINE  DELETES  THE  VALUE  IN  THE  LOW  WORD  OF  DATA 
REGISTER  DO  FROM  AN  UNORDERED  LIST,  IF  THAT  VALUE  IS  IN 
THE  LIST.  THE  STARTING  ADDRESS  OF  THE  LIST  IS  IN  ADDRESS 
REGISTER  AO.  THE  LENGTH  OF  THE  LIST,  IN  WORDS,  IS  IN  THE  LIST'S 
FIRST  WORD  LOCATION. 

DELEUL 

NEXTEL 

ORG $1000 
MOVEM.L D1/A1,-(SP) SAVE  SCRATCH  REGISTERS. 
MOVEA.L A0,A1 COPY  STARTING  ADDRESS  INTO 
MOVE {A1)  +  .D1 A1,  AND  WORD  COUNT 
SUBQ 

#1,D1 
MINUS  1  INTO  D1. 

CMP 
(A1)-f  ,D0 DELETE  VICTIM  FOUND? 

BNE.S DELETE YES.  GO  DELETE  THAT 
ELEMENT. 

DBF D1, NEXTEL NO.    SEARCH  UNTIL  END  OF 
BRA.S ALLDUN LIST,  THEN  EXIT  (ELEMENT 

NOT  IN  LIST). 
* 
* 
* 

DELETE  MOVE 
DBF 

DELETE  AN  ELEMENT,  BY  MOVING  ALL  SUBSEQUENT  ELEMENTS  UP 
BY  ONE  WORD  LOCATION. 

(A1)  +  ,-4(A1)      MOVE  ONE  WORD  UP  IN  LIST. 
D1, DELETE  HAVE  ALL  ELEMENTS  BEEN 

MOVED? 
#1,(A0)  YES.    DECREMENT  ELEMENT 

COUNT. 
(SP)  +  ,D1/A1        RESTORE  SCRATCH  REGISTERS. ALLDUN 

SUBQ 

MOVEM.L 
RTS 
END 

The  first  portion  of  the  subroutine  (DELEUL  to  NEXTEL)  loads 
the  starting  address  of  the  list  (where  the  element  count  is  stored) 
into  Al,  and  then  loads  the  word  count  minus  one  into  Dl;  these 

instructions  are  identical  to  those  at  the  beginning  of  Example  5-L 
The  NEXTEL  loop  compares  each  element  in  the  list  to  the  value 
in  DO.  If  a  matching  element  is  found,  the  68000  branches  to  the 
DELETE  loop,  which  moves  all  subsequent  elements  up  one  word 
location  and  then  decrements  the  element  count. 

Finding  the  Minimum  and  Maximum  Values  in  an 
Unordered  List 

The  need  to  find  the  minimum  and  maximum  values  in  a  list  is 

a  requirement  in  many  applications,  particularly  those  in  which  test 
data  or  statistical  information  is  being  processed.  One  method  that 
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can  be  used  to  find  these  values  without  sorting  the  Hst  is  to  initially 
establish  the  first  element  as  both  the  minimum  and  maximum  value, 
and  then  sequentially  compare  each  of  the  remaining  elements  in 

the  list  to  that  minimum  and  maximum  value.  If  your  program  en- 
counters a  value  that  is  less  than  the  minimum  value,  that  element 

becomes  the  new  minimum  value  unit.  Likewise,  if  your  program 
encounters  a  value  that  is  greater  than  the  maximum  value,  that 
element  becomes  the  new  maximum. 

Subroutine  MINMAX  in  Example  5-3  applies  this  method  to  an 
unordered  list  comprised  of  unsigned  word  values.  When  the  sub- 

routine is  called,  the  starting  address  of  the  list  must  be  contained 
in  AO.  Upon  return,  the  minimum  and  maximum  values  will  be 
stored  in  two  symbolic  memory  locations,  MINVAL  and  MAXVAL. 

In  Example  5-3,  the  instructions  from  MINMAX  to  CHKMIN 
load  the  element  count,  minus  one,  into  data  register  Dl  and  store 
the  value  of  the  first  data  element  into  both  MINVAL  and  MAX- 

VAL. At  CHKMIN,  the  next  element  is  loaded  into  DO,  and  then 

Example  5-3.  Finding  the  Minimum  and  Maximum  Values  in  an  Unordered  List 
*  THIS  SUBROUTINE  FINDS  THE  MINIMUM  AND  MAXIMUM  WORD 

VALUES  IN  AN  UNORDERED  LIST.  THE  MINIMUM  VALUE  IS  RETURNED 
IN  MEMORY  LOCATION  MINVAL;  THE  MAXIMUM  VALUE  IS  RETURNED 
IN  MEMORY  LOCATION  MAXVAL.  THE  STARTING  ADDRESS  OF  THE 
LIST  IS  IN  ADDRESS  REGISTER  AO.  THE  LENGTH  OF  THE  LIST,  IN 

WORDS,  IS  IN  THE  LIST'S  FIRST  WORD  LOCATION. 

MINVAL 
MAXVAL 
MINMAX 

ORG 
DS.W 
DS.W 
MOVEM. 
MOVE 
SUBQ 
MOVE 
MOVE 

CHKMIN  MOVE 

CHKMAX 

CONT 

CMP 
BEQ.S 
BCC.S 
MOVE 
BRA.S 
CMP 

BLS.S 
MOVE 
DBF 
MOVEM. L 
RTS 
END 

$3000 
1 
1 
D0/D1/A0,-(SP) 
(A0)  +  ,D1 

#1,D1 
(AO), MINVAL 
(A0)  +  , MAXVAL 

(AO)  +  ,DO 

MINVAL,DO 
CONT 
CHKMAX 
DO, MINVAL 
CONT 
MAXVAL,DO 

CONT 
DO,MAXVAL 
D1, CHKMIN 
(SP>+,D0/D1/A0 

MINIMUM  VALUE  LOCATION. 
MAXIMUM  VALUE  LOCATION. 
SAVE  SCRATCH  REGISTERS. 
MOVE  ELEMENT  COUNT  INTO 
Dl  AND  DECREMENT  IT. 
INITIALLY,  MAKE  FIRST 
ELEMENT  BOTH  MIN  AND 
MAX. 
LOAD  NEXT  ELEMENT  INTO 
DO. 
IS  THIS  ELEMENT  A  NEW  MIN? 

YES.  UPDATE  MINVAL. 

IS  THIS  ELEMENT  A  NEW 
MAX? 

YES.  UPDATE  MAXVAL. 
END  OF  LIST? 

YES.  RESTORE  SCRATCH 
REGISTERS. 
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compared  to  MINVAL.  At  this  point,  any  of  three  paths  can  be 
taken : 

1.  If  the  value  in  DO  is  equal  to  MINVAL  (zero  flag  is  set),  the 
68000  branches  to  CONT,  to  check  whether  all  elements  have 
been  processed. 

2.  If  the  value  in  DO  is  greater  than  MINVAL  (carry  flag  is  clear), 
the  68000  branches  to  CHKMAX,  where  it  is  compared  to 
MAXVAL. 

3.  If  the  value  in  DO  is  less  than  MINVAL  (carry  flag  is  set), 

the  68000  "drops  through"  the  BCC.S  CHKMAX  instruction and  stores  the  word  in  DO  as  the  new  MINVAL. 

Following  Step  2  or  3,  the  loop  terminator  instruction  at  CONT  (  DBF 
D1,CHKMIN)  checks  whether  all  elements  in  the  Hst  have  been 

processed,  and  branches  to  CHKMIN  if  they  have  not. 
As  mentioned  previously,  this  particular  subroutine  processes  lists 

that  are  comprised  of  unsigned  word  values.  If  you  wish  to  find  the 
minimum  and  maximum  in  a  list  of  signed  word  values,  you  can  do 
so  by  simply  replacing  BCC.S  CHKMAX  with  BPL.S  CHKMAX  and 
replacing  BLS.S  CONT  with  BLE.S  CONT.  All  other  instructions 
remain  the  same. 

A  SIMPLE  SORTING  TECHNIQUE 

Although  unordered  data  is  perfectly  acceptable  for  many  appli- 
cations, ordered  data  is  often  easier  to  analyze,  and  it  certainly 

makes  it  much  easier  to  locate  an  element.  How  can  an  unordered 
list  be  ordered?  A  considerable  amount  of  literature  exists  on  the 

subject.  (Two  good  sources  are  References  1  and  2.)  However,  one 
of  the  simplest  techniques  is  called  the  bubble  sort. 

Just  as  bubbles  rise  upward  into  the  sky,  list  elements  rise  upward 
in  memory  during  a  bubble  sort.  ( Data  can  be  sorted  in  an  increasing 
or  decreasing  order;  we  will  discuss  only  increasing  order. )  During  a 
bubble  sort,  elements  of  a  list  are  accessed  sequentially,  starting  with 
the  first  element,  and  are  compared  to  the  next  element  in  the  list. 
If  an  element  is  greater  than  the  next  sequential  element  in  the  list, 
the  elements  are  exchanged.  The  next  pair  of  elements  is  compared, 
exchanged  if  required,  and  so  on.  By  the  time  the  68000  gets  to  the 

last  element  of  the  list,  the  largest  element  in  the  list  will  have  "bub- 
bled up"  to  the  last  element  position  of  the  list. 

If  the  bubble-sort  algorithm  is  used,  the  microcomputer  usually 
requires  several  passes  to  sort  a  list,  as  can  be  seen  by  the  following 

example.  Consider  a  5-element  list  that  is  initially  arranged  in  the 
following  order: 
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05    03    04    01  02 

After  one  pass  through  the  Hst,  the  elements  will  be  in  the  following 
order: 

03    04    01    02  05 

Element  05,  the  largest  element  of  the  list,  has  "bubbled  up"  to  the 
top  of  the  list.  The  next  pass  will  produce  the  order: 

03    01    02    04  05 

Element  04  is  bubbled  up  the  list  to  a  position  that  is  just  before 
element  05.  The  result  of  the  final  pass  is: 

01    02    03    04  05 

This  example  not  only  demonstrates  how  the  bubble-sort  algo- 
rithm operates,  but  it  also  gives  an  indication  of  what  type  of  per- 

formance you  can  expect  from  it.  Note  that  three  passes  were  re- 
quired to  sort  a  partially  ordered,  5-element  list.  If  the  list  were 

totally  ordered  at  the  outset,  it  would  still  take  one  pass  through 

the  algorithm  to  deduce  this  fact.  Conversely,  if  the  list  were  ini- 
tially arranged  in  descending  order  (the  worst  case),  the  bubble- 

sort  algorithm  would  require  five  passes  to  order  the  list,  four  passes 
to  sort,  and  one  additional  pass  to  detect  that  no  additional  elements 
need  to  be  exchanged.  From  this  observation,  we  can  state  that  the 
68000  will  have  to  make  from  one  to  N  number  of  passes  through  an 

N -element  list,  in  order  to  sort  it.  On  the  average,  N/2  passes  are  re- 
quired to  sort  an  N-element  list. 

What  constitutes  a  "pass,"  in  terms  of  instructions  and  time?  Well, 
that  will  depend  on  how  your  programming  algorithm  is  set  up. 

Certainly,  one  way  of  bubble-sorting  a  list  is  to  process  the  entire 
list,  over  and  over,  until  your  program  finally  makes  a  pass  through 
the  list  in  which  no  elements  were  exchanged.  That  approach  will 

do  the  job,  but  it  is  time-consuming  "overkill."  Why?  Because  it  is 
continuing  to  make  comparisons  on  elements  that  have  bubbled  up 
to  the  end  of  the  list  in  previous  passes,  and  therefore  need  not  be 
compared.  A  much  quicker  and  more  eflBcient  approach  is  to  make 
comparisons  on  only  those  elements  that  have  not  yet  bubbled  up 
to  the  end  of  the  list. 

Note  that  for  any  given  list,  both  approaches  just  described  will 
involve  the  same  number  of  sorting  passes,  but  there  are  drastic 
differences  in  the  amount  of  time  each  will  take  to  get  the  job  done. 
If  we  use  the  previously  mentioned  statistic  that  an  average  of  N/2 
passes  are  required  to  sort  an  N-element  list,  here  is  how  the  two 
approaches  compare:  The  first  approach,  in  which  all  elements  are 
compared  in  every  pass,  will  perform  N/2  sorting  passes  through  N 
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elements.  The  second  approach,  in  which  only  the  previously  un- 
sorted  elements  are  compared,  will  also  perform  N/2  sorting  passes, 
but  each  pass  will  involve  one  less  comparison  than  the  preceding 
pass!  That  is,  during  the  first  pass,  N  elements  will  be  compared, 

during  the  second  pass  N— 1  elements  will  be  compared,  and  so  on. 
During  the  final  pass  just  two  elements  will  be  compared.  To  get 
a  feel  for  the  time  savings  you  will  realize  by  using  the  second  ap- 

proach, consider  this:  To  sort  a  100-element  list,  the  first  approach 
will  require  about  4950  comparisons,  whereas  the  second  approach 

will  require  only  about  3675  comparisons,  which  is  about  one-quarter 
fewer  comparisons! 

Bubble-Sorting  a  List  Having  16-Bit  Elements 

With  the  preceding  background  in  bubble-sort  theory,  we  are 
prepared  to  tackle  an  actual  problem— sorting  a  list  that  is  made  up 
of  16-bit  unsigned  elements.  Fig.  5-1  is  a  flowchart  showing  what 
steps  are  needed  to  do  the  job.  If  you  understand  the  description 

of  the  bubble-sort  algorithm,  this  flowchart  should  present  no  prob- 
lem. Note,  however,  that  the  flowchart  does  include  an  indicator 

that  will  let  the  68000  know  when  the  list  has  been  entirely  sorted. 
This  indicator,  called  the  exchange  flag,  is  tested  at  the  end  of  each 

sorting  pass.  The  exchange  flag  is  "turned  on"  (set  to  logic  1)  if  at 
least  one  exchange  occurred  during  the  preceding  pass;  otherwise 

it  is  "turned  off"  (reset  to  logic  0),  at  which  point  the  sorting  ends. 
The  actual  subroutine  for  this  flowchart  is  given  in  Example  5-4. 

As  you  can  see  from  the  listing,  upon  entry  the  starting  address  of 

the  list  to  be  sorted  must  be  in  address  register  AO.  While  the  sub- 
routine is  executing,  AO  retains  the  address  of  the  first  data  element 

in  the  list.  This  address  is  moved  to  Al  at  the  beginning  of  each 
sorting  pass.  Besides  AO  and  Al,  the  SORT  subroutine  also  uses  four 
data  registers.  Register  Dl  holds  the  exchange  flag  in  bit  7.  Register 
D3  is  used  to  hold  the  count  of  unsorted  elements.  It  supplies  data 
register  DO  with  this  count  at  the  beginning  of  each  pass,  and  gets 
decremented  by  a  DBF  instruction  upon  completion  of  the  pass. 

Register  D2  is  used  to  hold  an  element  during  the  compare  pro- 
cedure. 

By  the  way,  you  should  take  note  of  the  two  instructions  that 
follow  the  DBF.  The  instruction  NOT.B  Dl  Is-complements  the 

exchange  flag  (in  Dl),  and  the  instruction  BPL.S  LOOP  initiates 

a  new  sorting  pass  if  the  NOT  operation  has  changed  the  flag  to  0. 
That  is,  the  branch  to  LOOP  is  taken  only  if  the  exchange  flag  was 

"on"  ( set  to  1 )  before  the  NOT  instruction  was  executed. 
In  many  applications,  the  elements  of  a  list  will  not  fit  into  a 

simple  8-bit,  16-bit,  or  32-bit  format,  and  programmers  must  de- 
velop sort  routines  to  handle  lists  with  even  longer  elements.  The 
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START  ̂  

EXCHANGE 
FLAG  =  0 

FETCH 
WORD  COUNT 

FETCH 
ADDRESS  OF 

FIRST  ELEMENT 

WORD  COUNT  = 
WORD  COUNT-1 

LOAD  WORD 
COUNT  INTO 
COUNTER 

FETCH 
NEW  ELEMENT 

TURN  ON 
EXCHANGE 

FLAG 

NO 

RETURN 

COUNTER  = 
COUNTER -1 

Fig.  5-1.  Bubbie-sort  algorithm. 
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Example  5-4.  A  16-Bit  Bubble-Sort  Subroutine 

THIS  SUBROUTINE  ARRANGES  THE  16-BIT  ELEMENTS  OF  A  LIST  IN 
ASCENDING  ORDER  IN  MEMORY,  USING  BUBBLE  SORT.  THE 
STARTING  ADDRESS  OF  THE  LIST  IS  IN  ADDRESS  REGISTER  AO.  THE 

LENGTH  OF  THE  LIST,  IN  WORDS,  IS  IN  THE  LIST'S  FIRST  WORD 
LOCATION. 

SORT 

LOOP 

COMP 

DECCTR 

ORG 
MOVEM.L 
CLR.B 
MOVE 

SUBQ 
MOVE 

MOVE 

CMP 

BLS.S 
MOVE 
MOVE 
TAS 
DBF 
NOT.B 

BPL.S 
MOVEM.L 

RTS 

END 

$4000 
D0-D3/A0/A1,-(SP) 
D1 

(A0)+,D3 

MOVEA.L  A0,A1 

#1,D3 D3,D0 

(A1)+,D2 
(A1),D2 

DECCTR 

(A1),-2(A1) D2,(A1) 

D1 
DO.COMP 
D1 

LOOP 

(SP)-h,D0-D3/A0/A1 

SAVE  SCRATCH  REGISTERS. 
EXCHANGE  FLAG  =  0. 
LOAD  WORD  COUNT  INTO 
D3. 
LOAD  ELEMENT  ADDR.  INTO 
A1. 
DECREMENT  WORD  COUNT 
AND  LOAD  IT  INTO 
COUNTER  DO. 
FETCH  WORD  INTO  D2. 
IS  NEXT  WORD  GT. 
THIS  WORD? 

YES.  CONTINUE. 
NO.    EXCHANGE  THESE 
TWO  WORDS. 

TURN  ON  EXCHANGE  FLAG. 
END  OF  LIST? 

YES.    IS  EXCHANGE  FLAG 
ON? 

IF  SO,  START  OVER. 
RESTORE  SCRATCH 
REGISTERS. 

preceding  comments  should  give  you  suflBcient  background  to  de- 
velop a  program  that  will  sort  elements  of  any  length.  For  additional 

background,  see  the  bubble-sort  routine  in  Reference  4,  which  sorts 
a  mailing  list. 

ORDERED  LISTS 

Now  that  we  have  learned  how  to  order  a  list,  let  us  discuss  how 

to  search  the  list  for  a  known  value  and,  then,  see  how  two  com- 

mon operations— adding  elements  and  deleting  elements— can  be 
programmed. 

Searching  an  Ordered  List 

Earlier  in  this  chapter  we  learned  that  in  order  to  locate  a  given 
value  in  an  unordered  list,  the  list  must  be  searched  sequentially, 

element  by  element.  For  an  N-element  list,  this  requires  an  average 
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of  N/2  comparisons.  If  a  list  is  ordered,  however,  any  of  a  number 
of  search  techniques  can  be  employed.  For  all  but  the  shortest  lists, 
most  of  these  techniques  will  be  faster  and  more  eflBcient  than  the 
sequential  search  technique. 

One  of  the  most  widely  known  search  techniques  for  ordered  lists 
is  called  the  binary  search.  Its  name  is  derived  from  the  fact  that 
it  divides  the  list  into  a  series  of  progressively  narrower  halves, 

to  eventually  "zero  in"  on  one  element  location  in  the  list.  A  binary search  starts  in  the  middle  of  the  list  and  determines  which  half  of 

the  list  the  entry  value  is  in.  It  then  takes  that  half  of  the  list  and 
divides  it  into  halves  .  .  .  ,  and  so  on. 

The  flowchart  in  Fig.  5-2  shows  the  kinds  of  operations  needed  to 
conduct  a  binary  search  on  an  ordered  list.  Upon  completion  of  the 
search,  the  result  is  returned  as  an  address.  If  the  search  value  is 

found  in  the  list,  it  will  be  the  address  of  the  matching  element.  If 
the  value  is  not  in  the  list,  it  will  be  the  address  of  the  last  element 
that  was  compared.  You  can  find  out  which  of  these  two  addresses 
has  been  returned  by  checking  whether  the  final  value  of  the  index 
is  zero  ( no  match )  or  nonzero  ( match ) . 

Example  5-5  shows  a  subroutine  that  can  be  used  to  search  an 

ordered  list  that  is  comprised  of  unsigned  word  values.  The  instruc- 
tions from  BSRCH  to  CALCI  conduct  initial  tests  against  the  lower 

and  upper  bounds  of  the  list,  to  check  whether  the  search  value  is 
out-of-bounds  or  lies  at  these  extremes.  If  the  search  value  falls 

within  the  boundaries  of  the  list,  the  remaining  instructions  ( CALCI 
onward)  search  the  list,  using  the  algorithm  that  was  flowcharted 

in  Fig.  5-2. 

Example  5-5.  A  16-Bit  Binary-Search  Subroutine 
*  THIS  SUBROUTINE  SEARCHES  AN  ORDERED  LIST  FOR  THE  WORD 
*  VALUE  CONTAINED  IN  DATA  REGISTER  DO.  THE  STARTING  ADDRESS 
*  OF  THE  LIST  IS  IN  ADDRESS  REGISTER  AO  AND  THE  WORD  COUNT 

*  IS  IN  THE  LIST'S  FIRST  WORD  LOCATION. 
*  RESULT  INDICATIONS  ARE  RETURNED  IN  REGISTERS  A1   (ALL  32 
*  BITS)  AND  D1  (LOW  16  BITS),  AS  FOLLOWS: 
*  1.    IF  THE  VALUE  IS  IN  THE  LIST,  D1  IS  NONZERO  AND  A1 
*  HOLDS  THE  ADDRESS  OF  THE  MATCHING  WORD  IN  THE 
*  LIST. 
*  2.    IF  THE  VALUE  IS  NOT  IN  THE  LIST,  D1  IS  ZERO  AND  A1 
*  HOLDS  THE  ADDRESS  OF  THE   LAST  WORD  TO  BE 
*  COMPARED. 
* 

ORG  $1000 
BSRCH       MOVEA.L    AO.AI  PUT  LIST  STARTING  ADDR.  INTO  A1. 

CLR.L         D1  CLEAR  INDEX  REGISTER. 
* 
*  CHECK  WHETHER  SEARCH  VALUE  IS  AT  OR  BEYOND  BOUNDS  OF 
*  LIST. 
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CALCA 

TRYHI 

EQHI 

* 
*  SEARCH  VALUE 
*  PROCEED  WITH 
* 

CMP 2(A1),D0 SEARCH  VALUE  LT  OR  EQ  LOWER 
BOUND? 

BHI.S TRYHI NO.    CHECK  UPPER  BOUND. 
BNE.S CALCA YES.    SEE  IF  VALUE  -f  LOWER 

BOUND. 
MOVEQ 

#2,D1 ADDQ.L 

#2,A1 
RTS 
MOVE 

(A1),D1 
FETCH  WORD  COUNT  AND 

LSL 
#1,D1 

CONVERT  IT  TO  BYTE  INDEX. 
CMP 0(A1,D1),D0 SEARCH  VALUE  GT  UPPER  BOUND? 
BLS.S EQHI 
ADDA.L D1,A1 YES.    FORM  ADDR  &  CLEAR  D1. 
CLR D1 
RTS 
BNE.S CALCI NO.    SEE  IF  VALUE  =  UPPER 

BOUND. 
ADDA.L D1,A1 
RTS 

CALCI LSR 
#1,D1 ANDI.B 
#$FE,D1 

BEQ.S RETRN 
ADDA.L D1,A1 

COMP CMP (A1),D0 BNE.S CHKLOW 
RETRN RTS 
CHKLOW BCC.S CALCI 

LSR 
#1,D1 ANDI.B 
#$FE,D1 BEQ.S RETRN 

SUBA.L D1,A1 
BRA.S COMP 
END 

IS  NOT  AT  OR  BEYOND  BOUNDS  OF  LIST. 
THE  SEARCH. 

DIVIDE  INDEX  BY  2. 
FORCE  INDEX  TO  A  WORD 
BOUNDARY. 
INDEX  =  0? 

NO.  CALCULATE  SEARCH  ADDRESS. 
SEARCH  VALUE  FOUND  IN  LIST? 

YES.    EXIT  WITH  ADDRESS  IN  A1. 
NO.    SEARCH  VALUE  IS  HIGHER. 
NO.    SEARCH  VALUE  IS  LOWER 

CALCULATE  NEW  INDEX. 

