
THE68000: ^

PRINCIPLES

AND PROGRAMMING

21853

Leo J. Scanlon

CONTINUING EDUCATION SERIES
edited by Larsen. Titus & Titus

The Blacksburg Continuing Education^'^ Series

The Blacksburg Continuing Education Series^" of books provide a Laboratory— or experiment-
oriented approach to electronic topics. Present and forthcoming titles in this series include:

• Advanced 6502 Interfacing
• Analog Instrumentation Fundamentals
• Apple Assembly Language
• Apple Interfacing
• Basic Business Software
• BASIC Programmer's Notebook
• Circiut Design Programs for the Apple II
• Circuit Design Programs for the TRS-80
• Computer Assisted Home Energy Management
• Design of Active Filters, With Experiments
• Design of Op-Amp Circuits, With Experiments
• Design of Phase-Locked Loop Circuits, With Experiments
• Design of Transistor Circuits, With Experiments
• 8080/8085 Software Design (2 Volumes)
• 8085A Cookbook
• Electronic Music Circuits
• 555 Timer Applications Sourcebook, With Experiments
• Guide to CMOS Basics, Circuits, & Experiments
• How to Program and Interface the 6800
• Introduction to Electronic Speech Synthesis
• Introduction to FORTH
• Microcomputer— Analog Converter Software and Hardware Interfacing
• Microcomputer Data-Base Management
• Microcomputer Design and Maintenance
• Microcomputer Interfacing With the 8255 PPI Chip
• NCR Basic Electronics Course, With Experiments
• NCR EDP Concepts Course
• PET Interfacing
• Programming and interfacing the 6502, With Experiments
• Real Time Control With the TRS-80
• 16-Bit Microprocessors
• 6502 Software Design
• 6801, 68701, and 6803 Microcomputer Programming and Interfacing
• The 68000: Principles and Programming
• 6809 Microcomputer Programming & Interfacing, With Experiments
• STD Bus Interfacing
• TEA: An 8080/8085 Co-Resident Editor/Assembler
• TRS-80 Assembly Language Made Simple
• TRS-80 Color Computer Interfacing
• TRS-80 Interfacing (2 Volumes)
• TRS-80 More Than BASIC

In most cases, these books provide both text material and experiments, which permit one to
demonstrate and explore the concepts that are covered in the book. These books remain among
the very few that provide step-by-step instructions concerning how to learn basic electronic con-

cepts, wire actual circuits, test microcomputer interfaces, and program computers based on popu-
lar microprocessor chips. We have found that the books are very useful to the electronic novice

who desires to join the "electronics revolution," with minimum time and effort.

Jonathan A. Titus, Christopher A. Titus, and David G. Larsen

"The Blacksburg Group"

Bug symbol trademark Nanotran, Inc., Blacksburg, VA 24060

The 68000:

Principles and

Programming
by

Leo J. Scan Ion

HouuQrd UU. Sams & Co., Inc.
4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

Copyripiht © 1981 by Leo J. Scanlon

FIRST EDITION
SECOND PRINTING-1983

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission
from the publisher. No patent liability is assumed
with respect to the use of the information contained
herein. While every precaution has been taken in the
preparation of this book, the publisher assumes no
responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-21853-4
Library of Congress Catalog Card Number: 81-51553

Edited by: C. W. Moody
Illustrated by: D. B. Clemens

Printed in the United States of America.

Preface

In the preceding decade we have witnessed an explosive growth
in microprocessor technology. The earliest microprocessors were

calculator-like 4-bit devices, which had limited processing capa-
bility, but made cost-effective controllers for industrial and com-

mercial equipment. With improvements in design and fabrication

techniques, the 4-bit microprocessors were followed by 8-bit de-
vices, which offered increased processing power at prices that made

them viable alternatives for applications at the low end of the tra-
ditional minicomputer market.

By the late 1970s, 4-bit microprocessors were in wide use in a
variety of applications, including microwave ovens, hand-held games,
calculators, scanner radios, and industrial scales. More sophisticated

applications were left to 8-bit microprocessors. Indeed, these devices

proved to be the foundation of today's booming personal computer
market in which inexpensive table-top microcomputers are being
used in the home to provide leisure time activities, balance the
checkbook, and regulate energy usage. Microcomputers are also

being used by small businesses for inventory control and account-
ing, and in a wide range of educational, medical, scientific, and

other functions.

Despite the versatility of the 4- and 8-bit microprocessors, there
are certain types of operations that these devices cannot do well,

or cannot do at all. For instance, even the fastest 8-bit microproces-

sors are an order of magnitude slower than minicomputers in per-

forming "number-crunching" operations on large numbers. This be-
comes crucial in time-critical applications, where a result may be

required in several microseconds, rather than milliseconds. Speed is
also a factor in many multiprocessing and multitasking operations,

where control must be transferred from one processor or task to
another in a very short amount of time. Further, the hmited ad-

dressing range of 8-bit microprocessors (typically 64K bytes) makes
them awkward for manipulating large data bases. If attempted at

all with an 8-bit microprocessor, such applications are likely to re-
quire a lot of expensive hardware or (even more likely, and even

more expensive) software. For these high-speed, sophisticated, and
complex applications, the solution often lies in using a 16-bit micro-

processor, such as the 68000.

Although it was not the first 16-bit microprocessor on the market,
the 68000 is significant for several reasons. Designed by Motorola,

Inc., the 68000 is the first 16-bit microprocessor to have a 32-bit
internal architecture, and the first to provide 16M-byte, nonseg-
mented direct memory addressing. This means that a user can

access the entire 16M-byte memory map without segmentation or

special address registers. Besides these "firsts," the Motorola de-
signers have given the 68000 an impressive array of software and

hardware features. In fact, as you shall see in this book, the 68000

is not "just another processor," but rather a minicomputer on a chip.
This book has nine chapters. Chapter 1 gives an overview of the

68000 microprocessor, including descriptions of the various registers

contained within the integrated circuit. Also included is some back-
ground material on the design of the 68000, to give you an apprecia-

tion of why Motorola implemented this microprocessor as they did.
Chapter 2 describes the Motorola 68000 Cross Macro Assembler,

an assembler that many readers will use to develop assembly-lan-
guage programs for the 68000.

Chapter 3 presents descriptions of the addressing modes and in-
struction set for the 68000. In this book, instructions are described

in functional groups (add with subtract, multiply with divide, and

so on), rather than alphabetically, to help you understand the in-

structions and how they "fit together." Chapter 3 contains a few
short example programs, too, but more complex programming exam-

ples are saved for Chapters 4 and 5, where routines for math, list,

and look-up table operations are given.
Chapter 6 presents descriptions of each of the pins on the 68000

integrated circuit (again, in functional groups), to give you some
background in the hardware characteristics of this processor and to

define signals which are mentioned in subsequent chapters. Chap-
ter 7 describes the processing states, privilege states, and extensive

"exception" structure of the 68000. Then, Chapter 8 presents a brief
summary of the support circuits that can be interfaced to the 68000,
as well as the fundamentals of programming I/O operations with
attached peripheral devices. The final chapter. Chapter 9, surveys

the system hardware and software support products that are cur-

rently available for the 68000. This chapter is followed by four ap-
pendixes, which provide reference information.

The arrangement of this book, starting with very fundamental
material and gradually introducing more complex topics, is intended
to increase your understanding of the 68000 microprocessor in an
orderly manner. You are expected to have just a basic understanding
of the rudiments of computer architecture (binary and hexadecimal
numbering systems, Boolean logic, etc.) and familiarity with some
type of assembly language.

The author is indebted to many dedicated people at Motorola,
Inc., and Rockwell International Corporation for valuable assistance
during the preparation of this book.

Leo J. ScANLON

!

[Digitized by the Internet Archive

in 2014

https://archive.org/details/68000principlesa00scan

Contents

List of Program Examples .

CHAPTER 1

An Introduction to the 68000 Microprocessor

Overview of the 68000— Internal Registers— Background on the De-
sign of the 68000— References— Bibhography

CHAPTER 2

Cross Macro Assembler

AssemWer Statements — Assembly-Language Instructions — Stand-
Alone Comments— Assembler Directives— Expressions in the Oper-

and Field— Conditional Assembly— Macros— Line Listing Format-
References

CHAPTER 3

The 68000 Instruction Set

Instruction Format in Memory— Addressing Modes— Effective Ad-
dressing Mode Categories— Instruction Types— Data Movement In-

structions—Integer Arithmetic Instructions— Logical Instructions-
Shift and Rotate Instructions— Bit Manipulation Instructions— Bi-

nary-Coded-Decimal (BCD) Instructions— Program Control Instruc-
tions—The Link and Unlink Instructions— System Control Instruc-

tions—Summary—Bibliography

CHAPTER 4

Mathematical Routines 109

Multiplication— Division— Division With Overflow— Square Root-
Bibliography

CHAPTER 5

Lists and Look-Up Tables 123

Unordered Lists— A Simple Sorting Technique— Ordered Lists—
Look-Up Tables— Jump Tables— References

CHAPTER 6

68000 Microprocessor Chip Hardware 147

Clock, Power, and Ground Lines— The Data Bus and Address Bus-
Function Code Signals— Asynchronous Control Signals— Synchronous
Control Signals— Bus Arbitration Signals— System Control Signals-
Interrupt Control Lines— References

CHAPTER 7

Processing States, Privilege States, and Exceptions .161

Processing States— Privilege States— Exceptions— Internally Generated
Exceptions— Externally Generated Exceptions— References— Bibliog-
raphy

CHAPTER 8

Fundamentals of Interfacing 181

68000 Support Chips-6800 Support Chips-Interfacing a 6821 PIA
to the 68000-References- Bibliography

CHAPTER 9

68000 System Development Support 192

Motorola System Support Products- VME Bus-()th(M- 68000-Rc-
lated Products— 68000 Software Support— References— Bibli()^z;raphy

APPENDIX A

ASCII Character Set (7-Bit Code) 205

APPENDIX B

Instruction Execution Times 206

APPENDIX C

Hexadecimal/ Decimal Conversion Tables 221

APPENDIX D

Summary of the 68000 Instruction Set 224

Index 234

t

List of Program Examples

CHAPTER 3

3-1. Searching for a Word Value in Memory 94
3-2. A Block Move Program 96
3-3. An ASCII String Search Subroutine 98
3- 4. Preserving Condition Codes and Registers During

a Subroutine 101

CHAPTER 4

4- 1. A 32-Bit X 32-Bit Unsigned Multiply Subroutine 112
4-2. A 32-Bit X 32-Bit Signed Multiply Subroutine 114
4-3. An Improved 32-Bit X 32-Bit Signed Multiply
Subroutine 116

4-4. A Word- Averaging Routine 117
4-5. A Division Subroutine That Accounts for Overflow 120

4- 6. A 32-Bit Square Root by Successive Approximation
Subroutine 122

CHAPTER 5

5- 1. Adding an Entry to an Unordered List 124
5-2. Deleting an Element From an Unordered List . , 126
5-3. Finding the Minimum and Maximum Values in an

Unordered List 127

5-4. A 16-Bit Bubble-Sort Subroutine 132

11

5-5. A 16-Bit Binary-Search Subroutine 133
5-6. Adding an Entry to an Ordered List 137
5-7. Deleting an Element From an Ordered List 138
5-8. Finding the Sine of an Angle 142
5-9. A Code-Conversion Subroutine 144
5-10. A Multiuser Selection Subroutine 145

CHAPTER 7

7- 1. A Floating-Point Math Initialization Routine 174

CHAPTER 8

8- 1. Initializing Two PIAs 187
8-2. Writing a 16-Bit Word to a Peripheral 189
8-3. Incrementing a 16-Bit Word and Writing It to a Peripheral
Continuously 189

8-4. Reading Data From an Input Peripheral and Storing It
in Memory 190.

12

CHAPTER 1

An Introduction to

The 68000 Microprocessor

This chapter presents an introduction to the features of the 68000
microprocessor. Before looking at any of these features in detail, let
us take a brief survey of them in general.

OVERVIEW OF THE 68000

The 68000 has 17 general-purpose registers, each 32 bits long,
plus a 32-bit program counter and a 16-bit status register. Eight of
the general-purpose registers are used as data registers for byte (8-
bit), word (16-bit), and long-word (32-bit) operations. The other
nine general-purpose registers are address registers, which can func-

tion as stagk pointers and base address registers. All 17 general-
purpose registers can serve as index registers.

Although the program counter is 32 bits long, only the low-order
24 bits are used in the chips currently being produced. These 24 bits
provide the 68000 with an addressing range of 16M bytes (that is,

16,777,216 bytes)-the same range as an IBM System/370! This ad-
dressing range, when coupled with an auxiliary memory manage-

ment unit, permits large, modular programs to be developed and

executed without being bogged down with cumbersome (and time-
consuming) software bookkeeping and paging.

Software Features

The software capabilities of the 68000 are impressive by any stan-
dard, and reflect the fact that this microprocessor has been designed

13

by programmers, for programmers. As you will discover in Chap-
ter 3, many of the instructions, when combined with the versatile

addressing modes of the 68000, more closely resemble high-level
language statements than the assembly-language instructions of tra-

ditional 4-bit and 8-bit microprocessors.
The 68000 can operate on five different types of data— bits, 4-bit

binary-coded-decimal (BCD) digits, 8-bit bytes, 16-bit words, and
32-bit long words. Byte data may be addressed on even- or odd-
address boundaries, whereas word and long-word data must only
be addressed on even-address boundaries.

The instruction set contains a modest 56 basic instruction types,

but 14 different addressing modes are available for accessing oper-
ands. The combination of the 56 instruction types, 14 addressing

modes, and 5 data types means that there are more than 1000 in-

structions that the 68000 can execute. And, if that's not enough, two
of the 16 possible op-codes are currently unused, which makes them
available for users who wish to add instructions of their own, such

as floating-point math and string instructions.
The 68000 is offered in 4-, 6-, 8-, and 10-MIiz versions, which have

clock periods of 250, 167, 125, and 100 ns, respectively. The fastest

instruction— for example, an instruction that copies the contents of
one register into another— executes in four clock cycles, or 500 ns
at 8 MHz. The slowest instruction— a 32-bit by 16-bit signed divide
—can take up to 170 clock cycles, or 21.25 fxs at 8 MHz, to execute.

Privilege States

To support multiuser and multitasking applications, the 68000 op-
erates in two different states— a user state for normal functions and

a supervisor state for system control. All instructions can be exe-

cuted in the supervisor state, but a few "privileged" instructions
(such as RESET and STOP) are unavailable in the user state. This
feature provides a certain measure of system security by preventing

one user or task from trespassing upon another's space or, worse yet,
botching up the entire system through some inadvertent blunder.

Built-in Debugging Aids

Realizing that software generally takes more time to debug than
to write, the designers of the 68000 built in a variety of debugging

and error features. For example, illegal instructions, privilege viola-
tions, illegal addressing, traps (operating as system calls), divide

by zero, and illegal memory accesses all cause the microprocessor
to trap and switch to the supervisor state.

The 68000 also provides a trace mode for software debugging.

In the trace mode, the 68000 "single-steps" through a program by
trapping to a service routine after each instruction is executed.

14

Memory Allocation

Very few memory locations are dedicated to a specific task by the
6(S()0(). The lowest eight bytes of memory hold the reset vector and,

therefore, must reside in read-only memory (ROM). Additional lo-
cations in the low 1024 bytes are allocated to interrupt vectors, error

vectors, and vectors for various other types of "exceptions," but these
locations can reside either in ROM or in read /write memory. The re-

mainder of the 16M-byte memory map of the 68000 can be used any
way the user wants.

Certainly, some memory addresses will need to be assigned to I/O
devices in the system, because with the 68000 (as with all Motorola
microprocessors) input/ output is memory mapped. That is, the 68000

has no separate I/O instructions, but "sees" peripheral devices as
memory locations in its 16M-byte memory map. In programming
I/O operations, the instructions used to transfer data to and from
peripheral devices are the same instructions that are used to move
data in and out of memory.

Interrupt Structure

The interrupt structure of the 68000 is like that of most minicom-
puters. It provides seven levels of vectored interrupts, with a mask

in the status register to lock out interrupts at or below the current
priority level. When the 68000 receives an enabled interrupt request,
it issues an acknowledge signal to all devices in the system. Upon

receiving this acknowledge, the interrupting device must put a vec-
tor number on the data bus. This vector selects one of 192 interrupt

service routines in memory.
Devices that cannot generate a vector number can interrupt the

68000 also. These devices cause the microprocessor to "autovector"
to an interrupt service routine for the priority level of that device.

Thus, the 68000 provides seven unique autovectors; earlier micro-
processors provided only one.

Buses and Other Lines on the Chip

The 68000 microprocessor is housed in a 64-pin dual in-line pack-

age (DIP) roughly the size of a disposable cigarette lighter. Ad-
dresses for instructions and data come out of the package on 25

address lines— a 23-line address bus (which selects a word in mem-
ory) and two byte-select lines (one to select the upper byte of the

word, the other to select the lower byte). Data is transferred on a

16-hit data bus. Like most 8-bit microprocessors (but unlike the 16-
bit Intel 8086 and Zilog Z8000), the data bus and address bus occupy
separate lines; they are not multiplexed. The Motorola designers
realized that multiplexing these buses would have resulted in a

15

smaller package, but would also have reduced performance by as
much as 30%. ^

The 68000 can be interfaced to both asynchronous peripheral de-
vices and slower synchronous peripheral devices (such as those that

are used with the 6800 and other 8-bit microprocessors) , and has a
separate set of control lines to support each type of device. The

68000 operates from a +5-volt power supply, and has two pins for
power and two pins for ground. And since the processor needs a

single-phase TTL-level clock, one more pin is used for the clock
input.

Sources for the 68000

Introduced in 1979, the 68000 is now in full production. It is avail-
able from Motorola (as the MC68000) and from licensed alternate

sources-Rockwell International (R68000), Hitachi (//D68000),
Mostek (MiC68000), and Signetics/ Phillips (SP68000). In Europe,

the 68000 is available from EFCIS, which is 65% owned by Thom-
son-CSF and 35% owned by the French Atomic Energy Commis-

sion. The addresses are:

Motorola Semiconductor, Inc.
3501 Ed Bluestein Boulevard

Austin, TX 78721

Rockwell International
Electronic Devices Division

P.O. Box 3669, RC55
Anaheim, CA 92803

Hitachi America, Ltd.

1800 Bering Drive

San Jose,CA 95112

Signetics/ Phillips
811 East Arques Avenue

Sunnyvale, CA 94086

Mostek Corp.

1215 West Crosby Road
Carrollton, TX 75006

EFCIS

45 ave. de I'Europe
78140 Velizy-Villacoubaly
France

INTERNAL REGISTERS

Since this book is primarily devoted to programming the 68000,
the most logical place to begin is by discussing the internal registers

that are available to programmers. Fig. 1-1 shows the 17 general-
purpose registers, the 32-bit program counter, and the 16-bit status
register of the 68000.

General-Purpose Registers

Eight of the general-purpose registers are data registers, seven are
address registers, and two are stack pointers (one for user programs,
the other for supervisor programs) .

16

31 16 15 8 7 0
DO

Dl

D2

D3 EIGHT

DATA
D4 REGISTERS

D5

D6

D7

USER STACK POINTER
A7

SUPERVISOR STACK POINTER

31 24 23

15
8 7

SYSTEM BYTE 1 USER BYTE

Courtesy Motorola. Inc
Fig. 1-1. Programming model for the 68000.

17

The eight data registers (D0-D7) can be used to operate on byte
(8-bit), word (16-bit), and long-word (32-bit) data; the appHcable

length is specified by a "data-size code" in the instruction. Byte op-
erations are always performed on the low-order eight bits of a data

register (bits 0 through 7), and word operations are always per-
formed on the low-order 16 bits of a data register (bits 0 through

15), as indicated by the dashed lines in Fig. 1-1. When a byte or
word operand is referenced in an instruction, only the low-order byte
or word of the data register is used; the remaining information in
the register is unaffected.

The seven address registers (A0-A6) can function as base ad-
dress registers and software pointers to user-defined stacks in mem-

ory. They can also be used to hold temporary address values, so

these addresses won't need to be recalculated elsewhere in the pro-
gram.

The address registers can be used to access bytes, words, and long

words in memory. As Fig. 1-2 shows, this data is stored in high-
to-low order. Thus, byte 0, word 0 and long word 0 are most-signifi-

cant. Bytes can have either even addresses (bytes 0, 2, and 4 in

Fig. 1-2) or odd addresses (bytes 1, 3, and 5), but words and long
words can have only even addresses. That is, ivords and long words
must always start at an even address. Therefore, if a word is located

at address n (n even), the next word is located at address n+2. Simi-
larly, if a long word is located at address n (n even), the next long

word is located at address n+4.

Referring again to Fig. 1-1, the dashed line between bits 15 and

16 indicates that information in an address register can be refer-

15
8 7 15

n BYTEO BYTE 1 n + 1 n WORD 0

n + 2 BYTE 2 BYTES
n+3

n + 2 WORD 1

n + 4 BYTE 4 BYTE 5 n + 5 n + 4 WORD 2

{A) Byte format.
15 0

n + 4

n + 8

•LONG WORD 0-

•LONG WORD 1

■LONG WORD 2-

(e) Word format.

(C) Long-word format.

Fig. 1-2. Byte, word, and long-word formats in memory.

18

enced as a 16-bit word (in bits 0 through 15) or a 32-bit long word.
Many 68000 instructions refer to two operands— a source operand
and a destination operand. When an address register is used as a

source operand, either the low-order word or the entire long word is
used, depending on the operation size. When an address register is

used as a destination operand, the entire register is affected, regard-
less of the operation size.

Further, operations on an address register do not affect the status
register of tJie 68000. This design feature allows your program to
operate on data, change an address, then resume operating on the
data without worrying about whether program status has changed.

The 68000 contains two stack pointers, but only one of them is
active at any given time. The user stack pointer, which saves return
addresses during subroutine calls, is active when the 68000 is in the
user state. The supervisor stack pointer, which saves return addresses

and status register contents during trap and interrupt routines, is ac-
tive when the 68000 is in the supervisor state. Because the two stack

pointers cannot be accessed simultaneously, they are depicted as

"sharing" designator A7 in Fig. 1-1.
Any of the 17 general-purpose registers may be used as an index

register. Indexing will be covered when we discuss the addressing
modes of the 68000 in Chapter 3.

The Program Counter

Like all microprocessors, the 68000 executes programs by fetching
an instruction from memory, executing it, and then fetching the next
instruction. In the 68000, instructions can occupy from one to five

words in memory, and the program counter determines which in-
struction word will be accessed next.

The program counter is 32 bits long, but only the low-order 24 bits
are used in the chips currently being produced. Since instructions
consist of words, rather than bytes, the program counter will always
hold an even address. With 24 bits, the program counter can access

memory addresses 0 through $FFFFFE (where the $ prefix indi-
cates hexadecimal) , a range of 8M words (or 8,388,608 words) .

The Status Register

The 68000 status register is divided into a user byte and a system

byte, as shown in Fig. 1-3. The contents of the entire status register
can be read at any time, but the system byte can be modified only
when the 68000 is in the supervisor state.

The user byte, often referred to as the condition-code register,
contains five flag bits that provide information about the result of a

previously executed instruction (in most cases, the preceding in-
struction). The five flags in the user byte are:

19

1. Bit 0, Carry (C)— This bit is set to 1 if an add operation pro-
duces a carry or a subtract operation produces a borrow; other-

wise it is cleared to 0. Carry also holds the value of a bit that
has been shifted or rotated out of a data register or memory
location, and reflects the result of a compare operation.

2. Bit 1, Overflow (V)— This bit is meaningful only during opera-
tions on signed numbers. It is set to 1 if the addition of two

like-signed numbers, or the subtraction of two opposite-signed
numbers, has produced a result that exceeds the 2s-complement
range of the operand; otherwise it is cleared to 0. Overflow is

also set to 1 if the most-significant bit of the operand is changed
at any time during an arithmetic shift operation; otherwise it
is cleared to 0.

3. Bit 2, Zero (Z) —This bit is set to 1 if the result of an operation
is 0; otherwise it is cleared to 0.

4. Bit 3, Negative (N)— This bit is meaningful only during opera-
tions on signed numbers. It is set to 1 if an arithmetic, logical,

shift, or rotate operation produces a negative result; otherwise

it is cleared to 0. In other words, the N flag follows the most-
significant bit of an operand, regardless of whether the operand
is 8, 16, or 32 bits long.

5. Bit 4, Extend (X)— This bit functions as a carry bit for multiple-
precision operations. It is affected by add, subtract, negate,
shift, and rotate operations, during which it receives the state
of the carry (C) bit.

The 68000 has conditional branch instructions that test the state

of the C, V, Z, and N flags, and cause program execution to continue
in-line or at some other location in memory, based on the result of

SYSTEM BYTE

TRACE MODE

SUPERVISOR
STATE

interrupt! MASK J

CONDITION
CODES

EXTEND
NEGATIVE

ZERO
OVERFLOW

CARRY

USER BYTE

15
13 10

8 4 0

T S h

li

lo

■ill
X N Z V c

Courtesy Motorola, Inc.
Fig. 1-3. The 68000 status register.

20

this test. The condition-code flags are always affected by operations
that alter the contents of a data register or memory, but (as men-

tioned earlier) are never affected by operations on an address reg-
ister.

The system byte of the status register has three fields :

1. Bits 8-10— These bits hold an interrupt mask (lo, Ii, and I2)
which determines the level of interrupt requests that will be

serviced by the microprocessor. This 3-bit mask can be used to
establish any of seven interrupt priority levels (the eighth level,

all Os, indicates "any priority accepted"), and causes all inter-
rupt requests at or below that level to be ignored by the 68000.

2. Bit 13, Supervisory (S)— This bit indicates whether the 68000
is operating in the supervisor state (S = 1) or the user state
(S = 0).

3. Bit 15, Trace Mode (T)— This bit controls the built-in debug
circuitry in the 68000. When the T bit is set to a 1, the 68000

will "single-step" through a program. That is, after each instruc-
tion is executed the 68000 will enter the supervisor state (set-
ting S = 1) and vector to a special, user-written trace service

routine. The service routine can be used to examine the con-
tents of selected memory locations and registers, look at status,

or perform any number of other debugging tasks.

If the contents of the status register are ever read, all of its un-
used bits will be read as Os.

BACKGROUND ON THE DESIGN OF THE 68000

At this point, you have a general understanding of the features
of the 68000 microprocessor. The remaining chapters in this book
will discuss these features, and others, in greater detail, and provide

some information on how the 68000 can be used in a variety of ap-
plications. Before moving on to those topics, however, it is worth-

while to examine the rationale behind the design of the 68000, to
see why Motorola implemented this microprocessor as they did.

The State of Microprocessor Technology

The powerful microprocessors and support chips of today are the

outgrowth of the rapid evolution in integrated circuit (IC) technol-
ogy in the recent past. Since the development of the metal-oxide

semiconductor (MOS) transistor in the late 1950s, device complex-
ity doubled every year through the 1970s. As a result, whereas early

microprocessors contained from 5000 to 10,000 transistors on a chip,

today's processors contain up to 110,000 transistors! The primary con-
tributing factors to this growth have been higher circuit density and

21

advances in circuit design, which produced corresponding improve-
ments in circuit speed and power dissipation. The rate of evolution

has slowed somewhat because some technological limits are being
approached, but the advances are still dramatic. Today, circuit den-

sities and circuit speeds are doubling every two years, while at the

same time, speed-power products are improving by a factor of four.^
Further, yield enhancement techniques are driving production costs

down and, hence, reducing product prices, thereby increasing de-
mand and opening up new applications and new markets.

Motivations Behind the 68000

The advances just described make a complex microprocessor tech-
nically feasible, but several additional factors also motivated Motor-

ola to develop the 68000. According to Edward Stritter and Tom

Gunter,^ the two principal architects of the 68000, one of these mo-
tivations arose from the demand for products to deal with the many

new (and often sophisticated) applications for microprocessors. This
demand is reflected in the overall market for microprocessors, which
will have a compound growth rate of about 25% through the early

1980s, approaching an annual volume of 200 million units by 1983,

with a market value approaching $500,000,000.^ In fact, the micro-
processor revolution is truly an applications revolution. It is esti-

mated that by the year 2000, 5 to 10 billion microprocessors and mi-
crocomputers will be in service— about one for each living person

on earth! In planning the 68000, the architects knew that their prod-
uct must satisfy applications best suited to 16-bit microprocessors,

such as those involving multiprocessing, multitasking, or high-speed
complex calculations.

A second motivation for the 68000 came from the hig,h costs of

developing software. With programs currently costing $10.00 to
$20.00 for each line of debugged code, it is not unusual for a single

program to run up software development costs of $100,000 or more—
which is clearly incompatible with hardware costs of a few hundred
dollars. To help reduce these expenditures. Motorola made a strong

commitment to support high-level languages and disciplined pro-
gramming practices, and to make 68000 software easy to debug and

self-testing in nature.
A third factor influencing the design of the 68000 was the high

cost of designing and manufacturing a new microprocessor. The

amount of money a manufacturer must spend for engineers, design-
ers, scientists, and other personnel, as well as for design and fabri-

cation equipment, is staggering and costs major manufacturers tens
of millions of dollars each year. Obviously, designers must attack
this problem in several ways. First, straightforward designs using

"regular" structures are easier to implement, test, and manufacture.

22

thereby making them less expensive than exotic designs. (Of course,
straightforward designs also tend to speed up the overall production

cycle, giving the manufacturer an edge over his competition.) Sec-
ond, each new architecture must be planned to last as long as pos-
sible, and must be easy to expand in the future.

Manufacturers can no longer afford to produce new architectures

every year. Experience with trying to extend and improve earlier 8-
bit microprocessor architectures demonstrates the need for planned
expansion. Designers must have the least number of limitations in
their designs, so that future enhancements of the chip can be made
with the greatest possible ease. Among the common mistakes in the
past have been limiting address size and failing to provide unused
operation codes for additional, future instructions.

Design Implementation of the 68000

The designers of the 68000 had a sizeable task responding to the

motivations we have just described. In order to fit all of the re-
quired functions onto the microprocessor chip, they adopted a fast,

n-channel silicon process, called HMOS (high-density, short-channel
MOS), which was originally developed by Intel Corporation. The
HMOS process provides circuit densities twice those of standard

NMOS, and a speed-power product four times better than standard
NMOS. As a result, the current version of the 68000 has— perhaps
coincidentally— about 68,000 transistors on the chip (Fig. 1-4).

To serve the potential applications market, the Motorola design-
ers gave the 68000 a general-purpose architecture, rather than an

architecture aimed at a specific class of applications. And because

j the 68000 (like other high-performance processors) will typically
be used in large, memory intensive applications, the designers pro-

; vided this microprocessor with a I6M-byte addressing capability,
and complemented it with special features to support multiprocess-

ing and multitasking, such as separate supervisor and user modes.

; To address the high expense of software development, the design-
ers made every effort to ensure that the 68000 would be easy to pro-

gram. One way they did this was to give the software and hardware

' features found in the 6v8000 a high degree of consistency, or ortho-
gonality. All data registers function identically, as do the address

I registers, and all data and address registers may serve as index reg-
isters. Further, most instructions can operate on bytes, words, or

1 long words.

' The number of mnemonics in the instruction set was intentionally

kept to a minimum by grouping similar functions within a sin-
gle mnemonic. This resulted in multipurpose instructions, such as

MOVE, which can transfer data "from anywhere to anywhere,"

23

Courtesy Motorola. Inc.
Fig. 1-4. Photomicrograph of the 68000 microprocessor chip.

rather than a large number of specialized load, store, and transfer

instructions, a la the 6800 and other 8-bit microprocessors.

Furthermore, in developing the instruction set, the designers con-

sidered not only "statically jfrequent" instructions (those that ap-
pear most often in a program listing), but went a step further and

looked for "dynamically frequent" instructions (those that get exe-
cuted most often). With these statistics in mind. Motorola tried to

create instructions that were as short as possible.

In support of high-level languages. Motorola provided instructions
that perform operations which normally require several lines of code.

24

The most prominent examples are the link (LINK) and unlink
(UNLK) instructions, which allocate and deallocate space on the
stack for nested subroutine calls, and the check register against
bounds (CHK) instruction, which allows the size of an array to be
checked for an overflow condition. The instruction set was also de-

signed so that most instructions could be used with all of the pos-
sible addressing modes, thereby allowing compilers to generate effi-
cient code.

Finally, to minimize the costs of futiu'e design changes and en-
hancements, Motorola specified an architecture that would allow a

number of different microprocessors to he produced. We alluded to

this fact earlier in mentioning that although the 68000 is a 16-bit
microprocessor, it is designed around a 32-bit internal architecture.
That is, within the chip, the data bus, address bus and all program-

mable registers (except the status register) are 32 bits wide. In 1982,
Motorola announced three new microprocessors that use this same
architecture. They are:

• The 68008, a hardware/software compatible version of the
68000 with an 8-bit external data bus.

• The 68010, the first true "virtual machine" microprocessor. This
device provides the ability for one super operating system to
handle the supervisory chores for any number of subordinate
operating systems.

• The 68020, which has all the features of the 68010, but operates
on a 32-bit external data bus.

Motorola's eye toward the future is also reflected in their deci-
sion to implement the 68000 with a microprogrammed architecture,

rather than with random logic. Within the industry, the battle over

microcode versus random logic is a never-ending controversy. Which
is the better choice? Well, it depends on who you are asking. Some
popular microprocessors use random logic (Motorola 6809, Intel
8089 I/O Processor, Zilog Z8000), some use microprogramming
(Motorola &000, DEC LSI-11, National Semiconductor 16032, TI
9900), and at least one (Intel 8086) uses a combination of the two

approaches.^
It can be argued that random logic can cram more functions into

the same area than a microcoded structure, and it is faster. Micro-
code, on the other hand, is easier (and therefore faster and cheaper)

to design and to change. Microcode also produces a clean, symmet-
rical instruction set and a broad range of addressing modes, which

can boost programming efficiency. In fact, the ability to combine the

most memory-efficient addressing modes with the most time-efficient
processor operations can reduce overall system cost substantially.
Still, the time lost in internal decoding can negate the software gains
that microprogramming has to offer, so compromise remains .

25

With these considerations in mind, Motorola chose the micro-

programmed approach for several reasons i^ **-^

1. The regular structure of the decoding logic makes design, lay-
out, detailed simulation, and testing easier. This results in con-

siderable time savings and allows a more complex controller to
be designed at a given design cost.

2. The processor architects can delay making some binding deci-
sions. Once the basic overall chip design is determined, the

circuit designers can go to work, even though actual microcode
may not be written. This reduces the inherent sequentiality of
the design process by allowing more overlap of the efforts of

microcoders and circuit designers and, therefore, shortens de-
sign time.

3. Small "glitches" or programming problems that are inevitably
found during the first silicon run can usually be corrected rap-

idly by changing the microcode, and without affecting other
logic circuits on the chip. In contrast, changes to random logic
designs could unintentionally cause many other problems,
which would slow down the introduction of the processor.

4. Microcoding the processor makes future improvements and ad-
ditions to the circuit easier to insert. New instructions that are

programmed-in will probably work correctly the first time.

REFERENCES

1. Hartinan, B. "16-Bit Microprocessor Camps on 32-Bit Frontier." Electronics,
October 11, 1979, pp. 118-125.

2. Stritter, S. and Treddenick, N. "Microprogrammed Implementation of a Sin-
gle Chip Microprocessor." Proceedings of the 11th Annual Microcomputing

Workshop, November 1978, pp. 8-16.

3. Stritter, E. and Cunter, T. "A Microprocessor Architecture for a Changing
World: The Motorola 68000." Computer, February 1979, pp. 20-29.

4. Russo, P. M. "VLSI Impact on Microprocessor Evolution, Usage, and System
Design." lEE^ Transactions on Electron Devices, August 1980, pp. 1332-
1341. (This is an excellent and well-documented paper on the microprocessor
market, and its future.)

5. Schindler, M. "System Performance Hinges on CPU Architecture." Elec-
tronic Design, May 10, 1980, pp. 115-122.

6. Bryce, H. "Microprogramming Makes the MC68000 a Processor Ready for
the Future." Electronic Design, October 25, 1979, pp. 98-99.

7. Treddenick, N. "Implementation Decisions for the MC68000 Microproces-
sor." Proceedings of the 3rd Rocky Mountain Symposium on Microcomputers.

Pingree Park, CO, August 1979, pp. 30-35.

26

BIBLIOGRAPHY

1. DolIhofF, T. 16-Bit Microprocessor Architecture. Reston, VA: Reston Pub-
lishing Company, Inc., 1979, (Heavily oriented around the Texas Instru-

ments 9900, hut contains good background material and well-written over-
views on other microprocessors.)

2. Grappel, R. and Hemenway, J. "The MC68000-A 32-Bit fiV Masquerading
as a 16-Bit Device." EDN, February 20, 1980, pp. 127-134.

3. Mhatre, G. "The CPU Evolution." Electronic Engineering Times, September
29, 1980, pp. 43-51.

4. Titus, C, et al. 16-Bit Microprocessors. Indianapolis: Howard W. Sams &
Co., Inc., 1981.

5. Wakerly, J. F. Microcomputer Architecture and Programming, Vol. 1. New
York: John Wiley & Sons, Inc., 1981.

6. Currently available microprocessors are surveyed in:

(a) Bursky, D. "Microprocessors— 4 to 32-Bit— Push Back Performance Lim-
its." Electronic Design, November 22, 1980, pp. 109-115, 150-170.

(b) Cushman, R. H. and Backler, J. "Seventh Annual /iP/yxC Chip Direc-
tory." EDN, November 5, 1980, pp. 94-210.

7. The following compare various 16-bit microprocessors:

(a) Anon. "The 16-Bit Micro." Electronic Engineering, May 1980, pp. 149-159.

(b) Flippin, A. "The 16-Bit Time Trials." Microcomputing, October 1980,
pp. 182-190. (Compares seven 16-bit microprocessors, based on four
benchmarks— table lookup, block move, jump table, and multiply.)

(c) Grappel, R. "User's Viewpoint and Considerations for the Emerging 16-
Bit Microprocessors." Electro Preprints (J 980), Session 19/1.

(d) and Hemenway, J. "A Tale of Four /itPs: Benchmarks Quantify
Performance." EDN, April 1, 1981, pp. 179-265. (This comprehensive
study compares the LSI-11/23, 8086, 68000, and Z8000 using seven
different benchmarks.)

(e) . "Compare the Newest 16-Bit /uPs to Evaluate Their Potential."
EDN, September 5, 1980, pp. 197-201.

(f) . "Evaluating the 16-Bit Chips." Mini-Micro Systems, December
1980, pp. 153-162.

(g) Heering, J. "The Intel 8086, the Zilog Z8000, and the Motorola MC-
68000 Microprocessors." EUROMICRO Journal 6 (1980), pp. 135-143.

(h) Moore, M. "The 16-Bit Super Processors Are Here." Microcomputing,
August 1980, pp. 26-33.

(i) Toong, H. D. and Gupta, A. "An Architectural Comparison of Conte^i-
porary 16-Bit Microprocessors," IEEE Micro, May 1981, pp. 26-37.

27

CHAPTER 2

Cross Macro Assembler

Readers of this book can be expected to use any of a variety of

computers to develop programs for their 68000-based appHcations.
Some will develop those programs on computers from Motorola,

such as an EXORciser® or EXORmacs® development system, others

will use a minicomputer, mainframe computer, or "universal" devel-
opment system. Regardless of the base system, however, we will

assume that all readers will write their programs in assembly lan-
guage, rather than machine language. Therefore, some kind of as-

sembler will be required to translate an assembly-language user pro-
gram, or source program, into a machine-language program, or

object program, which the 68000 can execute.
There are two basic types of assemblers. A cross assembler is an

assembler that runs on a computer other than the one for which
it assembles object programs. The computer on which the cross
assembler runs is typically one with extensive software support and
fast peripherals, such as an IBM System/360 or System/370, or a

Digital Equipment Corp. PDP-11. A resident assembler is an assem-
bler that runs on the computer for which it assembles programs.

The Motorola EXORmacs® development system has a resident as-
sembler for the 68000.

Rather than attempting to describe all of the various assemblers
that readers may use for the 68000, this chapter will concentrate on

the features of just one assembler. Motorola's Cross Macro Assem-
bler. The Cross Macro Assembler is a cross assembler than can run

on an M6800- or M6809-based EXORciser® development system, or

® EXORciser and EXORmacs are trademarks of Motorola, Inc.

28

on an IBM System/ 370 or a DEC PDP-11. It is also a macro assem-
bler, because it allows the programmer to define sequences of in-

structions as "macros/' Macros are discussed in more detail later in
this chapter.

This chapter is not intended to be an exhaustive description of the
Cross Macro Assembler (hereafter referred to as assembler), but
rather just a summary of its features for easy reference. For the full

details on this program, see the Motorola MC68000 Cross Macro As-
sembler Reference Manuals

ASSEMBLER STATEMENTS

A source program is a logical sequence of source statements de-
signed to perform a specific task. A source statement may be either

an assembly-language instruction, a comment, or an assembler di-
rective.

ASSEMBLY-LANGUAGE INSTRUCTIONS

Assembly-language instructions are comprised of up to five fields,
as follows:

Line Number [Label] Mnemonic [Operand] [Comment]

The line number is an editor- or assembler-generated source line
identifier of up to four decimal digits. The other four fields are user-
generated. Of these, only the mnemonic field is always required in
an instruction. The label and comment fields are always optional
(and are so identified by showing them enclosed in brackets) and
may be used at the discretion of the programmer. The operand field
is only used with instructions that require an operand; otherwise it
must be omitted.

The 68000 assembler uses a free format in which the fields may
appear anywhere on a line. However, each field must be separated
from the preceding field by at least one blank space.

The Label Field

The label field is the first user-generated field in a line. Any as-
sembly-language instruction can be labeled, but labels are most

often used in conjunction with jump, jump to subroutine, and branch
instructions. These instructions place a new value in the program
counter, and thereby alter the sequential execution of a program.
The label identifies the instruction to which program control is to
be transferred.

If present, a label will be a string of from 1 to 30 alphanumeric

characters in which the first character must be alphabetic (A-Z).

29

All 30 characters are significant, but only the first 8 characters

will be listed on the symbol table printout. The symbols, AO through
A7, DO through D7, CCR, SR, SP, and USP are register designators
used by the assembler and must not be used as a label.

If a label starts in the first column, it must be terminated with at

least one blank space. If the label starts in any other column, it must
be terminated with a colon (:) .

The Mnemonic Field

The mnemonic field holds the three-, four-, or five-letter acronym
for the assembly-language instruction. The assembler uses an inter-

nal look-up table to translate this acronym, called a mnemonic, into
its binary equivalent.

Some instructions for the 68000 require one operand, others re-
quire two operands, and still others require no operands. The mne-

monic "tells" the assembler how many operands, and which types
of operands, should be obtained from the operand field. We will not
list the legal mnemonics here, but they are listed and described in
Chapter 3.

As mentioned in Chapter 1, the 68000 can operate on byte, word,

and long-word data. Some instructions can operate on just one size
of data, others can operate on two sizes of data, and still others can
operate on all three sizes of data. For instructions that can operate

on more than one size, the 68000 must be "told" which size of data
is being operated on. This is done by appending a special assembler
sufiix, called a data size code, to the mnemonic. For example, an
instruction that adds a value in data register DO to a value in data
register Dl will have the form

ADD.X D0,D1

where the suffix, .X, specifies the length of data being added, and

may be .B (for byte), .W (for word), or .L (for long word).

If the data size code is omitted, the assembler assumes that word-
size data is being processed. Therefore, our add instruction can have
any of four variations:

ADD.B DO, D1— Adds the low-order byte of DO to the low-order byte of Dl.
ADD.W DO, D1 -Adds the low-order word of DO to the low-order word of Dl.
ADD D0,D1-Also adds the low-order word of DO to the low-order word of

Dl.
ADD.L D0,D1-Adds the entire 32-bit long-word contents of DO to the entire

32-bit long- word contents of Dl.

The Operand Field

The operand field may or may not be omitted, depending on the

instruction. If present, the operand field will contain either one or

30

two operands, separated from the mnemonic field by at least one
blank space. If two operands are required, they must be separated
by a comma. For these instruction types, the first operand is the
source operand and the second operand is the derdimition operand.
The source operand references the value that will be added to, sub-

tracted from, compared to, or stored into the destination operand.

For this reason, the source operand is never altered by the opera-
tion, whereas the destination operand is almost always altered by

the operation. In Chapter 3, we will discuss the addressing charac-
teristics of operands for each of the instructions in the instruction

set for the 68000.

The Comment Field

The optional comment field is used as a personal convenience by
the programmer to make the program easier to follow. The comment
field is ignored by the assembler, but is included in the listing. If
used, comments must be separated from the preceding field by at
least one blank space.

STAND-ALONE COMMENTS

In addition to providing brief explanations for individual lines in
a program, comments are also used by themselves to introduce a

program or a portion of code, to list the registers and memory loca-
tions affected, or for a variety of other documentation tasks. To in-
clude stand-alone comments in a source program, enter an asterisk

(*) into column 1; at assembly time, the assembler will recognize
the asterisk as the beginning of a comment line and will ignore that
line.

ASSEMBLER DIRECTIVES

Assembler directives, or "pseudo-operations," provide directions
to the assembler. They assign the object program to certain areas
in memory, define symbols, allocate memory locations for temporary
storage, control the format of the printout, and perform a variety of

minor housekeeping functions. With the exception of the define con-
stant (DC) directive, directives are not translated into object code.

Like assembly-language instructions, assembler directives are com-
prised of up to five fields, as follows:

Line Number [Label] Directive [Operand] [Comment]

As previously mentioned for assembly-language instructions, the line
number is an editor- or assembler-generated source line identifier of

up to four decimal digits. The other four fields are user-generated.
Of these, only the directive field is always required. Note that the

31

label, operand, and comment fields are enclosed in brackets, which

designates them as "optional" fields. This needs some clarification,
however. The comment field is the only field that is always optional;
it may be used or omitted at your discretion. Labels and operands
are a different story. Labels can be used with only five directives,
and operands are used only with directives that require an operand.
Table 2-1 summarizes the assembler directives and shows their valid
formats.

As with assembly-language instructions, assembler directive state-
ments can be entered with a free format in which the fields may ap-

pear anywhere on a line. However, each field must be separated
from the preceding field by at least one blank space.

Assembly Control Directives

The assembler's two "origin" directives, absolute origin (ORG)
and relative origin (RORG), allow the programmer to locate pro-

grams, subroutines, or data anywhere in memory. Programs and data

may be located in different areas of memory depending on the mem-
ory configuration of the system. Startup routines, interrupt service

routines, and other required programs may also have to be scattered
throughout memory to meet system requirements.

The assembler maintains a location counter (comparable to the

internal program counter of the 68000 microprocessor) which "points
to" the memory location that is to receive the object code for the
next instruction or data item. Both ORG and RORG cause the as-

sembler to place a new, specified address in the location counter,

and then use that value to assign the memory locations of subse-
quent statements. However, ORG causes the subsequent statements

to be assigned to absolute memory locations, whereas RORG causes
these statements to be assigned to relative memory locations.

The ORG directive is used when you want to select the starting

address at which programs or data are to be stored. The two avail-
able forms of this directive, ORG and ORG.L, affect how instruc-
tions that make forward references in the program are assembled.

If ORG is used, instructions that make forward references are as-
sembled in a short, quick-executing form, but all forward references

must be to locations in the address range 0 to hexadecimal location
7FFF. If ORG.L is used, instructions that make forward references

are assembled in a longer, slower-executing form, but the forward
references can be to anywhere in memory.

The RORG directive is useful for a variety of applications, includ-
ing the following:

• Mixing assembly-language programs with high-level language

programs, in which you don't care where the object code is stored.

32

c c c o o o
(/) CO f (/)(/) (n OJ Q) 0)
Q. Q. Ql
X X X lU UJ LU

Ho
O C5 OC Q
£ £ o 2 O O QC liJ

c c o o (0 CO (0 CO
Q) 0)
Q. Q. X X LU UJ

^1-

O LU LU CO

0) oj
CO CC

(/I V) (fl

■D T3 "O "O "D C C C C C c (0 03 CTJ CT3 CO (\3
CD 0) 0) Q) a) 0) a. Q. cx o. cl a.
O O O O O O

CQ DO ̂ _J
d o d c/) CO CO
Q Q Q Q Q Q

d) d) Q) CD 0) <D J=l X) XI n
CO CT3 <\3 CO CO CT3

CD
o

LU
O

<Z

< CO O O CL O Q I Z Z CO Z

DO

O d

□ p O <
_J t z u. z LU LL LL

C

o (D
> .
CD
CC I

c
c
CO

E
OJ o Q.

