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Preface 

Today,  the  68000  family  is  one  of  the  more  widely  used  families  of  16-bit 
microprocessors  in  modern  microcomputer-based  products.  The  68000  is  the  micro- 

processor employed  in  the  popular  Macintosh  personal  computer,  as  well  as  in  a  wide 

variety  of  other  electronic  equipment.  Individuals  involved  in  the  design  of  micro- 
processor-based equipment  need  a  systems-level  understanding  of  the  68000  micro- 

computer system.  That  is,  a  thorough  knowledge  of  its  software,  hardware,  and 
interfacing  is  required. 

This  book  represents  an  extensive  study  of  the  architecture,  software,  and  inter- 
facing techniques  used  in  the  design  of  68000-based  microcomputers.  This  material 

is  developed  in  the  following  five  chapters:  Chapter  2,  The  68000  Microprocessor; 
Chapter  3,  68000  Microprocessor  Programming  1;  Chapter  4,  68000  Microprocessor 

Programming  2;  Chapter  6,  Memory  and  Input/Output  Interfaces  of  the  68000  Micro- 
processor; Chapter  7,  Exception  Processing  of  the  68000  Microprocessor. 

With  the  first  of  these  chapters  we  develop  a  thorough  understanding  of  the 

internal  architecture  of  the  68000  microprocessor.  This  includes  material  on  its  in- 
struction execution  control. 

Chapters  3  and  4  present  in  detail  software  issues  such  as  addressing  modes, 

the  instruction  set,  and  the  analysis  and  writing  of  assembly-language  programs.  A 
large  number  of  practical  applications  are  illustrated  through  example  programs. 

The  latter  two.  Chapters  6  and  7,  are  concerned  with  hardware  and  introduce 
architectural  features  and  circuit  design  techniques  for  the  memory,  input/output, 
and  interrupt  interfaces  of  the  68000  microcomputer.  Extensive  coverage  of  bus  cycles, 
address  maps,  program  storage  memory  subsystems,  data  storage  memory  subsystems, 
input/output  interface  circuits,  and  interrupt  interface  circuits  is  included.  A  number 



of  large-scale  integrated  (LSI)  peripheral  controllers,  such  as  the  6821  peripheral  in- 
terface adapter,  the  6850  asynchronous  communication  adapter,  and  the  68230  parallel 

interface/timer,  are  also  studied  in  depth. 

Two  additional  chapters  are  included  that  introduce  Motorola's  MC68000  Edu- 
cational Microcomputer  Board.  This  board  is  an  educational  microcomputer  system 

that  can  be  used  to  execute  and  debug  assembly-language  programs  written  for  the 
68000  microprocessor.  Chapter  5  introduces  the  educational  microcomputer  and  the 
commands  that  can  be  issued  to  the  microcomputer.  Moreover,  examples  are  used 
to  demonstrate  how  programs  are  assembled,  verified,  executed,  and  debugged. 

Chapter  8  is  a  study  of  the  circuitry  in  the  MC68000  educational  microcomputer. 
This  chapter  illustrates  a  practical  application  of  the  material  on  interfacing  tech- 

niques presented  in  Chapters  6  and  7.  The  architecture  and  circuit  design  of  the 
68000-based  microcomputer  is  described  in  detail. 

This  book  is  written  for  use  as  a  textbook  in  the  electronic  engineering  tech- 
nology curricula  offered  at  universities  and  community  colleges.  Use  of  the  book  does 

require  prior  knowledge  of  basic  digital  electronics.  This  background  is  at  a  level 
consistent  with,  but  not  necessarily  as  extensive  as,  the  material  presented  in  two  earlier 

Prentice-Hall  books:  Integrated  Digital  Electronics,  2nd  ed.,  Walter  A.  Triebel,  1985; 
and  Handbook  of  Semiconductor  and  Bubble  Memories,  Walter  A.  Triebel  and  Alfred 
E.  Chu,  1982.  Since  this  book  includes  a  large  amount  of  practical  information  on 
68000  microcomputer  architecture,  assembly-language  programming,  and  interface 
circuit  design,  it  is  also  a  valuable  reference  for  practicing  engineers  and  technicians. 

WALTER  A.  TRIEBEL 
AVTAR  SINGH 



THE  68000  MICROPROCESSOR 

ARCHITECTURE,  SOFTWARE, 

AND  INTERFACING  TECHNIQUES 





Introduction 
TO  Microprocessors 
AND  Microcomputers 

1.1     INTRODUCTION 

The  most  recent  advances  in  computer  system  technology  have  been  closely  related 

to  the  development  of  high-performance  16-bit  microprocessors  and  their 
microcomputer  systems.  During  the  last  three  years,  the  16-bit  microprocessor  market 
has  matured  significantly.  Today,  several  complete  16-bit  microprocessor  families 
are  available.  They  include  support  products  such  as  large-scale  integrated  (LSI) 
peripheral  devices,  development  systems,  emulators,  and  high-level  software 
languages.  Over  the  same  period  of  time,  these  higher-performance  microprocessors 
have  become  more  widely  used  in  the  design  of  new  electronic  equipment  and 
computers. 

This  book  presents  a  detailed  study  of  one  of  the  more  popular  16-bit  micro- 
processors, the  68000  by  Motorola  Incorporated.  Included  is  material  on  the  inter- 

nal architecture  of  the  68000  microprocessor,  its  assembly  language  programming, 

and  the  interface  techniques  used  in  the  design  of  68000-based  microcomputer  systems. 
In  this  chapter  we  begin  our  study  of  16-bit  microprocessors  and  microcomputers. 
The  following  topics  are  discussed: 

1.  The  digital  computer 

2.  Mainframe  computers,  minicomputers,  and  microcomputers 

3.  Hardware  elements  of  the  digital  computer  system 

4.  General  architecture  of  a  microcomputer  system 

5.  Types  of  microprocessors  and  single-chip  microcomputers 
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1.2    THE  DIGITAL  COMPUTER 

As  a  starting  point,  let  us  consider  what  a  computer  is,  what  it  can  do,  and  how  it 
does  it.  A  computer  is  a  digital  electronic  data  processing  system.  Data  are  input 
to  the  computer  in  one  form,  processed  within  the  computer,  and  the  information 
that  results  is  either  output  or  stored  for  later  use.  Figure  1 . 1  shows  a  modern  computer 
system. 

Computers  cannot  think  about  how  to  process  the  data  that  were  input.  Instead, 
the  user  must  tell  the  computer  exactly  what  to  do.  The  procedure  by  which  a  computer 
is  told  how  to  work  is  called  programming  and  the  person  who  writes  programs  for 

a  computer  is  known  as  a  programmer.  The  result  of  the  programmer's  work  is  a 
set  of  instructions  for  the  computer  to  follow.  This  is  the  computer's /urogram.  When 
the  computer  is  operating,  the  instructions  of  the  program  guide  it  step  by  step  through 
the  task  that  is  to  be  performed. 

For  example,  a  large  department  store  can  use  a  computer  to  take  care  of 
bookkeeping  for  its  customer  charge  accounts.  In  this  application,  data  about  items 
purchased  by  the  customers,  such  as  price  and  department,  are  entered  into  the 

computer  by  an  operator.  These  data  are  stored  in  the  computer  under  the  customer's 
account  number.  On  the  next  billing  date,  the  data  are  processed  and  a  tabular  record 

of  each  customer's  account  is  output  by  the  computer.  These  statements  are  mailed 
to  the  customers  as  a  bill. 

In  a  computer,  the  program  controls  the  operation  of  a  large  amount  of 
electronic  circuitry.  It  is  this  circuitry  that  actually  does  the  processing  of  data. 
Electronic  computers  first  became  available  in  the  1940s.  These  early  computers  were 

built  with  vacuum-tube  electronic  circuits.  In  the  1950s,  a  second  generation  of 
computers  was  built.  During  this  period,  transistor  electronic  circuitry,  instead  of 
tubes,  was  used  to  produce  more  compact  and  more  reliable  computer  systems.  When 
the  integrated  circuit  (IC)  came  into  the  electronic  market  during  the  1960s,  a  third 
generation  of  computers  appeared.  With  ICs,  industry  could  manufacture  more 

complex,  higher-speed,  and  very  reliable  computers. 
Today,  the  computer  industry  is  continuing  to  be  revolutionized  by  the  advances 

made  in  integrated-circuit  technology.  It  is  now  possible  to  manufacture  large-scale 
integrated  circuits  (LSI)  that  can  form  a  computer  with  just  a  small  group  of  ICs. 
In  fact,  in  some  cases,  a  single  IC  can  be  used.  These  new  technologies  are  rapidly 

advancing  the  low-performance,  low-cost  part  of  the  computer  marketplace  by 
permitting  simpler  and  more  cost-effective  designs. 

1.3    MAINFRAME  COMPUTERS,  MINICOMPUTERS, 
AND  MICROCOMPUTERS 

For  many  years  the  computer  manufacturers'  aim  was  to  develop  larger  and  more 
powerful  computer  systems.  These  are  what  we  call  large-scale  or  mainframe 
computers.  Mainframes  are  always  general-purpose  computers.  That  is,  they  are 
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designed  with  the  ability  to  run  a  large  number  of  different  types  of  programs.  For 
this  reason,  they  can  solve  a  wide  variety  of  problems. 

For  instance,  one  user  can  apply  the  computer  in  an  assortment  of  scientific 
applications  where  the  primary  function  of  the  computer  is  to  solve  complex 
mathematical  problems.  A  second  user  can  apply  the  same  basic  computer  system 
to  perform  business  tasks  such  as  accounting  and  inventory  control.  The  only 
difference  between  the  computer  systems  used  in  these  two  applications  could  be  their 

programs.  In  fact,  today  many  companies  use  a  single  general-purpose  computer  to 
resolve  both  their  scientific  and  business  needs. 

Figure  1.1  is  an  example  of  a  mainframe  computer  manufactured  by 
International  Business  Machine  Corporation  (IBM).  Because  of  their  high  cost, 
mainframes  find  use  only  in  central  computing  facilities  of  large  businesses  and 
institutions. 

The  many  advances  that  have  taken  place  in  the  field  of  electronics  over  the 
past  two  decades  have  led  to  rapid  advances  in  computer  system  technology.  For 

instance,  the  introduction  of  small-scale  integrated  (SSI)  circuits,  followed  by 
medium-scale  integrated  (MSI)  circuits,  and  large-scale  integrated  (LSI)  circuits,  has 
led  the  way  in  expanding  the  capacity  and  performance  of  the  large  mainframe 
computers.  But  at  the  same  time,  these  advances  have  also  permitted  the  introduction 

of  smaller,  lower-performance,  and  lower-cost  computer  systems. 

Figure  1-2    Minicomputer  system  (Digital  Equipment  Corp.). 
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As  computer  use  grew,  it  was  recognized  that  the  powerful  computing  capability 
of  a  mainframe  was  not  needed  by  many  customers.  Instead,  they  desired  easier  access 
to  a  machine  with  smaller  capacity.  It  was  to  satisfy  this  requirement  that  the 
minicomputer  was  developed.  Minicomputers,  such  as  that  shown  in  Fig.  1.2,  are 
also  digital  computers  and  are  capable  of  performing  the  same  basic  operations  as 

the  earlier,  larger  systems.  However,  they  are  designed  to  provide  a  smaller  func- 
tional capability.  The  processor  section  of  this  type  of  computer  is  typically  manufac- 
tured using  SSI  and  MSI  electronic  circuitry. 

Minicomputers  have  found  wide  use  as  general-purpose  computers,  but  their 
lower  cost  also  allows  their  use  in  dedicated  applications.  A  computer  used  in  a 

dedicated  application  represents  what  is  known  as  a  special-purpose  computer.  By 

"special-purpose  computer"  we  mean  a  system  that  has  been  tailored  to  meet  the 
needs  of  a  specific  application.  Examples  are  process  control  computers  for  industrial 
facilities,  data  processing  systems  for  retail  stores,  and  medical  analysis  systems  for 

patient  care.  Figure  1.3  shows  a  minicomputer-based  retail  store  data  processing 
system. 

Figure  1-3    Retail  store  data  processing 

system  (Sweda  International 
Incorporated). 

The  newest  development  in  the  computer  industry  is  the  microcomputer.  Today, 
the  microcomputer  represents  the  next  step  in  the  evolution  of  the  computer  world. 
It  is  a  computer  that  has  been  designed  to  provide  reduced  size  and  capability  from 
that  of  a  minicomputer,  with  a  much  lower  cost. 

The  heart  of  the  microcomputer  system  is  the  microprocessor.  A  microprocessor 
is  a  general-purpose  processor  built  into  a  single  IC.  It  is  an  example  of  an  LSI  device. 
Together  with  the  use  of  LSI  circuitry  in  the  microcomputer  have  come  the  benefits 
of  smaller  size,  lighter  weight,  lower  cost,  reduced  power  requirements,  and  higher 
reliability. 

The  low  cost  of  microprocessors,  which  can  be  as  low  as  $1,  has  opened  the 
use  of  computer  electronics  to  a  much  broader  range  of  products.  Figures  1.4  and 

1.5  show  some  typical  systems  in  which  a  microcomputer  is  used  as  a  special-purpose 
computer. 
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Figure  1-4    Calculator  (Texas  In- 
struments, Incorporated). 

Figure  1-5    Point-of-sale  terminal 
(Sweda  International 
Incorporated). 

Microcomputers  are  also  finding  wide  use  as  general-purpose  computers.  Figures 
1.6  and  1.7  are  examples  of  personal  computer  systems.  In  fact,  microcomputer 
systems  designed  for  the  high-performance  end  of  the  microcomputer  market  are 
rivaling  the  performance  of  the  lower-performance  minicomputers  and  at  a  much 
lower  cost  to  the  user. 



Figure  1-6    Personal  computer 
(AT&T  Information  Systems). 

Figure  1-7    Personal  computer 

(Apple  Computer  Inc.). 

1.4  HARDWARE  ELEMENTS  OF  THE  DIGITAL  COMPUTER  SYSTEM 

The  hardware  of  a  digital  computer  system  is  divided  into  four  functional  sections. 
The  block  diagram  of  Fig.  1.8  shows  the  four  basic  units  of  a  simplified  computer: 
the  input  unit,  central  processing  unit,  memory  unit,  and  output  unit.  Each  section 
has  a  special  function  in  terms  of  overall  computer  operation. 
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Memory 
unit 

t 
Central 

processing 
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Input 
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Output 

unit 

Figure  1-8    Block  diagram  of  a  digital 
computer  (Walter  A.  Triebel,  Integrated 
Digital  Electronics,  ©  1979.  Adapted  by 

permission  of  Prentice-Hall,  Inc., 
Englewood  Cliffs,  N.J.). 

The  central  processing  unit  (CPU)  is  the  heart  of  the  computer  system.  It  is 
responsible  for  performing  all  arithmetic  operations  and  logic  decisions  initiated  by 
the  program.  In  addition  to  arithmetic  and  logic  functions,  the  CPU  controls  overall 
system  operation. 

On  the  other  hand,  the  input  and  output  units  are  the  means  by  which  the  CPU 
communicates  with  the  outside  world.  The  input  unit  is  used  to  input  information 
and  commands  to  the  CPU  for  processing.  For  instance,  a  Teletype  terminal  can  be 
used  by  the  programmer  to  input  a  new  program. 

After  processing,  the  information  that  results  must  be  output.  This  output  of 
data  from  the  system  is  performed  under  control  of  the  output  unit.  Examples  of  ways 

of  outputting  information  are  as  printed  pages  produced  by  a  high-speed  printer  or 
displayed  on  the  screen  of  a  video  display  terminal. 

The  memory  unit  of  the  computer  is  used  to  store  information  such  as  numbers, 

names,  and  addresses.  By  "store,"  we  mean  that  memory  has  the  ability  to  hold  this 
information  for  processing  or  for  outputting  at  a  later  time.  The  programs  that  define 
how  the  computer  is  to  process  data  also  reside  in  memory. 

In  computer  systems,  memory  is  divided  into  two  different  sections,  known  as 
primary  storage  and  secondary  storage.  They  are  also  sometimes  called  internal 

memory  and  external  memory,  respectively.  External  memory  is  used  for  long-term 
storage  of  information  that  is  not  in  use.  For  instance,  it  holds  programs,  files  of 
data,  and  files  of  information.  In  most  computers,  this  part  of  memory  employs 
storage  on  magnetic  media  such  as  magnetic  tapes,  magnetic  disks,  and  magnetic 
drums.  This  is  because  they  have  the  ability  to  store  large  amounts  of  data. 

Internal  memory  is  a  smaller  segment  of  memory  used  for  temporary  storage 
of  programs,  data,  and  information.  For  instance,  when  a  program  is  to  be  executed, 
its  instructions  are  first  brought  from  external  memory  into  internal  memory  together 
with  the  files  of  data  and  information  that  it  will  affect.  After  this,  the  program  is 
executed  and  its  files  updated  while  they  are  held  in  internal  memory.  When  the 
processing  defined  by  the  program  is  complete,  the  updated  files  are  returned  to 
external  memory.  Here  the  program  and  files  are  retained  for  use  at  a  later  time. 

The  internal  memory  of  a  computer  system  uses  electronic  memory  devices 
instead  of  storage  on  a  magnetic  media  memory.  In  most  modern  computer  systems, 

semiconductor  read-only  memory  (ROM)  and  random  access  read/write  memory 
(RAM)  are  in  use.  These  devices  make  internal  memory  much  faster-operating  than 
external  memory. 

Neither  semiconductor  memory  nor  magnetic  media  memory  alone  can  satisfy 
the  requirements  of  most  general-purpose  computer  systems.  Because  of  this  fact, 
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both  types  are  normally  present  in  the  system.  For  instance,  in  a  personal  computer 

system,  working  storage  is  typically  provided  with  RAM,  while  long-term  storage 
is  provided  with  floppy  disk  memory.  On  the  other  hand,  in  special-purpose  com- 

puter systems,  such  as  a  video  game,  semiconductor  memory  is  used.  That  is,  the 
program  that  determines  how  the  game  is  played  is  stored  in  ROM,  and  data  storage, 
such  as  for  graphic  patterns,  is  in  RAM. 

1.5  GENERAL  ARCHITECTURE  OF  A  MICROCOMPUTER  SYSTEM 

Now  that  we  have  introduced  the  general  architecture  of  a  digital  computer,  let  us 
look  at  how  a  microcomputer  fits  this  model.  Looking  at  Fig.  1.9,  we  find  that  the 
architecture  of  the  microcomputer  is  essentially  the  same  as  that  of  the  digital  computer 
in  Fig.  1.8.  It  has  the  same  function  elements:  input  unit,  output  unit,  memory  unit, 
and  in  place  of  the  CPU,  a  microprocessor  unit  (MPU).  Moreover,  each  element  serves 
the  same  basic  function  relative  to  overall  system  operation. 

Internal Tiemory 

Program 
storage 
memory 

Data 
storage 

memory 
External memory 

, 

i 

input Output 
unit " "■' Figure  1-9    General  microcomputer 

system  architecture. 

The  difference  between  minicomputers,  mainframe  computers,  and  micro- 
computers does  not  lie  in  the  fundamental  blocks  used  to  build  the  computer; 

instead,  it  relates  to  the  capacity  and  performance  of  the  electronics  used  to  implement 
their  blocks  and  the  resulting  overall  system  capacity  and  performance.  As  indicated 
earlier,  microcomputers  are  designed  with  smaller  capacity  and  lower  performance 
than  either  minicomputers  or  mainframes. 

Unlike  mainframes  and  minicomputers,  a  microcomputer  can  be  implemented 
with  a  small  group  of  components.  Again  the  heart  of  the  computer  system  is  the 
MPU  (CPU)  and  it  performs  all  arithmetic,  logic,  and  control  operations.  However, 
in  a  microcomputer  the  MPU  is  implemented  with  a  single  microprocessor  chip  instead 
of  a  large  assortment  of  SSI  and  MSI  logic  functions  such  as  in  minicomputers  and 

mainframes.  Notice  that  correct  use  of  the  term  "microprocessor"  restricts  its  use 
to  the  central  processing  unit  in  a  microcomputer  system. 

Notice  that  we  have  partitioned  the  memory  unit  into  an  internal  memory  section 
for  storage  of  active  data  and  instructions  and  an  external  memory  section  for 

long-term  storage.   As  in  minicomputers,   the  long-term  storage  medium  in  a 
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Figure  1-10    (a)  Block  diagram  of  a  personal  computer;  (b)  block  diagram  of  a  calculator. 
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microcomputer  is  frequently  a  floppy  disk.  However,  Winchester  rigid  disk  drives 
are  becoming  popular  when  storage  requirements  are  higher  than  those  provided  by 
floppy  disks.  In  industrial  applications,  where  the  environment  for  the  equipment 

is  rugged,  bubble  memories  are  also  employed  as  long-term  storage  devices. 
Internal  memory  of  the  microcomputer  is  further  subdivided  into  program 

storage  memory  and  data  storage  memory.  Typically,  internal  memory  is  implemented 
with  both  ROM  and  RAM  ICs.  Data,  whether  they  are  to  be  interpreted  as  numbers, 
characters,  or  instructions,  can  be  stored  in  either  ROM  or  RAM.  But  in  most 
microcomputer  systems,  instructions  of  the  program  and  data  such  as  lookup  tables 
are  stored  in  ROM.  This  is  because  this  type  of  information  does  not  normally  change. 
By  using  ROM,  its  storage  is  made  nonvolatile.  That  is,  if  power  is  lost,  the 
information  is  retained. 

On  the  other  hand,  the  numerical  and  character  data  that  are  to  be  processed 
by  the  microprocessor  change  frequently.  These  data  must  be  stored  in  a  type  of 
memory  from  which  they  can  be  read  by  the  microprocessor,  modified  through 
processing,  and  written  back  for  storage.  For  this  reason,  they  are  stored  in  RAM 
instead  of  ROM. 

Depending  on  the  application,  the  input  and  output  sections  can  be  implemented 

with  something  as  simple  as  a  few  switches  for  inputs  and  a  few  light-emitting  diodes 
(LEDs)  for  outputs.  In  other  applications,  for  example  in  a  personal  computer,  the 
input/output  (I/O)  devices  can  be  more  sophisticated,  such  as  video  display  terminals 
and  printers,  just  like  those  employed  in  minicomputer  systems. 

Up  to  this  point,  we  have  been  discussing  what  is  known  as  a  multichip 
microcomputer  system,  that  is,  a  system  implemented  with  a  microprocessor  and  an 
assortment  of  support  circuits,  such  as  ROMs,  RAMs,  and  I/O  peripherals.  This 
architecture  makes  for  a  very  flexible  system  design.  Its  ROM,  RAM,  and  I/O  capacity 
can  be  easily  expanded  by  just  adding  more  devices.  This  is  the  circuit  configuration 
used  in  most  larger  microcomputer  systems.  An  example  is  the  personal  computer 
system  shown  in  Fig.  1.10(a). 

Devices  are  now  being  made  that  include  all  the  functional  blocks  of  a 

microcomputer  in  a  single  IC.  This  is  called  a  single-chip  microcomputer.  Unlike 
the  multichip  microcomputer,  single-chip  microcomputers  are  limited  in  capacity  and 
not  as  easy  to  expand.  For  example,  a  microcomputer  device  can  have  4K  bytes  of 
ROM,  128  bytes  of  RAM,  and  32  lines  for  use  as  inputs  or  outputs.  Because  of  this 

limited  capability,  single-chip  microcomputers  find  wide  use  in  special-purpose 
computer  applications.  A  block  diagram  of  a  calculator  implemented  with  a  single- 
chip  microcomputer  is  shown  in  Fig.  1.10(b). 

1.6  TYPES  OF  MICROPROCESSORS  AND  SINGLE-CHIP 
MICROCOMPUTERS 

The  principal  way  in  which  microprocessors  and  microcomputers  are  categorized  is 
in  terms  of  the  number  of  binary  bits  in  the  data  they  process,  that  is,  their  word 
length.  Figure  1.11  shows  that  the  three  standard  organizations  used  in  the  design 
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Figure  1-11    Microprocessor  and  single-chip  microcomputer  categories  and  relative 
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of  microprocessors  and  microcomputers  are  4-bit,  8-bit,  and  16-bit  data  words. 
The  first  microprocessors  and  microcomputers,  which  were  introduced  in  the 

early  1970s,  were  all  designed  to  process  data  that  were  arranged  4  bits  wide.  This 

organization  is  frequently  referred  to  as  a  nibble  of  data.  Many  of  the  early  4-bit 
devices,  such  as  the  PPS-4  microprocessor  made  by  Rockwell  International 
Incorporated  and  the  TMSIOOO  single-chip  microcomputer  made  by  Texas  Instruments 
Incorporated,  are  still  in  wide  use  today. 

The  low  performance  and  limited  system  capabilities  of  4-bit  microcomputers 
limits  their  use  to  simpler,  special-purpose  applications.  Some  common  uses  are  in 
calculators  and  electronic  toys.  In  this  type  of  equipment,  low  cost,  not  high 
performance,  is  the  overriding  requirement  in  the  selection  of  a  processor. 