CALCULATE  NEW  SEARCH  ADDRESS 
AND  GO  COMPARE. 

As  in  previous  examples  in  this  chapter,  the  starting  address  of 

the  Hst  is  passed  to  the  subroutine  in  AO;  the  subroutine  will  not  al- 
ter this  address.  The  result  address  is  returned  in  Al  and  the  match/ 

no-match  indication  is  returned  in  Dl.  Since  the  BSRCH  subroutine 
operates  on  word  values,  each  time  a  new  index  is  calculated  it  is 

forced  to  an  even  value,  by  ANDing  the  last-significant  byte  of  the 
(16-bit)  index  with  the  immediate  value  $FE. 
How  much  more  eflBcient  is  a  binary  search  than  a  straight  sequen- 

tial comparison,  the  kind  we  used  in  Example  5-1?  A  mathematical 
analysis^  ̂ '^^  has  shown  that  whereas  a  sequential  search  of  an  N- 
element  list  requires  an  average  of  N/2  comparisons,  a  binary  search 

requires  log2  N  comparisons.  For  a  100-element  list,  a  sequential 
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START  ̂  

FETCH 

(WORD 

INDEX 
COUNT) 

DIVIDE  INDEX 
BY  2 

SEARCH  ADDRESS = 
ADDRESS+ INDEX 

DIVIDE  INDEX 
BY  2 

SEARCH  ADDRESS = 
ADDRESS -INDEX 

Fig.  5-2.  Binary-search  algorithm. 
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search  will  average  50  comparisons,  but  a  binary  search  will  do  the 
same  job  with  about  7  comparisons! 

Adding  an  Entry  to  an  Ordered  List 

The  process  of  adding  an  entry  to  an  ordered  list  can  be  divided 
into  four  basic  steps: 

1.  Find  out  where  the  entry  must  be  added. 

2.  Clear  a  location  for  the  entry  by  moving  all  higher-valued  ele- 
ments down  one  position  to  the  next  higher-address  element 

location. 

3.  Insert  the  entry  at  the  newly  vacated  element  position. 
4.  Update  the  list  length  by  adding  one  to  it. 

The  subroutine  just  developed,  BSRCH  (Example  5-5),  gives  us 
a  good  clue  as  to  where  the  element  must  be  added,  in  that  it  re- 

turns the  address  of  the  last  element  to  be  compared.  All  we  need 

to  determine  to  complete  Step  1  is  whether  the  entry  must  be  in- 
serted immediately  preceding,  or  immediately  following,  the  last- 

compared  element.  That  determination  can  be  made  by  simply  com- 
paring the  entry  value  to  the  last-compared  element. 

Knowing  the  steps  that  are  needed  to  add  an  entry  to  an  ordered 
list,  we  can  develop  a  subroutine  to  do  the  job.  One  solution  is  given 

in  the  ADD20L  subroutine  in  Example  5-6.  This  subroutine  begins 
by  calling  BSRCH,  to  find  out  whether  the  search  value  is  already 
in  the  list.  As  you  know,  BSRCH  returns  an  address  in  Al  and  a 
match /no-match  indicator  in  Dl. 

Upon  return  from  BSRCH,  the  ADD20L  subroutine  interrogates 
Dl,  and  exits  if  Dl  is  nonzero  ( since  that  means  the  entry  is  already 
in  the  list).  If  Dl  is  zero,  however,  the  subroutine  calculates  the 
address  of  the  end  of  the  list.  By  subtracting  the  contents  of  Al 

from  this  address,  and  right-shifting  the  result,  the  68000  calculates 
the  number  of  words  that  must  be  moved  down  in  memory  (the 
move  count )  to  make  room  for  the  element  to  be  inserted  in  the  list. 

If  the  entry  is  less  than  the  last-compared  value,  the  last-compared 
word  must  be  moved  down  also,  so  the  move  count  is  increased 

by  one. 
If  an  entry  is  greater  than  the  last  word  in  the  list,  it  must  be 

tacked  on  to  the  end.  Otherwise,  this  value  will  have  to  be  inserted 

in  the  list,  which  will  require  moving  all  subsequent  elements  down 

one  word  position.  The  two-instruction  loop  at  MOVEL  moves  ele- 
ments down,  one  by  one,  starting  with  the  last  word  in  the  list. 

Upon  completion  of  the  move,  the  instructions  starting  at  ADDIT 
add  the  entry  to  the  list  and  increase  the  word  count  by  one. 
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Example  5-6.  Adding  an  Entry  to  an  Ordered  List 
*  THIS  SUBROUTINE  ADDS  THE  LOW  WORD  OF  DATA  REGISTER  DO  TO 
*  AN  ORDERED  LIST,  IF  THIS  VALUE  IS  NOT  ALREADY  IN  THE  LIST. 
*  THE  STARTING  ADDRESS  OF  THE  LIST  IS  IN  ADDRESS  REGISTER  AO 

*  AND  THE  WORD  COUNT  IS  IN  THE  LIST'S  FIRST  WORD  LOCATION. 
*  THE  BSRCH  SUBROUTINE  (EXAMPLE  5-5)  IS  CALLED  TO  CONDUCT 
*  THE  SEARCH. 
* 

ORG $2000 
ADD20L MOVEM.L D1/D2/A1/A2,-(SP) SAVE  SCRATCH  REGISTERS. 

JSR BSRCH SEARCH  LIST  FOR  ENTRY. 
TST D1 IS  ENTRY  IN  THE  LIST? 
BNE.S ITISIN YES.  EXIT. 
MOVE.L A0,D2 NO.    CALCULATE  ADDR. 
ADD.L 

(A0),D2 
OF  END  OF  LIST. 

MOVEA.L D2,A2 LOAD  END  +  2  INTO  A2. 
ADDQ.L 

#2.A2 SUB.L A1,D2 CALCULATE  NO.  OF  WORDS 
TO  BE  MOVED 

LSR.L 
#1,D2 SUBQ.L 
#1,D2 

AND  SUBTRACT  1  FROM 
THAT  COUNT. 

CMP (A1),D0 
SHOULD  COMPARE  LOC.  BE 
MOVED  TOO? 

BCS.L INCCNT YES.    GO  INCREMENT 
MOVE  COUNT. 

TST.L D2 NO.    ADD  ENTRY  TO  END 
OF  LIST? 

BEQ.S ADDIT YES.    GO  ADD  IT  TO  END. 
BRA.S MOVEL 

INCCNT ADDQ.L 
#1,D2 

INCREMENT  MOVE  COUNT. 
MOVEL MOVE -(A2),2(A2) MOVE  NEXT  WORD  DOWN. 

DBF D2.M0VEL ALL  WORDS  MOVED? 
ADDIT MOVE D0,(A2) YES.    INSERT  ENTRY  IN 

ADDQ #1,{A0) LIST  AND  INCREMENT 
ELEMENT  COUNT. 

msiN MOVEM.L (SP)+,D1/D2/A1/A2 RESTORE  SCRATCH 
REGISTERS. 

RTS 
END 

Deleting  an  Element  From  an  Ordered  List 

It  is  much  easier  to  delete  an  element  from  an  ordered  list  than 

it  is  to  add  one,  because  all  the  68000  has  to  do  is  find  the  proper 

element,  move  all  subsequent  elements  up  one  location,  and  decre- 
ment the  count,  which  is  in  the  first  element  of  the  list. 

Example  5-7  shows  a  typical  delete  subroutine,  called  DELOL, 

which  uses  the  BSRCH  subroutine  (Example  5-5)  to  locate  the  in- 

tended deletion  "victim."  As  usual,  the  starting  address  of  the  list 
is  contained  in  address  register  AO.  The  value  to  be  deleted  is  in 
the  low  word  of  data  register  DO. 

137 



Example  5-7.  Deleting  an  Element  From  an  Ordered  List 
*  THIS  SUBROUTINE  DELETES  THE  VALUE  IN  THE  LOW  WORD  OF  DATA 
*  REGISTER  DO  FROM  AN  ORDERED  LIST,  IF  THE  VALUE  IS  IN  THE  LIST. 
*  THE  STARTING  ADDRESS  OF  THE  LIST  IS  IN  ADDRESS  REGISTER  AO. 
*  THE  LENGTH  OF  THE  LIST,  IN  WORDS,  IS  IN  THE  LIST'S  FIRST  WORD 
*  LOCATION. 

*  THE  BSRCH  SUBROUTINE  (EXAMPLE  5-5)  IS  CALLED  TO  CONDUCT 
*  THE  SEARCH. 
* 

ORG $3000 
DELOL MOVEM.L D1/D2/A1,— (SP) SAVE  SCRATCH  REGISTERS. 

JSR BSRCH SEARCH  LIST  FOR  ENTRY. 
TST D1 IS  ENTRY  IN  THE  LIST? 
BEQ.S EXIT NO.  RETURN. 
MOVE.L A0,D2 YES.    CALCULATE  ADDR.  OF 
ADD.L 

(A0),D2 
END  OF  LIST. 

SUB.L A1,D2 CALCULATE  NO.  OF  WORDS 
TO  BE  MOVED. 

LSR.L 
#1,D2 SUBQ.L 
#1.D2 

AND  SUBTRACT  1  FROM  THAT 
COUNT. 

BEQ.S DECCNT 
DELETE MOVE 2(A1),(A1)+ MOVE  WORD  UP  IN  LIST. 

DBF D2,DELETE ALL  WORDS  MOVED? 
DECCNT SUBQ #1,(A0) YES.    DECREMENT  ELEMENT 

COUNT. 
EXIT MOVEM.L (SP)+,D1/D2/A1 RESTORE  SCRATCH  REGISTERS 

RTS 
END 

If  BSRCH  locates  the  entry  value  in  the  list,  the  DELOL  sub- 
routine uses  its  address,  and  the  address  of  the  end  of  the  Hst,  to 

calculate  the  number  of  words  that  must  be  moved  up  in  the  list. 

The  two-instruction  loop  at  DELETE  performs  the  move  operation. 
When  all  words  have  been  moved,  the  element  count  in  the  first 

word  of  the  list  is  decremented  by  one,  to  reflect  the  deletion. 

LOOK-UP  TABLES 

Many  microprocessor  programs  include  applications  that  require 
a  particular  value  to  be  obtained  before  processing  can  resume.  This 

value  may  be  a  mathematical  derivative  of  a  test  or  calculation  re- 
sult, such  as  the  sine  of  a  calculated  angle  or  the  Celsius  equivalent 

of  a  temperature  that  has  been  measured  in  Fahrenheit.  Or,  the  re- 
quired value  may  be  a  parameter  that  has  some  defined  relationship 

to  a  program  input,  but  which  cannot  be  calculated,  such  as  a  tele- 
phone number  that  corresponds  to  a  name.  Applications  like  these 

usually  call  for  a  look-up  table.  As  the  name  implies,  a  look-up  table 
is  used  to  obtain  an  item  of  information  ( an  argument )  based  on  a 
known  value  ( a  function ) . 
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Look-up  tables  often  replace  complicated  or  time-consuming  con- 
version operations,  such  as  calculating  the  square  root  or  cube  root 

of  a  number,  or  deriving  a  trigonometric  function  ( sine,  cosine,  etc. ) 

of  an  angle.  Look-up  tables  are  especially  efficient  when  a  function 
is  limited  to  a  very  small  range  of  arguments.  By  using  a  look-up 
table,  the  microcomputer  does  not  have  to  perform  complex  calcu- 

lations each  time  an  argument  is  required.  In  fact,  you  will  find  that 

as  a  rule,  look-up  tables  reduce  execution  time  in  all  but  the  most 
trivial  of  relationships.  (You  would  not  use  a  look-up  table  to  store 
arguments  that  are  always  twice  the  value  of  a  function,  for  in- 

stance. )  But  since  look-up  tables  typically  require  large  amounts  of 
memory  storage  space,  they  are  most  efficient  in  applications  where 
storage  space  can  be  sacrificed  for  execution  speed. 

Look-Up  Tables  Can  Replace  Equations 

You  can  save  processing  time  and  programming  development  time 

by  providing  the  results  of  complex  equations  in  a  look-up  table. 
In  this  section  we  will  examine  one  common  application— finding  the 
sine  of  an  angle  that  is  expressed  in  degrees. 

The  sine  of  all  angles  between  0°  and  360°  can  be  graphed,  as 
shown  in  Fig.  5-3.  Mathematically,  this  curve  can  be  approximated 
by  using  the  formula 

Fig.  5-3.  The  sine  of  all  angles  between  0**  and  360*^. 

It  is  certainly  possible  to  write  a  program  to  perform  this  approxi- 
mation, but  such  a  program  may  require  a  couple  of  milliseconds  to 

calculate  the  sine.  If  your  application  requires  very  precise  sines, 
you  may  be  forced  to  write  this  program.  However,  applications  with 
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less  stringent  requirements  can  use  an  angle-to-sine  look-up  table. 

Note  from  Fig.  5-3  that  the  sine  of  any  angle  between  0°  and  180° 
is  positive  and  that  the  sine  of  any  angle  greater  than  180°  and  less 
than  360°  is  negative.  Therefore, 

0°  <  X  <  180°,  sine  is  positive 

180°  <  X  <  360°,  sine  is  negative 

As  you  can  see  in  Fig.  5-3,  the  sine  of  91°  is  the  same  as  the  sine  of 
89°  and  the  sine  of  179°  is  the  same  as  the  sine  of  1°.  Therefore,  it 
can  be  concluded  that  for  angle  X 

0°^X^  90°,  takesine(X) 

90°  ̂   X  ̂   180°,  take  sine ( 180°  -  X) 
orsine(90°  -  (X-90°)) 

For  example, 

sine (170°)  =  sine (90°  -  (170°  -90°)) 

=  sine(90°-80°) 

=  sine  (10°) 

Further,  angles  in  quadrants  III  and  IV  have  sines  with  the  same 
magnitude,  but  the  opposite  sign,  as  the  angles  in  quadrants  I  and 
II,  respectively.  This  observation  allows  us  to  state  the  following: 

180°  ̂   X  ̂   270°,  take  -sine(X  -  180° ) 

270°  ̂   X  ̂   360°,  take  -sine (360°  -  X) 
or  -sine (90°  -  (X-270°)) 

For  example, 

sine(190°)  =  -sine(190°  -  180°) 
=  -sine  (10°) 

Or,  for  an  angle  between  270°  and  360°, 

sine  (290°)  =  -sine  (90°  -  (290°  -270°) 

=  -sine (90°  -20°) 

=  -sine  (70°) 

The  preceding  relationships  show  that  the  sine  of  any  angle  be- 
tween 0°  and  360°  can  be  expressed  as  some  function  of  the  sine  of 

an  angle  between  0°  and  90°.  For  a  look-up  table  application  this 
is  significant,  because  it  means  that  the  look-up  table  need  only  con- 

tain the  sine  values  for  angles  from  0  to  90°/ 
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SIGN  =  0 

YES ANGLE <18n 

NO 
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=  1 

ANGLE = 
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Fig.  5-4.  Flowchart  for  angle-to-sine 
look-up  subroutine. 

ANGLE = 180-ANGLE 

GET  THE  SINE 
OF  THE  ANGLE 

FROM  THE  TABLE 

ADD  SIGN, 
AS  THE  MSB 

END  ̂  

These  relationships  also  allow  us  to  construct  a  flowchart  for  an 

angle-to-sine  conversion  subroutine.  This  flowchart,  shown  in  Fig. 

5-4,  derives  the  sine  as  a  sign-and-magnitude  value. 
Example  5-8  gives  the  68000  angle-to-sine  conversion  subroutine. 

This  subroutine  accepts  angles  from  0°  to  360°,  in  data  register  DO, 
and  returns  an  8-bit  sign-and-magnitude  sine  value  in  data  regis- 

ter Dl.  In  this  subroutine,  called  SINANG,  the  68000  begins  by 

checking  whether  the  angle  is  less  than  181°.  If  it  is,  program  exe- 
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cution  branches  to  SINPOS;  otherwise,  the  68000  sets  the  sign  bit 

to  one  (sines  above  180°  are  negative)  and  subtracts  180°  from 
the  angle. 

Example  5-8.  Finding  the  Sine  of  an  Angle 
*  THIS  PROGRAM  CALCULATES  THE  BINARY  SINE  VALUE  FOR  THE 
*  ANGLE  (0  TO  360  DEGREES)  CONTAINED  IN  THE  LOW  WORD  OF 
*  DATA  REGISTER  DO,  USING  A  LOOK-UP  TABLE.  THE  SIGNED  SINE 
*  IS  RETURNED  IN  THE  LOW  BYTE  OF  DATA  REGISTER  D1.  DO  IS 
*  UNAFFECTED. 
* 

ORG $1000 
SINANG MOVE DO,-(SP) SAVE  SCRATCH  REGISTERS. 

MOVE.L AO -(SP) 
CLR.B D1 INITIALIZE  SINE  BYTE  TO  ZERO. 
CMPI #180,D0 ANGLE  LESS  THAN  181  DEGS? 
BLS.S SINPOS YES.    CONTINUE  WITH  SIGN  =  0. 
TAS D1 NO.    SET  SIGN  BIT  -  1. 
SUBI #180,D0 SUBTRACT  180  DEGS  FROM  ANGLE. 

SINPOS CMPI 
#91, DO 

ANGLE  LESS  THAN  91  DEGS? 
BMI.S GETSIN YES.    GO  LOOK  UP  SINE. 
NEG DO NO.    SUBTRACT  ANGLE  FROM  180. 
ADDI 

#180,D0 
GETSIN LEA SINTAB,AO LOAD  TABLE  ADDRESS  INTO  AO. 

OR.B 0(A0,D0),D1 COMBINE  SINE  WITH  SIGN  BIT. 
MOVE.L (SP)  +  ,AO RESTORE  SCRATCH  REGISTERS. 
MOVE (SP)+,DO 

*  THE SINE  LOOK-UP  TABLE FOLLOWS 

SINTAB    DC.B        0,2,4,6,8,$B,$D,  $F,$11,$14,$16 
( Rest  of  the  table  follows,  91  bytes  total. ) 

With  the  sign  bit  now  in  bit  7  of  register  Dl,  the  CMPI  instruc- 

tion at  SINPOS  compares  the  current  value  of  the  angle  to  91°.  If 
the  angle  is  greater  than  or  equal  to  91°,  its  value  must  be  subtracted 
from  180°.  The  simplest  way  to  perform  this  subtraction  would  be 
with  the  instruction  SUBI  D0,#180,  but  the  68000  does  not  support 
this  form  of  the  SUBI  instruction  (only  the  form  SUBI  #data,Dn  is 

legal),  so  we  must  make  the  subtraction  by  2s-complementing  DO, 

then  adding  180°  to  the  result.  The  final  two  instructions  load  the 
address  of  the  look-up  table  ( SINTAB )  into  AO,  then  look  up  the 
sine,  using  address  register  indirect  with  index  addressing,  and  or 

it  with  the  sign  bit  in  Dl.  The  SINTAB  table  contains  91  byte- 

length  sine  values,  to  accommodate  angles  from  0°  to  90°.  The  val- 
ues used  to  form  SINTAB  are  shown  in  Table  5-1. 

The  SINANG  subroutine  occupies  19  words  in  memory.  Its  exe- 
cution time  depends  on  which  quadrant  the  look-up  angle  resides  in. 
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Table  5-1.  A  Sine  Look-Up  Table  With  Angles  in  1°  Increments 

Angle Sine Angle Sine 

Decimal 
Binary 

Decinnal 

Binary 

U.UU .0000 00000000 A  nn 40. uu .7071 0101 1010 
I  .Kjyj .0175 00000010 4A  nn 4  O.UU .7193 01011 100 
0  no .0349 00000100 A7  nn 4/  .uu .7313 01011101 
J.UU .0523 000001 10 AR  nn 40.UU .7431 0101 1 1 1 1 

.0698 00001000 AO  nn 47  .uu .7547 01 100000 
D.UV .0872 00001011 ^n  on OU.UU .7660 01 100010 
A  on .1045 00001 101 1  nn 0  1  .uu .7771 0110001 1 

.1219 00001 11 1 
'^0  nn 
oz.uu .7880 01100100 

O.UU .1392 00010001 
'^'i  nn 
0  J.UU .7986 01 1001 10 

o  r\f\ y.uu .1564 00010100 RA  nn 04. uu .8090 01100111 
1  U.UU .1736 000101 10 

t;*;  nn 
oo.uu .8191 01 101000 

1  1  .uu .1908 00011000 

cz,  nn 

oo.uu .8290 01 101010 
1  z.UU .2079 00011010 

C.7  nn 
u/  .uu .8387 01 10101 1 

1  i  nn 1  J.UU .2250 0001 1 100 
'^0  nn 
oo.uu .8480 01101100 

1  ><  nn 1  4.UU .2419 00011110 

CO  nn 
ov.uu 

.8572 01 101 101 
1 nn !  O.UU .2588 00100001 An  nn OU.UU .8660 01 101 1 10 
1 X  nn 1  O.UU .2756 00100011 A 1  nn o  1  .uu .8746 01 101 1 1 1 
1 7  nn 1  /  .uu .2924 00100101 AO  nn Oz.UU .8829 oil  10001 
1 0  nn 1  O.UU .3090 001001 1 1 AT  nn Oo.uu .8910 01 1 10010 
1 0  nn .3256 00101001 AA  nn .uu .8988 01 1 1001 1 
on  nn ZU.UU .3420 00101011 

A*?  nn oo.uu .9063 oil  10100 
01  nn z  1  .uu .3584 00101 101 AA  nn oo.uu .9135 01 110100 
00  nn .3746 00101 1 1 1 A7  nn 0/  .uu .9205 01 110101 

nn .3907 00110010 AQ  nn Oo.uu .9272 01 1 10110 
Oi4  nn .4067 00110100 AO  nn ov.uu .9336 0111011 1 
0*^  nn .4226 001 101 10 7n  nn /U.UU .9397 01 1 11000 
OA  nn ^o.uu .4384 0011 1000 7 1  nn /  1  .uu .9455 01 1 1 1001 
07  nn z/.UU .4540 ooniolo 7o  nn /  z.uu .951  1 01 1 1 1001 
OR  nn ZO.UU .4695 001 1 1 100 71  nn /  O.UU .9563 0111 1010 
oo  nn .4848 0011 n 10 7 A  nn /4.UU .9613 

01111011 
'?n  nn oU.UU .5000 01000000 

7'%  nn 
/  O.UU .9659 01 1 1 101 1 

nn J 1  .uu ^  .5150 01000001 7A  nn /O.UU .9703 01 1 n 100 
TO  nn .5299 0100001 1 77  nn /  /  .uu .9744 oil  11 100 '^'^  nn o  J  .uu .5446 01000101 70  nn /  O.UU .9781 01111101 O/i  nn 04. uu .5592 01000111 70  nn /y  .uu .9816 0111 1101 
T  nn oD.UU .5736 01001001 on  An oU.UU .9848 01111  110 '^A  nn oo.uu .5878 0100101 1 Q 1  nn o  1  .uu .9877 01111110 
T7  nn o/  .uu .6018 01001101 QO  AA oz.UU .9903 oiiimo nn .6157 01001110 m  AA oo.uu .9926 01111111 
39.00 .6293 01010000 84.00 .9945 01111111 
40.00 .6428 01010010 85.00 .9962 01111111 41.00 .6561 01010011 86.00 .9976 0111  11  11 
42.00 .6691 01010101 87.00 .9986 

01111111 43.00 .6820 01010111 88.00 
.9994 01111111 

44.00 .6947 01011000 89.00 .9998 01111111 45.00 .7071 01011010 90.00 1.0000 01111111 
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Not  including  execution  times  for  the  JSR  and  RTS  instructions,  the 
execution  times  are: 

•  For  angles  between  0""  and  90°,  SINANG  will  execute  in  59  cy- 
cles, or  7.375  fxs. 

•  For  angles  between  91°  and  270°,  SINANG  will  execute  in  69 
cycles,  or  8.625  fis. 

•  For  angles  between  271°  and  360°,  SINANG  will  execute  in  79 
cycles,  or  9.875  /xs. 

Look-Up  Tables  Can  Perform  Code  Conversions 

Look-up  tables  are  also  used  to  hold  coded  data,  such  as  display 
codes,  printer  codes,  and  messages.  As  an  example.  Example  5-9 
shows  a  subroutine  that  performs  multiple  look-ups.  It  converts  a 
hexadecimal  digit  in  the  low  byte  of  DO  to  its  ASCII,  BCD,  and 
Gray  Code  equivalents.  The  converted  values  will  be  returned  in 
three  consecutive  byte  locations  in  memory,  starting  at  the  address 
pointed  to  by  address  register  AO. 