E CD
0)

1
val

ue
(

o

CO

>

sym

o

OJ

ym

"cD

CO
3 O" <D
LU CO

E

O ̂ CO
*^ ̂ CO

o E o Q. CD
CO CO
Q. w

CD "'^

O <1> ̂

S - °

5 ̂

■D .52 o

< _i Q

.i2 o

— CO

c
JD O
E CO
(D CD CO O) CO CO CO Q.

§1

CO c

li

c o

Q. C

CO Q

E S
o o
O CO

o o

CD c

o 2^

Q. B B
C CD

- 0^

CD

E

<D

CO CL

O

CO T3 CD CO (D

^ ̂ 2

I £ O

O ̂ 3
^ c£- o c: 3 D Q- O

>- o

CD CD N _ CO o "5 52

_ CT —
CO <D CO

3 £
CT o 2

CD C
rtr :tr ̂

CD CD O
E £ o

CD (D ̂

CO CO CO CO c

< < UJ

o QC Q
O Z GC LU O O LU •Q UJ CO CO

CO

o o

o Q

5

c o O UJ

0,0

c < ■C: Ql

CO

CO O
c < _ CD

CO Z _J 1^ z u. o

"JBOLug

c UJ z 5! •St m

c
8

Q O Q X

CO

5

33

• Developing relocatable subroutines, which can be executed
from anywhere in memory.

• Constructing program components, which will later be com-
bined into one large program.

The remaining assembly control directive, end of source program
(END), tells the assembler that it has reached the end of the source

program.

Symbol Definition Directives

These two directives, equate symbol value (EQU) and set symbol
value (SET), are used to assign numeric values to symbols in the
program. In both cases, the assembler evaluates the expression in
the operand field and assigns the result to the symbol in the label

field. However, symbols assigned with a SET directive may be re-
defined later in the program, whereas symbols assigned with an

EQU directive cannot be redefined.
Expressions and symbols are fully described later in this chapter,

but briefly, an expression is a combination of symbols, constants,
algebraic operators, and parentheses (comparable to the right side
of an algebra equation) , while a symbol is a string of alphanumeric
characters, like a label. For the EQU and SET directives, the result
of the expression must be an integer that will be used to represent
an address or a data value.

Since EQU -generated assignments are permanent, this directive
is often used to define subroutine addresses, device addresses, often-
used constants, and the like. Here are some examples:

SUBR EQU $2000
CONST EQU 5634
PIA2 EQU $FEFFOO

You can also define one symbol in terms of another. For example:

LAST EQU FINAL
STRT3 EQU START+3

The symbol in the operand field must, of course, have been previ-
ously defined.

Since SET-generated assignments can be temporary, this directive

is used to define variable data, such as masking patterns or conver-
sion factors. For example, the following SET directives may appear

in the same program:

MASK1 SET $FFFE
MASK1 SET $FFFD

In this example, as the program is assembled, any reference to
MASKl will be replaced with the value $FFFE until the second

34

SET directive is encountered. At that time, any reference to MASKl
will cause the value $FFFD to be used.

Memory Allocation Directives

The define constant (DC) and define storage (DS) directives are
used to allocate one or more consecutive locations in read/ write

memory. The referenced locations can be either initialized with

some specified set of values (with a DC directive) or simply re-
served for later use by the program (with a DS directive). Note from

Table 2-1 that like some assembly-language instruction mnemonics,
the DC and DS directives require data-size codes to specify whether
bytes (.B), words (.W), or long words (.L) are being allocated.

The DC directive can be used to set up data tables, ASCII mes-
sage tables, indirect addresses, and the like. To do this, the assem-

bler will evaluate each expression in the operand field as a numeric
value, and place that value in the associated location in memory.
Multiple operands must be separated by commas. Here are a few
examples:

TABLE DC.W 10,5,7,2-Worcl locations starting at TABLE receive the binary
equivalents of the decimal values 10, 5, 7, and 2, respectively.

ALBL DC LABEL+1-Word location ALBL receives the address of LABEL
plus 1, in a word-size operand.

TABL1 DC.L 10,5,7,2-Long words starting at TABLl receive the binary
equivalents of the decimal values 10, 5, 7, and 2, right-justified.

Characters in an ASCII string need not be separated with commas,

but simply enclosed within smgle quotes ('). For example, the di- rective

ATBLE DC.B 'A2EF'

will store the ASCII values for the characters A, 2, E, and F into
the four byte locations that start at label ATBLE.

If you enter an odd number of byte operands, either ASCII or

non-ASCII, the assembler will attempt to eliminate a possible ad-
dress misalignment by filling the remaining odd byte with zeros.

For example:

STRNG DC.B 'ABCDE'-Memory receives ASCII codes for the characters A
tlirough E in five contiguous bytes. The sixth byte will be 0 unless the next
source statement is another DC.B.

CONST DC.B 43-Location CONST receives decimal 43. The odd byte will
receive 0 unless the next source statement is another DC.B.

If you enter an odd number of ASCII operands with a DC.W or
DC.L directive, the assembler will fill unallocated bytes on the right
with zeros. For example:

35

NUMBR DC.L '12345'-Memory will have '1234' and 'S'OOO in eight contigu- ous bytes.

N1 DC 'X'— Memory will have 'X' and 0 in two contiguous bytes.
The DS directive allows you to assign a name to a memory area

and declare the number of locations to be allocated, without initial-
izing those locations in any way. Consider these examples:

TEMPO DS.B 10-Allocate 10 contiguous bytes.
TEMPI DS.W 10-Allocate 10 contiguous words.

Unlike the DC directive, the DS directive has no built-in protec-
tion against address misalignment. If you wish to force alignment on

a word boundary, follow a DS.B directive with DS 0.
The listing control directives will not be described here because

they are mostly self-explanatory, and because they are fully de-
scribed in the Motorola MC68000 Cross Macro Assembler Refer-

ence ManuaV However, before continuing on it is worthwhile to

discuss the characteristics of expressions that can appear in the op-
erand field of an assembly-language instruction or an assembler di-

rective.

EXPRESSIONS IN THE OPERAND FIELD

An expression is a combination of symbols, constants, algebraic
operators, and parentheses that is evaluated (by the assembler) as

an integer-valued data or address operand.

Symbols

Like labels, symbols are strings of from 1 to 30 alphanumeric

characters that begin with a letter (A-Z). All 30 characters are
significant, but only the first 8 characters will be listed when the
symbol table is printed. The symbols AO through A7, DO through
D7, CCR, SR, SP, and USP are special register names used by the
assembler that can appear in the operand field, but not in the label
field.

A symbol can have an absolute value or a relative value. A sym-
bol will have an absolute value if (1) it is assigned an absolute value

by an EQU or SET directive or (2) if an ORG statement has pre-
ceded the definition of the symbol. A symbol will have a rehtive

value if (1) it is assigned a relative value by an EQU or SET di-
rective or (2) if an RORG directive has preceded the definition of

the symbol or (3) if neither an ORG nor an RORG has preceded
the definition of the symbol (which defaults to RORG 0).

Constants

The assembler will accept both numeric constants and ASCII lit-
erals. A string of decimal digits (e.g., 12345) is interpreted as a

36

decimal number, and a string of hexadecimal digits preceded by a
dollar sign (e.g., SABCD) is interpreted as a hexadecimal number.
An ASCII literal is a string of up to four ASCII characters enclosed

within single (quotes (e.g., 'ABCD').

Algebraic Operators

The assembler allows you to combine terms of an expression with
the use of four arithmetic operators, four logical operators, and one

special operator. The arithmetic operators are: + (add), — (sub-
tract), * (multiph), and / (divide). For example, the equate se-

({uence

START EQU $2000
STARTP6 EQU START^6
STARTM1 EQU START-1

assigns symbols STARTP6 and STARTMl with the addresses S2006

and SIFFF, respectively. The logical operators have the following
definitions:

• Logical AND (&) causes each bit in the left expression to be

logically AXDed with the corresponding bit in the right ex-
pression.

• Logical OR (I) causes each bit in the left expression to be ORed
with the corresponding bit in the right expression.

• Shift left (<<) causes the left expression to be left-shifted by
the number of bit positions specified in the right expression.
The left expression is filled with zeros from the right.

• Shift right (>>) causes the left expression to be right-shifted
by the number of bit positions specified in the right expression.
The left expression is filled with zeros from the left.

The special operator, unary minus (—). causes a term in the ex-
pression to be negated, or subtracted from zero. This operator can

only occur at the beginning of an expression or immediately before a
left parenthesk.

How Expressions Are Evaluated

As mentioned at the beginning of this section, expressions are a

combination of symbols, constants, algebraic operators, and paren-
theses. At assembly time, the assembler evaluates parenthetical ex-

pressions first, and processes the innermost parentheses before the
outer ones. Xext. the operators are processed in this order: unary
minus, shift, axd and or, multiply and divide, add and subtract.

Operators of the same precedence (for example, and "/") are
evaluated from left to right. All intermediate values are truncated to

a 32-bit integer value. The result of an expression is also a 32-bit
integer.

37

CONDITIONAL ASSEMBLY

The conditional assembly feature of the assembler allows you to
include or exclude portions of the source program, depending on
conditions existing at assembly time. Typical uses of conditional as-

sembly are:

1. To include or exclude certain variables.

2. To place diagnostics or special conditions in test runs.
3. To create specialized versions of a multiuse program.

In the 68000 assembler, the portion of the source program to be
included or excluded must be preceded by either of two directives,

IFEQ or IFNE, and terminated by an ENDC directive. When pre-
ceded by an IFEQ directive, the portion is assembled only if the

expression in the operand field is equal to zero. When preceded by
an IFNE directive, the portion is assembled only if the expression
is not equal to zero.

For example, using conditional assembly it is possible to write a

program whose I/O section varies, depending on whether the pro-
gram is used in a disk environment or in a paper-tape environment.

To do this, you might assign a flag called DORT as a disk I/O or
tape I/O indicator. If DORT is zero, the program will be assembled
for a disk environment; if DORT is nonzero, the program will be

assembled for a paper-tape environment. Fig. 2-1 shows the struc-

ture of this program's I/O section.

MACROS

You will often find the need to perform a particular task several
times within a program. Rather than writing out the sequence of
instructions for this task each time it is needed, you can write out
the sequence just once in one of two ways: as a subroutine or as
a macro. As most readers already know, a subroutine is a sequence
of instructions that appears just once in a program. Each time the

subroutine is "called," program control is transferred to the sub-
routine. When the subroutine has completed its task, a return in-

struction (RTS, in the 68000) transfers control back to the calling
program. Subroutines are discussed in detail in Chapter 3.

Like a subroutine, macros allow you to assign a name to an in-
struction sequence. Each time you use that name in an operand

field of your source program, the assembler will replace the macro
name with the associated sequence of instructions. Therein lies the
difference between a subroutine and a macro. The instructions in a

subroutine are invoked when the program is executed; the instruc-
tions in a macro are inserted into the program when the source pro-

38

IFEQ DORT DISK I/O STATEMENTS

DISKIO •

Fig. 2-1. Conditional assembly
chooses between disk I/O

and tape I/O.

ENDC

IFNE DORT TAPE I/O STATEMENTS
TAPEIO

ENDC

gram is assembled. You will not see a stand-alone macro sequence
in an object program, as you will a subroutine. Macros have the fol-

lowing advantages:

1. Shorter source programs.
2. Better program documentation.
3. Use of debugged instruction sequences. Once the macro has

been debugged, you are assured of an error-free instruction se-
quence every time you use the macro.

4. Easy to change. Change the macro definition and the assem-
bler will make the changes for you every time the macro is

used.
5. Macros can be used to establish macro Wmiries which one

programmer or a group of programmers can use in generating

programs.
6. Quicker execution. The microprocessor is not delayed by call

and return instructions, as it is for subroutines.

The disadvantages of macros are :

1. Repetition of the same instruction sequences, since the macro
is expanded every time it is used.

2. A single macro may create a lot of instructions.
3. Lack of standardization.

4. Possible effects on registers and status flags that may not be
clearly described.

Defining a Macro

Every macro definition consists of three parts:

1. Macro Header— The MACRO directive, with the macro name
in the label field.

2. Macro Body— The statements that constitute the macro code.
3. Macro Terminator— The ENDM directive, which marks the end

of the macro definition.

39

Fig. 2-2. Standard object listing format

40

The assembler allows you to pass up to nine parameters to the macro
by placing these parameters in the operand field of the macro call.

The assembler also allows you to define a macro that includes in-
structions with variable data-size codes!

One more macro-related directive that has not yet been mentioned
is MEXIT. This directive is used with conditional assembly state-

ments to cause all remaining statements in a macro to be skipped.

The Motorola MC68000 Cross Macro Assembler Reference Manual^
includes the full details on the use of macros with the 68000, so read-

ers who plan to use macros should refer to this document. Additional

information on macros can be found in Campbell-Kelly's book.^

LINE LISTING FORMAT

Fig. 2-2 shows the line format for object listings that will be
printed out by the assembler. The listing for each page may also
have a page header, comment lines, expansion lines, and error lines.

The final page of the listing will have a "total errors" line and the
symbol table.

REFERENCES

1. MC68000 Cross Macro Assembler Reference Manual. Phoenix, AZ: Motorola
Semiconductor Products, Inc., 1979.

2. Campbell-Kelly, M. "An Introduction to Macros." American Elsevner, 1973.
(A complete monograph on macros.)

41

CHAPTER 3

The 68000 Instruction Set

This chapter gives a detailed description of the 68000 instruction
set and its 14 addressing modes. Many books treat the instructions

individually, discussing them one by one in alphabetical order. Al-
though that approach has definite merit in a reference manual, it

tends to leave the reader somewhat bewildered (and probably
bored) after the fifth or sixth instruction. Here, instructions are

grouped by function, with similar instructions together. That is, add
instructions are grouped with subtract instructions, shift instructions
are grouped with rotate instructions, and so on. This approach is

intended to help you understand the instruction set, and how indi-

vidual instructions "fit together," rather than simply learning them
as disjointed entities.

Later on, after you have run a few programs, you will only have

to use the information in this chapter occasionally, to look up de-
tails about specific instructions. Once you feel comfortable with the

instruction set, most questions can be resolved by referring to Ap-
pendix D, where the instructions are summarized alphabetically.

INSTRUCTION FORMAT IN MEMORY

Instructions can occupy from one to five words in memory, as

shown in Fig. 3-1. The first word is an operation-code word, which

the manufacturers' literature refers to as an op-word. The op-word
contains the binary bit pattern that the 68000 decodes to determine
the instruction type, the operand addressing mode(s), and the length

of the instruction. Additional extension words are required for oper-
and addressing modes that use constants (immediate values), abso-
lute addresses, or displacement oflFsets. Therefore, the longest instruc-

42

tion would consist of an op-word followed by two pairs of extension
words— one pair for the source operand and the other for the desti-

nation operand.

Two-word immediate operands and two-word (or "long") abso-
lute addresses in an instruction will be assembled into hi^h-word/

OPERATION WORD
(FIRST WORD SPECIFIES OPERATION AND MODES)

IMMEDIATE OPERAND

 (IF ANY, ONE OR TWO WORDS)
SOURCE EFFECTIVE ADDRESS EXTENSION

 (IF ANY, ONE OR TWO WORDS)
DESTINATION EFFECTIVE ADDRESS EXTENSION

(IF ANY. ONE OR TWO WORDS)

Courtesy Motorola, Inc

I Fig. 3-1. Instruction format in memory.

j low-word order in memory. That is, if the high-order word of the
! operand is stored at ADDR, the low-order word will be stored at

ADDRH-2. This is the standard convention in the 68000, so any long-
word data or address operand referenced by your programs must

also be stored in high-word/ low-word order in memory.

ADDRESSING MODES

The 68000 has 14 operand addressing modes, seven more address-
ing modes than the Intel 8086 and four more than the Zilog Z8000,

giving it perhaps the most flexible addressing capability of any 16-
bit microprocessor on the market. As Table 3-1 shows, these 14
modes fall into six basic addressing groups— register direct, address
register indirect, absolute, program counter relative, immediate, and

implied. Table 3-1 also presents the formula by which the effective
address (the actual address of an operand) is calculated, the as-

sembler format for each operand that employs that mode, and the
number of extension words (if any) the mode adds to an instruction.
If you wish to know how a particular addressing mode affects the

execution time of an instruction, refer to Table B-1 in Appendix B.
If an operand in memory is being addressed (as it will if you use

any of the address register indirect, absolute, or program counter
relative modes) , you must ensure that the effective address does not
violate the addressing rules of the 68000. These rules are as follows :

1. Byte operands can be accessed from either an odd or even ad-
dress.

2. Word and long-word operands must he accessed from an even
address.

43

o
o
o 00
CO

0)

■o

o

(0
■o ■D

<

CO

(0

c
.2 0)
(0 "O

X > UJ

■2 X
CO

<

c c Q <

c c Q <
II II
< < LU LU

S .2

o,Q< QC

I I I 1- 1-

^< I -o <

■D

■o

+
+ <

C II

<

^.2: + +
c c ' c c
< < c < <
ii II II II
< < c < < LU LU < LU 111

C3)

W a?

c: _ _ "Too

^ i.±
.CO TJ T3
C3>.E .E

CO to w

CO ~ ~ <D OJ

E E

CO

t;; "P CL 0)
O CO -o c

CO

o Q. Q.T3
^ x: ^

^ ̂ $ ̂
o o o 0) 0) 0)
■D -D -O
c c c

S S B
w w w
O) O) O) <D O <D
CC DC QC

X X X X X X X X X X X
-a

Ii X X
z z

II II
< <
LU LU

CO

L.

CO

Q <D CD -•— ' -t—'
0) ̂ ̂ "5 o o
-5: CO CO

■D

+ +

o o
Q. CL

< <
LU LU

C3)
CO
CO

a?

11

Q> Q. 0)

QC CO -D

0) — CO _cO _cO

O QC QC

o '

X X X
X X

I?
xO

-.E

II i2

< <

I- I-
< <
Q Q

O)

C

(o

CO

2e

CO . 0? Q E

0, CO E -o p o

B So

C3) .

CO -H- CO CO

SB

"O

0)
Q.

ti

44

If you attempt to access a word or long-word operand using an odd
address, the 68000 will generate an address error exception (see
Chapter 7). These address boundary considerations are something

that programmers of 4-bit and 8-bit microprocessors never had to
contend with.

Most of the addressing mode descriptions in this chapter include
an example of the usage of the mode with the move instruction of
the 68000. The move instruction has the general format

MOVE.X (EA.sour.o),(EAaest. nation)

where the suffix ".X" represents the data size code (.B, .W, or .L,
per Chapter 2) for the data being moved. Note that the move in-

struction always has two operands— one operand addresses the mem-
ory location or register that contains the data to be moved (the

source), the other addresses the memory location or register that
the data is to be moved to (the destination) .

The move instruction is one of the most impressive in the reper-
toire of the 68000. It can move anything, from anywhere to any-

where. Depending on which modes are used for source and desti-
nation addressing, the move instruction can move data between two

registers, from register to memory, from memory to register, or di-
rectly from one memory location to another (without affecting any

register). It can also move an immediate value into a register or
memory location.

Register Direct Addressing

Register direct addressing fetches a data operand from (or loads
it into) either a data register or address register. For example, the
instruction

MOVE.L A0,D1

copies the 32-bit contents of address register AO into data register
Dl, without affecting the contents of AO. Note that register direct
addressing is used here to both fetch the source operand from AO
and to load it into destination register Dl.

Address Register Indirect Addressing

In these modes, the contents of an address register "points to" the
operand. That is, the specified address register holds a base address
which the 68000 will use to calculate the effective address of the

operand. (The operand will be a data value unless the instruction
is a jump or jump to subroutine, in which case the operand will be

an address.) The relationship between the base address and the ef-
fective address depends on which of five addressing modes is being

employed.
45

For the simplest of these five modes, called address register in-
direct addressing, the address register holds the eftective address

itself. For example, the instruction

MOVE.W (A0),D1

will load the low-order 16 bits of data register Dl with the word
whose memory address is in address register AO. Fig. 3-2 shows how
this instruction operates if AO points to location $53F00, and loca-

tion $53F00 contains the value $1C9A.

MOVE.W (AO).Dl
 ^ MEMORY

Fig. 3-2. Address register indirect addressing.

Indirect Addressing With Postincrement and Predecrement

Many applications involve operating on a block of contiguous data

in memory, such as a data table or a string. With most microproces-
sors, this involves accessing an operand and then incrementing or

decrementing the address pointer (depending on whether the next

operand lies higher or lower in memoiy). The 68000 frees the pro-
grammer from the increment/ decrement task, by providing post-

increment and predecrement modes with address register indirect
addressing.

The first of these modes, address register indirect with postincre-
ment, uses the operand, then adds 1, 2, or 4 to the address register.

The value that is added to the address— 1, 2, or 4— depends on

whether a byte (1), word (2), or long word (4) is being oper-
ated on. For example, if the source block is being pointed to by AO

and the destination block is being pointed to by Al, the instruction

MOVE.W (A0) + ,(A1)-|-

will copy one data word from the source block to the destination
block, then automatically increment each pointer by 2 (to point to
the next source and destination word locations) . Of course, this move
instruction can be used in a loop to transfer any number of data
words from one part of memory to another, in order of increasing

46

ADDRESS REGISTERS

AO I $00053FQ0

Al $00060000

$53EFE

$53F00
$53F02

$5FFFE
$60000

$60002

MEMORY

$1C9A

{A) Before executing MOVE.W {AO) -\-,{A1)

(B) After executing l\/IOVE.W (AO) +, {A1) +.

Fig. 3-3. Postincrementing an address register.

addresses. Fig. 3-3 shows how instruction MOVE.W (AO)-f ,(Al)-f-
operates if AQand Al initially point to locations $53F00 and $60000,
respectively, and source location $53F00 contains the value $1C9A.

A similar mode, address register indirect with predecrement, sub-
tracts 1, 2, or 4 from an address register before the register is used.

Therefore, this mode is also useful for moving blocks of data from
one area of memory to another, but the move is performed in order
of decreasing addresses. For example, the instruction

MOVE.W -(AO) -(A1)

will copy one data word from the source block to the destination
block, but decrement each pointer by 2 (to point to the next source
and destination word locations) before doing so.

As mentioned in Chapter 1, all eight address registers of the 68000
are available for use as stack pointers. One of these registers, A7,

47

acts as the system stack pointer (SP), which leaves the other seven
address registers (AO through A6) free for configuring user stacks
in memory. Therefore, the 68000 can maintain up to eight separate
user stacks in memory! From the preceding paragraphs you can see
that the postincrement and predecrement modes are useful for ma-

nipulating these stacks.

Since stacks "build" in the direction of address 0, the predecre-
ment mode is used to push a value onto the stack and the postincre-
ment mode is used to pull a value off of the stack. If address register

AO, for instance, is being employed as a user stack pointer, the in-
struction

MOVE.L DO,-(AO)

causes the 32-bit contents of DO to be pushed onto the stack, and the
instruction

MOVE.L (AO)+,DO

restores the 32-bit contents of DO from the stack. Incidentally, a
variation of the move instruction, called move multiple registers
(MOVEM) , is available for moving a group of registers to and from
a stack.

Indirect Addressing With Displacements and Indexes

At this point, we have described three of the five address register
indirect addressing modes. The remaining two modes support data
tables by permitting displacements and indexes to be added to the
address pointer.

One of these modes, address register indirect with displacement,

adds a 16-bit signed integer to the contents of an address register,
then uses the result to address an operand in memory. This mode
is especially useful for accessing a selected element in a list or table.

For these applications, the address register holds the starting ad-
dress of the table, and the displacement in the instruction specifies

the relative position of the element in the table.
The displacement is given in bytes, so for tables comprised of byte

data the displacement is simply the element number (0, 1, 2, etc.).

For tables comprised of word or long-word data, the displacement
must be an even-numbered integer that represents the element num-

ber multiplied by 2 or 4. For example, if address register AO holds

the starting address of a word-based table in memory, the instruction

MOVE.W 14(A0),D1

will load the value of the eighth element (Element 7) into the low

word of data register Dl. Fig. 3-4 shows how this instruction oper-
ates for a table that starts at location $53F00. Adding the displace-

48

MEMORY

$53F00

MOVE.W 14(A0).D1

$53F0E
Dl $1C9A $1C9A

ELEMENT 0
1

2

3

4

5

6

7

Fig. 3-4. Applying a displacement to an address register.

ment, decimal 14 (hex $E), to the starting address in AO yields an
effective address of $53F0E, which is assumed to contain the value
$1C9A.

Note that because the displacement is a 16-bit signed integer, the
address register indirect with displacement mode can span up to

32,767 bytes higher in memory, or up to 32,768 bytes lower in mem-
ory, than the address in the address register. If you are operating on

word or long-word data, these displacement limits translate to 16,383
words or 8191 long words forward, and to 16,384 words or 8192 long
words backward.

The final addressing mode of this group, address register indirect
with index, derives the effective address of the operand by adding

an 8-bit signed integer and the contents of an index register (a data
register or an address register) to an address register. Therefore, the
effective address equation looks like this:

EA= (An) -f (Ri) -fds

The assembler gives you the choice of applying the entire 32-bit
contents of the index register or just its low-order word, by append-

ing either an ".L" or a ".W" data size code to the index register sym-
bol. Either way, the size of the index register does not affect the

execution time of the instruction.

Because it offers two separate offsets, this particular addressing

mode is useful for accessing two-dimensional arrays. For such appli-
cations, an address register usually holds the starting address of the

array, and the displacement and index register provide row and
column offsets (or column and row offsets, depending on how the
array is structured). Normally, a data register holds the index (in

49

hytes) and a symbol is used to specify the displacement (also in
bytes) .

For example, suppose you have a 68000-based system that moni-
tors six different pressure valves in a chemical processing plant. This

system takes a reading of each valve once every half-hour, and re-

cords these readings in memory. In one week's time, these readings
will form an array that has 336 blocks (48 readings/ day for seven
days) of six elements each, for a total of 2016 data values. If the

starting address of the array is held in AO, the block displacement
(reading number times twelve) in DO and the valve number in the
symbol VALVE, the instruction

MOVE.W VALVE(A0,D0.W),D1

can be used to enter any selected pressure-valve reading into the
low word of data register Dl. In Fig. 3-5, this instruction is used
to extract the value of the third reading (Reading 2) of Valve 4
from an array that starts at location $53F00.

Absolute Data Addressing

In absolute data addressing, the effective address itself is speci-
fied as the operand. The 68000 has two absolute addressing modes—

absolute short addressing, in which the operand is a 16-bit address
(sign-extended to 32 bits), and absolute long addressing, in which
the operand is a full 32-bit address.

The absolute short-addressing mode allows you to access only
the lowest 32K bytes in memory (addresses 0 through $7FFF) or
the highest 32K bytes in memory (addresses $FF8000 through

$FFFFFF), whereas the absolute long-addressing mode allows you
to access any location in the 16M-byte addressing range of the 68000.
However, absolute short-addressed instructions occupy one less word

in memory, and execute in four less cycles, than absolute long-ad-
dressed instructions. With two separate absolute addressing modes,

the 68000 supports applications that need a very large addressing
space without penalizing the efficiency of applications that need only

a small addressing space. Of course, the large-address applications
will make use of absolute short addressing, too, to access frequently
used data and temporary data that is stored in the extreme 32K
bytes of memory.

For example, to load the word in location $3F00 into the low-
order half of data register Dl, we can use the instruction

MOVE.W $3F00,D1

which is the absolute short-addressed (2-word, 12-cycle) equivalent
of the absolute long-addressed (3-word, 16-cycle) instruction

MOVE.W $03F00,D1

50

$53F00

MOVE.W VALVE(A0,D0.W).D1

READING 335

Fig. 3-5. Extracting a data value from a two-dimensional array.

Note that the data size code (.VV, in this case) refers to the size of
the data being moved, rather than the length of the absolute address.

Quite often, the absolute address operand is specified as a label
rather than a hexadecimal number, as in the instruction

MOVE.L TABLE,AO

This instruction will load the contents of the long word starting at
TABLE into address register AO. (To load the address of TABLE
into AO, you must use either the immediate data addressing mode

51

—the description is upcoming— with the move instruction, or the
68000 load effective address instruction, LEA.)

Will the preceding move instruction translate address TABLE

into an absolute short address or an absolute long address? That is,
will the object code for the move instruction occupy two words in
memory and take 12 cycles to execute, or occupy three words in
memory and take 16 cycles to execute? The answer depends on
whether TABLE is located at a lower address or a higher address
than the move instruction. The rules are as follows:

• If TABLE has a lower address than the move instruction (a
backward reference is being made) , the assembler will generate
the appropriate absolute short or long address.

• If TABLE has a higher address than the move instruction (a

forward reference is being made) , and the instruction falls un-
der an ORG directive, the assembler will attempt to generate

an absolute short address. You can force the assembler to gen-
erate absolute long addresses for forward references by using

an ORG.L directive.

Note that the assembler generates absolute addresses for instructions
that are origined with an ORG directive. It will generate relative
addresses for instructions that are origined with an RORG directive.
With this fact in mind, let us move on to a discussion of relative
addressing.

Program Counter Relative Addressing

The program counter relative addressing modes are useful for de-

veloping position-independent, or "relocatable," programs. These are
programs that once written and assembled can be executed any-

where in the memory space. Programs sold in ROM, for instance,
are often relocatable.

With this form of addressing, the 68000 calculates the effective

address by adding a displacement value to the address contained
in the program counter. What address does the program counter
contain? It contains the address of one of the words in the instruc-

tion—an extension word that holds a signed displacement. There-
fore, program counter relative addressing is used to access operands

that are situated some number of bytes higher or lower in memory
than the current instruction.

The 68000 has two program counter relative addressing modes-
relative with displacement and relative with index. In the simpler

mode, relative with displacement, the effective address is the sum

of the address in the program counter and a sign-extended 16-bit
displacement in the extension word of the instruction. That is,

52

EA= (PC) +dio

Fortunately, with an assembler you need not speeify the displaee-
ment direetly; the assembler will caleulate it for you. For example,
the instruetion

MOVE.W LABEL,D1

will cause the assembler to calculate the displacement (in bytes)
between the extension word of the move instruction and location

LABEL, and store this displacement in the extension word. At exe-
cution time, the 68000 microprocessor will load the contents of lo-
cation LABEL into the low-order 16 bits of data register DL You

will note that because the displacement is a 16-bit signed integer,
LABEL must be no more than 16,383 words higher in memory, or
no more than 16,384 words lower in memory, than the extension
word of the instruction.

Incidentally, note that the preceding move instruction gives no

indication as to whether the assembler will use program counter rela-
tive addressing or absolute addressing to calculate the effective ad-

dress of LABEL. The answer is, quite simply, that labels preceded
hy an RORG directive will cause the assembler to generate program
counter relative addressing, whereas labels preceded by an ORG
directive will cause the assembler to generate absolute addressing.

The assembler does not restrict you to labels in order to specify

a relative address. You may, if you wish, specify the address in re-
lation to the location counter of the assembler (see the Assembler

Directives section of Chapter 2) . The location counter is referenced

by using an asterisk (*) character in the operand field. For exam-
ple, the instruction

JMP *+10

causes program control to be transferred to the instruction that lies

10 bytes (five^words) past the extension word of this jump instruc-
tion. However, if at all possible, references to the location counter

should be avoided and labeled references should be used instead.

With the more complex form of program counter relative address-
ing, relative with index, the effective address is the sum of three

terms— the address of the extension word in the program counter,
a sign-extended 8-bit displacement integer in the extension word,
and the contents of an index register (either a data register or an
address register). That is,

EA= (PC) + (Ri) + d8

This mode is particularly useful for reading values from a list or
data table. For such applications, the sum of the program counter

53

MEMORY

PC POINTS HERE-

OP WORD
EXT. WORD

<> <>

START'^IG ADDRESS OF DATA TABLE (PC + dfi)

DATA TABLE

DESIRED DATA IN TABLE (PC + Ri + dg)

Fig. 3-6. Program counter relative with index addressing.

and 8-bit displacement addresses the beginning of the table, and the
index register provides the offset to the desired data element. This

is illustrated in Fig. 3-6.
You can use either the low word of the index register or its entire

32-bit contents by appending a .W or .L data size code to the reg-
ister symbol in the instruction. (As usual, omitting the data size

code defaults to word size.) As an example, if a data table starts
at location TABLE, the instruction

MOVE.W TABLE{D0.L),D1

will cause the assembler to calculate the displacement between the
extension word of the instruction and location TABLE, and use this

displacement to form, the extension word. At execution time, the

68000 microprocessor will add the 32-bit contents of data register
DO to the calculated starting address of the data table, then load the

16-bit contents of the memory location addressed by the result into
the low-order 16 bits of data register Dl. Because the displacement
is an 8-bit signed integer, TABLE must be no more than 63 words

higher in memory, or 64 words lower in memory, than the exten-
sion word of the instruction.

Immediate Data Addressing

Immediate data addressing is used to specify a constant value
as a source operand. This value will be contained in the instruction,

rather than in a register or a memory location. There are two im-

54

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 BYTE

OR
WORD

OR HIGH ORDER
 LONG WORD

LOW ORDER

Courtesy Motorola, Inc

Fig. 3-7. Extension word formats for immediate data.

mediate data addressing modes, called immediate and quick imme-
diate.

The immediate mode allows you to specify a byte, word, or long-
word constant. If the constant is a byte or a word value, it will re-

side in an extension word that follows the operation word. If the

constant is a long-word value, it will reside in two extension words
that follow the operation word. The formats of these words are

shown in Fig. 3-7.
Further, the data will be sign-extended if the destination is an

address register, but will not be sign-extended if the destination is
a data register. For example, the instruction

MOVE.W #$834E,D0

loads the value $834E into the low word of data register DO, with-
out affecting the high word. However, the similar instruction

MOVE.W #$834E,A0

loads the value $FFFF834E into address register AO, affecting all
32 bits.

The quick immediate mode can be used with only three instruc-
tions—add quick (ADDQ), subtract quick (SUBQ), and move quick

(MOVEQ). The ADDQ and SUBQ instructions allow an unsigned
integer value between 1 and 8 to be added to or subtracted from a
register or memory location. These are the increment and decrement
instructions of the 68000. The MOVEQ instruction allows a signed,

byte-length value (-128 to +127) to be loaded into a data register;
the data is sign-extended, so all 32 bits of the register are affected.
For example, the instruction

MOVEQ #-2,D0

causes the value $FFFFFFFE (the 2s-complement representation

of -2, sign-extended to a long word) to be loaded into data register

DO. These three instructions are characterized as "quick" because
they occupy only one word in memory (the immediate data is em-

55

bedded in the operation word) and, therefore, execute much faster
than their immediate mode equivalents.

Implied Addressing

Some instructions use a certain internal register to perform an
operation, without identifying that register in the operand field.
That is, the addressing of these registers is implied. For example,

the jump (JMP) instruction always loads an address into the pro-
gram counter, although the program counter is not explicitly iden-
tified as a destination register in the instruction. Besides the pro-
gram counter (PC), the system stack pointer (SP), the user stack

pointer (USP), supervisor stack pointer (SSP), and status register

(SR) are also used as implied registers. Table 3-2 lists the instruc-
tions that use implied addressing, and the registers implied.

Addressing Modes That Sign-Extend Addresses or Data

Although the data registers and address registers of the 68000 are

general-purpose in nature, the data registers are primarily used to
hold data and the address registers are primarily used to hold 32-bit
memory addresses. For this reason, the addressing modes do not

sign-extend information loaded into data registers, hut ahvays sign-
extend information loaded into address registers. Table 3-3 sum-

marizes the addressing modes that cause information to be sign-
extended. Later in this chapter we will discuss the instructions that

cause information to be sign-extended.

EFFECTIVE ADDRESSING MODE CATEGORIES

As you have seen in the preceding portion of this chapter, each
of the 14 addressing modes of the 68000 is designed to perform a
particular addressing function. Some modes can be used to access
an operand in a register, others can be used to access an operand
at a known memory address, or at a given displacement from a
known memory address, and so on. Further, some modes can be
used to refer to any of several information types (e.g., the address

register indirect modes can access either data or addresses in mem-

ory), whereas other modes have more restricted usage (e.g., the ad-
dress register direct mode can refer to an address operand, but not

to a data operand). For this reason, the individual addressing modes
can be characterized in terms of four different addressing categories,
as follows:

1. Data—li an effective addressing mode can be used to refer to

data operands, it is considered a data addressing mode.

2. Memory— U an effective address mode can be used to refer to

memory operands, it is considered a memory addressing mode.

56

Table 3-2. Implicit Instructions
Instruction Implied Registerts)

Dr3nOil v-»UI lUI IIUI lal ̂ DO»_</, CJlallLfll rMWciyo ^DnrN^

Qronrh to c^iihrniitinp ^R'^R^ PP QP

f^biorU RfiniQtpr AnAin<%t Rniinri<5 /riHK\ On"Or\ llt^UIOLCI AA^CIIIIOl D^UIILJo ^Vi/lirX^
CCp CR
oor , on

Toct rinnHitinn Dprrpmpnt anrl Rranrh ^DRrr^ fool V^Ul Idl IILII 1, L^CV^I 1 1 1 allVJ LJiailV^II \LJLJK^Kjf pp.

ciinnpfi Dividp ̂ DI\/S^ SSP SR

Unsigned Divide (DIVU) SSP, SR

PC

liimn tn Riihrnutinp MSR^ PC, SP

1 ink and Allocate ^LINK^ SP

on
KAriMo QtatiiQ Rpnictpr /MOWF ^R\ iviuvc olaiuo ncyioici \iviwvc. o

CiR

on

mOve user oidOK roinier ^ivnw/vci uor^ 1 IQP
Uor

Diich Pffpoti\/o A/HHrocc ^PPA\ lUoll CllcOllVC MUUIcoo \rCr^l

c;p

Or
neiurn rrom cxcepiion i c) PP Cp OR rO, or, on
neiur n ano nesiore oonaiiion v^ooeo i PP QP QR r*^, Or, on

Rptiirn Frnm Siiihrniitinp ^RTS^ PC, SP

Trap (TRAP) SSP, SR

Trap on Overflow (TRAPV) SSP, SR

Unlink (UNLK)
SP
Courtesy Motorola, Inc.

3. Control— li an effective addressing mode can be used to refer

to memory operands without an associated size, it is consid-
ered a control addressing mode.

4. Alterable— If an effective addressing mode can be used to refer
to alterable (writable) operands, it is considered an alterable
addressing mode.

Table 3-4 lists the effective addressing mode categories for each
of the addressing modes of the 68000. This table will be important

to you as a 68000 programmer, because many of the instructions re-
strict operands to certain categories, or combinations of categories.

For example, the add quick instruction has the general form

ADDQ #<data>,<ea>

in which only alterable addressing modes are allowed in the effec-
tive address field. This means that any addressing mode except pro-

gram counter relative and immediate can be used in the effective

57

Table 3-3.
Addressing Modes That Sign-Extend Addresses or Data

Addressing Modes Type of Sign-Extension

Address register direct (as a
destination).

Word address extended to long word.

Address register indirect
with displacement.

Word displacement extended to long
word.

Address register indirect
with index.

1. Byte displacement extended to long
word.

2 Word indpx pxtpndpd to lonn word

Absolute short address. Word address extended to long word.

Program counter relative
with displacement.

Word displacement extended to long
word.

Program counter relative
with index.

1. Byte displacement extended to long
word.

2. Word index extended to long word.

address field. Therefore, ADDQ #2,A0 is a legal instruction, but
ADDQ #2,#2 is not legal (for obvious reasons, in this case).

An instruction that can use a combination of categories in an op-
erand field is the move instruction, which has the general form

MOVE <ea>,<ea>

For this instruction, all addressing modes are allowed for the source

field, unless the operation size is byte (in which case the address

register direct addressing mode is not allowed) . For the destination

field, only "data alterable" addressing modes are allowed. This means
that for the destination field, the allowable addressing modes are

those which are categorized as both a data addressing mode and an

alterable addressing mode. So the data alterable addressing modes

include data register direct, the address register indirects, and the

absolute modes. Conversely, the address register direct, program

counter relative, and immediate modes are excluded from the set
of data alterable modes.

Since address register direct is not a data alterable addressing

mode, may we presume that nothing can be moved into an address

register? Of course not; there must be some way to initialize these

registers! The answer is that nothing can be moved into an address

register using a MOVE instruction, but the 68000 has another in-
struction, called move address {MOVE A), that can be used for this

purpose. Incidentally, although the manufacturers' 68000 users' man- uals define MOVE and MOVEA as two distinct instructions, most

68000 assemblers (including those from Motorola) permit an ad-

58

X
CD

c

>»

V)

©

E

0)
(0 (0

<

O

O) 0)
(D

o

o>

•o

o

c
w

a>

■o ■o

<

o
0)

CO

o
o
w
o
c
w 0)

c c
Q < <

X

X X
I

■o

xxxxxxxxx

X X X X X X

xxxxxxxxxx

X xxxxxxxxxx

CD E c: 2 Q) o

2 o o
(D ™ X

c
^ Q. Q.-D
O J-

^ $ $ ̂
<D O O O O O .

52 ~ ~ .± ± Q O) 'D)io X3 T3 TJ T3 r: 5

c
CD
E
<D

O i5 X

Q. <D

W -D -•— • -♦— •

i_ <D <D
a)«5<D<Da)<D<Dtrt^

"O 0)0)D)D)0)W CO -aCDCDCDCDCDJD^
<a:Qca:a:a:<<

CD CD <D

> > 42

CO

i5 i5 T3
0) 0) 0

O O 1 CL Q. £

59

Table 3-5. The 68000 Instruction Set

Mnoinonic Description

ABCD Add Decimal
With Extend

ADD Add
AND Logical and
ASL Arithmetic Shift

Left
ASR Arithmetic Shift

Right

Bcc Branch
Conditionally

BCHG Bit Test and
Change

BCLR Bit Test and
Clear

BRA Branch Always
BSET Bit Test and Set
BSR Branch to

Subroutine
BTST Bit Test

CHK Check Register
Against Bounds

CLR Clear Operand
CMP Compare

DBcc Test Condition,
Decrement and
Branch

DIVS Signed Divide
DIVU Unsigned Divide

EOR Exclusive-OR
EXG Exchange

Registers
EXT Sign Extend

JMP
Jump

JSR Jump to
Siihrniitlnp

LEA Load Effective
Address

LINK Link Stack
LSL Logical Shift

Left
LSR Logical Shift

Right

MOVE Move

Mnenrionic DescriDtlon

IVI W V LIVl IVIUVc IVIUIlipic

Rpni<5tpr<i
MOVER Movp Pprinhpral

Data
MULS Signed Multiply
MULL) Unsigned Multiply

NBCD
With pYtPnH

NEC
Negate

NOP No Operation
NOT

One's

Complement

OR Logical or
PEA Push Effective

Address

RESET Rpcpt Fytprnal

Dpvirp*?
\~y \^ V 1 o o

ROL Rntatp Lpft
Withniit Fvtpnfi

ROR Rntatp Rinht
Withniit Fvtpnfi

Rntatp 1 pft With riL'lCllC 1— CI I Willi
F YtpnH l^A ICI \\i

ROXR Rotatp Rinht
With FYtpnd Willi I^A Id lU

RTF Rptiirn Frnm nc I u 1 1 1 1 1 L/i 1 1
Fv^or»tinn CAOcpilUI 1

RTR Return and
Restore

RTS Return From
Subroutine

SBCD Siihtrart Dpcimal
With Fxtpnri Willi L.ALwllU

^pt rinnrlitinnfll O v7 I 1 l\<l 1 L 1 1 1 d 1
STOP

Stop

SUB Subtract
SWAP Swap Data

Register Halves

TA*^

Tpot and Spt
1 wO L Cll IvJ Od

Operand TRAP

Trap

TRAPV Trap on Overflow
1 o 1 Toct 1 col

UNLK Unlink

Courtesy Motorola, Inc.
60

dress register to be specified in the destination field of a MOVE

instruction. These assemblers will simply interpret your MOVE in-
struction as a MOVEA, and generate the object code accordingly.

INSTRUCTION TYPES

As mentioned previously, the 68000 has 56 basic instruction types.
The assembler mnemonics and the description of these instructions

are summarized in Table 3-5. Further, eight of these instructions
have variations to perform special operations; the variations are
summarized in Table 3-6.

Table 3-6. Variations of Instruction Types

Instruction
Tvoe Variation Description

ADD ADD Add
ADDA Add Address
ADDQ Add Quick
ADDI Add Immediate
ADDX Add With Extend

AND AND Logical and ANDI AND Immediate

CMP CMP Compare
CMPA Compare Address
CMPM V./IVI 1 ivi Onmnarp Mpmr»r\/
PMPI v./ IVI 1 1 \jKj\\\yjo.\\i lilllllcUldiCi

EOR EOR FYPlll^ivP-nR
EORI Exclusive-OR Immediate

MOVE MOVE Move
MOVEA Move Address
MOVED Move Quick
MOVE from SR Move From Status Register
MOVE to SR Move to Status Register
MOVE to OCR Move to Condition Codes
MOVE USP Move User Stack Pointer

NEC NEG
Negate

NEGX Negate With Extend

OR OR Logical or ORI OR Immediate

SUB SUB Subtract
SUBA Subtract Address
SUBI Subtract Immediate
SUBQ Subtract Quick
SUBX Subtract With Extend

Courtesy Motorola, Inc.

61

The instruction set can be divided into eight functional groups.
Here is a Hsting of the groups, and a general description of what
functions they perform:

1. Data movement instructions move information between mem-

ory locations, I/O devices, and general-purpose registers, in
any combination.

2. Integer arithmetic instructions perform single-precision and
multiple-precision arithmetic operations on binary numbers.

3. Logical instructions perform logical and, or and Exclusive-OR
operations on memory locations and registers.

4. Shift and rotate instructions shift and rotate the contents of
memory locations and registers.

5. Bit manipulation instructions test the state of individual bits,
and perform some operation based on the result of that test.

6. Binari/-coded-decimal (BCD) instructions add and subtract
BCD digits.

7. Prof^ram control instructions perform branches, jumps, and sub-
routine calls, to control the sequence of program execution.

8. System control instructions include privileged instructions,

trap-generating instructions, and instructions that use or modify
the status register.

In this chapter, we will describe the 68000 instruction set by
groups, in the order just presented. Let us begin by describing the
data movement instructions, which include the now-familiar MOVE
instruction.

DATA MOVEMENT INSTRUCTIONS

The data movement instructions (Table 3-7) are used to transfer
information between memory and the data and address registers.
This group actually includes two additional instructions, link
(LINK) and unlink (UNLK), but these are primarily used with

subroutines, so they will be described separately, following the dis-
cussion of the program control instructions.

Move Instruction

The fundamental instruction in this group is the move (MOVE)

instruction, which can be used to transfer byte, word, or long-word
data between two memory locations, between a memory location
and a data register, or between two data registers.

With the 68000 in the user state, the move instruction allows you

to update the condition code register (MOVE <ea>,CCR) or read
the entire status register (MOVE SR,<ea>). In the supervisor
state, the move instruction allows you to update the status register

62

c
.2 w

lo oo

■o

S a, 2 N

O

0)

<

< <
iS en 3 CL CO o a: CO c c/)
Q O CA) Q < =)

= CO CO DC C/3 C
< Q Q C/D 3 <

CD
CD CD CD C\J CvJ T- CO CO

CN CM

C CL
< CO

S O QC A V O C/D ̂ a' a a V
CO CO CO _
0 0) CD DC CO c V V V CO 3 <
UJ LU LLI LLI LLI LU
>>>>>>
oooooo

CvJ CvJ CO CO

A A
2 5

CO CO

■- CD

V V

LU LU
> >
OO

< c

-D Q

c

Q -o

CsJ CVJ CO CO
CD

<2:

X<

Q -D Q. CL
LU LU
> >
OO

CO

- > CO

5 2 w O Q.j3

CO jc

63

i

(MOVE <ea>,SR), read the user stack pointer (MOVE USP,An),
or write to the user stack pointer (MOVE An,USP). In the pre-

ceding effective address fields (those labeled as <ea>), an address
register may not be used as a source or destination.