In  the  1973-1974  period,  second-generation  microprocessors  were  introduced. 

These  devices,  such  as  Intel  Corporation's  8008  and  8080,  were  8-bit  microprocessors. 
That  is,  they  were  designed  to  process  8-bit  (one-byte-wide)  data  instead  of  4-bit  data. 

The  newer  8-bit  microprocessors  exhibited  higher-performance  operation,  larger 
system  capabilities,  and  greater  ease  of  programming.  They  were  able  to  provide  the 

system  requirements  for  many  applications  that  could  not  be  satisfied  by  4-bit 
microcomputers.  These  extended  capabilities  led  to  widespread  acceptance  of  multichip 
8-bit  microcomputers  for  special-purpose  system  designs.  Examples  of  some  of  these 
dedicated  applications  are  electronic  instruments,  cash  registers,  and  printers. 

Somewhat  later,  8-bit  microprocessors  began  to  migrate  into  general-purpose 
microcomputer  systems.  In  fact,  the  Z-80A  is  still  the  host  MPU  in  a  number  of 
personal  computers. 

Late  in  the  1970s,  8-bit  single-chip  microcomputers,  such  as  Intel's  8048,  became 
available.  The  full  microcomputer  capability  of  this  single  chip  further  reduces  the 

cost  of  implementing  designs  for  smaller,  dedicated  digital  sytems.  In  fact,  8-bit 
microcomputers  are  still  being  designed  for  introduction  into  the  marketplace.  An 

example  is  Intel's  new  8051  family  of  8-bit  microcomputers.  Newer  devices,  such  as 
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the  8051,  offer  a  one-order-of-magnitude-higher  performance,  more  powerful 

instruction  sets,  and  special  on-chip  functions  such  as  interval/event  timers  and 
universal  asynchronous  receiver/transmitters  (UARTs). 

The  plans  for  development  of  third-generation  16-bit  microprocessors  were 

announced  by  many  of  the  leading  semiconductor  manufacturers  in  the  mid-1970s. 
The  9900  was  introduced  in  1977,  followed  by  a  number  of  other  key  devices,  such 

as  the  9981,  8086,  8088,  Z8000,  68000,  99000,  and  16000.  These  devices  all  provide 

high  performance  and  have  the  ability  to  satisfy  a  broad  scope  of  special-purpose 

and  general-purpose  microcomputer  applications.  All  of  the  devices  have  the  ability 
to  handle  8-bit  as  well  as  16-bit  data  words.  Some  can  even  process  data  organized 

as  32-bit  words.  Moreover,  their  powerful  instruction  sets  are  more  in  line  with  those 

provided  by  minicomputers  instead  of  those  of  8-bit  microprocessors. 

In  terms  of  special-purpose  applications,  16-bit  microprocessors  are  replacing 

8-bit  processors  in  applications  that  require  very  high  performance:  for  example, 

certain  types  of  electronic  instruments.  A  single-chip  16-bit  microcomputer,  the  8096, 
is  also  available  for  use  in  this  type  of  application. 

16-bit  microprocessors  are  also  being  used  in  applications  that  can  benefit  from 
some  of  their  extended  system  capabilities.  For  instance,  they  are  beginning  to  be 

used  in  word-processing  systems.  This  type  of  system  requires  a  large  amount  of 
character  data  to  be  temporarily  active;  therefore,  it  can  benefit  from  the  ability  of 

a  16-bit  microprocessor  to  access  a  much  larger  amount  of  data  storage  memory. 

Most  new  personal  computers  are  being  designed  with  16-bit  microprocessors. 
For  instance,  Apple,  in  its  personal  computer,  the  Mcintosh,  uses  the  68000 

microprocessor  to  implement  the  microcomputer. 

ASSIGNMENT 

Section  1.2 

1.  What  guides  the  computer  as  to  how  it  is  to  process  data? 

2.  What  type  of  electronic  devices  are  revolutionizing  the  low-performance,  low-cost  computer 
market  today? 

Section  1 .3 

3.  What  is  the  key  difference  between  mainframe,  mini-,  and  microcomputers? 

4.  What  is  meant  by  "general-purpose  computer"? 

5.  What  is  meant  by  "special-purpose  computer"? 

Section  1 .4 

6.  What  are  the  building  blocks  of  a  general  computer  system? 

7.  What  is  the  difference  between  primary  and  secondary  storage? 
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Section  1 .5 

8.  What  are  the  basic  building  blocks  of  a  microcomputer  system? 

9.  What   is  the  difference   between   program   storage  and  data  storage  memory   in   a 
microcomputer? 

10.  What  is  the  difference  between  internal  and  external  storage  memory  in  a  microcomputer? 

Section  1 .6 

11.  What  are  the  standard  data  word  lengths  of  microprocessors  and  microcomputers  available 
today? 

12.  What    is    the    difference    between    a    multichip    microcomputer    and    a    single-chip 
microcomputer? 

13.  Name  five  16-bit  microprocessor  families. 



The  68000 
Microprocessor 

2.1   INTRODUCTION 

In  Chapter  1,  some  general  aspects  of  microprocessors  and  microcomputers  were 

introduced.  With  the  present  chapter,  we  begin  our  study  of  Motorola's  68000 
microprocessor.  In  this  chapter  we  describe  the  general  architecture  of  the  68000. 
The  six  chapters  that  follow  are  devoted  to  other  aspects  such  as  instruction  set, 
programming,  and  hardware  interfacing.  The  following  topics  are  discussed  in  this 
chapter: 

1 .  The  68000  microprocessor 

2.  Interface  signals  of  the  68000 
3.  Internal  architecture  of  the  68000 

4.  Instruction  execution  control 

2.2  THE  68000  MICROPROCESSOR 

The  68000  is  a  very  powerful  16-bit  microprocessor  whose  development  was  announced 
by  Motorola,  Inc.,  in  1979.  Since  then  Motorola  has  concentrated  on  bringing  the 
device  up  to  production,  providing  tools  to  support  hardware  and  software 
development,  and  initiating  development  of  a  new  family  of  LSI  support  peripherals. 
With  apparent  success  in  these  areas,  they  have  continued  the  growth  of  the  product 
family  by  introducing  other  microprocessors,  such  as  the  68008,  68010,  and  68020. 
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The  68000  is  manufactured  using  HMOS  (high-density  N-channel  MOS) 
technology.  The  present-day  advances  in  circuit  design,  process  technology,  and  chip 
fabrication  techniques  have  enabled  Motorola,  Inc.  to  implement  very  high 
performance  operation  and  complex  functions  for  the  68000.  The  circuitry  within 
the  68000  is  equivalent  to  approximately  68000  MOS  transistors. 

The  68000  microprocessor  is  packaged  into  a  64-pin  package.  This  package  is 
shown  together  with  its  pin  assignments  in  Fig.  2.1.  Notice  that  use  of  this  large 
package  eliminates  the  need  for  multifunction  pins.  For  instance,  the  address  bus 
and  data  bus  are  not  multiplexed.  The  fact  that  each  lead  serves  just  one  electrical 
function  simplifies  design  of  the  external  hardware  interfaces  in  a  68000 
microcomputer  system. 
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Figure  2-1    Pin  layout  of  the  68000 
microprocessor  (Motorola,  Inc.). 
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The  68000  employs  a  very  powerful  32-bit  general-purpose  internal  architecture. 
It  has  16  internal  general-purpose  registers  that  are  all  32  bits  in  length.  Eight  of  these 
registers  are  data  registers  and  the  other  eight  are  address  registers. 

The  architecture  of  the  68000  was  planned  to  permit  all  types  of  data  and  address 
operations  to  be  performed  from  its  data  registers  and  address  registers,  respectively. 
That  is,  none  of  its  data  registers  have  dedicated  functions  such  as  for  use  as  an 
accumulator  or  for  input/output.  Therefore,  instructions  can  be  written  such  that 
their  operands  reside  in  any  of  the  data  registers  or  storage  locations  in  memory. 
Moreover,  data  processed  by  the  68000  can  be  expressed  in  five  different  types.  They 

are  bit,  BCD  (4-bit),  byte,  word,  and  long  word  (32-bit). 
The  address  registers  are  also  designed  for  general  use  and  do  not  have  dedicated 

functions.  For  instance,  if  the  MOVE  instruction  was  to  have  its  source  operand 
located  in  memory  instead  of  in  one  of  the  internal  registers,  any  one  of  the  address 
registers  can  be  specified  to  contain  this  address. 

The  architecture  of  the  68000  includes  a  number  of  powerful  hardware  and 
software  functions.  From  a  hardware  point  of  view,  we  see  that  the  68000  has  a  large 

23-bit  external  address  bus.  This  gives  it  a  very  large  16M-byte  logical  address  space. 
A  software  function  that  has  been  included  in  the  architecture  is  the  ability  to  create 
a  user /supervisor  environment  for  the  68000  microcomputer  system.  This  feature  helps 
the  programmer  to  protect  the  software  operating  system  and  provides  support  for 
multiprocessing  and  multitasking  applications. 

2.3  INTERFACES  OF  THE  68000  MICROPROCESSOR 

Now  that  we  have  briefly  introduced  the  68000  microprocessor,  let  us  look  at  its 
electrical  interfaces.  From  the  block  diagram  in  Fig.  2.2,  we  see  that  the  signal  lines 
can  be  grouped  into  seven  interfaces:  the  address/data  bus,  asynchronous  bus  control, 
processor  status  lines,  system  control  bus,  interrupt  control  bus,  bus  arbitration  control 
bus,  and  synchronous  control  bus.  It  is  through  these  buses  and  lines  that  the  68000 
is  connected  to  external  circuitry  such  as  memory  and  input/output  peripherals. 

Address  and  Data  Bus 

Earlier  we  pointed  out  that  the  68000  microprocessor  has  independent  address  and 
data  buses.  This  simplifies  the  design  of  the  memory  and  I/O  interfaces  because  the 
address  and  data  signals,  need  not  be  demultiplexed  with  external  circuitry.  Moreover, 
the  address  bus,  data  bus,  and  memory  address  space  are  used  to  interface  to  input/ 
output  devices  in  addition  to  interface  to  the  memory  subsystem.  That  is,  all  I/O 

devices  in  the  68000  microcomputer  system  are  memory-mapped. 
Earlier  we  indicated  that  the  68000  has  a  23-bit  unidirectional  address  bus.  The 

function  of  the  signals  at  these  lines,  A23  through  A,,  is  to  supply  addresses  to  the 
memory  and  input/output  subsystems.  A23  represents  the  most  significant  bit  of  the 
address  and  Aj  the  least  significant  bit.  Bit  Aq,  which  is  maintained  internal  to  the 
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Figure  2-2    Block  diagram  of  the  68000  microprocessor  (Motorola,  Inc.). 

68000,  indicates  whether  the  upper  or  lower  byte  of  a  word  is  to  be  used  when 
processing  byte  data. 

The  16  bidirectional  data  lines  are  labeled  D,5  through  Dq.  They  either  carry 
read/write  data  between  microprocessor  and  memory  or  input/output  data  between 
the  microprocessor  and  I/O  peripherals. 

Asynchronous  Control  Bus 

The  control  of  the  68000's  bus  is  asynchronous.  By  this  we  mean  that  once  a  bus 
cycle  is  initiated,  it  is  not  completed  until  a  signal  is  returned  from  external  circuitry. 
The  signals  that  are  provided  to  control  address  and  data  transfers  are  address  strobe 
(AS),  read/write  (R/W),  upper  data  strobe  ( UDS),  lower  data  strobe  (LDS),  and  data 
transfer  acknowledge  (DTACK). 

The  68000  must  signal  external  circuitry  when  an  address  is  available,  and 
whether  a  read  or  write  operation  is  to  take  place  over  the  bus.  It  does  this  with  the 
signals  AS  and  R/W,  respectively.  At  the  moment  a  valid  address  is  present  on  the 
address  bus,  the  68000  produces  the  address  strobe  (AS)  control  signal.  The  pulse 
to  logic  0  that  is  output  as  AS  is  used  to  signal  memory  or  I/O  devices  that  an  address 
is  available.    

Read/write  (R/W)  signals  which  type  of  data  transfer  is  to  take  place  over  the 
data  bus.  During  a  read  or  input  bus  cycle,  when  the  microprocessor  reads  data  from 

bus  lines  Dq  through  Dj^,  the  R/W  output  is  switched  to  logic  1.  Similarly,  when 
data  are  written  or  output  to  memory  or  I/O  devices,  the  68000  indicates  this  condition 
by  a  logic  0  on  this  line. 

Since  the  bus  cycle  is  asynchronous,  external  circuitry  must  signal  the  68000 
when  the  bus  cycle  can  be  completed.  Data  transfer  acknowledge  (DTACK)  is  an 
input  to  the  microprocessor  which  indicates  the  status  of  the  current  bus  cycle.  During 
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a  read  or  input  cycle,  logic  0  at  DTACK  signals  the  microprocessor  that  valid 

data  are  on  the  data  bus.  In  response,  it  reads  and  latches  the  data  internally  and 

completes  the  bus  cycle.  On  the  other  hand,  during  a  write  or  output  operation, 

DTACK  informs  the  microprocessor  that  the  data  have  been  written  to  memory  or 

a  peripheral  device.  Thus  we  see  that  in  both  cases  DTACK  is  used  to  terminate  the 
bus  cycle. 

Two  other  control  outputs  provided  on  the  68000  are  upper  data  strobe  (UDS) 

and  lower  data  strobe  (LDS).  These  two  signals  act  as  an  extension  of  the  address 

bus  and  signal  whether  a  b>ie  or  word  of  data  is  being  transferred  over  the  data  bus. 

In  the  case  of  a  bvie  transfer,  they  also  indicate  if  the  data  will  be  carried  over  the 

upper  eight  or  lower  eight  data  lines.  Logic  0  at  UDS  signals  that  a  bvte  of  data  is 

to  be  transferred  across  upper  data  lines  D,,  through  Dg  and  logic  0  at  LDS  signals 

that  a  bvte  of  data  is  to  be  transferred  over  lower  data  lines  D^  through  Dq. 
Figure  2.3  shows  the  logic  levels  of  UDS,  LDS,  and  R/W  for  each  type  of  data 

transfer  operation.  For  instance,  if  UDS  =  0,  LDS  =  0,  and  R/W  =  I,  a  read 
operation  is  taking  place  over  the  complete  data  bus. 

Example  2.1 

Specify  the  address  and  control  signals  that  occur  to  read  the  lower  byte  from  the  word 
stored  at  address  001836,^. 

Solution.     The  address  lines  A-,-^  through  A,  directly  specify  an  even  (upper)  byte 
address.  The  odd  (lower)  b>ie  address  is  obtained  by  LDS  being  active.  Thus  we  get 

A23A22  ■  •  ■  A,Ao    =  001B37,g 

=  000000000001 101  KWllOlllj 

and 

LDS  =  0 

UDS  =  1 

Since  a  bvie  of  data  is  to  be  read, 

R  W  =   1 

and  the  data  are  supplied  to  the  68000  on  the  lower  data  lines  Dq  through  D-,. 

Ods LDS 

R'W 
Operation 

0 0 0 Word  -•  memor>  lO 

0 1 0 High  byte  -►  memory/lO 

I 0 0 Low  byle  -►  memory/IO 

I 1 0 Invalid  data 

0 0 1 Word  -►  microprocessor 

0 1 1 High  byte  -•  microprocessor 

I 

I 

0 1 

1 

Lo*  byte  -*  microprocessor 

Ir.NahJ  Ja-.i 
Figure  2-3    Memory  access  relationships 
for  UDS,  LDS,  and  R/W  (Motorola,  Inc.). 
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Processor  Status  Bus  and  the  Function  Codes 

During  every  bus  cycle  executed  by  the  68000,  it  outputs  a  3-bit  processor  status  code. 
These  status  codes  are  also  known  as  function  codes  and  are  output  on  lines  FCg 
through  FC2.  They  tell  external  circuitry  which  type  of  bus  cycle  is  in  progress.  That 
is,  whether  data  or  program  is  being  accessed  and  if  the  microprocessor  is  in  the  user 
or  supervisor  state. 

The  table  in  Fig.  2.4(a)  shows  the  implemented  function  codes  and  also  the  ones 

that  are  reserved  for  future  expansion.  For  instance,  the  code  1 IO2  on  FCjFCiFCq 
indicates  that  an  instruction  or  immediate  operand  aquisition  bus  cycle  is  in  progress 
from  supervisor  program  memory.  Notice  that  1 II2  has  a  special  function.  It  is  the 
interrupt  acknowledge  code. 

These  codes  are  output  by  the  68000  at  the  beginning  of  each  read  or  write  cycle 
and  remain  valid  until  the  beginning  of  the  next  read  or  write  cycle.  The  timing 
relationship  between  the  function  code  lines,  the  clock,  and  AS  is  shown  in  Fig. 
2.4(b).  Notice  that  the  function  code  outputs  are  valid  during  the  address  strobe  AS 

FC2 
FC1 

FCO 
Cycle  Type 

Low Low Low (Undefined,  Reserved) 

Low Low 
High 

User  Data 

Low 
High 

Low User  Program 

Low High High 
(Undefined,  Reserved) 

High Low Low (Undefined,  Reserved) 

High 
Low 

High 
Supervisor  Dale 

High High 

Low 
Supervisor  Program 

High High High 
Interrupt  Acknowledge 

(a) 

\ / 

FCj-FCc D( X 
(b) 

Figure  2-4   (a)  Function  code  table  (Motorola,  Inc.);  (b)  relationship  between  FCj 
FC,FC„,  CLK,  and  AS. 
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pulse.  Therefore,  they  can  be  combined  with  AS  to  generate  device  or  memory  select 
signals.  As  an  example,  the  function  code  001 2  can  be  used  to  gate  AS  to  the  user 
data  section  of  memory. 

System  Control  Bus 

The  group  of  control  signals  that  are  labeled  as  the  system  control  bus  in  Fig.  2.2 
are  used  either  to  control  the  function  of  the  68000  microprocessor  or  to  indicate 

its  operating  state.  There  are  three  system  control  signals:  bus  error  (BERR),  halt 
(HALT),  and  reset  (RESET). 

The  control  line  bus  error  (BERR)  is  an  input  that  is  used  to  inform  the  68000 
of  a  problem  with  the  bus  cycle  currently  in  progress.  For  instance,  it  could  be  used 
to  signal  that  the  bus  cycle  has  not  been  completed  even  after  a  set  period  of  time 
has  elapsed.    

On  the  other  hand,  HALT  can  be  used  to  implement  a  hardware  mechanism 
for  stopping  the  processing  of  the  68000.  An  external  signal  applied  to  the  HALT 
input  stops  the  microprocessor  at  completion  of  the  current  bus  cycle.  In  this  state 
all  of  its  buses  and  control  signals  are  inactive.  HALT  is  actually  a  bidirectional  line; 
that  is,  it  has  both  an  input  and  output  function.  When  the  processor  stops  instruction 
execution  due  to  a  halt  condition,  it  informs  external  devices  by  producing  an  output 
signal  at  the  same  HALT  pin. 

The  RESET  input  can  be  used  to  initiate  initialization  of  the  68000  based  on 
the  occurrence  of  a  signal  generated  in  external  hardware.  Typically,  this  is  done  at 
the  time  of  power-up.  When  an  external  reset  signal  is  applied,  the  processor  initiates 
a  system  initialization  sequence.    

The  RESET  line  is  also  bidirectional,  but  unlike  HALT,  its  output  function 
is  initiated  through  software.  This  RESET  output  is  used  to  initialize  external  devices 
such  as  LSI  peripherals.  To  reset  external  devices  connected  to  the  RESET  line,  the 
68000  must  execute  the  RESET  instruction.  Execution  of  this  instruction  does  not 

affect  the  internal  state  of  the  processor;  instead,  it  just  causes  a  pulse  to  be  output  at 
RESET. 

Interrupt  Control  Bus 

In  a  68000  microcomputer  system,  external  devices  request  interrupt  service  by  apply- 
ing a  3-bit  interrupt  request  code  to  the  IPLj  through  IPLq  inputs.  This  code  is  sup- 

plied to  the  microprocessor  from  the  interrupting  device  to  indicate  its  priority  level. 

The  value  of  IpLjIPLiIpLo  is  compared  to  the  interrupt  mask  value  in  the  68000's 
status  register.  If  the  encoded  priority  is  higher  than  the  mask,  the  interrupting  device 
is  serviced;  otherwise,  it  is  ignored. 

Bus  Arbitration  Control  Bus 

The  bus  arbitration  control  signals  provide  a  handshake  mechanism  by  which  control 

of  the  68000's  system  bus  can  be  transferred  between  devices.  The  device  that  has 
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control  of  the  system  bus  is  known  as  the  bus  master.  It  controls  the  system  address, 
data,  and  control  buses.  Other  devices  are  attached  to  the  bus  but  are  not  active. 
Examples  of  devices  that  can  be  used  as  masters  are  host  processors  or  external  devices 
such  as  DMA  controllers  or  attached  processors. 

As  shown  in  Fig.  2.2,  the  68000  microprocessor  has  three  control  lines  for  this 
purpose.  They  are  bus  request  (BR),  bus  grant  (BG),  and  bus  grant  acknowledge 
(BGACK).  A  device  requests  control  of  the  bus  by  asserting  the  bus  request  (BR) 
input.  After  synchronization,  the  68000  responds  by  switching  the  bus  grant  (BG) 
control  output  to  its  active  low  level.  This  means  that  it  will  give  up  control  of  the 
bus  at  completion  of  the  current  bus  cycle. 

At  this  point,  the  requesting  device  waits  for  the  68000  to  complete  its  bus  cycle. 
The  fact  that  the  bus  cycle  is  complete  is  indicated  by  address  strobe  (AS)  and  data 
transfer  acknowledge  (DTACK)  returning  to  their  inactive  levels.  After  this  happens, 
the  requesting  device  asserts  bus  grant  acknowledge  (BGACK)  and  also  removes  bus 
grant  request  (BR).  The  68000  responds  by  removing  the  bus  grant  (BG)  signal.  This 
completes  the  bus  arbitration  handshake.  The  requesting  device  has  now  taken  over 
control  of  the  bus  and  assumes  the  role  of  bus  master.  When  the  device  has  completed 
its  function,  it  releases  control  of  the  bus  by  negating  BGACK  for  rearbitration  or 
return  of  bus  mastership  to  the  68000. 

Synchronous  Control  Bus 

The  68000  microprocessor  also  has  control  signals  that  can  make  data  transfers  over 
its  system  bus  occur  in  a  synchronous  fashion.  There  are  three  control  signals  provided 
for  this  purpose.  In  Fig.  2.2,  we  see  that  they  are  enable  (E),  valid  peripheral  address 
(VPA),  and  valid  memory  address  (VMA).  These  signals  provide  for  simple  interface 

between,  say,  a  10-MHz  68000  microprocessor  and  1-MHz  synchronous  LSI  peripheral 
devices  such  as  those  available  for  use  in  6800  microcomputer  systems. 

Let  us  now  look  at  the  function  of  each  of  these  signals.  The  enable  (E)  output 
of  the  68000  is  used  by  6800  peripherals  to  synchronize  its  data  read/write  operations. 

It  is  a  free-running  clock  with  a  frequency  equal  to  one-tenth  of  that  of  the  68000 
clock  frequency.  This  signal  allows  1-MHz  LSI  peripheral  ICs  to  be  used  with  the 
lO-MHz  68000.  It  is  applied  to  the  E  or  PHIj  input  of  a  6800  family  peripheral. 

The  valid  peripheral  address  (VPA)  line  is  an  input  to  the  68000  which  is  used 
to  tell  it  to  perform  a  synchronous  transfer  over  its  asynchronous  system  bus.  When 
the  address  output  on  the  address  bus  is  decoded  and  found  to  correspond  to  an 
external  6800  peripheral,  VPA  must  be  switched  to  logic  0.  This  tells  the 
microprocessor  to  synchronize  the  next  data  transfer  with  the  enable  (E)  signal. 

The  valid  memory  address  (VMA)  output  is  supplied  by  the  68000  in  response  to 
an  active  VPA  input.  It  indicates  to  external  circuitry  that  a  valid  address  is  on  the 
address  bus  and  that  the  next  data  transfer  over  the  data  bus  will  by  synchronized 
with  enable  (E). 
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2.4  CLOCK  INPUT  AND  WAVEFORM 

Looking  at  Fig.  2.2,  we  find  that  the  68000  has  a  single  clock  input  which  is  labeled 
CLK.  The  clock  generator  circuitry  is  not  provided  on  the  chip.  Instead,  the  CLK 
signal  must  be  generated  in  external  circuitry  and  fed  to  the  68000.  Internally,  this 
signal  is  used  to  produce  additional  clock  signals  that  synchronize  the  operation  of 

the  680OO's  circuitry. 
The  68000  is  available  with  clock  frequencies  over  the  range  from  as  low  as 

4MHz  to  as  high  as  12.5  MHz.  Figure  2.5  shows  the  CLK  waveform.  For  10-MHz 
operation,  the  cycle  time  Ucyc)  's  100  ns.  The  corresponding  maximum  pulse  width 
low  (t^L)  and  pulse  width  high  (t^^)  are  both  equal  to  45  ns.  The  maximum  rise  and 
fall  times  of  its  edges,  t^r  and  t(~f,  are  both  10  ns.  CLK  is  at  TTL-compatible  volt- 

age levels. 