Example  5-9.  A  Code-Conversion  Subroutine 
*  THIS  SUBROUTINE  USES  THREE  LOOK-UP  TABLES  TO  CONVERT  A 
*  HEX  DIGIT  IN  THE  LOW  BYTE  OF  DO  TO  ITS  ASCII,  BCD,  AND  GRAY 
*  CODE  EQUIVALENTS.  THE  CONVERTED  VALUES  ARE  RETURNED  IN 
*  THREE    CONSECUTIVE    BYTES    IN    MEMORY,    STARTING    AT  THE 
*  ADDRESS  IN  AO.  DO  AND  AO  ARE  UNAFFECTED  BY  THE  SUBROUTINE. 
* 
* 

ORG $1000 
LOOKUP MOVE D0,-(SP) SAVE  SCRATCH  REGISTERS. 

MOVE.L A1,-(SP) 
EXT.W DO FORM  INDEX. 
LEA ATABLE,A1 A1  POINTS  TO  TABLE. 
MOVE.B 0(A1,D0),(A0) FETCH  ASCII  CODE. 
MOVE.B $10(A1,D0),1(A0) FETCH  BCD  CODE. 
MOVE.B $20(A1,D0),2(A0) FETCH  GRAY  CODE. 
MOVE.L (SP)  +  ,A1 RESTORE  SCRATCH  REGISTERS. 
MOVE (SP)+,DO RTS 

ATABLE DC.B '0123456789ABCDEF' 
DC.B 0,1,2,3,4,5,6,7,8,9,$10,$11,$12,$13,$14,$15 
DC.B 0,1,3,2,6,7,5,4,$C,$D,$F,$E,$A,$B,9,8 
END 

Of  course,  the  LOOKUP  subroutine  in  Example  5-9  will  only  con- 

vert a  single  hexadecimal  digit.  Many  applications,  such  as  data  pro- 
cessing and  data  encryption,  require  strings  of  data  to  be  converted 

from  one  form  to  another.  Reference  4  contains  a  68000  program 

that  may  be  of  value  in  those  types  of  applications.  This  program 
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employs  a  look-up  table  to  convert  a  string  of  data  in  a  memory 
buffer  to  another  string  in  another  memory  buffer. 

JUMP  TABLES 

Look-up  tables  can  contain  more  than  just  data.  In  many  cases, 
the  elements  of  the  table  are  addresses.  An  error  routine,  for  ex- 

ample, can  use  a  look-up  table  to  find  the  starting  address  of  an 
operator  error  message,  based  on  a  code  in  a  data  register.  Similarly, 

an  interrupt  routine  can  use  a  look-up  table  to  call  one  of  several 
service  routines,  based  on  which  device  in  the  system  generated  the 

interrupt  service  request.  Another  routine  may  use  a  look-up  table 
to  call  one  of  several  control  programs,  based  on  a  control  key 
pressed  by  an  operator.  In  all  of  these  applications  ( there  are  many 

more  as  well ) ,  the  look-up  table  containing  the  addresses  is  referred 
to  as  a  jump  table.  Jump  tables  are  used  in  applications  where  the 
control  path  is  dependent  upon  the  state  of  a  specific  condition. 

Example  5-10  illustrates  how  a  jump  table  can  service  the  needs 
of  five  different  users  in  a  multiterminal  microcomputer  system.  This 
subroutine,  SELUSR,  interprets  the  contents  of  data  register  DO  as 
a  user  identification  code,  and  uses  this  code  to  call  one  of  five  user 

service  subroutines.  SELUSR  checks  the  validity  of  the  entered 
code,  and  traps  to  the  CHK  exception  routine  if  the  code  is  greater 
than  four.  ( More  about  exceptions  in  Chapter  7. )  However,  with  a 
valid  code,  the  subroutine  will  convert  the  user  code  to  an  index, 
then  use  that  index  to  fetch  the  address  of  a  user  routine  (USERO 

through  USER4)  into  AO.  The  fetch  employs  program  counter  rela- 
tive with  index  addressing;  this  mode  is  induced  by  the  RORG  di- 

rective preceding  the  subroutine.  With  the  correct  address  in  AO,  a 

simple  indirect  jump  transfers  program  control  to  the  user  sub- 
routine. 

Example  5-10.  A  Multiuser  Selection  Subroutine 
*  THIS  SUBROUTINE  CALLS  ONE  OF  FIVE  USER  SUBROUTINES,  BASED 
*  ON  A  USER  IDENTIFICATION  CODE  IN  THE  LOW  BYTE  OF  DATA 
*  REGISTER    DO.    THE    SUBROUTINE    AFFECTS    THE    AO    AND  DO 
*  REGISTERS. 

RORG $1000 
SELUSR EXT.W DO EXTEND  USER  CODE  TO  WORD. 

CHK 
#4,D0 

INVALID  ID  CODE? 
LSL 

#2.D0 
NO.  CALCULATE  INDEX  (ID  x  4) 

LEA UADDR.AO FETCH  TABLE  ADDR.  INTO  AO. 
MOVEA.L 0{AO,DO.W),AO FETCH  ADDR  OF  USER 
JMP (AO) SUBROUTINE  AND  JUMP  TO  THAT 

SUBROUTINE. 
UADDR DC.L USER0,USER1  ,USER2,USER3,USER4 

END 

145 



REFERENCES 

1.  Sorting  and  searching  techniques  are  described  in  the  following  articles: 

(a)  Benfley,  J.  L.  "An  Introduction  to  Algorithm  Design."  Computer,  Feb- 
ruary 1979,  pp.  66-78. 

(b)  Vile,  R.  C.  "Sorting  Revealed."  MICRO,  July  1980,  pp.  13-29.  (This highly  entertaining  and  informative  article  covers  bubble  sort,  insertion 
sort,  selection  sort,  shell  sort,  and  quicksort,  and  gives  BASIC  programs 
for  each  type. ) 

(c)  Hemenway,  J.  and  Grappel,  R.  D.  "EDN  Software  Tutorial:  Sorting 
Algorithms."  EDN,  September  20,  1980,  pp.  153-157.  ( Includes  BASIC 
programs  for  exchange  sort,  insertion  sort,  and  selection  sort.) 

(d)  Walker,  B.  "Sorting  With  Binary  Trees."  BYTE,  October  1980,  pp.  96- 
110,  250-263.  (Excellent  article,  with  programs  given  in  BASIC  and 
Pascal. ) 

2.  Knuth,  D.  E.  The  Art  of  Computer  Programming.  Volume  3:  Sorting  and 
Searching.  Reading,  MA:  Addison- Wesley  Publishing  Co.,  1973. 

3.  Look-up  tables  are  discussed  in: 

(a)  Leventhal,  L.  A.  "Cut  Your  Processor's  Computation  Time."  Electronic 
Design,  August  16,  1977,  pp.  82-89. 

(b)  Titus,  J.  A.  et  al.  "Interfacing  Fundamentals:  Lookup  Tables."  Com- 
puter Design,  February  1979,  pp.  130-134. 

4.  Starnes,  T.  W.  "Powerful  Instructions  and  Flexible  Registers  of  the  MC68000 
Make  Programming  Easy."  Electronic  Design,  April  26,  1980,  pp.  171-176. 

146 



CHAPTER  6 

68000  Microprocessor 

Chip  Hardware 

The  68000  microprocessor  is  housed  in  a  64-pin  dual  in-Hne  pack- 
age (DIP),  with  the  pinouts  shown  in  Fig.  6-1.  Note  that  each  pin 

has  been  assigned  a  symbolic  name,  and  that  some  of  these  names 
have  a  bar  drawn  over  them  (e.g.,  AS,  UDS,  LDS,  and  DTACK). 
This  convention  is  intended  to  distinguish  between  signals  that  are 

active  in  the  low  or  logic-0  state  (with  a  bar)  and  signals  that  are 
active  in  the  high  or  logic-1  state  (without  a  bar).  To  eliminate  the 

"logic  0/ logic  1"  and  "high/ low"  confusion,  we  will  hereafter  refer 
to  signals  as  being  asserted  if  they  are  true  and  negated  if  they 
are  false. 

For  ease  of  understanding,  the  external  signal  lines  of  the  68000 
will  be  described  in  functional  groups.  These  groups  are  shown  in 

Fig.  6-2. 

CLOCK,  POWER,  AND  GROUND  LINES 

The  68000  microprocessor  operates  from  +5  volts,  connected  to 
two  pins  labeled  Vcc,  and  using  two  ground  pins  labeled  GND. 

The  clock  (CLK)  input  is  a  TTL-level  signal  that  can  have  a  fre- 
quency of  up  to  10  MHz. 

THE  DATA  BUS  AND  ADDRESS  BUS 

The  68000  is  called  a  16-bit  microprocessor  because  its  basic  unit 
of  information,  the  word,  is  16  bits  wide.  No  more  than  16  bits  of 
information  can  be  transferred  to  or  from  memory  and  I/O  devices 
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Fig.  6-1.  The  pinouts  of  the  68000 
microprocessor. 

Courtesy  Motorola,  Inc 

at  one  time.  To  transfer  more  than  16  bits  requires  additional  trans- 
fer cycles.  All  information  transfers  between  the  68000  and  exter- 
nal devices  are  conducted  on  the  bidirectional,  16-bit  data  bus 

(D0-D15). 
Which  device  in  the  system  is  to  receive  the  information  from, 

or  transmit  the  information  to,  the  68000  microprocessor?  The  68000 
identifies  an  external  device  by  transmitting  its  unique  address 

throughout  the  system  over  23  address  bus  lines  (A1-A23).  Since 
the  address  bus  is  23  bits  wide,  the  68000  can  select  any  of  8,388,608  t 
word  locations.  (Two  additional  signals,  UDS  and  LDS,  select  bytes  > 
within  a  word.  These  signals  are  discussed  with  the  asynchronous  ^ 
bus  control  signals.)  The  68000  notifies  all  system  devices  that  a 

valid  address  is  on  the  address  bus  by  asserting  the  address  strobe  ' 

(AS)  signal.  Remember,  since  AS  has  a  bar  over  it,  "asserting''  AS  ■ 
means  putting  it  in  the  logic-0  state.  - 
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Fig.  6-2.  The  external  signal  lines  of  the  68000  shown  in  functional  groups. 

FUNCTION  CODE  SIGNALS 

Whenever  the  68000  communicates  with  an  external  device  ( mem- 

ory or  I/O),  it  accompanies  the  address  information  with  "quahta- 

tive"  information  on  three  junction  code  signals  {FCO,  FCl,  and 
FC2).  The  function  code  outputs  inform  external  devices  whether 
the  68000  is  addressing  data  or  program  memory  space  ( and  whether 

the  processor'is  in  the  user  state  or  the  supervisor  state),  or  is  ser- 
vicing an  interrupt.  Table  6-1  shows  the  various  combinations  of 

these  three  signals.  Note  that  the  high-order  function  code  signal, 
FC2,  reflects  the  state  of  the  supervisor  ( S )  bit  in  the  status  register. 
The  function  code  signals  indicate  that  program  space  is  being 

accessed  when  the  program  counter  (PC)  is  the  address  source  or 

when  reset  vectors  are  being  fetched.  The  function  code  signals  in- 
dicate that  data  space  is  being  accessed  when  most  operands  are 

read  (the  PC  is  not  the  address  source),  when  all  operands  are 
written,  or  when  vectors  other  than  reset  are  being  fetched. 

The  function  code  signals  can  be  used  with  the  address  bus  sig- 
nals to  write-protect  certain  portions  of  memory.  They  can  also  be 

used  by  an  external  device,  such  as  a  memory  management  unit,  to 

ensure  that  certain  operations  are  only  conducted  when  the  proces- 
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Table  6-1. 
Function  Code  Signals  Inform  External  Devices 

of  the  Operating  State  of  the  68000 

Function  Code  Output 
Classification Privilege  State FC2 FC1 FCO 

0 0 0 (Reserved) User 
0 0 1 Data  Space User 
0 1 0 Program  Space User 
0 1 1 (Reserved) User 
1 0 0 (Reserved) Supervisor 
1 0 1 Data  Space Supervisor 1 1 0 Program  Space Supervisor 1 1 1 Interrupt  Acknowledge Supervisor 

sor  is  in  the  correct  state.  Further,  the  function  code  signals  can  be 
externally  decoded  and  used  to  extend  the  address  space  of  the 

68000  to  four  16M-byte  segments,  for  a  total  of  64M  bytes!  Fig.  6-3 
shows  a  simple  circuit  that  will  perform  this  memory  segmentation. 
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Fig.  6-3.  Segmenting  memory  with  the  function  code  signals. 
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ASYNCHRONOUS  CONTROL  SIGNALS 

Some  conventional  8-bit  microprocessors,  such  as  the  6800  and  the 
6502,  have  control  lines  to  communicate  only  with  synchronous  de- 

vices. That  is,  these  microprocessors  are  designed  to  interface  with 
external  devices  which  must  accept  output  data,  or  supply  input 
data,  within  a  specified  amount  of  time.  Communicating  with  slower 

devices,  or  asynchronous  devices,  requires  special  interface  hard- 
ware and  software.  However,  the  68000  can  be  interfaced  to  either 

synchronous  or  asynchronous  devices,  and  has  a  set  of  control  lines 
for  each  device  type. 

The  Asynchronous  Control  Lines 

As  you  know,  the  68000  can  operate  on  individual  bytes  within 

a  word,  so  we  normally  refer  to  the  16M-byte  addressing  capability 
of  the  processor,  rather  than  to  its  8M-word  addressing  capability. 
How  are  individual  bytes  addressed?  They  are  addressed  by  the 
address  bus  and  two  special  control  signals,  upper  data  strobe  {  UDS) 
and  lower  data  strobe  (LDS).  When  UDS  is  asserted  (a  logic  0) 

by  the  68000,  information  is  transferred  on  the  high-order  eight  lines 
of  the  data  bus,  D8  through  D15.  When  LDS  is  asserted,  informa- 

tion is  transferred  on  the  low-order  eight  lines  of  the  data  bus,  DO 
through  D7.  During  word  transfers,  both  strobe  signals  (UDS  and 
LDS )  are  asserted,  and  information  is  transferred  on  all  16  data  bus 
lines,  DO  through  D15. 
How  can  an  addressed  external  device  know  whether  the  68000 

wants  to  input  ( read )  information  from  it  or  output  ( write )  infor- 

mation to  it?  The  external  device  "knows"  the  direction  of  transfer 
by  the  state  of  the  read/ write  control  signal  (R/W).  The  R/W  line 
is  a  logic  1  during  a  read  cycle  and  a  logic  0  during  a  write  cycle. 

Once  an  external  device  has  either  placed  data  onto  the  data  bus 
( for  a  read  operation )  or  has  gated  data  off  of  the  data  bus  ( for  a 
write  operation),  the  device  notifies  the  68000  that  the  data  has 
been  transferred  by  asserting  data  transfer  acknowledge  ( DTACK ) . 
When  the  processor  senses  DTACK  during  a  read  operation,  it 
latches  the  data  and  then  terminates  the  bus  cycle.  Because  cycle 
termination  hinges  on  reception  of  DTACK,  the  speed  at  which  the 
68000  can  transfer  data  depends  on  how  fast  the  addressed  device 
can  be  accessed.  In  effect,  the  68000  slows  down  for  devices  having 
long  access  times  and  speeds  up  for  devices  having  short  access 

times!  Of  course,  the  maximum  rate  will  be  determined  by  the  fre- 
quency of  the  clock  used  to  drive  the  processor. 

Fig.  6-4  summarizes  the  signals  involved  in  addressing  asynchro- 
nous memory.  In  addition  to  the  68000,  and  the  odd-byte  and  even- 

byte  memory  circuits.  Fig.  6-4  contains  a  watchdog  timer.  This  timer 
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Fig.  6-4.  Byte  addressing  on  the  asynchronous  bus. 
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is  designed  to  wait  a  specified  amount  of  time  between  the  asser- 
tion of  AS  and  the  reception  of  DTACK.  If  the  memory  circuits 

return  the  proper  combination  of  DTACK  ODD  and  DTACK  EVEN 
within  the  allotted  time,  the  DTACK  signal  to  the  microprocessor 
is  asserted.  Otherwise,  the  timer  asserts  a  bus  error  (BERR)  signal, 
which  causes  the  68000  to  initiate  exception  processing.  In  this  way, 

the  timer  prevents  a  faulty  device  from  "hanging  up"  the  system 
indefinitely. 

Timing  for  Asynchronous  Data  Transfers 

Now  that  the  asynchronous  control  signals  have  been  discussed, 
let  us  look  at  how  they  interact  during  data  transfer  operations. 

Fig.  6-5  shows  the  timing  of  these  signals  during  normal  word- 

length  read  and  write  cycles,  and  during  a  "slow"  ( delayed  DTACK ) 
read  cycle.  These  waveforms  are  referenced  to  the  68000  input  clock 

signal,  CLK.  With  an  8-MHz  input,  CLK  has  a  period  of  125  ns, 
and  changes  state  every  62.5  ns.  A  normal  (undelayed)  read  cycle 

lasts  four  clock  cycles,  or  500  ns  at  8  MHz.  Due  to  internal  propa- 
gation delays,  and  the  need  to  drive  R/W  to  a  logic  0,  a  normal 

(undelayed)  write  cycle  takes  one  additional  clock  cycle,  for  a 
total  of  625  ns  at  8  MHz.    
The  68000  can  accept  DTACK  anytime  after  it  asserts  AS,  but 

expects  to  receive  DTACK  before  state  5  (read)  or  state  7  (write). 
If  DTACK  is  not  sensed  before  this  machine  state,  the  68000  will 

automatically  insert  "wait"  states  into  the  read  or  write  cycle.  The 
rightmost  portion  of  Fig.  6-5  shows  how  wait  states  are  added  to  a 
read  cycle. 

The  timing  for  byte  transfers  is  similar  to  that  for  word  transfers, 

except  that  only  one  of  the  data  strobes  ( UDS  or  LDS )  will  be  as- 
serted, and  only  one-half  of  the  data  bus  will  carry  valid  data.  The 

other  half  of  the  data  bus  will  remain  in  the  high-impedance  state. 
The  active  data  strobe  is  derived  from  an  internal  signal,  AO,  the 

least-significant  bit  of  the  program  counter.  For  byte  transfer  tim- 

ing, refer  to  section  4.2.1  of  the  MC68000  User's  Manual.^ 

SYNCHRONOUS  CONTROL  SIGNALS 

The  68000  has  three  control  signals  that  can  be  used  to  interface 
the  microprocessor  with  synchronous  peripheral  devices,  such  as 
those  in  the  8-bit  6800  and  6500  families.  The  three  synchronous 
control  signals  are  enable  (E),  valid  peripheral  address  (VPA),  and 
valid  memory  address  (VMA). 

The  enable  (E)  signal  is  a  clock  that  8-bit  peripherals  use  to 
synchronize  data  transfers.  This  free-running  clock  corresponds  to 
the  E  or  02  signals  in  existing  6800  and  6500  systems.  The  E  clock 
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Fig.  6-6.  Accessing  6800  peripherals  on  the  synchronous  bus. 

signal  has  a  frequency  that  is  one-tenth  of  the  68000  input  clock 
(CLK),  so  in  an  8-MHz  68000  system,  E  has  a  frequency  of  800  kHz. 
Further,  E  has  a  60/40  duty  cycle;  it  is  a  logic  0  for  six  CLK  cycles 
and  a  logic  1  for  four  CLK  cycles. 

Valid  peripheral  address  ( VPA )  is  an  input  signal  that  notifies  the 
68000  that  a  6800  peripheral  is  being  addressed,  and  that  the  data 
transfer  operation  should  be  synchronized  with  the  enable  (E) 
clock.  Normally,  VPA  is  derived  from  a  decoded  address  and  the 

address  strobe  (AS)  signal.  You  may  note  that  VPA  is  the  synchro- 
nous _equivalent  of  the  asynchronous  DTACK  signal. 

If  AS  is  still  asserted  when  the  68000  receives  VPA,  the  processor 

responds  by  asserting  valid  memory  address  (VMA),  which  is  used 
by  the  addressed  peripheral  device  to  complete  the  device  selection. 

Fig.  6-6  illustrates  the  signals  that  are  normally  used  to  interface 
the  68000  microprocessor  to  6800  peripheral  devices.  Fig.  6-7  shows 
the  timing  for  a  synchronous  read  and  write  cycle.  Chapter  8  con- 

tains a  further  discussion  of  interfacing  the  68000  to  8-bit  synchro- 
nous devices. 

BUS  ARBITRATION  SIGNALS 

The  bus  arbitration  signals  are  used  in  direct  memory  access 
(DMA)  and  multiprocessor  applications,  to  transfer  control  of  the 
system  buses  from  a  68000  microprocessor  to  an  external  device. 

In  these  appHcations,  external  devices  that  wish  to  become  the  "bus 

master"  inform  the  68000  of  this  re(iuirement  by  asserting  the  bus 
request  (BR)  input  signal.  The  68000  is  always  at  a  lower  bus  pri- 
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ority  than  external  devices,  and  will  relinquish  bus  control  after 
completing  the  current  bus  cycle.  In  the  meantime,  upon  sensing 

BR,  the  68000  synchronizes  internally  and  then  indicates  its  accep- 
tance of  the  request  by  asserting  hus  grant  ( BG ) .  If  several  devices 

have  asserted  BR,  some  external  circuitry  is  needed  to  resolve  the 
conflict,  and  allow  only  one  of  the  requesting  devices  to  receive  BG. 

Upon  receiving  bus  grant,  the  requesting  device  waits  _for  the 
processor  to  complete  its  current  bus  cycle  (i.e.,  waits  for  AS  and 
DTACK  to  be  negated),  then  asserts  bus  grant  acknowledge 

(BGACK)  back  to  the  68000.  In  effect,  the  68000  and  the  request- 
ing device  are  conducting  the  following  dialog:  By  asserting  BR, 

the  requesting  device  is  saying,  "I  want  the  bus."  Through  BG,  the 
68000  replies,  "You  can  have  the  bus."  At  the  end  of  the  current  bus 
cycle,  the  device  issues  BGACK,  thereby  announcing  to  the  micro- 

processor (and  to  the  rest  of  the  system),  "Okay,  I've  got  control 
of  the  bus." 

At  the  end  of  this  dialog,  the  new  bus  master  removes  its  request, 
by  negating  BR.  In  a  similar  manner,  the  processor  negates  BG  and 
waits  for  the  external  device  to  complete  its  bus  operations.  At  that 
time,  the  device  will  negate  BGACK  and  the  processor  will  resume 
normal  operation.  The  timing  for  this  entire  sequence  is  shown  in 

Fig.  6-8. 

SYSTEM  CONTROL  SIGNALS 

The  68000  has  three  system  control  signals.  One  of  these  signals 
is  an  input,  the  other  two  are  bidirectional. 

Reset  ( RESET )  is  a  bidirectional  signal  that  allows  the  processor 

or  an  external  device  to  reset  the  system.  A  processor-generated  re- 
set, induced  by  a  RESET  instruction,  asserts  RESET  for  124  clock 

cycles.  This  §ives  all  external  devices  time  to  reset,  but  does  not  af- 
fect the  internal  state  of  the  68000  itself. 

During  catastrophic  failure,  the  entire  system  (the  processor  and 

all  external  devices)  can  be  reset  if  both  RESET  and  the  other  bi- 
directional system  control  signal,  halt  (HALT),  are  both  asserted 

to  the  68000  for  more  than  100  ms.  This  causes  the  68000  to  initiate 

a  "power-on  reset"  sequence,  during  which  the  processor  enters  the 
supervisor  state  and  jumps  to  a  reset  routine  from  a  vector  in  lowest 
memory.  This  reset  sequence  is  discussed  in  Chapter  7,  along  with 
other  exceptions.   

However,  HALT  need  not  necessarily  accompany  RESET.  By  it- 
self, HALT  can  be  used  as  an  input  to  the  68000,  to  single-step  the 

processor  through  bus  cycles  for  debugging  purposes.  The  circuit  in 
Fig.  6-9  will  perform  this  function.  If  the  run /single-step  switch 

is  in  the  single-step  position,  the  processor  will  complete  the  cur- 
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Fig.  6-8.  Bus  arbitration  timing. 
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Fig.  6-9.  Single-step  using  the  halt  line. 

rent  bus  cycle,  and  then  halt.  This  will  happen  each  time  you  set 

the  single-step/ WAIT  switch  to  single-step.  While  the  processor  is 
halted,  the  address  bus,  data  bus,  and  function  code  lines  are  in  the 

high-impedance  state,  and  the  bus  control  lines  are  negated  (the 
bus  arbitration  lines  are  available,  however ) .  Reference  3  at  the  end 

of  this  chapter  describes  another  type  of  single-step  circuit,  with  con- 
trol based  on  DTACK,  rather  than  HALT. 