Using Move With Stacks

The move instruction can also be used to transfer data to and

from stacks in memory. These include the system stacks (the super-
visor stack and the user stack) and user-defined stacks. Since stacks

build toward memory location 0, the address register indirect with
predecrement mode is employed to push data onto the stack. For
example, the instruction

MOVE DO,-(SP)

pushes the low word of DO onto the active system stack. Conversely,
the address register indirect with postincrement mode is employed
to pull data from the stack, so the instruction

MOVE (SP)+,DO

retrieves the next word from the active system stack, and loads it
into the low word of DO.

Move Multiple Registers (MOVEM) Instruction

Quite often you will want to move the contents of more than one
register. The most common example of this is saving a number of

general-purpose registers on the stack while a subroutine is being
executed, to make that subroutine reentrant. A subroutine is re-

entrant if it can be interrupted and reentered by the interrupting

program.
The move multiple registers (MOVEM) instruction can be used

to transfer up to 16 registers (data registers D0-D7 and address
registers A0-A7) to or from memory. Register-to-memory transfers
have the format

MOVEM <list>,<ea>

and memory-to-register transfers have the format
MOVEM <ea>,<list>

In both cases, <list> represents the list of registers to be moved.
The assembler allows registers to be listed in two ways. One way

is to list individual register names, separated by slash (/) charac-
ters. For example, the instruction

MOVEM D3/D4/D5/A1,$53F00

moves the low words of D3, D4, D5, and Al into the four consecu-
tive words that start at location $53F00. (In this case, the registers

64

will be stored in the order they are listed in the instruction, but that

won't always be true; we will discuss this point shortly.)
If the register list includes consecutive data or address registers,

the assembler permits you to list just the first and last registers, sep-

arated by a hyphen (-). Therefore, the preceding example could
also be written as

MOVEM D3-D5/ A1 ,$53F00

The MOVEM instruction always transfers register contents to and
from memory in a predetermined sequence, regardless of the order
used to specify them in the register list. For address register indirect
with predecrement addressing, registers are transferred in the order
A7 through AO, then D7 through DO. However, for all control modes,

and for address register indirect with postincrement addressing, reg-
isters are transferred in the reverse order— DO through D7, then AO

through A7. These differences allow you to build stacks and lists in

one direction and access them in the opposite direction. Fig. 3-8
shows some examples.

Address-Moving Instructions (MOVEA, LEA, PEA)

The 68000 has three instructions that are specifically designed to
transfer addresses, rather than data. Two of these instructions, move

address {MOVEA) and load elective address {LEA), are similar
and can be easily confused by programmers. Both cause an address
to be loaded into an address register, but whereas LEA loads the
effective address of the referenced operand (a memory location),
MOVEA loads the contents of the referenced operand (a memory

location, a register, or an immediate value), and assumes that it con-
stitutes an address. Further, LEA always obtains a 32-bit address,

while MOVEA can access either a 16-bit word address (loaded sign-
extended to 32 bits) or a 32-bit long address. Fig. 3-9 shows two ex-

amples of the LEA instruction.

As you can s^e, LEA and MOVEA are extremely useful instruc-
tions. If your program requires a certain calculated address in sev-

eral different instructions, you can use LEA to calculate the address
just once, and place that address in an address register. Thereafter,
each reference to the addressed operand can be made with address

register indirect addressing. This will not only save programming
time, but v/ill also generate programs that occupy less space in

memory and execute faster. How is that so? Because address reg-
ister indirect addressing adds no extension words to an instruction,

which will conserve memory space. It also executes four to eight
cycles faster than the address register indirect with displacement

or offset, absolute or program counter relative mode used to pre-
calculate the address.

65

MOVEM D3-D5/A1 -(SP)

D D D D D D D D A A A A A A A A
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

-7

SP

AFTER -
EXECUTION

SP

BEFORE -

EXECUTION

D3

D4 D5

Al

(A) Stacking register contents, with predecrement addressing.

MOVEM (SP)+.A1/D3-D5

D D D D D D D D A A A A A A A A
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

SP

BEFORE -
EXECUTION

SP

AFTER -
EXECUTION

D3

D4 D5

Al

(8) Unstacking register contents, with postincrement addressing.

MOVEM D3-D5/A1.$53F00

D D D D D D D D A A A A A A A A
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

$53F00

$53F02

$53F04
$53F06

D3

D4 D5 Al

(C) Storing register contents, with absolute addressing.

Fig. 3-8. Examples of the MOVEM Instruction.

MOVEA is useful for accessing addresses that are stored in mem-
ory. For example, if you have a linked list in memory in which each

node begins with a pointer to the next node, the address of the sec-
ond node could be obtained with the instruction

MOVEA.L LIST,AO

and the address of the third and successive nodes could be obtained
with the instruction

MOVEA.L {AO),AO

Note, incidentally, that a MOVEA instruction whose source op-
erand is an immediate label is equivalent to an LEA instruction..

66

That is, MOVEA.L #LABEL,AO and LEA LABEL,AO are equiva-
lent instructions. Although both instructions will take the same

amount of time to execute (12 cycles), LEA is preferred for this

application because it is more readily understandable.

The last of these three address-moving instructions, push effective
address (PEA), is similar to LEA, insofar as it moves a computed
effective address, rather than the contents of the addressed location.

With PEA, however, the address is pushed onto the active system

REGISTER AO 00053F00
CONTENTS
BEFORE
LEA Al xxxxxxxx

AO 00053F00

DO

Al

00008000

XXXXXXXX

INSTRUCTION LEA (AO),Al

EXECUTION 00053F00

REGISTER AO 00053F00
CONTENTS
AFTER
LEA Al 00053F00

LEA 4(A0,D0),A1

00053F00
FFFF8000
00000004
10004BF04

AO 00053F00

DO 00008000

Al
0004BF04

Fig. 3-9. Examples of the LEA instruction.

stack (user stack or supervisor stack) . The PEA instruction is handy

for passing parameters to a subroutine, by pushing the address of a

parameter— or the starting address of several consecutively stored
parameters— onto the stack. For example, the push-then-call opera-

tions may be performed with this instruction sequence:

PEA PARAM
JSR SUBR

Because the JSR pushes a 4-byte return address onto the stack after
the PEA has pushed its 4-byte address onto the stack, the parameter
address must be accessed by skipping over the return address, as in
this instruction:

MOVEA.L 4{SP),A0

67

With the parameter address removed from the stack, the subroutine

should "clean up" the stack, by moving the return address one long
word higher in memory and then updating the stack pointer. Both of
these tasks can be performed with one instruction,

MOVE.L (SP)+,(SP)

Communicating With 8-Bit Peripherals, Using MOVER

As was mentioned in Chapter 1, the 68000 can be interfaced to

older 8-bit synchronous devices as well as to new 16-bit asynchro-
nous devices, and has separate control lines for each type of device.

Readers who have programmed 8-bit systems know that the attached

peripheral devices usually have registers which "occupy" a number
of consecutive bytes in memory.

The move peripheral data (MOVEP) instruction is designed to
transfer information between a 68000 data register and an attached

8-bit peripheral device, in "bursts" of two or four bytes. In the 68000
system, 8-bit peripherals must be connected to either the high eight
bits of the data bus (lines D8-D15) or the low eight bits of the data
bus (lines D0-D7). The MOVEP instruction communicates with pe-

ripherals on the high half of the bus by issuing even-numbered ad-
dresses, and communicates with peripherals on the low half of the

bus by issuing odd-numbered addresses. In a memory map, these

peripherals would "occupy" alternate bytes in memory—consecutive
even bytes or consecutive odd bytes.

Two-byte transfers are made by specifying a word operand
(MOVEP or MOVEP.W) and 4-byte transfers are made by specify-

ing a long-word operand (MOVEP.L). Peripherals must be ad- i
dressed using the address register indirect with displacement mode. ,

Fig. 3-10 shows two examples of the MOVEP instruction— a long)
transfer with an even address and a word transfer with an odd ad- i
dress. Note, incidentally, that MOVEP is the only 68000 instruction

that permits you to use an odd address with a word or long-word <
operand!

The execution time of the MOVEP instruction depends on whether

data is being transferred to/ from an asynchronous device or a syn- :
chronous device. Transfers to and from asynchronous devices will '

take 16 CLK cycles for a two-byte transfer or 24 cycles for a four- '

byte transfer. These values are taken from Table B-12 in Appendix .
B. Transfers to or from synchronous devices will take quite a bit J

longer, because the 68000 must synchronize with a clock that is j

running at one- tenth the speed of CLK. Chapters 6 and 8 provide '
more information on this subject.

68

AO

MOVER L D0 2(A0)

31 24

30 I HI ORDER

23 16 15 8 7 0

MID UPPER MID LOWER LOWORDER

EVEN ODD

HI ORDER

MID UPPER

MID LOWER

LUW UKUlK

{A) Long transfer with an even address.

MOVEP.W D0,2(A0)

31 24 23 16 15 8 7 0

D0| HI-ORDER LOW-ORDER

EVEN ODD

HI ORDER

LOW-ORDER

-AO

(B) Word transfer with an odd address.

Fig. 3-10. Byte transfers with MOVER.

Move Quick (MOVEQ), a Handy Move-Immediate

Because programmers often need to operate with a small constant,

the designers of the 68000 provided three "quick" instructions— move
quick, add quick, and subtract quick— that allow you to specify such
a constant in the op-word. The first of these instructions, move quick
(MOVEQ) , causes a specified byte-length value to be sign-extended
to 32 bits and loaded into a data register. Because the constant is

eight bits long,* any integer value between —128 and -+-127 can be
moved into a data register.

The MOVEQ instruction occupies only one word in memory and

executes in four cycles. By contrast, its move-immediate counterpart

(MOVE.L #ds,Dn) occupies two words in memor\' and executes in
20 cycles. Most assemblers, including those from Motorola, take ad-

vantage of these savangs by actually interpreting a properly config-
ured move-immediate instruction as a MOVEQ, and generating the

object code accordingly.

Register Swap (SWAP) and Exchange (EXG) Instructions

These two similar instructions have very different uses. The sivap

register halves (SWAP) instruction exchanges the high-order and
69

low-order 16 bits of a 32-bit data register. This instruction provides
access to the contents of the upper word of a register, and is neces-

sary because (as you will recall) word operations are always per-
formed on the lower word. Similarly, SWAP can be used to access

the upper two bytes of a data register. SWAP alone will set up ac-

cess to the mid-upper byte; a SWAP plus a rotate will set up access
to the high-order byte.

The exchange registers (EXG) instruction exchanges the entire
32 bits of two registers. It can have three formats:

1. To exchange two data registers, use EXG Dx,Dy.
2. To exchange two address registers, use EXG Ax,Ay.
3. To exchange a data register and an address register, use EXG

Dx,Ay.

The No-Operation (NOP) Instruction

The no-operation (NOP) instruction is a simple one-word implied

addressing instruction that is generally used only during program ■
development. The NOP instruction performs no operation— it does
not alter any status flags, registers (other than the program counter),

or memory locations, but it does perform the very useful function •
of reserving space in memory. !

Programmers often code NOPs into a source program being de- 5
veloped, to leave room for instructions that may have to be added i

later. Since each NOP instruction occupies only one word in mem-
ory, at least two NOPs (preferably three NOPs) should be inserted '

at the spot where space is to be reserved.
NOP instructions may also be inserted into object programs, to

replace instructions that have been deleted, so that the program -
does not have to be reassembled. In this case, you should replace '
each word of the deleted instruction with $4E71, the hexadecimal «
value that represents a NOP instruction.

INTEGER ARITHMETIC INSTRUCTIONS \

The 68000 can add, subtract, multiply, divide, and compare two i

binary operands. It can also clear, test, sign-extend, and negate (2s- j
complement) a single, specified operand. The instructions that per-

form these tasks are summarized in Table 3-8. '

Add Instructions -

There are five instructions that can be used to add binary num-
bers. The first of these, add binary (ADD), adds two byte, word,

or long-word data operands. Because the operands are assumed to |l
be d/Jta values, one must be in a data register; the other may be in

70

a memory location, an address register (unless byte operands are
being added), or another data register. The ADD instruction can
affect all five condition codes, as follows:

1. Carry (C) is set if the result cannot be contained in the desti-
nation operand; otherwise C is cleared.

2. Overflow (V) is set if two like-signed numbers (both positive
or both negative) are added and the result exceeds the oper-

and's 2s-complement range of numbers, which causes the sign
bit to be changed; otherwise V is cleared.

3. Zero (Z) is set if the result is zero; otherwise Z is cleared.
4. Negative (N) is set if the sign bit of the result is a logic 1;

otherwise N is cleared.

5. Extend (X) is set to the same state as the carry (C) bit.

For add operations, the status of the V and N flags is pertinent

only if signed numbers are being added. Incidentally, if the desti-
nation operand is an address register, the condition codes are not

affected. In fact, the assembler recognizes this form of the add in-
struction as a variation, called add address (ADDA).

The ADD instruction is useful for adding two byte, word, or long-
word operands, if at least one of the operands lies in a data register.

However, many applications involve adding multiple-precision op-
erands, or operands that are both contained in memory. For these

applications, the 68000 has an instruction, add extended (ADDX),

that adds the contents of two data registers or two memory loca-
tions. The ADDX instruction affects the C, V, N, and X flags in the

same way the ADD instruction does. However, with ADDX, zero
(Z) is cleared if the result is nonzero; otherwise Z is unaffected!
This feature is very handy in multiprecision operations, because it

causes Z to reflect the zero/nonzero status of an entire add opera-
tion, rather than the status of just the high-order term.

If the operands are in data registers, the ADDX instruction is

normally preceded by an ADD instruction. For example, the follow-
ing sequence adds a 64-bit integer in DO and Dl to another 64-bit

integer in D2 and D3:

ADD.L D0,D2 Add low 32 bits.
ADDX.L D1,D3 Add high 32 bits.

If the operands are in memory, you must clear X and set Z before
adding them (remember, Z will remain set if each subsequent add

produces a zero result). Memory-to-memory adds always use pre-
decrement addressing, so the address registers must initially point

one byte, word, or long-word higher in memory than the low-order
operands. For example, if AO and Al point to two 64-bit operands
in memory, these operands could be added with this sequence:

71

<

00

CO
©

.2 w

c o oO O

n

0)

= c

<Q

c

c

c<

Q I

S N

o

CsJ C\J coco
coco

aSaS

CO
CD

CsiCM
COCO
coco

CO CO CO
CO

CO
CO

CO

CO
CO

0)

ll

(A
<

Q (0

^ V

CO -
QQ

<<

<

Q I

XX
QQ
QQ
<< o

<

o

72

00

■ CO

0)
n
(0

o « * o o
o « 1 o o

1 *

0
CO

0 0

ab

<

ab

r-

0

CO

0 c
c c

03

O
Q<

< O <
O 1

0 0

"b

n n n $
CO CO

CO CO

o CD
0

k-
0

k-
0

o —
<

—
<

T—

s

—
< <

(0

CO CO CO
CO CO

Q)

CO

■»->

CO cO

= c

■a

c<

CO

rrt

"D

L— J (—J Lj
<Q

=«=

LJ 1
LJ LJ O

E

o>

c
CO

to

CM

C\|

CVJCM
CM CM

CM CM
CM

CO

CO

COCO
CM CO CO

COCO CO

"D ■D

CO
CO

CO

cd"
cd"

coco"

cd"
cd"

C30

cd"

cd"

O cxf CXD
OOOD

oo"

ao

00 CO

00

to

'0)C0

c c A <
1

to ̂

£E Q

c A

<

1

#d
,<
ea
>

Q

#d
,<
ea

U

<e
a>
,

<e
a>

X

<e
a>

<e
a>
,D

Dn
,<
ea

A

<e
a>
,

X
Q 1

X X

<e
a>

<e
a>

te,
the

acJd

a
value

fro

_i o CQCQ CQ m CD CQCQ
CO

h-

^6

111 LU ZD3 ZD 3 3 Z)3 <
co

£0
z

•z

coco
CO

CO CO COCO

1-

size
i:

rand,
v

.2 a.

o
X < O X

.l

_J o
CO

m m CQ CQ
CO

Ze Z) 111 LU
z>

3 3 3 <
co

z z
CO CO CO CO CO

1-

1-

No
te
s:

(1)

(2)

73

MOVE #4,CCR Make Z = 1, all other bits = 0.
ADDX.L -(AO) -(A1) Add low 32 bits.
ADDX.L -(AO) -(A1) Add high 32 bits.

Fig. 3-11 shows the arrangement of the operands in memory, and
how the pointers are affected by the addition operation.

MEMORY

Al

AFTER - ADDITION

Al
BEFORE
ADDITION

AO

AFTER - ADDITION

AO

BEFORE
ADDITION

HIGH-ORDER

MID-UPPER

MID-LOWER

LOW-ORDER

DESTINATION
OPERAND

HIGH-ORDER

MID-UPPER

MID-LOWER

LOWORDER

Fig. 3-11. Adding two 64-bit operands in memory.

SOURCE
OPERAND

The last two add instructions, add immediate (ADD!) and add
quick (ADDQ), are used to add a constant value to an addressed

operand. With ADDI, the constant can be a byte, word, or long-
word value, and the instruction occupies from two to five words in
memory. With ADDQ, the constant can only have a value between
1 and 8, but the instruction occupies only one to three words in
memory. Further, ADDQ can be used to add a value to an address

register, whereas ADDI cannot. Note that ADDQ replaces the in-
crement instruction found in 8-bit microprocessors.

Subtract Instructions

The 68000 has a subtract equivalent of each of the five add in-
structions. Three of these instructions, subtract binary (SUB), sub-

tract immediate (SUBI), and subtract quick (SUBQ), affect the
condition codes in the same way. Specifically,

1. Carry (C) is set if the subtraction generates a borrow, which

74

indicates that the result cannot be contained in the destination

operand; otherwise C is cleared.

2. Overflow (V) is set if two unlike-signed numbers (one posi-
tive, the other negative) are subtracted and the result exceeds

the operand's 2s-coniplement range of numbers; otherwise V is cleared.

3. Zero (Z) is set if the result is zero; otherwise Z is cleared.
4. Negative (N) is set if the sign bit of the result is a logic 1;

otherwise N is cleared.

5. Extend (X) is set the same as the carry (C) bit.

The multiprecision subtract instruction, subtract extended (SUBX),

affects C, V, N, and X in the same way, but clears Z only if the re-
sult is nonzero; otherwise Z is unaflFected. The fifth subtract instruc-
tion, subtract address {SUB A), affects no flags.

Negate Instructions

Two subtract-like instructions allow you to 2s-complement a byte,
word, or long-word operand in memory or in a data register. These
instructions, negate (NEG) and negate extended (NEGX), take the

2s-complement by subtracting the operand from zero.
The NEG instruction affects the condition codes in the same way

as the SUB instruction, but since one operand is zero here we can
be more explicit about the conditions that set the individual flags.
Therefore, for NEG:

1. Carry (C) and negative (N) are set if the addressed operand
is a nonzero positive number; otherwise C and N are cleared.

2. Overflow (V) is set if the addressed operand has the value $80

(byte), $8000 (word), or $80000000 (long word); otherwise
V is cleared.

3. Zero (Z) is set if the addressed operand is zero; otherwise Z
is cleared.

4. Extend (X) is set the same as the carry (C) bit.

The NEGX instruction has the same affect on the C, V, N, and X

flags, but clears Z only if the result is nonzero; Z is unaffected if the
result is zero. As was explained with ADDX, this feature causes Z

to reflect the zero/ nonzero status of an entire multiprecision opera-
tion, rather than the status of just the high-order term.

Multiply and Divide Instructions

The 68000 has two multiply instructions— ^ign^cZ multiply (MULS)
and unsigned multiply {MULU). These instructions multiply two

word operands, and return the 32-bit product in a data register.
Numbers longer than 16 bits can also be multiplied using MULS

75

and MULU. We will see examples of this in Chapter 4, where a
32-bit by 32-bit multiply routine is given for both signed and un-

signed numbers.

The 68000 also has two divide instructions— ^gn^cZ divide (DIVS)
and unsigned divide (DIVU). These instructions divide a 32-bit

dividend (in a data register) by a 16-bit divisor (in memory or a
data register), and return the 16-bit quotient and 16-bit remainder
in the lower half and upper half of the data register, respectively.

If you attempt to divide by zero, the 68000 will generate a trap

(described in Chapter 7) . Otherwise, a division— signed or unsigned
—will have the following effect on the condition codes:

1. Carry (C) is always cleared.
2. Overflow (V) is set if division overflow is detected; otherwise

V is cleared.

3. Zero (Z) is set if the quotient is zero; otherwise Z is cleared.
The state of Z is undefined if overflow occurs.

4. Negative (N) is set if the quotient is negative (for DIVS) or

the most-significant bit of the quotient is set (for DIVU);
otherwise N is cleared. The state of N is undefined if overflow
occurs.

5. Extend (X) is not affected.

If overflow occurs, the 68000 sets the V flag and terminates the oper-
ation, without affecting the divisor or dividend. Overflow occurs

when the dividend is so much larger than the divisor that the quo-
tient cannot be contained in 16 bits.

For an unsigned divide, the dividend must be at least 65,536
times larger than the divisor for overflow to occur. For a signed

divide, the quotient must exceed +32,767 or —32,768 for overflow
to occur. It is possible to write a program that will always return

a valid quotient and remainder, regardless of whether or not over-
flow occurred. Such a program is given in Chapter 4.

Sign Extend (EXT)

The 68000 makes it possible to operate on mixed-size data, with
an instruction called sign extend (EXT). This instruction extends

the sign bit (the most-significant bit) of a number in a data register
from a byte to a word, or from a word to a long word, as shown in

Fig. 3-12. Thus, the EXT instruction makes it possible to perform
such operations as adding a byte to a word or multiplying a word
by a byte.

Clear Instruction (CLR)

Another '^housekeeping" instruction in this group, clear (CLR),
resets the addressed byte, word, or long word to zero. It can be used

76

31 16 15 8 7 0
EXT.W Dn

(A) Sign-extending a byte to a word.

31 16 15 0

Dn EXT.L Dn

(8) Sign-extending a word to a long word.

Fig. 3-12. How the EXT instruction sign-extends data.

to clear a data register or a memory location, but not an address
register. (There are not too many instances in which you will want
to clear an address register but, for those cases, instruction SUBA.L
An,An is the most effective way to do the job.)

Readers with time-critical applications should be aware that CLR
is only faster than the equivalent MOVE #0,<ea> instruction when

I the low byte or low word of a data register is being cleared! Clear-
ing all 32 bits of a data register is two cycles faster with MOVEQ

#0,Dn than with CLR.L Dn and, in most cases, clearing a memory

location with MOVE.x #0,<ea> (where x = B, W, or L) takes the
same amount of time as clearing it with CLR.x <ea>. In fact, if
you are using the address register indirect with predecrement mode

to address memory, instruction MOVE.x #0,— (An) will clear the
memory location two cycles faster than CLR.x —(An).

The Compare Instructions

Most programs do not execute all instructions consecutively, as

they are stored in memory, but include jumps, branches, loops, sub-
routine calls, and other factors that cause program execution to be

transferred from one place to another in memory. The instructions
that actually cause this transfer to occur will be described later in
this chapter when we discuss the program control instructions for
the 68000. At this point we will discuss the compare instructions,
which are commonly used to configure the condition codes upon

which program control instructions make their transfer/no-transfer
"decisions."

The four compare instructions for the 68000 perform very much

like subtract instructions. That is, each of these instructions sub-
tracts a source operand from a destination operand, and sets or clears

the condition code flags based on the result (see Table 3-9). How-
ever, unlike subtract instructions, the compare instructions do not

save the result of the subtraction. Their sole purpose is to configure

the condition codes for tiansfer/ no-transfer decision-making by sub-
sequent program control instructions.

77

Table 3-9. Compare Instruction Results

Condition X

N*

z c

Source < Destination 0 0
0/1

0
Source = Destination 0 1 0 0
Source > Destination 1 0

0/1
1

*Pertinent only when connparing 2s-complement numbers.

The compare (CMP) instruction compares a source operand with

a byte, word, or long-word operand in a data register. Word or long-
word addresses can be compared to an address register using a vari-

ation of CMP, called compare address (CMP A). The compare im-
mediate (CMPI) instruction compares a byte, word, or long-word

immediate value with a destination operand. The compare memory

(CMPM) instruction compares two operands in memory, using ad-
dress register indirect with postincrement addressing. This particu-

lar instruction, CMPM, is especially useful for comparing strings;

an example is upcoming later in this chapter (Example 3-3).

A Compare-With-Zero Instruction, TST

You will recall that the negate instructions, NEC and NEGX, are

actually subtract instructions that perform a specialized task— they
subtract an operand from zero. Similarly, the 68000 has a specialized

compare instruction, test an operand (TST), that compares an op-
erand with zero. Like the compare instructions, TST subtracts the

operand from zero, and sets or clears the condition code flags based
on the result, but does not save that result. Here is how the TST
instruction affects the condition code bits:

1. Carry (C) and overflow (V) are always cleared.
2. Zero (Z) is set if the addressed operand is zero; otherwise Z

is cleared.

3. Negative (N) is set if the addressed operand is a negative num-
ber; otherwise N is cleared.

4. Extend (X) is not affected.

Test and Set an Operand (TAS)

The test and set an operand (TAS) instruction performs the same

basic operation as the test an operand (TST) instruction— it com-
pares the operand with zero and sets or clears the condition codes

based on the result— but TAS also unconditionally sets the most-
significant bit of the operand. Further, TAS can only operate on byte
operands, so it will set bit 7 of the byte.

Despite their operational similarities, TST and TAS have very

78

SECTION 0
FLAG BYTE

SECTION
0

SECTION
1

SET POINTER
TO TOP ADDRESS

SECTION 1
FLAG BYTE

SECTION
N-2

SECTION N-2 FLAG BYTE

SECTION
N-1

<>

SECTION N-1 FLAG BYTE

EXECUTE TAS

YES
USE THIS SECTION

OF MEMORY
AS DESIRED

SUBTRACT ONE
SECTION LENGTH
FROM POINTER

YES NO SPACE
AVAILABLE

* Fig. 3-13. Using TAS to allocate memory.

dissimilar functions. As we saw in the preceding section, TST is used
to find out whether an operand has a value of zero. However, TAS
is primarily used to test the state of a flag in memory, then set that

flag. This is particularly useful in multitasking applications, to allo-
cate memory space to the various tasks. It is also useful in multi-

processing applications, to prevent one processor from accessing a
portion of memory that is currently being used by another processor.

Fig. 3-13 illustrates the use of TAS in a multitasking application.
This illustration shows a portion of memory that has been divided
into N sections, and also gives a simple flowchart of an algorithm

that could be used to locate the next available section. This algo-
79

rithm requires two address registers— one to hold a pointer to the
section being tested and another to hold a pointer to the last section
(Section 0). The program for this algorithm will include several

instructions that have already been described— MOVE A or LEA (to
initialize the test pointer), SUBA (to decrement the test pointer),
and CMPA (to compare the two pointers). It will also include some
conditional branch instructions, which will be described with the
program control instructions.

In a multiprocessing application, TAS allows a processor to inter-
rogate a test byte (via the condition codes) and then place a 1 into

the most-significant bit of the byte. If the memory is busy, the pro-
gram can keep checking until it is free. The following routine per-
forms this task:

MFREE TAS TEST Test and set the byte, TEST.
BNE MFREE If TEST not = 0, test again.

(Processor program instructions.)

CLR.B TEST Clear TAS byte.

It is important to note that TAS is the only 68000 instruction that

performs an indivisible read-modify -write cycle. This prohibits an-
other processor from interfering with the TAS operation once it has

been initiated.

LOGICAL INSTRUCTIONS

There are seven logical instructions, shown in Table 3-10. The ba-
sic instructions in this group are and logical (AND), Exclusive-OR

logical (EOR), and Inclusive-ov^ logical (OR). These three instruc-
tions can operate on byte, word, and long-word operands, one of

which must be in a data register. The second operand can be in
memory, a data register, or an address register for the AND and OR

instructions, or in memory or a data register for the EOR instruc-
tion. EOR cannot operate on an address register.

Another instruction, logical complement (NOT), can be used to

Is-complement a data register or memory location. Thus, you can
employ NOT to complement unsigned operands, and NEC or NEGX
to complement signed operands.

Variations of the AND, OR, and EOR instructions permit a con-
stant to be used as the source data. These variations, and immediate

(ANDI), Exclusive-OB. immediate (EORI), and Inclusive-OB imme-
diate (ORI), can operate on a memory or data register operand of

any length. These instructions can also be used to operate on the
status register or condition codes. Operations on the status register
(SR) are privileged.

80

.2 «

oo o

(0
o

"5

o

CO

ll

<

o o
o o

0) (0

0)
Q <

CO c Q Q

CO CO

CO 00

c A

Q CO

V Q Q Q
Z Z
< <

0) n

<
CO

"co CO

Q CO

CO
CO

00

A

0) GC V C/D
%

5 Q
z z < <

00

<

CO

CO QC
Q CO

=11:

CO

00
00

A
V C0_^

•a -6

% %

OO
LU LU

00

O O
O O

0)
n

CO

CD

C ̂ Q <

CO c

CM CM CO CO

00 00

c

CO

- 0

V Q
QC DC
OO

n
2
a3
< CO DC
Q CO

00
CD

A
^ rr-

a> cc V CO

DC DC
OO

T3

0)

ec1

0)

CO

a3

0)

w
ro

00 CD

o
w

O)

•we

T3

0)

u

O)

Q)

"S

>> Q.

C w o c

qT

o

-Q

on

w w

0)

c N
W

X3

C
C oj

CO

do

■o

<D

o

SI 0)

"(0

0)

o z

SHIFT AND ROTATE INSTRUCTIONS

The 68000 has four shift instructions and four rotate instructions.

Table 3-11 summarizes these instructions and Fig. 3-14 shows how
they operate. As Table 3-11 shows, each instruction has three van-

ASL C

ASR

LSL

LSR 0

ROL C

ROR

ROXL C

ROXR

Fig. 3-14. How the shift and rotate instructions operate.

82

c o « « « * ♦ * * « * « « « onditio

Codes

>
N « « ♦

* * ♦ ooo ooo ooo ooo ooo ooo

Z « ♦ « ♦ « « ooo
o « « « ♦ « « 1 1 1 1 1 1

CD

CD CD

CD

CD

c

-ab
l

-ab
l

-ab
l

abl

■a
bl

•ab
l

■ab
l

•ab
l

de
l

De
st
in
at
ic

It
ei

It
ei

B

CD

(D
CD CD

ressing
Mo <

>^

< <

>>
I—

< < < < <

O
E

c c a> Q Q 2

o
E

c c a> Q Q :e

o
E

c c OJ Q Q 2

O
E

c c <u Q Q S

o
E

c c OJ Q Q 2

o
E

C C 05
Q Q 2

O
E

C C 0)

Q Q S

o
E

C C OJ

Q Q ̂

iA
dd
i

lowabi irce < 1- CM T- C\J T- C>J
1- C\J

■p- CM
1- CM 1- CM T- CM

So
u

C -D Q C -D Q C T3
Q =tj.

c -o

Q %

C -D

C T3 Q =lt

C -D c -a ind C\i C\J CO CO
CM OJ
CO CO

Cvl CM
CO CO

C\i CM
CO CO

CM CM
CO CO

CM CM
CO CO

CM CM CO CO CM CM CO CO
2 K
S <^

(O CD ̂ CD CD $5
T- T— CD CD"^

CD CD ̂ CD CD $5
cd'cd'SE

1— T—

cd'cd"^
CD CD ̂

T— T— O CO 00 CO 00 00 00 00 00

oo"oo"

00 00 00 00 00 00
Assembler Sy

nt
ax

AS
L
 D

x,
Dy

AS
L

#d
,D
n

AS
L
 <
ea
>

AS
R
 D
x.
Dy

AS
R

#d
,D
n

AS
R
 <
ea
>

LS
L

Dx
,D
y

LS
L

#d
,D
n

LS
L
 <
ea
>

LS
R
 D

x,
Dy

LS
R

#d
,D
n

LS
R
 <
ea
>

RO
L
 D
x.
Dy

RO
L

#d
,D
n

RO
L
 <
ea
>

RO
R
 D
x,
Dy

RO
R
 #

d,
Dn

RO
R
 <
ea
>

RO
XL
 D
x,
Dy

RO
XL

#d
,D
n

RO
XL
 <
ea
>

R
O
X
R

 Dx
,D
y

RO
XR
 #

d,
Dn

RO
XR
 <
ea
>

c nemoni

ASL

ASR LS
L

LSR ROL ROR
RO
XL

RO
XR

83

ations— two that operate on a data register (byte, word, or long
word) and one that operates on memory (word only) .

If the operation is being performed on a data register, the shift
or rotate count may be specified as the contents of another data

register (count 0 to 63, where 0 produces a count of 64) or as an
immediate value between 1 and 8. A word operand in memory may
be shifted or rotated by only one bit position.

Shift Instructions

Signed numbers can be shifted using the arithmetic shift left
(ASL) and arithmetic shift right (ASR) instructions. ASR preserves
the sign of the operand, by replicating the sign bit throughout the
shift operation. For ASL, the sign bit is not preserved, but overflow
(V) is set if the sign bit is ever changed.

Unsigned numbers can be shifted using the logical shift left

(LSL) and logical shift right (LSR) instructions. For all four in-
structions, bits shifted out of the operand are entered into the carry

(C) and extend (X) condition code flags. In addition to their value
in general data manipulation, the shift instructions can also be used

as fast-executing multiply and divide instructions, because each left
shift multiplies an operand by two, and each right shift divides an
operand by two!

Rotate Instructions

In all four of the rotate instructions, bits displaced out of the
operand are entered into carry (C). However, for the rotate left
(ROL) and rotate right (ROR) instructions, the bit displaced out
of one end of the operand is entered into the opposite end of the
operand. With the rotate with extend left (ROXL) and rotate with
extend right (ROXR) instructions, the bit displaced out of one end
of the operand is entered into the extend (X) flag, as well as carry
(C), and the previous value of X is entered into the opposite end
of the operand.

The rotate with extend instructions provide a capability we have

not had until now— the capability of accessing the three high-order
bytes in a data register. You will recall that all byte operations take

place on the low-order byte of a data register. How can you operate

on the second byte (the '*mid-lower" byte) of the register? You can
do so by bringing that byte into the low-order position, using in-

struction ROL #8,Dn or ROR #8,Dn. In fact, the mid-upper and

high-order bytes of a data register can be accessed, too; the mid-
upper with a SWAP instruction, the high-order with an ROL.L #8,

Dn instruction. The upper three bytes can be accessed consecu-
tively, as in string operations, by executing three ROR.L #8,Dn

instructions.

84

Speeding Up Shifts and Rotates on Memory

Since words in memory can be shifted or rotated only one hit

position at a time, an n-hit shift or rotate will take at least "n" times
as long as a 1-bit shift or rotate to execute. Table B-7 (in Appendix
B) shows that shifting or rotating a word in memory takes 8+ cy-

cles, where represents the time reciuired to calculate the effec-

tive address (see Table B-1). Therefore, a 2-bit shift will take (2
X 8-f) cycles, a 3-bit shift will take (3 x 8+) cycles, and so on.

Referring to Table B-7 once again, you will note that shifting or

rotating a data register by "n" bit positions takes only (6 + 2n) cy-
cles. Thus, a 1-bit shift will take 8 cycles, a 2-bit shift will take 10

cycles, and a 3-bit shift will take 12 cycles. Clearly, for some values

of "n" you can save a considerable amount of execution time by
reading a memory operand into a data register, shifting (or rotat-

ing) the register, then writing the result back into memory. This will

require three instructions. Using Tables B-2 and B-7, we can calcu-
late their total execution time as:

Execution
Instruction Time

MOVE <ea>,Dn 4 +
ASL #n,Dn 6 + 2n
MOVE Dn,<ea> 4+

Total time = (14+) + 2;i

In summary, then, an n-bit shaft or rotate takes {n X 9+) cycles
in memor)^ and [(14+)+2n] cycles in a data register. At what
point does it become advantageous to perform the operation in a

data register? Well, a 1-bit shift should be performed in memory

(8-f- cycles in memory vs. 16+ cycles in a register), as should a 2-bit
shift (16+ cycles in memory vs. 18+ cycles in a register). However,

a 3-bit shift takes 24+ cycles in memory, but only 20+ cycles in a
data register! The conclusion is this: If you need to shift or rotate

memory by three or more bit positions, the operation should be per-
formed in a data register.

BIT MANIPULATION INSTRUCTIONS

There are four instructions that test the state of a specified bit in
a data register or a byte in memory. These instructions, summarized

in Table 3-12, record the state of the specified bit in the zero (Z)
condition code flag. If the bit = 0, then Z 1; if the bit = 1, then
Z = 0.

Three of the bit manipulation instructions also change the bit un-
conditionally, following the test, as follows:

85

o

o

8 N

? Z

I I
(I

I I

I I

o

Q.

"E

(0

m

T-

co

0)

.2 .5

E E
E E

Q. Q.
O O X X

CO OJ
Q Q

0) 0)
n n CO CO
0) 0)

0) 0)

0) a5
< <

03 00
Q Q

< <
CO CO
■4—' ■4—' CO CO
Q Q

C "D

CM Cvj CO CO CM CVJ CO CO
CsJ CM
CO CO

0)

11

<

A A
CO CO

V V C
Q =t»s

H I-

CO CO

I- I-
CQ CD

A A
CO 00
0) 0
V V C T3

I- I-
LU LU
CO CO
CD CQ

CO CO
0 0 V V C T3

QC OC
_J —I o o
CD OD

Bit test (BTST)
Bit test and set (BSET)
Bit test and clear (BCLR)
Bit test and change (BCHG)

Instruction Operation Performed on Bit
Bit is not affected.

Bit is set to logic 1.
Bit is cleared to logic 0.
State of bit is reversed.

j The bit number may be specified as the contents of a data register
or as an immediate value. Either way, if a bit in a data register is
being tested, the bit number may range from 0 to 31; if a bit in
memory is being tested, the bit number may range from 0 to 7.

BINARY-CODED-DECIMAL (BCD) INSTRUCTIONS

Besides the binary arithmetic instructions we discussed earlier,
the 68000 has three instructions that can be used to operate on

binary-coded-decimal (BCD) values. All three of these BCD in-

j structions (Table 3-13) operate only on byte-length data, where

I each byte contains two 4-bit BCD digits. Further, like the "extended"
binary arithmetic instructions, the BCD instructions include the X
bit in the operation and only change the Z bit if a nonzero result

is generated. For this reason, you must remember to initialize X = 0
and Z — 1 before the first BCD operation; this can be most easily
done with the instruction, MOVE #4,CCR.

Add BCD (ABCD) and Subtract BCD (SBCD) Instructions

The add decimal with extend (ABCD) and subtract decimal with
extend (SBCD) instructions can perform a decimal add or decimal
subtract on the low bytes of two data registers or on two bytes in

memory. The ABCD and SBCD instructions can affect all five con-
dition codes, as follows:

1. Carry (C) is set if ABCD generates a carry or SBCD generates
a borrow; otherwise C is cleared.

2. Overflow (V) and negative (N) are undefined for both in-
structions.

3. Zero (Z) is cleared if the result is nonzero; otherwise Z is un-

changed. For multibyte adds and subtracts, Z will thereby re-
flect the status of the entire operation, rather than just the

status of the operation on the last bytes.
4. Extend (X) is set to the same state as the carry (C) bit.

Although the BCD instructions have certain similarities to the

"extended" binary arithmetic instructions, the fact that the BCD in-
structions are restricted to byte operations means that programming

BCD operations will be somewhat different than programming bi-
nary operations. For example, it will obviously take more instruc-

87

o
o
ffi 75

E
o
Q

■6

0)

■o

o o (0

c
ffl

CO

CO
©

o

lo :^

oo z
o

Q. o

0)

<

3 Z)
* *

3 3

c

c<

Q I

c

c<

Q I

X
<
I

X ̂

^<

Q I

Q Q
OO
CQ CD
< <

3 ID

3 Z)

c

c<

Q I

c

c<

Q I

X
< xi

^<

Q I

Q Q OO
CQ CQ

88

tions to add or subtract a multibyte BCD number than a multibyte
binary number, because multibyte binary numbers can be added

using combinations of the word or long-word forms.
Less evident is the fact that data registers are, for the most part,

limited to adding or subtracting single-hyte (two-digit) BCD val-
ues! It is difficult to add or subtract multibyte BCD values in a data

register because to access the mid-order byte of a data register, that
byte must be rotated into the low-order byte position. However, the
rotate instructions (ROR, ROL, ROXR, and ROXL) always affect
the Z bit, which destroys the intermediate zero status of your BCD
operation. So unless you are prepared to save the CCR before and

after rotate operations, you should conduct multibyte BCD opera-
tions in memory, rather than in data registers.

If you are adding or subtracting multibyte BCD operands in mem-
ory, these operands must be stored in high-to-low order, just like

multibyte binary operands (refer back to Fig. 1-2). This ordering
is self-evident when you consider that the ABCD and SBCD instruc-

tions can only use predecrement addressing to operate on memory.
For example, the instruction sequence

MOVE #4,CCR
ABCD -(A0)-(A1)
ABCD -(A0),-(A1)
ABCD -(A0)-(A1)
ABCD -(A0)-(A1)

will add two 8-digit BCD numbers (four bytes) in memory. Fig. 3-
15 shows how these numbers are stored in memory, and how source

MEMORY

Al (AFTER)
ADDITION

Al (BEFORE
ADDITION)

HI-ORDER MID-UPPER

MID-LOWER LOW-ORDER
FOUR-BYTE

DESTINATION

AO (AFTER
ADDITION)

AO (BEFORE
ADDITION)

HIORDER MID-UPPER

MID-LOWER LOW-ORDER
FOUR-BYTE
SOURCE

Fig. 3-15. Adding two 4-byte BCD numbers in memory.

89

pointer AO and destination pointer Al are altered by the addition
sequence.

Negate BCD (NBCD) Instruction

The negate decimal with extend (NBCD) instruction subtracts

the addressed byte operand (contents of a data register or memory)
and the extend (X) bit from zero. If X is clear, it generates the 10s
complement; if X is set, it generates the 9s complement.

PROGRAM CONTROL INSTRUCTIONS

As mentioned in our discussion of the compare instructions, pro-
gram instructions are stored consecutively in memory, but programs

rarely execute in exactly that order. All but the simplest programs
include branches, jumps, and subroutine calls that alter the sequence
in which the microprocessor executes the program. The program

control instructions (Table 3-14) are the 68000 instructions that can
transfer program execution from one part of memory to another.

This group of instructions can be subdivided into three categories-
conditional instructions, unconditional instructions, and return in-
structions.

Conditional Instructions

The first three entries in Table 3-14 represent the conditional in-
structions for the 68000. Their mode of operation differs depending

on the state of one or more flags in the condition code register. Un-
like the previous instruction tables in this chapter. Table 3-14 does

not list the actual mnemonics for these instruction types, but instead

presents their symbolic forms— Bcc, DBcc, and Sec— in which the "cc"
suffix represents the condition being tested. The "cc" suffixes are
summarized in Table 3-15. The Bcc instructions will not accept the
always true (T) and always false (F) conditions, but all 16 of the
conditions are testable by the DBcc and Sec instructions.

The 14 branch conditionally (Bcc) instructions are the same as
those implemented on the Motorola 6800 microprocessor. With these
instructions, if the selected test condition is met, program control
is transferred to the instruction at location (PC) + displacement,

otherwise execution continues with the next instruction in the pro-
gram. The value in the PC is the Bcc instruction location plus two.

Displacement is a 2s-complement integer count of the number of
bytes between the PC value and the location of the label. If your
operand is a label (as it normally is), the assembler will calculate
the displacement. If the instruction is of the form

BNE *-f10

90

It

c
o
o
E (Q
k_
o

CO

(0

o

•s s >

oo

■o

0>

I « <

O c CL Q
t t •O 1-

+ I

CL Q
c c

CO

O O O O

<D ̂ t

B t «
T- 1- Q)
-H^ 0) ̂
c 5 05
Q ̂ si
^t: o O

A

■2

o CD m o

o CD

O O
» ̂ -j c c

O O
O O

O

t

■a

+
O
Q.

O ̂
Q-qT

ta + t
o o
Q. CL

A

(0

(D

V
CL CO

t T
So

V CL
CD CD

7— 1— oSaS

A A

V V V V

< DC CL nr

CD CD -3 -3

O
Q_
t
+
CL CO

of
GO

O CL t t + +

CO CO

< QC CL £^

CQ CQ -3 -3

OC CO

I- I-
tr Qc

QC CO

I- I-
OC GC

Table 3-15. Conditional Tests

Suffix "cc"
Condition True if

EQ Equal to. Z = 1
NE Not equal to. z = o
Ml Minus. N = 1
PL Plus.

N =0

*GT

Greater than.
ZA(NVV) = 0

*LT

Less than. NVV = 1

*GE

Greater than or equal to. NVV = 0

*LE

Less than or equal to.
ZV(NVV) = 1 HI Higher than. CAZ = 0

LS Lower than or same as.
CVZ= 1

Carry set. U — 1
CC Carry clear. c = o

*vs

Overflow. V = 1

*vc

No overflow. v = o
T Always true.
F Always false.

*Two's-complement arithmetic.

Symbols: A= Logical AND
V= Logical Inclusive-OR
V= Logical Exclusive-OR

your operand specifies the displacement value (decimal 10, in this
case), in bytes.

The Bcc instructions can be one or two words long. If you use

the form, Bcc.S, the assembler will produce a one-word instruction

with an 8-bit, signed relative displacement embedded in the op-

word. With this form, the branch "target" instruction can be up to
126 bytes higher in memory, or 128 bytes lower in memory, than the

Bcc op-word plus two. If you omit the .S suflBx, the assembler will
produce a two-word instruction with a 16-bit signed, relative dis-

placement in the second word. With this form, the branch target
can be up to 32,766 bytes higher in memory, or 32,768 bytes lower

in memory, than the Bcc op-word plus two (the displacement
word). Thus, if your Bcc instruction starts at location N, the form

Bcc.S provides branch limits of N + $80 and N — $7E, whereas the
form Bcc provides branch limits of N $8000 and N — $7 FEE.

Here are some examples of conditional branch instructions:

1. The sequence

ADD D0,D1
BCS TOOBIG

branches to label TOOBIG if the add operation produces a
carry out of the low word of Dl.

92

2. The sequence

SUB D0,D1
BEQ ZERO

branches to label ZERO if the subtract operation produces a
zero result in the low word of Dl.

3. To merely check whether the low words of DO and Dl are
identical, without affecting either register, you could use a
compare instruction, rather than a subtract instruction. The

sequence

CMP D0,D1
BEQ ZERO

branches to label ZERO if the low words in DO and Dl are
the same.

4. Some tests require you to choose between two different Bcc
instructions, based on whether you are testing the result of an

operation on unsigned numbers or signed numbers. To illus-
trate this, suppose you want to branch to label DIMORE if

the low word in Dl is higher-valued than the low word in DO.
The sequence

CMP D0,D1
BHI D1M0RE

would be used if the contents of DO and Dl are unsigned,
whereas

CMP D0,D1
BGT D1M0RE

would be used if the contents of DO and Dl are signed.

The conditipnal branch instructions are often used as the last in-

struction in a loop, to terminate the loop when a certain "cc" condi-
tion has occurred. Example 3-1 illustrates this usage with a program

that searches a selected portion of memory for a specified word
value. The starting and ending addresses in memory are in AO and
Al, respectively, and the search value is in the low word of DO.

This program enters a loop in v^^hich it compares the value pointed
to by AO with the value in DO. If the search value is found, BEQ.S
DONE branches the 68000 to DONE, where AO is decremented.

(This is necessary because AO was postincremented, and ends up
pointing one word past the compare location.) If no match occurs,

CMPA.L A0,A1 tests for out-of-range, and returns to LOOP if AO
is less than or equal to Al (true if C = 0, thus we use the instruction
BCC.S as the terminator).

93

Example 3-1. Searching for a Word Value In Memory
* THIS PROGRAM CHECKS WHETHER A SELECTED PORTION OF
* MEMORY CONTAINS A SPECIFIED WORD VALUE. UPON ENTRY,
* AO AND A1 MUST HOLD THE STARTING AND ENDING ADDRESSES
* TO BE SEARCHED, AND THE LOW WORD OF DO MUST HOLD THE
* VALUE BEING TESTED.
* UPON COMPLETION, IF THE VALUE IS FOUND, Z = 1 AND AO HOLDS
* THE ADDRESS OF THE MATCHING WORD LOCATION.
* IF THE VALUE IS NOT FOUND, Z = 0 AND AO = A1.