  'cYc   

-tcL- 

Figure  2-5    Clock  waveform. 

2.5  INTERNAL  REGISTERS  OF  THE  68000  MICROPROCESSOR 

Internal  to  the  68000  microprocessor  are  eighteen  32-bit  registers  and  one  16-bit 
register.  Figure  2.6  shows  these  registers.  Notice  that  they  include  eight  data  registers, 
seven  address  registers,  two  stack  pointers,  a  program  counter,  and  the  status  register. 
The  status  register  is  the  16-bit  register. 

Data  Registers 

There  are  eight  user-accessible  data  registers  within  the  68000.  As  shown  in  Fig. 
2.6,  they  are  called  Dq  through  D7.  Each  register  is  32  bits  long  and  its  bits  are  labeled 
0  (least  significant  bit)  through  31  (most  significant  bit).  We  will  refer  to  these  bits 
as  Bq  through  B,,,  respectively. 

The  data  registers  are  used  to  store  data  temporarily  for  use  in  processing.  For 
example,  they  could  hold  the  source  and  destination  operands  of  an  arithmetic  or 
logic  instruction.  Each  register  can  be  accessed  for  byte  operands,  for  word  operands, 

or  for  long-word  operands.  Byte  data  are  always  held  in  the  8  least  significant  bits 
of  a  data  register:  that  is,  Bq  through  B7.  On  the  other  hand,  words  of  data  always 
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reside  in  the  lower  16  bits,  Bq  through  3,5,  and  long  words  take  up  all  32  bits  of 
the  register. 

The  size  of  data  to  be  used  during  the  execution  of  an  instruction  is  generally 
specified  in  the  instruction.  For  example,  a  byte  move  instruction  could  be  written 
with  register  Dq  as  the  location  of  the  source  operand  and  D7  as  the  location  of  the 
destination  operand.  Executing  the  instruction  causes  the  contents  of  bits  Bq  through 
B7  of  Dq  to  be  copied  into  bits  Bq  through  B7  of  register  D7.  Alternatively,  the 
instruction  could  be  set  up  to  process  words  of  data.  This  time,  executing  the 
instruction  would  cause  bits  Bq  through  B,;  of  Dq  to  be  copied  into  Bq  through  B,; 
of  D-j. 

The  68000  can  also  use  the  data  registers  as  index  registers.  In  this  case  the  value 
in  the  register  represents  an  offset  address  which  when  combined  with  the  contents 
of  another  register  points  to  the  location  of  data  in  the  memory  subsystem. 

These  registers  are  said  to  be  truly  general  purpose.  That  is,  they  do  not  have 
dedicated  functions.  For  this  reason,  most  instructions  can  perform  their  operations 
on  source  and  destination  operands  that  reside  in  any  of  these  registers. 

Address  Registers 

The  next  seven  registers,  which  are  labeled  Aq  through  Ag  in  Fig.  2.6,  are  the  address 
registers.  They  are  also  32  bits  in  length.  These  registers  are  not  provided  for  storage 
of  data  for  processing.  Instead,  they  are  meant  to  store  address  information  such 
as  base  addresses  and  pointer  addresses.  Moreover,  they  can  also  act  as  index  registers. 

Just  like  the  data  registers,  the  address  registers  are  general  purpose.  That  is, 
an  instruction  can  reference  any  of  them  as  a  base  or  pointer  address  for  its  source 
or  destination  operands. 

The  values  of  the  addresses  are  loaded  into  the  address  registers  under  software 
control.  When  used  as  a  source  register,  an  address  register  can  be  accessed  as  a 

long-word  operand  using  the  complete  register  or  for  word  operands  using  the  lower 
16  bits.  On  the  other  hand,  when  used  as  a  destination  register,  all  32  bits  are  always 
affected. 

Stack  Pointers 

Two  other  internal  registers  are  used  to  hold  address  information.  They  are  called 
the  user  stack  pointer  (USP)  and  the  supervisor  stack  pointer  (SSP).  Only  one  of 
these  two  stack  pointers  is  active  at  a  time.  For  this  reason,  they  are  shown  as  a  single 
register,  A7  in  Fig.  2.6. 

Unlike  the  address  registers  discussed  earlier,  these  two  registers  have  dedicated 
functions.  The  user  stack  pointer  is  active  whenever  the  68000  is  operating  in  a  mode 
known  as  the  user  state.  When  in  this  mode,  the  supervisor  stack  pointer  is  inactive. 
The  address  held  in  the  user  stack  pointer  identifies  the  top  of  the  user  stack  in  the 
user  part  of  system  memory.  This  user  stack  is  the  place  where  return  addresses, 
register  data,  and  other  parameters  are  saved  during  operations  such  as  the  call  to 
a  subroutine. 
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Figure  2-6    Internal  registers  of  the  68000  microprocessor  (Motorola,  Inc.). 

The  68000  can  be  switched  to  a  second  mode,  known  as  the  supervisor  state. 
This  causes  the  supervisor  stack  pointer  to  become  active  and  the  user  stack  pointer 
to  become  inactive.  The  address  in  the  supervisor  stack  pointer  register  points  to  the 
top  of  a  second  stack.  It  is  called  the  supervisor  stack  and  resides  in  the  supervisor 
part  of  memory.  The  supervisor  stack  is  used  for  the  same  purposes  as  the  user  stack, 
but  it  is  also  used  by  supervisory  calls  such  as  software  exceptions,  interrupts,  and 
internal  exceptions. 

The  address  values  in  USP  and  SSP  can  be  modified  through  software.  However, 
they  can  be  modified  only  when  the  68000  is  set  to  operate  in  the  supervisor  mode. 

Program  Counter 

The  program  counter  (PC)  register  holds  an  address  that  typically  points  to  the  next 
instruction  that  is  to  be  executed.  It  is  automatically  incremented  by  2  with  the  fetch 
of  the  instruction.  In  this  way,  it  points  to  the  next  word  of  a  multiword  instruction, 
an  immediate  source  operand,  or  the  next  sequential  instruction  in  the  program. 
Instructions  for  the  68000  can  take  up  from  one  to  five  words  of  program  storage 
memory. 
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In  Fig.  2.6  PC  is  shown  as  a  32-bit  register;  however,  only  the  lower  24  bits 
are  actually  used  in  currently  available  68000  devices.  These  24  bits  can  generate  16M 
unique  memory  addresses  for  accessing  bytes  of  data.  But  instructions  are  always 
stored  at  word  boundaries.  Therefore,  the  address  space  can  also  be  considered  to 

represent  an  8M-word  address  space.  The  range  of  word  addresses  is  even  addresses 
from  000000,5  through  FFFFFE|g.  In  this  way  we  see  that  program  storage  memory 
can  reside  anywhere  in  the  8M-word  address  space. 

Status  Register 

Figure  2.6  also  shows  the  16-bit  status  register  (SR)  of  the  68000  microprocessor. 
Here  we  see  that  this  register  is  subdivided  into  two  parts,  called  the  user  byte  and 
the  system  byte. 

The  status  register  is  shown  in  more  detail  in  Fig.  2.7.  Here  we  see  that  the 

bits  hv  lamented  in  the  user  byte  are  flags  that  indicate  the  processor  state  resulting 
from  the  execution  of  an  instruction.  The  five  conditions  represented  by  the 
implemented  bits  are:  carry  (C),  overflow  (V),  zero  (Z),  negative  (N),  and  extended 
carry  (X).  Let  us  now  look  at  each  of  these  condition  flags  in  more  detail. 

1.  Carry  (C):  The  carry  flag,  bit  0,  is  set  if  an  add  operation  generates  a  carryout 
or  a  subtract  (or  compare)  operation  needs  a  borrow.  Otherwise,  it  is  reset. 
During  shift  or  rotate  operations,  it  holds  the  bit  that  is  rotated  or  shifted  out 
of  a  register  or  memory  location. 

2.  Overflow  (V):  If  an  arithmetic  operation  on  signed  numbers  produces  an 
incorrect  result,  the  overflow  flag  (bit  1)  is  set;  otherwise,  it  is  reset.  During 
an  arithmetic  shift  operation,  this  flag  gets  set  as  the  result  of  a  change  in  the 
most  significant  bit;  otherwise,  it  gets  reset. 

3.  Zero  (Z):  If  an  operation  produces  a  zero  as  its  result,  the  zero  flag  (bit  2)  of 
SR  is  set.  A  nonzero  result  clears  Z. 

System  Byle 
User  Bvie 

Condition 

Codes 

Ss^SHIK^^IE 

Figure  2-7   Status  register  (Motorola,  Inc.). 
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4.  Negative  (N):  The  content  of  bit  3  is  a  copy  of  the  most  significant  bit  (sign 
bit)  of  the  result  during  arithmetic,  logic,  shift,  or  rotate  operations.  In  other 
words,  a  negative  result  sets  the  N  bit  and  a  positive  result  clears  it. 

5.  Extend  (X):  During  arithmetic,  shift,  or  rotate  operations,  the  extend  flag,  bit 
4,  receives  the  carry  status.  It  is  used  as  the  carry  bit  in  multiprecision  operations. 

These  user  bits  of  the  status  register  can  be  tested  through  software  to  determine 
whether  or  not  certain  events  have  occurred.  Typically,  the  occurrence  of  an  event 
indicates  that  a  change  in  program  environment  should  be  initiated.  For  instance, 
the  overflow  bit  could  be  tested  and  if  it  is  set  program  control  is  passed  to  an  overflow 
service  routine. 

The  system  byte  of  SR  contains  bits  that  control  operational  options  available 
on  the  68000  microprocessor  and  also  contains  the  interrupt  mask.  The  implemented 
bits  in  this  byte  and  their  functions  are  identified  in  Fig.  2.7.  Let  us  now  look  at 
these  functions. 

1 .  Interrupt  mask  (I2I1I0):  Bits  8  through  10  of  SR  are  the  interrupt  mask  of  the 
68000.  This  3-bit  code  determines  which  interrupts  can  be  serviced  and  which 
are  to  be  ignored.  Interrupting  devices  with  priority  higher  than  the  binary  value 

of  I2I1I0  will  be  accepted  and  those  with  lower  or  the  same  priority  will  be 
ignored.  For  example,  if  Iili^o  ̂ Quals  01  Ij,  then  levels  4  through  7  are  able 
to  be  active,  while  levels  1  through  3  are  masked  out. 

2.  Supervisor  (S):  Bit  13  of  SR  is  used  to  select  between  the  user  and  supervisor 
states  of  operation.  A  logic  1  in  this  bit  indicates  that  the  68000  is  operating 
in  the  supervisory  state.  If  it  is  logic  0,  the  68000  operates  in  the  user  state. 

3.  Trace  mode  (T):  The  T  status  bit  is  used  to  enable  or  disable  trace  (single-step) 
mode  of  operation.  To  activate  the  single-step  mode,  bit  15  must  be  set.  When 
set  in  this  way,  the  microprocessor  executes  an  instruction,  then  enters  the 
supervisor  state,  and  vectors  to  a  trace  service  routine.  The  service  routine  may 
pass  control  to  a  mechanism  that  permits  initiation  of  execution  of  the  next 
instruction  or  debug  mode  of  operations  for  displaying  the  contents  of  the 
various  internal  registers. 

The  contents  of  the  complete  status  register  can  be  read  at  any  time  through 
software.  Unimplemented  bits  are  always  read  as  logic  0.  However,  the  system  byte 
can  be  modified  only  when  the  68000  is  in  the  supervisor  state. 

2.6  INSTRUCTION  EXECUTION  CONTROL 

Now  that  we  have  introduced  the  68000  microprocessor,  its  external  interfaces,  and 
internal  registers,  we  continue  by  examining  how  it  performs  the  internal  operations 
required  during  the  execution  of  an  instruction.  Figure  2.8  shows  the  internal  execution 
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Figure  2-8    Microcoded  instruction  execution  control. 

control  architecture.  It  includes  the  instruction  register,  instruction  decoder,  control 
unit,  and  execution  unit. 

Let  us  begin  by  overviewing  the  operation  of  the  execution  control  section.  The 
instruction  register  accepts  an  instruction  as  it  is  fetched  into  the  microprocessor  for 
execution.  Looking  at  this  block,  we  see  that  its  outputs  supply  the  inputs  of  the 
instruction  decoder.  Here  the  instruction  is  decoded  to  determine  which  type  of 
operation  is  to  be  performed.  Based  on  the  result  of  this  decoding,  it  produces  outputs 
for  input  to  both  the  control  unit  and  execution  unit.  The  information  passed  to  the 
execution  unit  is  called  macroinstruction  static  because  it  does  not  depend  on  timing 
of  the  execution  of  the  instruction.  For  example,  the  registers  that  are  to  be  used 
and  the  operation  that  is  to  be  performed  are  macroinstruction  static  information. 
Moreover,  the  decoder  supplies  a  microsequence  starting  address  to  the  control  unit. 
The  control  unit  is  responsible  for  sequencing  the  operations  performed  by  the 
execution  unit  in  a  way  that  causes  it  to  perform  the  operation  specified  by  the 
instruction. 
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The  68000  microprocessor  employs  a  microprogrammed  control  unit  similar 
to  that  used  in  minicomputers  and  mainframe  computers.  That  is,  the  instructions 
in  the  instruction  set  of  the  68000  are  actually  macroinstructions  and  they  are  emulated 

by  the  execution  control  unit  by  performing  a  series  of  lower-level  micro-operations 
called  microinstructions.  Actually,  the  control  unit  contains  a  series  of  control  words 
for  each  instruction.  These  series  of  control  words  are  used  to  tell  the  execution  unit 

how  to  perform  the  macro-operations.  They  are  coded  into  the  control  store  part 
of  the  control  unit. 

In  this  way  we  see  that  the  control  unit  itself  does  not  perform  the  operation 
specified  by  the  instruction.  Instead,  it  must  interact  with  the  instruction  decoder 
to  determine  which  macro-operation  is  to  be  performed,  with  the  execution  unit,  which 
contains  the  data  registers,  address  registers,  and  arithmetic  logic  unit,  to  perform 
the  processing,  and  possibly  the  bus  interface  to  control  accessing  of  operands. 

Let  us  now  look  more  closely  at  the  control  unit.  From  Fig.  2.8  we  see  that 

the  68000  employs  a  two-level  control  store  structure.  The  first  level,  which  is  identified 
as  the  micro-control  store,  stores  a  sequence  of  addresses  for  each  instruction.  These 
addresses  are  pointers  to  the  micro-operations  that  need  to  be  performed  to  emulate 
the  macro-operation.  Each  address  is  9  bits  wide  and  about  625  addresses  are  needed 
to  implement  the  complete  instruction  set.  The  second  level,  nano-control  store, 
contains  a  set  of  about  300  control  words.  It  is  these  control  words  that  define  the 

unique  micro-operations  that  can  be  performed  by  the  68000's  execution  unit.  Each 
control  word  is  70  bits  in  length. 

During  instruction  execution,  the  macroinstruction  decoder  outputs  to  the 

micro-control  store  the  starting  address  of  the  emulation  routine  for  the  instruction 
that  is  to  be  performed.  In  response,  the  micro-control  store  starts  by  outputting  the 
9-bit  address  of  the  first  micro-operation  that  is  to  be  performed.  This  address  is 
input  by  the  nano-control  store  and  causes  the  nano-control  store  to  output  the  70-bit 
control  word  for  this  operation  to  the  execution  unit.  This  control  word  is  further 
decoded  within  the  execution  unit  to  produce  as  many  as  180  control  signals.  At 

completion  of  this  first  micro-operation,  the  micro-control  store  outputs  the  address 
of  the  next  micro-operation  and  the  nano-control  store  causes  it  to  be  performed. 
This  sequence  continues  until  the  complete  microcode  emulation  routine  is  performed 
and  at  its  completion  another  instruction  is  input  to  the  instruction  decoder. 

To  improve  performance,  the  68000  overlaps  the  fetch,  decode,  and  execution 
phases.  For  instance,  when  one  instruction  is  being  executed,  the  next  one  may  be 
getting  decoded,  and  the  one  following  it  may  be  getting  fetched.  However,  many 
macroinstructions  take  more  than  one  machine  cycle  to  execute.  For  this  reason,  if 
the  current  instruction  is  not  yet  complete,  the  decode  or  fetch  of  additional 
instructions  may  not  take  place. 

The  key  benefits  derived  from  use  of  microcoding  are  decreased  development 
time  and  increased  flexibility.  This  is  because  the  development  of  the  instruction  set 
is  easier  to  manage.  For  instance,  modification  of  the  operation  of  an  instruction 
or  implementation  of  a  new  instruction  does  not  require  any  circuit  changes;  instead, 
it  simply  requires  changes  of  the  microcode  in  the  control  store. 
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ASSIGNMENT 

Section  2.2 

1.  Name  the  technology  used  to  fabricate  the  68000  microprocessor. 

2.  In  what  size  package  is  the  68000  housed? 

3.  How  many  general-purpose  registers  does  the  68000  have? 
What  are  they  called?  Specify  the  size  of  each  register. 

4.  What  basic  data  types  is  the  68000  able  to  process  directly? 

Section  2.3 

5.  How  many  address  lines  are  on  the  68000  IC?  How  many  unique  memory  or  I/O  addresses 
can  be  generated  using  these  lines? 

6.  How  many  data  lines  does  the  68000  have? 

7.  What  is  meant  by  "asynchronous  bus"? 
8.  What  function  is  served  by  DTACK  during  read/write  operations? 

9.  How  is  byte  addressing  accomplished  by  the  68000? 

10.  Specify  the  address  and  asynchronous  bus  control  signals  that  occur  to  write  a  word  of 
data  to  memory  address  AOOOj^. 

11.  What  function  code  is  output  by  the  68000  when  it  fetches  an  instruction  while  in  the 
supervisor  state? 

12.  Describe  briefly  the  function  of  system  control  lines  BERR,  RESET,  and  HALT. 

13.  How  does  the  68000  prioritize  interrupts? 

14.  Why  are  the  bus  arbitration  control  signals  provided  on  the  68000? 

15.  Why  is  synchronous  bus  operation  also  provided  for  the  68000? 

Section  2.4 

16.  What  is  the  duration  of  the  clock  cycle  of  a  68000  that  is  operating  at  8  MHz? 

Section  2.5 

17.  What  is  the  difference  between  the  functions  of  the  6800O's  address  and  data  registers? 
18.  Define  what  is  meant  by  a  stack.  Why  are  there  two  stack  pointer  registers? 

19.  What  function  is  served  by  the  program  counter? 

20.  Distinguish  between  the  user  byte  and  the  system  byte  of  the  status  register. 

Section  2.6 

21.  What  is  the  difference  between  a  macroinstruction  and  a  microinstruction? 

22.  What  is  the  difference  in  the  information  stored  in  the  micro-control  store  and  the 
nano-control  store? 

23.  Give  a  brief  description  of  how  instruction  execution  is  implemented  in  a  two-level 
micro-programmed  control  unit. 
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3.1  INTRODUCTION 

Chapter  2  was  devoted  to  the  general  architectural  aspects  of  the  68000  microprocessor. 
In  this  chapter  we  introduce  a  large  part  of  its  instruction  set.  These  instructions 

provide  the  ability  to  write  simple  straight-line  programs.  Chapter  4  covers  the  rest 
of  the  instruction  set  and  some  more  sophisticated  programming  concepts.  The 
following  topics  are  presented  in  this  chapter: 

1.  Software  model  of  the  68000  microprocessor 

2.  Assembly  language  and  machine  language 

3.  Operand  addressing  modes 
4.  The  68000  instruction  set 

5.  Data  transfer  instructions 

6.  Binary  and  decimal  arithmetic  instructions 

7.  Logic  instructions 
8.  Shift  and  rotate  instructions 

3.2  SOFTWARE  MODEL  OF  THE  68000  MICROPROCESSOR 

The  purpose  of  developing  a  software  model  is  to  aid  the  programme?  in  understanding 
the  operation  of  the  microcomputer  system  from  a  software  point  of  view.  To  be 
able  to  program  a  microprocessor,  one  does  not  need  to  know  all  of  its  hardware 
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features.  For  instance,  we  do  not  necessarily  need  to  know  the  function  of  the  signals 
at  its  various  pins,  their  electrical  connections,  or  their  switching  characteristics. 
Moreover,  the  function,  interconnection,  and  operation  of  the  internal  circuits  of 
the  microprocessor  also  need  not  normally  be  considered. 

What  is  important  to  the  programmer  is  to  know  the  various  registers  within 
the  device  and  to  understand  their  purpose,  functions,  and  operating  capabihties  and 
limitations.  Furthermore,  it  is  essential  to  know  how  external  memory  is  organized 
and  how  it  is  addressed  to  obtain  instructions  and  data. 

The  software  model  of  the  68000  microprocessor  is  shown  in  Fig.  3. 1 .  This  model 
specifies  the  resources  available  to  programmers  for  implementing  their  program 
requirements.  Here  we  see  that  the  68000  is  represented  by  eight  data  registers,  seven 
address  registers,  two  stack  pointers,  a  program  counter,  and  a  status  register.  We 

discussed  each  of  these  registers  as  part  of  our  study  of  the  68000's  architecture  in 
Chapter  2.  However,  our  concern  here  is  with  what  can  be  done  with  this  architecture 
and  how  to  do  it  through  software.  For  this  purpose,  let  us  review  briefly  the  elements 
of  the  model.  Moreover,  this  time  we  concentrate  on  their  relationship  to  software. 

During  normal  operation,  the  68000  fetches  one  instruction  after  the  other  from 
memory  and  executes  them.  The  address  held  in  program  counter  PC  points  to  the 
next  instruction  that  is  to  be  fetched.  After  the  instruction  is  fetched,  it  is  decoded 
by  the  68000  and,  if  necessary,  data  operands  are  read  from  either  the  internal  registers 
or  memory.  Then  the  operation  specified  in  the  instruction  is  performed  on  the 
operands  and  the  results  are  written  to  either  an  internal  register  or  storage  location 
in  memory.  The  68000  is  now  ready  to  execute  the  next  instruction. 

Every  time  an  instruction  is  fetched  from  memory,  the  value  held  in  PC  is 
incremented  such  that  it  points  to  the  next  sequential  instruction  of  the  program. 
In  this  way,  the  68000  is  ready  to  fetch  the  next  instruction  of  the  program  for 
execution. 

The  programmer  has  the  ability  to  change  the  value  in  PC  under  software 
control.  For  instance,  execution  of  a  jump  instruction  changes  the  value  in  PC.  When 
this  is  done,  instructions  are  no  longer  executed  sequentially. 

Data  registers  Dq  through  D7  are  provided  for  temporary  storage  of  working 
data.  For  instance,  the  instruction 

ADD.W     D0,D1 

employs  data  registers  Dg  and  D]  for  storage  of  its  source  and  destination  operands, 
respectively.  The  sum  that  resuhs  from  executing  this  instruction  is  saved  in  destination 
register  D,.  One  nice  feature  of  the  architecture  of  the  68000  is  that  its  internal 
registers  do  not  have  dedicated  functions.  Instead,  they  can  be  employed  in  a  very 
general  way.  For  instance,  the  add  instruction  we  just  introduced  could  be  written 
with  any  combination  of  these  seven  data  registers  as  the  locations  of  its  source  and 
destination  operands. 

These  data  registers  also  support  processing  of  data  in  a  variety  of  different 
data  types.  For  example,  most  instructions  can  access  the  data  registers  for  processing 

of  byte,  word,  or  long-word  operands.  A  few  instructions  also  permit  processing  of 
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individual  bits  or  data  expressed  as  BCD  numbers.  The  data  registers  can  also  be 
used  as  index  registers  for  generating  memory  addresses. 

Address  registers  Aq  through  A^  are  not  used  to  hold  data  for  processing. 
Instead,  they  contain  address  pointers  and  are  used  to  access  source  or  destination 
operands  that  are  stored  in  memory.  For  example,  the  instruction 

ADD.W     (A0),D1 

uses  the  contents  of  Aq  to  access  a  source  operand  that  resides  in  memory.  Just  as 
for  the  data  registers,  the  68000  permits  general  use  of  the  address  registers.  That 
is,  any  of  the  seven  address  registers  could  be  specified  as  the  pointer  to  the  location 
of  the  source  operand  in  the  addition  instruction. 