The  HALT  signal  can  also  be  asserted  by  the  68000,  as  an  output. 

It  will  be  an  output  when  the  processor  has  stopped  executing  in- 

structions due  to  a  "double  bus  fault"  exception  condition  ( see  Chap- 
ter 7).  
The  HALT  signal  can  also  be  used  ( as  in  input )  with  the  system 

control  input  signal,  bus  error  (BERR).  The  purpose  of  BERR  is  to 
inform  the  processor  that  there  is  a  problem  somewhere  within  the 
system.  That  is,  BERR  signals  the  occurrence  of  an  unanticipated 
event  (e.g.,  a  spurious  interrupt  or  an  illegal  memory  access  request) 
or  the  nonoccurrence  of  an  anticipated  event  (e.g.,  a  device  has 
failed  to  return  DTACK  or  VPA). 

Upon  sensing  BERR,  the  68000  can  either  initiate  a  bus  error  ex- 
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ception  sequence  (see  Chapter  7)  or  try  running  the  bus  cycle  again. 
The  processor  will  try  rerunning  the  bus  cycle  if  HALT  is  being 
externally  asserted  when  BERR  is  received.  For  a  cycle  rerun,  the 
processor  will  complete  the  bus  cycle,  then  halt  and  put  the  address, 

data,  function  code,  and  control  lines  in  the  high-impedance  state. 
When  the  external  logic  negates  BERR  and  HALT,  the  processor 

will  rerun  the  previous  bus  cycle.  (The  only  exception  is  a  TAS  in- 
struction, which  cannot  be  rerun.) 

INTERRUPT  CONTROL  LINES 

External  devices  can  send  an  interrupt  request  to  the  68000  micro- 
processor by  encoding  the  priority  level  of  the  request  onto  three 

interrupt  control  inputs^  IPLO,  IP  LI,  and  IPL2.  At  the  end  of  the 

current  instruction  cycle,  the  68000  will  compare  the  encoded  pri- 
ority level  (1  through  7,  with  7  being  highest  priority)  with  the 

3-bit  interrupt  mask  in  the  status  register.  This  mask  is  shown  in 
Fig.  1-3  and  described  in  its  accompanying  text. 

If  the  encoded  value  on  the  interrupt  control  inputs  is  equal  to 
or  less  than  the  value  of  the  interrupt  mask,  the  68000  will  simply 

"ignore"  the  request  and  resume  instruction  execution.  However,  if 
the  interrupt  request  has  a  higher  value  than  the  interrupt  mask, 
the  68000  will  place  the  input  priority  level  on  the  address  bus  ( Al, 
A2,  and  A3 ) ,  issue  an  interrupt  acknowledge  ( by  asserting  function 
lines  FCO,  FCl,  and  FC2),  and  initiate  an  interrupt  acknowledge 
sequence.  Details  of  this  sequence  are  given  in  Chapter  7. 
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CHAPTER  7 

Processing  States, 

Privilege  States, 

and  Exceptions 

This  chapter  describes  the  processing  states  and  privilege  states 
of  the  68000,  and  then  discusses  how  the  68000  processes  interrupts, 

traps,  and  other  "exceptions." 

PROCESSING  STATES 

The  68000  microprocessor  is  always  in  one  of  three  processing 

states— normal,  exception,  or  halted.  Until  now,  our  discussion  has 
primarily  focused  on  the  normal  state,  in  which  the  68000  fetches 
instructions  frofn  memory,  executes  them,  and  records  the  results  in 
memory  or  in  a  register.  A  special  case  of  the  normal  state  is  the 

stopped  state,  which  the  68000  enters  in  response  to  a  STOP  in- 
struction. As  you  will  recall  from  Chapter  3,  STOP  is  a  privileged 

instruction  that  causes  the  68000  to  stop  fetching  and  executing  in- 
structions until  it  receives  a  sufficiently  high  priority  interrupt  or  an 

external  reset. 

The  exception  state  is  the  way  that  the  68000  responds  to  devia- 
tions from  normal  instruction  processing.  Such  deviations,  or  excep- 

tions, can  be  caused  by  interrupts,  trap  instructions,  tracing,  non- 
catastrophic  hardware  failures,  and  a  variety  of  other  conditions, 
both  internal  and  external  to  the  microprocessor.  We  will  take  a 
detailed  look  at  exceptions,  and  how  the  68000  processes  them,  later 
in  this  chapter. 
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The  68000  enters  the  halted  state  if  a  catastrophic  hardware  fail- 
ure occurs,  such  as  two  consecutive  bus  errors.  Such  failures  imply 

that  the  system  is  unusable,  so  the  only  way  the  68000  can  be  re- 
started from  the  halted  state  is  with  an  external  reset.  Be  careful 

not  to  confuse  the  halted  state  with  the  previously  mentioned,  soft- 
ware-induced stopped  state. 

PRIVILEGE  STATES 

From  time  to  time  throughout  this  book,  we  have  mentioned  the 
two  states  of  privilege  in  which  the  68000  can  operate.  These  states, 
called  the  supervisor  state  and  the  user  state,  provide  a  measure  of 

security  to  the  system  by  allowing  certain  "privileges"  in  the  super- 
visor state  that  are  not  available  in  the  user  state  (see  Table  7-1). 

Table  7-1.  Privileges  of  the  User  and 
Supervisor  States  of  the  68000 

User  State Supervisor  State 

Enter  state  by: Clearing  S  bit  in 
status  register. 

Trap,  reset,  interrupt, 
privileged  instruction. 

Function  code  output 

FC2  = 
0 1 

System  stack  pointer: User  stack  pointer. Supervisor  stack  pointer. 

Other  stack  pointers: Registers  A0-A6. User  stack  pointer  and 

registers  A0-A6. 
Status  register  access: 

(read) 
(write) 

Entire  status  register. 
Condition  codes  only. 

Entire  status  register. 
Entire  status  register. 

Instructions  available: All,  except: 
RESET 
RTE 
STOP  #d 
ANDI.W  #d,SR 
EORI.W  #d,SR 
ORI.W  #d,SR 
MOVE  <ea>,SR 
MOVE  USP,An 
MOVE  An,USP 

All,  including  those 
listed  at  left. 

Programs  running  in  the  less-privileged  user  state  can  execute  all 
of  the  68000  instructions,  except  those  that  alter  the  upper  eight  bits 

of  the  status  register  (the  "system  byte"),  stop  the  processor,  or 
issue  a  system  reset.  Further,  user  state  programs  can  perform  stack 

operations,  but  they  cannot  read  from  or  write  to  the  system  stack 

pointers. 

Programs  running  in  the  more-privileged  supervisor  state  have 

access  to  the  full  capabilities  of  the  68000.  That  is,  supervisor  pro- 
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grams  can  access  both  system  stack  pointers  and,  through  the  privi- 
leged instructions,  can  manipulate  the  status  register  as  required. 

Control  over  the  status  register  permits  supervisor  programs  to 
change  the  interrupt  mask  and  turn  the  trace  mode  on  or  off. 

In  most  systems,  programs  other  than  those  designed  for  system 
control  execute  in  the  user  state.  Operating  system  chores,  such  as 
task  or  context  switches,  should  be  performed  when  the  68000  is  in 
the  supervisor  state. 

How  to  Change  the  Privilege  State 

The  privilege  state  is  selected  by  the  supervisory  ( S )  bit  in  the 

status  register.  The  68000  operates  in  the  supervisor  state  when  S  = 
i,  and  operates  in  the  user  state  when  S  =  0. 

Transition  from  one  privilege  state  to  another  can  be  made  in 
a  number  of  ways.  The  processor  will  go  from  the  supervisor  state 
to  the  user  state  if  the  S  bit  is  cleared  to  0.  This  can  be  done  with 

any  MOVE,  ANDI,  or  EORl  instruction  that  uses  the  status  register 

(SR)  as  the  destination  and  has  a  zero  in  bit  13  of  the  source  oper- 
and. Here  are  a  few  examples: 

instruction  Action  Taken 

MOVE      #$0400,SR         Turn  off  trace;  change  to  user  state;  load 
interrupt  mask  with  IOOl.;  clear  condition 
codes. 

ANDI       #$DFFD,SR        Clear  overflow  (V);  change  to  user  state; 
no  other  changes. 

EORl       #$2000,SR         Change  to  user  state;  no  other  changes. 

The  processor  will  also  go  back  to  the  user  state  upon  returning 

from  an  exception  (performed  with  an  RTE  instruction),  if  the  ex- 
ception occurred  in  the  user  state.  A  discussion  of  exceptions  is  up- 
coming in  this  chapter. 

The  processor  will  go  from  the  user  state  to  the  supervisor  state 
if  the  S  bit  is  set  to  1.  Typically,  this  is  done  under  software  control 
with  one  of  the  trap  instructions,  but  it  will  also  occur  due  to  a  bus 
error,  an  interrupt,  attempted  execution  of  a  privileged  instruction, 

or  any  other  exception.  Fig.  7-1  gives  a  simplified  summary  of  the 
conditions  that  cause  the  privilege  state  to  change. 

I  
EXCEPTIONS 

li  As  mentioned  at  the  beginning  of  this  chapter,  an  exception  is 
a  deviation  from  normal  processing,  due  to  an  internal  or  external 

condition,  that  places  the  processor  in  the  supervisor  state.  These  ex- 
ceptions (summarized  in  Table  7-2)  will  be  described  shortly,  but 

before  doing  so  it  is  worthwhile  to  examine  the  way  in  which  the 
68000  processes  them. 
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TRANSITION  MAY  ONLY  OCCUR 
DURING  EXCEPTION  PROCESSING 

Fig.  7-1.  Transitions  from  one 
privilege  state  to  the  other. 

TRANSITION  CAN  BE  MADE  BY 
MOVE.  ANDI  OR  EORI  TO  SR. 
OR  BY  AN  RTE  INSTRUCTION 

How  the  68000  Processes  Exceptions 

Except  for  reset,  every  exception,  whether  induced  by  an  internal 

event  ( a  trap  instruction,  for  instance )  or  an  external  event  ( an  in- 
terrupt or  a  hardware  failure),  will  cause  the  68000  to  take  five  iden- 
tifiable steps.  We  will  cover  reset  later,  but  the  five  steps  for  all 

other  exceptions  are  as  follows: 

1.  Upon  entering  the  exception  state,  the  68000  saves  the  16-bit 
contents  of  the  status  register  in  a  nonaddressable  internal  reg- 
ister. 

2.  The  supervisory  (S)  bit  in  the  status  register  is  set  to  1,  putting 
the  microprocessor  in  the  supervisor  state,  and  the  trace  (T) 
bit  is  cleared  to  0,  turning  off  the  trace  mode.  If  the  exception 
is  due  to  an  interrupt,  the  interrupt  mask  is  updated  with  the 
incoming  priority  level,  to  lock  out  interrupts  that  have  the 

Table  7-2.  Summary  of  Exceptions,  Internal  and  External 

Source Exception  Type Caused  By 

Internal Instruction 

Privilege  Violation 

Trace 
Illegal  Address 

Illegal  Instruction. 
Unimplemented  Instruction 

TRAP,  TRAPV,  CHK,  DIVS, 
DIVU. 

Privileged  instruction  in 
user  state. 

Trace  mode. 
Odd  address  with  word  or 

long  word. 
Invalid  bit  pattern. 
Op-word  pattern  1010 
or  1111. 

External Reset 
Interrupts 

Bus  Error. 
Spurious  Interrupt 

RESET  input  asserted. 
Sufficiently  high-priority 
interrupt. 

BERR  input  asserted. 
BERR  input  asserted  during 
interrupt  acknowledge. 
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Vector 
Number(s) 

/\ddress A^<iionmpnt nooi^iiiiiCMi Dec Hex 
Space 0 0 000 
SP 

Reset:  Initial  SSP 
4 

004 
SP Reset;  Initial  PC 

2 8 008 SD Bus  Error 
3 12 ooc SD 

Address  Error 
4 16 010 

SD Illegal  Instruction 
5 20 

014 SD 
Zero  Divide 

6 24 018 SD CHK  Instruction 
7 28 

OIC SD 
TRAPV  Instruction 

8 
32 

020 
SD 

Privilege  Violation 
9 36 024 SD 

Trace 
10 40 

028 SD 
Line  101  Emulator 

11 44 02C 
SD 

Line  1111  Emulator 

12*
 

48 030 
SD (Unassigned,  reserved) 

13*
 

52 034 SD (Unassigned,  reserved) 

14* 

56 038 
SD (Unassigned.  reserved) 

15 60 03C SD 
Uninitialized  Interrupt  Vector 

16  23* 
64 

04C SD 
(Unassigned.  reserved) 

95 
05F 

24 
96 060 

SD Spurious  Interrupt 
25 100 

064 
SD Level  1  Interrupt  Autovector 

26 104 068 SD Level  2  Interrupt  Autovector 

27 108 06C SD Level  3  Interrupt  Autovector 
28 112 070 

SD Level  4  Interrupt  Autovector 
29 116 074 SD Level  5  Interrupt  Autovector 
30 120 078 SD Level  6  Interrupt  Autovector 

31 
124 07C SD Level  7  Interrupt  Autovectoi 

32  47 
128 080 

SD 
TRAP  Instruction  Vectors 

191 OBF - 

48  63* 

192 OCO 
SD (Unassigned,  reserved) 

255 OFF 
64  255 256 100 SD User  Interrupt  Vectors 

1023 
3FF 

*Vector  numbers  12,13.14.16  ttirough  23  and  48  ttirougti  63  are  reserv- ed for  future  enhancements  by  Motorola,  no  user  peripheral  devices 
should  be  assigned  these  numbers. 

Courtesy  Motorola,  Inc 

Fig.  7-2.  Address  assignments  for  exceptions. 

same  priority  or  a  lower  priority,  until  this  interrupt  has  been 
serviced. 

3.  The  68000  determines  the  vector  number  of  the  exception,  and 
multiplies  this  number  by  four  to  convert  it  to  a  vector  address. 
The  68000  can  recognize  255  different  vector  numbers,  0  and  2 

through  $FF.  Fig.  7-2  summarizes  the  vector  number  and  vec- 
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tor  address  for  each  exception  condition.  For  interrupts,  the 
vector  number  is  provided  by  the  interrupting  external  device. 

For  all  other  exceptions,  the  vector  number  is  calculated  inter- 
nally, by  the  microcode  contained  in  the  68000. 

4.  The  current  program  counter  value  and  the  internally  saved 
copy  of  the  status  register  are  pushed  onto  the  supervisor  stack. 
In  most  cases,  the  program  counter  value  is  the  address  of  the 
next  unexecuted  instruction. 

5.  With  this  information  saved,  the  68000  loads  the  program 
counter  with  the  contents  of  the  calculated  vector  address  and 

begins  executing  the  exception's  service  routine. 

Fig.  7-3  is  a  flowchart  of  the  preceding  sequence  of  operations. 
The  makeup  of  an  exception  service  routine  will,  of  course,  de- 

pend on  which  exception  is  being  processed.  However,  every  excep- 
tion service  routine  must  be  terminated  with  a  return  from  exception 

(RTE)  instruction,  which  pulls  the  status  register  and  program 

counter  values  from  the  supervisor  stack,  allowing  normal  (pre- 
exception)  instruction  execution  to  resume. 

Multiple  Exceptions 

How  does  the  68000  react  if  two  or  more  exception  conditions 

arise  simultaneously?  What  happens,  for  example,  if  an  interrupt 
occurs  while  a  trace  exception  is  being  processed?  The  answers  to 

these  questions  are  found  in  Table  7-3,  which  lists  the  exception 

types  by  decreasing  priority.  That  is,  the  conditions  in  Group  0  will 
be  processed  before  those  in  Groups  1  and  2,  and  the  conditions  in 
Group  1  will  be  processed  before  those  in  Group  2.  Therefore,  if  a 
bus  error  occurs  during  trace  processing,  the  trace  processing  will 

be  suspended  (at  the  end  of  the  current  clock  cycle)  until  bus  er- 
ror processing  has  been  completed. 

Table  7-3.  Exception  Grouping  and  Priority 
Group 

Exception Exception  Processing  Will  Begin: 

0 Reset 
Bus  Error 
Illegal  Address 

At  the  end  of  a  clock  cycle. 

1 Trace 
Interrupt 
Illegal  Instruction 
Unimplemented  Instruction 
Privilege  Violation 

At  the  end  of  an  instruction  cycle. 

At  the  end  of  a  bus  cycle. 

2 TRAP,  TRAPV,  CHK, 
Divide  by  Zero 

Within  an  instruction  cycle. 
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(STA
RT  ̂

 

EXCEP
TION^

 

COPY  SR 
INTO  68000 

INTERNAL  REGISTER 

S-^1 
T—O 

OBTAIN 
VECTOR 
NUMBER 

VECTOR  ADDRESS = 
VECTOR  NUMBER  X  4 

PUSH  PC  AND 
COPIED  SR 
ONTO  STACK 

[vector  ADDRESS) PC 

(CON
TINU

E 
EXECUT

ION 

Fig.  7-3.  General  sequence  for  exception  processing  (except  reset). 

Conditions  within  each  group  in  Table  7-3  are  also  listed  in  order 
of  decreasing  priority.  Therefore,  if  an  interrupt  occurs  while  a  trace 
exception  is  being  processed,  the  trace  will  be  processed,  then  the 

interrupt  will  be  serviced  and,  finally,  the  68000  will  resume  execut- 
ing instructions  in  the  program. 
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One  special  condition,  double  bus  fault,  should  be  mentioned 
here.  A  double  bus  fault  represents  a  catastrophic  failure  within  the 
system,  and  will  occur  if  a  bus  error  or  illegal  address  exception  is 
generated  while  a  previous  Group  0  exception  (reset,  bus  error,  or 

illegal  address)  is  being  processed.  Upon  receiving  two  such  con- 
secutive errors,  the  68000  removes  itself  from  the  system  by  enter- 

ing the  halted  state.  Once  halted,  only  an  external  reset  can  cause 
the  microprocessor  to  be  restarted. 

INTERNALLY  GENERATED  EXCEPTIONS 

We  will  now  describe  each  of  the  exceptions  that  can  be  gener- 
ated by  some  condition  internal  to  the  68000  microprocessor,  begin- 
ning with  the  instructions  that  can  cause  an  exception. 

Instructions  That  Can  Cause  Exceptions 

In  the  course  of  discussing  the  68000  instruction  set  in  Chapter  3, 

we  encountered  several  instructions  that  can  cause  exception  pro- 
cessing to  be  initiated.  One  of  these  instructions  (TRAP)  always 

causes  an  exception;  the  others  (TRAPV,  CHK,  DIVS,  and  DIVU) 
may  or  may  not  produce  an  exception,  based  on  some  condition. 

Trap  ( TRAP )  forces  an  exception  to  one  of  16  user-defined  trap  i 
routines,  as  selected  by  the  immediate  operand  in  the  instruction. 

Specifically,  instructions  TRAP  #0  through  TRAP  #15  cause  pro- 
gram  control  to  be  unconditionally  transferred  to  the  routines  whose  ^ 

addresses  are  contained  in  long-word  locations  $80  through  $BC,  , 
respectively.  Table  7-4  lists  the  assignments  for  the  16  possible  trap 
instructions.  The  trap  instructions  act  as  a  set  of  software  interrupts, 

and  are  useful  for  calling  the  operating  system,  simulating  interrupts  - 
during  debugging,  signaling  completion  of  a  task,  or  indicating  that  , 
an  error  condition  has  been  encountered  in  a  program. 

Trap  on  overflow  (TRAPV)  will  cause  a  trap,  through  vector  ad-  [ 
dress  $1C,  if  the  overflow  (V)  bit  in  the  condition  code  register  is 

set  to  1.  A  single  routine  at  the  operating  system  level  may  then  ̂  
handle  every  overflow  occurrence. 

Check  register  against  bounds  (CHK)  determines  whether  the  ' 
low  word  of  a  specified  data  register  is  within  the  bounds  of  0  and 

a  specified  2s-complement  upper  limit  (in  memory  or  another  data  ; 
register).  If  the  register  contents  are  outside  of  these  bounds,  the 

68000  initiates  a  trap  through  vector  address  $18.  The  CHK  instruc- 
tion may  be  used  to  verify  that  a  stack  does  not  get  too  large,  that  ; 

a  string  of  characters  will  fit  into  an  allocated  space,  that  an  array  ' 
entry  fits  within  the  dimensions  of  the  array,  or  that  a  task  does  not 
access  data  outside  of  its  designated  storage  area. 

As  far  as  exceptions  go,  the  instructions  divide  signed  (DIVS)  v 
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Table  7-4.  Vector  Addresses  for  TRAP 

Transfers  Program  Control 
instruction Through  Vector  Address: 
TOAD  M-r\ 1  HAr  #U «i>oU 
TD  AD  -U--i \  HAr  #1 <tQ>l 

1  HAr  WiL 
1  HAr  #v3 

$oU 
XD  A  D    -/A  /I 1  HAr  #4 

$yo 
1  HAr  WO 

i^y4 1 HAr 
TDAD  -^7 1  HAr  W  ( 
\  nMr 

<t  An 

TDAD 1  nAr  W\3 
*pA4 TDAD 1  HAr   W  1 U AQ 

TRAP  #11 
$AC TRAP  #12 

$B0 TRAP  #13 

$B4 
TRAP  #14 

$B8 TRAP  #15 
$BC 

and  divide  unsigned  (DIVU)  are  the  most  conditional  of  all,  be- 
cause they  can  only  cause  an  exception  on  one  condition— if  the  di- 

visor is  zero.  A  zero  divisor  causes  a  trap  through  vector  address  $14. 
You  will  recall  from  Chapter  3  that  an  attempt  to  divide  by  zero 

is  one  of  two  conditions  that  will  prevent  the  divide  operation  from 
taking  place.  The  operation  will  also  be  stopped  if  an  overflow  oc- 

curs during  the  division.  (In  both  cases,  the  divisor  and  dividend 

are  left  intact,  however. )  When  this  happens,  the  68000  simply  sets 
the  V  bit  in  the  status  register,  then  continues  execution  with  the 
next  instruction.  Since  overflow  is  an  error  condition,  your  divide 
software  must  make  some  provision  for  dealing  with  it.  One  option 

is  to  design  the  divide  routine  so  that  it  gives  a  valid  quotient  re- 
gardless of  whether  or  not  overflow  occurs.  This  option  is  illustrated 

in  Chapter  4  f  Example  4-5).  You  can  also  choose  to  call  the  super- 
visor on  overflow,  by  following  the  DIVS  or  DIVU  with  a  TRAPV 

instruction. 

Privilege  Violations 

The  68000  initiates  exception  processing,  through  vector  address 

$20,  if  a  user  program  attempts  to  execute  one  of  the  privileged  in- 
structions. The  privileged  instructions  are  described  in  Chapter  3 

(Table  3-17  and  accompanying  text)  and  are  listed  in  the  "user 
state"  column  of  Table  7-1. 
Tracing 

Like  the  halt  feature,  the  trace  feature  is  provided  to  assist  in  pro- 
gram development  and  debugging.  With  the  trace  feature  turned  on 
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( T  =  1  in  the  status  register ) ,  the  68000  generates  an  exception  after 

each  instruction  is  executed,  thereby  causing  the  processor  to  "single- 
step"  through  a  program.  The  trace  exception  causes  program  con- 

trol to  be  transferred  to  a  user-supplied  routine  in  memory,  through 
vector  address  $24. 

Like  all  exceptions,  a  trace  exception  causes  the  68000  to  turn  oflF 

the  trace  bit  ( T  =  0 )  and  push  the  current  contents  of  the  program 
counter  and  status  register  onto  the  supervisor  stack.  Upon  return 
from  the  exception,  tracing  will  resume  unless  your  trace  service 
routine  cleared  the  T  bit  of  the  status  register  that  was  saved  on  the 

stack.  The  T  bit  can  be  cleared  by  preceding  the  RTE  with  the  in- 
struction ANDI  #$7FFF,(SP). 

The  trace  routine  is  typically  used  to  give  a  printout  of  register 
contents  after  each  instruction.  Depending  on  how  it  is  programmed, 
the  trace  routine  can  also  print  out  other  meaningful  parameters, 
such  as  the  execution  time  of  each  instruction. 