ORG $2000
LOOP CMP (AO)+,DO VALUE FOUND?

BEQ.S DONE YES. EXIT.
CMPA.L A0,A1 END OF MEMORY?
BCC.S LOOP NO. KEEP CHECKING

DONE SUBA.L #2,A0 DONE. ADJUST AO.

Readers who have programmed any of the popular 8-bit micro-
processors are well aware that repetitive loops are commonly gov-

erned by some kind of decrementing counter, usually a register.
After each execution of the loop, the counter is decremented by one,

and the loop is terminated when the count reaches zero, or under-
flows through zero. This process has always required at least two

instructions— a decrement instruction and a conditional branch in-
struction. You will be pleased to know that with the 68000 these

tasks are combined in a set of test, decrement, and branch { DBcc)
instructions.

When a DBcc instruction is executed, the 68000 interrogates the
condition codes to find out whether the specified condition (any of

the 16 conditions in Table 3-15) has been met. If the condition is

met, program execution "falls through" to the next instruction. If the
condition is not met, however, the 68000 decrements the low word

of a specified data register by one; if the data register has been

decremented to —1, program execution "falls through" to the next
instruction, otherwise the 68000 branches to the labeled location in

memory. Do you understand that? Even if you think you do, read

this paragraph again to be sure, then study Fig. 3-16 to embed it
in your mind.

At this point, you should reaUze that a single DBcc instruction,
such as

DBNE D0,LOOP

performs exactly the same function as a three-instruction sequence,
such as

BNE.S NEXT
SUBQ #1,D0
BPL LOOP

94

NEXT *

And, besides eliminating two lines of source code, a DBcc instruc-
tion occupies two less words in memory than its equivalent three-

instruction sequence (two words for DBcc vs. four words for the

EXECUTE
DBcc Dn.<label>
INSTRUCTION

NO

CONTINUE TO
NEXT INSTRUCTION

Fig. 3-16. How the DBcc instructions operate.

sequence). Also, a DBcc instruction will usually execute about twice

as fast as the three-instruction sequence. A DBcc instruction exe-
cutes in 10 cycles if the branch is taken, and executes in 12 cycles

if the branch is not taken. In contrast, the three-instruction sequence
executes in 22 cycles if the branch is taken, and executes in either
10 cycles or 24 cycles if the branch is not taken (depending on

whether the "cc" condition is met or the counter decrements to — 1).
Do not make the mistake of assuming that the DBcc instructions

are just fancy Bcc-with-counter instructions, however. There are
several important differences between the DBcc instructions and

the Bcc instructions, and you should keep them in mind. These dif-
ferences are:

1. The DBcc instructions work in reverse of the Bcc instructions.

That is, the Bcc instructions are branch-on-condition instruc-

BRANCH
TO <label>

95

tions, whereas the DBcc instructions are dont-branch-on-con-
dition instructions. With the DBcc instructions, execution falls
through if the condition is true, rather than false.

2. With the DBcc instructions, there are two paths out of the
loop. These instructions not only fall through if the condition

is true, but also fall through if the counter reaches —1. There-
fore, the DBcc instructions can also be characterized as do-

until-equal (to —1) instructions.
3. The Bcc instructions may branch forward or backward in a

program, but the DBcc instructions may only branch back-
ward, to a lower address in memory. The branch label must be

no more than 32,766 bytes ($7FFE) lower in memory than the
DBcc instruction.

4. The Bcc instructions can be one- or two-word instructions, but

the DBcc instructions are always two-word instructions. There-

fore, because the DBcc instructions have no "short" variant, the
suffixed form, DBcc.S, is illegal.

As mentioned earlier, the DBcc instructions can be used with all

16 "cc" suffixes, including the suffixes T (always true) and F (never
true). The T suffix provides the instruction form

DBT Dn,<label>

which always fails (always falls through to the next instruction) ; it

is nothing more than a two-word no-op instruction. The more-useful
F suffix allows you to omit the condition test and base the branch/

no-branch decision solely on the state of the counter. Example 3-2
shows how the DBF instruction can be used to move a block of data

in memory. Note that because the counter must decrement to — 1,
rather than zero, counter DO must be initialized with the long word

count minus one. If eight long words are to be moved, DO must ini-
tially contain the value $0007.

Example 3-2. A Block Move Program
* THIS PROGRAM COPIES A BLOCK OF DATA FROM ONE PART OF
* MEMORY TO ANOTHER. DO CONTAINS THE NUMBER OF LONG
* WORDS, MINUS 1, TO BE MOVED. AO POINTS TO THE SOURCE AND
* A1 POINTS TO THE DESTINATION.
*

ORG $2000
BLKMOV MOVE.L {A0) + ,(A1)+ MOVE A LONG WORD.

DBF DO.BLKMOV LOOP UNTIL DO + 1 BLOCKS
ARE MOVED.

END

Incidentally, this program should impress programmers who have

programmed a block move on an 8-bit microprocessor, because it

96

involves only two instructions and occupies only three v^ords in
memory. It is fast, too. The MOVE.L instruction executes in 20
cycles and the DBF instruction executes in either 10 cycles (if the
branch is taken) or 14 cycles (if the branch is not taken) . Therefore,

moving N long words takes (SON -h 4) cycles. Using this relation-
ship, moving 100 long words will take just 3004 cycles, or 375.5 fis

at 8 MHz!

The only conditional instructions that have not yet been discussed

are the set accordin<i, to condition (Sec) instructions. These instruc-

tions test the specified "cc" condition (any of those in Table 3-15),
and set the addressed byte to all Is if the condition is met and to all
Os if it is not met. Since these instructions affect no condition code

flags, they are intended to establish indicators that can be tested
later, rather than tested immediately.

An ASCII String Search Subroutine

Before moving on, it might be instructive to discuss a more ambi-
tious programming example, one that has a good mix of the instruc-
tions we have discussed so far. Example 3-3 shows the program we

will look at here, a subroutine that checks for the first occurrence

of a string of ASCII characters (called the "test string") in another
ASCII string (the "main string") in memory. This task is not only
of academic interest; it is quite common in text processing appli-
cations.

In Example 3-3, we have assigned address register AO to point to
the main string (the string to be searched) and Al to point to the

test string (the string for which we are searching). In a text process-
ing application, the text string is very likely to be a word, a phrase,

a name, a telephone number, or some other item that we wish to
access for a subsequent operation. The only other parameter that
needs to be specified is the length of the test string; this count, in
bytes, is entered in the low word of data register DO.

The result o? the search is returned in address register A2. If the

test string is in the main string, A2 will contain its starting address.
If the test string is not in the main string, A2 will contain zero.

The ASEARCH subroutine in Example 3-3 begins by moving two
data registers and two address registers onto the system stack, so

that they will be intact upon return from the subroutine. The re-
mainder of the subroutine is comprised of two parts. In the first part,

the 6(S000 reads the first character of the test string into data register
D3, and then enters a loop (CHKEND) in which this character is
compared to each byte in the main string. The character in D3 is
also compared to the asterisk terminator, to detect a nonmatch if
the entire main string has been searched.

If the first character of the test string is encountered somewhere

97

Example 3-3. An ASCII String Search Subroutine
* THIS SUBROUTINE SEARCHES AN ASCII STRING IN MEMORY (CALLED

* THE "MAIN STRING") FOR THE PRESENCE OF ANOTHER ASCII
* STRING (CALLED THE "TEST STRING"). THE MAIN STRING IS
* TERMINATED BY AN ASCII ASTERISK (*) CHARACTER.
* UPON CALLING THE SUBROUTINE, THE STARTING ADDRESSES OF
* THE MAIN AND TEST STRINGS MUST BE IN ADDRESS REGISTERS AO
* AND A1, RESPECTIVELY, AND THE LENGTH OF THE TEST STRING.
* IN BYTES, MUST BE IN DATA REGISTER DO.
* THE RESULT OF THE SEARCH IS RETURNED IN ADDRESS REGISTER
* A2. IF THE TEST STRING IS FOUND, A2 WILL HOLD ITS STARTING
* ADDRESS WITHIN THE MAIN STRING. IF THE TEST STRING IS NOT
* FOUND, A2 WILL BE ZERO. A2 IS THE ONLY REGISTER AFFECTED.
*

ASEARCH
ORG
MOVEM
MOVEM.L

$1000
D1/D3,-(SP)
A0/A3,-(SP)

SAVE DATA REGS AND
ADDRESS REGS ON STACK.

SEARCH FOR FIRST CHARACTER OF TEST STRING.

MOVE.B (A1),D3

FIRST SUBA.L
CHKEND CMPl.B

BEQ.S
CMP.B
BNE.S

* FIRST TEST CHAR FOUND
*

A2,A2
#'*',(A0)
RETRN

(A0) + ,D3
CHKEND

READ FIRST TEST CHAR INTO
D3.
MAKE A2 r= 0 TO START.
END OF MAIN STRING?
YES. GO EXIT.
MAIN CHAR = TEST CHAR?
NO. KEEP SEARCHING.

COMPARE REMAINDER OF TEST STRING.

LOOP

RETRN

MOVE D0,D1 MOVE TEST STRING COUNT
INTO D1.

SUBQ
#2.D1

D1 = COUNT - 2.
MOVEA.L A1,A3 MOVE TEST STRING ADDR

INTO A3.
ADDQ.L

#1,A3
A3 POINTS TO SECOND TEST
CHAR.

MOVEA.L A0,A2 A2 = CURRENT MAIN STRING
ADDR.

SUBQ.L
#1,A2 CMPl.B #'*',(A2) END OF MAIN STRING?

BEQ.S RETRN IF SO, RETURN.
CMPM.B (A3) + ,(A2) + MAIN CHAR - TEST CHAR?
BNE.S FIRST NO. RESUME THE SEARCH.
DBF D1,L00P YES. CONTINUE

COMPARISON.
SUBQ.L

#A1,A0
TEST STRING FOUND

MOVEA,L A0,A2 PUT START ADDR. IN A2
MOVEM.L (SP)+,A0/A3 RESTORE REGISTERS.
MOVEM

(SP)4-,D1/D3 RTS
END

98

in the main string, the 68000 drops down to the lower part of the

subroutine, in which the remaining test string characters are com-
pared with the main string. To make this comparison, we take the

byte count of the test string and put it into Dl, then subtract two,

because the DBF instruction checks for —1, rather than 0, and be-
cause we are processing the second byte of the test string, rather

than the first byte. At this point, the potential main string matching
address is recorded in A2. The LOOP portion of this part of the
subroutine compares the rest of the test string, and branches back

to FIRST if the entire test string has not been located. The sub-
routine ends with two MOVEM instructions, to retrieve the saved

registers from the stack, and an RTS instruction, which fetches the
return address and thereby transfers control back to the calling
program.

Unconditional (Jump and Branch) and Return Instructions

As with the earlier, 8-bit 6800 microprocessor, Motorola has pro-
vided the 68000 with jump and subroutine call instructions in both

a long form and a short form. The jump instructions are called jump
(JMP) and branch always (BRA). The subroutine call instructions
are called jump to subroutine (JSR) and Inanch to subroutine
(BSH).
The long forms of these instructions, JMP and JSR, can be used

to transfer program control anywhere in the 16M-byte memory map,
whereas the short forms, BRA and BSR, are limited to some dis-

placement relative to the branch instruction. Like the conditional
branch (Bcc) instructions, BRA and BSR can be used with either

an 8-bit displacement or a 16-bit displacement, where the shorter,

8-bit displacement is selected by appending a .S suffix to the instruc-
tion mnemonic (BRA.S or BSR.S).

All four of Ihese instructions cause program control to be trans-
ferred by loading a new address into the program counter. However,

the subroutine call instructions, JSR and BSR, also provide a way
for the 68000 to return to the instruction following JSR or BSR, by
pushing the address of this instruction onto the stack. Unlike all
other stack operations, the JSR and BSR instructions push the high
word of the address onto the stack first, causing the return address

to be stored in low-word/ high-word order.
The return from subroutine (RTS) instruction retrieves the return

address from the system stack, and loads it into the program counter.
Therefore, RTS must be the last instruction to be executed in any
subroutine.

To illustrate the subroutine call and return operations, suppose a
program contains these two instructions:

99

Program
Counter

$A2000
$A2004

Instruction

JSR $4EFE
MOVE D0,D1

Comment

Subroutine call.
Next in-line instruction.

Fig. 3-17 shows the program counter and system stack at three points
in the program-before the JSR instruction is executed (3-17A), af-

ter the JSR instruction is executed (3-17B), and after the RTS in-
struction in the subroutine is executed (3-17C).

PC
$000A2000

SP

MEMORY

{A) Before executing JSR $4EFE.

PC
$00004EFE

SP
$2004

$000A

(B) After executing JSR $4EFE.

PC
$000A2004

SP

$2004

$000A

(C) After executing RTS.

Fig. 3-17. Subroutine call and return operations.

In our earlier discussion of the data movement instructions, we
noted that the instruction form

MOVEM <list>, -(SP)

is useful for saving selected registers on the stack while a subrou-
tine is being executed in order to make that subroutine reentrant

(that is, interruptible) . There are many applications in which the

100

condition codes must also be saved, so that the context of the pro-
gram is preserved during execution of a subroutine. This too is pos-
sible, with another previously discussed instruction:

MOVE SR,-(SP)

Of course, before returning from the subroutine, the saved values

must be pulled off of the stack. This can be done with the instruc-
tion se(iuence

MOVEM (SP) + ,<list>
MOVE (SP) + ,CCR

However, the 68000 includes a special version of the RTS instruc-
tion, called return and restore condition codes (RTK), which pulls

the condition code register as well as a return address from the

stack. Thus, RTR eliminates the need for a pull-into-CCR instruc-
tion at the end of a subroutine. Example 3-4 shows how the condi-
tion codes and certain working registers can be preserved during a

subroutine, and uses RTR (rather than RTS) to initiate the return.

Example 3-4. Preserving Condition Codes and Registers During a Subroutine
JSR SUBR CALL SUBROUTINE.
MOVE D0,D1 NEXT IN-LINE INSTRUCTION.

SUBR MOVE SR,-(SP)

MOVEM. L D3-D5/A1,-(SP)

MOVEM. L (SP)-f-,A1/D3-D5
RTR

SAVE STATUS REGISTER ON
STACK.
SAVE REGISTERS ON STACK.

Other subroutine

J instructions.)
RESTORE REGISTERS.
RETURN AND RESTORE
CONDITION CODES.

THE LINK AND UNLINK INSTRUCTIONS

The link (LINK) and unlink (UNLK) instructions (Table 3-16)
are used to allocate and deallocate data areas on the system stack

for nested subroutines, linked Hsts, and other procedures. Follow-
ing a procedure call (e.g., a call to a nested subroutine), LINK sets

up an address register pointer to the data area and moves the stack
pointer down in memory, just past the data area. Upon completion
of the subroutine, UNLK reverses this sequence, thereby restoring

the stack pointer and address registers to their original, pre-LINK
values.

The LINK instruction has two operands, an address register, and

a 16-bit signed displacement. While the nested subroutine is being

101

■o

c
(0

CO

CO

n

c o

.2 M
> ; ; 0)

ondi

Po
rt

UO
Q N

Z
O X

c
es o

■o

o

(0

c c

o>

c
W 0)
Q

(0
2

■D ■o

< (0

o
0)

<

So
ur
c

An

T3

■D

C
0)

(0
?^

N N

"(0

c
W
c

o

■D

k.
a c
X

ax

An

<

aSBll

Syn
t

INK

NL
K

< _i

o

loni
nem LIN

UN
I

102

executed, the address register holds the starting address of that sub-

routine's stack data area; this address register is referred to as the
frame pointer (FP). The displacement value specifies the amount
of stack space, in bytes, to be allocated to the data area. When LINK

is executed, the 68000 pushes the 32-bit contents of the FP onto
the stack, decrements the stack pointer (SP) by four, loads that
stack pointer value into the FP, then adds the displacement value
to the stack pointer. Note that the displacement value has two

characteristics— (1) because the stack pointer value must always be
even, the displacement value must be an even number, and (2) be-

cause the displacement value is added to the stack pointer, it should
be negative for most applications.

After LINK has been executed, the address register holds the
starting address of the data area, and the stack pointer points to
the location that follows the data area. At this point, the subroutine
can easily use the data area, by accessing it with the address register

indirect with displacement (or index) addressing mode. Figs. 3-18A
and 3-18B show the system stack after a subroutine call and after
LINK, respectively.

Fig. 3-18C shows the stack pointer addressing an even lower mem-
ory location, due to some subroutine push operations. This illustra-

tion is included to demonstrate that the UNLK instruction will af-

fect an orderly return (shown in Fig. 3-18D), regardless of how
the stack pointer has been altered in the interim. The UNLK instruc-

tion, which is normally executed just before returning from the sub-
routine, simply loads the stack pointer from the FP register, then

reinitializes the FP by pulling its original value from the top of the
stack. Following UNLK, both the FP and the SP contain the values
they held prior to LINK.

SYSTEM CONTROL INSTRUCTIONS

Table 3-17 summarizes the instructions that the manufacturers'
literature identifies as system control instructions. Note that there

are three types of system control instructions— privileged instruc-
tions, trap-generating instructions, and status register instructions.

All of the status register instructions, and most of the privileged in-
structions, have been discussed previously in this chapter, so we will

not repeat their descriptions here.

Privileged Instructions

As you know, privileged instructions are instructions that can be
executed only when the 68000 is in the supervisor state. Any attempt
to execute one of the privileged instructions from the user state will
cause an exception to occur (discussed in Chapter 7).

103

The reset external devices (RESET) instruction causes the RESET
pin of the 68000 MPU chip to be asserted for 124 clock cycles. This
line is usually wired to all external devices in the system, and will
cause those devices to be reset, without affecting the processor. The
RESET instruction can be used to recover from catastrophic system
failures.

As we shall learn in Chapter 7, interrupts and other exceptions

cause the 16-bit status register and the 32-bit program counter to
be pushed onto the supervisor stack, to preserve the state of the
program when the exception occurred. The return from exception

(RTE) instruction pulls these values from the stack upon comple-
tion of the exception service routine. Thus, RTE is to exception

service routines what RTS (and even more so, RTR) is to sub-
routines!

Stop program execution (STOP) loads an immediate value into
the status register, and then causes the 68000 microprocessor to stop

SP-

FP-

RETURNADDR

PARAMETERS

LOCAL
SCRATCH
FOR A

LOCAL
VARIABLES

FOR A

PREVIOUS FP

SP

FP-

LOCAL VARIABLES
FOR B

FP FOR A

104

(>A) After subroutine call. (B) After link.

Fig. 3-18. Link and unlink instructions ailocate and deallocate

fetching and executing instructions. Execution will not resume un-
til the 68000 receives an interrupt of sufiBciently high priority, or

an external reset. In practice, STOP is often used to change the in-
terrupt mask, and can be considered an enhancement of the wait

for interrupt (WAI) instruction of the 8-bit 6800 microprocessor.

Trap-Generating Instructions

Traps, like interrupts, cause the program counter to be loaded

with one of several addresses in memory, based on a "vector num-
ber" supplied to the microprocessor. However, with interrupts, all

vector numbers are supplied by an external device, but with traps,
all vector numbers are furnished internally. As described later (in
Chapter 7), traps will be automatically generated by certain error
conditions, but they can also be generated under software control,
with any of the three instructions described here.

The trap (TRAP) instruction initiates a trap operation uncondi-

ill

LOCAL
SCRATCH
FOR B

SAVED
REGISTERS

LOCAL
VARIABLES

FOR B

FP FOR A

SP-

FP-

RETURN ADDR

PREVIOUS FP

(C) Before unlink. (D) After unlink.

local storage for nested subroutine and procedure calls.

105

(A

C
o
o
E

w
>» CO

CO
0)

c
.2 w *^ 0)

lo oo o

•o

£ N

S.CO

o

X (0

c
CO

o o o
o o o

CE QC DC Ql C CO
C/D CO CO CO < 3

O
CL

f S

Q.

t CO

"r-O-O-D-o COCO C
?^=»fc Q =)<

CD CD CD CO CD CM CM ■t— 1— T— T- 1— CO CO

LU

^CMCM

T 1 — 8S ̂ Q-

CO CO QC ̂

 LU LU LU

C 3 <

QCQCC0<LiJO2:E^

Q.

CO ^

1 « ̂

CO T c A c Q Q.
^ »- (D 1- < Q- O x: o ̂

' V c

t V It c '

O

CO LU O ̂ °= — ̂ LUH-HZ059
□C DC CO < LU O 2

c
Q

a"

CO

<D

> V

>

o o o
o o o

< DC DC DC DC iS
O O O O m
O O O O Q

■O -D -D CO DC

% Q CO

00 CX) CXD CD CD

DC DC CO CO

■6-6

CD CD
_• _j CD

Q DC _•

20

< UJ

CM

A

O CO DC . " CD

^ V CO

LU LU
> >

cc O O
o:s2

— _ LU
QOC_>
2 O O
< m O 2

CO Q.

2 ̂

— "D i i

■D-O

(1) <D

O O (/) W
03 Q)

106

tionally, and supplies a vector number (0 to 15) in the operand.
Thus, TRAP can be used to generate any of 16 different software
interrupts.

The trap on overflow (TRAPV) instruction tests the overflow (V)
flag in the condition code register, and traps to a specific memory
location if V is set. If V is clear, execution continues with the next

sequential instruction.

The third trap-generating instruction, check register against
bounds (CHK) , also operates conditionally. This instruction checks

the contents of a data register, and traps to a specific memory loca-
tion if the register contains a value that is less than zero or greater

than an addressed "upper bound" operand. This kind of testing helps
keep data arrays within their allotted bounds.

SUMMARY

In this chapter, we studied each of the 14 addressing modes and
learned what each is used for. These 14 modes provide all of the

basic addressing capabilities of earlier, 8-bit microprocessors, plus a
variety of valuable options. The ability to postincrement or predec-

rement an address, for example, gives the programmer a fast, effi-
cient way to operate on strings and tables. Further, the inclusion of

modes with offsets as well as indexes makes arrays readily accessible.

This chapter also covered each of the 56 instructions that are mi-
crocoded into the 68000. As with the addressing modes, many of the
instructions are familiar to readers who have programmed the 6800

or other 8-bit microprocessors, but even these instructions are offered
in easier-to-use, enhanced versions. For example. Motorola took the
load, store, register-transfer, push and pull operations, and combined
them in a single instruction type, called MOVE. Other frequently

encountered^ operations that normally require several lines of code
were also combined into single instructions. Therefore, in the 68000

we see a test-decrement-and-branch instruction (DBcc), a multi-
increment instruction (ADDQ) and a multidecrement instruction
(SUBQ).

Focusing special attention on support of high-level languages, the
Motorola designers also provided unique instructions for boundary
checking (CHK) and for allocating and deallocating stack space for

local variables during procedure calls (LINK and UNLK). Fur-
ther, the immense addressing range of the 68000 (16M bytes) is

intended to support multitasking and multiprocessing, so a memory

I allocation instruction (TAS) is also provided.
With this fundamental understanding and appreciation for the

programming capabilities of the 68000, let us move on to a discus-
sion of some of the ways these capabilities can be applied. The next

107

two chapters cover two types of common programming applications

—mathematical operations, and processing lists and look-up tables.

BIBLIOGRAPHY

1. MC68000 16-Bit Microprocessor User's Manual. Austin, TX: Motorola Semi-
conductor, Inc., 1980. (See Chapters 2 and 3, and Appendixes B and D.)

2. Starnes, T. W. "Compact Instructions Give the MC68000 Power While Sim-
plifying Its Operation." Electronic Desi^i^n, September 27, 1979, pp. 70-74.

3. . "Powerful Instructions and Flexible Registers of the MC68000 Make
Programming Easy." Electronic Design, April 26, 1980, pp. 171-176.

108

CHAPTER 4

Mathematical Routines

Readers who have gained their education in microcomputer pro-
gramming through any of the conventional 4-bit or 8-bit micropro-

cessors are undoubtedly impressed with the arithmetic potential of

the 68000. For instance, the very fact that the 68000 has built-in
multiply and divide instructions, in both signed and unsigned ver-

sions, means hours (or days, or weeks) of time that would be used
developing multiplication and division subroutines can be redirected
to more stimulating activities, such as playing tennis.

In this chapter, we will build iipon the potential offered by the
multiply and divide instructions in developing some programs that

tackle somewhat tougher math problems. We will begin with pro-
grams to perform 32-bit X 32-bit multiply operations on both signed

and unsignetl numbers. From there, the discussion will deal with
how to handle overflow situations in divide operations, then finish

up with a program that calculates the square root of a 32-bit number.

MULTIPLICATION

In Chapter 3, we studied the two multiplication instructions,

signed multiply (MULS) and unsigned multiply (MULU), and

noted that they operate only on word-length (16-bit) values. How
difiicult is it to multiply values that are 32 bits in length, or longer?
It is not very diflBcult at all, as we shall see. As anyone who has

written a multiplication program for an 8-bit microprocessor can
tell you, just having a multiplication instruction, of any length,
makes up for any inconvenience required to extend its capabilities.

109

Unsigned 32-Bit x 32-Bit Multiply

Multiprecision unsigned numbers can be multiplied by using the
MULU instruction to generate a series of 32-bit cross products,
which are summed to form the final product. This method is the

same one we used to multiply decimal numbers by hand with pen-
cil and paper. As you will recall (in these days of hand calculators,

it may be a little hazy), you write the multiplicand with the multi-
plier below it and perform a series of multiplications— one for each

digit in the multiplier. Each partial product is written directly below
its multiplier digit, causing it to be offset one digit position to the
left of its predecessor. When all of the partial products have been
calculated, they are added to produce the final product.

For example, the multiplication of 124 by 103 looks like this:

124 Multiplicand
X 103 Multiplier

372 Partial Product #1
000 Partial Product #2

124 Partial Product #3

12772 Final Product

The partial products are offset from each other to account for the
decimal weights of the multiplier digits. In this example, the 3 is a

"ones" digit, the 0 is a "tens" digit and the 1 is a "hundreds" digit.
Therefore, the example could be written in this form:

103 X 124= (3 x 124) -}- (Ox 124) + (lOOx 124)

or

103 X 124 = (3 X W X 124) + (0 x 10^ x 124) + (1 x 10- x 124)

In this section, we will develop a subroutine to multiply two 32-
bit unsigned numbers, which yields a 64-bit unsigned product. In
the absence of a multiply instruction, this would involve 32 multi-

plication operations, one for each bit in the multiplier. Fortunately,

however, the 68000 has an instruction that multiplies 16-bit unsigned
numbers directly. This instruction, MULU, allows us to view the

32-bit multiplier and multiplicand as two-digit numbers, where each
digit is 16 bits long. Thus, just four multipHcations will be required

to generate the 64-bit product.

Fig. 4-1 contains a symbolic representation of the multiplier (dig-
its AB) and the multiplicand (digits CD), and illustrates how the

partial products are derived and how they must be aUgned in order

to calculate the 64-bit final product. The circled numbers in Fig. 4-1
identify the four 16-bit additions that must be made in calculating
the product.

110

MULTIPLICAND

MULTIPLIER

PRODUCT #1

PRODUCT #2

PR0DUCT#3

PR0DUCT#4

TOTAL = 64-BIT FINAL PRODUCT

Fig. 4-1. Generating a 64-bit product with four 16-bit by 16-bit multiplications.

Using Fig. 4-1 as a guide, it is possible to develop a subroutine
that can multiply two 32-bit unsigned numbers. Example 4-1 shows
such a subroutine, labeled MULU32, in which the multiplier and
multiplicand are entered in data registers D2 and Dl, respectively.

The 64-bit unsigned product is returned in these same registers, Dl
(low 32 bits) and D2 (high 32 bits).
The operiltions performed by the MULU32 subroutine are fairly

straightforward if you refer to Fig. 4-1 as you look at the instruc-
tions and their comments. The MULU32 subroutine begins by sav-

ing the contents of three general-purpose registers (D3, D4, and
D5) on the stack, then makes a copy of the multiplicand in both D3

and D4. The next instruction swaps the 16-bit halves of D4. This
swap is a necessary preparation for generating the second and fourth

partial products (see Fig. 4-1), which involve the high-order word
of the multiplicand. This swap is necessary because the unsigned

multiply (MULU) instruction can only multiply the low-order
words of two data registers. This particular SWAP instruction is
the first of several in the subroutine. A SWAP D5 instruction is used

two instructions later to prepare for generating the third and fourth
partial products.

Ill

Example 4-1. A 32-Bit X 32-Bit Unsigned Multiply Subroutine

* THIS SUBROUTINE MULTIPLIES TWO 32-BIT UNSIGNED NUMBERS, TO
* GENERATE A 64-BIT PRODUCT. ENTER WITH MULTIPLIER IN D2 AND
* MULTIPLICAND IN D1. THE PRODUCT IS RETURNED IN D1 (LOW 32
* BITS) AND D2 (HIGH 32 BITS).
*

ORG $1000
MOVEM.L D3-D5,-(SP) SAVE SCRATCH REGISTERS.
MOVE.L D1,D3 COPY MULTIPLICAND INTO D3
MOVE.L D1,D4 AND INTO D4,
SWAP D4 IN SWAPPED FORM.
MOVE.L D2,D5 COPY MULTIPLIER INTO D5,
SWAP D5 IN SWAPPED FORM.
MULU D2,D1 PARTIAL PRODUCT #1.
MULU D4,D2

#2.

MULU D5,D3

#3.

MULU D5,D4

#4.

SWAP D1 SUM1 = PP #2 LOW +
ADD D2,D1 PP #1 HIGH.
CLR.L D5

ADDX.L D5,D4 PROPAGATE CARRY INTO PP #4.
ADD D3,D1 SUM2 = SUM1 + PP #3 LOW.
ADDX.L D5,D4 PROPAGATE CARRY INTO PP #4.
SWAP D1 PUT LOW PROD. IN CORRECT

ORDER.
CLR D2 PREPARE FOR SUM3.
SWAP D2

CLR D3

SWAP D3
ADD.L D3,D2 SUM3 r= PP #2 HIGH -f PP #3

HIGH.
ADD.L D4,D2 SUM4 = SUM3 + PP #4.
MOVEM.L

(SP)H-,D3-D5
RESTORE REGISTERS.

RTS
END

Now, with all of the multiplication operands in place, the actual

multiplications can be performed. The subroutine has four consecu-
tive MULU instructions, which leave partial products #1, #2, #3,

and #4 in data registers Dl, D2, D3, and D4, respectively. The only
remaining task is to sum up the partial products, with respect to

their weights, to obtain the 64-bit final product.
The circled numbers in Fig. 4-1 identify the four pairs of 16-bit

words that must be added, in the order in which the MULU32 sub-

routine adds them. In Example 4-1, the four consecutive MULU in-
structions are followed by a SWAP instruction, which swaps the

word contents of Dl (partial product #1). This swap is a necessary

preparation for the first add operation because, like the MULU in-
struction, the add instructions can add only the low-order words of

two data registers.

After making this first addition, any carry out of that operation

112

(in X) is propagated into D4 (partial product #4), using an all-zeros

register, D5, as a "dummy" operand for the add extended operation.
In the second add operation, the low word of D3 (partial product
#3) is added to the low word of Dl, which holds the result of the
first add operation, and any carry is again propagated into D4.

At this point, the low-order 32 bits of the final product are intact
in data register Dl, but with the data words out of order. A SWAP

Dl instruction remedies the problem, and the 68000 is ready to be-
gin accumulating the high-order 32 bits of the product. This will

require adding the high -word contents of data registers D2 and D3
(partial products #2 and #3, respectively) to the low-word con-

tents of data register D4 (partial product #4) .
The low words of both D2 and D3 currently hold unneeded data

from the first two add operations, so both words are cleared and

then swapped into the high-order word position of the registers
Two add long instructions place the low-order 32 bits of the final
product in data register D2. After restoring the contents of data
registers D3, D4, and D5 from the stack, the subroutine ends with
an RTS instruction. The MULU32 subroutine will take a maximum

of 460 cycles, or 57.5 [xs^ to execute.

Because a 32-bit operand can represent unsigned numbers as large

as 4.294 X 10'*, many applications will not require a multiplication
subroutine that operates on larger numbers. (And those that do will

probably use floating-point math!) However, it is certainly possible
to write a subroutine that multiplies 64-bit (or longer) numbers
with the basic principles that were used in Example 4-1, but you
soon run out of working registers and would have to use memory
for temporary storage.

Signed 32-Bit x 32-Bit Multiply

Although the multiplication subroutine in Example 4-1 was de-

scribed as a^subroutine to multiply two unsigned numbers, it will
also correctly multiply two signed numbers, as long as they are both

positive. That is. Example 4-1 is indeed a "32-bit X 32-bit nonnega-
tive multiply subroutine." This subroutine cannot properly multiply
negative numbers because such numbers are represented in 2s-com-
plement form.

How, then, can two signed numbers be multiplied if one or both
are negative? Certainly one valid solution would be to negate the
negative operand(s), perform the multiplication, then adjust the
product, if required. If just one of the operands is negative, the

product must be 2s-complemented. If both of the operands are nega-
tive, the (positive) product is correct as it stands.

This simple approach is employed in Example 4-2, in which the

low byte of data register D6 is used to hold a "negative indicator."

113

Example 4-2. A 32-Bit X 32-Bit Signed Multiply Subroutine

* THIS SUBROUTINE MULTIPLIES TWO 32-BIT SIGNED NUMBERS, TO
* GENERATE A 64-BIT PRODUCT. ENTER WITH MULTIPLIER IN D2 AND
* MULTIPLICAND IN D1. THE PRODUCT IS RETURNED IN D1 (LOW 32
* BITS) AND D2 (HIGH 32 BITS PLUS SIGN).
*

ORG $2000
MULS32 MOVE.B D6, — (SP) SAVE SCRATCH REGISTER.

CLR.B D6 NEGATIVE INDICATOR = 0.
TST.L D1 MULTIPLICAND NEGATIVE?
BPL.S CHKD2 NO. GO CHECK MULTIPLIER.
NEG.L D1 YES. 2'S COMP. MULTIPLICAND
NOT.B D6 AND rS COMP. INDICATOR.

CHKD2 TST.L D2 MULTIPLIER NEGATIVE?
BPL.S GOMUL NO. GO MULTIPLY.
NEG.L D2 YES. 2'S COMP. MULTIPLIER
NOT.B D6

AND 1'S COMP. INDICATOR.
GOMUL JSR MULU32 CALL UNSIGNED MULTIPLY SUBR.

TST.B D6 IS SIGN ON PRODUCT CORRECT?
BEQ.S DONE YES, SIGN IS OKAY. EXIT.
NEG.L D1 NO. 2'S COMP. PRODUCT.
NEGX.L D2

DONE MOVE.B (SP) + ,D6 RESTORE SCRATCH REGISTER D6.
RTS
END

This indicator, initialized to zero, is set to all Is if just one of the
operands is negative, but will remain zero if both operands are either
positive or negative. Then, after the MULU32 subroutine is called

to perform the 32-bit by 32-bit multiplication, the negative indicator
is used to determine whether the product is correct (indicator zero)

or needs to be negated (indicator nonzero). The subroutine in Ex-
ample 4-2 (MULS32) will have an execution time that varies de-

pending on whether the operands are both positive, both negative,
or of opposite sign. The execution times of MULS32 (including those
of the called subroutine, MULU32) are as follows:

Maximum Time Maximum Time

Operands (Cycles) (fJis)

Both positive 558 69.75
Opposite signs 576 72.00
Both negative 574 71.75

A faster solution, and one that does not cause either operand to
be altered, can be obtained by following this algorithm:

If either or both operands are negative, perform the multiplica-
tion, then modify the product in one of two ways:

1 . // one operand is negative, subtract the other operand

{i.e., the positive operand) from the most-significant part
of the product.

114

2. // both operands are negative, subtract both operands from

the most-si<fnificant part of the product.

Are you skeptical? Let us test this algorithm by working out the
103 times 124 example once more, but with a negative multiplier

(-103). The pencil-and-paper version will look like this:

01111100 Multiplicand = +124
X 10011001 Multiplier = -103
01111100

00000000
00000000

01111100
01111100

00000000
00000000

01111100

0100101000011100 Product ̂ +18,972

When compared with the correct answer (—12,772), our answer ap-

pears to be "garbage." Not only is it too large, but it has the wrong
sign to boot! Let us see what the preceding algorithm can do for
us. The algorithm calls for subtracting the positive operand (+124,

a single byte) from the high-order byte of the product. In binary,
it is easier for us to add than subtract, so the 2s complement of the
positive operand is added to the high byte of the product:

0100101000011100 Original Product = +18,972

+ 10000100 2s-Comp. Multiplicand = -124
1100111000011100 New Product = -12,772

The product is now correct. Readers are invited to validate Step

2 of the algorithm by applying this solution to the paper-and-pencil
product of —103 times —124. Fig. 4-2 shows the additional steps re-

quired to multiply signed numbers of any length.

As you can see from Fig. 4-2, this algorithm allows us to use our
previously described unsigned multiplication subroutine (Example

4-1) to perform the initial multiplication. However, there is an addi-
tional requirement that the original multiplier and multiplicand be

saved for the product "adjustment" instructions. Example 4-3 gives
the new, more-efficient 32-bit X 32-bit signed multiply subroutine.

This subroutine, MLTS32, is nothing more than the MULU32 sub-
routine from Example 4-1, with a few additional instructions at the

beginning, to save the multiplier and multiplicand (in D7 and D6,
respectively), and a few more instructions at the end, to test the
operand signs and adjust the product, if required.

115

Example 4-3. An Improved 32-Bit X 32-Bit Signed Multiply Subroutine
THIS SUBROUTINE MULTIPLIES TWO 32-BIT SIGNED NUMBERS, TO
GENERATE A 64-BIT PRODUCT. ENTER WITH MULTIPLIER IN D2 AND
MULTIPLICAND IN D1. THE PRODUCT IS RETURNED IN D1 (LOW 32
BITS) AND D2 (HIGH 32 BITS).

MLTS32
ORG
MOVEM.L
MOVE.L
MOVE.L

$1000
D3-D7,~(SP)
D1,D6
D2,D7

SAVE SCRATCH REGISTERS.
COPY MULTIPLICAND INTO D6
AND MULTIPLIER INTO D7.

PERFORM A 32-BIT BY 32-BIT UNSIGNED MULTIPLICATION.

MOVE.L D1,D3 COPY MULTIPLICAND INTO D3
MOVE.L D1,D4 AND INTO D4,

SWAP D4 IN SWAPPED FORM.
MOVE.L D2,D5 COPY MULTIPLIER INTO D5,
SWAP D5 IN SWAPPED FORM.
MULU D2,D1 PARTIAL PRODUCT #1.
MULU D4,D2

#2.

MULU D5,D3

#3.

MULU D5,D4

#4.

SWAP D1 SUM1 = PP #2 LOW +
ADD D2,D1 PP #1 HIGH.
CLR.L D5

ADDX.L D5,D4 PROPAGATE CARRY INTO PP #4.
ADD D3,D1 SUM2 r= SUM1 + PP #3 LOW.
ADDX.L D5,D4 PROPAGATE CARRY INTO PP #4.
SWAP

D1 PUT LOW PROD. IN CORRECT
ORDER.

CLR D2 PREPARE FOR SUM3.
SWAP D2
CLR D3

SWAP D3
ADD.L D3,D2 SUM3 = PP #2 LOW + PP #3

HIGH.
ADD.L D4,D2 SUM4 = SUM3 + PP #4.

THE INSTRUCTIONS TO FOLLOW MODIFY THE PRODUCT, IF
REQUIRED.

CHKD6

DONE

TST.L D7 MULTIPLIER NEGATIVE?
BPL.S CHKD6 NO. GO CHECK MULTIPLICAND.
SUB.L D6,D2 YES. SUB. MULTIPLICAND

FROM PROD.
TST.L D6 IS MULTIPLICAND NEGATIVE?
BPL.S DONE NO. WE ARE DONE.
SUB.L D7,D2 YES. SUB. MULTIPLIER

FROM PROD.
MOVEM.L

(SP)+,D3-D7
RESTORE SCRATCH REGISTERS

RTS
END

The execution times of the MLTS32 subroutine are as follows:

116

Maximum Time Maximum Time

Operands (Cycles) (fxs)
Both positive 532 66.5
Opposite signs 536 67.0
Both negative 540 67.5

DIVISION

There are many appHcations for division, but one of the most

common is in taking the average of a set of numbers— perhaps the
results of a series of hiboratory tests. Example 4-4 shows a typical
program for such a task. This program, called AVERAGE, averages
a specified number of unsigned word values pointed to by AO, with
the word count contained in the low word of DO. The average is

returned as an integer in the low word of Dl and a fractional re-
mainder in the high word of Dl. The AVERAGE program uses two

scratch registers, D2 (to hold the word count) and D3 (to receive
word values read from memory), but affects no registers other
than Dl.

Example 4-4. A Word-Averaging Routine
THIS ROUTINE TAKES THE AVERAGE OF A SPECIFIED NUMBER OF
UNSIGNED WORD VALUES IN MEMORY. UPON RETURN, THE INTEGER
PORTION OF THE AVERAGE VALUE IS IN THE LOW WORD OF D1 AND
THE FRACTIONAL REMAINDER IS IN THE HIGH WORD OF D1.
THE ADDRESS OF THE FIRST WORD IS CONTAINED IN AO AND THE
WORD COUNT IS CONTAINED IN THE LOW WORD OF DO.

AVERAGE

LOOP

ORG $1000
MOVEM.L D0/D2/D3/A0,-(SP) SAVE SCRATCH

REGISTERS
MOVE D0,D2 PUT WORD COUNT INTO

D2 AND MAKE DO =
SUBQ

#1,D0 COUNT - 1.
CLR.L Dl CLEAR DIVIDEND
CLR.L D3

REGISTER AND WORD-
HOLDING REGISTER.

MOVE
(A0)4-,D3

FETCH NEXT WORD
ADD.L D3,D1 AND ADD IT TO TOTAL
DBF DO.LOOP ALL WORDS NOW

TOTALED?
DIVU D2,D1 YES. TAKE THE

AVERAGE.
MOVEM.L (SP)-f,D0/D2/D3/A0 RESTORE SCRATCH
END REGISTERS.

Clearly, the divide operation in Example 4-4 will be aborted if
DO holds zero upon entry, but can it be aborted by an overflow

condition? No, overflow cannot possibly occur here, because the ra-
tio of the dividend (word total) to the divisor (word count) will

117

PERFORM
UNSIGNED

MULTIPLICATION

MULTIPLIER

NEGATIVE?

NO

YES

SUBTRACT
MULTIPLICAND
FROM HIGH
PRODUCT

Fig. 4-2. A signed multiplication
algorithm.

MULTIPLICAND

NEGATIVE?

NO

SUBTRACT
MULTIPLIER
FROM HIGH
PRODUCT

never exceed 65,536! However, overflow could occur if long-word
values, rather than word (or byte) values, were being averaged.
For this reason, it is worthwhile to take a look at a procedure in
which a valid quotient can be obtained regardless of whether or
not overflow occurs.

DIVISION WITH OVERFLOW

As you know from Chapter 3, if overflow occurs during execution
of a signed divide (DIVS) or unsigned divide (DIVU) instruction,
the 68000 sets the overflow (V) flag and terminates the operation,
without affecting divisor or dividend. Overflow will occur when the
dividend is so much larger than the divisor that the quotient cannot
be contained in a 16-bit word.

118

In some applications, an overflow represents an error condition.
In other applications, dn overflow condition is acceptable, but means

that a quotient longer than 16 bits must be returned. Since the divi-
sion is aborted when the 68000 encounters an overflow condition,

how can such a longer quotient be obtained? Perhaps the easiest

way to obtain this quotient is by spHtting the 32-bit dividend into
two 16-bit numbers, and then performing two 16-bit by 16-bit di-

vide operations (which cannot produce an overflow). If the divisor

is a 16-bit number (X) and the dividend is a 32-bit number (YiY„),
the divide operation can be represented as

or, more properly, as

Xj(Y, x2^«)-f Yo

This division will generate two 16-bit quotient digits (Qi and Qo)
and two 16-bit remainder digits (Ri and Ro), as follows:

X \Y^~xW andRi X 2^^' Qo

X i (Ri X 2^^') -f Yo andRo

As you can see, the net result of these two operations is a 32-bit

quotient, QiQo, and a 32-bit remainder, OR,, (interim remainder Ri,
if generated at all, becomes zero during the second divide opera-

tion). If no overflow occurs, Qi will be zero, and the result will be
returned as 0Q„ and OR,,.

From the preceding observations, it is possible to develop a divi-
sion subroutfiie that will always return a valid quotient and re-

mainder, regardless of whether or not an overflow occurs. Example

4-5 gives a subroutine, called DIVUO, that will do the job. This sub-
routine divides a 32-bit dividend in Dl by a 16-bit divisor in DO,

and then checks for overflow. If overflow occurred, the subroutine

uses data registers D2 and D3 to perform the correction.
Following these divisions (if they are indeed required) , the 68000

executes the instructions at FORMAT, in which the 32-bit (quotient
is loaded into Dl and the 16-bit remainder is loaded into the low

word of DO. If an overflow occurs, Dl will contain QiQ„ and DO will

contain OR,,, as shown in Fig. 4-3A. If no overflow occurs, the low-
word of Dl and DO will contain Q and R, respectively, and the high
words of both of these registers will contain all zeros, as shown in
Fig. 4-3B.

119

Example 4-5. A Division Subroutine That Accounts for Overflow
THIS DIVIDE SUBROUTINE DETERMINES THE CORRECT QUOTIENT
AND REMAINDER, IRRESPECTIVE OF OVERFLOW. ENTER WITH THE
16-BIT DIVISOR IN DO AND THE 32-BIT DIVIDEND IN D1. THE 32-BIT
QUOTIENT IS RETURNED IN D1 AND THE 32-BIT REMAINDER IS
RETURNED IN DO.

DIVUO
ORG $2000
MOVEM D2/D3,— (SP) SAVE SCRATCH REGISTERS.
CLR D3 PUT ZEROS IN LOW WORD OF
ni\/i 1 Ul VU UU,U 1 HAb OVERFLOW OCCURRED?
BVC.S FORMAT NO. GO FORMAT RESULTS.
MOVE D1,D2 YES. COPY YO INTO D2.
CLR D1

D1 CHANGES FROM Y1-Y0 TO
Y1-0.

SWAP D1 D1 CONTAINS 0-Y1.
DIVU D0,D1 DIVIDE PUTS R1-Q1 INTO D1.
MOVE D1,D3 D3 CONTAINS Q1.
MOVE D2,D1 D1 CHANGES FROM R1-Q1 TO

R1-Y0.
DIVU D0,D1 DIVIDE PUTS RO-QO INTO D1.

* FORMAT QUOTIENT (D1) AND REMAINDER (DO)

FORMAT MOVE.L D1,D0
DO

CONTAINS R-Q OR RO-QO.
SWAP D1 D1 CONTAINS Q-R OR QO-RO.
MOVE D3,D1 D1 CONTAINS Q-O OR Q0-Q1.
SWAP D1

D1 CONTAINS 0-Q OR Q1-Q0.
CLR DO

DO
CONTAINS R-0 OR RO-0.

SWAP DO DO
CONTAINS 0-R OR 0-RO.

MOVEM (SP)+,D2/D3 RESTORE SCRATCH REGISTERS.
RTS
END

SQUARE ROOT

In this final portion of the chapter, we will develop a program

to calculate the square root of a 32-bit integer number. To make this
calculation, the program will use the classical method of successive
approximations.

To illustrate this method, assume that the number whose root is

to be determined has the value N. The first approximation for the
square root is derived using the value (N/200) + 2. N is divided by
this value. The result is added to the first approximation and the
sum is divided by 2. That result becomes our next approximation.
For example, to find the square root of 10,000:

N = 10,000; first approximation is (10,000/200) + 2, or 52
10,000/52 = 192, (192 + 52)/2 = 122
10,000/ 122 = 81, (122 + 81) /2= 101
10,000/101= 99, (101 + 99)/2 = 100
10,000/100= 100

120

1 n

1 ̂
'

, Qo Dl

1 O-i — --o

Ro

DO
1 0-« ̂ 0

Q

1 ̂0

R

(A) With overflow. (B) Without overflow.

Fig. 4-3. Division results, with and without overflow.