In  Fig.  3.1  we  find  that  there  are  two  stack  pointer  registers  in  the  software 
model,  called  the  user  stack  pointer  register  (USP)  and  the  supervisor  stack  pointer 
register  (SSP).  The  stack  is  a  special  part  of  the  memory  subsystem  that  is  used  for 
temporary  storage  of  data.  Since  the  68000  has  two  stack  pointer  registers,  there  can 
be  two  stacks  in  its  microcomputer  system,  a  user  stack  and  a  supervisor  stack. 
However,  only  one  of  these  stacks  can  be  active  at  a  time.  The  address  in  USP  points 
to  the  next  storage  location  that  is  to  be  accessed  in  the  user  stack.  This  location 
is  called  the  top  of  the  stack.  Moreover,  the  value  in  SSP  points  to  the  top  of  the 
supervisor  stack. 

During  a  subroutine  call  operation,  the  contents  of  specific  internal  registers 
of  the  68000  typically  are  pushed  onto  the  stack.  Here  they  are  maintained  temporarily. 
At  completion  of  the  subroutine,  these  values  are  popped  off  the  stack  and  put  back 
into  the  same  internal  register  from  which  they  originally  resided.  For  example,  if 
a  jump  to  subroutine  (JSR)  instruction  is  executed,  the  current  value  in  PC  is 
automatically  pushed  onto  the  active  stack.  Moreover,  as  part  of  the  subroutine, 
instructions  can  be  executed  that  cause  the  contents  of  other  registers  to  be  saved 
on  the  stack. 

The  status  register  (SR)  also  is  important  when  programming  the  68000.  The 
logic  state  of  the  carry  (C),  overflow  (V),  zero  (Z),  negative  (N),  and  extend  (X)  bits 
in  its  user  byte  are  status  flags  that  indicate  conditions  that  are  produced  as  the  result 
of  executing  an  instruction.  That  is,  specific  flags  are  set  (logic  1)  or  reset  (logic  0) 
at  the  completion  of  execution  of  the  instruction. 

The  instruction  set  of  the  68000  includes  instructions  that  can  be  used  either 

to  save  the  contents  of  the  status  register  or  to  load  it  with  new  data.  Moreover,  it 
contains  instructions  that  are  able  to  use  these  flags  to  alter  the  sequence  in  which 
the  program  executes.  For  instance,  an  instruction  can  be  used  to  test  the  state  of 
the  carry  flag  and,  if  it  is  set,  to  initiate  a  jump  to  another  part  of  the  program. 

The  bits  in  the  system  byte  of  SR  control  options  available  on  the  68000.  For 
instance,  it  contains  the  supervisor  (S)  bit.  This  bit  can  be  set  or  reset  under  software 
control  to  put  the  68000  into  either  the  supervisor  or  user  state,  respectively. 

Also  represented  in  the  model  is  the  680OO's  memory  address  space.  The  68000 
supports  a  very  large  16M-byte  address  space  that  has  few  hmitations  on  its  use.  That 
is,  program  memory,  data  memory,  and  stack  can  be  located  almost  at  any  address 
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and  are  not  limited  in  size.  It  also  may  be  important  for  the  programmer  to  know 
how  memory  is  organized,  how  the  various  data  types  are  stored  in  memory,  what 
restrictions  exist  on  its  use,  and  the  ways  in  which  it  can  be  accessed  through  addressing 
modes. 

3.3  ASSEMBLY  LANGUAGE  AND  MACHINE  LANGUAGE 

Now  that  we  have  introduced  the  software  model  of  the  68000,  let  us  continue  with 
the  concepts  of  assembly  language  and  machine  language  instructions  and  programs. 
It  is  essential  to  become  familiar  with  these  ideas  before  attempting  to  learn  the 
functions  of  the  instructions  in  the  instruction  set  and  their  use  in  writing  programs. 

Assembly  Language  Instructions 

Assembly  language  instructions  are  provided  to  describe  each  of  the  basic  operations 
that  can  be  performed  by  a  microprocessor.  They  are  written  using  alphanumeric 

symbols  instead  of  the  Os  and  Is  of  the  microprocessor's  machine  code.  An  example 
of  a  short  assembly  language  program  is  shown  in  Fig.  3.2(a).  The  assembly  language 
statements  are  located  on  the  left.  Frequently,  comments  describing  the  statements 
are  included  on  the  right.  This  type  of  documentation  makes  it  easier  for  programmers 
to  write,  read,  and  debug  code.  By  the  term  code  we  mean  programs  written  in  the 

SOURCE  BLOCK  STARTS  AT  $1000 

DESTINATION  BLOCK  STARTS  AT  $2000 

BLOCK  LENGTH  EQUALS  16  WORDS 

MOVE  WORD  AND  POINT  TO  NEXT  WORD 

UPDATE  COUNT 

REPEAT  FOR  NEXT  WORD 

(a) 

003000    43F8100O  LEA.L        $00001000,A1  SOURCE  BLOCK  STARTS  AT  $1000 

003004   45F820OO  LEA.L        $00002000,A2  DESTINATION  BLOCK  STARTS  AT  $2000 

003008    203C0OOO0O10  MOVE.L    ll\b.DO  BLOCK  LENGTH  EQUALS  16  WORDS 

00300E   34D9  MOVE.W  (Al)+  ,(A2)+  MOVE  WORD  AND  POINT  TO  NE.XT  WORD 

003010    5380  SUBQ.L      #1,D0  UPDATE  COUNT 

003012    66FA  BNE.S        $00300E  REPEAT  FOR  NEXT  WORD 

003014   60FE  BRA.S        $003014 

(b) 

LEAL SlOOO.Al 

LEA.L $2000,A2 

MOVE.L #16, DO 

NXTPT MOVE.W (A1)+.(A2)  + 

SUBQ.L #1,D0 

BNE.S NXTPT 

HERE BRA.S HERE 

Figure  3-2    (a)  Typical  68000  assembly  language  program;  (b)  assembled  machine  code. 
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language  of  the  microprocessor.  Programs  written  in  assembly  language  are  called 
source  code. 

Each  instruction  in  the  source  program  corresponds  to  one  assembly  language 
statement.  The  statement  must  specify  which  operation  is  to  be  performed  and  what 
data  operands  are  to  be  processed.  For  this  reason,  an  instruction  can  be  divided 
into  two  separate  parts:  its  opcode  and  its  operands.  The  opcode  is  the  part  of  the 
instruction  that  identifies  the  operation  that  is  to  be  performed.  For  example,  typical 
operations  are  add,  subtract,  and  move. 

In  assembly  language,  we  assign  a  unique  letter  combination  to  each  operation. 
This  letter  combination  is  referred  to  as  a  mnemonic  for  the  instruction.  For  instance, 
the  68000  assembly  language  mnemonics  for  add,  subtract,  and  move  are  ADD,  SUB, 
and  MOVE,  respectively. 

Operands  identify  the  data  that  are  to  be  processed  by  the  microprocessor  as 
it  carries  out  the  operation  specified  by  the  opcode.  For  instance,  an  instruction  can 
add  the  contents  of  address  register  Aq  to  the  contents  of  Aj .  An  assembly  language 
description  of  this  instruction  is 

ADD  A0,A1 

In  this  example,  the  contents  of  AG  and  Al  are  added  together  and  their  sum  is  put 
in  Al .  Therefore,  AO  is  considered  to  be  the  source  operand  and  Al  the  destination 

operand. 
Here  is  another  example  of  an  assembly  language  statement: 

LOOP  MOVE  DO,AO  ;COPY  DO  INTO  AO 

This  instruction  statement  starts  with  the  word  LOOP.  It  is  an  address  identifier  for 
the  instruction  MOVE  DO,AO.  This  type  of  identifier  is  called  a  label  or  tag.  The 

instruction  is  followed  by  "COPY  DO  INTO  AO."  This  part  of  the  statement  is  call- 
ed a  comment.  Thus  a  general  format  for  writing  an  assembly  language  statement  is 

LABEL         INSTRUCTION         ;COMMENT 

Machine  Language  Instructions 

Before  a  source  program  can  be  executed  by  the  microprocessor,  it  must  first  be  run 
through  a  process  known  as  assembling.  This  is  normally  done  on  a  minicomputer 
or  microcomputer  with  a  program  called  an  assembler.  The  result  produced  by  this 
step  is  an  equivalent  program  expressed  in  the  machine  code  that  is  executed  by  the 
microprocessor.  That  is,  it  is  the  equivalent  of  the  source  program  but  now  written 
in  Os  and  Is.  This  program  is  also  referred  to  as  object  code. 

Figure  3.2(b)  is  a  listing  that  includes  the  machine  language  program  for  the 
assembly  language  program  in  Fig.  3.2(a).  It  was  produced  by  a  68000  assembler. 

Reading  from  left  to  right,  this  listing  contains  addresses  of  memory  locations,  fol- 
lowed by  the  machine  code  instructions,  the  original  assembly  language  statements, 

and  comments.  Notice  that  for  simplicity  the  machine  code  instructions  are  expressed 
in  hexadecimal  notation  and  not  as  binary  numbers. 
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3.4  THE  OPERAND  ADDRESSING  MODES  OF  THE  68000 

MICROPROCESSOR 

The  operands  processed  by  the  68000  as  it  executes  an  instruction  may  be  specified 
as  part  of  the  instruction  in  program  memory,  may  reside  in  internal  registers,  or 
may  be  stored  in  data  memory.  The  68000  has  14  different  addressing  modes.  They 
are  shown  in  Fig.  3.3.  The  objective  of  these  addressing  modes  is  to  supply  different 
ways  for  the  programmer  to  generate  an  effective  address  (EA)  that  identifies  the 
location  of  an  operand.  In  general,  operands  referenced  by  an  effective  address  reside 

either  in  one  of  the  68000's  internal  registers  or  in  external  data  memory. 

Mode Generation 

Register  Direct  Addressing 

Dala  Register  Direct EA=Dn 

Address  Register  Direct EA=An 

Absolute  Dsta  Addressing 
Absolute  Short EA=INext  Word! 

Absolute  Long EA=  (Next  Two  Words) 

Program  Counter  Relative  Addressing 
Relative  witii  Offset 

EA=IPCI  +  di6 

Relative  with  Index  and  Offset EA=IPC)  +  IXnl  +  d8 

Register  Indirect  Addressing 

Register  Indirect EA=IAn) 

Postincrement  Register  Indirect EA=IAnl,  An— An  +  N 
Predecrement  Register  Indirect An  — An-N,  EA=IAnl 

Register  Indirect  with  Offset 
EA=(Anl  +  di6 

Indexed  Register  Indirect  v»ith  Offset EA=IAn)  +  (Xnl  +  d8 

Immediate  Data  Addressing 
Immediate DATA  =  Next  Wordlsl 

Quick  Immediate Inherent  Data 

Implied  Addressing 

Implied  Register EA  =  SR,  USP.  SP,  PC 

NOTES 

EA=  Effective  Address 

An  =  Address  Register 

Dn  =  Data  Register 

Xn  =  Address  or  Data  Register 

used  as  index  Register 

SR  =  Status  Register 

PC=  Program  Counter 

I     1  =  Contents  of 

d8  =  8-bit  Offset 

(displacement) 
di6=  16-bit  Offset 

(displacement) 
N=  t  (or  Bvte.  2  for 

Words,  and  4  for  Long 
Words 

•—  =  Replaces 

Figure  3-3    Operand  addressing  modes 
of  the  68000  microprocessor  (Motorola, Inc.). 

Looking  at  Fig.  3.3,  we  see  that  the  14  addressing  modes  have  been  subdivided 
into  six  groups  based  on  how  they  generate  an  effective  address.  These  groups  are: 
register  direct  addressing,  absolute  data  addressing,  program  counter  relative 
addressing,  register  indirect  addressing,  immediate  data  addressing,  and  implied 
addressing.  Notice  that  the  addressing  modes  in  all  groups  other  than  immediate  data 
addressing  produce  an  effective  address.  Let  us  now  look  into  each  of  these  modes 
in  detail. 

Register  Direct  Addressing  Modes 

Register  direct  addressing  modes  are  used  when  one  of  the  data  or  address  registers 
within  the  68000  contains  the  operand  that  is  to  be  processed  by  the  instruction.  In 
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68000 

MA 

PC^
 xxxxxxxx 

Do 

D7 

76543210 

Ao 

USP 

SSP 

1 SR 

Memory 

Address Contents Instruction 

MA 
2008 

MOVE.L  AO.DO 

MA  + : 
xxxx 

Next  instruction 

Figure  3-4     Instruction  using  register  direct  addressing  (a)  before  execution. 

Fig.  3.3,  we  see  that  if  the  specified  register  is  a  data  register,  the  addressing  mode 
is  called  data  register  direct  addressing.  On  the  other  hand,  if  an  address  register  is 
used,  it  is  known  as  address  register  direct  addressing. 

Here  is  an  example  that  employs  both  data  register  direct  addressing  and  address 
register  direct  addressing. 

MOVE.L     AO.DO 

MOVE.L  is  how  we  write  the  move  instruction  to  process  long-word  (32-bit)  data. 
Notice  that  address  register  Aq  is  specified  to  contain  the  source  operand.  This  is 
an  example  of  address  register  direct  addressing.  On  the  other  hand,  the  destination 
operand  uses  data  register  direct  addressing  and  is  specified  as  the  contents  of  data 
register  Dq.  In  this  example,  neither  operand  is  located  in  memory. 



Sec.  3.4         The  Operand  Addressing  Modes  of  the  68000  Microprocessor 39 

68000 

MA  +  2 

PC  — 

-6543210 

D, 

76543210 

A6 

USP 
SSP 

1 
SR 

Memory 

Address Contents 
Instruction 

MA 2008 MOVE.L  AO.DO 

MA  +  2 X.XXX Next  instruction 

Figure  3-4     (com.)  (b)  After  execution. 

Execution  of  this  instruction  causes  the  long  word  in  address  register  Aq  to  be 
copied  into  data  register  Dq.  This  operation  can  also  be  expressed  as 

AO^ — ►DO 

In  Fig.  3.4(a)  we  see  that  before  executing  the  instruction  Aq  contains  $76543210 

and  the  contents  of  Dq  are  a  don't-care  state.  The  symbol  $  stands  for  hexadecimal 
number.  At  the  conclusion  of  execution  of  the  instruction,  both  Aq  and  Dq  contain 
$76543210.  This  result  is  shown  in  Fig.  3.4(b). 

Absolute  Data  Addressing  Modes 

When  the  effective  address  of  an  operand  is  included  in  the  instruction,  we  ?re  using 
what  is  called  absolute  data  addressing  mode.  There  are  two  such  modes  for  the  68000. 
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They  are  known  as  absolute  short  addressing  and  absolute  long  addressing.  These 
addressing  modes  are  used  to  access  operands  that  reside  in  memory. 

If  an  instruction  uses  absolute  short  data  addressing  to  specify  the  location  of 

an  operand,  a  16-bit  absolute  address  must  be  included  as  the  second  word  of  the 
instruction.  This  word  is  the  effective  address  of  the  storage  location  for  the  operand 
in  memory. 

As  an  example,  let  us  consider  the  instruction 

MOVE.L     $1234, DO 

It  stands  for  move  the  long  word  starting  at  address  $1234  in  memory  into  data  register 
Dq.  Notice  that  the  instruction  is  written  with  $1234  in  the  location  for  the  source 
operand.  This  is  the  absolute  address  of  the  source  operand  and  it  is  encoded  by  the 

68000 

MA 

PC  —  
' 

xxxxxxxx 

Do 

D7 

Ao 

A6 

USP 

SSP 

1 SR 

MA 

MA +  2 

MA  +  4 

001234 
001236 

Memory 

Contents 
2038 

■  1234 

xxxx 

L,-  6789 

ABCD 

Instruction 

MOVE.L  $1234,00 

Next  instruction 

(a) 
Figure  3-5     Instruction  using  absolute  data  addressing  (a)  before  execution. 
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assembler  into  the  instruction  as  shown  in  Fig.  3.5(a).  Notice  that  the  address  of  the 
source  operand  is  the  next  word  after  the  instruction  opcode  in  program  memory. 

The  68000  automatically  does  a  sign  extension  based  on  the  MSB  of  the  absolute 

short  address  to  give  a  32-bit  address  (actually  only  24  bits  are  used).  For  our  example, 
the  sign  bit  is  0;  therefore  extending  it  gives  the  address  001 234(5.  Since  only  16  bits 
can  be  used  in  absolute  short  data  addressing  it  always  generates  a  memory  address 
either  in  the  range  OOOOOOi^  through  OOTFFF,^  or  FF8000,6  through  FFFFFFj^.  These 

ranges  correspond  to  the  first  32K  bytes  and  the  last  32K  bytes  of  the  68000's  address 
space,  respectively.  Other  parts  of  the  68000's  address  space  cannot  be  accessed  with 
this  addressing  mode. 

The  result  of  executing  this  instruction  is  shown  in  Fig.  3.5(b).  Notice  that  the 

long  word  starting  at  address  001234|5,  which  equals  6789ABCDig,  is  copied  into 
Memory 

Contents 68000 

MA +  4 

PC 

6789ABCD 

Do 

D, 

Ao 

Ae 

USP 
SSP 

1 SR 

MA 

MA  +  2 

MA  +  4 

001234 
001236 

2038 

1234 xxxx 

6789 ABCD 

MOVE.L$1234,D0 

Next  instruction 

(b) 

Figure  3-5     (com. J  (b)  After  e.xecution. 
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Dq.  Here  we  see  that  the  word  at  the  lower  address,  001234|g,  is  copied  into  the  upper 
16  bits  of  Dq  and  the  word  at  the  higher  address  001236,5  '^  copied  into  the  lower 
16  bits. 

Absolute  long  data  addressing  permits  use  of  a  full  32-bit  quantity  as  the  absolute 
address  data.  This  type  of  operand  is  specified  in  the  same  way  except  that  its  absolute 
address  is  written  with  more  than  four  hexadecimal  digits. 

For  instance,  the  instruction 

MOVE.L     $01234,D0 

has  the  same  effect  as  the  previous  instruction,  but  the  address  of  the  source  operand 
is  encoded  by  the  assembler  as  an  absolute  long  data  address.  That  is,  the  quantity 
$01234  is  encoded  as  a  32-bit  number  instead  of  a  16-bit  number.  This  means  that 
the  instruction  now  takes  up  three  words  of  memory  instead  of  two. 

Since  all  24  bits  are  used,  the  operand  specified  with  absolute  long  addressing 
can  reside  anywhere  in  the  address  space  of  the  68000. 

Program  Counter  Relative  Addressing  IVIodes 

It  is  possible  to  specify  the  location  of  an  operand  relative  to  the  address  of  the 
instruction  that  is  currently  being  processed.  Program  counter  relative  addressing  is 
provided  for  this  purpose.  With  it,  the  effective  address  of  the  operand  to  be  accessed 
is  calculated  relative  to  the  updated  value  held  in  program  counter  (PC).  There  are 
two  types  of  program  counter  relative  addressing:  program  counter  relative  with  offset 
and  program  counter  relative  with  index  and  offset. 

Let  us  begin  with  program  counter  relative  with  offset  addressing.  In  this  case, 

a  16-bit  quantity  identifies  the  number  of  bytes  the  data  to  be  accessed  are  offset 
from  the  updated  value  in  PC.  The  offset,  which  is  also  known  as  the  displacement, 
immediately  follows  the  instruction  word  in  memory.  When  the  instruction  is  fetched 

and  executed,  the  68000  sign-extends  the  offset  to  32  bits  and  then  adds  it  to  the 
updated  contents  of  the  program  counter. 

EA  =  PC  +  dl6 

The  sum  that  results  is  the  effective  address  of  the  operand  in  memory. 
An  example  of  an  instruction  that  employs  this  addressing  mode  is  as  follows: 

MOVE.L     TAG, DO 

This  means  "move  the  long  word  starting  at  the  memory  location  with  TAG  as  its 

label  into  Dq."  The  question  arises:  Where  is  the  label  TAG  in  memory?  The  answer 
lies  with  the  assembler.  It  computes  the  number  of  bytes  the  displacement  word  in 
the  move  instruction  is  offset  from  the  memory  location  corresponding  to  label  TAG. 

This  offset  is  expressed  as  a  signed  16-bit  binary  number  and  is  encoded  as  the 
displacement  word  of  the  instruction. 

Since  the  16-bit  quantity  specifies  the  offset  in  bytes,  the  operand  must  reside 
within  +  or  -  32K  ( +  32767  to  -  32768)  bytes  with  respect  to  the  updated  value  in  PC. 
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The  second  type  of  program  counter  relative  addressing  employs  both  an  index 
and  an  offset.  In  this  addressing  mode,  both  the  contents  of  an  index  register  and 

an  8-bit  displacement  are  combined  with  the  updated  PC  to  obtain  the  operand's 
memory  address.  That  is,  the  effective  address  is  given  by 

EA  =  PC  +  Xn  +  d8 

The  index  register,  which  is  identified  by  X^,  can  be  any  of  the  68000's  data  or  address 
registers.  The  signed  8-bit  displacement  is  specified  by  dg. 

Consider  this  instruction: 

MOVE.L     TABLE(AO.L),DO 

Here  the  source  operand  is  written  such  that  TABLE  represents  the  displacement  and 

Aq  is  the  index  register.  This  instruction  says  to  copy  the  long  word  starting  at  the 
memory  location  in  TABLE  indexed  by  Aq  into  Dq. 

In  this  case,  the  assembler  computes  the  offset  between  the  updated  value  in 
PC  and  the  address  of  label  TABLE.  The  value  of  the  displacement  is  encoded  as 
the  least  significant  byte  in  the  second  word  of  the  instruction. 

The  use  of  program  counter  relative  addressing  with  offset  and  index  to  access 
a  table  in  memory  is  illustrated  in  Fig.  3.6.  The  starting  point  of  the  table  in  memory 
is  identified  by  the  label  TABLE.  Since  just  8  bits  are  provided  for  the  offset,  the 

table  must  begin  within  -i- 127  or  -  128  bytes  of  the  extension  word  of  the  instruction. 
The  size  of  the  table  is  determined  by  the  index.  The  ability  to  specify  up  to  a  32-bit 
index  permits  addressing  of  very  long  tables.  Actually,  the  size  of  the  data  table  is 
limited  by  the  number  of  address  lines  on  the  68000,  which  is  23. 

Addressed  element 

Extension  word 

Offset  (dg) 

(limited  to  +127  or -128  bytes) 

Index  (X„) 

>  (limited  to  +8388607  or 
-8388608  bytes) 

Figure  3-6    Accessing  elements  of  a 
table  with  program  counter  relative  with 
index  and  offset  addressing. 
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Address  Register  Indirect  Addressing  Modes 

Address  register  indirect  addressing  is  similar  to  tlie  register  direct  addressing  we 
discussed  earlier  in  that  an  internal  register  is  specified  when  writing  the  instruction. 

However,  in  this  case,  only  address  registers  Aq  through  A^  can  be  used.  Moreover, 
the  register  does  not  represent  the  location  of  the  operand;  instead,  it  contains  the 
effective  address  of  the  operand  in  memory.  Notice  that  register  indirect  addressing 
enables  the  68000  to  access  information  that  resides  in  external  memory. 

There  are  five  different  kinds  of  register  indirect  addressing  supported  by  the 
68000.  As  shown  in  Fig.  3.3,  they  are  called:  register  indirect  addressing,  postincrement 
register  indirect  addressing,  predecrement  register  indirect  addressing,  register  indirect 
with  offset  addressing,  and  indexed  register  indirect  with  offset  addressing.  We  shall 

Address 

Memory 

Contents Instruction 

MA 
MA +  2 2010 xxxx 

MOVE.L  (AO),D0 

Next  instruction 

001234 001236 
ABCD 

EF89 

(a) 

Figure  3-7     Instruction  using  address  register  indirect  addressing  (a)  before  execution. 
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now  look  at  each  of  these  types  in  more  detail. 
Register  indirect  is  the  simplest  form  of  address  register  indirect  addressing. 

When  it  is  specified,  one  of  the  address  registers  contains  the  address  of  the  source 
or  destination  operand.  For  instance,  in  the  instruction 

MOVE.L     (AO),DO 

the  source  operand  employs  register  indirect  addressing.  Notice  that  this  type  of 
addressing  is  specified  by  enclosing  the  name  of  the  address  register,  which  in  our 
example  is  Aq,  with  parentheses.  The  destination  operand  is  specified  as  Dq  using 
register  direct  addressing. 

Figure  3.7  illustrates  the  result  of  using  this  addressing  mode.  In  Fig.  3.7(a) 

we  see  that  the  contents  of  Aq  are  $1234.  Moreover,  we  see  that  the  long  word  stored 

68000 

MA  +  2 
PC-_ 

ABCDEF89 

Do 

D, 

00001234 

Ao  — 

Ae 

USP 

SSP 

SR 

Memory 

Address Contents Instruction 

MA 
2010 

MOVE.L  (AO),DO 

MA  +  2 xxxx 

001234 ABCD 
001236 

EF89 

(b) 

Figure  3-7     (com.)  (b)  After  execution. 
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at  address  $1234  through  $1237  is  $ABCDEF89.  As  shown  in  Fig.  3.7(b),  execution 
of  the  instruction  causes  this  value  to  be  copied  into  destination  register  Dq. 