The  trace  feature  also  provides  an  easy  way  to  add  breakpoints 
to  a  system.  This  can  be  done  by  comparing  the  address  saved  on 

the  stack  (due  to  the  trace  exception)  to  a  table  of  breakpoint  ad- 
dresses. If  the  addresses  are  the  same,  the  contents  of  the  registers 

could  be  displayed  or  printed  out.  Otherwise,  the  68000  would  sim- 
ply return  from  the  trace  routine  and  execute  the  next  instruction 

in  the  program.  Reference  1  at  the  end  of  this  chapter  gives  another 

possible  use  for  the  trace  exception  routine— to  build  a  table  of  mem- 
ory locations  that  are  most  frequently  referenced  by  an  executing 

program. 

Illegal  Address 

An  illegal  address  is  an  odd-numbered  address  that  references  a 
word  or  long-word  operand.  It  traps  through  vector  address  $0C. 
An  illegal  address  can  occur  on  any  kind  of  memory  reference,  but 
it  is  most  prevalent  when  you  are  using  one  of  the  more  complex 

addressing  modes,  such  as  the  address  register  indirect  with  index 

mode,  in  which  several  terms  are  added  to  produce  the  effective 
address. 

For  the  illegal  address  exception  ( and  one  of  the  externally  gen- 

erated exceptions,  bus  error),  the  68000  pushes  seven  words  of  con- 
text information  onto  the  supervisor  stack.  These  words  are  shown 

in  Fig.  7-4.  As  you  can  see,  the  first  three  words  to  be  pushed  are 

the  program  counter  and  the  status  register.  These  are  followed  by 

the  instruction  register  (i.e.,  the  op-word  of  the  instruction  that  gen- 

erated the  illegal  address),  the  illegal  address  itself,  and  a  "super 
status  word."  The  super  status  word  provides  specific  information 

about  the  attempted  memory  access-whether  it  was  a  read  or  a 

write,  whether  the  68000  was  processing  an  instruction  (normal  state 
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or  processing  a  Group  2  instruction)  or  processing  a  Group  0  or 
Group  1  exception,  and  the  state  of  the  function  code  outputs  when 

the  illegal  access  was  attempted.  Refer  to  Table  7-3  for  the  excep- 
tion groups. 

As  mentioned  earlier,  if  one  of  the  instructions  in  the  illegal  ad- 
dress exception  routine  generates  an  illegal  address,  the  68000  will 

enter  the  double  bus  fault  condition,  which  causes  the  processor  to 

SUPER  STATUS  WORD 

ADDRESS  BUS  HIGH 

ADDRESS  BUS  LOW 

INSTRUCTION  REG. 

STATUS  REGISTER 

PC  HIGH 

PC  LOW 

INCREASING 
ADDRESSES 

R/W 
■     ̂   ■ 

FUNCTION  CODE SUPER  STATUS  WORD 

-T  =  0,  NORMAL  OR  GROUP 
2  EXCEPTION 
PROCESSING 

=  1.  GROUP  0  OR  GROUP 
1  EXCEPTION 
PROCESSING  (SEE TABLE  7  3) 

R/W  =  1,  READ 
=  0,  WRITE 

fig.  7-4.  Illegal  address  and  bus  error  stacking. 

halt.  An  externally  generated  bus  error  ( discussed  later  in  this  chap- 
ter) during  illegal  address  exception  processing  will  also  cause  a 

double  bus  fault. 

What  happens  if  an  odd  address  is  inadvertently  stored  into  the 

illegal  address  vector  locations  ( $OC-$OF )  ?  If  this  improbable  and 
unfortunate  situation  occurs,  and  the  68000  happens  to  attempt  a 

word  or  long-word  memory  reference  at  an  odd  address,  the  follow- 
ing sequence  of  events  will  take  place: 

1.  Upon  sensing  the  illegal  address,  the  68000  will  initiate  illegal 
address  exception  processing.  After  forcing  the  supervisor  state 

(S  =  1),  turning  off  the  trace  mode  (T  =  0),  and  calculating 
the  vector  address,  the  68000  pushes  seven  words  of  informa- 
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tion  onto  the  stack  (Fig.  7-4)  and' loads  the  contents  of  the 
vector  address  location  into  the  program  counter. 

2.  At  this  point,  the  68000  would  normally  begin  executing  the 
instructions  in  the  illegal  address  exception  routine.  However, 
in  this  case  the  program  counter  has  received  an  odd  address 
from  the  vector  locations.  Because  this  instruction  address  is 

odd,  it  is  illegal,  and  the  68000  will  initiate  illegal  address  ex- 
ception processing  again.  That  is,  the  68000  will  return  to 

Step  1. 

3.  Will  this  second  consecutive  illegal  address  cause  a  double  bus 
fault  condition?  No,  it  will  not  cause  a  double  bus  fault, 

because  the  illegal  address  occurred  during  the  initialization 
sequence  rather  than  within  the  exception  service  routine. 

Instead,  the  68000  will  repeatedly  initiate  illegal  address  ex- 
ception processing,  and  push  seven  words  onto  the  stack  each 

time. 

4.  Since  the  stack  builds  downward  in  memory,  any  of  several 

events  can  cause  this  repetitive  sequence  to  be  eventually  ter- 
minated. These  events  include  the  following: 

(a)  The  68000  may  "run  out  of"  read/ write  memory,  and  at- 
tempt to  push  information  into  nonexistent  memory  or 

read-only  memory.  This  should  cause  external  circuitry  to 
initiate  bus  error  exception  processing. 

( b )  The  68000  may  attempt  to  push  information  into  program 

memory,  rather  than  data  memory,  which  should  also  in- 
duce bus  error  exception  processing. 

( c )  If  the  stack  works  its  way  down  to  the  low  1024  bytes  in 
memory,  new  values  will  eventually  get  stored  into  the 

illegal  address  vector  pointer  ( locations  $OC-$OF ) .  If  this 
new  address  is  odd,  the  preceding  sequence  will  continue. 
If  it  is  even,  the  program  counter  will  attempt  to  execute 

an  "instruction"  at  this  new,  random  address,  with  unde-  t 
fined  results.  ^ 

(d)  If  the  stacking  in  (c)  attempts  a  write  into  the  reset  vec-  ' 
tors,  at  the  bottom  of  memory,  a  bus  error  should  occur  ' 
because  these  locations  must  be  in  read-only  memory. 

Illegal  Instruction  i 

An  illegal  instruction  is  a  16-bit  binary  pattern  that  does  not  repre- 
sent one  of  the  legal  op-words  in  the  68000  instruction  set.  The  legal  - 

bit  x:)atterns  are  summarized  in  Appendix  C  of  the  MC68000  User's 
Manual.  Needless  to  say,  no  good  assembler  will  generate  an  illegal  ̂ 
bit  pattern,  but  programmers  (even  good  ones)  can  inadvertently  { 

produce  such  a  pattern  in  the  course  of  making  "fixes"  to  the  ob- 
ject code.  'r 
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Unimplemented  Instructions 

The  design  specification  for  the  68000  included  several  instruc- 
tions that  were  not  implemented  in  the  initial  production  version. 

These  included  string  manipulation,  field  manipulation,  code  trans- 

lation, floating-point  arithmetic,  long-word  multiply,  and  special  di- 

vide algorithm  instructions.-  However,  Motorola  has  reserved  about 
20%  of  the  total  microcode  space  to  accommodate  these  enhance- 

ments ( or  perhaps  others )  in  future  versions. 

The  unused  microcode  space  includes  two  of  the  16  possible  "op- 
codes" ( the  four  high-order  bits  of  an  operation  word ) .  Rather  than 

"burying"  these  unimplemented  op-codes,  IOIO2  and  IIII2,  in  the 
internals  of  the  microprocessor.  Motorola  has  provided  a  unique 

vector  number  in  the  exception  map  for  each  of  these  op-codes. 
This  gives  users  the  opportunity  to  add  emulation  instructions  to 
their  programs.  These  instructions  can  either  anticipate  some  future 

Motorola  enhancement  to  the  68000  ( such  as  string  or  floating-point 
instructions )  or  just  provide  some  miscellaneous,  handy  function  for 

the  users'  application. 
How  do  you  go  about  using  the  two  unimplemented  op-codes? 

It  is  quite  simple.  To  use  one  of  these  op-codes,  you  simply  insert 
a  word  value  into  your  program  that  has  a  most-significant  hex  digit 
of  $A  (IOIO2)  or  $F  (IIII2).  The  insert  can  be  most  easily  made 
with  a  define  constant  directive,  such  as  DC  $A000  or  DC  $F000. 

When  the  68000  encounters  an  instruction  op-word  that  begins  with 
$A  or  $F,  it  will  recognize  it  as  an  unimplemented  instruction,  and 
trap  to  a  service  routine  through  address  $28  (for  1010)  or  $2C 
(for  nil). 

As  an  example  of  the  unimplemented  instructions,  let  us  emulate 

a  set  of  floating-point  instructions,  using  the  op-code  1010.  Assume 
that  there  are  four  different  floating-point  instructions— add,  sub- 

tract, multiply,  and  divide.  Further,  assume  that  each  of  these  in- 
structions operates  on  two  data  registers— a  source  register  and  a 

destination  register.  Fig.  7-5  shows  the  bit  format  for  the  floating- 
point op-words.  From  this  diagram  you  can  see  that  if  the  instruc- 

tion to  be  emulated  is  a  floating-point  multiply  of  D4  times  D5,  with 
the  product  being  stored  in  D5,  the  way  to  insert  this  instruction 
in  a  program  is  with  the  directive  DC  $AA14. 

What  will  the  floating-point  service  routine  look  like?  Well,  a 
portion  of  this  routine,  the  instruction  decode  sequence,  is  shown  in 

Example  7-1.  The  routine  itself  (FLTP)  is  preceded  by  two  direc- 
tives that  initialize  the  1010  vector  address  with  the  address  of 

FLTP.  To  decode  the  correct  operation  (add,  subtract,  multiply, 
or  divide),  the  original  instruction  must  be  retrieved  and  put  in  a 

register  to  allow  bits  3  and  4  to  be  manipulated  and  interrogated. 
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15    14  13    12   11   10  9 7    6     5     4  3 1  0 

1 0 1 0 1  1 X X X X 
1 1  1 

SOURCE  REGISTER 
000  =  DO 

111  =  D7 

OPERATION  FIELD 

00  =  ADD 
01  =  SUBTRACT 
10  =  MULTIPLY 
11  =  DIVIDE 

"DON  T  CARE- 

DESTINATION  REGISTER 

000  =  DO 

111  =  D7 

Fig.  7-5.  Bit  format  of  floating-point  instructions. 

The  program  counter  value  saved  on  the  stack  can  be  used  to  re- 
trieve the  1010  instruction,  by  subtracting  2  from  the  stacked  PC 

value  and  accessing  that  word  location. 

Example  7-1.  A  Floating-Point  Math  Initialization  Routine 
THIS  EXCEPTION  SERVICE  IS  EXECUTED  IF  THE  68000  ENCOUNTERS 

A  "1010"  INSTRUCTION  IN  A  PROGRAM.  IT  WILL  DECODE  THE 
OPERATION  FIELD  OF  THE  INSTRUCTION  (BITS  3  AND  4)  AND  USE 
THIS  NUMBER  AS  AN  INDEX,  TO  JUMP  TO  A  FLOATING-POINT  ADD, 
SUBTRACT,  MULTIPLY,  OR  DIVIDE  ROUTINE  ELSEWHERE  IN  MEMORY. 
REGISTERS  A1  AND  D1  ARE  AFFECTED. 

INITIALIZE  1010  VECTOR 

FLTP 

ORG 
$28 DC.L FLTP 1010  VECTOR  POINTS  TO  FLTP. 

ORG $1000 
MOVEA.L 2(SP),A1 GET  PC  ADDR.  OF  INSTR.  AFTER 

1010. 
MOVE -2(A1),D1 FETCH  1010  INSTRUCTION  INTO 
MOVE D1,-(SP) D1  AND  SAVE  A  COPY  OF  IT  ON 

THE  STACK. 
ANDI 

#$0018,D1 MASK  OUT  ALL  BUT  OP  FIELD 

(3  &  4). LSR 
#1,D1 

CALCULATE  INDEX  (OP  FIELD  X 4). 

174 



LEA  OPADDR,A1         FETCH  OPERATION  TABLE 
ADDRESS. 

MOVEA.L    0(A1,D1.W),A1     FETCH  ADDRESS  OF  PROPER 
JMP  (A1)  ROUTINE  AND  JUMP  TO  THAT 

ROUTINE. 
OPADDR     DC.L  FLTPADD,FLTPSUB,FLTPMUL,FLTPDIV 

END 

Once  the  op-word  has  been  fetched  in  Dl,  a  copy  of  it  is  saved 
on  the  stack,  for  hiter  register  decoding  by  the  add,  subtract,  naul- 
tiply,  or  divide  routine.  This  done,  an  ANDI  instruction  masks  out 

all  but  the  operation  field  (bits  3  and  4),  and  a  one-bit  right  shift 
converts  it  into  an  OPADDR  table  index.  All  that  remains  is  to  fetch 

the  address  of  the  operation  routine  ( FLTPADD,  FLTPSUB,  FLTP- 
MUL,  or  FLTPDIV)  into  Al,  then  jump  to  that  routine.  The  ad- 

dress is  fetched  with  a  MOVEA  instruction,  using  program  counter 
relative  with  index  addressing.  You  will  note  that  this  routine,  FLTP, 
is  very  similar  to  the  multiuser  selection  subroutine,  SELUSR,  in 

Example  5-10,  in  that  both  use  an  input  code  to  derive  an  index 
into  a  look-up  table.  The  main  difference  is  that  SELUSR  must  check 
to  determine  whether  the  ID  code  is  valid,  whereas  FLTP  needs  no 
such  check  because  it  decodes  a  two-bit  field  to  select  one  of  four 
math  routines.  If  the  field  in  FLTP  was  three  bits  long,  and  only 
five  of  the  eight  possible  combinations  were  valid,  a  validity  check 
would  be  required. 

EXTERNALLY  GENERATED  EXCEPTIONS 

Having  now  completed  our  discussion  of  internally  generated  ex- 
ceptions, let  us  discuss  conditions  external  to  the  68000  that  can 

cause  exception  processing  to  be  initiated.  There  are  three  such  con- 
ditions—reset, interrupts,  and  bus  error. 

Reset 

The  RESET  input  has  the  highest  priority  level  of  all  exceptions 

(refer  to  Table  7-3),  and  is  designed  for  system  initiation  and  re- 
covery  from  catastrophic  failures,  such  as  loss  of  power.  In  essence, 

RESET  informs  the  68000  that  any  processing  in  progress  is  mean- 
ingless, and  should  be  aborted.  

Upon  receiving  the  asserted  RESET  signal,  the  68000  reverts  to 
the  supervisor  state  (S  =  1),  turns  off  the  trace  mode  (T  =  0),  and 

sets  the  interrupt  mask  to  the  highest  level,  level  7,  so  that  no  inter- 
rupt can  disrupt  the  reset  process.  Unlike  other  exceptions,  a  reset 

saves  neither  the  program  counter  nor  the  status  register.  The  reset 
exception  vector  is  four  words  long,  and  occupies  addresses  $00 

through  $07;  these  addresses  must  reside  in  read-only  memory. 
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During  the  reset  process,  the  68000  fetches  the  first  two  words  into 

the  system  stack  pointer  and  the  second  two  words  into  the  pro-  i 
gram  counter,  then  begins  executing  the  instructions  pointed  to  by 

the  program  counter  (the  power-up/ restart  routine). 
Fig.  7-6  is  a  flowchart  of  exception  processing  for  the  reset  condi- 

tion. Note  that  it  includes  a  provision  for  a  double  bus  fault  if  a  bus 

error  or  address  error  occurs  during  reset  processing.  ^ 
Interrupts 

Readers  who  are  accustomed  to  programming  interrupt  polling  | 

sequences  for  earlier  8-bit  microprocessors  will  be  pleased  to  learn 
that  the  68000  has  a  minicomputer-like  prioritized  interrupt  struc- 

ture, which  will  accept  seven  different  levels  of  interrupt  requests.  ̂  
Further,  these  interrupts  may  be  vectored  or  nonvectored. 

Interrupt  priorities  range  from  level  1  ( lowest  priority )  to  level  7  j 
(highest  priority,  nonmaskable).  When  an  external  device  wishes  to 

interrupt  the  68000,  it  encodes  the  priority  level  of  the  interrupt  re-  ' 
quest  onto  three  interrupt  control  lines,  IPLO,  IPLl,  and  IPL2.  Un- 

less a  trace,  illegal  address,  bus  error,  or  reset  exception  is  being 
processed,  the  68000  will  finish  executing  the  current  instruction, 

and  then  compare  the  encoded  priority  level  with  the  3-bit  interrupt 

mask  in  the  status  register  (see  Fig.  1-3  in  Chapter  1).  j 
If  the  encoded  value  on  the  interrupt  control  lines  is  equal  to  or 

less  than  the  value  of  the  interrupt  mask,  the  68000  will  simply  "ig-  | 
nore"  the  request  and  resume  normal  instruction  execution.  (The 
only  exception  to  this  is  level  7,  which  will  acknowledge  another 
level  7  interrupt  request.)  However,  if  the  interrupt  request  has  a 
value  that  is  higher  than  the  interrupt  mask,  the  68000  will  initiate 
exception  processing. 

For  the  most  part,  interrupt  processing  follows  our  general  ex- 
ception processing  sequence  (Fig.  7-3),  but  has  enough  additional 

steps  to  warrant  its  own  step-by-step  description.  Following  are  the 
steps  in  the  interrupt  processing  sequence;  they  are  flowcharted 

in  Fig.  7-7: 

1.  Upon  receiving  a  suflBciently  high-priority  interrupt  request, 
the  68000  saves  the  16-bit  contents  of  the  status  register  in  a 
nonaddressable  internal  register. 

2.  The  68000  places  itself  in  the  supervisor  state  ( S  =  1 )  and 
turns  off  the  trace  mode  (T  =  0). 

3.  The  priority  level  of  the  interrupt  being  acknowledged  (1 

through  7)  is  placed  in  the  interrupt  mask  of  the  status  reg-  I 

ister,  and  output  to  all  devices  in  the  system  on  address  lines  '\ 
Al,  A2,  and  A3.  To  qualify  the  address  bus  information  as  an  i 
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ART

  ̂ 
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T  

) 
EXCEPT

ION  
J 

S  — 1 
T— 0 

INTERRUPT 
MASK— ̂ 7 

FETCH 
VECTOR  0 

($00-S03) — -SSP 

FETCH 
VECTOR  1 

ILLEGAL  ADDRESS 
OR  BUS  ERRORL 

^NO ($04- 
S07I 
-PC 

(CONT
INUE^

 EXECUTION
  
J 

YES 

YES 

DOUBLE  BUS 
FAULT -(^      HALT  ̂  

Fig.  7-6.  Sequence  for  reset  exception  processing. 
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START  J 

INTERRUPTING  DEVICE 
ENCODES  IPLO  - IPL2 

YES 

(CONTI
NUE  A 

NORMAL
  
) 

EXECUTI
ON^ 

COPY  SR INTO  68000 
INTERNAL  REGISTER 

PRIORITY  LEVEL 
--INTERRUPT  MASK 
&  ADDRESS  BUS 

FUNCTION  CODES 

(FCO  -  FC2)— 

(AUTOVECTORED INTERRUPT) 
^RESPONSE' 

YES 

NO,  WAIT 

VPA 

VECTOR  NUMBER  = PRIORITY  LEVEL 
+  $18 

(NON  AUTOVECTORED INTERRUPT) 

BERR 

VECTOR  NUMBER^ 
$18 

DTACK 

VECTOR  NUMBER  : 
(DBO  -  DB7) 

VECTOR  ADDRESS = VECTOR  NUMBER  X  4 

PUSH  PC  AND 
COPIED  SR 
ONTO  STACK 

(VECTOR  ADDRESS) 

—  PC 

(CONTIN
UE^ 

EXECUTION 
 
} 

Fig.  7-7.  Interrupt  processing  sequence. 
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interrupt  acknowledge,  the  68000  asserts  all  three  function 
code  lines  (FCO,  FCl,  and  FC2). 

4.  At  this  point,  the  68000  waits  for  the  system  to  respond  with 
either  an  error  signal  (BERR)  or  either  of  two  nonerror  signals 
(VPA  or  DTACK).  If  neither  VPA  nor  DTACK  is  asserted 

within  a  predetermined  time  interval,  an  external  "watchdog 
timer"  should  assert  bus  error  (BERR)  to  inform  the  68000 
that  the  interrupt  request  was  a  spurious  interrupt.  A  spurious 
interrupt  causes  the  68000  to  generate  a  vector  number  of  $18. 

5.  If  the  interrupt  request  was  not  spurious,  the  two  valid  re- 
sponses to  interrupt  acknowledge  are  VPA  and  DTACK.  Here 

is  what  each  of  these  responses  means: 
( a )  Devices  that  are  specifically  designed  to  support  the  68000 

will  respond  to  the  interrupt  acknowledge  by  placing  one 

of  192  user  interrupt  vector  numbers  ($40-$FF)  on  the 
least-significant  byte  of  the  data  bus,  DBO  through  DB7, 
and  asserting  DTACK. 

(b)  Earlier  devices,  such  as  those  that  support  the  6800  and 

6500  families,  cannot  supply  a  vector  number.  These  de- 
vices respond  to  the  interrupt  acknowledge  by  asserting 

VPA,  which  causes  the  68000  to  look  at  the  priority  level, 
and  add  a  base  address  of  $18  to  this  level  to  form  an 

autovector  number.  Since  the  priority  levels  range  from 
1  to  7,  the  autovector  numbers  will  range  from  $19  to  $1F. 

6.  The  68000  now  multiplies  the  vector  number  by  four  to  convert 

it  to  a  vector  address.  For  a  spurious  interrupt,  the  vector  ad- 
dress will  be  $60.  For  the  user  interrupts,  the  vector  address 

will  range  from  $100  to  $3FC.  For  the  autovectors,  the  vector 
address  will  range  from  $64  (level  1)  to  $7C  (level  7). 

7.  The  current  program  counter  value  and  the  internally  saved 
copy  of  the  status  register  are  pushed  onto  the  supervisor  stack. 

8.  The  6800?)  loads  the  program  counter  with  the  contents  of  the 
calculated  vector  address  and  begins  executing  the  interrupt 
service  routine. 

Bus  Error 

From  previous  discussions  in  this  book,  you  know  that  the  bus 
error  (BERR)  signal  is  an  externally  generated  input  that  notifies 

the  68000  of  an  error  somewhere  within  the  system.  We  have  dis- 
cussed the  following  applications  of  BERR: 

1.  Asserted  alone,  BERR  is  used  to  signify  that  any  of  a  variety 
of  errors  has  occurred  in  the  system.  For  example,  a  watchdog 

timer  may  assert  BERR  to  indicate  that  an_addressed  memory 
or  peripheral  device  has  failed  to  send  a  VPA  or  DTACK  re- 
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sponse  to  the  68000.  Further,  a  memory  management  unit  may 
assert  BERR  to  indicate  that  the  executing  program  attempted 
an  illegal  memory  access  (e.g.,  an  attempt  to  write  into  read- 

only memory).    
2.  Asserted  with  HALT,  BERR  will  cause  the  68000  to  rerun  the 

bus  cycle,  then  halt. 

3.  Asserted  during  processing  of  a  Group  0  exception  (reset,  il- 
legal address,  or  bus  error),  BERR  will  cause  a  double  bus 

fault,  thereby  placing  the  processor  in  the  halted  state. 

4.  Asserted  during  interrupt  processing,  BERR  will  initiate  pro- 
cessing of  a  spurious  interrupt  exception,  through  vector  ad- 

dress $60. 

Condition  4,  spurious  interrupt  processing,  will  cause  the  68000  to 

stack  the  current  contents  of  the  program  counter  and  status  regis- 
ter, a  total  of  three  words.  Conditions  1,  2,  and  3  will  cause  the  68000 

to  stack  seven  words— program  counter,  status  register,  instruction 

register,  address  bus  (low  and  high),  and  a  "super  status  word." 
These  words  are  discussed  in  the  description  of  the  illegal  address 

exception  (Fig.  7-4  and  accompanying  text). 
As  you  can  see,  only  Condition  1  will  actually  cause  bus  error  ex- 

ception processing  to  take  place.  That  is,  bus  error  exception  pro- 
cessing will  be  initiated  if  BERR  (alone)  is  asserted  when  the  68000 

is  processing  instructions  in  the  nornml  state,  or  is  processing  a 
Group  1  or  Group  2  exception  other  than  an  interrupt.  Bus  error 

exception  processing  causes  the  68000  to  internally  generate  a  vec- 
tor number  of  $02,  and  initiate  execution  through  vector  address  $08. 
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CHAPTER  8 

Fundamentals  of  Interfacing 

Chapter  6  described  the  signal  Hnes  with  which  external  devices 

can  be  connected  to  the  68000  microprocessor  to  form  a  microcom- 
puter system.  We  studied  the  timing  relationships  between  these 

signals,  and  described  how  the  68000  can  communicate  with  either 

16-bit  asynchronous  devices  or  8-bit  synchronous  devices  via  sepa- 
rate control  lines  on  the  microprocessor  integrated  circuit.  In  this 

chapter,  we  will  take  a  brief  look  at  the  support  chips  that  can  be 

interfaced  to  the  68000.  A  simple  interfacing  example  is  also  in- 
cluded. 