So, we see, the square root of 10,000 is 100. We know that 100 is

the square root, rather than simply another intermediate approxima-
tion, because when 100 is multipHed by itself it produces the origi-

nal number, exactly. This particular number, 10,000, happened to
have an integer square root, but we cannot expect the solution to be

an integer for very many numbers. The square root of 9999, for in-
stance, is not an integer. This means that if the square root of 9999

is to be determined, the 68000 will continue trying to determine the
square root of this number. The processor will continue looping
through the approximation instructions, because the square of the
integer approximation will never be equal to 9999. Therefore, there
has to be some way to stop the processor once it has determined the

closest or "best" square root for the number.
A number of different methods can be used to end the approxi-

mation procedure. The method that best suits your needs will de-
pend on how accurate your answer must be, and how much execu-

tion time can be alloted to deriving that answer. One solution is to
let the 68000 execute the loop 10 times and assume that answer is
accurate enough. This method will suit many applications, but is
rather arbitrary in nature. Another, more precise, solution is to let
the 68000 execute the loop until two successive approximations are
identical, or differ by a value of one. This latter solution will be used
in our software example.

Example 4-6 gives a subroutine (SQRT32) that calculates the in-
teger square root of a 32-bit number, by successive approximations.

In this subroutine, the 32-bit number is contained in data register
DO and the 16-bit square root is returned in data register Dl. The
subroutine begins by deriving the initial approximation, using the
relationship (N/200) +2. The remainder of the subroutine is a

loop, starting at NXTAPP, in which the 68000 calculates a new ap-
proximation by dividing the 32-bit integer by the preceding approxi-

mation, then averaging these approximations. Before averaging the

approximations, however, the 68000 tests for the "end" condition,
by checking whether the new approximation is either equal to, one
greater than, or one less than, the preceding approximation. When

121

one of these three conditions is satisfied, the 68000 returns from the

subroutine, with the 16-bit square root in data register Dl.

Example 4-6. A 32-Bit Square Root by Successive Approximation Subroutine
* THIS SUBROUTINE CALCULATES THE SQUARE ROOT OF A 32-BIT

INTEGER IN DO, AND RETURNS THAT SQUARE ROOT AS A 16-BIT
INTEGER IN THE LOW WORD OF D1. THE ORIGINAL NUMBER IN DO
IS NOT AFFECTED.

SQRT32

NXTAPP

DONE

ORG $2000
MOVEM.L D2/D3,-(SP) SAVE SCRATCH REGISTERS.
MOVE.L D0,D2 COPY DATA VALUE INTO D2.
DIVU

#200,D2
DIVIDE BY 200,

ADDQ
#2,D2

THEN ADD 2.
MOVE.L D0,D1 LOAD DATA VALUE INTO Dl.
DIVU D2,D1 DIVIDE IT BY LAST APPROX.
MOVE D1,D3 AND PUT NEW APPROX. IN D3.
SUB D2,D3 LAST TWO APPROXS. IDENTICAL?
BEQ.S DONE YES. EXIT.
CMPI

#1,D3
NO. CHECK FOR DONE.

BEQ.S DONE
CMPI #-1,D3 BEQ.S DONE
ADD D1,D2 ADD LAST TWO APPROXS.
LSR

#1,D2
AND DIVIDE SUM BY 2.

BRA.S NXTAPP
MOVEM.L

(SP) + ,D2/D3 RESTORE SCRATCH REGISTERS.
RTS
END

BIBLIOGRAPHY

1. Fredette, G. "68000 Routine Extracts Square Roots." EDN, August 19, 1981,
pp. 185-194.

2. Grappel, R. "68000 Routine Divides 32-Bit Numbers." EDN, March 4, 1981,
pp. 161-162.

3. and Hemenway, J. "EDN Software Tutorial: Pseudorandom Genera-
tors." EDN, May 20, 1980, pp. 119-122. (This article discusses ways to gen-
erate pseudorandom numbers with both hardware and software, and includes

a random number generator program for the 68000.)

4. Hwang. K. Computer Arithmetic. New York: John Wiley & Sons, Inc., 1979.

5. For some applications, arithmetic operations may be more efficiently per-
formed with hardware. The following articles discuss math processing chips

tliat are available for this purpose:

(a) Bucklen, W., et al. "Single-Chip Digital Multipliers Form Basic DSP
Building Blocks." £DA^, April 1, 1981, pp. 153-163.

(b) Stauffer, M. K. "Math Processing Chips Boost ̂ iC Computing Power."
EDN, August 20, 1980, pp. 113-120.

(c) Twaddell, W. "ICs and Semiconductors." EDN, July 20, 1980, pp. 74-94.

122

CHAPTER 5

Lists and Look-Up Tables

There are many ways in which information in memory can be or-
ganized for processing. These organizational techniques vary with

the apphcation, and are categorized with such names as Usts, arrays,

strings, look-up tables, and vectors. As expected, the subject can
(and does) fill many volumes, but we will concentrate on just two

types of organization— and look-up tables.
Lists are probably the most fundamental data storage technique.

They consist of units of data (one or more bytes) called elements,
arranged sequentially in memory. The sequence can be consecutive,

in which each element occupies one or more adjoining memory lo-
cations; or the sequence can be linked, in which each data element

is followed by a pointer to the next element in the list. Further, the
elements can be arranged randomly, or in ascending or descending
order.

Look-up tables are data structures that have one specific purpose
—to find information (either data or addresses) that has a defined
relationship to a known value. A telephone directory is a good ex-

ample of a look-up table; knowing a name, you can look up an asso-
ciated telephone number.

UNORDERED LISTS

In our ordered society, where telephone-book listings are arranged
alphabetically and where house numbers increase (or decrease) sys-

tematically as you go up or down a street, unordered anythings seem
somehow inferior to us. Unordered lists are the bane of the pro-

grammer too because they are often diflBcult to process. To find out
whether a certain value is in an unordered list, you must search the

123

list from the beginning, element by element, until you either find the
value or you reach the end of the list. But like it or not, unordered

lists are a fact of life in many applications, and represent a common
way to store random, chronologically derived, or dynamically chang-

ing data (especially data from an experiment) .

Adding an Entry to an Unordered List

Subroutine ADD2UL, shown in Example 5-1, is a sample of the
kind of program that you could use to create an unordered list, or
to add a new element to an existing unordered list. For this example,
the list is comprised of word values (either signed or unsigned).

Example 5-1. Adding an Entry to an Unordered List
* THIS SUBROUTINE ADDS THE LOW WORD OF DATA REGISTER DO
* TO AN UNORDERED LIST, IF IT IS NOT ALREADY IN THE LIST.
* THE STARTING ADDRESS OF THE LIST IS IN ADDRESS REGISTER AO.

* THE LENGTH OF THE LIST, IN WORDS, IS IN THE LIST'S FIRST
* WORD LOCATION.
*

ORG $2000
ADD2UL MOVEM.L D1/A1,-(SP) SAVE SCRATCH REGISTERS.

MOVEA.L A0,A1 COPY STARTING ADDRESS INTO
MOVE (A1) + ,D1 A1 AND WORD COUNT
SUBQ

#1,D1
MINUS 1 INTO D1.

NXTEL CMP (A1) + ,D0 DO ENTRY AND ELEMENT MATCH?
BEQ.S ITSIN

YES. IT'S IN LIST; DONE.
DBF D1, NXTEL NO. LOOP UNTIL END OF
MOVE D0,(A1) LIST, THEN ADD ENTRY TO
ADDQ #1,(A0) THE END AND INCREMENT

ELEMENT COUNT.
ITSIN MOVEM.L

(SP)4-,D1/A1
RESTORE SCRATCH REGISTERS.

RTS
END

This subroutine simply searches the list, element by element, for
the occurrence of the value that the user wants to add to the list,
which is contained in the low word of data register DO. If this value
is already in the list, the 68000 returns from the subroutine, because
you do not want the value to be duplicated in the list. Otherwise,

the value is "tacked on" to the end of the list, as a new element.
The starting address of the list is contained in address register AO.
The first element in the list (a word) contains an unsigned number

that represents the length of the list, in words, so this particular sub-
routine can be used to build a list that is up to 64K words long.

There is nothing particularly unusual about this subroutine. It
copies the starting address of the list from AO into Al (so that this
address is preserved in AO), and then reads the element count from
the first word of the list into Dl. This count is then decremented,

because the search loop will terminate when the count has decreased

124

to —1, rather than to zero. The search loop, which starts at NXTEL,
compares the elements in the list to the value in DO. If the value
is already in the list, the 68000 branches to ITSIN, and then returns.
Otherwise, if the value is not in the list, it is added to the end of

the list and an ADDQ instruction increases the element count (ad-
dressed by AO) by one.

How long will it take this subroutine to execute? Obviously, that
will depend on the number of elements in the list, and whether or
not the search value is already in the list. For all but the smallest
lists, the total execution time of the subroutine is largely a function

of how many times the three-instruction NXTEL loop is executed.
Let us examine the timing for both cases— element is not in the list,
and element is in the list— for a list having N elements.

// the search value is not in the list, the NXTEL loop will be exe-
cuted N times. For the first N — 1 executions, the loop will take 26

cycles to execute; for the last cycle, the loop will take 30 cycles to

execute. The remaining instructions in the subroutine will be exe-
cuted only once, and will require 108 cycles. Therefore,

Timetotai = 108 + 26(N-1) + 30

= 26N + 112 cycles

Thus, to add an element to a 100-element list will take 2712 cycles,
or 339.0 fxs.

If the search value is in the list, it should take the 68000 an aver-
age of N/2 comparisons to find it, because 50% of the time a search

value will lie in the lower half of the list and 50% of the time it will

lie in the upper half of the list. For all but the last of these N/2 com-
parisons, the NXTEL loop will take 26 cycles to execute (as in the

preceding paragraph); for the last cycle, in which a match is de-
tected, the NXTEL loop will take only 18 cycles to execute. The re-

maining instructions in the subroutine will require an additional 88
cycles. Therefore, on the average,

Timetotai = 88 + 26(N/2 - 1) + 18
= 13N + 80 cycles

Thus, to find an element in an unordered 100-element list will take
an average of 1380 cycles, or 172.5 fis.

Deleting an Element From an Unordered List

To delete an element from an unordered list, you must find the
element to be deleted, and then move all remaining elements in the

list up one element (to write over the deletion "victim") . Once this
element has been removed, there is one less element in the list, so the
element count of the list must be decremented by one.

125

The DELEUL subroutine given in Example 5-2 performs just such
an operation, using the low word of data register DO to specify the
value to be deleted. As in Example 5-1, the starting address of the
list is stored in address register AO. .

Example 5-2. Deleting an Element From an Unordered List
THIS SUBROUTINE DELETES THE VALUE IN THE LOW WORD OF DATA
REGISTER DO FROM AN UNORDERED LIST, IF THAT VALUE IS IN
THE LIST. THE STARTING ADDRESS OF THE LIST IS IN ADDRESS
REGISTER AO. THE LENGTH OF THE LIST, IN WORDS, IS IN THE LIST'S
FIRST WORD LOCATION.

DELEUL

NEXTEL

ORG $1000
MOVEM.L D1/A1,-(SP) SAVE SCRATCH REGISTERS.
MOVEA.L A0,A1 COPY STARTING ADDRESS INTO
MOVE {A1) + .D1 A1, AND WORD COUNT
SUBQ

#1,D1
MINUS 1 INTO D1.

CMP
(A1)-f ,D0 DELETE VICTIM FOUND?

BNE.S DELETE YES. GO DELETE THAT
ELEMENT.

DBF D1, NEXTEL NO. SEARCH UNTIL END OF
BRA.S ALLDUN LIST, THEN EXIT (ELEMENT

NOT IN LIST).
*
*
*

DELETE MOVE
DBF

DELETE AN ELEMENT, BY MOVING ALL SUBSEQUENT ELEMENTS UP
BY ONE WORD LOCATION.

(A1) + ,-4(A1) MOVE ONE WORD UP IN LIST.
D1, DELETE HAVE ALL ELEMENTS BEEN

MOVED?
#1,(A0) YES. DECREMENT ELEMENT

COUNT.
(SP) + ,D1/A1 RESTORE SCRATCH REGISTERS. ALLDUN

SUBQ

MOVEM.L
RTS
END

The first portion of the subroutine (DELEUL to NEXTEL) loads
the starting address of the list (where the element count is stored)
into Al, and then loads the word count minus one into Dl; these

instructions are identical to those at the beginning of Example 5-L
The NEXTEL loop compares each element in the list to the value
in DO. If a matching element is found, the 68000 branches to the
DELETE loop, which moves all subsequent elements up one word
location and then decrements the element count.

Finding the Minimum and Maximum Values in an
Unordered List

The need to find the minimum and maximum values in a list is

a requirement in many applications, particularly those in which test
data or statistical information is being processed. One method that

126

can be used to find these values without sorting the Hst is to initially
establish the first element as both the minimum and maximum value,
and then sequentially compare each of the remaining elements in

the list to that minimum and maximum value. If your program en-
counters a value that is less than the minimum value, that element

becomes the new minimum value unit. Likewise, if your program
encounters a value that is greater than the maximum value, that
element becomes the new maximum.

Subroutine MINMAX in Example 5-3 applies this method to an
unordered list comprised of unsigned word values. When the sub-

routine is called, the starting address of the list must be contained
in AO. Upon return, the minimum and maximum values will be
stored in two symbolic memory locations, MINVAL and MAXVAL.

In Example 5-3, the instructions from MINMAX to CHKMIN
load the element count, minus one, into data register Dl and store
the value of the first data element into both MINVAL and MAX-

VAL. At CHKMIN, the next element is loaded into DO, and then

Example 5-3. Finding the Minimum and Maximum Values in an Unordered List
* THIS SUBROUTINE FINDS THE MINIMUM AND MAXIMUM WORD

VALUES IN AN UNORDERED LIST. THE MINIMUM VALUE IS RETURNED
IN MEMORY LOCATION MINVAL; THE MAXIMUM VALUE IS RETURNED
IN MEMORY LOCATION MAXVAL. THE STARTING ADDRESS OF THE
LIST IS IN ADDRESS REGISTER AO. THE LENGTH OF THE LIST, IN

WORDS, IS IN THE LIST'S FIRST WORD LOCATION.

MINVAL
MAXVAL
MINMAX

ORG
DS.W
DS.W
MOVEM.
MOVE
SUBQ
MOVE
MOVE

CHKMIN MOVE

CHKMAX

CONT

CMP
BEQ.S
BCC.S
MOVE
BRA.S
CMP

BLS.S
MOVE
DBF
MOVEM. L
RTS
END

$3000
1
1
D0/D1/A0,-(SP)
(A0) + ,D1

#1,D1
(AO), MINVAL
(A0) + , MAXVAL

(AO) + ,DO

MINVAL,DO
CONT
CHKMAX
DO, MINVAL
CONT
MAXVAL,DO

CONT
DO,MAXVAL
D1, CHKMIN
(SP>+,D0/D1/A0

MINIMUM VALUE LOCATION.
MAXIMUM VALUE LOCATION.
SAVE SCRATCH REGISTERS.
MOVE ELEMENT COUNT INTO
Dl AND DECREMENT IT.
INITIALLY, MAKE FIRST
ELEMENT BOTH MIN AND
MAX.
LOAD NEXT ELEMENT INTO
DO.
IS THIS ELEMENT A NEW MIN?

YES. UPDATE MINVAL.

IS THIS ELEMENT A NEW
MAX?

YES. UPDATE MAXVAL.
END OF LIST?

YES. RESTORE SCRATCH
REGISTERS.

127

compared to MINVAL. At this point, any of three paths can be
taken :

1. If the value in DO is equal to MINVAL (zero flag is set), the
68000 branches to CONT, to check whether all elements have
been processed.

2. If the value in DO is greater than MINVAL (carry flag is clear),
the 68000 branches to CHKMAX, where it is compared to
MAXVAL.

3. If the value in DO is less than MINVAL (carry flag is set),

the 68000 "drops through" the BCC.S CHKMAX instruction and stores the word in DO as the new MINVAL.

Following Step 2 or 3, the loop terminator instruction at CONT (DBF
D1,CHKMIN) checks whether all elements in the Hst have been

processed, and branches to CHKMIN if they have not.
As mentioned previously, this particular subroutine processes lists

that are comprised of unsigned word values. If you wish to find the
minimum and maximum in a list of signed word values, you can do
so by simply replacing BCC.S CHKMAX with BPL.S CHKMAX and
replacing BLS.S CONT with BLE.S CONT. All other instructions
remain the same.

A SIMPLE SORTING TECHNIQUE

Although unordered data is perfectly acceptable for many appli-
cations, ordered data is often easier to analyze, and it certainly

makes it much easier to locate an element. How can an unordered
list be ordered? A considerable amount of literature exists on the

subject. (Two good sources are References 1 and 2.) However, one
of the simplest techniques is called the bubble sort.

Just as bubbles rise upward into the sky, list elements rise upward
in memory during a bubble sort. (Data can be sorted in an increasing
or decreasing order; we will discuss only increasing order.) During a
bubble sort, elements of a list are accessed sequentially, starting with
the first element, and are compared to the next element in the list.
If an element is greater than the next sequential element in the list,
the elements are exchanged. The next pair of elements is compared,
exchanged if required, and so on. By the time the 68000 gets to the

last element of the list, the largest element in the list will have "bub-
bled up" to the last element position of the list.

If the bubble-sort algorithm is used, the microcomputer usually
requires several passes to sort a list, as can be seen by the following

example. Consider a 5-element list that is initially arranged in the
following order:

128

05 03 04 01 02

After one pass through the Hst, the elements will be in the following
order:

03 04 01 02 05

Element 05, the largest element of the list, has "bubbled up" to the
top of the list. The next pass will produce the order:

03 01 02 04 05

Element 04 is bubbled up the list to a position that is just before
element 05. The result of the final pass is:

01 02 03 04 05

This example not only demonstrates how the bubble-sort algo-
rithm operates, but it also gives an indication of what type of per-

formance you can expect from it. Note that three passes were re-
quired to sort a partially ordered, 5-element list. If the list were

totally ordered at the outset, it would still take one pass through

the algorithm to deduce this fact. Conversely, if the list were ini-
tially arranged in descending order (the worst case), the bubble-

sort algorithm would require five passes to order the list, four passes
to sort, and one additional pass to detect that no additional elements
need to be exchanged. From this observation, we can state that the
68000 will have to make from one to N number of passes through an

N -element list, in order to sort it. On the average, N/2 passes are re-
quired to sort an N-element list.

What constitutes a "pass," in terms of instructions and time? Well,
that will depend on how your programming algorithm is set up.

Certainly, one way of bubble-sorting a list is to process the entire
list, over and over, until your program finally makes a pass through
the list in which no elements were exchanged. That approach will

do the job, but it is time-consuming "overkill." Why? Because it is
continuing to make comparisons on elements that have bubbled up
to the end of the list in previous passes, and therefore need not be
compared. A much quicker and more eflBcient approach is to make
comparisons on only those elements that have not yet bubbled up
to the end of the list.

Note that for any given list, both approaches just described will
involve the same number of sorting passes, but there are drastic
differences in the amount of time each will take to get the job done.
If we use the previously mentioned statistic that an average of N/2
passes are required to sort an N-element list, here is how the two
approaches compare: The first approach, in which all elements are
compared in every pass, will perform N/2 sorting passes through N

129

elements. The second approach, in which only the previously un-
sorted elements are compared, will also perform N/2 sorting passes,
but each pass will involve one less comparison than the preceding
pass! That is, during the first pass, N elements will be compared,

during the second pass N— 1 elements will be compared, and so on.
During the final pass just two elements will be compared. To get
a feel for the time savings you will realize by using the second ap-

proach, consider this: To sort a 100-element list, the first approach
will require about 4950 comparisons, whereas the second approach

will require only about 3675 comparisons, which is about one-quarter
fewer comparisons!

Bubble-Sorting a List Having 16-Bit Elements

With the preceding background in bubble-sort theory, we are
prepared to tackle an actual problem— sorting a list that is made up
of 16-bit unsigned elements. Fig. 5-1 is a flowchart showing what
steps are needed to do the job. If you understand the description

of the bubble-sort algorithm, this flowchart should present no prob-
lem. Note, however, that the flowchart does include an indicator

that will let the 68000 know when the list has been entirely sorted.
This indicator, called the exchange flag, is tested at the end of each

sorting pass. The exchange flag is "turned on" (set to logic 1) if at
least one exchange occurred during the preceding pass; otherwise

it is "turned off" (reset to logic 0), at which point the sorting ends.
The actual subroutine for this flowchart is given in Example 5-4.

As you can see from the listing, upon entry the starting address of

the list to be sorted must be in address register AO. While the sub-
routine is executing, AO retains the address of the first data element

in the list. This address is moved to Al at the beginning of each
sorting pass. Besides AO and Al, the SORT subroutine also uses four
data registers. Register Dl holds the exchange flag in bit 7. Register
D3 is used to hold the count of unsorted elements. It supplies data
register DO with this count at the beginning of each pass, and gets
decremented by a DBF instruction upon completion of the pass.

Register D2 is used to hold an element during the compare pro-
cedure.

By the way, you should take note of the two instructions that
follow the DBF. The instruction NOT.B Dl Is-complements the

exchange flag (in Dl), and the instruction BPL.S LOOP initiates

a new sorting pass if the NOT operation has changed the flag to 0.
That is, the branch to LOOP is taken only if the exchange flag was

"on" (set to 1) before the NOT instruction was executed.
In many applications, the elements of a list will not fit into a

simple 8-bit, 16-bit, or 32-bit format, and programmers must de-
velop sort routines to handle lists with even longer elements. The

130

START ̂

EXCHANGE
FLAG = 0

FETCH
WORD COUNT

FETCH
ADDRESS OF

FIRST ELEMENT

WORD COUNT =
WORD COUNT-1

LOAD WORD
COUNT INTO
COUNTER

FETCH
NEW ELEMENT

TURN ON
EXCHANGE

FLAG

NO

RETURN

COUNTER =
COUNTER -1

Fig. 5-1. Bubbie-sort algorithm.

131

Example 5-4. A 16-Bit Bubble-Sort Subroutine

THIS SUBROUTINE ARRANGES THE 16-BIT ELEMENTS OF A LIST IN
ASCENDING ORDER IN MEMORY, USING BUBBLE SORT. THE
STARTING ADDRESS OF THE LIST IS IN ADDRESS REGISTER AO. THE

LENGTH OF THE LIST, IN WORDS, IS IN THE LIST'S FIRST WORD
LOCATION.

SORT

LOOP

COMP

DECCTR

ORG
MOVEM.L
CLR.B
MOVE

SUBQ
MOVE

MOVE

CMP

BLS.S
MOVE
MOVE
TAS
DBF
NOT.B

BPL.S
MOVEM.L

RTS

END

$4000
D0-D3/A0/A1,-(SP)
D1

(A0)+,D3

MOVEA.L A0,A1

#1,D3 D3,D0

(A1)+,D2
(A1),D2

DECCTR

(A1),-2(A1) D2,(A1)

D1
DO.COMP
D1

LOOP

(SP)-h,D0-D3/A0/A1

SAVE SCRATCH REGISTERS.
EXCHANGE FLAG = 0.
LOAD WORD COUNT INTO
D3.
LOAD ELEMENT ADDR. INTO
A1.
DECREMENT WORD COUNT
AND LOAD IT INTO
COUNTER DO.
FETCH WORD INTO D2.
IS NEXT WORD GT.
THIS WORD?

YES. CONTINUE.
NO. EXCHANGE THESE
TWO WORDS.

TURN ON EXCHANGE FLAG.
END OF LIST?

YES. IS EXCHANGE FLAG
ON?

IF SO, START OVER.
RESTORE SCRATCH
REGISTERS.

preceding comments should give you suflBcient background to de-
velop a program that will sort elements of any length. For additional

background, see the bubble-sort routine in Reference 4, which sorts
a mailing list.

ORDERED LISTS

Now that we have learned how to order a list, let us discuss how

to search the list for a known value and, then, see how two com-

mon operations— adding elements and deleting elements— can be
programmed.

Searching an Ordered List

Earlier in this chapter we learned that in order to locate a given
value in an unordered list, the list must be searched sequentially,

element by element. For an N-element list, this requires an average

132

of N/2 comparisons. If a list is ordered, however, any of a number
of search techniques can be employed. For all but the shortest lists,
most of these techniques will be faster and more eflBcient than the
sequential search technique.

One of the most widely known search techniques for ordered lists
is called the binary search. Its name is derived from the fact that
it divides the list into a series of progressively narrower halves,

to eventually "zero in" on one element location in the list. A binary search starts in the middle of the list and determines which half of

the list the entry value is in. It then takes that half of the list and
divides it into halves . . . , and so on.

The flowchart in Fig. 5-2 shows the kinds of operations needed to
conduct a binary search on an ordered list. Upon completion of the
search, the result is returned as an address. If the search value is

found in the list, it will be the address of the matching element. If
the value is not in the list, it will be the address of the last element
that was compared. You can find out which of these two addresses
has been returned by checking whether the final value of the index
is zero (no match) or nonzero (match) .

Example 5-5 shows a subroutine that can be used to search an

ordered list that is comprised of unsigned word values. The instruc-
tions from BSRCH to CALCI conduct initial tests against the lower

and upper bounds of the list, to check whether the search value is
out-of-bounds or lies at these extremes. If the search value falls

within the boundaries of the list, the remaining instructions (CALCI
onward) search the list, using the algorithm that was flowcharted

in Fig. 5-2.

Example 5-5. A 16-Bit Binary-Search Subroutine
* THIS SUBROUTINE SEARCHES AN ORDERED LIST FOR THE WORD
* VALUE CONTAINED IN DATA REGISTER DO. THE STARTING ADDRESS
* OF THE LIST IS IN ADDRESS REGISTER AO AND THE WORD COUNT

* IS IN THE LIST'S FIRST WORD LOCATION.
* RESULT INDICATIONS ARE RETURNED IN REGISTERS A1 (ALL 32
* BITS) AND D1 (LOW 16 BITS), AS FOLLOWS:
* 1. IF THE VALUE IS IN THE LIST, D1 IS NONZERO AND A1
* HOLDS THE ADDRESS OF THE MATCHING WORD IN THE
* LIST.
* 2. IF THE VALUE IS NOT IN THE LIST, D1 IS ZERO AND A1
* HOLDS THE ADDRESS OF THE LAST WORD TO BE
* COMPARED.
*

ORG $1000
BSRCH MOVEA.L AO.AI PUT LIST STARTING ADDR. INTO A1.

CLR.L D1 CLEAR INDEX REGISTER.
*
* CHECK WHETHER SEARCH VALUE IS AT OR BEYOND BOUNDS OF
* LIST.

133

CALCA

TRYHI

EQHI

*
* SEARCH VALUE
* PROCEED WITH
*

CMP 2(A1),D0 SEARCH VALUE LT OR EQ LOWER
BOUND?

BHI.S TRYHI NO. CHECK UPPER BOUND.
BNE.S CALCA YES. SEE IF VALUE -f LOWER

BOUND.
MOVEQ

#2,D1 ADDQ.L

#2,A1
RTS
MOVE

(A1),D1
FETCH WORD COUNT AND

LSL
#1,D1

CONVERT IT TO BYTE INDEX.
CMP 0(A1,D1),D0 SEARCH VALUE GT UPPER BOUND?
BLS.S EQHI
ADDA.L D1,A1 YES. FORM ADDR & CLEAR D1.
CLR D1
RTS
BNE.S CALCI NO. SEE IF VALUE = UPPER

BOUND.
ADDA.L D1,A1
RTS

CALCI LSR
#1,D1 ANDI.B
#$FE,D1

BEQ.S RETRN
ADDA.L D1,A1

COMP CMP (A1),D0 BNE.S CHKLOW
RETRN RTS
CHKLOW BCC.S CALCI

LSR
#1,D1 ANDI.B
#$FE,D1 BEQ.S RETRN

SUBA.L D1,A1
BRA.S COMP
END

IS NOT AT OR BEYOND BOUNDS OF LIST.
THE SEARCH.

DIVIDE INDEX BY 2.
FORCE INDEX TO A WORD
BOUNDARY.
INDEX = 0?

NO. CALCULATE SEARCH ADDRESS.
SEARCH VALUE FOUND IN LIST?

YES. EXIT WITH ADDRESS IN A1.
NO. SEARCH VALUE IS HIGHER.
NO. SEARCH VALUE IS LOWER

CALCULATE NEW INDEX.

CALCULATE NEW SEARCH ADDRESS
AND GO COMPARE.

As in previous examples in this chapter, the starting address of

the Hst is passed to the subroutine in AO; the subroutine will not al-
ter this address. The result address is returned in Al and the match/

no-match indication is returned in Dl. Since the BSRCH subroutine
operates on word values, each time a new index is calculated it is

forced to an even value, by ANDing the last-significant byte of the
(16-bit) index with the immediate value $FE.
How much more eflBcient is a binary search than a straight sequen-

tial comparison, the kind we used in Example 5-1? A mathematical
analysis^ ̂ '^^ has shown that whereas a sequential search of an N-
element list requires an average of N/2 comparisons, a binary search

requires log2 N comparisons. For a 100-element list, a sequential

134

START ̂

FETCH

(WORD

INDEX
COUNT)

DIVIDE INDEX
BY 2

SEARCH ADDRESS =
ADDRESS+ INDEX

DIVIDE INDEX
BY 2

SEARCH ADDRESS =
ADDRESS -INDEX

Fig. 5-2. Binary-search algorithm.

135

search will average 50 comparisons, but a binary search will do the
same job with about 7 comparisons!

Adding an Entry to an Ordered List

The process of adding an entry to an ordered list can be divided
into four basic steps:

1. Find out where the entry must be added.

2. Clear a location for the entry by moving all higher-valued ele-
ments down one position to the next higher-address element

location.

3. Insert the entry at the newly vacated element position.
4. Update the list length by adding one to it.

The subroutine just developed, BSRCH (Example 5-5), gives us
a good clue as to where the element must be added, in that it re-

turns the address of the last element to be compared. All we need

to determine to complete Step 1 is whether the entry must be in-
serted immediately preceding, or immediately following, the last-

compared element. That determination can be made by simply com-
paring the entry value to the last-compared element.

Knowing the steps that are needed to add an entry to an ordered
list, we can develop a subroutine to do the job. One solution is given

in the ADD20L subroutine in Example 5-6. This subroutine begins
by calling BSRCH, to find out whether the search value is already
in the list. As you know, BSRCH returns an address in Al and a
match /no-match indicator in Dl.

Upon return from BSRCH, the ADD20L subroutine interrogates
Dl, and exits if Dl is nonzero (since that means the entry is already
in the list). If Dl is zero, however, the subroutine calculates the
address of the end of the list. By subtracting the contents of Al

from this address, and right-shifting the result, the 68000 calculates
the number of words that must be moved down in memory (the
move count) to make room for the element to be inserted in the list.

If the entry is less than the last-compared value, the last-compared
word must be moved down also, so the move count is increased

by one.
If an entry is greater than the last word in the list, it must be

tacked on to the end. Otherwise, this value will have to be inserted

in the list, which will require moving all subsequent elements down

one word position. The two-instruction loop at MOVEL moves ele-
ments down, one by one, starting with the last word in the list.

Upon completion of the move, the instructions starting at ADDIT
add the entry to the list and increase the word count by one.

136

Example 5-6. Adding an Entry to an Ordered List
* THIS SUBROUTINE ADDS THE LOW WORD OF DATA REGISTER DO TO
* AN ORDERED LIST, IF THIS VALUE IS NOT ALREADY IN THE LIST.
* THE STARTING ADDRESS OF THE LIST IS IN ADDRESS REGISTER AO

* AND THE WORD COUNT IS IN THE LIST'S FIRST WORD LOCATION.
* THE BSRCH SUBROUTINE (EXAMPLE 5-5) IS CALLED TO CONDUCT
* THE SEARCH.
*

ORG $2000
ADD20L MOVEM.L D1/D2/A1/A2,-(SP) SAVE SCRATCH REGISTERS.

JSR BSRCH SEARCH LIST FOR ENTRY.
TST D1 IS ENTRY IN THE LIST?
BNE.S ITISIN YES. EXIT.
MOVE.L A0,D2 NO. CALCULATE ADDR.
ADD.L

(A0),D2
OF END OF LIST.

MOVEA.L D2,A2 LOAD END + 2 INTO A2.
ADDQ.L

#2.A2 SUB.L A1,D2 CALCULATE NO. OF WORDS
TO BE MOVED

LSR.L
#1,D2 SUBQ.L
#1,D2

AND SUBTRACT 1 FROM
THAT COUNT.

CMP (A1),D0
SHOULD COMPARE LOC. BE
MOVED TOO?

BCS.L INCCNT YES. GO INCREMENT
MOVE COUNT.

TST.L D2 NO. ADD ENTRY TO END
OF LIST?

BEQ.S ADDIT YES. GO ADD IT TO END.
BRA.S MOVEL

INCCNT ADDQ.L
#1,D2

INCREMENT MOVE COUNT.
MOVEL MOVE -(A2),2(A2) MOVE NEXT WORD DOWN.

DBF D2.M0VEL ALL WORDS MOVED?
ADDIT MOVE D0,(A2) YES. INSERT ENTRY IN

ADDQ #1,{A0) LIST AND INCREMENT
ELEMENT COUNT.

msiN MOVEM.L (SP)+,D1/D2/A1/A2 RESTORE SCRATCH
REGISTERS.

RTS
END

Deleting an Element From an Ordered List

It is much easier to delete an element from an ordered list than

it is to add one, because all the 68000 has to do is find the proper

element, move all subsequent elements up one location, and decre-
ment the count, which is in the first element of the list.

Example 5-7 shows a typical delete subroutine, called DELOL,

which uses the BSRCH subroutine (Example 5-5) to locate the in-

tended deletion "victim." As usual, the starting address of the list
is contained in address register AO. The value to be deleted is in
the low word of data register DO.

137

Example 5-7. Deleting an Element From an Ordered List
* THIS SUBROUTINE DELETES THE VALUE IN THE LOW WORD OF DATA
* REGISTER DO FROM AN ORDERED LIST, IF THE VALUE IS IN THE LIST.
* THE STARTING ADDRESS OF THE LIST IS IN ADDRESS REGISTER AO.
* THE LENGTH OF THE LIST, IN WORDS, IS IN THE LIST'S FIRST WORD
* LOCATION.

* THE BSRCH SUBROUTINE (EXAMPLE 5-5) IS CALLED TO CONDUCT
* THE SEARCH.
*

ORG $3000
DELOL MOVEM.L D1/D2/A1,— (SP) SAVE SCRATCH REGISTERS.

JSR BSRCH SEARCH LIST FOR ENTRY.
TST D1 IS ENTRY IN THE LIST?
BEQ.S EXIT NO. RETURN.
MOVE.L A0,D2 YES. CALCULATE ADDR. OF
ADD.L

(A0),D2
END OF LIST.

SUB.L A1,D2 CALCULATE NO. OF WORDS
TO BE MOVED.

LSR.L
#1,D2 SUBQ.L
#1.D2

AND SUBTRACT 1 FROM THAT
COUNT.

BEQ.S DECCNT
DELETE MOVE 2(A1),(A1)+ MOVE WORD UP IN LIST.

DBF D2,DELETE ALL WORDS MOVED?
DECCNT SUBQ #1,(A0) YES. DECREMENT ELEMENT

COUNT.
EXIT MOVEM.L (SP)+,D1/D2/A1 RESTORE SCRATCH REGISTERS

RTS
END

If BSRCH locates the entry value in the list, the DELOL sub-
routine uses its address, and the address of the end of the Hst, to

calculate the number of words that must be moved up in the list.

The two-instruction loop at DELETE performs the move operation.
When all words have been moved, the element count in the first

word of the list is decremented by one, to reflect the deletion.

LOOK-UP TABLES

Many microprocessor programs include applications that require
a particular value to be obtained before processing can resume. This

value may be a mathematical derivative of a test or calculation re-
sult, such as the sine of a calculated angle or the Celsius equivalent

of a temperature that has been measured in Fahrenheit. Or, the re-
quired value may be a parameter that has some defined relationship

to a program input, but which cannot be calculated, such as a tele-
phone number that corresponds to a name. Applications like these

usually call for a look-up table. As the name implies, a look-up table
is used to obtain an item of information (an argument) based on a
known value (a function) .

138

Look-up tables often replace complicated or time-consuming con-
version operations, such as calculating the square root or cube root

of a number, or deriving a trigonometric function (sine, cosine, etc.)

of an angle. Look-up tables are especially efficient when a function
is limited to a very small range of arguments. By using a look-up
table, the microcomputer does not have to perform complex calcu-

lations each time an argument is required. In fact, you will find that

as a rule, look-up tables reduce execution time in all but the most
trivial of relationships. (You would not use a look-up table to store
arguments that are always twice the value of a function, for in-

stance.) But since look-up tables typically require large amounts of
memory storage space, they are most efficient in applications where
storage space can be sacrificed for execution speed.

Look-Up Tables Can Replace Equations

You can save processing time and programming development time

by providing the results of complex equations in a look-up table.
In this section we will examine one common application— finding the
sine of an angle that is expressed in degrees.

The sine of all angles between 0° and 360° can be graphed, as
shown in Fig. 5-3. Mathematically, this curve can be approximated
by using the formula

Fig. 5-3. The sine of all angles between 0** and 360*^.

It is certainly possible to write a program to perform this approxi-
mation, but such a program may require a couple of milliseconds to

calculate the sine. If your application requires very precise sines,
you may be forced to write this program. However, applications with

139

less stringent requirements can use an angle-to-sine look-up table.

Note from Fig. 5-3 that the sine of any angle between 0° and 180°
is positive and that the sine of any angle greater than 180° and less
than 360° is negative. Therefore,

0° < X < 180°, sine is positive

180° < X < 360°, sine is negative

As you can see in Fig. 5-3, the sine of 91° is the same as the sine of
89° and the sine of 179° is the same as the sine of 1°. Therefore, it
can be concluded that for angle X

0°^X^ 90°, takesine(X)

90° ̂ X ̂ 180°, take sine (180° - X)
orsine(90° - (X-90°))

For example,

sine (170°) = sine (90° - (170° -90°))

= sine(90°-80°)

= sine (10°)

Further, angles in quadrants III and IV have sines with the same
magnitude, but the opposite sign, as the angles in quadrants I and
II, respectively. This observation allows us to state the following:

180° ̂ X ̂ 270°, take -sine(X - 180°)

270° ̂ X ̂ 360°, take -sine (360° - X)
or -sine (90° - (X-270°))

For example,

sine(190°) = -sine(190° - 180°)
= -sine (10°)

Or, for an angle between 270° and 360°,

sine (290°) = -sine (90° - (290° -270°)

= -sine (90° -20°)

= -sine (70°)

The preceding relationships show that the sine of any angle be-
tween 0° and 360° can be expressed as some function of the sine of

an angle between 0° and 90°. For a look-up table application this
is significant, because it means that the look-up table need only con-

tain the sine values for angles from 0 to 90°/

140

SIGN = 0

YES ANGLE <18n

NO

SIGN

= 1

ANGLE =
ANGLE -180

Fig. 5-4. Flowchart for angle-to-sine
look-up subroutine.

ANGLE = 180-ANGLE

GET THE SINE
OF THE ANGLE

FROM THE TABLE

ADD SIGN,
AS THE MSB

END ̂

These relationships also allow us to construct a flowchart for an

angle-to-sine conversion subroutine. This flowchart, shown in Fig.

5-4, derives the sine as a sign-and-magnitude value.
Example 5-8 gives the 68000 angle-to-sine conversion subroutine.

This subroutine accepts angles from 0° to 360°, in data register DO,
and returns an 8-bit sign-and-magnitude sine value in data regis-

ter Dl. In this subroutine, called SINANG, the 68000 begins by

checking whether the angle is less than 181°. If it is, program exe-

141

cution branches to SINPOS; otherwise, the 68000 sets the sign bit

to one (sines above 180° are negative) and subtracts 180° from
the angle.

Example 5-8. Finding the Sine of an Angle
* THIS PROGRAM CALCULATES THE BINARY SINE VALUE FOR THE
* ANGLE (0 TO 360 DEGREES) CONTAINED IN THE LOW WORD OF
* DATA REGISTER DO, USING A LOOK-UP TABLE. THE SIGNED SINE
* IS RETURNED IN THE LOW BYTE OF DATA REGISTER D1. DO IS
* UNAFFECTED.
*

ORG $1000
SINANG MOVE DO,-(SP) SAVE SCRATCH REGISTERS.

MOVE.L AO -(SP)
CLR.B D1 INITIALIZE SINE BYTE TO ZERO.
CMPI #180,D0 ANGLE LESS THAN 181 DEGS?
BLS.S SINPOS YES. CONTINUE WITH SIGN = 0.
TAS D1 NO. SET SIGN BIT - 1.
SUBI #180,D0 SUBTRACT 180 DEGS FROM ANGLE.

SINPOS CMPI
#91, DO

ANGLE LESS THAN 91 DEGS?
BMI.S GETSIN YES. GO LOOK UP SINE.
NEG DO NO. SUBTRACT ANGLE FROM 180.
ADDI

#180,D0
GETSIN LEA SINTAB,AO LOAD TABLE ADDRESS INTO AO.

OR.B 0(A0,D0),D1 COMBINE SINE WITH SIGN BIT.
MOVE.L (SP) + ,AO RESTORE SCRATCH REGISTERS.
MOVE (SP)+,DO

* THE SINE LOOK-UP TABLE FOLLOWS

SINTAB DC.B 0,2,4,6,8,$B,$D, $F,$11,$14,$16
(Rest of the table follows, 91 bytes total.)

With the sign bit now in bit 7 of register Dl, the CMPI instruc-

tion at SINPOS compares the current value of the angle to 91°. If
the angle is greater than or equal to 91°, its value must be subtracted
from 180°. The simplest way to perform this subtraction would be
with the instruction SUBI D0,#180, but the 68000 does not support
this form of the SUBI instruction (only the form SUBI #data,Dn is

legal), so we must make the subtraction by 2s-complementing DO,

then adding 180° to the result. The final two instructions load the
address of the look-up table (SINTAB) into AO, then look up the
sine, using address register indirect with index addressing, and or

it with the sign bit in Dl. The SINTAB table contains 91 byte-

length sine values, to accommodate angles from 0° to 90°. The val-
ues used to form SINTAB are shown in Table 5-1.

The SINANG subroutine occupies 19 words in memory. Its exe-
cution time depends on which quadrant the look-up angle resides in.

142

Table 5-1. A Sine Look-Up Table With Angles in 1° Increments

Angle Sine Angle Sine

Decimal
Binary

Decinnal

Binary

U.UU .0000 00000000 A nn 40. uu .7071 0101 1010
I .Kjyj .0175 00000010 4A nn 4 O.UU .7193 01011 100
0 no .0349 00000100 A7 nn 4/ .uu .7313 01011101
J.UU .0523 000001 10 AR nn 40.UU .7431 0101 1 1 1 1

.0698 00001000 AO nn 47 .uu .7547 01 100000
D.UV .0872 00001011 ^n on OU.UU .7660 01 100010
A on .1045 00001 101 1 nn 0 1 .uu .7771 0110001 1

.1219 00001 11 1
'^0 nn
oz.uu .7880 01100100

O.UU .1392 00010001
'^'i nn
0 J.UU .7986 01 1001 10

o r\f\ y.uu .1564 00010100 RA nn 04. uu .8090 01100111
1 U.UU .1736 000101 10

t;*; nn
oo.uu .8191 01 101000

1 1 .uu .1908 00011000

cz, nn

oo.uu .8290 01 101010
1 z.UU .2079 00011010

C.7 nn
u/ .uu .8387 01 10101 1

1 i nn 1 J.UU .2250 0001 1 100
'^0 nn
oo.uu .8480 01101100

1 >< nn 1 4.UU .2419 00011110

CO nn
ov.uu

.8572 01 101 101
1 nn ! O.UU .2588 00100001 An nn OU.UU .8660 01 101 1 10
1 X nn 1 O.UU .2756 00100011 A 1 nn o 1 .uu .8746 01 101 1 1 1
1 7 nn 1 / .uu .2924 00100101 AO nn Oz.UU .8829 oil 10001
1 0 nn 1 O.UU .3090 001001 1 1 AT nn Oo.uu .8910 01 1 10010
1 0 nn .3256 00101001 AA nn .uu .8988 01 1 1001 1
on nn ZU.UU .3420 00101011

A*? nn oo.uu .9063 oil 10100
01 nn z 1 .uu .3584 00101 101 AA nn oo.uu .9135 01 110100
00 nn .3746 00101 1 1 1 A7 nn 0/ .uu .9205 01 110101

nn .3907 00110010 AQ nn Oo.uu .9272 01 1 10110
Oi4 nn .4067 00110100 AO nn ov.uu .9336 0111011 1
0*^ nn .4226 001 101 10 7n nn /U.UU .9397 01 1 11000
OA nn ^o.uu .4384 0011 1000 7 1 nn / 1 .uu .9455 01 1 1 1001
07 nn z/.UU .4540 ooniolo 7o nn / z.uu .951 1 01 1 1 1001
OR nn ZO.UU .4695 001 1 1 100 71 nn / O.UU .9563 0111 1010
oo nn .4848 0011 n 10 7 A nn /4.UU .9613

01111011
'?n nn oU.UU .5000 01000000

7'% nn
/ O.UU .9659 01 1 1 101 1

nn J 1 .uu ^ .5150 01000001 7A nn /O.UU .9703 01 1 n 100
TO nn .5299 0100001 1 77 nn / / .uu .9744 oil 11 100 '^'^ nn o J .uu .5446 01000101 70 nn / O.UU .9781 01111101 O/i nn 04. uu .5592 01000111 70 nn /y .uu .9816 0111 1101
T nn oD.UU .5736 01001001 on An oU.UU .9848 01111 110 '^A nn oo.uu .5878 0100101 1 Q 1 nn o 1 .uu .9877 01111110
T7 nn o/ .uu .6018 01001101 QO AA oz.UU .9903 oiiimo nn .6157 01001110 m AA oo.uu .9926 01111111
39.00 .6293 01010000 84.00 .9945 01111111
40.00 .6428 01010010 85.00 .9962 01111111 41.00 .6561 01010011 86.00 .9976 0111 11 11
42.00 .6691 01010101 87.00 .9986

01111111 43.00 .6820 01010111 88.00
.9994 01111111

44.00 .6947 01011000 89.00 .9998 01111111 45.00 .7071 01011010 90.00 1.0000 01111111

143

Not including execution times for the JSR and RTS instructions, the
execution times are:

• For angles between 0"" and 90°, SINANG will execute in 59 cy-
cles, or 7.375 fxs.

• For angles between 91° and 270°, SINANG will execute in 69
cycles, or 8.625 fis.

• For angles between 271° and 360°, SINANG will execute in 79
cycles, or 9.875 /xs.

Look-Up Tables Can Perform Code Conversions

Look-up tables are also used to hold coded data, such as display
codes, printer codes, and messages. As an example. Example 5-9
shows a subroutine that performs multiple look-ups. It converts a
hexadecimal digit in the low byte of DO to its ASCII, BCD, and
Gray Code equivalents. The converted values will be returned in
three consecutive byte locations in memory, starting at the address
pointed to by address register AO.

Example 5-9. A Code-Conversion Subroutine
* THIS SUBROUTINE USES THREE LOOK-UP TABLES TO CONVERT A
* HEX DIGIT IN THE LOW BYTE OF DO TO ITS ASCII, BCD, AND GRAY
* CODE EQUIVALENTS. THE CONVERTED VALUES ARE RETURNED IN
* THREE CONSECUTIVE BYTES IN MEMORY, STARTING AT THE
* ADDRESS IN AO. DO AND AO ARE UNAFFECTED BY THE SUBROUTINE.
*
*

ORG $1000
LOOKUP MOVE D0,-(SP) SAVE SCRATCH REGISTERS.