Postincrement  register  indirect  addressing  works  essentially  the  same  as  the 
register  indirect  addressing  we  just  demonstrated.  However,  there  is  one  difference. 
This  is  that  after  the  operation  specified  by  the  instruction  is  completed  the  contents 
of  the  address  register  are  automatically  incremented  by  1,  2,  or  4,  depending  on 

whether  byte,  word,  or  long-word  data  are  processed.  In  this  way,  the  address  points 
to  the  next  sequential  element  of  data. 

Our  earlier  example  can  be  rewritten  to  use  postincrement  register  indirect 
addressing.  This  gives 

MOVE.L     (AO)  +  ,DO 

68000 

MA 

PC  — 

xxxxxxxx 

Do 

D7 

00001234 

Ao  — 

A6 

USP 
SSP 

SR 

Address 

Memory 

Contents Instruction 
MA 

MA  +  2 

2018 
xxxx 

MOVE.L  (A0)+,D0 
Next  instruction 

001234 
001236 

ABCD 

EF89 

(a) 
Figure  3-8     Instruction  using  postincrement  register  indirect  addressing  (a)  before  execution. 



Sec.  3.4         The  Operand  Addressing  Modes  of  the  68000  Microprocessor  47 

Here  we  see  that  including  a  +  symbol  after  the  operand  specifies  the  postincrement 
operation. 

If  we  assume  that  the  state  of  the  68000  just  prior  to  execution  of  this  instruction 
is  as  shown  in  Fig.  3.8(a),  the  results  are  similar  to  those  shown  in  Fig.  3.7(b)  for 
register  indirect  addressing.  Again  $ABCDEF89  is  copied  into  Dq.  But  this  time  the 
contents  of  Aq  are  also  incremented  by  4  to  give  $1238,  as  shown  in  Fig.  3.8(b). 
Therefore,  it  points  to  the  start  of  the  next  long  word  in  data  memory. 

Predecrement  register  indirect  addressing  is  the  same  as  postdecrement  register 
indirect  addressing  except  that  the  contents  of  the  selected  address  register  are 
decremented  instead  of  incremented.  Moreover,  the  decrement  operation  takes  place 
prior  to  performing  the  operation  specified  in  the  instruction. 

68000 

MA  +  2 

PC— . 

ABCDEF89 

Do 

D7 

00001238 

Ao  — 

As 

USP 

SSP 

SK 

MA 

MA+  2 

001234 
001236 

001238 
00123A 

Memory 

Contents 

2018 

xxxx 

ABCD 
EF89 
XXXX 
xxxx 

MOVE.L  (AO)+,DO 
Next  instruction 

(b) 

Figure  3-8    (com. J  (b)  After  execution. 
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For  instance,  in  the  instruction 

MOVE.L     -(AO),DO 

the  -  symbol  identifies  predecrement  indirect  addressing.  If  this  instruction  is  executed 
with  the  68000  in  the  state  shown  in  Fig.  3.9(a),  the  address  in  Aq  is  first  decremented 
by  4  and  equals  $1230.  Therefore,  the  contents  of  memory  locations  $1230  through 
$1233  are  copied  into  Dq.  This  result  is  illustrated  by  Fig.  3.9(b). 

Postincrement  and  predecrement  indirect  addressing  allow  a  programmer  to 
implement  memory  scanning  operations  without  the  need  to  update  the  address  pointer 
with  additional  instructions.  This  type  of  addressing  is  useful  for  performing  data 
processing  operations  such  as  block  transfer  and  string  searches. 

USP 

SSP 

■*-  MA 

MA  +  2 

001230 
001232 -001234 

001236 

Memory 

Contents 

2020 
xxxx 

0000 
FFFF 
ABCD 

EF89 

MOVE.L  -  (AO),DO 
Next  instruction 

Figure  3-9    Instruction  using  predecrement  register  indirect  addressing  (a)  before  execution. 
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In  the  address  register  indirect  with  offset  addressing  mode,  a  sign-extended 
16-bit  offset  value  and  an  address  register  are  specified  in  the  instruction.  The  effective 
address  of  the  operand  is  generated  by  adding  the  offset  to  the  contents  of  the  selected 
address  register;  that  is, 

EA  =  An  +  dl6 

The  value  of  offset  dj^  specifies  the  number  of  bytes  the  storage  location  to  be 
accessed  is  offset  from  the  address  in  A^.  It  is  encoded  as  the  second  word  of  the 
instruction. 

Let  us  now  consider  the  instruction 

MOVE.W     16(A0),D0 

Here  we  find  that  an  offset  of  16  (sixteen  bytes)  is  specified  for  the  source  operand. 

68000 

[^ 

MA  +  2 

OOOOFFFF 

Do 

D, 

Ao 

00001230 

As 

USP 

SSP 

SR 1 

Memory 

Address Contents 
Instruction 

MA 2020 MOVE.L  -  (AO),DO 

MA +  2 
xxxx Next  instruction 

-  001230 

0000 
001232 FFFF 

001234 ABCD 
001236 

EF89 

(b) 

Figure  3-9    (com.)  (b)  After  execution. 
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Execution  of  this  instruction  for  the  conditions  in  Fig.  3. 10(a)  produces  the  effective 
address 

EA  =  1234,6  +  16,0  =  1244,6 
As  shown  in  Fig.  3.10(b),  the  word  contents  of  address  $1244,  which  equals  SABCD, 
are  copied  into  the  least  significant  16  bits  of  Dq. 

Since  the  offset  is  a  signed  16-bit  integer  number,  the  operand  to  be  accessed 
must  be  within  +  32767  or  -  32768  bytes  of  the  storage  location  pointed  to  by  the 
contents  of  the  address  register. 

The  last  register  indirect  addressing  mode,  indexed  register  indirect  with  offset 
addressing,  allows  specification  of  an  address  register,  an  offset,  and  an  index  register 

for  formation  of  the  effective  address.  The  offset  value  is  limited  to  a  signed  8-bit 
quantity.  On  the  other  hand,  the  index  register  can  be  the  contents  of  any  of  the 

68000 

PC 

Address 

Memory 

Contents 

MA 3028 

Do 

D, 

Ao 

MA +  2 

MA +  4 

001234 

001244 

1 

0010     — 1 

xxxx 

xxxx 

ABCD  ̂   + 

xxxxxxxx 

00001234 

A6 

USP 

SSP 

SR 1 

MOVE.W  1  6(A0),D0 

Next  instruction 

Figure  3-10     Instruction  using  register  indirect  addressing  with  offset  (a)  before  execution. 
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68(X)0's  data  or  address  registers.  The  effective  address  is  computed  by  adding  the 
contents  of  the  address  register,  the  contents  of  the  inde.x  register,  and  the  offset. 
That  is, 

EA  =  An  +  Xn  +  d8 

Here  is  an  instruction  that  uses  this  addressing  mode  for  its  source  operand. 
MOVE.W     16(A0,A1.L),D0 

The  offset  equals  16|q,  Aq  is  the  address  register,  and  Aj  is  the  index  register.  Figure 
3.1 1(a)  shows  that  A^  contains  $1234  and  A,  contains  $2344.  In  this  case,  the  address 
of  the  source  operand  is  obtained  as 

EA  =  AO  +  Al   +  16,0  =  '234ig  +  2344i6  +  10,6 
=  3588,^ 

68000 

PC 

Address 

Memory 

Contents 

MA +  4 
3028 

Do 

Dt 

N.    MA +  2 

MA +  4 

001234 

001244 

0010     — 

xxxx 

xxxx 

* 

ABCD-  + 

X.X.X.\ABCD 

UOU012j4 

\ 

USP 

SSP 

SR 1 

MOVE.W  16(A0),D0 

Next  instruction 

(b) 

Figure  3-10    (com.)  (b)  After  execution. 
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68000 PC 

Do 

D, 

Ao- 
A,  . 

A, 

USP 

SSP 

SR 

Address 

Memory 

Contents 

MA 
  »-MA 

MA  +  2 

MA +  4 

003588 

2030 

9810-1 
XXXX 

ABCD  -^  + 

xxxxxxxx 

00001234 
1 

00002344 

MOVE.W  16(A0,A1.L),D0 

Next  instruction 

(a) 

Figure  3-11     Instruction  using  indexed  register  indirect  with  offset  addressing  (a)  before  execution. 

Figure  3.1 1(b)  shows  that  the  word  contents  at  this  memory  location  are  ABCD,g. 
This  value  is  copied  into  the  least  significant  word  of  Dg. 

Since  the  offset  value  is  an  8-bit  signed  integer,  the  address  offset  is  limited 
to  +  127  or  -  128  bytes  relative  to  the  location  specified  by  the  sum  of  the  contents 
of  the  address  register  and  the  index  register. 

Address  register  indirect  with  index  and  offset  addressing  is  very  useful  when 

accessing  elements  of  an  array  in  memory.  For  example,  the  two-dimensional  array 
of  Fig.  3.12(a),  which  has  a  size  of  m  +  1  rows  by  /  -I-  1  columns  can  be  stored  in 
memory  as  shown  in  Fig.  3.12(b).  Notice  that  the  first  /  +  1  addresses,  with  starting 
address  at  (WFOOOjg,  contain  the  elements  of  row  0  of  the  array,  that  is,  the  elements 
located  at  columns  0  through  /  of  row  0.  In  both  figures,  these  are  identified  as  E(0,0) 
through  E(0,/).  The  elements  of  row  0  are  followed  in  memory  by  those  for  rows 
1  through  m. 

Let  us  look  at  how  to  access  the  element  located  at  column  j  of  row  i  (E(i,j)). 

In  order  to  access  this  element,  the  first  address  register  Aq  can  be  loaded  with  the 
beginning  address,  SOOFOOO,  of  the  array  in  memory.  In  this  way,  it  points  to  the 
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68000 PC 

Do 

D7 

A,  
■ 

A6 

USP 

SSP 

SR 

Address 

Memory 

Contents 

MA +  4 
                     MA ~-~~,.....^    MA  +  2 

^^*^MA  +  4 

003588 

2030 

9810- 

xxxx 

ABCD  *-  + 

XXXXABCD 

00001234 

00002344 

MOVE.W  16(A0,A1.L),D0 

Next  instruction 

(b) 

Figure  3-11     (com.)  (b)  After  execution. 

first  element  in  the  first  row  of  the  array.  A,  can  be  used  as  the  index  register  and 
loaded  with  an  index  number  such  that  it  points  to  row  i  in  the  array.  Assuming  that 

each  element  uses  a  word  for  storage,  the  value  required  in  index  register  Aj  in  order 
to  access  row  i  is  computed  as  2i  (/  +  1).  Finally,  the  offset  can  be  used  to  select 

the  appropriate  column.  For  element  j,  it  should  be  made  equal  to  2j.  In  this  way, 

the  effective  address  computed  as 

EA  =  AO  +  2i  (/  +   1)  +  2j 

points  to  element  E(i,j).  Notice  that  the  8-bit  offset  limits  the  number  of  columns 
in  the  array  to  a  maximum  of  128. 

For  instance,  let  us  determine  the  effective  address  needed  to  copy  the  word 

in  element  E(5,6)  of  the  array  in  Fig.  3.12  with  m  =  %  into  Dq.  Assume  that  the  array 
of  words  is  stored  starting  at  address  SOOFOOO.  First  we  must  load  registers  Aq  and 
A,  as  follows: 

AO  =  (X)F000,6 

Al   =  2i(/  +  1)  =  2(5)(8 +  1)  =  90,0  =  5A, 
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Column  j E(i,j) 

Column  0 E(m,0) 

Column  / E(m,  /) 
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Element  to  be  addressed 
in  row  i  and  column  j 

(b) 

Figure  3-12    (a)  An  (m  +   1)  x(/+   1 )  two-dimensional  array;  (b)  storage  of  the  array 
in  memory. 
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Then  the  offset  is  obtained  by  multiplying  the  column  dimension  of  the  array  element 
by  2.  This  gives 

d8  =  2j  =  2(6)  =  12,0  =  C,6 

Therefore,  the  effective  address  of  the  element  is 

EA  =  AO  +  Al  +  d8  =  00F000,6  +  SAj^  +  Cjg 
=  00F066,6 

This  element  can  be  copied  into  Dq  by  executing  the  instruction 

MOVE.W     12(A0,A1.L),D0 

Immediate  Data  Addressing  Modes 

With  immediate  data  addressing  mode,  the  operand  to  be  processed  during  the 
execution  of  the  instruction  is  supplied  in  the  instruction  itself.  In  general,  the  data 
are  encoded  and  stored  in  the  word  locations  that  follow  the  instruction  in  program 
memory.  If  the  instruction  processes  bytes  of  data,  a  special  form  of  immediate 
addressing  can  be  used.  This  is  known  as  quick  immediate  addressing.  In  this  case, 

the  data  are  encoded  directly  into  the  instruction's  operation  word.  For  this  reason, 
using  quick  immediate  addressing  takes  up  less  memory  and  executes  faster. 

Here  are  two  examples  of  instructions  that  employ  immediate  data  addressing 
for  their  source  operands. 

MOVEQ  #$C5,D0 

MOVE.W        #$1234,D0 

Notice  that  the  #  symbol  written  before  the  operand  indicates  that  immediate  data 
addressing  is  employed.  The  first  instruction,  move  quick  (MOVEQ),  illustrates  quick 
immediate  addressing.  In  this  instruction,  the  immediate  source  operand  is  C5|g.  As 
shown  in  Fig.  3.13(a),  it  gets  encoded  as  $70C5,  where  the  least  significant  byte  of 
the  instruction  word  is  the  immediate  operand.  Executing  this  instruction  loads  Dq 
with  the  sign-extended  long-word  value  of  $C5;  that  is. 

$FFFFFFC5  -  DO 

MOVEQ  «$C5,  DO - 

-Quick  immediate  operand 

MOVE.W  *$  1234,  DO - 

Figure  3-13   (a)  Coding  of  a  move  in- 
-  Immediate  operand      struction  with  quick  immediate  operand; 

(b)  coding  of  a  move  instruction  with 

general  immediate  operand. 
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Looking  at  the  second  instruction,  we  see  that  its  immediate  source  operand 
is  the  word  1234, g.  Figure  3.13(b)  illustrates  how  its  immediate  operand  gets  encoded 
into  the  second  word  of  the  instruction.  When  the  instruction  is  executed,  sign 
extension  is  not  performed;  instead,  the  value  $1234  is  loaded  into  the  least  significant 
16  bits  of  Dq.  That  is, 

$1234  -^  Least  significant  16  bits  of  Dg 
The  most  significant  16  bits  of  Dq  are  not  affected. 

Implied  Addressing  Mode 

Some  of  the  68000's  instructions  do  not  make  direct  reference  to  operands.  Instead, 
inherent  to  their  execution  is  an  automatic  reference  to  one  or  more  of  its  internal 

registers.  Typically,  these  registers  are  the  stack  pointers,  the  program  counter,  or 
the  status  register. 

An  example  is  the  instruction 

BSR     SUBRTN 

It  stands  for  branch  to  the  subroutine  at  label  SUBRTN.  Both  the  contents  of  the 

program  counter  and  active  stack  pointer  are  always  referenced  during  the  execution 
of  this  instruction. 

Functional  Addressing  Categories 

The  addressing  modes  that  we  have  discussed  in  this  section  can  be  divided  into  four 
categories  based  on  the  manner  in  which  they  are  used.  These  functional  categories 
are:  data  addressing,  memory  addressing,  control  addressing,  and  alterable  addressing. 
The  relationship  between  the  addressing  modes  and  these  four  categories  is  summarized 
by  the  table  in  Fig.  3.14. 
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Figure  3-14    Effective  addressing  mode  categories  (Motorola,  Inc.). 

If  an  addressing  mode  can  be  used  to  reference  data  operands,  it  is  categorized 
as  data  addressing.  Looking  at  Fig.  3.14,  we  see  that  all  addressing  modes  other  than 
address  register  direct  are  classified  as  data  addressing.  Address  register  direct  is  not 
included  because  it  only  allows  access  to  address  information. 
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Similarly,  if  an  addressing  mode  provides  the  ability  to  reference  operands  in 
memory,  it  is  classified  as  memory  addressing.  Notice  in  Fig.  3.14  that  just  the  data 
register  direct  and  address  register  direct  addressing  modes  are  not  classified  in  this 
way.  This  is  because  their  use  is  restricted  to  accessing  information  that  resides  in 
the  internal  registers  of  the  68000. 

An  addressing  mode  is  considered  control  addressing  if  it  can  be  used  to  reference 
an  operand  in  memory  without  specification  of  the  size  of  the  operand.  Notice  in 
Fig.  3.14  that  all  direct  addressing  modes,  indirect  addressing  modes  with  either 
predecrement  or  postincrement,  and  the  immediate  addressing  modes  are  not  included 
in  this  category. 

Moreover,  if  an  addressing  mode  permits  reference  to  operands  that  are  being 
written  into,  it  is  called  an  alterable  addressing  mode.  That  is,  alterable  addressing 
modes  can  be  used  in  conjunction  with  destination  operands.  Looking  at  Fig.  3.14, 
we  see  that  immediate  data  addressing  is  an  example  of  an  addressing  mode  that  cannot 
be  used  to  specify  a  destination  operand.  It  only  can  be  used  to  reference  source 
operands. 

3.5  INSTRUCTION  SET 

Now  that  we  have  introduced  the  software  model  of  the  68000  and  its  addressing 
modes,  we  are  ready  to  begin  our  study  of  its  instructions.  Motorola,  Inc.  has  applied 
orthogonality  in  the  design  of  the  instruction  set  of  the  68000.  That  is,  instead  of 

having  a  large  number  of  instructions  that  include  many  special-purpose  instructions, 
they  have  included  a  smaller  number  of  general-purpose  instructions.  But  the  68000 
is  equipped  with  more  powerful  addressing  modes  and  most  of  the  instructions  can 
use  all  of  the  addressing  modes.  This  makes  its  general  instructions  very  versatile. 
Moreover,  it  results  in  fewer  instruction  mnemonics  for  the  programmer  to  remember 
and  less  restrictions  on  how  operands  can  be  accessed  during  instruction  execution. 

The  68000  microprocessor  provides  a  very  powerful  minicomputer-like 
instruction  set.  It  has  56  basic  instruction  types.  A  summary  of  the  instructions  is 
shown  in  Fig.  3.15.  These  basic  instruction  types  coupled  with  their  variations,  shown 
in  Fig.  3.16,  the  14  addressing  modes,  and  five  data  types  produce  a  large  number 
of  executable  instructions  at  the  machine  code  level. 

For  ease  of  learning,  we  will  divide  the  instructions  of  the  68000's  instruction 
set  into  functionally  related  groups.  In  this  chapter  the  groups  covered  are:  the  data 
movement  instructions,  the  integer  arithmetic  instructions,  the  decimal  arithmetic 
instructions,  the  logic  instructions,  and  the  shift  and  rotate  instructions.  The  rest  of 
the  instruction  set  will  be  presented  in  Chapter  4. 

3.6  DATA  TRANSFER  INSTRUCTIONS 

The  instruction  set  of  the  68000  provides  instructions  to  transfer  data  between  its 
internal  registers,  between  an  internal  register  and  a  storage  location  in  memory,  or 
between  two  locations  in  memory.  The  basic  instructions  in  the  data  transfer  group 
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Mnemonic Description 

ABCD Add  Decimal  with  Extend 
ADD 

Add 

AND 
Logical  And ASL 
Anthmetic  Shift  Left 

ASR Arithmetic  Shift  Right 

Bcc Branch  Conditionally 

BCHG Bit  Test  and  Change 

BCLR Bit  Test  and  Clear 

BRA 
Branch  Always 

BSET Bit  Test  and  Set 

BSR Branch  to  Subroutine 

BTST Bit  Test 

CHK Check  Register  Against  Bounds 

CLR Clear  Operand 

CMP 
Compare 

DBcc Test  Condition.  Decrement  and  Branch 

DIVS Signed  Divide DIVU 
Unsigned  Divide 

EOR 
Exclusive  Or 

EXG Exchange  Registers 

EXT Sign  Extend 

JMP 

Jump 

JSR Jump  to  Subroutine 

LEA 
Load  Effective  Address 

LINK Link  Stack 

LSL 
Logical  Shift  Left 

LSR Logical  Shift  Right 
MOVE Move 
MOVEM Move  Multiple  Registers 

MOVEP Move  Peripheral  Data 
MULS 

Signed  Multiply 
MULU 

Unsigned  Multiply 

NBCD Negate  Decimal  with  Extend NEG 
Negate 

NOP No  Operation NO 
Ones  Complement 

OR Logical  Or 
PEA Push  Effective  Address 

RESET Reset  External  Devices 
ROL 

Rotate  Left  without  Extend 

ROR Rotate  Right  without  Extend 
ROXL Rotate  Left  with  Extend 

ROXR Rotate  Right  with  Extend 
RTE 

Return  from  Exception 

RTR Return  and  Restore 
RTS 

Return  from  Subroutine 

SBCD Subtract  Decimal  with  Extend 

Sec Set  Conditional 
STOP 

Stop 

SUB Subtract 

SWAP Swap  Data  Register  Halves 
TAS 

Test  and  Set  Operand 
TRAP 

Trap 

TRAPV Trap  on  Overflow 
TST 

Test 

UNLK Unlink 

Figure  3-15    Instruction  set  summary 
(Motorola,  Inc.). 
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Instruction 

Type 
Variation Description 

ADD ADD 

Add 

ADDA Add  Address 
ADDQ 

Add  Quick 

ADDI 
Add  Immediate 

ADDX Add  with  Extend 
AND AND 

Logical  AND ANDI AND  Immediate 

ANDI  to  CCR AND  Immediate  to  Condition  Code 

ANDI  to  SR AND  Immediate  to  Status  Register 

CMP CMP Compare 

CMPA Compare  Address 
CMPM Compare  Memory 

CMPI Compare  Immediate 

EOR EOR 
Exclusive  OR 

EORI 
Exclusive  OR  Immediate 

EORI  to  CCR Exclusive  Immediate  to  Condition  Codes 

EORI  to  SR Exclusive  OR  Immediate  to  Status  Register 
MOVE MOVE Move 

MOVEA Move  Address 
MOVEQ Move  Quick 
MOVE  to  CCR Move  to  Condition  Codes 

MOVE  to  SR Move  to  Status  Register 

MOVE  from  SR Move  from  Status  Register 

MOVE  to  USP Move  to  User  Stack  Pointer 

NEG 
NEG 

Negate 

NEGX Negate  with  Extend 

OR OR Logical  OR 

ORI 
OR  Immediate 

ORI  to  CCR OR  Immediate  to  Condition  Codes 

ORI  to  SR OR  Immediate  to  Status  Register 

SUB SUB Subtract 

SUBA Subtract  Address 

SUBI 
Subtract  Immediate 

SUBO 
Subtract  Quick 

SUBX Subtract  with  Extend 

Figure  3-16    Variations  of  instruction  types  (Motorola,  Inc.). 

are  shown  in  Fig.  3.17.  Notice  that  it  includes  the  following  instructions:  move 
(MOVE),  move  multiple  (MOVEM),  load  effective  address  (LEA),  exchange  (EXG), 
swap  (SWAP),  and  clear  (CLR). 

Move  Instruction— MOVE 

The  first  of  the  basic  data  transfer  instructions  in  Fig.  3.17  is  the  MOVE  instruction. 
This  instruction  has  the  ability  to  perform  all  three  of  the  earlier  mentioned  data 
transfer  operations.  That  is,  data  transfers  from  register  to  register,  between  register 
and  memory,  or  memory  to  memory.  Looking  at  Fig.  3.17,  we  see  that  there  are 
eight  different  forms  of  this  instruction.  Notice  that  they  differ  in  both  the  size  of 
operands  they  process  and  the  types  of  operands  that  they  can  access. 

The  first  form  of  the  MOVE  instruction  is 

MOVE     EAs.EAd 

It  permits  movement  of  a  source  operand  location  identified  by  effective  address  EAs 
into  a  destination  location  identified  by  effective  address  EAd.  The  source  and 
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Mnemonic 
Meaning 

Type 

  1 

Operand  Size Operations 

MOVE Move MOVE  EAs.EAd 8,  16,32 (EAsj-EAd 
MOVE  EA.CCR 

16 

(EA)-CCR MOVE  EA,SR 16 

(EA)^SR MOVE  SR.EA 16 
SR-*EA 

MOVE  USP.An 

32 

USP  ̂   An 
MOVE  An.USP 32 An  ̂   USP 
MOVEA  EA,An 16,32 

(EA)^An MOVEQ  #XXX,Dn 8 
#XXX  -»  Dn 

MOVEM Move  multiple MOVEM   Reg_list,EA 16,32 
Reg_list  -  EA MOVEM  EA,Reg_list 16,32 (EA)-Reg_list 

LEA Load  effective  address LEA  EA.An 32 EA->An 

EXG Exchange EXG   Rx.Ry 
32 

Rx"Ry 

SWAP 

Swap 

SWAP  Dn 16 Dn31:16^Dn  15:0 

CLR Clear CLR  EA 8,  16,32 
0-EA 

Figure  3-17    Data  transfer  instructions. 

destination  operands  can  be  located  in  data  registers,  address  registers,  or  storage 
locations  in  memory.  Moreover,  this  instruction  can  be  used  to  process  byte,  word, 

or  long-word  operands. 
Whenever  this  instruction  is  processing  word  or  long-word  data,  the  source 

operand  can  be  specified  using  any  addressing  mode.  However,  for  operation  on  byte 
data,  address  register  direct  addressing  mode  cannot  be  used.  This  is  because  the 

address  registers  can  be  accessed  only  as  word  or  long-word  operands. 
For  the  destination  operand,  only  the  alterable  addressing  modes  are  allowed. 