68000  SUPPORT  CHIPS 

Table  8-1  lists  the  support  chips  for  the  68000  that  are  either  avail- 
able now  or  afe  expected  to  be  in  production  by  the  end  of  1984. 

These  chips  all  connect  to  the  asynchronous  control  lines  of  the 
microprocessor. 

The  68120  IPC  is  a  general-purpose,  user-programmable  input/ 
output  controller.  Based  on  an  8-bit  6801  one-chip  microcomputer, 

the  IPC  can  be  configured  as  an  I/O  preprocessor  or  as  a  "slave" 
processing  unit  for  distributed  processing.  In  addition  to  the  6801 
MCU,  the  IPC  contains  a  system  interface,  a  serial  communications 

interface,  21  parallel  I/O  lines,  a  16-bit  timer,  a  dual-ported  128K- 

byte  read/ write  memory,  2K  bytes  of  ROM,  and  six  semaphore  reg- 
isters. Model  68121  has  all  the  features  of  the  68120,  but  contains 

no  ROM.  The  68122  CTC  is  an  IPC  that  is  programmed  as  a  serial 

I/O  subsystem.  It  is  used  to  connect  up  to  32  terminals  to  a  68000- 
based  system. 

181 



Table  8-1.  68000  Peripheral  Chips 

Part  No. Description 
Developed  By 

68120/68121 Intelligent  Peripheral  Controller Motorola 
(IPC) 

68122 Cluster  Terminal  Controller  (CTC) Motorola 
68230 Parallel  Interface/Timer  (Pl/T) Motorola 
68430 DMA  Interface  (DMAI) Signetics/Phillips 
68440 Dual-Channel  DMA  Controller Motorola 

(DDMA) 
68450 DMA  Controller  (DMAC) Hitachi 
68451 Memory  Management  Unit  (MMU) Motorola 
68452 Bus  Arbitration  Module  (BAM) Motorola 
68454 Intelligent  Multiple-Disk  Controller Signetics/Phillips 

(IMDC) 
68459 Disk  Phase-Locked  Loop  (DPLL) Signetics/Phillips 
68561 Multi-Protocol  Communications Rockwell 

Controller  II  (MPCC-II) 
68562 Dual  Universal  Serial Signetics/Phillips 

Communications  Controller 
(DUSCC) 

68564 Serial  I/O  Controller  (SIO) Mostek 
68590 Local  Area  Network  Controller  for Mostek 

Ethernet  (LANCE) 
68652/2652 Multi-Protocol  Communications Signetics/Phillips 

Controller  (MPCC) 
68653/2653 Polynomial  Generator/Checker Signetics/Phillips 

(PGC) 
68661/2661 Enhanced  Programmable Signetics/Phillips 

Communications  Interface  (EPCI) 
68681 Dual  Universal  Asynchronous Signetics/Phillips 

Receiver/Transmitter  (DUART) 
68881 Floating-Point  Co-Processor  (FPC) Motorola 
68901 Multi-Functional  Peripheral  (MFP) Mostek 
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The  68230  PI/T  is  a  general-purpose  parallel  interface  device.  It 
contains  two  miiltimode  double-buffered  I/O  ports,  a  tliird  8-bit 

I/O  port,  a  24-bit  programmable  timer,  and  circuitry  for  generating 
prioritized  interrupt  vectors. 

Direct  Memory  Access  (DMA)  is  supported  by  three  different 

chips:  the  single-channel  68430  DMAI,  the  two-channel  68440 
DDMA  and  the  four-channel  68450  DMAC. 

The  68451  MMU  provides  address  translation  and  memory  pro- 
tection for  the  entire  16M-byte  addressing  space  of  the  68000.  An 

MMU  can  be  used  to  define  multiple  segments  as  small  as  256  bytes 
within  this  space.  For  each  segment,  the  MMU  defines  the  logical 
address  space  (the  program  and  data  space  for  the  supervisor  or 
user  state),  using  the  function  code  lines.  It  also  specifies  an  ofiFset 

to  the  physical  address,  and  the  segment's  memory  protection  char- 
acteristics. The  MMU  will  generate  a  bus  error  exception  if  an  un- 
authorized access  of  a  segment  is  attempted.  Another  chip  that  re- 

flects the  large-system  potential  of  the  68000  is  the  68452  BAM, 
which  allows  up  to  eight  bus  masters  (see  Chapter  6)  to  share  the 

system's  resources,  and  can  be  expanded  indefinitely  to  support  more masters. 

The  68454  IMDC  and  the  68459  DPLL  form  a  two-chip  set  for 
disk  control.  The  IMDC  provides  intelligent  control  for  up  to  four 

drives  (Winchester-type  hard  disks  or  floppy  disks,  in  any  combina- 
tion), while  the  DPLL  will  have  two  versions— one  for  hard  disks 

and  one  for  floppies. 

Of  the  remaining  ten  chips  in  Table  8-1,  nine  are  data  communica- 
tions devices.  These  chips  provide  support  for  standard  protocols- 

asynchronous,  byte  control  (Bisync)  and  bit-oriented  (SDLC)— as 
well  as  Ethernet. 

The  68881  Floating  Point  Co-processor  (FPC)  is  a  high-perfor- 
mance companion  part  to  the  68020,  the  16/32-bit  version  of  the 

68000.  The  co-processor  is  designed  to  interface  so  closely  with  the 
68020  that  it  actually  operates  coincidentally  on  the  same  instruc- 

tion sequence.  That  is,  the  co-processor  takes  instructions  dealing 
with  complex  arithmetic  routines,  and  solves  those  while  the  proces- 

sor is  proceeding  with  the  main  program. 

6800  SUPPORT  CHIPS 

Many  applications  do  not  require  the  sophisticated  features  of  the 
68000  support  chips,  and  can  be  implemented  with  less  expensive 

support  chips  from  the  earlier  8-bit  microprocessors,  such  as  the 
6800  and  the  6500.  Table  8-2  lists  some  of  the  more  commonly  used 

6800  support  circuits.  Any  of  these  chips  can  be  interfaced  to  the 
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68000  using  the  synchronous  control  Hnesl  or  the  asynchronous  con- 

trol lines^'^ 

Table  8-2.  Available  6800  Peripheral  Chips 
Part  No. Description 

MC6821 Peripheral  Interface  Adapter  (PIA) 
MC6840 Programmable-Timer  Module  (PTM) 
MC6843 Floppy  Disk  Controller  (FDC) 
MC6844 Direct  Memory  Access  Controller  (DMAC) 
MC6845 CRT  Controller  (CRTC) 
MC6847 Video  Display  Generator  (VDG) 
MC6850 Asynchronous  Communications 

Interface  Adapter  (ACIA) 
MC6852 Synchronous  Serial  Data  Adapter  (SSDA) 
MC6854 Advanced  Data  Link  Controller  (ADLC) 
MC6859 Data  Security  Device 
MC6860 0-  to  600-bps  Digital  Modem 
MC6862 2400-bps  Modulator 
MC68488 IEEE-488  Bus  Interface  Adapter  (GPIA) 

For  the  remainder  of  this  chapter,  let  us  consider  how  one  of  the 
more  popular  of  these  chips,  the  6821  Peripheral  Interface  Adapter 
( PIA ) ,  can  be  interfaced  to  a  68000  microprocessor.  \ 

INTERFACING  A  6821  PIA  TO  THE  68000 

The  6821  PIA  provides  all  of  the  necessary  circuitry  to  interface 
a  6800  or  68000  microprocessor  to  a  printer,  display,  keyboard,  bank 

of  switches,  or  a  variety  of  other  peripheral  devices.  The  PIA  com- 
municates with  the  microprocessor  on  the  system  buses  (data,  ad- 

dress, and  control),  and  it  communicates  with  attached  peripherals 

via  two  8-bit  ports,  called  Port  A  and  Port  B.  Each  of  the  16  lines 
that  comprise  the  two  ports  can  be  independently  programmed,  at 
system  initialization  time,  to  function  ar  either  an  input  line  or  an 
output  line. 

Within  the  PIA,  each  bidirectional  port  (Port  A  and  Port  B)  is 
supported  by: 

•  A  data  direction  register.  Each  bit  of  the  data  direction  register  i 
determines  whether  its  corresponding  port  line  shall  function  as  rj 
an  input  ( 0 )  or  an  output  ( 1 ) . 

•  A  control  register  that  holds  the  interrupt  status  flags  of  the  port, 
and  selects  internal  logic  connections  within  the  PIA.  i 

•  A  peripheral  data  register  that  holds  data  being  transferred  be- 
tween the  microprocessor  and  an  attached  peripheral.  ' 

•  Two  interrupt  control  lines  that  are  configured  by  the  contents  ; 
of  the  control  register. 
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Six  registers  within  the  PIA  are  addressable— two  peripheral  reg- 
isters, two  data  direction  registers,  and  two  control  registers.  Each 

peripheral  register  "shares"  a  byte  location  in  memory  with  a  data 
direction  register,  however,  so  a  PIA  will  respond  to  four  (rather 
than  six)  memory  addresses.  Readers  unfamiliar  with  this  or  other 
characteristics  of  the  6821  PIA  are  referred  to  the  PIA  data  sheet 

in  The  Complete  Motorola  Microcomputer  Data  Lihraryr 

Like  all  8-bit  devices,  the  6821  PIA  is  designed  to  transfer  infor- 
mation eight  bits  at  a  time.  Transferring  more  than  eight  bits  will 

require  additional  transfer  operations,  if  you  have  only  one  PIA. 

Since  the  68000  has  a  16-bit  data  bus,  this  microprocessor  is  designed 
to  transfer  information  16  bits  at  a  time.  We  can  employ  the  PIA 

for  16-hit  transfers  J)y  simply  connecting  two  of  these  devices  in  par- 
allel, one  to  transfer  the  high-order  bits  and  the  other  to  transfer  the 

low-order  bits. 

An  Interface  to  Transfer  16-Bit  Data 

Fig.  8-1  shows  an  example  of  how  two  6821  PIAs  can  be  inter- 
faced to  the  synchronous  bus  of  the  68000  to  transfer  16  bits  of  infor- 

mation at  a  time.  Note  that  in  this  particular  system,  6800  peripheral 
devices  are  assumed  to  reside  within  the  addressing  range  $FEF800 

through  $FEFF00,  because  valid  ̂ ripheral  address  (VPA)  will  be 
asserted  only  if  address  strobe  (AS)  is  asserted  and  the  output  of 

the  13-input  nand  gate  (74LS133)  is  a  logic  0.  Furthermore,  the 
PIAs  shown  in  Fig.  8-1  are  only  selected  when  address  lines  A3,  A4, 
and  A5  are  logic  Is.  Therefore,  these  particular  devices  will  respond 
to  addresses  in  the  range  $FEF838  to  SFEFFFF.  Two  other  address 
lines,  Al  and  A2,  are  also  connected  to  these  PIAs.  They  are  used  to 
select  the  internal  registers,  as  follows: 

A2  Al  Register  Selected 

0  -  0  PRA/DDRA 
0  1  CRA 

1  0  PRB/DDRB 
1  1  CRB 

Since  each  PIA  occupies  four  bytes  in  mem.ory,  the  two  PIAs  in 

Fig.  8-1  will  occupy  eight  bytes  (four  words)— four  even-numbered 

bytes  for  the  'liigh-order"  PIA,  and  four  odd-numbered  bytes  for 
the  "low-order"  PIA.  Let  us  assume  that  our  PIAs  occupy  addresses 
$FEFF00  through  $FEFF07,  as  shown  in  Fig.  8-2. 

Some  Simple  16-Bit  Transfers,  Using  PIAs 

For  illustration  purposes,  assume  that  the  PIAs  in  Fig.  8-1  are 
connected  to  two  16-bit  peripherals.  The  peripheral  connected  to 
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Fig.  8-1.  Interface  between  a  68000  and  two  6821  PI  As. 
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Port  A  of  both  PI  As  is  an  input-only  device  (perhaps  a  bank  of 
switches).  When  this  device  has  placed  a  word  of  input  data  on 

the  Port-A  data  lines  (PA0-PA7)  of  both  PI  As,  it  notifies  the  68000 
by  asserting  a  DATA  READY  signal  on  pin  CAl  of  the  high-order 
PIA.  After  reading  the  word  into  memory,  the  68000  informs  the  pe- 
ripheral  that  the  word  has  been  read  by  asserting  a  DATA  TAKEN 

signal  on  pin  CA2  of  the  high-order  PIA. 
The  peripheral  connected  to  Port  B  of  both  PIAs  is  an  output-only 

device  (perhaps  a  group  of  LEDs).  When  the  peripheral  is  pre- 
pared to  accept  a  word  of  data,  it  notifies  the  68000  by  asserting  a 

PERIPHERAL  READY  signal  on  pin  CBl  of  the  high-order  PIA. 
The  68000  then  outputs  a  data  word  to  the  Port-B  data  lines  ( PBO- 
PB7)  of  both  PIAs,  and  notifies  the  peripheral  that  it  has  done  so 

by  asserting  an  OUTPUT  READY  signal  on  pin  CB2  of  the  high- 
order  PIA.  Fig.  8-3  illustrates  the  data  paths  just  described. 

In  order  for  a  PIA  to  communicate  with  attached  peripheral  de- 

vices, it  must  be  programmed  to  suit  the  characteristics  of  these  par- 
ticular devices.  PIAs  are  so  configured  at  system  initialization  time, 

as  part  of  the  power-up  reset  sequence.  Example  8-1  is  an  initiali- 
zation routine  for  the  two  PIAs  we  are  discussing  here.  The  high- 

order  PIA  is  configured  as  follows: 

•  DDRA  is  loaded  with  all  Os,  making  A  an  input  port. 
•  CRA  is  loaded  with  %00100110  ($26),  to  enable  handshaking. 

Example  8-1.  Initializing  Two  PIAs 
PIAD  EQU $FEFFOO ADDRESS  OF  PRA/DDRA. 
PIAC  EQU PIAD+2 ADDRESS  OF  CRA. 
PIBD  EQU PIAD4-4 ADDRESS  OF  PRB/DDRB. 
PIBC  EQU 
* 

PIAD-f-6 ADDRESS  OF  CRB. 

MOVEA.L PIAD.AO POINT  TO  HIGH-ORDER  PIA. 
*  CONFIGURE THE  HIGH-ORDER PIA 

MOVE.L #$26FF26,D0 SET  UP  PARAMETERS 
MOVEP.L DO,0(AO) AND  MOVE  THEM  TO  THE  PIA 

*  CONFIGURE THE  LOW-ORDER PIA 
MOVE.L #$04FF04,D0 SET  UP  PARAMETERS 
MOVEP.L D0,1(A0) AND  MOVE  THEM  TO  THE  PIA 
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Fig.  8-3.  Two  6821  PIAs  interfaced  to  two  peripherals. 
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•  DDRB  is  loaded  with  all  Is  ($FF),  making  B  an  output  port. 
•  CRB  is  loaded  with  %()0100110  ($26),  to  enable  handshaking. 

Then,  the  low-order  PI  A  is  eonfigured  as  follows: 

•  DDRA  is  loaded  with  all  Os,  making  A  an  input  port. 
•  CRA  is  loaded  with  %00000100  ($04),  to  select  PRA. 

•  DDRB  is  loaded  with  all  Is  ($FF),  making  B  an  output  port. 
•  CRB  is  loaded  with  %00000100  ($04),  to  select  PRB. 

Once  the  PIAs  have  been  configured,  transferring  information  to 
and  from  their  attached  peripherals  is  relatively  simple.  To  transfer 

a  single  16-bit  word  to  the  output  peripheral,  for  example,  involves 
waiting  for  the  peripheral  ready  line  to  be  asserted,  then  moving  the 
data  word  to  the  peripheral  register  B  of  the  PIAs.  This  sequence  is 

shown  in  Example  8-2,  in  which  the  output  word  is  contained  in  the 

low-order  16  bits  of  data  register  DO.  The  "no-op"  instruction  MOVE 
PIBD,PIBD  at  the  end  of  the  program  simply  performs  the  read 

operation  needed  to  clear  the  "peripheral  ready"  flag  in  bit  7  of  the 
control  register. 

Example  8-2.  Writing  a  16-Bit  Word  to  a  Peripheral 
*    OUTPUT  THE  WORD  CONTAINED  IN  DATA  REGISTER  DO. 
OUTW     TST.B        PIBG  PERIPHERAL  READY? 

BPL.S        OUTW  WAIT  UNTIL  IT  IS, 
MOVE        DO.PIBD  THEN  OUTPUT  THE  WORD. 
MOVE        PIBD.PIBD  CLEAR  PERIPHERAL  READY. 

Transferring  multiple  words  to  the  output  peripheral  is  nearly  as 
easy  as  transferring  just  one  word,  as  you  can  see  by  examining 

Example  8-3.  This  program  writes  the  contents  of  DO  to  the  output 
peripheral  continuously,  incrementing  the  word  in  DO  after  each 
transfer  operation. 

Example  8-3.  Incrementing  a  16-Bit  Word  and  Writing  It  to  a 
Peripheral  Continuously 

*  OUTPUT  THE  WORD  CONTAINED  IN  DATA  REGISTER  DO 
*  CONTINUOUSLY,  INCREMENTING  IT  AFTER  EACH  TRANSFER 
*  OPERATION. 
OUTDO    TST.B        PIBC  PERIPHERAL  READY? 

BPL.S        OUTDO  WAIT  UNTIL  IT  IS, 
MOVE       DO,PIBD  THEN  OUTPUT  ONE  WORD. 
ADDQ        #1,D0  INCREMENT  DO. 
MOVE        PIBD,PIBD  CLEAR  PERIPHERAL  READY 
BRA.S       OUTDO  AND  START  AGAIN. 

The  program  in  Example  8-4  shows  a  typical  input  transfer  oper- 
ation, in  which  35  words  are  read  into  consecutive  memory  loca- 
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tions.  Address  register  indirect  with  postincrement  addressing  is 
used  in  the  transfer  instruction,  so  that  the  address  is  automatically 
updated  to  point  to  the  next  location  in  memory.  Note  that  counter 
DO  is  initialized  with  a  value  of  34,  rather  than  35,  because  the  ter- 

minating instruction  (DBF  D0,IN35)  will  cause  program  control  to 

"fall  through"  the  loop  when  DO  has  been  decremented  to  -1,  rather than  zero. 

Example  8-4.  Reading  Data  From  an  Input  Peripheral  and  Storing  It in  Memory 

*  READ  35  WORDS  INTO  MEMORY,  STARTING  AT  THE  LOCATION  BEING 
*  POINTED  TO  BY  ADDRESS  REGISTER  AO. 

IN35 
MOVE.L 
TST.B 
BPL.S 
MOVE 
DBF 

#34,D0 PIAC 
IN35 
PIAD,(AO)  + 

D0,IN35 

SET  UP  COUNTER  DO. 
DATA  READY? 
WAIT  UNTIL  IT  IS 
THEN  INPUT  WORD. 
LOOP  UNTIL  DONE. 
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CHAPTER  9 

68000  System 

Development  Support 

The  features  of  a  microprocessor  and  its  price  and  availability  are 

important  factors  in  the  success  of  the  product.  Clearly,  another  fac- 
tor is  the  amount  of  hardware  support,  at  both  the  chip  and  board 

level,  that  is  available  for  the  microprocessor  because  this  deter- 

mines how  easily  the  product  can  be  integrated  into  a  customer's 
application  or  end  product.  However,  for  all  but  the  simplest  ap- 

plications, the  hardware  represents  the  least  expensive  part  of  a 

microprocessor-based  project.  It  is  software  that  will  require  the 
most  significant  investment  in  terms  of  both  time  and  money. 

For  industrial  microprocessor  applications,  software  development 

represents  an  average  of  60%  to  90%  of  the  total  project  cost.^  Soft- 
ware costs  range  from  $1000  to  $10,000  for  small,  dedicated  control 

applications,  and  up  to  $100,000  or  more  for  sophisticated  systems. 
When  you  consider  that  each  line  of  debugged  code  currently  costs 

between  $10.00  and  $20.00  to  generate,  and  that  the  average  pro- 
gram contains  thousands  of  lines  of  assembly  language  or  high-level 

code,^  these  costs  are  not  surprising.  They  do  make  one  point  crystal 

clear,  however— for  a  microprocessor  to  succeed  in  today's  market,  it  3 
must  be  backed  by  cost-effective  system  development  products,  from  ̂  
both  the  chip  manufacturer  and  other  companies.  This  chapter  gives  < 
an  overview  of  the  system  development  support  for  the  68000  in  , 
terms  of  both  hardware  and  software.  . 

According  to  a  recent  market  survey,-^  about  one-half  of  all  micro-  ̂  
computer  software  development  is  performed  with  cross  assemblers 

and  other  software  running  on  minicomputers  or  mainframe  com-  e 
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Courtesy  Motorola,  Inc 

Fig.  9-1.  The  Motorola  MEX68KDM  Design  Module. 

puters.  Another  one-fourth  occurs  on  single-board  computers,  "home- 

brew" systems,  and  other  "custom"  devices.  The  remaining  fourth 
takes  place  on  what  are  generally  termed  microcomputer  develop- 

ment systems.  Let  us  now  survey  the  support  that  is  available  for 
the  68000  in  these  three  areas,  beginning  with  a  discussion  of  the 
products  that  are  available  from  Motorola. 

MOTOROLA  SYSTEM  SUPPORT  PRODUCTS 

To  support  E^JORciser®  owners,  Motorola  Microsystems  ( 2200  W. 
Broadway,  Mesa,  AZ  85201)  is  offering  the  MEX68KDM  Design 

Module,  which  is  designed  to  interface  to  the  company's  EXORciser/ 
micromodule  bus.  The  MEX68KDM,  shown  in  Fig.  9-1,  includes  an 

8K-byte  system  monitor  (called  MACSbug®),  32K  bytes  of  dynamic 
read/ write  memory,  two  serial  RS-232C  ports,  two  16-bit  parallel 
I/O  ports,  three  16-bit  counter/ timers,  sockets  for  up  to  48K  bytes 
of  ROM/EPROM  user  memory,  and  a  breadboard  area  for  user- 
designed  I/O.  A  bus  adapter  module  permits  16-bit  memory  to  be 
used  on  the  8-bit  EXORciser  data  bus.  The  MACSbug  monitor  pro- 

vides extensive  debug  routines,  so  the  user  can  examine  and  change 
memory  locations  and  registers,  set  breakpoints,  trace  and  display 
instructions,  and  control  many  other  processor  operations. 

®  EXORciser  and  MACSbug  are  trademarks  of  Motorola,  Inc. 
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Courtesy  Motorola,  Inc. 

Fig.  9-2.  The  Motorola  EXORmacs  Development  System. 

When  used  with  a  cross  assembler  (such  as  the  one  described 

in  Chapter  2),  the  MEX68KDM  Design  Module  provides  an  in- 
expensive way  to  develop  68000  software  on  a  host  computer,  such 

as  an  IBM  System/370,  a  DEC  PDP-11,  or  an  EXORciser.  However,  f 
those  who  need  the  power  and  flexibility  of  a  multiuser  develop-  * 
ment  system,  and  the  efficiency  of  a  resident  assembler  and  com-  * 
piler,  are  advised  to  investigate  the  EXORmacs^  Development  Sys-  \ 
tern  (see  Fig.  9-2).  ' 

Offered  by  Motorola  Semiconductor  Products,  Inc.  ( P.O.  Box  . 
20912,  Phoenix,  AZ  85036),  the  basic  EXORmacs  system  includes  « 

a  microcomputer  chassis  with  four  system  modules,  a  CRT  display  ° 
console,  and  either  a  IM-byte  dual-drive  floppy  disk  or  a  32M-byte 

hard  disk.  The  hard  disk  includes  Motorola's  68000  disk  operating 
system,  called  VERSAdos®.  The  card  cage  in  the  chassis  can  ac- : 
commodate  up  to  15  modules,  with  four  slots  occupied  by  these  : 
system  modules: 

I 

•  DEbug  Module  contains  MACSbug  firmware,  bus  arbitration  j 

logic,  a  parallel  printer  port,  and  two  RS-232C  ports. 
•  MPU  Module  contains  the  MC68000  MPU  chip,  a  four-segment, 

memory  management  unit  (for  memory  allocation  and  multi-, 
tasking),  and  map-switching  logic. 