MOVE.L A1,-(SP)
EXT.W DO FORM INDEX.
LEA ATABLE,A1 A1 POINTS TO TABLE.
MOVE.B 0(A1,D0),(A0) FETCH ASCII CODE.
MOVE.B $10(A1,D0),1(A0) FETCH BCD CODE.
MOVE.B $20(A1,D0),2(A0) FETCH GRAY CODE.
MOVE.L (SP) + ,A1 RESTORE SCRATCH REGISTERS.
MOVE (SP)+,DO RTS

ATABLE DC.B '0123456789ABCDEF'
DC.B 0,1,2,3,4,5,6,7,8,9,$10,$11,$12,$13,$14,$15
DC.B 0,1,3,2,6,7,5,4,$C,$D,$F,$E,$A,$B,9,8
END

Of course, the LOOKUP subroutine in Example 5-9 will only con-

vert a single hexadecimal digit. Many applications, such as data pro-
cessing and data encryption, require strings of data to be converted

from one form to another. Reference 4 contains a 68000 program

that may be of value in those types of applications. This program

144

employs a look-up table to convert a string of data in a memory
buffer to another string in another memory buffer.

JUMP TABLES

Look-up tables can contain more than just data. In many cases,
the elements of the table are addresses. An error routine, for ex-

ample, can use a look-up table to find the starting address of an
operator error message, based on a code in a data register. Similarly,

an interrupt routine can use a look-up table to call one of several
service routines, based on which device in the system generated the

interrupt service request. Another routine may use a look-up table
to call one of several control programs, based on a control key
pressed by an operator. In all of these applications (there are many

more as well) , the look-up table containing the addresses is referred
to as a jump table. Jump tables are used in applications where the
control path is dependent upon the state of a specific condition.

Example 5-10 illustrates how a jump table can service the needs
of five different users in a multiterminal microcomputer system. This
subroutine, SELUSR, interprets the contents of data register DO as
a user identification code, and uses this code to call one of five user

service subroutines. SELUSR checks the validity of the entered
code, and traps to the CHK exception routine if the code is greater
than four. (More about exceptions in Chapter 7.) However, with a
valid code, the subroutine will convert the user code to an index,
then use that index to fetch the address of a user routine (USERO

through USER4) into AO. The fetch employs program counter rela-
tive with index addressing; this mode is induced by the RORG di-

rective preceding the subroutine. With the correct address in AO, a

simple indirect jump transfers program control to the user sub-
routine.

Example 5-10. A Multiuser Selection Subroutine
* THIS SUBROUTINE CALLS ONE OF FIVE USER SUBROUTINES, BASED
* ON A USER IDENTIFICATION CODE IN THE LOW BYTE OF DATA
* REGISTER DO. THE SUBROUTINE AFFECTS THE AO AND DO
* REGISTERS.

RORG $1000
SELUSR EXT.W DO EXTEND USER CODE TO WORD.

CHK
#4,D0

INVALID ID CODE?
LSL

#2.D0
NO. CALCULATE INDEX (ID x 4)

LEA UADDR.AO FETCH TABLE ADDR. INTO AO.
MOVEA.L 0{AO,DO.W),AO FETCH ADDR OF USER
JMP (AO) SUBROUTINE AND JUMP TO THAT

SUBROUTINE.
UADDR DC.L USER0,USER1 ,USER2,USER3,USER4

END

145

REFERENCES

1. Sorting and searching techniques are described in the following articles:

(a) Benfley, J. L. "An Introduction to Algorithm Design." Computer, Feb-
ruary 1979, pp. 66-78.

(b) Vile, R. C. "Sorting Revealed." MICRO, July 1980, pp. 13-29. (This highly entertaining and informative article covers bubble sort, insertion
sort, selection sort, shell sort, and quicksort, and gives BASIC programs
for each type.)

(c) Hemenway, J. and Grappel, R. D. "EDN Software Tutorial: Sorting
Algorithms." EDN, September 20, 1980, pp. 153-157. (Includes BASIC
programs for exchange sort, insertion sort, and selection sort.)

(d) Walker, B. "Sorting With Binary Trees." BYTE, October 1980, pp. 96-
110, 250-263. (Excellent article, with programs given in BASIC and
Pascal.)

2. Knuth, D. E. The Art of Computer Programming. Volume 3: Sorting and
Searching. Reading, MA: Addison- Wesley Publishing Co., 1973.

3. Look-up tables are discussed in:

(a) Leventhal, L. A. "Cut Your Processor's Computation Time." Electronic
Design, August 16, 1977, pp. 82-89.

(b) Titus, J. A. et al. "Interfacing Fundamentals: Lookup Tables." Com-
puter Design, February 1979, pp. 130-134.

4. Starnes, T. W. "Powerful Instructions and Flexible Registers of the MC68000
Make Programming Easy." Electronic Design, April 26, 1980, pp. 171-176.

146

CHAPTER 6

68000 Microprocessor

Chip Hardware

The 68000 microprocessor is housed in a 64-pin dual in-Hne pack-
age (DIP), with the pinouts shown in Fig. 6-1. Note that each pin

has been assigned a symbolic name, and that some of these names
have a bar drawn over them (e.g., AS, UDS, LDS, and DTACK).
This convention is intended to distinguish between signals that are

active in the low or logic-0 state (with a bar) and signals that are
active in the high or logic-1 state (without a bar). To eliminate the

"logic 0/ logic 1" and "high/ low" confusion, we will hereafter refer
to signals as being asserted if they are true and negated if they
are false.

For ease of understanding, the external signal lines of the 68000
will be described in functional groups. These groups are shown in

Fig. 6-2.

CLOCK, POWER, AND GROUND LINES

The 68000 microprocessor operates from +5 volts, connected to
two pins labeled Vcc, and using two ground pins labeled GND.

The clock (CLK) input is a TTL-level signal that can have a fre-
quency of up to 10 MHz.

THE DATA BUS AND ADDRESS BUS

The 68000 is called a 16-bit microprocessor because its basic unit
of information, the word, is 16 bits wide. No more than 16 bits of
information can be transferred to or from memory and I/O devices

147

D4c=
1 •

64

=]D5

D3 c=
2 63

=^D6

D2c
3 62

=^07

Die
4

61

=^08

DOc
5 60

=^09

ASc
6 59

=>D10

UDSq 7 58

=^D11

LDS^
8

57

=^D12

R/Wc=
9 56

=^D13

DTACK cz
10

55

=^D14

BGcz
11

54

=^D15

BGACK CI
12 53

=3GND

BRe

13
52

=^A23

Vcc e 14 51

=3A22

CLKc=
15 50

=3A21

GNDci
16 49

=3 Vcc

HALTc=
17

48

:^A20

RESET c=
18 47

=^A19

VMA^
19 46

=^A18

Ec=

20
45

=3A17

VPA<=
21

44
=3A16

BERRcz
22

43 =3A15

IPL2 c=
23 42

=^A14

IPLl cz 24

41
=^A13

IPLOe
25

40
=3A12

FC2t=

26
39

='A11

FCl c:
27 38

=^A10

FCOc=

28
37

t^A9

Al 1=
00

— ' no

A2 e
30

35

=^A7

A3 c=
31

34

=^A6

A4 e 32 33

='A5

Fig. 6-1. The pinouts of the 68000
microprocessor.

Courtesy Motorola, Inc

at one time. To transfer more than 16 bits requires additional trans-
fer cycles. All information transfers between the 68000 and exter-
nal devices are conducted on the bidirectional, 16-bit data bus

(D0-D15).
Which device in the system is to receive the information from,

or transmit the information to, the 68000 microprocessor? The 68000
identifies an external device by transmitting its unique address

throughout the system over 23 address bus lines (A1-A23). Since
the address bus is 23 bits wide, the 68000 can select any of 8,388,608 t
word locations. (Two additional signals, UDS and LDS, select bytes >
within a word. These signals are discussed with the asynchronous ^
bus control signals.) The 68000 notifies all system devices that a

valid address is on the address bus by asserting the address strobe '

(AS) signal. Remember, since AS has a bar over it, "asserting'' AS ■
means putting it in the logic-0 state. -

148

Vcc (2) K.

GND(2)
A1-A23

V
CLK

o N V

D0-D15
AS

R/W
FCO UDS noi iiL/nr\unuuo

FUNCTION FCl LDS CONTROL

CODES FC2 68000
MICROPROCESSOR

DTACK

E BR

SYNCHRONOUS VMA
BG

BUS ARBITRATION
CONTROL VPA BGACK

CONTROL

BERR IPLO

SYSTEM RESET ipO INTERRUPT
CONTROL HAlTf iPL2 CONTROL

Fig. 6-2. The external signal lines of the 68000 shown in functional groups.

FUNCTION CODE SIGNALS

Whenever the 68000 communicates with an external device (mem-

ory or I/O), it accompanies the address information with "quahta-

tive" information on three junction code signals {FCO, FCl, and
FC2). The function code outputs inform external devices whether
the 68000 is addressing data or program memory space (and whether

the processor'is in the user state or the supervisor state), or is ser-
vicing an interrupt. Table 6-1 shows the various combinations of

these three signals. Note that the high-order function code signal,
FC2, reflects the state of the supervisor (S) bit in the status register.
The function code signals indicate that program space is being

accessed when the program counter (PC) is the address source or

when reset vectors are being fetched. The function code signals in-
dicate that data space is being accessed when most operands are

read (the PC is not the address source), when all operands are
written, or when vectors other than reset are being fetched.

The function code signals can be used with the address bus sig-
nals to write-protect certain portions of memory. They can also be

used by an external device, such as a memory management unit, to

ensure that certain operations are only conducted when the proces-

149

Table 6-1.
Function Code Signals Inform External Devices

of the Operating State of the 68000

Function Code Output
Classification Privilege State FC2 FC1 FCO

0 0 0 (Reserved) User
0 0 1 Data Space User
0 1 0 Program Space User
0 1 1 (Reserved) User
1 0 0 (Reserved) Supervisor
1 0 1 Data Space Supervisor 1 1 0 Program Space Supervisor 1 1 1 Interrupt Acknowledge Supervisor

sor is in the correct state. Further, the function code signals can be
externally decoded and used to extend the address space of the

68000 to four 16M-byte segments, for a total of 64M bytes! Fig. 6-3
shows a simple circuit that will perform this memory segmentation.

FCO

FCl

FC2

68000
MPU

AS

74LS138
DECODER

^2

Ye

^2 El E3

T

*OPEN COLLECTOR
DEVICE

^l.OkO

+ 5 V

] 7409*

USER
DATA

MEMORY

CS

USER PROGRAM
MEMORY

CS

SUPERVISOR
DATA

MEMORY

CS

SUPERVISOR
PROGRAM
MEMORY

CS

Fig. 6-3. Segmenting memory with the function code signals.

150

ASYNCHRONOUS CONTROL SIGNALS

Some conventional 8-bit microprocessors, such as the 6800 and the
6502, have control lines to communicate only with synchronous de-

vices. That is, these microprocessors are designed to interface with
external devices which must accept output data, or supply input
data, within a specified amount of time. Communicating with slower

devices, or asynchronous devices, requires special interface hard-
ware and software. However, the 68000 can be interfaced to either

synchronous or asynchronous devices, and has a set of control lines
for each device type.

The Asynchronous Control Lines

As you know, the 68000 can operate on individual bytes within

a word, so we normally refer to the 16M-byte addressing capability
of the processor, rather than to its 8M-word addressing capability.
How are individual bytes addressed? They are addressed by the
address bus and two special control signals, upper data strobe { UDS)
and lower data strobe (LDS). When UDS is asserted (a logic 0)

by the 68000, information is transferred on the high-order eight lines
of the data bus, D8 through D15. When LDS is asserted, informa-

tion is transferred on the low-order eight lines of the data bus, DO
through D7. During word transfers, both strobe signals (UDS and
LDS) are asserted, and information is transferred on all 16 data bus
lines, DO through D15.
How can an addressed external device know whether the 68000

wants to input (read) information from it or output (write) infor-

mation to it? The external device "knows" the direction of transfer
by the state of the read/ write control signal (R/W). The R/W line
is a logic 1 during a read cycle and a logic 0 during a write cycle.

Once an external device has either placed data onto the data bus
(for a read operation) or has gated data off of the data bus (for a
write operation), the device notifies the 68000 that the data has
been transferred by asserting data transfer acknowledge (DTACK) .
When the processor senses DTACK during a read operation, it
latches the data and then terminates the bus cycle. Because cycle
termination hinges on reception of DTACK, the speed at which the
68000 can transfer data depends on how fast the addressed device
can be accessed. In effect, the 68000 slows down for devices having
long access times and speeds up for devices having short access

times! Of course, the maximum rate will be determined by the fre-
quency of the clock used to drive the processor.

Fig. 6-4 summarizes the signals involved in addressing asynchro-
nous memory. In addition to the 68000, and the odd-byte and even-

byte memory circuits. Fig. 6-4 contains a watchdog timer. This timer

151

Fig. 6-4. Byte addressing on the asynchronous bus.

152

is designed to wait a specified amount of time between the asser-
tion of AS and the reception of DTACK. If the memory circuits

return the proper combination of DTACK ODD and DTACK EVEN
within the allotted time, the DTACK signal to the microprocessor
is asserted. Otherwise, the timer asserts a bus error (BERR) signal,
which causes the 68000 to initiate exception processing. In this way,

the timer prevents a faulty device from "hanging up" the system
indefinitely.

Timing for Asynchronous Data Transfers

Now that the asynchronous control signals have been discussed,
let us look at how they interact during data transfer operations.

Fig. 6-5 shows the timing of these signals during normal word-

length read and write cycles, and during a "slow" (delayed DTACK)
read cycle. These waveforms are referenced to the 68000 input clock

signal, CLK. With an 8-MHz input, CLK has a period of 125 ns,
and changes state every 62.5 ns. A normal (undelayed) read cycle

lasts four clock cycles, or 500 ns at 8 MHz. Due to internal propa-
gation delays, and the need to drive R/W to a logic 0, a normal

(undelayed) write cycle takes one additional clock cycle, for a
total of 625 ns at 8 MHz.
The 68000 can accept DTACK anytime after it asserts AS, but

expects to receive DTACK before state 5 (read) or state 7 (write).
If DTACK is not sensed before this machine state, the 68000 will

automatically insert "wait" states into the read or write cycle. The
rightmost portion of Fig. 6-5 shows how wait states are added to a
read cycle.

The timing for byte transfers is similar to that for word transfers,

except that only one of the data strobes (UDS or LDS) will be as-
serted, and only one-half of the data bus will carry valid data. The

other half of the data bus will remain in the high-impedance state.
The active data strobe is derived from an internal signal, AO, the

least-significant bit of the program counter. For byte transfer tim-

ing, refer to section 4.2.1 of the MC68000 User's Manual.^

SYNCHRONOUS CONTROL SIGNALS

The 68000 has three control signals that can be used to interface
the microprocessor with synchronous peripheral devices, such as
those in the 8-bit 6800 and 6500 families. The three synchronous
control signals are enable (E), valid peripheral address (VPA), and
valid memory address (VMA).

The enable (E) signal is a clock that 8-bit peripherals use to
synchronize data transfers. This free-running clock corresponds to
the E or 02 signals in existing 6800 and 6500 systems. The E clock

153

154

Fig. 6-6. Accessing 6800 peripherals on the synchronous bus.

signal has a frequency that is one-tenth of the 68000 input clock
(CLK), so in an 8-MHz 68000 system, E has a frequency of 800 kHz.
Further, E has a 60/40 duty cycle; it is a logic 0 for six CLK cycles
and a logic 1 for four CLK cycles.

Valid peripheral address (VPA) is an input signal that notifies the
68000 that a 6800 peripheral is being addressed, and that the data
transfer operation should be synchronized with the enable (E)
clock. Normally, VPA is derived from a decoded address and the

address strobe (AS) signal. You may note that VPA is the synchro-
nous _equivalent of the asynchronous DTACK signal.

If AS is still asserted when the 68000 receives VPA, the processor

responds by asserting valid memory address (VMA), which is used
by the addressed peripheral device to complete the device selection.

Fig. 6-6 illustrates the signals that are normally used to interface
the 68000 microprocessor to 6800 peripheral devices. Fig. 6-7 shows
the timing for a synchronous read and write cycle. Chapter 8 con-

tains a further discussion of interfacing the 68000 to 8-bit synchro-
nous devices.

BUS ARBITRATION SIGNALS

The bus arbitration signals are used in direct memory access
(DMA) and multiprocessor applications, to transfer control of the
system buses from a 68000 microprocessor to an external device.

In these appHcations, external devices that wish to become the "bus

master" inform the 68000 of this re(iuirement by asserting the bus
request (BR) input signal. The 68000 is always at a lower bus pri-

155

156

ority than external devices, and will relinquish bus control after
completing the current bus cycle. In the meantime, upon sensing

BR, the 68000 synchronizes internally and then indicates its accep-
tance of the request by asserting hus grant (BG) . If several devices

have asserted BR, some external circuitry is needed to resolve the
conflict, and allow only one of the requesting devices to receive BG.

Upon receiving bus grant, the requesting device waits _for the
processor to complete its current bus cycle (i.e., waits for AS and
DTACK to be negated), then asserts bus grant acknowledge

(BGACK) back to the 68000. In effect, the 68000 and the request-
ing device are conducting the following dialog: By asserting BR,

the requesting device is saying, "I want the bus." Through BG, the
68000 replies, "You can have the bus." At the end of the current bus
cycle, the device issues BGACK, thereby announcing to the micro-

processor (and to the rest of the system), "Okay, I've got control
of the bus."

At the end of this dialog, the new bus master removes its request,
by negating BR. In a similar manner, the processor negates BG and
waits for the external device to complete its bus operations. At that
time, the device will negate BGACK and the processor will resume
normal operation. The timing for this entire sequence is shown in

Fig. 6-8.

SYSTEM CONTROL SIGNALS

The 68000 has three system control signals. One of these signals
is an input, the other two are bidirectional.

Reset (RESET) is a bidirectional signal that allows the processor

or an external device to reset the system. A processor-generated re-
set, induced by a RESET instruction, asserts RESET for 124 clock

cycles. This §ives all external devices time to reset, but does not af-
fect the internal state of the 68000 itself.

During catastrophic failure, the entire system (the processor and

all external devices) can be reset if both RESET and the other bi-
directional system control signal, halt (HALT), are both asserted

to the 68000 for more than 100 ms. This causes the 68000 to initiate

a "power-on reset" sequence, during which the processor enters the
supervisor state and jumps to a reset routine from a vector in lowest
memory. This reset sequence is discussed in Chapter 7, along with
other exceptions.

However, HALT need not necessarily accompany RESET. By it-
self, HALT can be used as an input to the 68000, to single-step the

processor through bus cycles for debugging purposes. The circuit in
Fig. 6-9 will perform this function. If the run /single-step switch

is in the single-step position, the processor will complete the cur-

157

Courtesy Motorola. Inc
Fig. 6-8. Bus arbitration timing.

158

+ 5 V

RUN
MODE

n

L
>

9SINGLE- STEP
MODE

+ 5 V

SINGLE
STEP A

i (FROM PROCESSOR)

Fig. 6-9. Single-step using the halt line.

rent bus cycle, and then halt. This will happen each time you set

the single-step/ WAIT switch to single-step. While the processor is
halted, the address bus, data bus, and function code lines are in the

high-impedance state, and the bus control lines are negated (the
bus arbitration lines are available, however) . Reference 3 at the end

of this chapter describes another type of single-step circuit, with con-
trol based on DTACK, rather than HALT.

The HALT signal can also be asserted by the 68000, as an output.

It will be an output when the processor has stopped executing in-

structions due to a "double bus fault" exception condition (see Chap-
ter 7).
The HALT signal can also be used (as in input) with the system

control input signal, bus error (BERR). The purpose of BERR is to
inform the processor that there is a problem somewhere within the
system. That is, BERR signals the occurrence of an unanticipated
event (e.g., a spurious interrupt or an illegal memory access request)
or the nonoccurrence of an anticipated event (e.g., a device has
failed to return DTACK or VPA).

Upon sensing BERR, the 68000 can either initiate a bus error ex-

159

ception sequence (see Chapter 7) or try running the bus cycle again.
The processor will try rerunning the bus cycle if HALT is being
externally asserted when BERR is received. For a cycle rerun, the
processor will complete the bus cycle, then halt and put the address,

data, function code, and control lines in the high-impedance state.
When the external logic negates BERR and HALT, the processor

will rerun the previous bus cycle. (The only exception is a TAS in-
struction, which cannot be rerun.)

INTERRUPT CONTROL LINES

External devices can send an interrupt request to the 68000 micro-
processor by encoding the priority level of the request onto three

interrupt control inputs^ IPLO, IP LI, and IPL2. At the end of the

current instruction cycle, the 68000 will compare the encoded pri-
ority level (1 through 7, with 7 being highest priority) with the

3-bit interrupt mask in the status register. This mask is shown in
Fig. 1-3 and described in its accompanying text.

If the encoded value on the interrupt control inputs is equal to
or less than the value of the interrupt mask, the 68000 will simply

"ignore" the request and resume instruction execution. However, if
the interrupt request has a higher value than the interrupt mask,
the 68000 will place the input priority level on the address bus (Al,
A2, and A3) , issue an interrupt acknowledge (by asserting function
lines FCO, FCl, and FC2), and initiate an interrupt acknowledge
sequence. Details of this sequence are given in Chapter 7.

REFERENCES

1. MC68000 16-Bit Microprocessor User's Manual. Austin, TX: Motorola Semi-
conductor, Inc., 1980, Chapter 4.

2. Stockton, J. and Scherer, V. "Learn the Timing and Interfacing of MC68000
Peripheral Circuits." Electronic Design, November 8, 1979, pp. 58-64.

3. Starnes, T. W. "Handling Exceptions Gracefully Enhances Software Reli-
ability." Electronics, September 11, 1980, pp. 153-157.

160

CHAPTER 7

Processing States,

Privilege States,

and Exceptions

This chapter describes the processing states and privilege states
of the 68000, and then discusses how the 68000 processes interrupts,

traps, and other "exceptions."

PROCESSING STATES

The 68000 microprocessor is always in one of three processing

states— normal, exception, or halted. Until now, our discussion has
primarily focused on the normal state, in which the 68000 fetches
instructions frofn memory, executes them, and records the results in
memory or in a register. A special case of the normal state is the

stopped state, which the 68000 enters in response to a STOP in-
struction. As you will recall from Chapter 3, STOP is a privileged

instruction that causes the 68000 to stop fetching and executing in-
structions until it receives a sufficiently high priority interrupt or an

external reset.

The exception state is the way that the 68000 responds to devia-
tions from normal instruction processing. Such deviations, or excep-

tions, can be caused by interrupts, trap instructions, tracing, non-
catastrophic hardware failures, and a variety of other conditions,
both internal and external to the microprocessor. We will take a
detailed look at exceptions, and how the 68000 processes them, later
in this chapter.

161

The 68000 enters the halted state if a catastrophic hardware fail-
ure occurs, such as two consecutive bus errors. Such failures imply

that the system is unusable, so the only way the 68000 can be re-
started from the halted state is with an external reset. Be careful

not to confuse the halted state with the previously mentioned, soft-
ware-induced stopped state.

PRIVILEGE STATES

From time to time throughout this book, we have mentioned the
two states of privilege in which the 68000 can operate. These states,
called the supervisor state and the user state, provide a measure of

security to the system by allowing certain "privileges" in the super-
visor state that are not available in the user state (see Table 7-1).

Table 7-1. Privileges of the User and
Supervisor States of the 68000

User State Supervisor State

Enter state by: Clearing S bit in
status register.

Trap, reset, interrupt,
privileged instruction.

Function code output

FC2 =
0 1

System stack pointer: User stack pointer. Supervisor stack pointer.

Other stack pointers: Registers A0-A6. User stack pointer and

registers A0-A6.
Status register access:

(read)
(write)

Entire status register.
Condition codes only.

Entire status register.
Entire status register.

Instructions available: All, except:
RESET
RTE
STOP #d
ANDI.W #d,SR
EORI.W #d,SR
ORI.W #d,SR
MOVE <ea>,SR
MOVE USP,An
MOVE An,USP

All, including those
listed at left.

Programs running in the less-privileged user state can execute all
of the 68000 instructions, except those that alter the upper eight bits

of the status register (the "system byte"), stop the processor, or
issue a system reset. Further, user state programs can perform stack

operations, but they cannot read from or write to the system stack

pointers.

Programs running in the more-privileged supervisor state have

access to the full capabilities of the 68000. That is, supervisor pro-

162

grams can access both system stack pointers and, through the privi-
leged instructions, can manipulate the status register as required.

Control over the status register permits supervisor programs to
change the interrupt mask and turn the trace mode on or off.

In most systems, programs other than those designed for system
control execute in the user state. Operating system chores, such as
task or context switches, should be performed when the 68000 is in
the supervisor state.

How to Change the Privilege State

The privilege state is selected by the supervisory (S) bit in the

status register. The 68000 operates in the supervisor state when S =
i, and operates in the user state when S = 0.

Transition from one privilege state to another can be made in
a number of ways. The processor will go from the supervisor state
to the user state if the S bit is cleared to 0. This can be done with

any MOVE, ANDI, or EORl instruction that uses the status register

(SR) as the destination and has a zero in bit 13 of the source oper-
and. Here are a few examples:

instruction Action Taken

MOVE #$0400,SR Turn off trace; change to user state; load
interrupt mask with IOOl.; clear condition
codes.

ANDI #$DFFD,SR Clear overflow (V); change to user state;
no other changes.

EORl #$2000,SR Change to user state; no other changes.

The processor will also go back to the user state upon returning

from an exception (performed with an RTE instruction), if the ex-
ception occurred in the user state. A discussion of exceptions is up-
coming in this chapter.

The processor will go from the user state to the supervisor state
if the S bit is set to 1. Typically, this is done under software control
with one of the trap instructions, but it will also occur due to a bus
error, an interrupt, attempted execution of a privileged instruction,

or any other exception. Fig. 7-1 gives a simplified summary of the
conditions that cause the privilege state to change.

I
EXCEPTIONS

li As mentioned at the beginning of this chapter, an exception is
a deviation from normal processing, due to an internal or external

condition, that places the processor in the supervisor state. These ex-
ceptions (summarized in Table 7-2) will be described shortly, but

before doing so it is worthwhile to examine the way in which the
68000 processes them.

163

TRANSITION MAY ONLY OCCUR
DURING EXCEPTION PROCESSING

Fig. 7-1. Transitions from one
privilege state to the other.

TRANSITION CAN BE MADE BY
MOVE. ANDI OR EORI TO SR.
OR BY AN RTE INSTRUCTION

How the 68000 Processes Exceptions

Except for reset, every exception, whether induced by an internal

event (a trap instruction, for instance) or an external event (an in-
terrupt or a hardware failure), will cause the 68000 to take five iden-
tifiable steps. We will cover reset later, but the five steps for all

other exceptions are as follows:

1. Upon entering the exception state, the 68000 saves the 16-bit
contents of the status register in a nonaddressable internal reg-
ister.

2. The supervisory (S) bit in the status register is set to 1, putting
the microprocessor in the supervisor state, and the trace (T)
bit is cleared to 0, turning off the trace mode. If the exception
is due to an interrupt, the interrupt mask is updated with the
incoming priority level, to lock out interrupts that have the

Table 7-2. Summary of Exceptions, Internal and External

Source Exception Type Caused By

Internal Instruction

Privilege Violation

Trace
Illegal Address

Illegal Instruction.
Unimplemented Instruction

TRAP, TRAPV, CHK, DIVS,
DIVU.

Privileged instruction in
user state.

Trace mode.
Odd address with word or

long word.
Invalid bit pattern.
Op-word pattern 1010
or 1111.

External Reset
Interrupts

Bus Error.
Spurious Interrupt

RESET input asserted.
Sufficiently high-priority
interrupt.

BERR input asserted.
BERR input asserted during
interrupt acknowledge.

164

Vector
Number(s)

/\ddress A^<iionmpnt nooi^iiiiiCMi Dec Hex
Space 0 0 000
SP

Reset: Initial SSP
4

004
SP Reset; Initial PC

2 8 008 SD Bus Error
3 12 ooc SD

Address Error
4 16 010

SD Illegal Instruction
5 20

014 SD
Zero Divide

6 24 018 SD CHK Instruction
7 28

OIC SD
TRAPV Instruction

8
32

020
SD

Privilege Violation
9 36 024 SD

Trace
10 40

028 SD
Line 101 Emulator

11 44 02C
SD

Line 1111 Emulator

12*

48 030
SD (Unassigned, reserved)

13*

52 034 SD (Unassigned, reserved)

14*

56 038
SD (Unassigned. reserved)

15 60 03C SD
Uninitialized Interrupt Vector

16 23*
64

04C SD
(Unassigned. reserved)

95
05F

24
96 060

SD Spurious Interrupt
25 100

064
SD Level 1 Interrupt Autovector

26 104 068 SD Level 2 Interrupt Autovector

27 108 06C SD Level 3 Interrupt Autovector
28 112 070

SD Level 4 Interrupt Autovector
29 116 074 SD Level 5 Interrupt Autovector
30 120 078 SD Level 6 Interrupt Autovector

31
124 07C SD Level 7 Interrupt Autovectoi

32 47
128 080

SD
TRAP Instruction Vectors

191 OBF -

48 63*

192 OCO
SD (Unassigned, reserved)

255 OFF
64 255 256 100 SD User Interrupt Vectors

1023
3FF

*Vector numbers 12,13.14.16 ttirough 23 and 48 ttirougti 63 are reserv- ed for future enhancements by Motorola, no user peripheral devices
should be assigned these numbers.

Courtesy Motorola, Inc

Fig. 7-2. Address assignments for exceptions.

same priority or a lower priority, until this interrupt has been
serviced.

3. The 68000 determines the vector number of the exception, and
multiplies this number by four to convert it to a vector address.
The 68000 can recognize 255 different vector numbers, 0 and 2

through $FF. Fig. 7-2 summarizes the vector number and vec-

165

tor address for each exception condition. For interrupts, the
vector number is provided by the interrupting external device.

For all other exceptions, the vector number is calculated inter-
nally, by the microcode contained in the 68000.

4. The current program counter value and the internally saved
copy of the status register are pushed onto the supervisor stack.
In most cases, the program counter value is the address of the
next unexecuted instruction.

5. With this information saved, the 68000 loads the program
counter with the contents of the calculated vector address and

begins executing the exception's service routine.

Fig. 7-3 is a flowchart of the preceding sequence of operations.
The makeup of an exception service routine will, of course, de-

pend on which exception is being processed. However, every excep-
tion service routine must be terminated with a return from exception

(RTE) instruction, which pulls the status register and program

counter values from the supervisor stack, allowing normal (pre-
exception) instruction execution to resume.

Multiple Exceptions

How does the 68000 react if two or more exception conditions

arise simultaneously? What happens, for example, if an interrupt
occurs while a trace exception is being processed? The answers to

these questions are found in Table 7-3, which lists the exception

types by decreasing priority. That is, the conditions in Group 0 will
be processed before those in Groups 1 and 2, and the conditions in
Group 1 will be processed before those in Group 2. Therefore, if a
bus error occurs during trace processing, the trace processing will

be suspended (at the end of the current clock cycle) until bus er-
ror processing has been completed.

Table 7-3. Exception Grouping and Priority
Group

Exception Exception Processing Will Begin:

0 Reset
Bus Error
Illegal Address

At the end of a clock cycle.

1 Trace
Interrupt
Illegal Instruction
Unimplemented Instruction
Privilege Violation

At the end of an instruction cycle.

At the end of a bus cycle.

2 TRAP, TRAPV, CHK,
Divide by Zero

Within an instruction cycle.

166

(STA
RT ̂

EXCEP
TION^

COPY SR
INTO 68000

INTERNAL REGISTER

S-^1
T—O

OBTAIN
VECTOR
NUMBER

VECTOR ADDRESS =
VECTOR NUMBER X 4

PUSH PC AND
COPIED SR
ONTO STACK

[vector ADDRESS) PC

(CON
TINU

E
EXECUT

ION

Fig. 7-3. General sequence for exception processing (except reset).

Conditions within each group in Table 7-3 are also listed in order
of decreasing priority. Therefore, if an interrupt occurs while a trace
exception is being processed, the trace will be processed, then the

interrupt will be serviced and, finally, the 68000 will resume execut-
ing instructions in the program.

167

One special condition, double bus fault, should be mentioned
here. A double bus fault represents a catastrophic failure within the
system, and will occur if a bus error or illegal address exception is
generated while a previous Group 0 exception (reset, bus error, or

illegal address) is being processed. Upon receiving two such con-
secutive errors, the 68000 removes itself from the system by enter-

ing the halted state. Once halted, only an external reset can cause
the microprocessor to be restarted.

INTERNALLY GENERATED EXCEPTIONS

We will now describe each of the exceptions that can be gener-
ated by some condition internal to the 68000 microprocessor, begin-
ning with the instructions that can cause an exception.

Instructions That Can Cause Exceptions

In the course of discussing the 68000 instruction set in Chapter 3,

we encountered several instructions that can cause exception pro-
cessing to be initiated. One of these instructions (TRAP) always

causes an exception; the others (TRAPV, CHK, DIVS, and DIVU)
may or may not produce an exception, based on some condition.

Trap (TRAP) forces an exception to one of 16 user-defined trap i
routines, as selected by the immediate operand in the instruction.

Specifically, instructions TRAP #0 through TRAP #15 cause pro-
gram control to be unconditionally transferred to the routines whose ^

addresses are contained in long-word locations $80 through $BC, ,
respectively. Table 7-4 lists the assignments for the 16 possible trap
instructions. The trap instructions act as a set of software interrupts,

and are useful for calling the operating system, simulating interrupts -
during debugging, signaling completion of a task, or indicating that ,
an error condition has been encountered in a program.

Trap on overflow (TRAPV) will cause a trap, through vector ad- [
dress $1C, if the overflow (V) bit in the condition code register is

set to 1. A single routine at the operating system level may then ̂
handle every overflow occurrence.

Check register against bounds (CHK) determines whether the '
low word of a specified data register is within the bounds of 0 and

a specified 2s-complement upper limit (in memory or another data ;
register). If the register contents are outside of these bounds, the

68000 initiates a trap through vector address $18. The CHK instruc-
tion may be used to verify that a stack does not get too large, that ;

a string of characters will fit into an allocated space, that an array '
entry fits within the dimensions of the array, or that a task does not
access data outside of its designated storage area.

As far as exceptions go, the instructions divide signed (DIVS) v

168

Table 7-4. Vector Addresses for TRAP

Transfers Program Control
instruction Through Vector Address:
TOAD M-r\ 1 HAr #U «i>oU
TD AD -U--i \ HAr #1 <tQ>l

1 HAr WiL
1 HAr #v3

$oU
XD A D -/A /I 1 HAr #4

$yo
1 HAr WO

i^y4 1 HAr
TDAD -^7 1 HAr W (
\ nMr

<t An

TDAD 1 nAr W\3
*pA4 TDAD 1 HAr W 1 U AQ

TRAP #11
$AC TRAP #12

$B0 TRAP #13

$B4
TRAP #14

$B8 TRAP #15
$BC

and divide unsigned (DIVU) are the most conditional of all, be-
cause they can only cause an exception on one condition— if the di-

visor is zero. A zero divisor causes a trap through vector address $14.
You will recall from Chapter 3 that an attempt to divide by zero

is one of two conditions that will prevent the divide operation from
taking place. The operation will also be stopped if an overflow oc-

curs during the division. (In both cases, the divisor and dividend

are left intact, however.) When this happens, the 68000 simply sets
the V bit in the status register, then continues execution with the
next instruction. Since overflow is an error condition, your divide
software must make some provision for dealing with it. One option

is to design the divide routine so that it gives a valid quotient re-
gardless of whether or not overflow occurs. This option is illustrated

in Chapter 4 f Example 4-5). You can also choose to call the super-
visor on overflow, by following the DIVS or DIVU with a TRAPV

instruction.

Privilege Violations

The 68000 initiates exception processing, through vector address

$20, if a user program attempts to execute one of the privileged in-
structions. The privileged instructions are described in Chapter 3

(Table 3-17 and accompanying text) and are listed in the "user
state" column of Table 7-1.
Tracing

Like the halt feature, the trace feature is provided to assist in pro-
gram development and debugging. With the trace feature turned on

169

(T = 1 in the status register) , the 68000 generates an exception after

each instruction is executed, thereby causing the processor to "single-
step" through a program. The trace exception causes program con-

trol to be transferred to a user-supplied routine in memory, through
vector address $24.

Like all exceptions, a trace exception causes the 68000 to turn oflF

the trace bit (T = 0) and push the current contents of the program
counter and status register onto the supervisor stack. Upon return
from the exception, tracing will resume unless your trace service
routine cleared the T bit of the status register that was saved on the

stack. The T bit can be cleared by preceding the RTE with the in-
struction ANDI #$7FFF,(SP).

The trace routine is typically used to give a printout of register
contents after each instruction. Depending on how it is programmed,
the trace routine can also print out other meaningful parameters,
such as the execution time of each instruction.

The trace feature also provides an easy way to add breakpoints
to a system. This can be done by comparing the address saved on

the stack (due to the trace exception) to a table of breakpoint ad-
dresses. If the addresses are the same, the contents of the registers

could be displayed or printed out. Otherwise, the 68000 would sim-
ply return from the trace routine and execute the next instruction

in the program. Reference 1 at the end of this chapter gives another

possible use for the trace exception routine— to build a table of mem-
ory locations that are most frequently referenced by an executing

program.

Illegal Address

An illegal address is an odd-numbered address that references a
word or long-word operand. It traps through vector address $0C.
An illegal address can occur on any kind of memory reference, but
it is most prevalent when you are using one of the more complex

addressing modes, such as the address register indirect with index

mode, in which several terms are added to produce the effective
address.

For the illegal address exception (and one of the externally gen-

erated exceptions, bus error), the 68000 pushes seven words of con-
text information onto the supervisor stack. These words are shown

in Fig. 7-4. As you can see, the first three words to be pushed are

the program counter and the status register. These are followed by

the instruction register (i.e., the op-word of the instruction that gen-

erated the illegal address), the illegal address itself, and a "super
status word." The super status word provides specific information

about the attempted memory access-whether it was a read or a

write, whether the 68000 was processing an instruction (normal state

170

or processing a Group 2 instruction) or processing a Group 0 or
Group 1 exception, and the state of the function code outputs when

the illegal access was attempted. Refer to Table 7-3 for the excep-
tion groups.

As mentioned earlier, if one of the instructions in the illegal ad-
dress exception routine generates an illegal address, the 68000 will

enter the double bus fault condition, which causes the processor to

SUPER STATUS WORD

ADDRESS BUS HIGH

ADDRESS BUS LOW

INSTRUCTION REG.

STATUS REGISTER

PC HIGH

PC LOW

INCREASING
ADDRESSES

R/W
■ ̂ ■

FUNCTION CODE SUPER STATUS WORD

-T = 0, NORMAL OR GROUP
2 EXCEPTION
PROCESSING

= 1. GROUP 0 OR GROUP
1 EXCEPTION
PROCESSING (SEE TABLE 7 3)

R/W = 1, READ
= 0, WRITE

fig. 7-4. Illegal address and bus error stacking.

halt. An externally generated bus error (discussed later in this chap-
ter) during illegal address exception processing will also cause a

double bus fault.

What happens if an odd address is inadvertently stored into the

illegal address vector locations ($OC-$OF) ? If this improbable and
unfortunate situation occurs, and the 68000 happens to attempt a

word or long-word memory reference at an odd address, the follow-
ing sequence of events will take place:

1. Upon sensing the illegal address, the 68000 will initiate illegal
address exception processing. After forcing the supervisor state

(S = 1), turning off the trace mode (T = 0), and calculating
the vector address, the 68000 pushes seven words of informa-

171

tion onto the stack (Fig. 7-4) and' loads the contents of the
vector address location into the program counter.

2. At this point, the 68000 would normally begin executing the
instructions in the illegal address exception routine. However,
in this case the program counter has received an odd address
from the vector locations. Because this instruction address is

odd, it is illegal, and the 68000 will initiate illegal address ex-
ception processing again. That is, the 68000 will return to

Step 1.

3. Will this second consecutive illegal address cause a double bus
fault condition? No, it will not cause a double bus fault,

because the illegal address occurred during the initialization
sequence rather than within the exception service routine.

Instead, the 68000 will repeatedly initiate illegal address ex-
ception processing, and push seven words onto the stack each

time.

4. Since the stack builds downward in memory, any of several

events can cause this repetitive sequence to be eventually ter-
minated. These events include the following:

(a) The 68000 may "run out of" read/ write memory, and at-
tempt to push information into nonexistent memory or

read-only memory. This should cause external circuitry to
initiate bus error exception processing.

(b) The 68000 may attempt to push information into program

memory, rather than data memory, which should also in-
duce bus error exception processing.

(c) If the stack works its way down to the low 1024 bytes in
memory, new values will eventually get stored into the

illegal address vector pointer (locations $OC-$OF) . If this
new address is odd, the preceding sequence will continue.
If it is even, the program counter will attempt to execute

an "instruction" at this new, random address, with unde- t
fined results. ^

(d) If the stacking in (c) attempts a write into the reset vec- '
tors, at the bottom of memory, a bus error should occur '
because these locations must be in read-only memory.

Illegal Instruction i

An illegal instruction is a 16-bit binary pattern that does not repre-
sent one of the legal op-words in the 68000 instruction set. The legal -

bit x:)atterns are summarized in Appendix C of the MC68000 User's
Manual. Needless to say, no good assembler will generate an illegal ̂
bit pattern, but programmers (even good ones) can inadvertently {

produce such a pattern in the course of making "fixes" to the ob-
ject code. 'r

172

Unimplemented Instructions

The design specification for the 68000 included several instruc-
tions that were not implemented in the initial production version.

These included string manipulation, field manipulation, code trans-

lation, floating-point arithmetic, long-word multiply, and special di-

vide algorithm instructions.- However, Motorola has reserved about
20% of the total microcode space to accommodate these enhance-

ments (or perhaps others) in future versions.

The unused microcode space includes two of the 16 possible "op-
codes" (the four high-order bits of an operation word) . Rather than

"burying" these unimplemented op-codes, IOIO2 and IIII2, in the
internals of the microprocessor. Motorola has provided a unique

vector number in the exception map for each of these op-codes.
This gives users the opportunity to add emulation instructions to
their programs. These instructions can either anticipate some future

Motorola enhancement to the 68000 (such as string or floating-point
instructions) or just provide some miscellaneous, handy function for

the users' application.
How do you go about using the two unimplemented op-codes?

It is quite simple. To use one of these op-codes, you simply insert
a word value into your program that has a most-significant hex digit
of $A (IOIO2) or $F (IIII2). The insert can be most easily made
with a define constant directive, such as DC $A000 or DC $F000.

When the 68000 encounters an instruction op-word that begins with
$A or $F, it will recognize it as an unimplemented instruction, and
trap to a service routine through address $28 (for 1010) or $2C
(for nil).

As an example of the unimplemented instructions, let us emulate

a set of floating-point instructions, using the op-code 1010. Assume
that there are four different floating-point instructions— add, sub-

tract, multiply, and divide. Further, assume that each of these in-
structions operates on two data registers— a source register and a

destination register. Fig. 7-5 shows the bit format for the floating-
point op-words. From this diagram you can see that if the instruc-

tion to be emulated is a floating-point multiply of D4 times D5, with
the product being stored in D5, the way to insert this instruction
in a program is with the directive DC $AA14.

What will the floating-point service routine look like? Well, a
portion of this routine, the instruction decode sequence, is shown in

Example 7-1. The routine itself (FLTP) is preceded by two direc-
tives that initialize the 1010 vector address with the address of

FLTP. To decode the correct operation (add, subtract, multiply,
or divide), the original instruction must be retrieved and put in a

register to allow bits 3 and 4 to be manipulated and interrogated.

173

15 14 13 12 11 10 9 7 6 5 4 3 1 0

1 0 1 0 1 1 X X X X
1 1 1

SOURCE REGISTER
000 = DO

111 = D7

OPERATION FIELD

00 = ADD
01 = SUBTRACT
10 = MULTIPLY
11 = DIVIDE

"DON T CARE-

DESTINATION REGISTER

000 = DO

111 = D7

Fig. 7-5. Bit format of floating-point instructions.

The program counter value saved on the stack can be used to re-
trieve the 1010 instruction, by subtracting 2 from the stacked PC

value and accessing that word location.

Example 7-1. A Floating-Point Math Initialization Routine
THIS EXCEPTION SERVICE IS EXECUTED IF THE 68000 ENCOUNTERS

A "1010" INSTRUCTION IN A PROGRAM. IT WILL DECODE THE
OPERATION FIELD OF THE INSTRUCTION (BITS 3 AND 4) AND USE
THIS NUMBER AS AN INDEX, TO JUMP TO A FLOATING-POINT ADD,
SUBTRACT, MULTIPLY, OR DIVIDE ROUTINE ELSEWHERE IN MEMORY.
REGISTERS A1 AND D1 ARE AFFECTED.

INITIALIZE 1010 VECTOR

FLTP

ORG
$28 DC.L FLTP 1010 VECTOR POINTS TO FLTP.

ORG $1000
MOVEA.L 2(SP),A1 GET PC ADDR. OF INSTR. AFTER

1010.
MOVE -2(A1),D1 FETCH 1010 INSTRUCTION INTO
MOVE D1,-(SP) D1 AND SAVE A COPY OF IT ON

THE STACK.
ANDI

#$0018,D1 MASK OUT ALL BUT OP FIELD

(3 & 4). LSR
#1,D1

CALCULATE INDEX (OP FIELD X 4).

174

LEA OPADDR,A1 FETCH OPERATION TABLE
ADDRESS.

MOVEA.L 0(A1,D1.W),A1 FETCH ADDRESS OF PROPER
JMP (A1) ROUTINE AND JUMP TO THAT

ROUTINE.
OPADDR DC.L FLTPADD,FLTPSUB,FLTPMUL,FLTPDIV

END

Once the op-word has been fetched in Dl, a copy of it is saved
on the stack, for hiter register decoding by the add, subtract, naul-
tiply, or divide routine. This done, an ANDI instruction masks out

all but the operation field (bits 3 and 4), and a one-bit right shift
converts it into an OPADDR table index. All that remains is to fetch

the address of the operation routine (FLTPADD, FLTPSUB, FLTP-
MUL, or FLTPDIV) into Al, then jump to that routine. The ad-

dress is fetched with a MOVEA instruction, using program counter
relative with index addressing. You will note that this routine, FLTP,
is very similar to the multiuser selection subroutine, SELUSR, in

Example 5-10, in that both use an input code to derive an index
into a look-up table. The main difference is that SELUSR must check
to determine whether the ID code is valid, whereas FLTP needs no
such check because it decodes a two-bit field to select one of four
math routines. If the field in FLTP was three bits long, and only
five of the eight possible combinations were valid, a validity check
would be required.

EXTERNALLY GENERATED EXCEPTIONS

Having now completed our discussion of internally generated ex-
ceptions, let us discuss conditions external to the 68000 that can

cause exception processing to be initiated. There are three such con-
ditions—reset, interrupts, and bus error.

Reset

The RESET input has the highest priority level of all exceptions

(refer to Table 7-3), and is designed for system initiation and re-
covery from catastrophic failures, such as loss of power. In essence,

RESET informs the 68000 that any processing in progress is mean-
ingless, and should be aborted.

Upon receiving the asserted RESET signal, the 68000 reverts to
the supervisor state (S = 1), turns off the trace mode (T = 0), and

sets the interrupt mask to the highest level, level 7, so that no inter-
rupt can disrupt the reset process. Unlike other exceptions, a reset

saves neither the program counter nor the status register. The reset
exception vector is four words long, and occupies addresses $00

through $07; these addresses must reside in read-only memory.

175

During the reset process, the 68000 fetches the first two words into

the system stack pointer and the second two words into the pro- i
gram counter, then begins executing the instructions pointed to by

the program counter (the power-up/ restart routine).
Fig. 7-6 is a flowchart of exception processing for the reset condi-

tion. Note that it includes a provision for a double bus fault if a bus

error or address error occurs during reset processing. ^
Interrupts

Readers who are accustomed to programming interrupt polling |

sequences for earlier 8-bit microprocessors will be pleased to learn
that the 68000 has a minicomputer-like prioritized interrupt struc-

ture, which will accept seven different levels of interrupt requests. ̂
Further, these interrupts may be vectored or nonvectored.

Interrupt priorities range from level 1 (lowest priority) to level 7 j
(highest priority, nonmaskable). When an external device wishes to

interrupt the 68000, it encodes the priority level of the interrupt re- '
quest onto three interrupt control lines, IPLO, IPLl, and IPL2. Un-

less a trace, illegal address, bus error, or reset exception is being
processed, the 68000 will finish executing the current instruction,

and then compare the encoded priority level with the 3-bit interrupt

mask in the status register (see Fig. 1-3 in Chapter 1). j
If the encoded value on the interrupt control lines is equal to or

less than the value of the interrupt mask, the 68000 will simply "ig- |
nore" the request and resume normal instruction execution. (The
only exception to this is level 7, which will acknowledge another
level 7 interrupt request.) However, if the interrupt request has a
value that is higher than the interrupt mask, the 68000 will initiate
exception processing.