The  addressing  modes  in  this  group  were  identified  in  Fig.  3.14.  In  other  words, 
program  counter  relative  and  the  immediate  data  addressing  modes  cannot  be  used 
to  specify  the  location  of  the  destination  operand.  Moreover,  when  processing  byte 
operands,  address  register  direct  addressing  cannot  be  used. 

Another  thing  that  may  be  important  to  note  is  how  the  condition  code  bits 

in  the  user  byte  of  the  68000's  status  register  are  affected  by  execution  of  the  MOVE 
instruction.  The  condition  codes  affected  are  the  negative  (N)  bit,  the  zero  (Z)  bit, 
the  overflow  (V)  bit,  and  the  carry  (C)  bit.  N  and  Z  are  set  or  cleared  based  on  the 
resuh  of  the  instruction:  that  is,  the  value  copied  into  the  destination  location.  If 
the  resuh  is  negative,  N  is  set;  otherwise,  it  is  cleared.  Similarly,  if  the  result  is  zero, 
Z  is  set,  and  if  it  is  nonzero,  it  is  cleared.  The  V  and  C  bits  are  always  cleared. 

Here  is  an  example  of  the  move  instruction  that  performs  a  word-copy  operation. 
MOVE.W     D0,D1 

The  source  operand  in  Dq  is  specified  using  data  register  direct  addressing  mode.  Let 
us  assume  that  the  contents  of  register  Dq  are  12345678|g.  The  destination  operand 
in  Dj  is  also  specified  using  data  register  direct  addressing  mode.  Execution  of  the 
instruction  causes  the  least  significant  word  in  Dq,  which  equals  5678ig,  to  be  copied 
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into  the  lower  16  bits  of  D,.  Since  the  result  in  D,  is  positive  and  nonzero,  the 

condition  codes  are  affected  as  follows:  N  =  0,  Z  =  0,  V  =  0,  C  =  0,  and  X  is 
not  affected. 

The  next  two  forms  shown  in  Fig.  3.17  for  the  MOVE  instruction  are  provided 
for  initialization  of  the  status  register.  The  instruction 

MOVE     EA.CCR 

allows  only  the  condition  code  part  of  the  status  register  to  be  specified  as  the 
destination  operand.  This  operand  is  identified  by  CCR.  On  the  other  hand,  any  of 

the  data  addressing  modes  can  be  used  for  the  source  operand.  This  instruction  can 

be  used  to  load  the  user  byte  of  SR  from  memory  or  an  internal  register.  Even  though 

the  source  operand  size  is  specified  as  a  word,  just  its  eight  least  significant  bits  are 
used  to  modify  the  condition  code  bits  in  SR. 

The  second  instruction 

MOVE     EA,SR 

is  used  to  load  all  16  bits  of  the  status  register.  Therefore,  its  execution  loads  both 

the  system  byte  and  user  byte.  Since  this  instruction  updates  the  most  significant  byte 

in  SR,  it  can  be  executed  only  when  the  68000  is  in  the  supervisor  state  (privileged 
instruction). 

Example  3.1 

What  will  be  the  result  of  executing  the  following  sequence  of  instructions? 

MOVE.W  f/ll.DO 

MOVE  DO,  SR 

Assume  that  the  68000  is  in  the  supervisor  state. 

Solution.  Execution  of  the  first  instruction  loads  the  lower  word  of  Dq  with  immediate 
source  operand  12|q. 

12,0  =  0O0C,g  =  0000000000001100, 

After  execution  of  this  instruction,  the  condition  code  bits  of  SR  are  as  follows: 

X  =  unchanged 

N  =  0 

Z  =  0 

V  =  0 

C  =  0 

Check  Fig.  2.7  for  the  meaning  of  each  of  these  bits.  The  result  of  executing  the  second 
instruction  depends  on  the  state  of  the  68000.  We  have  assumed  that  it  is  operating  in 

the  supervisor  state;  therefore,  SR  is  loaded  with  the  lower  word  of  Dq,  which  is 
0000000000001100,. 

DO  =  XXXXXXXXXXXXXXXXOOOOOOOOOOOOllOO, 

SR  =  0000000000001100, 
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This  gives  the  condition  codes  that  follow: 

X  =  0 

N  =  1 

Z  =  1 

V  =  0 

C  =  0 

The  next  form  of  the  MOVE  instruction  shown  in  Fig.  3.17  is 

MOVE  SR,EA 

Notice  that  its  source  operand  is  always  the  contents  of  SR  and  that  the  destination 
operand  is  represented  by  the  effective  address  EA.  Therefore,  this  instruction  permits 
the  programmer  to  save  the  contents  of  the  status  register  in  an  address  register,  data 
register,  or  a  storage  location  in  data  memory.  In  specifying  the  destination  operand, 
only  those  addressing  modes  identified  in  Fig.  3.14  as  alterable  can  be  used. 

For  example,  executing  the  instruction 

MOVE  SR,D7 

causes  the  contents  of  SR  to  be  copied  into  data  register  D^.  No  condition  codes  are 
affected  due  to  the  execution  of  this  instruction.  Since  this  instruction  reads  but  does 

not  modify  the  contents  of  SR,  it  can  be  executed  when  the  68000  is  in  either  the 
user  state  or  the  supervisor  state. 

The  move  user  stack  pointer  instructions  are  shown  in  Fig.  3.17  to  be 

MOVE     USP,An 

and 

MOVE     An,USP 

Notice  that  the  data  transfer  that  takes  place  is  always  between  the  user  stack  pointer 
(USP)  register  and  one  of  the  address  registers.  For  this  reason,  these  instructions 
are  used  to  read  and  to  modify  the  user  stack  pointer,  respectively.  Since  USP  is  a 

32-bit  register,  both  the  source  and  destination  operands  are  always  long  word  in 
size.  Both  of  the  instructions  are  privileged  and  must  only  be  executed  when  the  68000 
is  in  the  supervisor  state. 

An  efficient  way  of  loading  an  address  register  from  another  address  register, 
data  register,  or  storage  location  in  memory  is  with  the  move  address  instruction. 
In  Fig.  3.17,  this  form  of  the  MOVE  instruction  is  given  as 

MOVEA     EA,An 

This  instruction  allows  the  operand  to  be  either  16  bits  or  32  bits  in  length.  If  the 

source  operand  is  specified  as  a  word,  the  address  word  is  sign-extended  to  give  a 
long  word  before  it  is  moved  into  the  address  register. 
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The  source  operand  can  be  specified  using  any  of  the  68000's  addressing  modes. 
For  instance,  the  instruction 

MOVEA.L     (A0),A6 

employs  address  register  indirect  addressing.  Execution  of  this  instruction  causes  the 

long-word  contents  of  the  memory  location  pointed  to  by  the  address  in  Aq  to  be 
loaded  into  address  register  A^.  Condition  codes  are  not  affected  by  execution  of 
this  instruction. 

The  last  form  of  the  MOVE  instruction  we  find  in  Fig.  3.17  is 

MOVEQ     #XXX,Dn 

This  instruction,  move  quick,  is  used  to  load  a  data  register  efficiently  with  a 

byte-wide  immediate  operand.  An  example  is  the  instruction 

MOVEQ     #4,D1 

The  immediate  operand,  which  is  decimal  number  4,  is  encoded  directly  into  the 
instruction  operation  word.  When  this  instruction  is  executed,  the  immediate  data 
are  loaded  into  data  register  Dj.  However,  before  the  value  is  loaded,  it  is  sign 
extended  to  32  bits.  Therefore,  the  value  loaded  into  D,  is  00000004,^. 

Move  Multiple  Registers  instruction— MOVEM 

The  move  multiple  registers  (MOVEM)  instruction  provides  an  efficient  mechanism 
for  saving  the  contents  of  the  internal  registers  into  memory  or  to  restore  their  contents 
from  memory.  One  use  of  this  instruction  is  to  initialize  a  group  of  registers  from 
a  table  in  memory.  This  operation  can  be  done  with  a  series  of  MOVE  instructions 
or  with  just  one  MOVEM  instruction. 

Another  operation  for  which  it  can  be  useful  is  when  working  with  subroutines. 
For  instance,  if  a  subroutine  is  to  be  initiated,  typically  the  contents  of  the  registers 
that  are  used  during  its  execution  must  be  saved  in  memory.  Moreover,  after  its 
execution  is  complete,  their  contents  must  be  restored.  In  this  way,  when  program 
control  is  returned  to  the  main  program,  the  registers  reflect  the  same  information 
that  they  contained  prior  to  entry  into  the  subroutine.  Either  the  save  or  restore 
operation  can  be  performed  with  a  single  MOVEM  instruction. 

The  two  forms  of  MOVEM  are  shown  in  Fig.  3.17.  The  first  form, 

MOVEM     Reg-list, EA 

is  employed  to  save  the  contents  of  the  registers  specified  in  register  list  (Reg-list) 
in  memory.  They  are  saved  at  consecutive  addresses  in  memory  starting  at  the  address 
specified  by  the  destination  operand.  Any  of  the  control  addressing  modes  and  address 
register  indirect  with  predecrement  can  be  used  in  conjunction  with  the  destination 
operand. 

The  register  list  can  include  any  combination  of  data  and  address  registers.  A 
list  of  the  registers  to  be  saved  is  coded  into  a  second  word  of  the  instruction.  This 
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word  is  called  the  register  list  mask.  As  shown  in  Fig.  3.18(a),  each  bit  of  this  mask 

corresponds  to  one  of  the  68000's  internal  registers.  Setting  a  bit  to  1  indicates  that 
the  corresponding  register  is  included  in  the  list  and  0  indicates  that  it  is  not  included. 

Notice  that  data  registers  Dq  through  D^  correspond  to  bits  0  through  7  of  the  mask, 

respectively,  and  address  registers  Aq  through  Ay  correspond  to  bits  8  through  15, 
respectively.  When  address  register  indirect  with  predecrement  addressing  is  used, 
the  meaning  of  the  bits  of  the  mask  word  are  changed  as  shown  in  Fig.  3. 18(b).  The 

register  corresponding  to  the  first  set  bit  is  saved  first,  followed  by  the  register 

corresponding  to  the  next  set  bit  and  so  on.  The  last  saved  register  corresponds  to 
the  last  set  bit. 
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Figure  3-18   (a)  Register  list  mask  word  format  for  control  mode  and  postincrement 
addressing;  (b)  format  for  address  register  indirect  with  predecrement  addressing. 

This  instruction  can  be  written  to  perform  word  or  long-word  data  transfers. 
In  a  word  operation,  only  the  least  significant  word  parts  of  the  specified  registers 

are  saved  in  memory.  In  this  case,  it  requires  one  word  of  memory  storage  for  each 

register.  However,  if  long-word  transfers  are  specified,  each  register  needs  two  words 
of  memory. 

The  second  form  of  the  MOVEM  instruction  shown  in  Fig.  3.17  permits  the 

internal  registers  of  the  68000  to  be  initialized  or  restored  from  memory.  It  is  written  as 

MOVEM     EA,Reg-Iist 

Execution  of  this  instruction  causes  the  word  or  long-word  contents  of  the  registers 

in  Reg-list  to  be  loaded  one  after  the  other  from  memory.  When  specifying  the  source 
operand,  the  starting  address  of  the  table  of  values  to  be  loaded  can  only  use  the 
control  or  postincrement  addressing  modes. 

Example  3.2 

Write  an  instruction  that  will  do  the  reverse  of  the  instruction 

MOVEM. W     DO/D1/A5,$AFOO 

Solution.  This  instruction  will  save  the  lower  words  of  registers  Dq,  D,,  and  A5  in 
memory  at  word  addresses  AFOO,^,  AF02,g,  and  AF04,^,  respectively.  To  restore  the 
registers,  the  instruction  is  written  as 

MOVEM. W     $AF00,D0/D1/A5 

Figure  3.19  illustrates  what  happens  due  to  the  execution  of  these  two  instructions. 
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Address 

Memor>- 
AF00,6 

AF02,, 

AF04„ 

Save,,^ 
Registers 
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16  15 
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X  3
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0 
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Figure  3-19    Save  and  restore  of  processor  register  contents  as  i  mplemented  with  the 
MOVEM  instructions. 

Load  Effective  Address  Instruction— LEA 

A  way  of  directly  loading  an  address  register  with  an  address  is  with  the  load  effective 

address  (LEA)  instruction.  The  form  of  this  instruction  is  given  in  Fig.  3.17  as 

LEA     EA.An 

Execution  of  this  instruction  does  not  load  the  destination  operand  with  the  contents 

of  the  specified  source  operand.  Instead,  it  computes  an  effective  address  based  on 

the  addressing  mode  used  for  the  source  operand  and  loads  this  value  into  the  address 

register  specified  as  the  destination.  Only  the  control  addressing  modes  listed  in  Fig. 
3.14  can  be  used  to  describe  the  source  operand. 

Example  3.3 

Describe  what  happens  when  the  instruction 

LEA     6(A1,D0),A2 

is  executed.  Assume  that  A,  =  00004000,^  and  Dq  =  000012AB,g. 
Solution.  This  instruction  uses  address  register  indirect  with  index  addressing  for  the 

source  operand.  Its  destination  is  simply  address  register  Aj.  Execution  of  the  instruction 

causes  Aj  to  be  loaded  with  the  effective  address 

A2  =  Al  +  DO  +  6,0 

Using  the  values  given  for  the  contents  of  A,  and  Dq,  we  find  that  the  effective  address 
loaded  into  A2  equals 

A2  =  00004000,^  +  000012AB,^  +  6,^ 
=  00005281,^ 

Exchange  Instruction— EXG 

Earlier  we  showed  how  the  MOVE  instruction  could  be  used  to  move  the  contents 

of  one  of  the  internal  registers  of  the  68000  to  another  internal  register.  Another  type 

of  requirement  for  some  applications  is  to  exchange  efficiently  the  contents  of  two 
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registers.  It  is  for  this  reason  that  the  exchange  (EXG)  instruction  is  included  in  the 
instruction  set  of  the  68000. 

This  instruction  is  shown  in  Fig.  3.17  to  have  the  form 
EXG     Rx,Ry 

Here  Rx  and  Ry  stand  for  arbitrarily  selected  data  or  address  registers.  An  example 
is  the  instruction 

EXG     D0,A3 

It  will  load  data  register  Dq  with  the  contents  of  address  register  A3  and  A3  with 
the  contents  of  Dq.  For  example,  if  Dq  contains  FFFFFFFFi^  and  A3  contains 
00000000, g,  the  result  after  executing  the  instruction  is  that  Dq  now  contains 
OOOOOOOOjg  and  A3  contains  FFFFFFFFjg.  The  data  transfers  that  take  place  are 
always  32  bits  long  and  no  condition  code  bits  are  affected. 

Swap  Instruction— SWAP 

The  swap  (SWAP)  instruction  is  similar  to  the  exchange  instruction  in  that  it  has 
the  ability  to  exchange  two  values.  However,  it  is  used  to  exchange  the  upper  and 
lower  words  in  a  data  register.  The  general  form  of  SWAP  is  given  in  Fig.  3.17  as 

SWAP  Dn 

An  example  is 

SWAP     DO 

When  this  instruction  is  executed,  the  contents  of  the  lower  16  bits  of  Dq  are  swapped 
with  its  upper  16  bits.  If  the  original  contents  of  Dq  are  FFFF0000,5,  execution  of 

the  instruction  results  in  the  value  OOOOFFFFjg  in  Dq.  The  32-bit  value  that  results 
in  Dq  after  the  swap  operation  is  used  to  set  or  reset  the  condition  code  flags. 

Clear  Instruction— CLR 

The  CLR  instruction  can  be  used  to  initialize  the  contents  of  an  internal  register  or 
storage  location  in  data  memory  to  zero.  Figure  3.17  shows  that  the  instruction  is 
written  in  general  as 

CLR     EA 

and  that  it  can  perform  its  operation  on  byte,  word,  or  long-word  operands.  All 
alterable  addressing  modes  except  address  register  direct  can  be  used  to  access  the 
operand. 

For  instance,  to  clear  the  least  significant  8  bits  of  Dq,  the  following  instruction 
is  executed: 

CLR.B     DO 

Whenever  this  instruction  is  executed,  the  Z  bit  of  SR  is  set  and  the  N,  V,  and  C 
bits  are  cleared.  Moreover,  the  X  bit  is  not  affected. 
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3.7  INTEGER  ARITHMETIC  INSTRUCTIONS 

The  instruction  set  of  the  68000  provides  instructions  to  perform  binary  arithmetic 
operations,  such  as  add,  subtract,  multiply,  and  divide.  These  instructions  can  process 
both  signed  and  unsigned  numbers.  Moreover,  the  data  being  processed  can  be 
organized  as  bytes,  words,  or  long  words.  The  instructions  in  this  group  are  shown 
in  Fig.  3.20. 

Mnemonic Meaning Type 
Operand  Size Operation 

ADD 
Addl 

ADD  EA,  Dn 
8,  16,32 

(EA)  +  Dn  -*  Dn ADD  Dn,  EA 
8,16,32 Dn  +  (EA)  -  EA 

ADDl  #XXX,  EA 
8,  16,32 #XXX  +  (EA)-EA 

ADDQ  #XXX,  EA 
8,  16,32 #XXX  +  (EA)  ->  EA ADDX  Dy,  Dx 
8,16,32 Dy  +  Dx  +  X  -  Dx 

ADDX   ^(Ay), -(Ax) 8,  16,32 -  (Ay)  +  -  (Ax)  +  X  ->  (Ax) 
ADDA  EA,  An 

16,32 
(EA)  +  An  -  An 

SUB SubtractI SUB  EA,  Dn 
8,  16,32 

Dn  -  (EA)  -  Dn 
SUB  Dn,  EA 

8,  16,32 
(EA)  -  Dn  -  EA SUBI  #XXX,  EA 8,  16,32 
(EA)-#XXX-*EA SUBQ  #XXX,  EA 8,  16,32 
(EA)  -  #XXX  ->  EA SUBX  Dy,  Dx 

8,16,32 Dx  -  Dy  -*  Dx 
SUBX   -  (Ay),  -  (Ax) 8,  16,32 

-(Ax)-   -(Ay) -(Ax) 

SUBA  EA,  An 
16,32 An  -  (EA)  -  An 

NEG Negate NEG  EA,  Dn 
8,16,32 

0  -  (EA)  -  EA 

NEGX  EA,  Dn 
8,  16,32 0-(EA)-X-EA 

MUL 
Multiply 

MULS  EA,  Dn 16 
(EA)  •  Dn  -  Dn MULU  EA,  Dn 

16 

(EA)  •  Dn  -  Dn 

DIV Divide DIVS  EA,  Dn 32-  16 
Dn-(EA)->Dn 

DIVU  EA,  Dn 32-  16 
Dn-(EA)-'Dn 

EXT Extend  sign EXT.W  Dn 

8-*  16 

Dn  byte  -►  Dn  word 
EXT.L   Dn 16^32 Dn  word  -'  Dn  long  word 

Figure  3-20    Integer  arithmetic  instructions. 

The  condition  code  bits  in  the  SR  register  are  set  or  reset  as  per  the  result  of 
arithmetic  instructions.  For  ADD,  SUB,  and  NEG  instructions  the  five  condition 
code  bits  are  affected  as  follows: 

N  is  set  if  the  result  is  negative,  cleared  otherwise 

Z  is  set  if  the  result  is  zero,  cleared  otherwise 

V  is  set  if  an  overflow  occurs,  cleared  otherwise 

X  and  C  are  set  if  carry  is  generated  or  borrow  is  taken,  cleared  otherwise 

For  MUL,  DIV,  and  EXT  instructions,  V  and  C  are  always  cleared,  X  is  not  affected, 
and  N  and  Z  are  set  or  cleared  like  that  in  other  arithmetic  instructions:  ADD,  SUB, 
and  NEG. 
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Addition  Instructions— ADD,  ADDI,  ADDQ,  ADDX, 
and  ADDA 

For  implementing  the  binary  addition  operation,  the  68000  provides  five  types  of 
add  instructions.  All  five  forms  together  with  their  permitted  operand  sizes  are  shown 
in  Fig.  3.20.  The  different  types  of  instructions  are  provided  for  dealing  with  different 
kinds  of  addition  requirements.  For  instance,  when  addresses  are  manipulated,  we 
want  to  operate  on  data  in  the  address  registers  and  do  not  want  to  affect  the  condition 
codes  in  SR.  Thus  for  this  situation  a  special  address  addition  (ADDA)  instruction 
is  provided. 

The  first  four  forms  of  the  add  instruction  in  Fig.  3.20  are  generally  used  to 
process  data  and  the  last  form  is  for  modifying  addresses.  Two  forms  of  the  basic 
add  (ADD)  instruction  are  shown.  The  first  form 

ADD     EA,Dn 

adds  the  contents  of  the  location  specified  by  the  effective  address  EA  to  the  contents 
of  data  register  D„;  that  is, 

(EA)  +  Dn  -»  Dn 
The  source  operand  can  be  located  in  an  internal  register  or  a  storage  location  in 
memory.  Moreover,  its  effective  address  can  be  specified  with  any  of  the  addressing 
modes  of  the  68000.  The  only  exception  is  that  the  size  of  the  operand  cannot  be 
specified  as  a  byte  when  address  register  direct  addressing  mode  is  used. 

For  instance,  the  instruction 

ADD.L     D0,D1 

causes  the  contents  of  Dq  to  be  added  to  the  contents  of  Dj.  If  the  original  contents 
of  Dq  are  $00013344  and  that  of  D,  are  SOOOOOFFF,  the  sum  that  is  produced  equals 
$00014343  and  it  is  saved  in  D,. 

The  second  form  is  similar  except  that  it  represents  the  addition  of  the  contents 
of  a  source  data  register  to  the  contents  of  a  destination  operand  that  is  identified 
by  the  effective  address  EA. 

ADD     Dn,EA 

Dn  +  (EA)  -*  EA 
In  this  case  only  the  alterable  memory  addressing  modes  are  applicable  to  the 
destination  operand. 

Example  3.4 

Write  an  instruction  sequence  that  can  be  used  to  add  two  long  words  whose  locations 
in  memory  are  specified  by  the  contents  of  address  registers  A,  and  A,,  respectively. 
The  sum  is  to  replace  the  contents  of  the  storage  location  pointed  to  by  the  address  in 
A-,. 

Solution.  We  will  use  Dq  as  an  intermediate  storage  location  for  implementing  the 
memory-to-memory  add.  The  instruction  sequence  is 
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CLR.L  DO 

ADD.L  (A1),D0 

ADD.L  D0,(A2) 

The  instruction  add  immediate  (ADDI)  operates  similarly  to  the  ADD  instruction 
we  just  introduced.  The  important  difference  is  that  now  the  value  of  the  source 
operand  is  always  located  in  program  memory  as  an  immediate  operand.  That  is, 
it  is  encoded  as  the  second  word  of  the  instruction  for  byte  and  word  operands  or 

as  a  second  and  third  word  for  long-word  operands.  The  general  instruction  format 
as  shown  in  Fig.  3.20  is 

ADDI     #XXX,EA 

Here  #XXX  stands  for  the  immediate  source  operand  and  EA  is  the  effective  address 
of  the  destination  operand.  For  example,  the  instruction 

ADD.L  #$OFFFF,DO 

causes  the  value  FFFFjg  to  be  added  to  the  long-word  contents  of  Dq. 
The  add  quick  (ADDQ)  instruction  of  Fig.  3.20  is  a  special  variation  of  the 

add-immediate  instruction.  It  limits  the  size  of  the  source  operand  to  the  range  1 
through  8. 

An  example  is  the  instruction 

ADDQ  #3,D1 

It  stands  for  add  the  number  3  to  the  contents  of  Dj.  These  immediate  data  are 
encoded  directly  into  the  instruction  word.  For  this  reason,  ADDQ  encodes  in  fewer 
bytes  and  executes  faster  than  ADDI.  Therefore,  it  is  preferred  when  memory 
requirement  and  execution  times  are  to  be  minimized.  Of  course,  the  addition  that 
is  performed  cannot  involve  a  number  larger  than  8  as  the  source  operand. 