•  256K  bytes  of  dynamic  read/ write  (R/W)  memory.  | 
•  Universal  Disk  Controller  supports  one  or  two  32M-byte  hard 

disks  and  up  to  2M  bytes  of  floppy-disk  mask  storage.  | 

®  EXORmacs  and  VERSAdos  are  trademarks  of  Motorola,  Inc. 
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Courtesy  Motorola,  Inc. 

Fig.  9-3.  The  Motorola  VERSAmodule  Monoboard  Microcomputer  (VMM), 
showing  modular  functional  elements. 

The  EXORmacs  software  development  package  provides  the  VER- 
SAdos  operating  system,  a  structured  macro  assembler,  a  linkage 

editor,  a  CRT  text  editor,  and  a  Pascal  compiler.  EXORmacs  is  de- 

signed using  Motorola's  VERSAbus®  (described  in  Reference  4), 
which  supports  multiprocessing  and  32-bit  data. 

Motorola  is  also  backing  the  VERSAbus  with  a  comprehensive 

line  of  board-level  products,  called  the  VERSAmodule®  family.  The 
heart  of  the  family  is  the  VERSAmodule  Monoboard  Microcomputer 

(VMM),  shown  in  Fig.  9-3.  The  VMM  uses  an  8-MHz  68000  micro- 
processor and  supports  the  full  16M-byte  address  space.  It  has  eight 

sockets,  which  will  accept  up  to  64K  bytes  of  ROM  or  PROM,  and 
can  be  ordered  with  either  32K  bytes  or  128K  bytes  of  dynamic 

R/W  memory  on  board.  The  VMM  also  contains  three  16-bit  timer/ 
counters,  two  serial  ports  and  four  parallel  I/O  ports  (each  with 
eight  data  lines  and  two  handshake  lines).  Like  the  MEX68KDM 
Design  Module,  the  VMM  is  a  cost-effective  tool,  but  unlike  the 
Design  Module,  the  VMM  can  also  be  easily  incorporated  into  end 
products. 

THE  VME  BUS 

In  1981,  Motorola,  Mostek,  Signetics/ Phillips  and  Thomson- 
EFCIS  of  France  announced  support  of  a  bus  intended  for  mid-  to 

®  VERSAbus  and  VERSAmodule  are  trademarks  of  Motorola,  Inc. 
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high-end  industrial  and  EDP  applications.  This  VME  bus^  is  a  sub- 
set of  the  VERSAbus  that  includes  some  features  from  the  lEEE- 

P896  bus  subcommittee  recommendations.  The  VME  bus  is  designed 

around  the  widely-available  DIN  Eurocard  standard,  and  provides 
a  24-bit  address  bus  and  a  16-bit  data  bus  on  a  primary  96-pin  con- 

nector. Both  widths  can  be  extended  to  32  bits  on  an  optional,  second 

96-pin  connector.  Of  the  192  pins  provided  by  these  two  connectors 
64  pins  are  available  for  user-defined  I/O. 

Being  to  Eurocard  standard,  VME  modules  come  in  two  sizes: 
100  mm  X  160  mm  (single  Eurocard)  and  233.35  mm  X  160  mm 
(double  Eurocard).  Because  of  their  size,  modules  of  this  type 

typically  house  only  one  function  per  board,  closely  matching  hard- 
ware to  an  application. 

OTHER  68000-RELATED  PRODUCTS 

The  acceptance  of  the  68000  is  reflected  in  the  ever-growing  num- 
ber of  companies  other  than  the  chip  manufacturers  who  are  offer- 
ing support  products  for  this  microprocessor.  This  section  presents 

a  sampling  of  the  market,  but  is  not  intended  to  be  an  exhaustive 
survey. 

Software  Development  Systems 

Scientific  Enterprises,  Inc.  (9375  S.W.  Commerce  Circle,  Wilson- 
ville,  OR  97070)  offers  a  development  system  called  the  Software 

Synthesizer®,  which  supports  the  68000.  This  system  centers  around 

two  elements— the  Software  Synthesis  Language  ( SSL )  and  a  16-bit 
Perkin-Elmer  minicomputer  system.  The  minicomputer  system  in- 

cludes 256K  bytes  of  memory,  a  32M-byte  Winchester  disk  system, 
four  video  terminal  work  stations,  and  a  13M-byte  cartridge  tape  f 

drive  for  disk  backup  and  archiving.  SSL  is  a  unique,  high-level 
language  that  allows  a  program  to  be  developed  as  a  set  of  software 
components,  in  much  the  same  way  as  hardware  is  constructed  from 
individual  components. 

TeleSoft  (10639  Roselle  Street;  San  Diego,  CA  92121)  offers  a 

68000-based  desktop  computer  system  whose  primary  aim  is  to  sup- 
port development  of  programs  written  in  the  Ada  language.  This 

system,  called  the  TeleSoft-Workstation®,  consists  of  a  12-inch  CRT 

display  with  detached  keyboard,  a  Q-Bus®  backplane,  256K  bytes 
of  R/W  memory  and  four  serial  I/O  ports.  Various  mass  storage 

devices  are  available,  ranging  from  a  mini-floppy  disk  option  inte- 

®  Software  Synthesizer  is  a  trademark  of  Scientific  Enterprises,  Inc. 

®  TeleSoft-Workstation  is  a  trademark  of  Renaissance  TeleSoftware,  Inc.  Q-Bus 
is  a  trademark  of  Digital  Equipment  Corporation. 
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grated  into  the  Workstation  to  double  density  8-inch  floppy  disks, 
Winchester  hard  disks  and  streaming  tape  drive  units.  TeleSoft 
backs  its  Workstation  with  a  variety  of  software  packages,  including 
a  multitasking  operating  system  and  Pascal  and  Ada  compilers. 

The  68000  was  also  selected  for  the  9826A,  a  desktop  computer 

from  Hewlett-Packard  (1501  Page  Mill  Road;  Palo  Alto,  CA  93304). 
A  software-compatible  successor  to  the  popular  HP  9825A,  the 
9826A  includes  a  7-inch  CRT  that  can  display  25  lines  of  50  charac- 

ters each,  as  well  as  graphics,  with  the  character  set  comprising  256 

5-by-7-dot  characters.  The  9826A  also  includes  64K  bytes  of  R/W 
memory;  a  double-sided,  double-density  5y4-inch  floppy  disk  drive 
with  a  capacity  of  256K  bytes;  a  real-time  clock;  a  built-in  lEEE- 

488  interface;  and  a  ROM-based  high-level  language,  either  HP's 
enhanced  Basic  or  HPL.  A  Pascal  option  is  planned  as  of  this  writing. 

MicroDaSys,  Inc.  (P.O.  Box  36215,  Los  Angeles,  CA  90036)  is 

offering  two  68000-based  systems— a  two-board,  called  the  68K®, 
and  a  Miniframe®  system.  The  two-board  set  consists  of  a  CPU 
board  and  R/W  memory  board.  The  CPU  board  has  two  micro- 

processors (a  Motorola  6809,  to  take  care  of  I/O  operations,  and  a 

68000),  memory  management  circuitry,  eight  RS-232C  serial  I/O 
ports,  eight  parallel  ports,  and  a  floppy-disk  interface.  The  memory 
board  has  128K  bytes  of  R/W  memory  and  space  for  an  additional 

512K  (using  4116s)  or  2M  (using  6664s)  bytes.  The  Miniframe  sys- 
tem comes  in  a  rack-mountable  enclosure,  and  includes  the  two- 

board  set  (but  with  256K  bytes  of  read/ write  memory),  plus  power 

supplies,  a  fan,  RS-323  connectors,  and  two  Shugart  single/ double- 
density  eight-inch  floppy-disk  drives. 

Several  companies  are  also  offering  a  "best-of-two-worlds"  ap- 
proach, with  68000-based  products  that  interfere  to  Multibus®  com- 
patible boards.  These  products  include: 

•  The  CTS-300  microcomputer  from  Codata  Systems  Corp.;  285 
N.  Wolfe  Road;  Sunnyvale,  CA  94086.  The  CTS-300  processes 
full  ANSI  standard  Fortran  77  and  Pascal  software  under  its 

UNIX-like  MERLIN  operating  system. 
•  The  CMS-16  microcomputer  series  from  CM  Technologies  Inc.; 

525  University  Avenue;  Palo  Alto,  CA  94301.  One  of  the  micro- 
computers in  this  series,  the  CMS-16/ DSl,  links  to  PDP-11  mini- 

computers. 

•  The  OB68K1  single-board  computer  from  Omnibyte  Corp.;  245 
W.  Roosevelt  Road;  West  Chicago,  IL  60185. 

•  The  FT-68M  single-board  computer  from  Forward  Technology 
Inc.;  2595  Martin  Ave.;  Santa  Clara,  CA  95050. 

®  68K  and  Miniframe  are  trademarks  of  MicroDaSys,  Inc. 
®  Multibus  is  a  trademark  of  Intel  Corporation. 
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Along  similar  lines,  the  ERG68-696  board  from  the  Empirical  Re- 
search Group  (P.O.  Box  1176;  Milton,  WA  98354)  has  an  S-100  bus 

interface.  Z80  emulation  software,  which  will  allow  users  to  run 

CP/M  on  the  ERG68-696,  should  be  available  by  the  time  this  is 
printed. 

Manufacturers  of  the  so-called  "universal"  microprocessor  devel- 
opment systems  are  also  offering  68000  emulation  options.  These  in- 

clude The  Boston  Systems  OflRce,  Inc.,  American  Microsystems,  Inc., 

GenRad/Futuredata,  Hewlett-Packard,  Tektronix,  Inc.,  Emulogic, 
Inc.,  and  Phillips  Industries. 

68000-Based  Graphics  Systems 

The  versatile  processing  features  and  16M-byte  addressing  range 
of  the  68000  make  it  an  ideal  microprocessor  for  handling  large  data- 

198 

Courtesy  Chromatics,  Inc 
Fig.  9-4.  The  Chromatics  CGC  7900  Color  Graphics  Computer. 



base  applications,  such  as  the  two  graphics  systems  we  will  describe 

here.  Both  of  these  systems  are  well  suited  for  use  in  designing  cir- 

cuit boards  and  very  large-scale  integrated  circuits,  schematics  and 
mapping,  architectural  engineering,  and  business  graphics. 

The  first  of  these  systems  is  the  CGC  7900  Color  Graphics  Com- 

puter, offered  by  Chromatics,  Inc.  (2558  Mountain  Industrial  Boule- 
vard, Tucker,  GA  30084).  The  CGC  7900  (Fig.  9-4)  includes  a  19- 

inch  color  CRT  display  with  an  on-screen  resolution  of  1024  by  768 
pixels  (picture  elements),  1024  by  1024  within-the-graphics  mem- 

ory, floppy-disk  drives,  and  128K  bytes  of  read/ write  memory.  Most 
of  this  memory  is  available  to  the  user.  The  CGC  7900  features  high- 

speed image  generation,  an  eight-color  overlay  mode,  and  a  "palette" 
of  16  million  colors,  of  which  up  to  256  different  colors  can  be  dis- 

played simultaneously.  The  151-key  keyboard  includes  34  keys  dedi- 
cated to  graphics  functions,  24  program  function  keys,  and  a  cursor 

pad.  Options  include  a  dual-screen  buffer,  which  allows  rapid  alter- 
nation between  two  different  displays,  a  lOM-byte  Winchester  disk 

drive,  a  real-time  clock,  joystick,  and  light  pen. 
Equally  impressive  is  the  Graphics  System  8000  from  Lexidata 

Corp.  (755  Middlesex  Turnpike,  Billerica,  MA  01865).  The  8000 
contains  two  separate  microprocessors.  A  68000  controls  all  input 
devices  (keyboard,  data  pad,  digitizers,  trackball,  and  joystick)  and 

manages  the  graphics  data  base.  A  Lexidata  12-bit  bipolar  bit-slice 
display  processor  controls  the  raster  frame  buffer.  With  the  system, 

Lexidata  offers  a  19-inch  monitor  (color  or  black-and-white)  with 
a  resolution  of  either  640  by  512  pixels  or  1280  by  1024  pixels.  In 

color  applications,  the  640-by-512-pixel  monitor  can  display  1024 
different  colors  simultaneously  from  a  palette  of  16.7  million  possi- 

ble colors;  16  colors  from  a  4096-color  palette  can  be  displayed  si- 
multaneously on  a  1280-by-1024-pixel  monitor.  The  8000  operates 

v^'ith  a  wide  range  of  popular  16-  or  32-bit  minicomputers  via  either 
DMA  parallel  fhterfaces  or  an  optional  RS-232  link. 

68000  SOFTWARE  SUPPORT 

The  development  hardware  we  have  just  examined  indicates  the 

acceptance  and  recognition  the  68000  is  receiving  in  the  market- 
place. Another  measure  of  this  acceptance  is  reflected  in  the  soft- 

ware support  for  the  68000.  As  with  hardware  support,  software  sup- 
port remained  at  a  low  level  until  Motorola  made  the  chips  available, 

but  has  been  increasing  rapidly  ever  since. 

Operating  Systems 

The  highest  level  of  system  software  support  is  represented  by  the 

operating  systems  that  are  available  for  use  with  the  68000.  An  oper- 
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Table  9-2.  Application  and  Utility  Software  for  the  68000 
Company Product 

Alcyon  Corp. 
8474  Commerce  Avenue 
San  Diego,  CA  92121 

C  language  compiler  to  run  on 
PDP-11  under  UNIX  operating 

system. 

Control  Systems,  Inc. 
1317  Central  Avenue 
Kansas  City,  KS  66102 

UCSD  Version  2.0  Pascal  compiler- 
interpreter. 

Creative  Solutions,  Inc. 
4801  Randolph  Road 
Rockville,  MD  20852 

Forth  language  package  to  run  on 
Motorola  MEX68KDM  Design 
Module. 

Genrad  /  Futuredata 
5730  Buckingham  Parkway 
Culver  City,  CA  90230 

Pascal  cross  compiler. 

Hemenway  Associates,  Inc. 
101  Tremont  Street,  Suite  208 
Boston,  MA  02108 

Floating-point  math  package, 
Pascal/1  compiler. 

Telesoft,  Inc. 
10639  Roselle  Street 
San  Diego,  CA  92121 

Pascal  compiler,  translator, 
Ada  compiler. 

Ruben  Engineering  Corp. 
60  Aberdeen  Avenue 
Cambridge,  MA  02138 

Cross  assembler  and  linker  to  run 

on  PDP-11. 

System-Kontakt,  Inc. 
6  Preston  Court 
Bedford,  MA  01730 

Cross  assembler,  Pascal  compiler 
to  run  on  PDP-11. 

Whitesmith's  Ltd. 
P.O.  Box  1132 
Ansonia  Station, 
New  York,  NY  10023 

C  and  Pascal  compilers  to  run  under 
UNIX/V32,  VERSAdos  and  other 
operating  systems. 

Xidat,  Inc. 
885  N.  San  Antonio  Road 
Suite  0 
Los  Altos,  CA  94022 

Mainsail  language  software. 

ating  system  (OS)  is  a  group  of  programs  that  control  a  micro- 
computer, and  acts  as  the  mediator  between  the  computer  and  its 

users.  The  operating  system  schedules  the  use  of  the  microcomputer 

and  thereby  reHeves  users  of  the  task  of  writing  code  that  deals  di- 
rectly with  system  hardware  resources  ( disk  drives,  printers,  system 

consoles,  and  so  on). 
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Table  9-1  lists  the  features  of  some  operating  systems  that  can  be 
used  for  developing  68000  software.  It  was  primarily  derived  from 

the  information  given  in  several  excellent  survey  articles/*  Note  that 
nearly  all  of  these  operating  systems  support  Pascal,  which  not  only 
indicates  the  growing  popularity  of  this  language,  but  its  usefulness 
with  the  68000. 

Table  9-1  also  characterizes  the  primary  applications  for  each  of 
the  listed  operating  systems,  in  terms  of  three  categories: 

1.  A  development  operating  system  develops  software  to  be  used 

either  on  another  "target"  microcomputer  or  on  itself.  The  tar- 
get need  not  be  the  same  microprocessor  type  if  the  software 

is  developed  using  cross  assemblers  or  compilers. 

2.  A  process-control  (or  real-time)  operating  system  serves  to  con- 
trol industrial  processes  that  place  timing  constraints  on  the 

responses  of  the  OS.  Interrupts  from  external  processes  signal 
the  microcomputer  system,  and  if  the  system  does  not  respond 
in  a  specified  time,  the  processes  are  impaired  or  seriously 
degraded. 

3.  General-purpose  operating  systems  are  usually  associated  with 
business  or  scientific  applications. 

One  other  classification  that  cuts  across  the  three  just  mentioned 

is  that  of  multiuser  versus  single  user.  A  rmiltiiiser  operating  system 

provides  computational  services  to  many  on-line  users,  by  time  shar- 
ing system  resources  among  users,  in  a  round-robin  fashion.  Con- 

versely, a  single-user  operating  system  allows  a  single  user  to  submit 
jobs  sequentially  for  execution. 

Other  Software  Packages 

Table  9-2  lists  some  available  software  packages  other  than  oper- 

ating systems. ''Note  that  most  of  these  are  also  designed  around  the 
Pascal  language. 
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out Making  Costly  Commitments."  Electronic  Design,  September  13, 
1979.  (Describes  the  Motorola  MEX68KDM  Design  Module.) 

2.  This  series  of  articles  presents  an  excellent  discussion  of  board-level  products 
in  general,  and  the  VERSAmodule  product  line  in  particular: 

(a)  Gorin,  J.  and  Stern,  L.  "The  Case  for  Board-Level  Microcomputers." 
Mini-Micro  Systems,  November  1980,  pp.  81-93. 

(b)   .  "Requirements  for  High-Performance  Microcomputers."  Mini- 
MicroSystems,  March  1981,  pp.  127-136. 

(c)   .  "Making  High-Level  Systems  With  Board-Level  Products." 
Mini-Micro  Systems,  May  1981,  pp.  165-175. 

3.  The  EXORmacs  development  system  is  described  in  these  articles: 

(a)  DeLaune,  J.  and  Scanlon,  T.  "Supporting  the  68000."  Mini-Micro  Sys- 
tems, August  1980,  pp.  95-102. 

(b)  Kister,  J.  and  Robinson,  I.  "Development  System  Supports  Today's  Pro- 
cessors—and Tomorrow's."  Electronics,  January  31,  1980,  pp.  81-88. 

4.  Microcomputer  languages  are  described  in: 

(a)  Cherhn,  M.  "High-Level  Languages  for  Microcomputers."  Mini-Micro 
Systems,  April  1980,  pp.  89-110. 

(b)  Schindler,  M.  "Pick  a  Computer  Language  That  Fits  the  Job."  Elec- 
tronic Design,  July  19,  1980,  pp.  62-72. 

5.  The  following  are  tutorials  on  operating  systems: 

(a)  Anderson,  D.  A.  "Operating  Systems."  Computer,  June  1981,  pp.  69-82. 
(b)  Ripps,  D.  L.  On  Operating  Systems.  Industrial  Programming  Inc.,  100 

Jericho  Quadrangle,  Jericho,  NY  11753,  1980. 
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APPENDIX  A 

ASCII  Character  Set 

(7-Bit  Code) 

MSD 0 1 2 3 4 5 6 7 
LSD 000 001 010 Oil 

100 101 
110 

111 
0 0000 NUL OLE 

SP 
0 @ P P 

1 0001 SOH DCl I 1 A Q a q 
2 0010 STX DC2 2 B R b r 
3 0011 ETX DC3 # 3 C S c s 
4 0100 EOT DC4 s 4 D T d t 
5 0101 

ENQ 
NAK % 5 E U e u 

6 0110 ACK SYN & 6 F V f V 
7 0111 BEL ETB / 7 G w g w 
8 1000 BS CAN ( 8 H X h X 
9 1001 HT EM ) 9 1 Y i y 
A 1010 LP SUB * J z j z 

B 

1011  " 
VT 

ESC + K c k { 
C 1100 FF FS < L \ 1 
D 1101 CR GS M ] m 

I E 1110 SO RS > N A n 
F 1111 

SI 
US / ? 0 0 DEL 
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APPENDIX  B 

Instruction  Execution  Times 

This  appendix  contains  tables  that  Hst  the  instruction  execution 
times  as  a  count  of  the  number  of  external  clock  (CLK)  periods. 
To  find  the  actual  execution  time  for  a  particular  instruction,  the 
count  in  the  table  must  be  multiplied  by  the  clock  period  of  your 

microprocessor.  For  example,  if  you  are  using  an  8-MHz  68000,  mul- 
tiply the  count  by  125  ns. 

The  timing  data  in  these  tables  also  includes  the  number  of  bus 

read  and  write  cycles  for  each  instruction.  This  information  is  en- 
closed in  parentheses  following  the  execution  period  counts.  It  is 

given  in  the  form  (R/W),  where  "R"  is  the  number  of  read  cycles 
and  "W"  is  the  number  of  write  cycles. 

All  tables  in  this  appendix  are  reproduced  with  the  permission  of 
Motorola,  Inc. 
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Table  B-5.  Immediate  Instruction  Clock  Periods 

Instruction Size 
op  #,  Dn op  #,  An op  #,  M 

ADDI Byte,  Word 8(2/0) 
12(2/1)  + 

Long 
16(3/0) 

20(3/2)  + 

ADDQ Byte,  Word 4(1/0) 

8(1/0)* 

8(1/1)+ 

Long 
8(1/0) 8(1/0) 

12(1/2)+ 

ANDI Byte,  Word 8(2/0) 
12(2/1)  + 

Long 
16(3/0) — 

20(3/1)  + 

CMPI Byte,  Word 8(2/0) 8(2/0) 
8(2/0)+ 

Long 
14(3/0) 14(3/0) 12(3/0)  + 

EORI Byte,  Word 8(2/0) 
12(2/1)  + 

Long 
16(3/0) 20(3/2)+ 

MOVEQ 
Long 

4(1/0) 

ORI Byte,  Word 8(2/0) 
12(2/1)  + 

Long 16(3/0) 20(3/2)+ 

SUBI Byte,  Word 8(2/0) 
12(2/1)+ 

Long 
16(3/0) 

20(3/2)  + 

SUBQ Byte,  Word 4(1/0) 

8(1/0)* 

8(1/1)+ 
Long 

8(1/0) 8(1/0) 
12(1/2)  + 

+Add  effective  address  calculation  time 
'Word  only. 
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Table  B-9.  Branch  and  Trap  Instruction  Clock  Periods 

Instruction Displacement 
Trap  or  Branch 

Taken 
Trap  or  Branch 

Not  Taken 

Bcc Byte 10(2/0) 8(1/0) 

Word 10(2/0) 
12(2/0) 

BRA Byte 10(2/0) - 

Word 10(2/0) — 

BSR Byte 
18(2/2) — 

Word 18(2/2) — 

DBcc 
cc  true — 

12(2/0) 

cc  false 10(2/0) 
14(3/0) 

CHK 

43(6/3)+* 
8(1/0)+ 

TRAP 34(4/3) 

TRAPV 34(5/3) 
4(1/0) 

+  Add  effective  address  calculation  time. 
*  Indicates  maximum  value. 
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Table  B-11.  Muttiprecision  Instruction  Clock  Periods 

Instruction Size 
op  Dn,  Dn op  M,  M 

ADDX Byte,  Word 
4(1/0) 18(3/1) 

Long 
8(1/0) 30(5/2) 

CMPM Byte,  Word 
- 12(3/0) 

Long 
- 20(5/0) 

SUBX Byte,  Word 
4(1/0) 18(3/1) 

Long 
8(1/0) 30(5/2) 

ABCD Byte 6(1/0) 18(3/1) 

SBCD Byte 6(1/0) 18(3/1) 
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Table  B-13.  Exception  Processing  Clock  Periods 

Exception Periods 

Address  Error 
50(4/7) 

Bus  Error 50(4/7) 

Interrupt 

44(5/3)* 
Illegal  Instruction 34(4/3) 

Privileged  Instruction 34(4/3) 

Trace 34(4/3) 

*  The  interrupt  acknowledge  bus  cycle  is  assunned  to  take  four  external  clock  periods. 
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Conversion  Tables 
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APPENDIX  D 

Summary  of  The  68000 

Instruction  Set 

This  appendix  contains  three  summary  tables.  Table  D-1,  Elective 
Addressing  Mode  Categories,  Hsts  the  addressing  modes  of  the  68000 

and  categorizes  each  as  a  data,  memory,  control,  or  alterable  address- 
ing mode.  Table  D-1  also  lists  the  assembler  syntax  for  each  mode. 