For the most part, interrupt processing follows our general ex-
ception processing sequence (Fig. 7-3), but has enough additional

steps to warrant its own step-by-step description. Following are the
steps in the interrupt processing sequence; they are flowcharted

in Fig. 7-7:

1. Upon receiving a suflBciently high-priority interrupt request,
the 68000 saves the 16-bit contents of the status register in a
nonaddressable internal register.

2. The 68000 places itself in the supervisor state (S = 1) and
turns off the trace mode (T = 0).

3. The priority level of the interrupt being acknowledged (1

through 7) is placed in the interrupt mask of the status reg- I

ister, and output to all devices in the system on address lines '\
Al, A2, and A3. To qualify the address bus information as an i

176

(ST
ART

 ̂

RESE
T

)
EXCEPT

ION
J

S — 1
T— 0

INTERRUPT
MASK— ̂ 7

FETCH
VECTOR 0

($00-S03) — -SSP

FETCH
VECTOR 1

ILLEGAL ADDRESS
OR BUS ERRORL

^NO ($04-
S07I
-PC

(CONT
INUE^

 EXECUTION

J

YES

YES

DOUBLE BUS
FAULT -(^ HALT ̂

Fig. 7-6. Sequence for reset exception processing.

177

START J

INTERRUPTING DEVICE
ENCODES IPLO - IPL2

YES

(CONTI
NUE A

NORMAL

)

EXECUTI
ON^

COPY SR INTO 68000
INTERNAL REGISTER

PRIORITY LEVEL
--INTERRUPT MASK
& ADDRESS BUS

FUNCTION CODES

(FCO - FC2)—

(AUTOVECTORED INTERRUPT)
^RESPONSE'

YES

NO, WAIT

VPA

VECTOR NUMBER = PRIORITY LEVEL
+ $18

(NON AUTOVECTORED INTERRUPT)

BERR

VECTOR NUMBER^
$18

DTACK

VECTOR NUMBER :
(DBO - DB7)

VECTOR ADDRESS = VECTOR NUMBER X 4

PUSH PC AND
COPIED SR
ONTO STACK

(VECTOR ADDRESS)

— PC

(CONTIN
UE^

EXECUTION

}

Fig. 7-7. Interrupt processing sequence.

178

interrupt acknowledge, the 68000 asserts all three function
code lines (FCO, FCl, and FC2).

4. At this point, the 68000 waits for the system to respond with
either an error signal (BERR) or either of two nonerror signals
(VPA or DTACK). If neither VPA nor DTACK is asserted

within a predetermined time interval, an external "watchdog
timer" should assert bus error (BERR) to inform the 68000
that the interrupt request was a spurious interrupt. A spurious
interrupt causes the 68000 to generate a vector number of $18.

5. If the interrupt request was not spurious, the two valid re-
sponses to interrupt acknowledge are VPA and DTACK. Here

is what each of these responses means:
(a) Devices that are specifically designed to support the 68000

will respond to the interrupt acknowledge by placing one

of 192 user interrupt vector numbers ($40-$FF) on the
least-significant byte of the data bus, DBO through DB7,
and asserting DTACK.

(b) Earlier devices, such as those that support the 6800 and

6500 families, cannot supply a vector number. These de-
vices respond to the interrupt acknowledge by asserting

VPA, which causes the 68000 to look at the priority level,
and add a base address of $18 to this level to form an

autovector number. Since the priority levels range from
1 to 7, the autovector numbers will range from $19 to $1F.

6. The 68000 now multiplies the vector number by four to convert

it to a vector address. For a spurious interrupt, the vector ad-
dress will be $60. For the user interrupts, the vector address

will range from $100 to $3FC. For the autovectors, the vector
address will range from $64 (level 1) to $7C (level 7).

7. The current program counter value and the internally saved
copy of the status register are pushed onto the supervisor stack.

8. The 6800?) loads the program counter with the contents of the
calculated vector address and begins executing the interrupt
service routine.

Bus Error

From previous discussions in this book, you know that the bus
error (BERR) signal is an externally generated input that notifies

the 68000 of an error somewhere within the system. We have dis-
cussed the following applications of BERR:

1. Asserted alone, BERR is used to signify that any of a variety
of errors has occurred in the system. For example, a watchdog

timer may assert BERR to indicate that an_addressed memory
or peripheral device has failed to send a VPA or DTACK re-

179

sponse to the 68000. Further, a memory management unit may
assert BERR to indicate that the executing program attempted
an illegal memory access (e.g., an attempt to write into read-

only memory).
2. Asserted with HALT, BERR will cause the 68000 to rerun the

bus cycle, then halt.

3. Asserted during processing of a Group 0 exception (reset, il-
legal address, or bus error), BERR will cause a double bus

fault, thereby placing the processor in the halted state.

4. Asserted during interrupt processing, BERR will initiate pro-
cessing of a spurious interrupt exception, through vector ad-

dress $60.

Condition 4, spurious interrupt processing, will cause the 68000 to

stack the current contents of the program counter and status regis-
ter, a total of three words. Conditions 1, 2, and 3 will cause the 68000

to stack seven words— program counter, status register, instruction

register, address bus (low and high), and a "super status word."
These words are discussed in the description of the illegal address

exception (Fig. 7-4 and accompanying text).
As you can see, only Condition 1 will actually cause bus error ex-

ception processing to take place. That is, bus error exception pro-
cessing will be initiated if BERR (alone) is asserted when the 68000

is processing instructions in the nornml state, or is processing a
Group 1 or Group 2 exception other than an interrupt. Bus error

exception processing causes the 68000 to internally generate a vec-
tor number of $02, and initiate execution through vector address $08.

REFERENCES

1. Grappel, R. "MC68000 Charts Its Own Memory Usage." EDN, November 20,
1980, pp. 115, 117. (This article describes a program that uses the trace
mode to build a table of the memory locations which are most frequently ref-

erenced by an executing program.)

2. Tredennick, N. "Implementation Decisions for the MC68000 Microprocessor."
Proceeding<} of the 3rd Rocky Mountain Symposium on Microcomputers, Pin-
gree Park, CO, August 1979, pp. 30-35.

BIBLIOGRAPHY

1. MC68000 16-Bit Microprocessor Users Manual. Austin, TX: Motorola Semi-
conductor, Inc., 1980, Chapter 5.

2. Starnes, T. W. "Handling Exceptions Gracefully Enhances Software Reli-
ability." Electronics, September 11, 1980, pp. 153-157.

180

CHAPTER 8

Fundamentals of Interfacing

Chapter 6 described the signal Hnes with which external devices

can be connected to the 68000 microprocessor to form a microcom-
puter system. We studied the timing relationships between these

signals, and described how the 68000 can communicate with either

16-bit asynchronous devices or 8-bit synchronous devices via sepa-
rate control lines on the microprocessor integrated circuit. In this

chapter, we will take a brief look at the support chips that can be

interfaced to the 68000. A simple interfacing example is also in-
cluded.

68000 SUPPORT CHIPS

Table 8-1 lists the support chips for the 68000 that are either avail-
able now or afe expected to be in production by the end of 1984.

These chips all connect to the asynchronous control lines of the
microprocessor.

The 68120 IPC is a general-purpose, user-programmable input/
output controller. Based on an 8-bit 6801 one-chip microcomputer,

the IPC can be configured as an I/O preprocessor or as a "slave"
processing unit for distributed processing. In addition to the 6801
MCU, the IPC contains a system interface, a serial communications

interface, 21 parallel I/O lines, a 16-bit timer, a dual-ported 128K-

byte read/ write memory, 2K bytes of ROM, and six semaphore reg-
isters. Model 68121 has all the features of the 68120, but contains

no ROM. The 68122 CTC is an IPC that is programmed as a serial

I/O subsystem. It is used to connect up to 32 terminals to a 68000-
based system.

181

Table 8-1. 68000 Peripheral Chips

Part No. Description
Developed By

68120/68121 Intelligent Peripheral Controller Motorola
(IPC)

68122 Cluster Terminal Controller (CTC) Motorola
68230 Parallel Interface/Timer (Pl/T) Motorola
68430 DMA Interface (DMAI) Signetics/Phillips
68440 Dual-Channel DMA Controller Motorola

(DDMA)
68450 DMA Controller (DMAC) Hitachi
68451 Memory Management Unit (MMU) Motorola
68452 Bus Arbitration Module (BAM) Motorola
68454 Intelligent Multiple-Disk Controller Signetics/Phillips

(IMDC)
68459 Disk Phase-Locked Loop (DPLL) Signetics/Phillips
68561 Multi-Protocol Communications Rockwell

Controller II (MPCC-II)
68562 Dual Universal Serial Signetics/Phillips

Communications Controller
(DUSCC)

68564 Serial I/O Controller (SIO) Mostek
68590 Local Area Network Controller for Mostek

Ethernet (LANCE)
68652/2652 Multi-Protocol Communications Signetics/Phillips

Controller (MPCC)
68653/2653 Polynomial Generator/Checker Signetics/Phillips

(PGC)
68661/2661 Enhanced Programmable Signetics/Phillips

Communications Interface (EPCI)
68681 Dual Universal Asynchronous Signetics/Phillips

Receiver/Transmitter (DUART)
68881 Floating-Point Co-Processor (FPC) Motorola
68901 Multi-Functional Peripheral (MFP) Mostek

182

The 68230 PI/T is a general-purpose parallel interface device. It
contains two miiltimode double-buffered I/O ports, a tliird 8-bit

I/O port, a 24-bit programmable timer, and circuitry for generating
prioritized interrupt vectors.

Direct Memory Access (DMA) is supported by three different

chips: the single-channel 68430 DMAI, the two-channel 68440
DDMA and the four-channel 68450 DMAC.

The 68451 MMU provides address translation and memory pro-
tection for the entire 16M-byte addressing space of the 68000. An

MMU can be used to define multiple segments as small as 256 bytes
within this space. For each segment, the MMU defines the logical
address space (the program and data space for the supervisor or
user state), using the function code lines. It also specifies an ofiFset

to the physical address, and the segment's memory protection char-
acteristics. The MMU will generate a bus error exception if an un-
authorized access of a segment is attempted. Another chip that re-

flects the large-system potential of the 68000 is the 68452 BAM,
which allows up to eight bus masters (see Chapter 6) to share the

system's resources, and can be expanded indefinitely to support more masters.

The 68454 IMDC and the 68459 DPLL form a two-chip set for
disk control. The IMDC provides intelligent control for up to four

drives (Winchester-type hard disks or floppy disks, in any combina-
tion), while the DPLL will have two versions— one for hard disks

and one for floppies.

Of the remaining ten chips in Table 8-1, nine are data communica-
tions devices. These chips provide support for standard protocols-

asynchronous, byte control (Bisync) and bit-oriented (SDLC)— as
well as Ethernet.

The 68881 Floating Point Co-processor (FPC) is a high-perfor-
mance companion part to the 68020, the 16/32-bit version of the

68000. The co-processor is designed to interface so closely with the
68020 that it actually operates coincidentally on the same instruc-

tion sequence. That is, the co-processor takes instructions dealing
with complex arithmetic routines, and solves those while the proces-

sor is proceeding with the main program.

6800 SUPPORT CHIPS

Many applications do not require the sophisticated features of the
68000 support chips, and can be implemented with less expensive

support chips from the earlier 8-bit microprocessors, such as the
6800 and the 6500. Table 8-2 lists some of the more commonly used

6800 support circuits. Any of these chips can be interfaced to the

183

68000 using the synchronous control Hnesl or the asynchronous con-

trol lines^'^

Table 8-2. Available 6800 Peripheral Chips
Part No. Description

MC6821 Peripheral Interface Adapter (PIA)
MC6840 Programmable-Timer Module (PTM)
MC6843 Floppy Disk Controller (FDC)
MC6844 Direct Memory Access Controller (DMAC)
MC6845 CRT Controller (CRTC)
MC6847 Video Display Generator (VDG)
MC6850 Asynchronous Communications

Interface Adapter (ACIA)
MC6852 Synchronous Serial Data Adapter (SSDA)
MC6854 Advanced Data Link Controller (ADLC)
MC6859 Data Security Device
MC6860 0- to 600-bps Digital Modem
MC6862 2400-bps Modulator
MC68488 IEEE-488 Bus Interface Adapter (GPIA)

For the remainder of this chapter, let us consider how one of the
more popular of these chips, the 6821 Peripheral Interface Adapter
(PIA) , can be interfaced to a 68000 microprocessor. \

INTERFACING A 6821 PIA TO THE 68000

The 6821 PIA provides all of the necessary circuitry to interface
a 6800 or 68000 microprocessor to a printer, display, keyboard, bank

of switches, or a variety of other peripheral devices. The PIA com-
municates with the microprocessor on the system buses (data, ad-

dress, and control), and it communicates with attached peripherals

via two 8-bit ports, called Port A and Port B. Each of the 16 lines
that comprise the two ports can be independently programmed, at
system initialization time, to function ar either an input line or an
output line.

Within the PIA, each bidirectional port (Port A and Port B) is
supported by:

• A data direction register. Each bit of the data direction register i
determines whether its corresponding port line shall function as rj
an input (0) or an output (1) .

• A control register that holds the interrupt status flags of the port,
and selects internal logic connections within the PIA. i

• A peripheral data register that holds data being transferred be-
tween the microprocessor and an attached peripheral. '

• Two interrupt control lines that are configured by the contents ;
of the control register.

184

Six registers within the PIA are addressable— two peripheral reg-
isters, two data direction registers, and two control registers. Each

peripheral register "shares" a byte location in memory with a data
direction register, however, so a PIA will respond to four (rather
than six) memory addresses. Readers unfamiliar with this or other
characteristics of the 6821 PIA are referred to the PIA data sheet

in The Complete Motorola Microcomputer Data Lihraryr

Like all 8-bit devices, the 6821 PIA is designed to transfer infor-
mation eight bits at a time. Transferring more than eight bits will

require additional transfer operations, if you have only one PIA.

Since the 68000 has a 16-bit data bus, this microprocessor is designed
to transfer information 16 bits at a time. We can employ the PIA

for 16-hit transfers J)y simply connecting two of these devices in par-
allel, one to transfer the high-order bits and the other to transfer the

low-order bits.

An Interface to Transfer 16-Bit Data

Fig. 8-1 shows an example of how two 6821 PIAs can be inter-
faced to the synchronous bus of the 68000 to transfer 16 bits of infor-

mation at a time. Note that in this particular system, 6800 peripheral
devices are assumed to reside within the addressing range $FEF800

through $FEFF00, because valid ̂ ripheral address (VPA) will be
asserted only if address strobe (AS) is asserted and the output of

the 13-input nand gate (74LS133) is a logic 0. Furthermore, the
PIAs shown in Fig. 8-1 are only selected when address lines A3, A4,
and A5 are logic Is. Therefore, these particular devices will respond
to addresses in the range $FEF838 to SFEFFFF. Two other address
lines, Al and A2, are also connected to these PIAs. They are used to
select the internal registers, as follows:

A2 Al Register Selected

0 - 0 PRA/DDRA
0 1 CRA

1 0 PRB/DDRB
1 1 CRB

Since each PIA occupies four bytes in mem.ory, the two PIAs in

Fig. 8-1 will occupy eight bytes (four words)— four even-numbered

bytes for the 'liigh-order" PIA, and four odd-numbered bytes for
the "low-order" PIA. Let us assume that our PIAs occupy addresses
$FEFF00 through $FEFF07, as shown in Fig. 8-2.

Some Simple 16-Bit Transfers, Using PIAs

For illustration purposes, assume that the PIAs in Fig. 8-1 are
connected to two 16-bit peripherals. The peripheral connected to

185

Fig. 8-1. Interface between a 68000 and two 6821 PI As.

186

; HIGH
I ORDER

PIA

Fig. 8-2. PIA registers in memory.

SFEFFOO

$FEFF02

$FEFF04

$FEFF06

PRA/DDRA

CRA
PRB/DDRB

CRB

LOW
ORDER
PIA

PRA/DDRA

CRA
PRB/DDRB

CRB

Port A of both PI As is an input-only device (perhaps a bank of
switches). When this device has placed a word of input data on

the Port-A data lines (PA0-PA7) of both PI As, it notifies the 68000
by asserting a DATA READY signal on pin CAl of the high-order
PIA. After reading the word into memory, the 68000 informs the pe-
ripheral that the word has been read by asserting a DATA TAKEN

signal on pin CA2 of the high-order PIA.
The peripheral connected to Port B of both PIAs is an output-only

device (perhaps a group of LEDs). When the peripheral is pre-
pared to accept a word of data, it notifies the 68000 by asserting a

PERIPHERAL READY signal on pin CBl of the high-order PIA.
The 68000 then outputs a data word to the Port-B data lines (PBO-
PB7) of both PIAs, and notifies the peripheral that it has done so

by asserting an OUTPUT READY signal on pin CB2 of the high-
order PIA. Fig. 8-3 illustrates the data paths just described.

In order for a PIA to communicate with attached peripheral de-

vices, it must be programmed to suit the characteristics of these par-
ticular devices. PIAs are so configured at system initialization time,

as part of the power-up reset sequence. Example 8-1 is an initiali-
zation routine for the two PIAs we are discussing here. The high-

order PIA is configured as follows:

• DDRA is loaded with all Os, making A an input port.
• CRA is loaded with %00100110 ($26), to enable handshaking.

Example 8-1. Initializing Two PIAs
PIAD EQU $FEFFOO ADDRESS OF PRA/DDRA.
PIAC EQU PIAD+2 ADDRESS OF CRA.
PIBD EQU PIAD4-4 ADDRESS OF PRB/DDRB.
PIBC EQU
*

PIAD-f-6 ADDRESS OF CRB.

MOVEA.L PIAD.AO POINT TO HIGH-ORDER PIA.
* CONFIGURE THE HIGH-ORDER PIA

MOVE.L #$26FF26,D0 SET UP PARAMETERS
MOVEP.L DO,0(AO) AND MOVE THEM TO THE PIA

* CONFIGURE THE LOW-ORDER PIA
MOVE.L #$04FF04,D0 SET UP PARAMETERS
MOVEP.L D0,1(A0) AND MOVE THEM TO THE PIA

187

Fig. 8-3. Two 6821 PIAs interfaced to two peripherals.

188

• DDRB is loaded with all Is ($FF), making B an output port.
• CRB is loaded with %()0100110 ($26), to enable handshaking.

Then, the low-order PI A is eonfigured as follows:

• DDRA is loaded with all Os, making A an input port.
• CRA is loaded with %00000100 ($04), to select PRA.

• DDRB is loaded with all Is ($FF), making B an output port.
• CRB is loaded with %00000100 ($04), to select PRB.

Once the PIAs have been configured, transferring information to
and from their attached peripherals is relatively simple. To transfer

a single 16-bit word to the output peripheral, for example, involves
waiting for the peripheral ready line to be asserted, then moving the
data word to the peripheral register B of the PIAs. This sequence is

shown in Example 8-2, in which the output word is contained in the

low-order 16 bits of data register DO. The "no-op" instruction MOVE
PIBD,PIBD at the end of the program simply performs the read

operation needed to clear the "peripheral ready" flag in bit 7 of the
control register.

Example 8-2. Writing a 16-Bit Word to a Peripheral
* OUTPUT THE WORD CONTAINED IN DATA REGISTER DO.
OUTW TST.B PIBG PERIPHERAL READY?

BPL.S OUTW WAIT UNTIL IT IS,
MOVE DO.PIBD THEN OUTPUT THE WORD.
MOVE PIBD.PIBD CLEAR PERIPHERAL READY.

Transferring multiple words to the output peripheral is nearly as
easy as transferring just one word, as you can see by examining

Example 8-3. This program writes the contents of DO to the output
peripheral continuously, incrementing the word in DO after each
transfer operation.

Example 8-3. Incrementing a 16-Bit Word and Writing It to a
Peripheral Continuously

* OUTPUT THE WORD CONTAINED IN DATA REGISTER DO
* CONTINUOUSLY, INCREMENTING IT AFTER EACH TRANSFER
* OPERATION.
OUTDO TST.B PIBC PERIPHERAL READY?

BPL.S OUTDO WAIT UNTIL IT IS,
MOVE DO,PIBD THEN OUTPUT ONE WORD.
ADDQ #1,D0 INCREMENT DO.
MOVE PIBD,PIBD CLEAR PERIPHERAL READY
BRA.S OUTDO AND START AGAIN.

The program in Example 8-4 shows a typical input transfer oper-
ation, in which 35 words are read into consecutive memory loca-

189

tions. Address register indirect with postincrement addressing is
used in the transfer instruction, so that the address is automatically
updated to point to the next location in memory. Note that counter
DO is initialized with a value of 34, rather than 35, because the ter-

minating instruction (DBF D0,IN35) will cause program control to

"fall through" the loop when DO has been decremented to -1, rather than zero.

Example 8-4. Reading Data From an Input Peripheral and Storing It in Memory

* READ 35 WORDS INTO MEMORY, STARTING AT THE LOCATION BEING
* POINTED TO BY ADDRESS REGISTER AO.

IN35
MOVE.L
TST.B
BPL.S
MOVE
DBF

#34,D0 PIAC
IN35
PIAD,(AO) +

D0,IN35

SET UP COUNTER DO.
DATA READY?
WAIT UNTIL IT IS
THEN INPUT WORD.
LOOP UNTIL DONE.

REFERENCES

1. MC68000 16-Bit Microprocessor Users Manual. Austin, TX: Motorola Semi-
conductor, Inc., 1980, Chapter 6.

2. Morales, A. J. "Interface 6800-^? Peripherals to the 68000." EDN, March 4,
1981, pp. 159, 161. (This article shows how to interface 6800 peripherals to
the asynchronous control lines of the 68000 for faster operation.)

3. Morales, A. J. "Access Memory Directly in 16-Bit /jlC Systems." Electronic
Design, June 11, 1981, pp. 221-227. (Shows how to use an MC6844 device
for DMA.)

4. The Complete Motorola Microcomputer Data Library. Phoenix, AZ: Motorola
Semiconductor Products, Inc., 1978.

BIBLIOGRAPHY

1. Grappel, R. and Hemenway, J. "Effective Storage and Backup Call for a Ca-
pable Controller." EDN, March 4, 1981, pp. 135-144. (This article describes

interfacing of Shugart Winchester disk drive and floppy-disk drive to the
68000.)

2. Groves, S. "Balancing RAM Access Time and Clock Rate Maximizes Micro-
processor Throughput." Computer Design, July 1980, pp. 118-126. (A major

portion of the material in this article was derived from Motorola Engineering
Bulletin EB-83: The Inter-Relationship Between Access Time and Clock Rate
in an MC68000 System. Austin, TX: Motorola Semiconductor, Inc., March 4,
1980.)

3. Hemenway, J. and Grappel, R. "To Construct a Real-Time Clock, Combine
Hardware and Software." EDN, October 5, 1980, pp. 115-120.

4. . "Use MC68000 Interrupts to Supervise a Console." EDN, June 5,
1980, pp. 183-186.

190

5. Johnson, R. C. "Microsystems Exploit Mainframe Methods." Electronics,
August II, 1981, pp. 119-127. (A report on memory management techniques,
including coverage of the 68451 MMU circuit.)

6. Stockton, J. and Scherer, V. "Learn the Timing and Interfacing of MC68()()()
Peripheral Circuits." Electronic Design, "November 8, 1979, pp. 58-64.

7. The following are two recent surveys of support chips.

(a) Bursky, D. "Support Circuits— the 'Power' Behind Powerful Processors."
Electronic Design, November 22, 1980, pp. 123-140.

(b) Huffman, G. "As /iC-System Complexity Grows, Support Chips Assume
Host Tasks." EDN, November 5, 1980, pp. 214-230.

8. The 68120 Intelligent Peripheral Controller is described in these articles:

(a) Collins, D. "Single-Chip /jlC Customizable for Many Interfaces," Elec-
tronic Engineering Times, Febmary 16, 1981, pp. 40-43.

(b) Melear, C. "Enhanced Microcomputer Helps Host in DP Systems,"
Electronic Design, May 14, 1981, pp. 185-191.

(c) Wiles, M. F. and Lamb, S. "Special-Purpose Processor Makes Short
Work of Host's I/O Chores," Electronics, May 19, 1981, pp. 165-168.

9. The following articles contain diagnostic programs to test read/write memory:

(a) Grappel, R. D. "M68000 Diagnostic Program Tests Memory," EDA/,
April 15, 1981, pp. 157-158.

(b) Strom, S. "Subroutine Tests RAM Nondestmctively," Electronics, May
19, 1981, pp. 170-171.

191

CHAPTER 9

68000 System

Development Support

The features of a microprocessor and its price and availability are

important factors in the success of the product. Clearly, another fac-
tor is the amount of hardware support, at both the chip and board

level, that is available for the microprocessor because this deter-

mines how easily the product can be integrated into a customer's
application or end product. However, for all but the simplest ap-

plications, the hardware represents the least expensive part of a

microprocessor-based project. It is software that will require the
most significant investment in terms of both time and money.

For industrial microprocessor applications, software development

represents an average of 60% to 90% of the total project cost.^ Soft-
ware costs range from $1000 to $10,000 for small, dedicated control

applications, and up to $100,000 or more for sophisticated systems.
When you consider that each line of debugged code currently costs

between $10.00 and $20.00 to generate, and that the average pro-
gram contains thousands of lines of assembly language or high-level

code,^ these costs are not surprising. They do make one point crystal

clear, however— for a microprocessor to succeed in today's market, it 3
must be backed by cost-effective system development products, from ̂
both the chip manufacturer and other companies. This chapter gives <
an overview of the system development support for the 68000 in ,
terms of both hardware and software. .

According to a recent market survey,-^ about one-half of all micro- ̂
computer software development is performed with cross assemblers

and other software running on minicomputers or mainframe com- e

192

Courtesy Motorola, Inc

Fig. 9-1. The Motorola MEX68KDM Design Module.

puters. Another one-fourth occurs on single-board computers, "home-

brew" systems, and other "custom" devices. The remaining fourth
takes place on what are generally termed microcomputer develop-

ment systems. Let us now survey the support that is available for
the 68000 in these three areas, beginning with a discussion of the
products that are available from Motorola.

MOTOROLA SYSTEM SUPPORT PRODUCTS

To support E^JORciser® owners, Motorola Microsystems (2200 W.
Broadway, Mesa, AZ 85201) is offering the MEX68KDM Design

Module, which is designed to interface to the company's EXORciser/
micromodule bus. The MEX68KDM, shown in Fig. 9-1, includes an

8K-byte system monitor (called MACSbug®), 32K bytes of dynamic
read/ write memory, two serial RS-232C ports, two 16-bit parallel
I/O ports, three 16-bit counter/ timers, sockets for up to 48K bytes
of ROM/EPROM user memory, and a breadboard area for user-
designed I/O. A bus adapter module permits 16-bit memory to be
used on the 8-bit EXORciser data bus. The MACSbug monitor pro-

vides extensive debug routines, so the user can examine and change
memory locations and registers, set breakpoints, trace and display
instructions, and control many other processor operations.

® EXORciser and MACSbug are trademarks of Motorola, Inc.

193

Courtesy Motorola, Inc.

Fig. 9-2. The Motorola EXORmacs Development System.

When used with a cross assembler (such as the one described

in Chapter 2), the MEX68KDM Design Module provides an in-
expensive way to develop 68000 software on a host computer, such

as an IBM System/370, a DEC PDP-11, or an EXORciser. However, f
those who need the power and flexibility of a multiuser develop- *
ment system, and the efficiency of a resident assembler and com- *
piler, are advised to investigate the EXORmacs^ Development Sys- \
tern (see Fig. 9-2). '

Offered by Motorola Semiconductor Products, Inc. (P.O. Box .
20912, Phoenix, AZ 85036), the basic EXORmacs system includes «

a microcomputer chassis with four system modules, a CRT display °
console, and either a IM-byte dual-drive floppy disk or a 32M-byte

hard disk. The hard disk includes Motorola's 68000 disk operating
system, called VERSAdos®. The card cage in the chassis can ac- :
commodate up to 15 modules, with four slots occupied by these :
system modules:

I

• DEbug Module contains MACSbug firmware, bus arbitration j

logic, a parallel printer port, and two RS-232C ports.
• MPU Module contains the MC68000 MPU chip, a four-segment,

memory management unit (for memory allocation and multi-,
tasking), and map-switching logic.

• 256K bytes of dynamic read/ write (R/W) memory. |
• Universal Disk Controller supports one or two 32M-byte hard

disks and up to 2M bytes of floppy-disk mask storage. |

® EXORmacs and VERSAdos are trademarks of Motorola, Inc.

194

Courtesy Motorola, Inc.

Fig. 9-3. The Motorola VERSAmodule Monoboard Microcomputer (VMM),
showing modular functional elements.

The EXORmacs software development package provides the VER-
SAdos operating system, a structured macro assembler, a linkage

editor, a CRT text editor, and a Pascal compiler. EXORmacs is de-

signed using Motorola's VERSAbus® (described in Reference 4),
which supports multiprocessing and 32-bit data.

Motorola is also backing the VERSAbus with a comprehensive

line of board-level products, called the VERSAmodule® family. The
heart of the family is the VERSAmodule Monoboard Microcomputer

(VMM), shown in Fig. 9-3. The VMM uses an 8-MHz 68000 micro-
processor and supports the full 16M-byte address space. It has eight

sockets, which will accept up to 64K bytes of ROM or PROM, and
can be ordered with either 32K bytes or 128K bytes of dynamic

R/W memory on board. The VMM also contains three 16-bit timer/
counters, two serial ports and four parallel I/O ports (each with
eight data lines and two handshake lines). Like the MEX68KDM
Design Module, the VMM is a cost-effective tool, but unlike the
Design Module, the VMM can also be easily incorporated into end
products.

THE VME BUS

In 1981, Motorola, Mostek, Signetics/ Phillips and Thomson-
EFCIS of France announced support of a bus intended for mid- to

® VERSAbus and VERSAmodule are trademarks of Motorola, Inc.

195

high-end industrial and EDP applications. This VME bus^ is a sub-
set of the VERSAbus that includes some features from the lEEE-

P896 bus subcommittee recommendations. The VME bus is designed

around the widely-available DIN Eurocard standard, and provides
a 24-bit address bus and a 16-bit data bus on a primary 96-pin con-

nector. Both widths can be extended to 32 bits on an optional, second

96-pin connector. Of the 192 pins provided by these two connectors
64 pins are available for user-defined I/O.

Being to Eurocard standard, VME modules come in two sizes:
100 mm X 160 mm (single Eurocard) and 233.35 mm X 160 mm
(double Eurocard). Because of their size, modules of this type

typically house only one function per board, closely matching hard-
ware to an application.

OTHER 68000-RELATED PRODUCTS

The acceptance of the 68000 is reflected in the ever-growing num-
ber of companies other than the chip manufacturers who are offer-
ing support products for this microprocessor. This section presents

a sampling of the market, but is not intended to be an exhaustive
survey.

Software Development Systems

Scientific Enterprises, Inc. (9375 S.W. Commerce Circle, Wilson-
ville, OR 97070) offers a development system called the Software

Synthesizer®, which supports the 68000. This system centers around

two elements— the Software Synthesis Language (SSL) and a 16-bit
Perkin-Elmer minicomputer system. The minicomputer system in-

cludes 256K bytes of memory, a 32M-byte Winchester disk system,
four video terminal work stations, and a 13M-byte cartridge tape f

drive for disk backup and archiving. SSL is a unique, high-level
language that allows a program to be developed as a set of software
components, in much the same way as hardware is constructed from
individual components.

TeleSoft (10639 Roselle Street; San Diego, CA 92121) offers a

68000-based desktop computer system whose primary aim is to sup-
port development of programs written in the Ada language. This

system, called the TeleSoft-Workstation®, consists of a 12-inch CRT

display with detached keyboard, a Q-Bus® backplane, 256K bytes
of R/W memory and four serial I/O ports. Various mass storage

devices are available, ranging from a mini-floppy disk option inte-

® Software Synthesizer is a trademark of Scientific Enterprises, Inc.

® TeleSoft-Workstation is a trademark of Renaissance TeleSoftware, Inc. Q-Bus
is a trademark of Digital Equipment Corporation.

196

grated into the Workstation to double density 8-inch floppy disks,
Winchester hard disks and streaming tape drive units. TeleSoft
backs its Workstation with a variety of software packages, including
a multitasking operating system and Pascal and Ada compilers.

The 68000 was also selected for the 9826A, a desktop computer

from Hewlett-Packard (1501 Page Mill Road; Palo Alto, CA 93304).
A software-compatible successor to the popular HP 9825A, the
9826A includes a 7-inch CRT that can display 25 lines of 50 charac-

ters each, as well as graphics, with the character set comprising 256

5-by-7-dot characters. The 9826A also includes 64K bytes of R/W
memory; a double-sided, double-density 5y4-inch floppy disk drive
with a capacity of 256K bytes; a real-time clock; a built-in lEEE-

488 interface; and a ROM-based high-level language, either HP's
enhanced Basic or HPL. A Pascal option is planned as of this writing.

MicroDaSys, Inc. (P.O. Box 36215, Los Angeles, CA 90036) is

offering two 68000-based systems— a two-board, called the 68K®,
and a Miniframe® system. The two-board set consists of a CPU
board and R/W memory board. The CPU board has two micro-

processors (a Motorola 6809, to take care of I/O operations, and a

68000), memory management circuitry, eight RS-232C serial I/O
ports, eight parallel ports, and a floppy-disk interface. The memory
board has 128K bytes of R/W memory and space for an additional

512K (using 4116s) or 2M (using 6664s) bytes. The Miniframe sys-
tem comes in a rack-mountable enclosure, and includes the two-

board set (but with 256K bytes of read/ write memory), plus power

supplies, a fan, RS-323 connectors, and two Shugart single/ double-
density eight-inch floppy-disk drives.

Several companies are also offering a "best-of-two-worlds" ap-
proach, with 68000-based products that interfere to Multibus® com-
patible boards. These products include:

• The CTS-300 microcomputer from Codata Systems Corp.; 285
N. Wolfe Road; Sunnyvale, CA 94086. The CTS-300 processes
full ANSI standard Fortran 77 and Pascal software under its

UNIX-like MERLIN operating system.
• The CMS-16 microcomputer series from CM Technologies Inc.;

525 University Avenue; Palo Alto, CA 94301. One of the micro-
computers in this series, the CMS-16/ DSl, links to PDP-11 mini-

computers.

• The OB68K1 single-board computer from Omnibyte Corp.; 245
W. Roosevelt Road; West Chicago, IL 60185.

• The FT-68M single-board computer from Forward Technology
Inc.; 2595 Martin Ave.; Santa Clara, CA 95050.

® 68K and Miniframe are trademarks of MicroDaSys, Inc.
® Multibus is a trademark of Intel Corporation.

197

Along similar lines, the ERG68-696 board from the Empirical Re-
search Group (P.O. Box 1176; Milton, WA 98354) has an S-100 bus

interface. Z80 emulation software, which will allow users to run

CP/M on the ERG68-696, should be available by the time this is
printed.

Manufacturers of the so-called "universal" microprocessor devel-
opment systems are also offering 68000 emulation options. These in-

clude The Boston Systems OflRce, Inc., American Microsystems, Inc.,

GenRad/Futuredata, Hewlett-Packard, Tektronix, Inc., Emulogic,
Inc., and Phillips Industries.

68000-Based Graphics Systems

The versatile processing features and 16M-byte addressing range
of the 68000 make it an ideal microprocessor for handling large data-

198

Courtesy Chromatics, Inc
Fig. 9-4. The Chromatics CGC 7900 Color Graphics Computer.

base applications, such as the two graphics systems we will describe

here. Both of these systems are well suited for use in designing cir-

cuit boards and very large-scale integrated circuits, schematics and
mapping, architectural engineering, and business graphics.

The first of these systems is the CGC 7900 Color Graphics Com-

puter, offered by Chromatics, Inc. (2558 Mountain Industrial Boule-
vard, Tucker, GA 30084). The CGC 7900 (Fig. 9-4) includes a 19-

inch color CRT display with an on-screen resolution of 1024 by 768
pixels (picture elements), 1024 by 1024 within-the-graphics mem-

ory, floppy-disk drives, and 128K bytes of read/ write memory. Most
of this memory is available to the user. The CGC 7900 features high-

speed image generation, an eight-color overlay mode, and a "palette"
of 16 million colors, of which up to 256 different colors can be dis-

played simultaneously. The 151-key keyboard includes 34 keys dedi-
cated to graphics functions, 24 program function keys, and a cursor

pad. Options include a dual-screen buffer, which allows rapid alter-
nation between two different displays, a lOM-byte Winchester disk

drive, a real-time clock, joystick, and light pen.
Equally impressive is the Graphics System 8000 from Lexidata

Corp. (755 Middlesex Turnpike, Billerica, MA 01865). The 8000
contains two separate microprocessors. A 68000 controls all input
devices (keyboard, data pad, digitizers, trackball, and joystick) and

manages the graphics data base. A Lexidata 12-bit bipolar bit-slice
display processor controls the raster frame buffer. With the system,

Lexidata offers a 19-inch monitor (color or black-and-white) with
a resolution of either 640 by 512 pixels or 1280 by 1024 pixels. In

color applications, the 640-by-512-pixel monitor can display 1024
different colors simultaneously from a palette of 16.7 million possi-

ble colors; 16 colors from a 4096-color palette can be displayed si-
multaneously on a 1280-by-1024-pixel monitor. The 8000 operates

v^'ith a wide range of popular 16- or 32-bit minicomputers via either
DMA parallel fhterfaces or an optional RS-232 link.

68000 SOFTWARE SUPPORT

The development hardware we have just examined indicates the

acceptance and recognition the 68000 is receiving in the market-
place. Another measure of this acceptance is reflected in the soft-

ware support for the 68000. As with hardware support, software sup-
port remained at a low level until Motorola made the chips available,

but has been increasing rapidly ever since.

Operating Systems

The highest level of system software support is represented by the

operating systems that are available for use with the 68000. An oper-

199

(0
c CO

E

o
o
o 00

r
o
Q. Q.
3 (/)

E

>» (/)

o> c

a> Q.
o

0)
(0

kT E (/) ® =3 m
Q."x 3

o S o

E

CO 05 O Q)

52 ̂'

CO
Q 1- eg
O

^ jQ

CO

o

^ S • . CD
Q. -Q CO

0.^1-

0) „

|8
o ̂

O CD >s E

5
< 3

CO

■D

CO co"

O CD

-° >.

o n
00 CD
CD

0 CO

CO ̂

-D

CO co'

O CD

o n

8^
00 c\j CD CO

CO

0) CO

CO

CO

00 00

CD '«^-

= 2

(0 3 -I (O

Elo
CD O CO CO CO CO

< Q-

EoElo

CO < O CO
< CQ LL CL

CO O

< li-

o

JO — "

o E "co O

2 w CO < O S < Q. CQ U.

CO

B CSJ >N ^

CO CO <
w o i

O O CO

CD S ̂

iZ CD ̂
h- >

5o

i<

o 5 o

ECNJ 03

CD :>
LU CO ̂

CD

. CD O
O O O)
c: CO o

— t:

o ̂
-S^ CO

o ̂ c CO c z
>N CD.

h- CO
CD

>

CO CsJ OJ
0) CD > 6 ̂ CO

CO —

0 2 o

w n

^cog
C <I) c CD lI O

e"^ «

<D 5 O

1 ̂ CQ

200

• • • •

•

• • •

An
y

co
mp
ut
er

us
in
g
 68
00
0,

8K

by
te
s,

1

us
er
.

An
y

co
mp
ut
er

us
in
g
 L
SI
-1
1,

66
K

by
te
s,

20

us
er
s.

EX
OR
ma
cs
,

64
K

to

12
0K

by
te
s,

8

us
er
s.

An
y

co
mp
ut
er

us
in
g
 6
80
00
,

mo
i

th
an

1

us
er
.

As
se
mb
ly
,

Pa
sc
al

As
se
mb
ly
,

BA
SI
C,

C,

FO
RT
RA
N-
77
,

CO
BO
L-
74

St
ru
ct
ur
ed

Ma
cr
o

As
se
mb
le
r,

Pa
sc
al
,

FO
RT
RA
N-
77

Ma
cr
o,
 Re

lo
ca
ti
ng
,

an
d

Cr
os
s As

se
mb
le
rs
,

BA
SI
C,

C,

Pa
sc
al

MT
OS
-6
8K

XENIX

VE
RS
Ad
os

UniFLEX

In
du
st
ri
al

P
r
o
g
r
a
m
m
i
n
g

|

10
0

Je
ri
ch
o

Q
u
a
d
r
a
n
g
l
e

j
Je
ri
ch
o,

NY

1
1
7
5
3

!

M
i
c
r
o
s
o
f
t

i

10
80
0

NE

8t
h

S
t
r
e
e
t

|
Be
ll
ev
ue
,

WA

9
8
0
0
4

I

Mo
to
ro
la

Mi
cr
os
ys
te
ms

31
02

No
rt
h
 56
th

St
re
et

Ph
oe
ni
x,

AZ

85
01
8

Te
ch
ni
ca
l
 Sy
st
em
s

Co
ns
ul
ta
nt
s,

In
c.

12
00

Ke
nt

Av
en
ue

We
st

La
fa
ye
tt
e,

IN

4
7
9
0
6

j

Q-

E
Q.
O

o

o o

Q.

E

p

Table 9-2. Application and Utility Software for the 68000
Company Product

Alcyon Corp.
8474 Commerce Avenue
San Diego, CA 92121

C language compiler to run on
PDP-11 under UNIX operating

system.

Control Systems, Inc.
1317 Central Avenue
Kansas City, KS 66102

UCSD Version 2.0 Pascal compiler-
interpreter.

Creative Solutions, Inc.
4801 Randolph Road
Rockville, MD 20852

Forth language package to run on
Motorola MEX68KDM Design
Module.

Genrad / Futuredata
5730 Buckingham Parkway
Culver City, CA 90230

Pascal cross compiler.

Hemenway Associates, Inc.
101 Tremont Street, Suite 208
Boston, MA 02108

Floating-point math package,
Pascal/1 compiler.

Telesoft, Inc.
10639 Roselle Street
San Diego, CA 92121

Pascal compiler, translator,
Ada compiler.

Ruben Engineering Corp.
60 Aberdeen Avenue
Cambridge, MA 02138

Cross assembler and linker to run

on PDP-11.

System-Kontakt, Inc.
6 Preston Court
Bedford, MA 01730

Cross assembler, Pascal compiler
to run on PDP-11.

Whitesmith's Ltd.
P.O. Box 1132
Ansonia Station,
New York, NY 10023

C and Pascal compilers to run under
UNIX/V32, VERSAdos and other
operating systems.

Xidat, Inc.
885 N. San Antonio Road
Suite 0
Los Altos, CA 94022

Mainsail language software.

ating system (OS) is a group of programs that control a micro-
computer, and acts as the mediator between the computer and its

users. The operating system schedules the use of the microcomputer

and thereby reHeves users of the task of writing code that deals di-
rectly with system hardware resources (disk drives, printers, system

consoles, and so on).

202

it

Table 9-1 lists the features of some operating systems that can be
used for developing 68000 software. It was primarily derived from

the information given in several excellent survey articles/* Note that
nearly all of these operating systems support Pascal, which not only
indicates the growing popularity of this language, but its usefulness
with the 68000.

Table 9-1 also characterizes the primary applications for each of
the listed operating systems, in terms of three categories:

1. A development operating system develops software to be used

either on another "target" microcomputer or on itself. The tar-
get need not be the same microprocessor type if the software

is developed using cross assemblers or compilers.

2. A process-control (or real-time) operating system serves to con-
trol industrial processes that place timing constraints on the

responses of the OS. Interrupts from external processes signal
the microcomputer system, and if the system does not respond
in a specified time, the processes are impaired or seriously
degraded.

3. General-purpose operating systems are usually associated with
business or scientific applications.

One other classification that cuts across the three just mentioned

is that of multiuser versus single user. A rmiltiiiser operating system

provides computational services to many on-line users, by time shar-
ing system resources among users, in a round-robin fashion. Con-

versely, a single-user operating system allows a single user to submit
jobs sequentially for execution.

Other Software Packages

Table 9-2 lists some available software packages other than oper-

ating systems. ''Note that most of these are also designed around the
Pascal language.

REFERENCES

1. Wintz, P. "Fundamentals of /xP Development Systems." Digital Design,
November 1980, pp. 30-36.

2. Lee, E. S. "Are Development Systems Really Necessary?" EDN, September
5, 1980, page 143.

3. Santoni, A. "Microcomputer Development Systems." EDN, September 5,
1980, pp. 141-151.

4. The Motorola VERSAbus is also described in:

(a) Ralph, T. and Kister, J. 'VP Bus Gears Up to a 32-Rit Future." Elec-
tronic Design, July 5, 1980, pp. 97-101.

203

(b) Warren, C. "Compare /uC-Biis Specs to Find the Bus You Need." EDN,
June 10, 1981, pp. 141-153. (This article contains a valuable cross-ref-
ference table covering 20 different buses, including VERSAbus and
EROXbus.)

c. . "High-Performance Buses Clear a Path for Future /xCs." EDN,
June 24, 1981, pp. 127-187. (This article includes handy reference list-

ings of the specs for Multibus, VERSAbus, Z-Bus and P896 futurebus.)

5. Kaplinsky, C. "Decentralizing ^iP Bus Grows Easily From 16 to 32 Bits."
Electronic Design, November 12, 1981, pp. 173-179. (Describes the VME bus.)

6. The following are recent surveys of microcomputer operating systems:

(a) Hemenway, J. "Microcomputer Operating System Comes of Age." Mini-
Micro Systems, October 1980, pp. 97-119.

(b) . "fjiC Operating Systems Directory." EDN, November 5, 1980,
pp. 275-338.

(c) Schindler, M. "Microcomputer Operating Systems Branch into Main-
frame Territory." Electronic Design, March 19, 1981, pp. 179-219.

BIBLIOGRAPHY

1. Board-level products for evaluation and development are described in the
following articles:

(a) Bursky, D. "yuC Boards Pack the CPUs and the Support for Every Sys-
tem—But How Much is Enough?" Electronic Design, March 15, 1980,

pp. 85-89.
(b) Kister, J. E. and Naugle, R. H. "Develop Software for 16-Bit fiC With-

out Making Costly Commitments." Electronic Design, September 13,
1979. (Describes the Motorola MEX68KDM Design Module.)

2. This series of articles presents an excellent discussion of board-level products
in general, and the VERSAmodule product line in particular:

(a) Gorin, J. and Stern, L. "The Case for Board-Level Microcomputers."
Mini-Micro Systems, November 1980, pp. 81-93.

(b) . "Requirements for High-Performance Microcomputers." Mini-
MicroSystems, March 1981, pp. 127-136.

(c) . "Making High-Level Systems With Board-Level Products."
Mini-Micro Systems, May 1981, pp. 165-175.

3. The EXORmacs development system is described in these articles:

(a) DeLaune, J. and Scanlon, T. "Supporting the 68000." Mini-Micro Sys-
tems, August 1980, pp. 95-102.

(b) Kister, J. and Robinson, I. "Development System Supports Today's Pro-
cessors—and Tomorrow's." Electronics, January 31, 1980, pp. 81-88.

4. Microcomputer languages are described in:

(a) Cherhn, M. "High-Level Languages for Microcomputers." Mini-Micro
Systems, April 1980, pp. 89-110.

(b) Schindler, M. "Pick a Computer Language That Fits the Job." Elec-
tronic Design, July 19, 1980, pp. 62-72.

5. The following are tutorials on operating systems:

(a) Anderson, D. A. "Operating Systems." Computer, June 1981, pp. 69-82.
(b) Ripps, D. L. On Operating Systems. Industrial Programming Inc., 100

Jericho Quadrangle, Jericho, NY 11753, 1980.