The  next  type  of  addition  instruction  in  Fig.  3.20  is  the  add  extend  (ADDX) 
instruction.  It  differs  from  the  earlier  instructions  in  that  the  addition  it  performs 
involves  the  two  operands  along  with  the  extend  (X)  bit  of  SR.  One  form  of  the 
instruction  is 

ADDX     Dy,Dx 

and  the  arithmetic  operation  it  performs  is 

Dy  -I-  Dx  -I-  X  —  Dx 

That  is,  the  contents  of  data  register  Dy  are  added  to  the  contents  of  data  register 
Dx  and  extend  bit  X.  The  sum  that  results  is  placed  in  Dx.  Notice  that  both  operands 
must  always  be  in  data  registers. 

The  other  form  of  the  ADDX  instruction,  as  shown  in  Fig.  3.20,  specifies  its 
operands  with  predecrement  address  register  indirect  addressing.  It  permits  access 
to  data  stored  in  memory. 
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The  last  form  of  the  addition  instruction  in  Fig.  3.20  is  the  add  address  (ADDA) 
instruction.  Its  form  is 

ADDA  EA.An 

and  its  execution  results  in 

(EA)  +  An  ̂   An 
The  source  operand  can  employ  any  of  the  addressing  modes  of  the  68000.  For  this 
reason  the  source  operand  can  reside  in  an  internal  register  or  storage  location  in 

memory.  On  the  other  hand,  the  destination  is  always  an  address  register.  Since  the 

destination  operand  is  always  an  address  register,  only  word  or  long-word  operations 
are  permitted. 

Example  3.5 

If  the  values  in  Dj  and  Aj  are  76543210, ^  and  0OO0ABCD,g,  respectively,  what  is  the 
result  produced  by  executing  the  instruction 

ADDA.W     D3,A3 

Solution.     Execution  of  this  instruction  causes  the  word  value  in  Dj  to  be  added  to  the 
contents  of  A3.  This  gives 

A3  =  XXXX3210,g  +  O0OOABCD,g =  OOOODDDD,^ 

Subtraction  Instructions— SUB,  SUBI,  SUBQ,  SUBX, 
and  SUBA 

Having  covered  the  addition  instructions  of  the  68000,  let  us  look  at  the  instructions 

provided  to  perform  binary  subtraction.  As  shown  in  Fig.  3.20,  the  subtraction 
instruction  also  has  five  basic  forms.  Notice  that  these  forms  are  identical  to  those 

already  described  for  the  addition  operation.  For  this  reason  we  will  present  the 
subtraction  instructions  in  less  detail. 

The  general  subtraction  (SUB)  instruction  of  the  68(XX)  can  be  written  in  general 

using  either  the  form 

SUB     EA,Dn 

or 

SUB     Dn,EA 

The  first  form  permits  the  contents  of  an  internal  register  or  storage  location  in 

memory  to  be  subtracted  from  the  contents  of  a  data  register.  The  difference  that 
is  obtained  is  stored  in  the  selected  destination  data  register.  This  operation  can  be 

expressed  as 

Dn  -  (EA)  -*  Dn 
For  instance,  the  instruction 

SUB     D0,D1 
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performs  a  register-to-register  subtraction.  The  difference  D,  -  Dg  is  saved  in  D,. 
The  second  SUB  instruction  in  Fig.  3.20  performs  the  opposite  subtraction 

operation.  Its  source  operand  is  a  data  register  within  the  68000  and  the  location 

of  the  destination  is  specified  by  an  effective  address.  Therefore,  it  can  be  a  data 

register,  address  register,  or  storage  location  in  data  memory. 

The  next  two  subtraction  instructions  in  Fig.  3.20,  subtract  immediate  (SUBI) 

and  subtract  quick  (SUBQ),  permit  an  immediate  operand  in  program  memory  to 

be  subtracted  from  the  destination  operand  identified  by  EA.  The  destination  operand 

can  be  a  data  register  or  a  storage  location  in  data  memory.  These  instructions  operate 
the  same  as  their  addition  counterparts  except  that  they  calculate  the  difference 

between  their  source  and  destination  operands  instead  of  their  sum. 
For  instance, 

SUBI.W  #$1234,D0 

causes  the  value  1234,^  to  be  subtracted  from  the  contents  of  Dq.  Assuming  that  Dp 
initially  contains  OOOOFFFF15,  the  difference  produced  in  Dq  is 

FFFF,6  -     1234,,  =  EDCB,, 

Extend  subtract  (SUBX),  just  like  ADDX,  includes  the  extend  (X)  bit  of  SR 

in  the  subtraction.  Moreover,  the  same  source  and  destination  operand  variations 

are  permitted  as  for  the  ADDX  instruction.  For  example,  the  first  form  in  Fig.  3.20  is 

SUBX  Dy,Dx 

and  it  performs  the  subtraction 

Dx  -  Dy  -  X  —  Dx 

For  example,  if  D,   and  Dj  contain  the  values  76543210,6  ̂ "^^  0000ABCD,g, 
respectively,  and  the  extend  bit  is  l,,  the  result  produced  by  executing  the  instruction 

SUBX.W     D1,D2 

D2  =  0000ABCD,6  -  XXXX3210,6  -  I,, =  79BC,6 

Finally,  subtract  address  (SUBA)  of  Fig.  3.20  is  used  to  modify  addresses  in 

Aq  through  Ag  by  subtraction.  For  example,  it  can  be  used  to  subtract  the  contents 

of  data  register  D7  from  the  address  in  Aj  with  the  instruction 

SUBA     D7,A5 

Negate  Instructions— NEG  and  NEGX 

Another  type  of  arithmetic  instruction  is  the  negate  instruction.  Two  forms  of  this 

instruction  are  shown  in  Fig.  3.20.  The  negate  instructions  are  similar  to  the  subtract 

instructions  in  that  the  specified  operand  is  subtracted  from  another  operand. 
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However,  in  this  case,  the  other  operand  is  always  assumed  to  be  zero.  Subtracting 
any  number  from  zero  gives  its  negative. 

The  basic  negate  (NEG)  instruction  is  used  to  form  the  negative  of  the  specified 
operand.  It  is  given  in  general  by 

NEG     EA 

and  an  example  is  the  instruction 

NEG.W     DO 

If  the  original  contents  of  Dq  are  OOFFj^,  execution  of  the  instruction  produces  the 
result  FFOl,^. 

Negate  with  extend  (NEGX)  differs  from  NEG  in  that  it  subtracts  both  the 
contents  of  the  specified  operand  and  the  extend  (X)  flag  from  0.  That  is,  it  performs 
the  operation 

0  -  (EA)  -  X  -*  EA 
Both  instructions  can  be  written  to  process  bytes,  words,  or  long  words  of  data. 

Moreover,  the  addressing  modes  permitted  for  the  operand  are  the  alterable  addressing 
modes  that  were  shown  in  Fig.  3.14. 

Multiplication  Instructions— MULS  and  MULU 

The  68000  provides  instructions  that  perform  the  multiplication  arithmetic  operation 
on  unsigned  or  signed  numbers.  Separate  instructions  are  provided  to  process  these 
two  types  of  numbers.  As  shown  in  Fig.  3.20,  they  are  signed  multiply, 

MULS  EA.Dn 

and  unsigned  multiply, 

MULU  EA.Dn 

Both  MULS  and  MULU  have  two  16-bit  operands  that  are  labeled  EA  and  Dn.  The 
source  operand  EA  can  be  specified  with  any  of  the  data  addressing  modes  and  the 
destination  operand  always  uses  data  register  direct  addressing.  Both  the  source  and 
destination  operands  are  treated  as  signed  numbers  when  executing  MULS  and  as 

unsigned  numbers  when  executing  MULU.  The  result,  which  is  a  32-bit  number,  is 
placed  in  the  destination  data  register. 

Here  is  an  example  of  the  instruction  needed  to  multiply  the  unsigned  word 
number  in  data  register  Dj  by  the  unsigned  word  number  in  Dq. 

MULU     DO.Dl 

At  completion  of  execution  of  the  instruction,  the  long-word  product  that  results 
is  in  D[. 

As  in  most  arithmetic  instructions,  the  condition  code  bits  of  SR  are  updated 
based  on  the  product  that  resuUs.  Two  of  the  condition  code  bits,  zero  (Z)  and  negative 
(N),  are  affected  based  on  the  results.  On  the  other  hand,  carry  (C)  and  overflow 
(V)  are  always  cleared. 
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Division  Instructions— DIVS  and  DIVU 

Similar  to  the  multiplication  instructions  of  the  68000,  there  is  &  signed  divide  (DIVS) 
instruction  and  an  unsigned  divide  (DIVU)  instruction.  They  are  expressed  in  general 
as 

DIVS       EA,Dn 

and 

DIVU      EA.Dn 

The  destination  operand,  which  is  the  dividend,  must  be  the  contents  of  one  of  the 
data  registers.  The  source  operand,  which  is  the  divisor,  can  be  accessed  using  any 
of  the  data  addressing  modes  of  the  68000. 

Execution  of  either  of  these  instructions  causes  the  32-bit  dividend  identified 

by  the  destination  operand  to  be  divided  by  the  16-bit  divisor  specified  by  the  effective 
address.  The  16-bit  quotient  that  results  is  produced  in  the  lower  word  of  the 
destination  data  register  and  the  remainder  is  placed  in  the  upper  word  of  the  same 
register.  The  sign  of  the  remainder  produced  by  a  signed  division  is  always  the  same 
as  that  of  the  dividend. 

The  condition  codes  that  are  affected  by  the  division  instruction  are  zero  (Z) 
and  negative  (N).  They  are  set  or  reset  based  on  the  quotient  value  and  its  sign. 
Furthermore,  the  carry  flag  is  always  cleared.  If  the  result  turns  out  to  be  over  16 
bits,  the  overflow  condition  code  bit  is  set  and  the  destination  operand  is  not  changed. 
Thus  one  should  check  the  V  flag  for  an  overflow  after  executing  a  division  instruction. 
An  attempt  to  divide  by  zero  is  also  automatically  detected  by  the  68000. 

Sign  Extend  instruction— EXT 

The  68000  provides  the  sign  extend  (EXT)  instruction  for  sign  extension  of  byte  or 
word  operands.  As  shown  in  Fig.  3.20,  the  general  form  of  this  instruction  is  given  by 

EXT     Dn 

Notice  that  its  operand  must  be  located  in  a  data  register.  When  EXT  is  executed, 
the  sign  bit  of  the  operand  is  copied  into  the  most  significant  bits  of  the  register. 

For  instance,  when  the  word  value  in  D,  must  be  extended  to  a  long  word,  the 
instruction 

EXT.L     Dl 

can  be  executed.  It  causes  the  value  in  bit  15  (the  sign  bit)  to  be  copied  into  bits  16 
through  31  of  D,. 

Sign  extension  is  required  before  data  of  unequal  lengths  can  be  involved  in 
signed  arithmetic  operations.  For  instance,  if  one  of  the  operands  for  an  addition 
instruction  that  is  written  to  process  word  data  is  expressed  as  a  signed  byte,  it  must 
first  be  extended  to  a  signed  word. 
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Example  3.6 

Assume  that  data  registers  Dq,  D,,  and  Dj  contain  a  signed  byte,  a  signed  word,  and 

a  signed  long  word  in  2's-complement  form,  respectively.  Write  a  sequence  of  instructions 
that  will  produce  the  signed  result  of  the  operation  that  follows: 

Do  +  D,  -  D,  -  Do 

Solution.  Before  any  addition  or  subtraction  can  be  performed,  we  must  extend  each 

value  of  data  to  a  signed  long  word.  To  convert  the  byte  in  Dq  to  its  equivalent  long 
word,  we  must  first  convert  it  to  a  word  and  then  to  a  long  word.  This  is  done  with 
the  following  instructions: 

EXT.W      DO 

EXT.L       DO 

Similarly,  to  convert  the  word  in  D,  to  a  long  word,  we  execute  the  instruction 

EXT.L     Dl 

Since  the  contents  of  D,  are  already  a  signed  long  word,  no  sign  extension  is  necessary. 
To  do  the  required  arithmetic  operations,  we  just  use  the  appropriate  arithmetic 

instructions.  For  instance,  to  add  the  contents  of  Dq  and  Dp  we  use  ADD,  and  to 
subtract  the  contents  of  D,  from  this  sum,  we  use  SUB.  This  leads  us  to  the  following 
sequence  of  instructions. 

ADD.L         Dl.DO 

SUB.L  D2,D0 

The  complete  program  is  listed  in  Fig.  3.21. 

EXT.W  DO 
EXT.L  DO 
EXT.L  Dl 
ADD.L  Dl.DO      Figure  3-21    Addition  and  subtraction 
SUB.L  D2,  DO      of  signed  numbers. 

3.8  DECIMAL  ARITHMETIC  INSTRUCTIONS 

The  arithmetic  instructions  we  considered  in  the  preceding  section  process  data  that 
is  expressed  as  binary  numbers.  However,  data  are  frequently  provided  that  are  coded 

as  BCD  numbers  instead  of  as  binary  numbers.  Traditionally,  BCD-to-binary  and 

binary-to-BCD  conversion  routines  are  used  to  process  BCD  data.  However,  the  68000 
microprocessor  has  the  ability  to  perform  the  add,  subtract,  and  negate  arithmetic 
operations  directly  on  packed  BCD  numbers.  Three  BCD  arithmetic  instructions, 

ABCD,  SBCD,  and  NBCD,  are  provided  for  this  purpose.  They  provide  an  efficient 

and  easy-to-use  method  for  implementing  BCD  arithmetic.  As  per  the  result  of  these 
instructions,  the  condition  code  bits,  Z,  C,  and  X,  are  affected,  whereas  N  and  V 
are  undefined. 
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Add  Decimal  with  Extend  instruction— ABCD 

Let  us  begin  with  the  add  binary-coded  decimal  (ABCD)  instruction.  In  Fig.  3.22 
we  see  its  permitted  operand  variations,  operand  size,  and  the  operation  it  performs. 
Notice  that  only  two  addressing  modes  can  be  used  to  specify  its  operands.  The  first 
form, 

ABCD     Dy,Dx 

uses  data  register  direct  addressing  for  both  source  and  destination  operands. 
Therefore,  both  operands  must  reside  in  internal  data  registers  of  the  68000. 

The  other  form, 

ABCD  -(Ay), -(Ax) 

employs  predecrement  address  register  indirect  addressing  to  specify  both  operands. 
Use  of  this  addressing  mode  permits  access  of  data  stored  in  memory. 

Execution  of  either  of  the  ABCD  instructions  adds  the  contents  of  the  source 
and  destination  operands  together  with  the  extend  (X)  bit  of  SR.  The  sum  that  results 
is  saved  in  the  destination  operand  location. 

Mnemonic Meaning 
Type 

Operand  Size Operation 

ABCD Add  BCD  numbers ABCD   Dy,  Dx 8 
Dy  +  Dx  +  X  -»  Dx ABCD  ~  (Ay), 

-(Ax) 

8 -(Ay)  +  -(Ax)  +  X^(Ax) 

SBCD Subtract  BCD SBCD  Dy,  Dx 8 Dx  -  Dy  -  X  ̂   Dx 
numben SBCD  -(Ay), 

-(Ax) 

8 -(Ax)- -(Ay)- X- (Ax) 

NBCD Negate  BCD  numbers NBCD  EA 8 0-(EA)-X-EA 

Figure  3-22    Binary-coded  decimal  arithmetic  instructions. 

These  instructions  perform  decimal  addition  operations;  therefore,  we  must  start 
with  decimal  operands  instead  of  binary  operands.  These  decimal  operands  are 
expressed  in  packed  BCD.  The  sum  that  is  produced  is  also  a  decimal  number  coded 
in  packed  BCD.  However,  the  operand  size  is  always  byte  wide;  therefore,  two  BCD 
digits  can  be  processed  at  a  time. 

An  example  is  the  instruction 

ABCD     D0,D1 

If  Do  initially  contains  the  value  12,0  =  OOOlOOlOj,  D,  contains  37, „  =  OOllOlllj, 
and  X  is  clear,  execution  of  the  instruction  produces  the  sum 

DO  +  Dl   +  X  =  12, n  +  37, n  +  0,n 10 

'10 

=  49, 

At  completion  of  the  instruction,  Dq  still  contains  12, q  but  the  contents  of  D,  are 
changed  to  49, q.  X  remains  cleared  because  no  carry  results. 
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Condition  code  bits  Z,  X,  and  C  are  affected  based  on  the  result  produced  by 
the  addition.  Bits  C  and  X  are  always  set  to  the  same  logic  level.  The  other  two 
condition  code  bits,  V  and  N,  are  undefined  after  execution  of  the  instruction  and 
do  not  provide  any  usable  information. 

Subtract  Decimal  with  Extend  Instruction— SBCD 

The  subtract  binary-coded  decimal  (SBCD)  instruction  works  similar  to  the  ABCD 
instruction  just  discussed.  Of  course,  in  this  case,  the  subtraction  arithmetic  operation 
is  performed  and  not  the  addition  operation. 

As  shown  in  Fig.  3.22,  the  two  forms  of  the  instruction  are 

SBCD       Dy,Dx 

and 

SBCD       -(Ay), -(Ax) 

Notice  that  the  permitted  addressing  modes  are  identical  to  those  employed  by  the 
ABCD  instruction. 

An  example  is  the  instruction 

SBCD     -(A0),-(A1) 

When  this  instruction  is  executed,  the  byte-wide  (two  BCD  digits)  contents  of  the 
source  operand  and  X  bit  of  SR  are  subtracted  from  the  destination  operand.  The 
difference  that  is  produced  is  saved  at  the  destination  location. 

In  our  example,  we  are  using  address  register  indirect  with  predecrement 
addressing.  Therefore,  the  contents  of  address  registers  Aq  and  A,  are  first 
decremented  by  1.  For  instance,  if  their  original  contents  were  00001 10F,g  and 

0000120F,5,  respectively,  decrementing  by  1  gives  Aq  =  00001  lOE,^  and 
A,  =  0000120E,g.  These  are  the  addresses  that  are  used  to  access  the  operands  in 
memory.  Then  the  BCD  data  at  memory  location  00110E,g  and  X  are  subtracted 
from  the  BCD  value  at  00120E,5.  We  will  assume  that  the  value  stored  at  00120E,g 
is  37, Q,  the  value  at  001  lOE,^  is  12, q,  and  X  is  1.  Then  the  difference  calculated  by 
the  instruction  is 

(00120E,6)  -  (00110E,6)  -  X  =  37,0  -   12,o  -  1,0 

"^■■16 

MO 

This  value  is  saved  at  destination  address  00120E,g  and  the  condition  code  bits  Z, 
X,  and  C  are  cleared. 

Negate  Decimal  Instruction— NBCD 

The  last  of  the  decimal  arithmetic  instructions  in  Fig.  3.22  is  negate  binary-coded 
decimal  (NBCD).  It  is  expressed  in  general  as 

NBCD     EA 
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NBCD  is  effectively  an  SBCD  instruction  in  which  the  subtrahend  always  equals  zero. 

For  this  reason,  it  implements  the  operation 

0  -  (EA)  -  EA 

The  operand  identified  as  EA  can  be  specified  using  the  alterable  addressing  modes. 

One  exception  is  address  register  direct  addressing,  which  cannot  be  used. 
Here  is  an  example  with  the  operand  accessed  through  address  register  indirect 

addressing  mode  with  postincrement: 

NBCD     (A5)  + 

The  condition  code  bits  affected  by  the  NBCD  instruction  are  the  same  as  those 

affected  by  the  SBCD  instruction. 

Example  3.7 

Write  a  program  segment  that  will  add  two  four-digit  packed  BCD  numbers  that  are 
held  in  registers  Dq  and  D,  and  place  their  sum  in  Dq.  The  organization  of  the  original 
BCD  data  in  the  data  registers  is  shown  in  Fig.  3.23(a). 

Solution.  Remember  that  only  the  contents  of  the  8  least  significant  bits  of  a  data  register 
can  be  processed  with  the  BCD  instructions.  Moreover,  up  to  this  point  in  the  chapter 
we  have  not  shown  any  direct  way  of  exchanging  the  most  significant  byte  of  a  word 
in  a  data  register  with  its  least  significant  byte.  One  solution  to  this  problem  is  to  move 

the  contents  of  Dg  and  D,  to  memory.  This  reorganizes  the  BCD  digits  at  separate  byte 
addresses,  as  shown  in  Fig.  3.23(b).  To  move  Dq  and  D,  to  memory,  say  Dp  to  address 

MEMq  and  D,  to  address  MEM,,  the  following  instructions  can  be  used: 

MOVE.W         DO.MEMO 

MOVE.W         D1,MEM1 

Now  we  can  use  the  predecrement  address  register  indirect  form  of  the  BCD 
addition  instruction  to  perform  the  decimal  arithmetic  operations.  Therefore,  address 
registers  must  be  loaded  with  pointers  to  the  data  in  memory.  Let  us  use  A^  and  A, 
for  this  purpose.  Since  the  predecrement  mode  of  addressing  must  be  used,  Aq  should 

be  loaded  with  MEMo  +  2  and  A,  with  MEM,  +2.  This  is  done  with  the  instructions 

LEA     MEMO  +  2,  AO 

LEA     MEMl  +  2,  AI 

Moreover,  in  order  to  use  the  BCD  instructions,  we  must  start  with  X  =  0.  To  do  this, 
we  execute  the  instruction 

MOVE     «),CCR 

Now  that  the  address  pointers  and  the  extend  bit  of  SR  are  initialized,  we  are  ready 
to  perform  the  addition  operation.  Executing  the  instructions 

ABCD  -(A1),-(A0) 

and 

ABCD  -(A1),-(A0) 

gives  the  sum  in  MEMq. 
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Digit  3     Digit  2     Digit  1     Digit  0 

Digit  3     Digit  2     Digit  1     Digit  0 

Memory 

Digit  3 
(MSD) 

Digit  2 

Digit  1 Digit  0 (LSD) 

Digit  3 (MSD) Digit  2 

Digit  1 Digit  0 
(LSD) 

MOVE.W 
DO,  MEMO 

MOVE.W Dl.MEMl 
LEA MEM0  +  2,A0 
LEA MEMl  +2,A1 

MOVE 
#0,  CCR ABCD -(Al), -(AO) 

ABCD -(Al),  -(AG) 

MOVE.W MEMO,  DO 

Figure  3-23    (a)  Four-digit  BCD  numbers  in  data  registers  Dg  and  D,;  (b)  storage 
of  the  BCD  numbers  in  memory;  (c)  program  for  adding  two  four-digit  BCD  numbers. 
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To  put  the  sum  into  Dq,  the  instruction  is 

MOVE.W     MEMO.DO 

The  complete  program  is  repeated  in  Fig.  3.23(c). 

3.9  LOGIC  INSTRUCTIONS 

To  implement  logic  functions,  such  as  AND,  OR,  exclusive-OR,  and  NOT,  the 
instruction  set  of  the  68000  provides  a  group  of  logic  instructions.  The  instructions 

in  this  group  are  shown  in  Fig.  3.24  together  with  their  different  forms,  operand  sizes, 

and  operations.  The  execution  of  a  logic  instruction  sets  the  condition  code  bits  N 

and  Z  as  per  the  result,  clears  V  and  C,  and  does  not  affect  the  X  bit. 

AND  Instructions— AND  and  ANDI 

As  shown  in  Fig.  3.24,  there  are  four  forms  of  the  AND  instruction.  The  general 

form,  which  uses  the  mnemonic  AND,  permits  the  contents  of  a  data  register  and 

an  operand  specified  by  the  effective  address  EA  to  be  ANDed  together.  Let  us  look 
at  the  first  form  of  the  instruction 

AND     EA,Dn 

The  source  operand  can  use  the  data  addressing  modes  to  generate  EA.  Therefore, 

the  source  operand  can  use  any  addressing  mode  except  address  register  direct 

addressing.  On  the  other  hand,  the  destination  operand  can  be  specified  only  with 

data  register  direct  addressing  and  will  always  be  one  of  the  eight  data  registers  inside 
the  68000. 

Mnemonic Meaning Type Operand  Size 
Operation 

AND Logical  AND AND  EA,Dn 

AND   Dn,EA 

ANDI   #XXX,EA 

ANDI  #XXX,CCR 

ANDI  #XXX,SR 

8,  16,32 

8,  16,32 

8,  16,32 
8 

16 

(EA)  •  Dn  ̂   Dn 
Dn  •  (EA)-EA 

#XXX  •  (EA)  -*  EA 
#XXX  ■  CCR  ̂   CCR 

#XXX  •  SR  -  SR 

OR 
Logical  OR OR  EA.Dn 

OR  Dn.EA 

ORI  #XXX,EA 

ORI  #XXX,CCR 

ORI  #XXX,SR 

8,  16,32 

8,  16,32 

8,  16,32 
8 
16 

(EA)  +  Dn  -*  Dn Dn  +  (EA)^EA 

#XXX  +  (EA)  -»  EA 
#XXX  +  CCR  -»  CCR 
#XXX  +  SR  ̂   SR 

EOR Logical 

exclusive-OR 

EOR  Dn,EA 

EORI  #XXX,EA 

EORI  #XXX,CCR 
EORI  #XXX,SR 

8,  16,32 

8,  16,32 
8 

16 

Dn®(EA)-'EA 
#XXX  *  (EA)  ̂   EA 

#XXX  ®  CCR  -*  CCR 

#XXX*SR-SR 

NOT Logical  NOT NOT   EA 
8,  16,32 

(EA)^EA 

Figure  3-24    Logic  instructions. 
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An  example  of  the  instruction,  which  uses  register  direct  addressing  for  both 
the  source  and  destination  operands,  is 

AND.B     D0,D1 

Execution  of  this  instruction  causes  a  bit  for  bit  AND  operation  to  be  performed 

on  the  byte  contents  of  Dq  and  Dj.  The  result  is  saved  in  destination  register  Dj. 