This  table  appeared  in  Chapter  3,  as  Table  3-4,  and  is  reproduced 
here  for  quick  reference. 

Table  D-2,  68000  Instruction  Set,  In  Alpabetical  Order,  is  a  com- 
pilation of  the  instruction  information  that  was  tabulated  in  Chap- 

ter 3,  but  here  the  entire  instruction  set  is  presented  alphabetically, 

for  your  convenience.  Incidentally,  a  similar  reference  table  is  avail- 
able as  a  large  wall  chart  from 

MICRO  PROGRAMS,  INC. 

251  Jackson  Avenue 
Syossett,  NY  11791 

If  you  plan  to  do  much  assembly-language  programming  for  the 
68000,  this  wall  chart  is  highly  recommended. 

Table  D-3,  Conditional  Tests,  is  a  summary  of  the  conditions  that 

are  testable  by  the  Bcc,  DBcc,  and  Sec  instructions.  The  Bcc  instruc- 
tions cannot  test  the  always  true  (T)  and  never  true  (F)  conditions, 

but  all  16  of  the  conditions  are  testable  by  the  DBcc  and  Sec  instruc- 
tions. This  table  appeared  in  Chapter  3  as  Table  3-15. 
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Table  D-3.  Conditional  Tests 

Suffix  "cc" 
Condition True  if 

EQ 
Equal  to. Z  =  1 

NE Not  equal  to. z  =  o 
Ml Minus. N  =  1 
PL Plus. N  =0 
*GT 

Greater  than. 
ZA(NVV)  =  0 

*LT 
Less  than. 

NVV  =  1 
*GE 

Greater  than  or  equal  to. NVV  =  0 
*LE 

Less  than  or  equal  to. 
ZV(N  VV)=  1 HI Higher  than. CAZ  =  0 

LS Lower  than  or  same  as. 
CVZ=  1 CS Carry  set. C  =  1 

Carrv  p|p;ir C  =  0 

—  \J 

Overflow. V  =  1 
*vc 

No  overflow. v  =  o 
T Always  true. 
F Always  false. 

*Two's-complement  arithmetic 

Symbols:  A  =  Logical  AND 
V  =  Logical  Inclusive-OR 
V=  Logical  Exclusive-OR 
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Absolute  addressing,  9,  50-52 
Absolute  origin  (ORG)  directive,  32 
Add  instructions 

BCD,  87-90 
binary,  70-74 

Address  bus,  147-148 
Addressing  modes,  43-56 

absolute,  50-52 
address  register  indirect,  45-46 

with  displacement,  48-49 
with  index,  49-50 
with  postincrement,  46-47 
with  predecrement,  47-48 

categories,  56-59,  61 
alterable,  57,  59 
control,  57,  59 
data,  56,  59 
memory,  56,  59 

immediate,  54-55 
implied,  56 
program  counter  relative,  52-54 

with  displacement,  52-53 
with  index,  53-54 

quick  immediate,  55-56 
register  direct,  45 
that  sign-extend,  56 

Address  registers,  16-18 
Address  Strobe  (AS)  signal,  148 
Algebraic  operators,  37 
AND  instruction,  80 
ANDI  instruction,  80 
ASCII  character  set,  205 
Assembler  (s ) 

conditional  assembly,  38 
cross,  28-29 
directives,  31-36 

assembly  control,  32,  34 
memory  allocation,  35-36 
symbol  definition,  34-35 

line  listing  format,  41 
macro (s),  28-29,  38-41 
resident,  28 
statements,  29 

Assembly-language  instructions,  29-31 
comment  field,  31 
label  field,  29-30 

Index 

Assembly-language  instructions— cont line  number  field,  29 
mnemonic  field,  30-31 
operand  field,  30-31 

Asynchronous  control  signals,  151-153 

Bcc  instructions,  90-94 
Binary-coded-decimal  (BCD)  instructions, 

87-90 
Bit  manipulation  instructions,  85-87 
Branch  always  (BRA)  instruction,  99 
Branch  to  subroutine  (  BSR  )  instruction,  99 
Bubble  sort,  128-132 Bus 

address,  15 
arbitration  signals,  155-157 data,  15 
error  exception,  159-160,  170-171, 

179-180 
grant  (  BG  )  signal,  157 
grant  acknowledge  (BGACK)  signal,  157 
request  (BR)  signal,  155-157 
VME,  195-196 

Carry  (C)  bit,  20 
Check  register  against  bounds   (CHK)  in- struction, 107,  168 
Clear  (CLR)  instruction,  76-77 
Clock  (CLK)  input,  147 
Comment  field,  31 
Compare  instructions,  77-78 
Compare-with-zero  (TST)  instruction,  78 
Conditional  assembly,  38 
Condition-code  register,  19-20 
Constants,  36-37 
Cross  assembler,  28-29 

Data  bus,  147-148 
Data  movement  instructions,  62-70 

LEA,  65-67 
MOVE,  62-64 use  with  stacks,  64 
MOVEA,  65-68 
MOVEM,  64-65 
PEA,  67-68 

Data  registers,  16-18 
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Data  size  code,  30 
Data  strobe  signals,  151  
Data  transfer  asknowledge  (DTACK)  signal, 

151-153 
DBcc  instructions,  90,  94-96 
Debugging  aids,  14 
Define  constant  (DC)  directive,  35-36 
Define  storage  ( DS )  directive,  35-36 
Development  systems 

EXORciser,  28,  193 
EXORmacs,  28,  194-195 
software,  196-198 

Directives,  assembler,  31-36 
assembly  control,  32,  34 

END,  34 
ORG,  32 
RORG,  32 

memory  allocation,  35-36 
symbol  definition,  34-35 

Divide  by  zero  exception,  169 
Divide  instructions,  75-76,  168-169 
Division  routines,  117-120 

with  overflow,  118-120 
word  averaging,  117 

Double  bus  fault,  168,  171 

Enable  (E)  signal,  153,  155 
End  of  source  program  ( END )  directive,  34 
EORI  instruction,  80 
EOR  instruction,  80 
Equate  symbol  value  (EQU)  directive,  34 
Exceptions,  163-180 

definition  of,  163 
externally  generated,  175-176,  179-180 

bus  error,  179-180 
interrupts,  176,  179 
reset,  175-176 

how  68000  processes,  164-166 
internally  generated,  168-175 

illegal  address,  170-172 
illegal  instruction,  172 
instructions  that  can  cause,  168-169 
privilege  violations,  169-170 
unimplemented  instructions,  173-175 

multiple,  166-168 
Exchange  (EXG)  instruction,  70 
Expressions,  in  operand  field,  36-37 

algebraic  operators,  37 
constants,  36-37 
order  of  evaluation,  37 
symbols,  36 

Extend  (X)  bit,  20 
Extend  (EXT)  instruction,  76 
Extension  words,  42-43 
Exchange  (EXG)  instruction,  70 

Floating-point  instructions,  173-175 
Function  code  signals,  149-150 

General-purpose  registers,  16-19 
Graphics  systems,  68000-based,  198-199 

Halt  (HALT)  signal,  157-160 
Hexidecimal /decimal  conversion  tables,  222- 223 

Illegal  address  exception,  170-172 
Illegal  instruction  exception,  172 

Immediate  data  addressing,  54-56 
immediate  mode,  54-55 
quick  immediate  mode,  55-56 

Implied  addressing,  56 
Indirect  addressing 

with  displacement,  48-49 
with  index,  49-50 
with  postincrement,  46-47 
with  predecrement,  47-48 

Instructions,  assembly-language,  29-31 
comment  field,  31 
label  field,  29-30 line  number  field,  29 
mnemonic  field,  30-31 
operand  field,  30-31 

Instruction  types,  61-107 
binary-coded-decimal  (BCD),  87-90 
bit  manipulation,  85-87 
data  movement,  62-70 

LEA,  65-67 
MOVE,  62-64 
MOVEA,  65-68 
MOVEM,  64-65 
PEA,  67-68 

integer  arithmetic,  70-80 
add  instructions,  70-74 
clear  (CLR)  instruction,  76-77 
compare  instructions,  77-78 
compare- with-zero  (TST)  instruction, 78 
multiply  and  divide  instructions,  75-76 
negate  instructions,  75 
sign  extend  (EXT)  instruction,  76 
subtract  instructions,  74-75 
test  and  set  an  operand  (TAS)  instruc- 

tion, 78-80 
link  and  unlink,  101-103 
logical,  80-81 
program  control,  90-101 

conditional,  90-99 
unconditional  and  return,  99-101 

shift  and  rotate,  82-85 
system  control,  103-107 

privileged,  103-105 
trap-generating,  105-107 

Interfacing,  181-190 
6800  support  chips,  183-184 
68000  support  chips,  181-183 

Internal  registers,  16-21 
general-purpose,  16-19 Interrupt 
control  inputs,  160 
mask  in  status  register,  21 
processing,  160,  176-179 structure,  15 

Jump  (JMP)  instruction,  99 
Jump  tables,  145 
Jump  to  subroutine   (JSR)   instruction,  99- 101 

Label  field,  29-30 
LEA  instruction,  65-67 
Line  listing  format,  41 
Line  number  field,  29 
LINK  instruction,  101-103 
Lists,  123-138 

ordered,  132-138 

235 



Lists— cont 
ordered 

adding  an  entry  to,  136-137 
deleting  an  element  from,  137-138 
searching,  132-136 

unordered,  123-132 
adding  an  entry  to,  124-125 
deleting  an  element  from,  125-126 
finding  minimum  and  maximum  values 

in,  126-128 
searching,  123-128 
sorting,  128-132 

Location  counter,  32 
Logical  instructions,  80-81 

AND,  80 
ANDL  80 
EOR,  80 
EORI,  80 
NOT,  80 
OR,  80 
ORI,  80 

Look-up  tables,  138-145 
to  perform  code  conversions,  144 
to  replace  equations,  139-144 

Macro  assembler,  28-29 
Macros,  38-41 

advantages  of,  39 
definition,  39 

macro  body,  39 
macro  header,  39 
macro  terminator,  39 

disadvantages  of,  39 
Mathematical  routines,  109-122 

division,  117-120 
with  overflow,  118-120 
word-averaging  rovitine,  117 

multiplication,  109-117 
signed  32-bit  X   32-bit  multiply  sub- 

routine, 113-117 
unsigned  32  bit  X  32-bit  multiply  sub- 

routine, 110-113 
square  root,  120-122 

Memory  allocation,  15 
directives,  35-36 

define  constant  (DC),  35-36 
define  storage  (DS),  35-36 

Memory-mapped  I/O,  15 
Mnemonic  field,  30-31 
Motorola  system  support  products,  193-196 
MOVEA  instruction,  65-68 
MOVE  instruction,  62-64 

use  with  stacks,  64 
MOVEM  instruction,  64-65 
MOVEP  instruction,  68-69 
MOVEQ  instruction,  69 
Multiplication,  109-117 
Multiply  instructions,  75-76 

Negate  instructions 
BCD,  90 
binary,  75 

Negative  (N)  bit,  20 
NOP  instruction,  70 
NOT  instruction,  80 

Object  program,  28 

Operand  field,  30-31 
expressions  in,  36-37 
-  algebraic  operators,  37 
constants,  36-37 order  of  evaluation,  37 
symbols,  36 

Operating  systems,  199-203 Op- word,  42 
Ordered  lists 

adding  an  entry  to,  136-137 
deleting  an  element  from,  137-138 
searching,  132-136 ORI  instruction,  80 

OR  instruction,  80 
ORG  directive,  32 
Overflow  (V)  bit,  20 

PEA  instruction,  67-68 
Peripheral  interface  adapter  (  PIA  ) 

initializing,  184,  187 
interface  to  transfer  16-bit  data,  185-190 
registers,  184-185,  187,  189 

Privilege  states,  14,  162-163 
how  to  change,  163 

Processing  states,  161-162 
Program  control  instructions,  90-101 

conditional,  90-99 
Bcc,  90-94 
DBcc,  90,  94-96 Sec,  90,  97 

unconditional  and  return,  99-101 
branch  always  (BRA),  99 
branch  to  sui)routine  (BSR),  99 
jump  (JMP),  99 
jump  to  subroutine  (JSR),  99-101 return  and  restore  condition  codes 

(RTR),  101 
return  from  subroutine  (RTS),  99-101 

Program  counter,  19 
relative  addressing,  52-54 

with  displacement,  52-53 
with  index,  53-54 

Read/write  control  signal,  151 Register  (s ) 
direct  addressing,  45 
internal,  16-21 

general-purpose,  16-19 
status,  19-21 Relative  origin  (RORG)  directive,  32 

Reset  external  devices  ( RESET )  instruction, 
104 

Reset  exception,  175-176 
Reset  signal,  175-176 
Resident  assembler,  28 
Return  and  restore  condition  codes   ( RTR ) 

instruction,  101 
Return   from  exception    ( RTE )  instruction, 104 

Return  from  subroutine   ( RTS )  instruction. 99-101 
RORG  directive,  32,  34 
Rotate  instructions,  82-85 

Sec  instructions,  90,  97 
Searching 

ordered  lists,  132-136 
imordered  lists,  123-128 
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Set  symbol  value  (SET)  directive,  34-35 
Shift  instructions,  82-85 
Signed  32-bit  X  32-bit  multiply  subroutine, 113-117 
Si^n  extend  (EXT)  instruction,  76 68000 

address  bus,  15,  147-148 
asynchronous  control  signals,  151-153 
bus  arbitration  signals,  155-157 
data  bus,  15,  147-148 
debugging  aids,  14 
design  background,  21-26 
exceptions,  163-168 

definition  of,  163 
externally  generated,  175-176,  179-180 
how  68000  processes,  164-166 
internally  generated,  168-175 
multiple,  166-168 

function  code  signals,  149-150 
instruction  set,  42-108 

addressing  modes,  43-56 
absolute,  50-52 
address  register  indirect,  45-46 
categories,  56-59,  61 
immediate,  54-55 
implied,  56 
indirect  with  displacement,  48-49 
indirect  with  index,  49-50 

indirect  with  postincrement,  46-47 
indirect  wtih  predecrement,  47-48 
program   counter   relative   with  dis- 

placement, 52-53 
program  counter  relative  with  index, 

53-54 
quick  immediate,  55-56 
register  direct,  45 
that  sign-extend,  56 

format  in  memory,  42-43 
instruction  types,  61-107 

binary-coded-decimal  (BCD),  87-90 
bit  manipulation,  85-87 
data  movement,  62-70 
integer  arithmetic,  70-80 
link  and  unlink,  101-103 
logical,  80-81 
program  control,  90-101 
shift  and  rebate,  82-85 
system  control,  103-107 

interfacing  to  peripheral  chips,  181-190 
internal  registers,  16-21 
interrupt 

control  lines,  160 
structure,  15 

memory  allocation,  15 
peripheral  chips,  181-183 
pinouts,  148 
privilege  states,  141,  162-163 

how  to  change,  163 
processing  states,  161-162 
program  counter,  19 
software  features,  13-14 
sources  for,  16 
status  register,  19-21 
synchronous  control  signals,  153-155 
system  control  signals,  157-160 
system  development  support,  192-203 

Software  support  for  68000,  199-203 
Sorting,  128-132 
Source  program,  28 
Spurious  interrupt  exception,  180 
Square-root  subroutine,  120-122 
Stack  pointers,  19,  47-48 Stand-alone  comments,  31 
Status  register,  19-21 
STOP  instruction,  104-105 
Subroutine  instructions,  99-101 
Subtract  instructions 

HC;D,  87-90 
binary,  74-75 

Supervisor  state,  162-163 
Supervisory  (S)  bit,  21 
SWAP  instruction,  69-70 
S>  mbol  definition  directives,  34-35 

e(iuate  symbol  value  (EQU),  34 
set  symbol  value  (SET),  34-35 

Synchronous  control  signals,  153-155 
System  byte,  status  register,  19-21 
S>stem  control  instructions,  103-107 

privileged,  103-105 reset  external  devices  (RESET),  104 
return  from  exception  (RTE),  104 
stop  program  execution  (STOP),  104- 105 

trap-generating,  105-107 
check  register  against  bounds  (CHK), 

107 
TRAP,  105-107 
trap  on  overflow  (TRAPV),  107 

TAS  instruction,  78-80 
Test  and  set  an  operand  (TAS)  instruction, 

78-80 
Trace  mode,  169-170 
Trace  mode  (T)  bit,  21 
TRAP  instruction,  105-107,  168 
Trap  on  overflow  (TRAPV)  instruction,  107, 168 
TST  instruction,  78 

Unimplemented  instruction  exception,  173- 175 

Unlink  (  UNLK  )  instruction,  101-103 
Unordered  lists,  123-132 

adding  an  entry  to,  124-125 
deleting  an  element  from,  125-126 
finding  minimum  and  maximum  values  in, 

126-128 
searching,  123-128 
sorting,  128-132 

Unsigned  32-bit  X  32-bit  multiply  subrou- 
tine, 110-113 

User  state,  162-163 

Valid  memory  address  ( VMA )  signal,  155 
Valid  peripheral  address  (VPA)  signal,  155 
VME  Bus,  195-196 

Word-averaging  routine,  117 

Zero  (Z)  bit,  20 
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I 

The  Blacksburg  Group 

According  to  Business  Week  magazine  (Technology  July  6,  1976)  large  scale  integrated  circuits 

or  LSI  "chips"  are  creating  a  second  industrial  revolution  that  will  quickly  involve  us  all.  The 
speed  of  the  developments  in  this  area  is  breathtaking  and  it  becomes  more  and  more  difficult  to 
keep  up  with  the  rapid  advances  that  are  being  made.  It  is  also  becoming  difficult  for  newcomers 

to  "get  on  board." 

It  has  been  our  objective,  as  The  Blacksburg  Group,  to  develop  timely  and  effective  educational 
materials  that  will  permit  students,  engineers,  scientists,  technicians  and  others  to  quickly  learn 
how  to  use  new  technologies  and  electronic  techniques.  We  continue  to  do  this  through  several 
means,  textbooks,  short  courses,  seminars  and  through  the  development  of  special  electronic  de- 

vices and  training  aids. 

Our  group  members  make  their  home  in  Blacksburg,  found  in  the  Appalachian  Mountains  of 

southwestern  Virginia.  While  we  didn't  actively  start  our  group  collaboration  until  the  Spring 
jof  1974,  members  of  our  group  have  been  involved  in  digital  electronics,  minicomputers  and 
I  microcomputers  for  some  time. 

Some  of  our  past  experiences  and  on-going  efforts  include  the  following: 

-The  design  and  development  of  what  is  considered  to  be  the  first  popular  hobbyist  computer. 
The  Mark-B  was  featured  in  Radio-Electronics  magazine  in  1974.  We  have  also  designed  several 
8080-based  computers,  including  the  MMD-1  system.  Our  most  recent  computer  is  an  8085-based 
computer  for  educational  use,  and  for  use  in  small  controllers. 

—The  Blacksburg  Continuing  Education  Series^**  covers  subjects  ranging  from  basic  electronics 
I  through  microcomputers,  operational  amplifiers,  and  active  filters.  Test  experiments  and  examples 
have  been  provided  in  each  book.  We  are  strong  believers  in  the  use  of  detailed  experiments  and 
examples  to  reinforce  basic  concepts.  This  series  originally  started  as  our  Bugbook  series  and  many 
titles  are  now  being  translated  into  Chinese,  Japanese,  German  and  Italian. 

-We  have  pioneered  4he  use  of  small,  self-contained  computers  in  hands-on  courses  for  micro- 
» computer  users.  Many  of  our  designs  have  evolved  into  commercial  products  that  are  marketed 
by  E&L  Instruments  and  PACCOM,  and  are  available  from  Group  Technology,  Ltd.,  Check,  VA 
24072. 

-Our  short  courses  and  seminar  programs  have  been  presented  throughout  the  world.  Programs 
are  offered  by  The  Blacksburg  Group,  and  by  the  Virginia  Polytechnic  Institute  Extension  Divi- 

sion. Each  series  of  courses  provides  hands-on  experience  with  real  computers  and  electronic 
devices.  Courses  and  seminars  are  provided  on  a  regular  basis,  and  are  also  provided  for  groups, 
companies  and  schools  at  a  site  of  their  choosing.  We  are  strong  believers  in  practical  labora- 
fory  exercises,  so  much  time  is  spent  working  with  electronic  equipment,  computers  and  circuits. 

Additional  information  may  be  obtained  from  Dr.  Chris  Titus,  the  Blacksburg  Group,  Inc.  (703) 
P51.9030  or  from  Dr.  Linda  LefFel,  Virginia  Tech  Continuing  Education  Center  (703)  961-5241. 

Our  group  members  ore  Mr.  David  G.  Larsen,  who  is  on  the  faculty  of  the  Department  of  Chem- 
stry  at  Virginia  Tech,  and  Drs.  Jon  Titus  and  Chris  Titus  who  work  full-time  with  The  Blacksburg 

i  |3roup,  all  of  Blacksburg,  VA. 



THE  68000: 

PRINCIPLES 

AND  PROGRAMMING 

Despite  the  versatility  of  the  4-  and  8-bit  microprocessors  that  were  intro- 
duced in  the  early  1970s  and  became  the  foundation  of  today's  booming 

personal  computer  market,  there  are  certain  types  of  complex  high-speed 
operations  that  these  devices  cannot  do  \f^e\\  or  cannot  do  at  all.  For  these 
more-sophisticated  applications,  the  newer  16-bit  microprocessors,  such  as  the 
68000,  introduced  by  Motorola,  Inc.,  often  provide  a  viable  alternative  to  the 
more-expensive  minicomputers. 

This  book  starts  with  fundamental  material  and  gradually  introduces  more 
complex  topics  to  help  the  reader  fully  understand  the  68000  in  an  orderly 
manner.  Chapter  1  presents  a  brief  overview  of  the  features  of  the  68000,  then 
discusses  each  feature  in  more  detail.  Included  is  a  background  on  why 
Motorola  chose  to  design  and  implement  the  68000  as  they  did. 

Chapter  2  describes  Motorola's  Cross  Macro  Assembler,  which  many  readers 
will  use  to  develop  assembly-language  programs  for  the  68000. 

Chapter  3  explains  in  detail  the  68000  instruction  set  and  its  14  addressing 
modes.  The  instructions  are  described  in  functional  groups,  rather  than  alpha- 

betically as  is  done  in  some  books. 
Chapter  4  discusses  the  development  of  six  somewhat  difficult  math  prob- 

lems through  the  use  of  the  built-in  multiply  and  divide  instructions  of  the  68000, 
while  Chapter  5  covers  in  detail  10  example  programs  that  concern  list  and 
look-up  table  operations. 

Chapter  6  describes  the  64  pins  of  the  68000  IC  (again  in  functional  groups), 
while  Chapter  7  discusses  the  processing  states,  privilege  states,  and  extensive 
exception  structure  of  the  68000. 

Chapter  8  summarizes  the  support  circuits  that  con  be  interfaced  to  the 
68000,  while  Chapter  9  gives  an  overview  of  the  system  hardware  and 
software  support  products  that  are  currently  available  for  the  68000.  The  book 
concludes  with  four  appendixes  of  reference  information. 

Readers  desiring  to  truly  learn  about  this  highly  complex  but  powerful  micro- 
processor and  how  to  program  it  will  find  this  book  invaluable. 

Leo  J.  Scanlon  is  a  free-lance  writer  and  software  consultant  in 
Inverness,  Florida.  He  received  his  Bachelor  of  Science  degree  in 

Aeronautical  Engineering  from  St.  Louis  University.  He  has  pur- 
sued graduate  studies  in  Electrical  Engineering  and  Computer 

Science  at  the  University  of  California,  in  Berkeley. 

Leo's  experience  includes  technical  writing  in  the  minicomputer  and  micro- 
computer industries,  and  engineering  programming  in  the  aerospace  industry. 

He  also  served  as  technical  publications  manager  with  Computer  Automation, 
Inc.  in  Irvine,  CA  and  Rockwell  International  Corp.  in  Anaheim,  OA. 

Mr.  Scanlon  is  also  the  author  of  6502  Software  Design  and  FORTH  Program- 
ming, and  a  contributing  author  to  16-Bit  Microprocessors,  all  published  by 

Howard  W.  Sams  &  Co.,  Inc. 
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