204

APPENDIX A

ASCII Character Set

(7-Bit Code)

MSD 0 1 2 3 4 5 6 7
LSD 000 001 010 Oil

100 101
110

111
0 0000 NUL OLE

SP
0 @ P P

1 0001 SOH DCl I 1 A Q a q
2 0010 STX DC2 2 B R b r
3 0011 ETX DC3 # 3 C S c s
4 0100 EOT DC4 s 4 D T d t
5 0101

ENQ
NAK % 5 E U e u

6 0110 ACK SYN & 6 F V f V
7 0111 BEL ETB / 7 G w g w
8 1000 BS CAN (8 H X h X
9 1001 HT EM) 9 1 Y i y
A 1010 LP SUB * J z j z

B

1011 "
VT

ESC + K c k {
C 1100 FF FS < L \ 1
D 1101 CR GS M] m

I E 1110 SO RS > N A n
F 1111

SI
US / ? 0 0 DEL

205

APPENDIX B

Instruction Execution Times

This appendix contains tables that Hst the instruction execution
times as a count of the number of external clock (CLK) periods.
To find the actual execution time for a particular instruction, the
count in the table must be multiplied by the clock period of your

microprocessor. For example, if you are using an 8-MHz 68000, mul-
tiply the count by 125 ns.

The timing data in these tables also includes the number of bus

read and write cycles for each instruction. This information is en-
closed in parentheses following the execution period counts. It is

given in the form (R/W), where "R" is the number of read cycles
and "W" is the number of write cycles.

All tables in this appendix are reproduced with the permission of
Motorola, Inc.

206

c
E

c
o

o (0
■o ■o

<
0)

u

IIJ

Lo
ng

(0
/0
)0

(0
/0
)0

8(
2/
0)

8(
2/
0)

10
(2
/0
)

12
(3
/0
)

14
(3
/0
)

12
(3
/0
)

1
6
(
4
/
0
)

1

12(3/0)

14
(3
/0
)

8(
2/
0)

Byte,

Word

(0
/0
)0

(0
/0
)0

4(
1/
0)

4(
1/
0)

6(
1/
0)

8(
2/
0)

10
(2
/0
)

8(
2/
0)
 12
(3
/0
)

8(
2/
0)
 10

(2
/0
)

4(
1/
0)

Acidressing

Mode

Re
gi
st
er

Data

Register

Direct
Address

Register

Direct

Me
mo
ry

Address

Register

Indirect

Address
Register

Indirect
With

Postincrement

Address Register Indirect With Predecrement

Address

Register

Indirect

With

Displacement

Address
Register

Indirect
With

Index

Absolute
Short

Ab
so
lu
te

Lo
ng

Program
Counter

With
Displacement

Program
Counter

With
Index

Immediate

c c Q <
+

c c
< <

1 §
(§; (§)
c c < <

*

X Q.

«

■a

IT X

207

t

16(3/1
16(3/1

20(4/1

^^^^ in lo CO

24(5/1

26(5/1

20(4/1

12(2/1

12(2/1

16(3/1
16(3/1

18(3/1

20(4/1

22
(4
/1

20
(4
/1

24
(5
/1

20(4/1
22(4/1

16(3/1

'
s

■6

®

14
(2
/1

14
(2
/1

18
(3
/1

CO CO ̂

24(4/1

22(4/1

26(5/1

22(4/1

24(4/1

18(3/1

An
@(
d)

12(2/1
12(2/1 16(3/1

16(3/1

18(3/1
20(4/1

22(4/1
20(4/1

24(5/1

20(4/1

22(4/1

16(3/1

1

8(1/1

8(1/1
12(2/1

12(2/1

14(2/1

16(3/1

18(3/1

16(3/1

20(4/1

16(3/1

18(3/1
12(2/1

+

8(1/1

8(1/1
12(2/1

12(2/1

14(2/1
16(3/1

18(3/1
16(3/1

20(4/1

16(3/1

18(3/1
12(2/1

A
n
@

8(1/1

8(1/1
12(2/1

12(2/1

14(2/1

16(3/1

CO CO ̂

16(3/1
18(3/1

12(2/1 4(
1/
0)

4(
1/
0)

8(
2/
0)

8(2
/0)

10(
2/0

)
12(

3/0
)

14
(3
/0
)

12
(3
/0
)

16
(4
/0
)

12
(3
/0
)

14
(3
/0
)

8(
2/
0)

c
O

4(
1/
0)

4(
1/
0)

8(
2/
0)

8(2/0)

10(2/0)

12(3/0)

14
(3
/0
)

12
(3
/0
)

16
(4
/0
)

12
(3
/0
)

14
(3
/0
)

8(
2/
0)

So
ur
ce

c c c
Q < <

+ !§
(§)(§) (9) c c c
< < <

111

?

208

(A

■o

o

*z

0) Q.
u
o

c
o
o
3

"In

c

O) c
o
-J
>
o

CO
I

ffi

(U

c\j cvj cvj

\ •--^ CO CO in
O O 00 C4 CM CN

OsJ C\J Cvj

CVJ CVJ Ti-
to (O iq-

T- r- CN

CVJ CVJ CVJ ^ \

CVJ CVJ Tl- 00 00 (O T- T- CM

CVJ CVJ CVJ \ --^ \
CVJ csj

(O (O <Q-
T- T- CM

^ o

CVJ CVJ CVJ \ lO to CD
00 O CM CM CO CO

CVJ CVI CVJ \ \ -"d- ''^ lO

^ (O 00 CM CV CM

CJ CVJ CVJ ^ \ \
CD <0
^ CM <D CO CO CO

CVJ CVJ CVJ
\

(O 00 o
CM CM CO

^ (O 00 CM CM CM

CVJ CVJ CVJ \ CO CO

CM CVJ CVJ \ \
T-^T- CO
CM CM O 1- 1- CM

CVJ CVi CVJ

CM CM O T- T- CM

O O O \ \
^ 1— CO
^ ̂ CM

o o o
^ — --^

T-^T- CO ^ ̂ CM

Q < <

CVJ CVJ CVJ \ \ ^

CO CO TJ- O CM ̂
CM CM CM

CVJ CVJ CVJ
\

CO CO

O CM «3- CM CM CM

o o o

CM ̂ <0

CVJ CVJ CVJ \ \ \ lo lo CO
O 00 CM CO CM CO

CVJ CVJ CVJ \ \ ^ in lo CD
CM O ̂ CO CO CO

CVI CVJ CM \ \ in <D in
CM ̂ 00 CO CO CM

CVJ CVJ CVJ \ --^ \

in in ̂

00 o ̂ CM CO CM

CVJ CVJ CVJ
in in CD
O 00 CM
CO CM CO

CVJ CM CVJ \ \ •«t in

(D ̂ 00
CM CM CM

CVJ CVI CVJ
^ "-^ • —
S S if^ <0 ̂ 00
CM CM CM

CVJ CVJ CM — \

<0 ̂ 00
CM CM CM

o o o \ \

in

00 (O o T- r- CM

o o o o o o ■-^ '-^
CO CO
CM ̂ ;0 00 O
t- y- T- T- T- CM

+ I E

c c c
< < <

CVJ CVJ CVJ
\ \ \
O CM <0
CO CO CM

CM CVJ CM \
in in
oo o ̂ CM CO CM

CM CM CVJ

---V

^ (O o CM CM CM

CM CM CM \ \ \ Tj- CO

^ (O o CM CM CM

CVJ CM CM \

^ <o o CM CM CM

o o o

\ ---^ ^ S 52. (O 00 CM

o o o

^ --^
S S CI (O 00 CM

3H.
®®) X

209

(A
T3
O

a> CL

o
o

c
o
o

CO

a> k_ (0
Q.
E
o
o

•a

c (0

(0

o

'5)

o

CO

X o (1)

<£i-0

210

Table B-5. Immediate Instruction Clock Periods

Instruction Size
op #, Dn op #, An op #, M

ADDI Byte, Word 8(2/0)
12(2/1) +

Long
16(3/0)

20(3/2) +

ADDQ Byte, Word 4(1/0)

8(1/0)*

8(1/1)+

Long
8(1/0) 8(1/0)

12(1/2)+

ANDI Byte, Word 8(2/0)
12(2/1) +

Long
16(3/0) —

20(3/1) +

CMPI Byte, Word 8(2/0) 8(2/0)
8(2/0)+

Long
14(3/0) 14(3/0) 12(3/0) +

EORI Byte, Word 8(2/0)
12(2/1) +

Long
16(3/0) 20(3/2)+

MOVEQ
Long

4(1/0)

ORI Byte, Word 8(2/0)
12(2/1) +

Long 16(3/0) 20(3/2)+

SUBI Byte, Word 8(2/0)
12(2/1)+

Long
16(3/0)

20(3/2) +

SUBQ Byte, Word 4(1/0)

8(1/0)*

8(1/1)+
Long

8(1/0) 8(1/0)
12(1/2) +

+Add effective address calculation time
'Word only.

211

(0

■o

o

*z

0) Q.
o
o
o
c
o
o

(0
c

■o

c (0

a> Q.
o

c

m

o

5'

212

o
E

a>

(0

■o

_o

'hi

0) 0.
o
o
o
c
o

3
Q.

00 00

OQ

0)

"5)

0)

E
(D

C

>»
o

0)

'5)

CD CD
CQ

214

Table B-9. Branch and Trap Instruction Clock Periods

Instruction Displacement
Trap or Branch

Taken
Trap or Branch

Not Taken

Bcc Byte 10(2/0) 8(1/0)

Word 10(2/0)
12(2/0)

BRA Byte 10(2/0) -

Word 10(2/0) —

BSR Byte
18(2/2) —

Word 18(2/2) —

DBcc
cc true —

12(2/0)

cc false 10(2/0)
14(3/0)

CHK

43(6/3)+*
8(1/0)+

TRAP 34(4/3)

TRAPV 34(5/3)
4(1/0)

+ Add effective address calculation time.
* Indicates maximum value.

215

(A
T3 O

*w

0>
Q.

O
o
o
c
o
o

(A

Hi >
O

c

<
LU
Q.

<
LU

CD

0) n

«

■d

IT
o Q.

14(
3/0

)

24(2/2)

12(2/0)

20
(2
/2
)

c o

^ c + + 00 c

+ <^

00 +

"»- 3,

1 1 1 1

IT

o

o CM

o

CM
\
CM
00 o CM CO

CM
CM c

+ +

c o

00 c

+ <^

<o +
S

1 1 1 1

XXX.
L

o \

CO

CM

y—

CM CO

o CM

o \ CO
CM

CM CO

O CM

!?

CM iG.

00-

+ CM

ft

T-

O CM

+ a

XXX
.W

O

■ — .

CM
O

CM

■ —

CM 00

T—

o CM

CO

CM

CM <o

T—

:!

^ Z-
T- 3,

00

+ CM
<o +

'~ 3,

CM

O CM

7a

CM

T—

«

•6

©T

c
<

o CO

T-

CM CM

CM CM

o CM
CM

T—

CM

\ CM

O CM
00-

+ CM

00 +

'~ ̂

O CM

c
<

o
CM
o

T-

CM \
CM CO

o
CM
CO

CM

CM

T- 3,

00-

+ CM

<o +

CM

O CM

Ta

CM

T-

c
<

1 1 1 1 1 1 1 1
c

in CM

+ ̂

00

sl

T- CM

oo

+
c
<

1 1 1 1

c 5

c

+ +

c 5

00 C

+

CM + S2.

1 1 1 1

c
<

o CM 00
CM
CM
to

o CM

CM

T—

c

+ +

CM CO

^ ■ — -

c 9

00 c

+

CM + J2.

c

U> CM

+

00
si

CM 00

N 1 1 1

■o

o c o

_J

■o

o

O)

c o

_J

I

 I
ns
tr

1

s

->

CC
(/)

->

< UJ _J
< UJ
Q.

S cr

S t

i ̂
i i

o 5

n
E o

N

Q) "to

216

Table B-11. Muttiprecision Instruction Clock Periods

Instruction Size
op Dn, Dn op M, M

ADDX Byte, Word
4(1/0) 18(3/1)

Long
8(1/0) 30(5/2)

CMPM Byte, Word
- 12(3/0)

Long
- 20(5/0)

SUBX Byte, Word
4(1/0) 18(3/1)

Long
8(1/0) 30(5/2)

ABCD Byte 6(1/0) 18(3/1)

SBCD Byte 6(1/0) 18(3/1)

217

CM

ffi
®
n
eo

216

CM

OQ

0)

(0

219

Table B-13. Exception Processing Clock Periods

Exception Periods

Address Error
50(4/7)

Bus Error 50(4/7)

Interrupt

44(5/3)*
Illegal Instruction 34(4/3)

Privileged Instruction 34(4/3)

Trace 34(4/3)

* The interrupt acknowledge bus cycle is assunned to take four external clock periods.

220

APPENDIX C

Hexadecimal/Decimal

Conversion Tables

CM

C
o

"w

>
c
o
o
75

E
o
Q

(0

E
o
0)

"O

(0

X
0) X

o->-c\jco'^mcDh«-ooo>Oi-csico"^io

OT-c\jcoTi-ir)cDr^ooa><CQOQLLJLL

OC0C\i00'<^OC0C\J00"^OCDC\J00"^O T-C0"^CDCX>0>i-C\J"^C0I^CX>OC\l'^ ■'-T--^T-1-'P-C\J<NC\J

Oi-CMCO'«^mcON-OOCy)<ODOQlJLJLL

OCOCNJOO'^OCDCVJOO'^OCDCMOO'^O irji-CDCMOOCOO'^OCD-r-r^CNJOO'^ c\j lo h"- o <N in o CO in 00 o CO lo 00
T-^ cvT cnT cnT csT co" co" co" co"

o-»-CMcO'«!i-incDr>-ooo><CQOQlUlJ.

OCDCVJOO'^OCDCNJOO'^OCOCVJOO'^O
cno5oooooor>-hs.cocDcDmiO'<i-Tj-'5i-
R ^„ °0 CT5^ p. ̂ ̂

oo" cvT ccT "^"^ oo' CsT co" o' lo ctT co" t-" T-T-c\jc\jc\jcoco"<^"^"^ir)iocD

OT-c\jco'^mcDN>.ooo><DOOQ

OCDC\J00'^OCDC\J00'^OC0C\J00'<1-O coh-O'^oo-T-inoocsjcDO^cocDO'^ ioocDi-cocNjr»-cMoocooo"^o^tr)C
in CD CsT r^"^ co' oo' --^ ctT irT o" cd~ t-" nT co' cDcoa>cDc\jcT>ir>c\joOLnc\jooiOT-oo i--»-c\jcocO'^ir)iocDr^i^ooc3>CJ5

O-»-CMC0'^l0CDr^000><CDOQLULL

OCDCM00'«d-OC0CsJ00'^OCDC\J00'^O h-inCMOOOLDCOOOOCOCOT-OOCD"^ iOT-rs.cooO'«^ocDi-r»-cocD"^ocD
oo" r^' in ̂ oi o" oo' r^"^ in ''i-" cvT t-" o" oo" "^o-^o-^OJ-^oocooocooocooocvj

T-^ T-^ c\j^ eg co^ co^ -"^ in in co^ cd_ r»-
CvT co' in CO r^" od ctT o" t-" cvT co" in

o^c\ico"^incDh-ooo><ODOQiuiJL

CO

CO

222

CO

c

O T-

C\J CO IT) CD
00

o
C\J CO

in

1- CO
CD CD CD

CD CD CD CD CD CD CD CD CD CD CD

T —

ID C7> CO

r«.

LO

Oi

CO

lO

CD

CO

C\J O IT)

in

CNJ
C\J

r>-

CD

'"^

CD CD
lO CD

o O
CD

CD
CO

CD CNJ

h«-

CNJ

o

CT>

CD

O
CO

CD

00

7—

CD
CO

^ CD

7—

CD
CD CD

CD

1— T —

00
CNJ

co

o c C\! CNJ

lO CD

o
CD

CO
00

CD
CNJ CD

CD
CD CD CD CD o O

lO
in in in

CO

h-

o

in

CNJ
CNJ

in

o
CD C\J CNJ in

T—

CD
CD CD

h
CD

h b h h
CD

CO CO CD CD
CD

II II II II II 11 II II II II II II II II II II
CsJ

CvJ CNJ CNJ CNJ CNJ CNJ CNJ CNJ Cvi Csj CVJ CNJ CNJ

o
CL

00 CD O CNJ CO in CD 1^ 00 CD o
CvJ

CO

c CNI CNJ
CNJ

CNJ CNJ

CO CNJ 00 CO CN 00 CO CNJ 00
CD CNJ 00 CO

in 1— CNJ CD CD 00 CD CO 00

N.

in

o o
CNJ in o o o 1- CO r-- in o CNJ

in
CO

CD
CNJ

c 1- CNJ -'a- 00 CO CNJ in T- CNJ

00 00

CNI CO CO CO CD CNJ CD

00

h-

T- CNJ in
o o

CO
CNJ 00 CO

T—

APPENDIX D

Summary of The 68000

Instruction Set

This appendix contains three summary tables. Table D-1, Elective
Addressing Mode Categories, Hsts the addressing modes of the 68000

and categorizes each as a data, memory, control, or alterable address-
ing mode. Table D-1 also lists the assembler syntax for each mode.

This table appeared in Chapter 3, as Table 3-4, and is reproduced
here for quick reference.

Table D-2, 68000 Instruction Set, In Alpabetical Order, is a com-
pilation of the instruction information that was tabulated in Chap-

ter 3, but here the entire instruction set is presented alphabetically,

for your convenience. Incidentally, a similar reference table is avail-
able as a large wall chart from

MICRO PROGRAMS, INC.

251 Jackson Avenue
Syossett, NY 11791

If you plan to do much assembly-language programming for the
68000, this wall chart is highly recommended.

Table D-3, Conditional Tests, is a summary of the conditions that

are testable by the Bcc, DBcc, and Sec instructions. The Bcc instruc-
tions cannot test the always true (T) and never true (F) conditions,

but all 16 of the conditions are testable by the DBcc and Sec instruc-
tions. This table appeared in Chapter 3 as Table 3-15.

224

X
CB

C

>»

(/)

9
n
E (0
0)
<

(0
o
o

o>
o CO

o

o

(0
(0
0)

■o ■o

<

o

CO

xxxxxxxxx

CO

o

o>
c (0

£

■o

<

X X X X X X

xxxxxxxxxx

xxxxxxxxxx

c
« CO
£

■o

<

Sol

c O .
o
CL Q.-0 .E ^ x: ̂ x:

i ? I 'I

c
0
E
O i5 X

Q. 0)

(0 "D

=5.E

0)00000
w - .t - .i= - o ? $ $
Q)CCCCC(0ii<D<D(D

» m v. 0) 0) ~ ~ to W 0) O 3 3 0) 3 ̂ JO ~
■D '0)'0)'0)'0)"0) « f5 ,^ E -D(D<D<l)<D<D^iDOOc: <a:ira:(rir<<Q.Q-^

225

c o « « « « * « « o o

o *

« « «

.2 w > ID 3 « « ; o o

o *

ondi
Cod

N « *
— \ — \
 / J

« «
« «

1 ♦ ♦
«

* *
« «

« * « « «
« « «

♦ « «

o X « * « « * 1 1

1 *

* * * * * *
CD CD

c n o

CO

CO

03 (D

CD

0) < <
M

De
st

00
CO

CO

o 2 O -

rd
e

r- <
0) d — c

CO

•♦— '

CO

—
r- <

C —

CO

CO QC

C 03

c c ̂ <;

O O ̂

C 0)

o o ̂ o o Q 1 Q < < O <
O 1 Q < Q CO

TO
O) o c
(/)

0)
(0

n ^ (0

Q. <
<
C

a>
o

O (/) <
CO

c - — .

CO

, ^ , — . , , , — ̂

in.

o
3

c <

zz c

■D

c <

"cO C

C "O c -a

C-J 1 <t t-1

<<

Si

ip

1— 1 1
L— 1 1 1 TP TP LJ i^: I— J ip

C

■o

c\j eg Csi CNJ
CM CNJ CNJ CNJ

CNJ
CNJ CNJ C\J CNJ

O c CO CO
CNJ CO CO

CO CO CO CO

CO CD

CD ̂

CO CO CO CO
o
o

(0
k_

0) N 00 CO ccT ccT

CO

ccT ccT
(D CD to CD

cd"cd"^
cd'^cd"^

00
CO 0) Q

<^

cd"

r- T— T— 1—

00

T— T— ̂

O

» oo"

cxT CXD oo"cxD

CX3 OO'

oo"

oo"oo"
oo"oo"

CM
Q
0) <

1 X ̂

Q
<f

Q 1

|t
d,
<e
a>

a <
1

X ̂

°-<

Q 1
aS

Tal
0) X

c A

Q CO

c
<

#d,<e
a:

c A

Q CO
fli Dl

\ssemb

ynta A v

CO X"

a"

CO

CD

ea
>,

in
,<
e

IS
'P

1

'>
'P

1

o Q A

x,Dy

d,Dn

ea>

(0
Q Q

V Q
V O X X

V LJ

Q * V Q * V

O O Q Q Q Q Q Q Q Q Q Q Q _l _l _l QC QC QC
CO CO Q Q Q Q Q Q Q Z 2 Z Z CO CO CO CO CO CO
< < < < < < < < < < < < < < < < < < <

o

*E

o
E Q < O X
0) O Q Q 5 Q Q Q 5 _l QC c CO Q Q Q Q Q Z z CO

CO

< < < < < < < < < <

226

Co
nd
it
io
n

Co
de
s 0

A

Z

N

X

1 1
1 1

1 1
1 1

1 1

1 1
1 1

1 1

1 1
1 1

1 1
1 1
« «
1 1
1 1

=)
ZD
ZD

1

-
0

1
0

0

1 1 •

Al
lo
wa
bl
e

Ad
dr
es
si
ng

Mo
de
s

De
st
in
at
io
n

-

Da
ta

Al
te
ra
bl
e

Da
ta

Al
te
ra
bl
e

Da
ta

Al
te
ra
bl
e

Da
ta

Al
te
ra
bl
e

-

Da
ta

Al
te
ra
bl
e

Da
ta

Al
te
ra
bl
e

Da
ta
,
 E
xc
ep
t Im
nn
ed
ia
te

Da
ta
,
 E
xc
ep
t

Im
me
di
at
e

Da
ta
 c

Q

An

Da
ta

Al
te
ra
bl
e

c
<

So
ur
ce
 o

CL
t

+
o CL

0)

o
c -D c -D

Od

-

P

+

Od

c -o

Q %

PC

 -(S
P);

PC

 + d -
* PC

c -o

If

Dn
 <

 0
 o

r
 D
n
 >

(e
a)
,

th
en

TR
AP

Da
ta

Al
te
ra
bl
e

Al
l
 (1
)

<

P# c
<

Operand

Size

8,
16

8,
32

8,
32

8,
32

8,
32

8,
16

8,
32

8,
32

8,
16

8,
32

8,
32

CD

T—

8,

16,

32 8,

16,
32

16, 32

8,

16,
32 8,

16,
32

Assembler

Syntax
Bcc

<
l
a
b
e
l
>

|

B
C
H
G

Dn
,<
ea
>

B
C
H
G

#d
,<
ea
>

BC
LR

Dn
,<
ea
>

BC
LR

#d
,<
ea
>

BR
A

<l
ab
el
>

BS
ET

Dn
,<
ea
>

BS
ET

#d
,<
ea
>

BS
R

<l
ab
el
>

BT
ST

Dn
,<
ea
>

BT
ST

#d
,<
ea
>

CH
K

<e
a>
,D
n

CL
R
 <
ea
>

CM
P

<e
a>
,D
n

C
M
P
A

<e
a>
,A
n

CM
PI

#d
,<
ea
>

C
M
P
M

(A
y)
+,
(A
x)
+

Mn
em
on
ic
 Bc

c

B
C
H
G

i

BCLR BRA

BS
ET

BS
R

BTST

CH
K

CLR

CM
P

1

C
M
P
A
 CM
PI

C
M
P
M

227

.2 <o

lo OO o

CM
6

I c

C 0)
Q B

^ I o c

0) n

CO

<

CO

"cO QC

Q CO

o o o

o »-

c c o ̂

Q Q 2 ̂

c

o o o
« « ♦
o o o

0)

o 2

c C 0)

Q Q 2

C -D

Q =11=

00

CsJ
00 CO

CM CM CO CO
CM CM
CO CO

0} 11

<

c c
Q Q

a"

CO
CO

a>

<D

V V
ID

> >
Q

0) QC V 0)

OO 111 LU

- _r CO
X T3 (1)
Q =1*= V

_J _J _i
CO CO CO

Q * V

DC CC QC
CO CO CO _J _l _l

CO

228

I

c O ♦ ♦ III 1 1 1 o o o

1

♦ « 1 o
O .m. > O ♦ ♦ III ' ' o o o

ID

* * o
N * * * III 1 ' * * * * * « *

oO O w
z « « « III 1 1 1 , 1 « 1

Q X 1 ♦ « III ' ' 1 1 1 * '

CD

n

CD

c

CO

J3 n o CO 2
0)

CO
CO

CD (D

0)

<D

c
< < o S < <

de
s

w CD
Q ^ It ̂ Ql

CO O GC CO C CO
1

c ̂
< c

CO
CO

CO

CO

Mo

O C) rn <r ~) 1— 1 i-J cS Q Q Q Q Q

O) c

'(«

£
T5 ID

<

n CO <D
C
< o

O ^
3
O

CO CO

< CO
o

(D

t
CM o < <

C

CO CO CO

CO

+
= CO CO QC CO C O

c<

■o

CB
CO

CO CO

o ^ <^ o rr» *r

f ■)

w
1— s Tj

TP

1— J Q Q

T3 C\J

C\J CJ
CsJ

C CO (N CsJ
CO CO

CO

>era
a> N

'iJfi

,rr to CD CD C\J CsJ
^ T- 1- T- CO CO

CO

cd"

CO CO

cd" cd"

CO CO

cd"cd'

CsJ CO

CD CD 00

cd"

cd'

cd'

u
O

<x5~

aS

oo'

00

A A

imbler X CO

c

ea>,<ea>

ea>,CCR
ea>,SR

(6) R,<ea>

QP
 A
n

or
,M
n

^D
;

n,USP
(6)

c
<
/\

CO

CD

V

<l
is
t>
,<
ea

<e
a>
,<
li
st

x<

Q ̂

c
Q

c
Q

A~

CO
Q)

ea>
,Dn

A

CO

CD
A

CO

0)
V

A

CO (D

A

CO

(D

V
V M M >» 0) V V V CO 3 <

LU UJ LU 111 LU LU
<
LU

LU LU
Q- Q.
LU LU

o
LU

V a) V V
Q

V
X < >>>>>> > > > > > > —1

—I
O O o

LU
Q.

1—

oooooo o o CO LU o O
z Z Z z z

o
c \J

< Q_ o
E LU LU LU LU

LU

CO

ID
Q X o > > > > >

_J
_l O o o

Q.

1-

c o o o o o m LU LU O o
2 2 2 2 z z z z z

229

o
.2 w >

N

o o
o o o o o o o o o o o

CM
Q
0)

0)

c ̂ Q <

CO

B
<

CO "cO CO

Q c/)

0)

o 2

Q Q ̂

0)

O 3

Q Q 2

0)

o 2
c c 0)

Q Q S
c c
Q Q

o 2

0) z:?

CO c Q Q

C -D c -o C "0 CN C\J CO CO
CD CD
T— T— cd'cxd

00
CNJ C\J CO CO

CO CO

CNJ CNJ
CO CO CNJ CNJ CO CO cd'cd'^

T— 1—

oo'co'

CNJ CNJ CO CO
CD CD CD ̂

oSco

11

CA ̂
w CO <

c CO

V
CO -

V Q £E CE
oo

0) DC V C/D

tr £E
oo

CO

^ - CO Q V

ooo DC QC QC

X T3 CD
Q * V

DC cr GC
ooo
DC DC DC

X "O OJ

Q * V

ooo
DC DC DC

A

^ "5

V

DC DC X X
oo
DC CE

230

♦

6
0)
n CO

Co
nd
it
io
n

Co
de
s 0

A

Z

N

X * * •

« «

« «
=) 3

*
«

o
o

Mo
de
s

De
st
in
at
io
n

Dn

-(
An
)

Data

Alterable

Dn

Al
te
ra
bl
e

An

Data

Alterable

Al
te
ra
bl
e

(1
)

c<

Q 1

Al
lo
wa
bl
e

Ad
dr
es
si
ng

So
ur
ce

o CL

t
+
CO

d: CO

t
+
CL CO

o
Q-
t
+
CO

cc
O
o
t
+
Q.
CO

O
Q_
t
+
CO

Dn

-(
An
)

If

cc
,

th
en
 1s
 ̂

(e
a)
;

ot
he
rw
is
e

Os
 -

*

(e
a)

#d
-*

SR,

then

STOP

Al
l(
1)

Dn

<

P#

#d
 (2
)

Dn

-(
An
)

Dn

Da
ta

Al
te
ra
bl
e

Oo
er
an
d

Si
ze

C30 00
00 CD

8,

16,
32 8,

16,
32

16, 32

8,

16,
32 8,

16,
32 8,

16,
32 8,

16,

32

CD

T—

00

Ass
emb

ler

Sy
nt
ax

RTE RTR

RTS

SB
CD
 D
y,
Dx

SB
CD
 -(

Ay
)

-(
Ax
)

Se
c
 <
ea
>

ST
OP

#d

SU
B

<e
a>
,D
n

SU
B

Dn
,<
ea
>

SU
BA

<e
a>
,A
n

SU
BI

#d
,<
ea
>

SU
BQ

#d
,<
ea
>

SU
BX
 D
y,
Dx

SU
BX

-(
Ay
),
-(
Ax
)

S
W
A
P

Dn

TA
S
 <
ea
>

o

Mn
em
on

RT
E

(6
)

RTR

RTS

SBCD

Se
c

ST
OP

(6
)

SUB

vans

SUBI

SU
BQ

SU
BX

S
W
A
P

TA
S

231

2 CO

oo
o

CM
■
a
o IB

N

s s

o

ll

CO <f>
<

Q. CO

I t o

CO Q. Q- A
' o

t ̂

y

CO

CO

CO

=5 1§

w . .22 ̂

o>o6 c c

<« ̂ o "

? 2

52

(0 (0 «
c q5 c
.2 Q..2
" ̂! ̂ i- (D ̂
0) © Q. « Q.
0^0

« Q) 0) dj • ̂ E -c

1^^

w C . (0

C 3 O)^
O o ® ®

^ -5 1 °

T3 to <D *;

sl&f

W I- I- UJ
csj CO in <o

232

Table D-3. Conditional Tests

Suffix "cc"
Condition True if

EQ
Equal to. Z = 1

NE Not equal to. z = o
Ml Minus. N = 1
PL Plus. N =0
*GT

Greater than.
ZA(NVV) = 0

*LT
Less than.

NVV = 1
*GE

Greater than or equal to. NVV = 0
*LE

Less than or equal to.
ZV(N VV)= 1 HI Higher than. CAZ = 0

LS Lower than or same as.
CVZ= 1 CS Carry set. C = 1

Carrv p|p;ir C = 0

— \J

Overflow. V = 1
*vc

No overflow. v = o
T Always true.
F Always false.

*Two's-complement arithmetic

Symbols: A = Logical AND
V = Logical Inclusive-OR
V= Logical Exclusive-OR

233

Absolute addressing, 9, 50-52
Absolute origin (ORG) directive, 32
Add instructions

BCD, 87-90
binary, 70-74

Address bus, 147-148
Addressing modes, 43-56

absolute, 50-52
address register indirect, 45-46

with displacement, 48-49
with index, 49-50
with postincrement, 46-47
with predecrement, 47-48

categories, 56-59, 61
alterable, 57, 59
control, 57, 59
data, 56, 59
memory, 56, 59

immediate, 54-55
implied, 56
program counter relative, 52-54

with displacement, 52-53
with index, 53-54

quick immediate, 55-56
register direct, 45
that sign-extend, 56

Address registers, 16-18
Address Strobe (AS) signal, 148
Algebraic operators, 37
AND instruction, 80
ANDI instruction, 80
ASCII character set, 205
Assembler (s)

conditional assembly, 38
cross, 28-29
directives, 31-36

assembly control, 32, 34
memory allocation, 35-36
symbol definition, 34-35

line listing format, 41
macro (s), 28-29, 38-41
resident, 28
statements, 29

Assembly-language instructions, 29-31
comment field, 31
label field, 29-30

Index

Assembly-language instructions— cont line number field, 29
mnemonic field, 30-31
operand field, 30-31

Asynchronous control signals, 151-153

Bcc instructions, 90-94
Binary-coded-decimal (BCD) instructions,

87-90
Bit manipulation instructions, 85-87
Branch always (BRA) instruction, 99
Branch to subroutine (BSR) instruction, 99
Bubble sort, 128-132 Bus

address, 15
arbitration signals, 155-157 data, 15
error exception, 159-160, 170-171,

179-180
grant (BG) signal, 157
grant acknowledge (BGACK) signal, 157
request (BR) signal, 155-157
VME, 195-196

Carry (C) bit, 20
Check register against bounds (CHK) in- struction, 107, 168
Clear (CLR) instruction, 76-77
Clock (CLK) input, 147
Comment field, 31
Compare instructions, 77-78
Compare-with-zero (TST) instruction, 78
Conditional assembly, 38
Condition-code register, 19-20
Constants, 36-37
Cross assembler, 28-29

Data bus, 147-148
Data movement instructions, 62-70

LEA, 65-67
MOVE, 62-64 use with stacks, 64
MOVEA, 65-68
MOVEM, 64-65
PEA, 67-68

Data registers, 16-18

234

Data size code, 30
Data strobe signals, 151
Data transfer asknowledge (DTACK) signal,

151-153
DBcc instructions, 90, 94-96
Debugging aids, 14
Define constant (DC) directive, 35-36
Define storage (DS) directive, 35-36
Development systems

EXORciser, 28, 193
EXORmacs, 28, 194-195
software, 196-198

Directives, assembler, 31-36
assembly control, 32, 34

END, 34
ORG, 32
RORG, 32

memory allocation, 35-36
symbol definition, 34-35

Divide by zero exception, 169
Divide instructions, 75-76, 168-169
Division routines, 117-120

with overflow, 118-120
word averaging, 117

Double bus fault, 168, 171

Enable (E) signal, 153, 155
End of source program (END) directive, 34
EORI instruction, 80
EOR instruction, 80
Equate symbol value (EQU) directive, 34
Exceptions, 163-180

definition of, 163
externally generated, 175-176, 179-180

bus error, 179-180
interrupts, 176, 179
reset, 175-176

how 68000 processes, 164-166
internally generated, 168-175

illegal address, 170-172
illegal instruction, 172
instructions that can cause, 168-169
privilege violations, 169-170
unimplemented instructions, 173-175

multiple, 166-168
Exchange (EXG) instruction, 70
Expressions, in operand field, 36-37

algebraic operators, 37
constants, 36-37
order of evaluation, 37
symbols, 36

Extend (X) bit, 20
Extend (EXT) instruction, 76
Extension words, 42-43
Exchange (EXG) instruction, 70

Floating-point instructions, 173-175
Function code signals, 149-150

General-purpose registers, 16-19
Graphics systems, 68000-based, 198-199

Halt (HALT) signal, 157-160
Hexidecimal /decimal conversion tables, 222- 223

Illegal address exception, 170-172
Illegal instruction exception, 172

Immediate data addressing, 54-56
immediate mode, 54-55
quick immediate mode, 55-56

Implied addressing, 56
Indirect addressing

with displacement, 48-49
with index, 49-50
with postincrement, 46-47
with predecrement, 47-48

Instructions, assembly-language, 29-31
comment field, 31
label field, 29-30 line number field, 29
mnemonic field, 30-31
operand field, 30-31

Instruction types, 61-107
binary-coded-decimal (BCD), 87-90
bit manipulation, 85-87
data movement, 62-70

LEA, 65-67
MOVE, 62-64
MOVEA, 65-68
MOVEM, 64-65
PEA, 67-68

integer arithmetic, 70-80
add instructions, 70-74
clear (CLR) instruction, 76-77
compare instructions, 77-78
compare- with-zero (TST) instruction, 78
multiply and divide instructions, 75-76
negate instructions, 75
sign extend (EXT) instruction, 76
subtract instructions, 74-75
test and set an operand (TAS) instruc-

tion, 78-80
link and unlink, 101-103
logical, 80-81
program control, 90-101

conditional, 90-99
unconditional and return, 99-101

shift and rotate, 82-85
system control, 103-107

privileged, 103-105
trap-generating, 105-107

Interfacing, 181-190
6800 support chips, 183-184
68000 support chips, 181-183

Internal registers, 16-21
general-purpose, 16-19 Interrupt
control inputs, 160
mask in status register, 21
processing, 160, 176-179 structure, 15

Jump (JMP) instruction, 99
Jump tables, 145
Jump to subroutine (JSR) instruction, 99- 101

Label field, 29-30
LEA instruction, 65-67
Line listing format, 41
Line number field, 29
LINK instruction, 101-103
Lists, 123-138

ordered, 132-138

235

Lists— cont
ordered

adding an entry to, 136-137
deleting an element from, 137-138
searching, 132-136

unordered, 123-132
adding an entry to, 124-125
deleting an element from, 125-126
finding minimum and maximum values

in, 126-128
searching, 123-128
sorting, 128-132

Location counter, 32
Logical instructions, 80-81

AND, 80
ANDL 80
EOR, 80
EORI, 80
NOT, 80
OR, 80
ORI, 80

Look-up tables, 138-145
to perform code conversions, 144
to replace equations, 139-144

Macro assembler, 28-29
Macros, 38-41

advantages of, 39
definition, 39

macro body, 39
macro header, 39
macro terminator, 39

disadvantages of, 39
Mathematical routines, 109-122

division, 117-120
with overflow, 118-120
word-averaging rovitine, 117

multiplication, 109-117
signed 32-bit X 32-bit multiply sub-

routine, 113-117
unsigned 32 bit X 32-bit multiply sub-

routine, 110-113
square root, 120-122

Memory allocation, 15
directives, 35-36

define constant (DC), 35-36
define storage (DS), 35-36

Memory-mapped I/O, 15
Mnemonic field, 30-31
Motorola system support products, 193-196
MOVEA instruction, 65-68
MOVE instruction, 62-64

use with stacks, 64
MOVEM instruction, 64-65
MOVEP instruction, 68-69
MOVEQ instruction, 69
Multiplication, 109-117
Multiply instructions, 75-76

Negate instructions
BCD, 90
binary, 75

Negative (N) bit, 20
NOP instruction, 70
NOT instruction, 80

Object program, 28

Operand field, 30-31
expressions in, 36-37
- algebraic operators, 37
constants, 36-37 order of evaluation, 37
symbols, 36

Operating systems, 199-203 Op- word, 42
Ordered lists

adding an entry to, 136-137
deleting an element from, 137-138
searching, 132-136 ORI instruction, 80

OR instruction, 80
ORG directive, 32
Overflow (V) bit, 20

PEA instruction, 67-68
Peripheral interface adapter (PIA)

initializing, 184, 187
interface to transfer 16-bit data, 185-190
registers, 184-185, 187, 189

Privilege states, 14, 162-163
how to change, 163

Processing states, 161-162
Program control instructions, 90-101

conditional, 90-99
Bcc, 90-94
DBcc, 90, 94-96 Sec, 90, 97

unconditional and return, 99-101
branch always (BRA), 99
branch to sui)routine (BSR), 99
jump (JMP), 99
jump to subroutine (JSR), 99-101 return and restore condition codes

(RTR), 101
return from subroutine (RTS), 99-101

Program counter, 19
relative addressing, 52-54

with displacement, 52-53
with index, 53-54

Read/write control signal, 151 Register (s)
direct addressing, 45
internal, 16-21

general-purpose, 16-19
status, 19-21 Relative origin (RORG) directive, 32

Reset external devices (RESET) instruction,
104

Reset exception, 175-176
Reset signal, 175-176
Resident assembler, 28
Return and restore condition codes (RTR)

instruction, 101
Return from exception (RTE) instruction, 104

Return from subroutine (RTS) instruction. 99-101
RORG directive, 32, 34
Rotate instructions, 82-85

Sec instructions, 90, 97
Searching

ordered lists, 132-136
imordered lists, 123-128

236

Set symbol value (SET) directive, 34-35
Shift instructions, 82-85
Signed 32-bit X 32-bit multiply subroutine, 113-117
Si^n extend (EXT) instruction, 76 68000

address bus, 15, 147-148
asynchronous control signals, 151-153
bus arbitration signals, 155-157
data bus, 15, 147-148
debugging aids, 14
design background, 21-26
exceptions, 163-168

definition of, 163
externally generated, 175-176, 179-180
how 68000 processes, 164-166
internally generated, 168-175
multiple, 166-168

function code signals, 149-150
instruction set, 42-108

addressing modes, 43-56
absolute, 50-52
address register indirect, 45-46
categories, 56-59, 61
immediate, 54-55
implied, 56
indirect with displacement, 48-49
indirect with index, 49-50

indirect with postincrement, 46-47
indirect wtih predecrement, 47-48
program counter relative with dis-

placement, 52-53
program counter relative with index,

53-54
quick immediate, 55-56
register direct, 45
that sign-extend, 56

format in memory, 42-43
instruction types, 61-107

binary-coded-decimal (BCD), 87-90
bit manipulation, 85-87
data movement, 62-70
integer arithmetic, 70-80
link and unlink, 101-103
logical, 80-81
program control, 90-101
shift and rebate, 82-85
system control, 103-107

interfacing to peripheral chips, 181-190
internal registers, 16-21
interrupt

control lines, 160
structure, 15

memory allocation, 15
peripheral chips, 181-183
pinouts, 148
privilege states, 141, 162-163

how to change, 163
processing states, 161-162
program counter, 19
software features, 13-14
sources for, 16
status register, 19-21
synchronous control signals, 153-155
system control signals, 157-160
system development support, 192-203

Software support for 68000, 199-203
Sorting, 128-132
Source program, 28
Spurious interrupt exception, 180
Square-root subroutine, 120-122
Stack pointers, 19, 47-48 Stand-alone comments, 31
Status register, 19-21
STOP instruction, 104-105
Subroutine instructions, 99-101
Subtract instructions

HC;D, 87-90
binary, 74-75

Supervisor state, 162-163
Supervisory (S) bit, 21
SWAP instruction, 69-70
S> mbol definition directives, 34-35

e(iuate symbol value (EQU), 34
set symbol value (SET), 34-35

Synchronous control signals, 153-155
System byte, status register, 19-21
S>stem control instructions, 103-107

privileged, 103-105 reset external devices (RESET), 104
return from exception (RTE), 104
stop program execution (STOP), 104- 105

trap-generating, 105-107
check register against bounds (CHK),

107
TRAP, 105-107
trap on overflow (TRAPV), 107

TAS instruction, 78-80
Test and set an operand (TAS) instruction,

78-80
Trace mode, 169-170
Trace mode (T) bit, 21
TRAP instruction, 105-107, 168
Trap on overflow (TRAPV) instruction, 107, 168
TST instruction, 78

Unimplemented instruction exception, 173- 175

Unlink (UNLK) instruction, 101-103
Unordered lists, 123-132

adding an entry to, 124-125
deleting an element from, 125-126
finding minimum and maximum values in,

126-128
searching, 123-128
sorting, 128-132

Unsigned 32-bit X 32-bit multiply subrou-
tine, 110-113

User state, 162-163

Valid memory address (VMA) signal, 155
Valid peripheral address (VPA) signal, 155
VME Bus, 195-196

Word-averaging routine, 117

Zero (Z) bit, 20

237

1;

I

The Blacksburg Group

According to Business Week magazine (Technology July 6, 1976) large scale integrated circuits

or LSI "chips" are creating a second industrial revolution that will quickly involve us all. The
speed of the developments in this area is breathtaking and it becomes more and more difficult to
keep up with the rapid advances that are being made. It is also becoming difficult for newcomers

to "get on board."

It has been our objective, as The Blacksburg Group, to develop timely and effective educational
materials that will permit students, engineers, scientists, technicians and others to quickly learn
how to use new technologies and electronic techniques. We continue to do this through several
means, textbooks, short courses, seminars and through the development of special electronic de-

vices and training aids.

Our group members make their home in Blacksburg, found in the Appalachian Mountains of

southwestern Virginia. While we didn't actively start our group collaboration until the Spring
jof 1974, members of our group have been involved in digital electronics, minicomputers and
I microcomputers for some time.

Some of our past experiences and on-going efforts include the following:

-The design and development of what is considered to be the first popular hobbyist computer.
The Mark-B was featured in Radio-Electronics magazine in 1974. We have also designed several
8080-based computers, including the MMD-1 system. Our most recent computer is an 8085-based
computer for educational use, and for use in small controllers.

—The Blacksburg Continuing Education Series^** covers subjects ranging from basic electronics
I through microcomputers, operational amplifiers, and active filters. Test experiments and examples
have been provided in each book. We are strong believers in the use of detailed experiments and
examples to reinforce basic concepts. This series originally started as our Bugbook series and many
titles are now being translated into Chinese, Japanese, German and Italian.

-We have pioneered 4he use of small, self-contained computers in hands-on courses for micro-
» computer users. Many of our designs have evolved into commercial products that are marketed
by E&L Instruments and PACCOM, and are available from Group Technology, Ltd., Check, VA
24072.

-Our short courses and seminar programs have been presented throughout the world. Programs
are offered by The Blacksburg Group, and by the Virginia Polytechnic Institute Extension Divi-

sion. Each series of courses provides hands-on experience with real computers and electronic
devices. Courses and seminars are provided on a regular basis, and are also provided for groups,
companies and schools at a site of their choosing. We are strong believers in practical labora-
fory exercises, so much time is spent working with electronic equipment, computers and circuits.

Additional information may be obtained from Dr. Chris Titus, the Blacksburg Group, Inc. (703)
P51.9030 or from Dr. Linda LefFel, Virginia Tech Continuing Education Center (703) 961-5241.

Our group members ore Mr. David G. Larsen, who is on the faculty of the Department of Chem-
stry at Virginia Tech, and Drs. Jon Titus and Chris Titus who work full-time with The Blacksburg

i |3roup, all of Blacksburg, VA.

THE 68000:

PRINCIPLES

AND PROGRAMMING

Despite the versatility of the 4- and 8-bit microprocessors that were intro-
duced in the early 1970s and became the foundation of today's booming

personal computer market, there are certain types of complex high-speed
operations that these devices cannot do \f^e\\ or cannot do at all. For these
more-sophisticated applications, the newer 16-bit microprocessors, such as the
68000, introduced by Motorola, Inc., often provide a viable alternative to the
more-expensive minicomputers.

This book starts with fundamental material and gradually introduces more
complex topics to help the reader fully understand the 68000 in an orderly
manner. Chapter 1 presents a brief overview of the features of the 68000, then
discusses each feature in more detail. Included is a background on why
Motorola chose to design and implement the 68000 as they did.

Chapter 2 describes Motorola's Cross Macro Assembler, which many readers
will use to develop assembly-language programs for the 68000.

Chapter 3 explains in detail the 68000 instruction set and its 14 addressing
modes. The instructions are described in functional groups, rather than alpha-

betically as is done in some books.
Chapter 4 discusses the development of six somewhat difficult math prob-

lems through the use of the built-in multiply and divide instructions of the 68000,
while Chapter 5 covers in detail 10 example programs that concern list and
look-up table operations.

Chapter 6 describes the 64 pins of the 68000 IC (again in functional groups),
while Chapter 7 discusses the processing states, privilege states, and extensive
exception structure of the 68000.

Chapter 8 summarizes the support circuits that con be interfaced to the
68000, while Chapter 9 gives an overview of the system hardware and
software support products that are currently available for the 68000. The book
concludes with four appendixes of reference information.

Readers desiring to truly learn about this highly complex but powerful micro-
processor and how to program it will find this book invaluable.

Leo J. Scanlon is a free-lance writer and software consultant in
Inverness, Florida. He received his Bachelor of Science degree in

Aeronautical Engineering from St. Louis University. He has pur-
sued graduate studies in Electrical Engineering and Computer

Science at the University of California, in Berkeley.

Leo's experience includes technical writing in the minicomputer and micro-
computer industries, and engineering programming in the aerospace industry.

He also served as technical publications manager with Computer Automation,
Inc. in Irvine, CA and Rockwell International Corp. in Anaheim, OA.

Mr. Scanlon is also the author of 6502 Software Design and FORTH Program-
ming, and a contributing author to 16-Bit Microprocessors, all published by

Howard W. Sams & Co., Inc.

Houuard UU. Sams Si Co., Inc.
4300 W. 62nd Street Indianapolis, Indiana 46268 USA

$15.96/21853

ISBN: 0-672-21853-4