For  instance,  if  D,  contains  OOOOABCD,^  and  Dq  contains  0{X)OOFOF,g,  the 
AND  operation  between  the  least  significant  bytes  gives 

CD,6-0F,6  =  110011012- 00001 III2 
=  OOOOIIOI2 =  0Dl6 

Therefore,  
the  new  contents  of  D,  are  OOOOABOD|g.  

Notice  that  the  four  most 
significant  

bits  of  the  least  significant  
byte  of  D,  have  been  masked  off.  The  affected 

condition  
code  bits  in  SR  are  Z,  N,  C,  and  V.  The  C  and  V  bits  are  always  cleared, 

but  Z  and  N  are  set  or  reset  based  on  the  result  produced  
in  the  destination  

register. 
The  second  form, 

AND     Dn,EA 

permits  the  contents  of  a  source  operand  held  in  a  data  register  to  be  ANDed  with 

a  destination  operand  identified  by  EA.  This  time  the  location  of  the  destination 

operand  can  be  specified  using  any  of  the  alterable  memory  addressing  modes.  These 

addressing  modes  are  identified  in  Fig.  3.14. 

The  next  three  types  of  the  AND  group  are  AND  immediate  (ANDI)  instructions. 

These  instructions  AND  an  immediate  source  operand  identified  as  #XXX  with  the 

contents  of  a  specified  destination  operand.  The  immediate  operand  is  stored  as  part 

of  the  instruction  in  program  memory. 
The  first  form, 

ANDI     #XXX,EA 

permits  ANDing  of  an  immediate  source  operand  with  the  contents  of  a  destination 

operand  whose  location  is  specified  by  effective  address  EA.  This  destination  operand 
can  be  in  a  data  register,  address  register,  or  storage  location  in  data  memory. 

An  example  is  the  instruction 

ANDI.B     #7,D1 

Execution  of  this  instruction  causes  the  binary  form  of  decimal  number  7  to  be  ANDed 

with  the  contents  of  D^.  Let  us  assume  that  D,  originally  contained  FFFFFFFF]^; 
then,  executing  the  instruction  gives 

D,   =  FFFFFFFF16  •  7,6 
=  FFFFFFF7,6 

The  next  two  forms, 

ANDI     #XXX,SR 
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and 

ANDI     #XXX,CCR 

are  used  to  AND  the  contents  of  the  complete  status  register  and  the  condition  code 

byte  part  of  SR  with  immediate  data,  respectively.  The  first  of  these  two  operations 

is  privileged  and  can  only  be  executed  when  the  68000  is  in  the  supervisor  state. 

OR  Instructions-OR  and  ORI 

The  OR  instruction  has  the  same  five  forms  that  we  just  introduced  for  the  AND 

instruction.  Figure  3.24  shows  that  they  include  two  forms  of  the  general  OR 
instruction  and  three  forms  of  the  OR  immediate  (ORI)  instruction. 

The  general  OR  instruction  permits  the  OR  logic  operation  to  be  performed 

between  the  contents  of  a  data  register  specified  using  one  operand  and  the  contents 

of  another  data  register,  an  address  register,  or  a  location  in  memory  specified  by 
the  data  addressing  mode  of  the  other  operand.  For  example,  the  instruction 

OR.B     (AO),DO 

ORs  the  contents  of  the  byte  location  whose  effective  address  is  the  contents  of  Ag 

with  the  byte  contents  of  Dp.  The  result  is  saved  in  Dq.  That  is,  it  performs  the  logic 
operation 

(EA)  +  DO  -  DO 
Assuming  that  the  contents  of  the  storage  location  pointed  to  by  the  address  in  Aq 

is  AAAAAAAA|g  and  the  data  held  in  Dq  is  55555555,6,  ̂ ^e  resuhs  obtained  by 
executing  the  instruction  are 

DO  =  AAAAAAAA,6  +  55555555,6 
=  FFFFFFFF,6 

The  OR  immediate  forms  of  the  instruction  allow  an  immediate  operand  to  be 

ORed  with  the  contents  of  a  storage  location  in  data  memory,  a  data  register,  or 

the  status  register.  An  example  is  the  instruction 

ORI     #FFOO,SR 

Execution  of  this  instruction  causes  all  of  the  bits  in  the  upper  byte  of  SR  to  be  set 

to  1  without  changing  the  bits  in  the  lower  byte.  Since  the  status  register's  upper  byte 
is  changed,  the  operation  can  only  be  performed  when  in  the  supervisor  state. 

Exclusive-OR  Instructions— EOR  and  EORI 

Looking  at  Fig.  3.24,  we  see  that  the  same  basic  instruction  forms  are  also  provided 

for  the  exclusive-OR  (EOR)  instruction.  The  difference  here  is  that  they  perform  the 

exclusive-OR  logic  function  on  the  contents  of  the  source  and  destination  operands. 
Let  us  now  look  at  some  examples.  A  first  example  of  the  instruction  is 

EOR.L     AO,DO 
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When  it  is  executed,  the  operation  performed  is 

AO  0  DO  -*  DO 
Another  example  is 

EOR     #$OF,CCR 

Execution  of  this  instruction  performs  the  operation 

$0F  0  CCR  -*  CCR 
NOT  Instruction— NOT 

The  NOT  instruction  differs  from  the  AND,  OR,  and  EOR  instructions  we  just 

described  in  that  only  one  operand  is  specified.  Its  general  form,  as  shown  in  Fig. 
3.24,  is 

NOT     EA 

When  this  instruction  is  executed,  the  contents  of  the  specified  operand  are  replaced 

by  its  I's  complement.  To  address  the  operand,  only  the  alterable  addressing  modes 
can  be  used.  However,  one  exception  exists:  it  is  that  address  register  direct  addressing 

is  not  permitted. 

Example  3.8 

Write  a  sequence  of  logic  instructions  that  will  clear  the  bits  in  register  D,  that 
correspond  to  the  bits  that  are  set  in  Dq. 

Solution.  To  clear  a  bit  that  is  set,  it  should  be  ANDed  with  logic  0.  Moreover,  to 

obtain  a  logic  0  from  logic  1,  it  should  be  inverted.  Thus  if  the  contents  of  Dq  are 
inverted  and  then  ANDed  with  D,,  the  required  result  will  be  generated  in  D,.  The 
instructions  that  do  this  are 

NOT.L  DO 

AND.L  D0,D1 

3.10  SHIFT  AND  ROTATE  INSTRUCTIONS 

The  shift  and  rotate  instructions  of  the  68000  are  used  to  change  bit  positions  of  the 

data  bits  in  an  operand.  These  types  of  operations  are  useful  to  multiply  or  divide 

a  given  number  by  a  power  of  2,  check  the  status  of  individual  bits  in  an  operand, 

or  simply  shift  the  position  of  data  bits  in  a  register  or  memory  location. 

Shift  Instructions— LSL,  LSR,  ASL,  and  ASR 

There  are  two  kinds  of  shift  operations:  the  logical  shift  and  the  arithmetic  shift. 

Moreover,  each  of  these  two  shifts  can  be  performed  in  the  left  direction  or  right 

direction.  As  shown  in  Fig.  3.25,  these  variations  lead  to  four  basic  shift  instructions. 

The  two  logical  shift  instructions  are  logical  shift  left  (LSL)  and  logical  shift 

right  (LSR).  The  operation  of  these  instructions  is  illustrated  with  diagrams  in  Fig. 
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Meaning Type Operand  Size Operation 

Logical  shift  left 

Logical  shift  right 

Arithmetic  shift  left 

Arithmetic  shift  right 

LSL  #XXX,Dy 
LSL  Dx,Dy 

LSL  EA 

LSR  #XXX,Dy 
LSR   Dx.Dy 

LSR  EA 

ASL  #XXX,Dy 
ASL  Dx.Dy 

ASL  EA 

ASR  #XXX,Dy 
ASR  Dx,Dy 

ASR  EA 

16,32 

16,32 
16,32 

16,32 
16,32 
16,32 

16,32 

16,32 

16,32 

16,32 

16,32 

16,32 

X/C * ' 

0— *   ► 

X/C 
* 

H,   ^ 

I — -Im<;h 

Figure  3-25    Shift  instructions. 

3.25.  Looking  at  the  illustration  for  LSL,  we  see  that  its  execution  causes  the  bits 
of  the  operand  to  be  shifted  to  the  left  by  a  specific  number  of  bit  positions.  At  the 
same  time,  the  vacated  bit  positions  on  the  least  significant  bit  end  of  the  operand 
are  filled  with  zeros  and  bits  are  shifted  out  from  the  most  significant  bit  end.  The 
last  bit  shifted  out  on  the  left  is  copied  into  both  the  extend  (X)  and  carry  (C)  bits 
of  SR. 

Notice  in  Fig.  3.25  that  there  are  three  forms  of  the  LSL  instruction.  The  first 
two  forms  differ  in  the  way  the  shift  count  is  specified.  In  the  first  form, 

LSL     #XXX,Dy 

the  count  is  specified  by  the  immediate  operand  #XXX.  The  value  of  this  operand 

can  be  from  0  through  7.  A  value  of  zero  stands  for  "shift  left  eight  bit  positions." 
In  this  way,  we  see  that  this  form  of  the  instruction  limits  the  shift  left  to  the  range 
of  from  1  to  8  bits.  For  instance, 

LSL.W     #5,D4 

initiates  a  shift  left  by  five  bit  positions  for  the  word  contents  of  data  register  D4. 
The  second  form 

LSL     Dx.Dy 

specifies  the  count  as  residing  in  data  register  Dx.  Only  the  six  least  significant  bits 
of  this  register  are  used  for  the  shift  count.  Therefore,  the  shift  count  is  extended 
to  a  range  of  from  1  to  63  bit  positions. 

An  example  is  the  instruction 

LSL     DO.Dl 

Assuming  that  Dq  contains  4,^  and  D,  contains  OOOOFFFF,g,  execution  of  the 
instruction  results  in 

D,   =  000FFFF0,6 
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and 

C  =  0 

Both  of  the  forms  of  the  LSL  instruction  that  we  have  considered  up  to  this 
point  only  have  the  abihty  to  shift  the  bits  of  an  operand  that  is  held  in  one  of  the 
internal  data  registers  of  the  68000.  The  third  form, 

LSL     EA 

permits  a  shift  left  operation  to  be  performed  on  the  contents  of  a  storage  location 
in  memory.  Actually,  any  of  the  data-alterable  addressing  modes  that  relate  to  external 
memory  can  be  used  to  specify  EA.  One  restriction  is  that  the  size  specified  for  the 
operand  must  always  be  a  word.  Moreover,  since  no  shift  count  is  specified,  execution 
of  the  instruction  causes  a  shift  left  of  just  one  bit  position. 

Looking  at  Fig.  3.25,  we  see  that  the  logical  shift  right  (LSR)  instruction  can 
be  written  using  the  same  basic  forms  as  the  LSL  instruction.  Moreover,  the  operations 
that  they  perform  are  the  exact  opposite  of  that  just  described  for  their  corresponding 
LSL  instruction.  Now  data  are  shifted  to  the  right  instead  of  to  the  left;  zeros  are 
loaded  into  vacated  bits  from  the  MSB  end  instead  of  the  LSB  end;  and  the  last  bit 
shifted  out  from  the  LSB  is  copied  into  both  X  and  C. 

There  are  also  two  basic  arithmetic  shift  instructions:  arithmetic  shift  left  (ASL) 

and  arithmetic  shift  right  (ASR).  Their  forms  and  operations  are  also  shown  in  Fig. 
3.25.  Here  we  see  that  the  operation  performed  by  ASL  is  essentially  the  same  as 
that  performed  by  the  LSL  instruction.  However,  there  is  a  difference  in  the  way 
in  which  the  overflow  flag  is  handled  by  the  two  instructions.  It  is  always  0  for  the 
LSL  instruction,  but  for  ASL  it  is  set  to  1  if  the  MSB  changes  logic  level. 

On  the  other  hand,  ASR  is  not  the  same  as  LSR.  Notice  that  it  does  not  only 
shift  the  bits  of  its  operand  but  also  preserves  its  sign.  The  illustration  of  operation 
of  ASR  in  Fig.  3.25  shows  that  vacated  more  significant  bit  positions  are  filled  with 
the  original  value  for  the  MSB— that  is,  the  sign  bit. 

Rotate  Instructions— ROL,  ROR,  ROXL,  and  ROXR 

The  rotate  instructions  of  the  68000  are  similar  to  its  shift  instructions  in  that  they 
can  be  used  to  shift  the  bits  of  data  in  an  operand  to  the  left  or  right.  However,  the 
shift  operation  they  perform  differs  in  that  the  bits  of  data  that  are  shifted  out  at 
one  end  are  shifted  back  in  at  the  other  end.  Hence,  the  bits  of  data  appear  to  have 
been  rotated. 

Based  on  the  path  in  which  bits  are  rotated,  two  kinds  of  rotate  operations  are 
defined.  As  shown  in  Fig.  3.26,  the  basic  rotate  operation  performed  by  the  rotate 
left  (ROL)  instruction  or  rotate  right  (ROR)  instruction  use  a  path  in  which  bits  are 
shifted  out  from  one  end  of  the  operand  into  the  carry  (C)  bit  of  SR,  and  at  the  same 
time  they  are  reloaded  at  the  other  end.  Notice  that  the  path  for  the  other  two 
instructions,  ROXL  and  ROXR,  differs  in  that  both  C  and  X  are  loaded  with  the 
bits  as  they  are  shifted  out.  Moreover,  bits  that  are  reloaded  at  the  other  end  pass 
through  X. 
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Vlnemonic Meaning Type Operand  Size Operation 

Rotate  left 

Rotate  right 

Rotate  left 

through  extend 

Rotate  right 
through  extend 

ROL  #XXX,Dy 
ROL  Dx.Dy 

ROL  EA 

ROR  #XXX,Dy 
ROR   Dx,Dy 

ROR   EA 

ROXL  #XXX,Dy 
ROXL  Dx,Dy 

ROXL  EA 

ROXR  #XXX,Dy 
ROXR   Dx.Dy 

ROXR   EA 

8   lf>   ̂ 7 

,1 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

16,32 

16,32 

16,32 

16,32 
16,32 

16,32 
16,32 
16,32 

16,32 
16,32 

C 

,1 

* 

c 

ROR 

l\ 

\L\ 
  ►- 

c 

1 1 

M X J * 

i\ 

X 

\L\ 

— >~ 
c * 

Figure  3-26    Rotate  instructions. 

Let  US  begin  with  the  ROL  instruction.  Loolcing  at  the  diagram  of  its  operation 
in  Fig.  3.26,  we  see  that  it  causes  the  bits  of  the  specified  operand  to  be  rotated  to 
the  left.  Bits  shifted  out  from  the  most  significant  bit  position  are  both  loaded  into 
C  and  the  least  significant  bit  position.  The  number  of  bit  positions  through  which 
the  data  are  to  be  rotated  are  specified  as  part  of  the  instruction. 

Notice  that  the  allowed  operand  variations  for  ROL  are  identical  to  those  shown 
in  Fig.  3.25  for  the  shift  instructions.  The  first  form, 

ROL     #XXX,Dy 

permits  an  immediate  operand  in  the  range  0  to  7,  to  specify  the  count.  This  limits 
the  amount  of  rotation  to  1  to  8  bit  positions.  A  value  of  0  for  XXX  is  actually  a 

special  case.  It  causes  an  8-bit  rotate  to  the  left.  The  next  form, 

ROL     Dx,Dy 

uses  the  contents  of  the  six  least  significant  bits  of  data  register  Dx  to  specify  the 
count.  This  extends  the  rotate  range  to  from  1  to  63  bit  positions.  When  either  of 
these  instructions  are  used,  the  operand  that  is  to  be  processed  by  the  rotate  operation 
must  reside  in  one  of  the  data  registers. 

An  example  is  the  instruction 

ROL.L     DO.Dl 

If  Dq  contains  00000004, g,  execution  of  the  instruction  causes  the  long-word  contents 
of  D|  to  be  rotated  four  bit  positions  to  the  left.  For  instance,  if  the  original  contents 
of  D,  were  0000FFFF,5,  after  the  rotate  operation  is  complete,  the  new  contents  of 
D,  are  OOOFFFFO,^  and  C  equals  0. 

The  last  form  of  the  rotate  left  instruction 

ROL     EA 
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permits  the  operand  to  reside  in  a  storage  location  in  memory.  This  instruction  may 

only  be  used  to  perform  a  1-bit  rotate  left  on  a  word  operand. 
In  Fig.  3.26  we  see  that  the  rotate  right  (ROR)  instruction  is  capable  of 

performing  the  same  operations  as  ROL.  However,  in  this  case,  the  data  are  rotated 
in  the  opposite  direction. 

As  we  indicated  earlier,  the  rotate  left  with  extend  (ROXL)  and  rotate  right 
with  extend  (ROXR)  instructions  essentially  perform  the  same  rotate  operations  as 
ROL  and  ROR,  respectively.  However,  this  time  the  last  bit  rotated  out  is  loaded 
into  both  X  and  C,  not  just  C,  and  bits  that  are  reloaded  at  the  other  end  pass  through 
X.  Therefore,  execution  of  the  instruction 

ROXL.L     D0,D1 

when  Dq  =  4,g,  D,  =  OOOFFFFOi^,  C  =  1,  and  X  =  1,  results  in 
D,  =  00FFFF08,6  with  C  =  0  and  X  =  0. 

Example  3.9 

Implement  the  operation  described  in  Example  3.7  using  the  rotate  and  decimal  arithmetic 

instructions  to  add  two  four-digit  packed  BCD  numbers  that  are  held  in  Dq  and  D,, 
respectively.  Place  the  result  in  Dq. 

Solution.  We  first  start  with  X  =  0  and  add  the  two  least  significant  digits.  The 
instructions  required  to  do  this  are 

MOVE        ;W),CCR 

ABCD        Dl.DO 

Let  us  save  this  result  in  D,  by  executing  the  instruction 

MOVE.B     D0,D2 

To  add  the  most  significant  digits,  we  can  rotate  the  words  in  D,  and  Dq  8  bits  to  the 
right.  The  instructions  for  this  are 

ROR.W     #0,00 

ROR.W     m,D\ 

This  does  not  change  the  X  bit,  which  must  be  used  in  the  addition.  Now  the  least 

significant  bytes  in  Dq  and  Dj  can  be  added  as  BCD  numbers  by  the  instruction 

ABCD     D1,D0 

The  result  of  Dq  can  now  be  rotated  to  the  left  and  the  least  significant  result  saved 
in  Dj  can  be  placed  back  in  Dq.  The  instructions  to  do  this  are 

ROL.W        m,DO 

MOVE.B      D2,D0 

This  completes  the  BCD  addition.  The  entire  program  is  shown  in  Fig.  3.27. 
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MOVT 
W.CCR 

ABCD Dl.DO 
MOVE.B do.d: 
ROR.W 

*0.D0 

ROR.W 
#0.D1 

ABCD Dl.DO 

ROL.W 

«0.D0 

MOVE.B D2.D0 Figure  3-27    BCD  addition  program. 

ASSIGNMENT 

Section  3.2 

1.  Can  the  68000  directly  store  a  word  of  data  starting  at  an  odd  address? 

2.  Compare  a  data  register  and  an  address  register  from  a  software  point  of  view. 

3.  List  the  basic  data  types  on  which  the  68000  can  operate  directly. 

Section  3.3 

4.  Identify  the  three  parts  of  an  assembly  language  instruction  in  each  of  the  following 
statements: 

AGAIN        ADD  DO.Dl         ADD  THE  REGISTERS 

MOVE  D1,D5      SAVE  THE  RESULT 

5.  Identify  the  source  and  destination  operands  for  each  of  the  statements  in  problem  4. 

Section  3.4 

6.  Make  a  list  of  the  addressing  modes  available  on  the  68000. 

7.  Identify  the  addressing  modes  for  both  the  source  and  destination  operands  in  the 
instructions  that  follow. 

(a)  MOVE.W         D3,D2 
(b)  MOVE.B  D3,A2 

D3.SABCD 
.XYZ,D2 
.XYZ(D0.L),D2 
D3,(A2) 

A1,(A2)  + 
-(A2),D3 

10(A2),D3 

10(A2,A3.L),SA123 
<ISABCD.$1122 

8.  Compute  the  memory  address  for  the  source  operand  and/or  destination  operand  in  each 
of  the  instructions  in  problem  5. 

(c) MOVE.L 
(d) MOVE.L 
(e) MOVE.W 
(f) MOVE.B 

(g) MOVE.L 
(h) MOVE.L 
(i) .MOVE.W 

d) 
MOVE.B 

(k) MOVE.W 
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9.   Specify  the  conditions  that  make  the  following  instructions  equivalent. 

MOVE.L  DO.SABCD 
MOVE.L  D0,$10(A1) 

MOVE.L  D0,$100(A2,D1.L) 
MOVE.L  D0,(A3) 

Section  3.6 

10.  Given  that  Dq  =  $12345678,  D,  =  SABCDEFOl,  and  Ag  =  $87654321,  specify  the 
memory  contents  of  address  $A000  to  address  $A002  after  executing  the  instruction 

MOVEM.B       D0/D1/A0,$A000 

11.  Write  an  instruction  that  places  the  long-word  contents  of  memory  locations  $8000,  $B004, 
and  $B008  into  registers  Dy  D^,  and  D^,  respectively. 

12.  What  will  be  the  contents  of  Dq  and  D,  after  executing  the  following  sequence  of 
instructions? 

MOVE.L $13579BDF,D0 
MOVE.L $02468ACE,D1 
SWAP DO 

EXG.W D0,D1 

Section  3.7 

13.  Two  word-wide  unsigned  integers  are  stored  at  the  memory  addresses  $A000  and  SBOOO, 
respectively.  Write  an  instruction  sequence  that  computes  and  stores  their  sum,  difference, 
product,  and  quotient.  Store  these  results  at  consecutive  memory  locations  starting  at 
address  $C0OO  in  memory.  To  obtain  the  difference,  subtract  the  integer  at  $B0OO  from 
the  integer  at  $A000.  For  the  division,  divide  the  integer  at  $A000  by  the  integer  at  $B000. 

Use  register  indirect  relative  addressing  mode  through  register  A,  to  store  the  various 
results. 

Section  3.8 

14.  Two  long-word  BCD  integers  are  stored  at  the  symbolic  addresses  NUMl  and  NUM2, 
respectively.  Write  an  instruction  sequence  to  generate  their  difference  and  store  it  at 
NUM3.  The  difference  is  to  be  formed  by  subtracting  the  value  at  NUMl  from  that  at 
NUM2.  Use  the  predecrement  indirect  mode  of  addressing. 

Section  3.9 

15.  Write  an  instruction  sequence  that  generates  a  byte-size  integer  in  the  memory  location 
identified  by  label  RESULT.  The  value  of  the  byte  integer  is  to  be  calculated  using  logic 
operations  as  follows: 

(RESULT)  =  DO  •  NUMl  +  NUM2  •  DO  +  Dl 

Assume  that  all  parameters  are  byte  size. 
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Section  3.10 

16.  Implement  the  following  operation  using  shift  and  arithmetic  instructions. 

7  •  Dl  -  5  •  D2  -   -^^2-*  DO 
Assume  that  the  parameters  are  all  long  word  in  size. 

17.  Write  a  program  that  stores  the  long-word  contents  of  Dq  into  memory  starting  at  address 
location  SBOOl. 
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Programming  2 

4.1  INTRODUCTION 

In  Chapter  3,  we  introduced  the  addressing  modes  and  many  of  the  instructions  in 
the  instruction  set  of  the  68000  microprocessor.  Using  these  instructions,  we  also 
covered  some  preliminary  programming  techniques.  Here  we  will  cover  the  rest  of 
the  instructions  and  introduce  some  more  complex  programming  methods. 
Specifically,  the  following  topics  are  presented  in  this  chapter: 

1.  Compare  and  test  instructions 

2.  Jump  and  branch  instructions 

3.  Programs  employing  loops 

4.  Subroutines  and  subroutine  handling  instructions 

5.  Bit  manipulation  instructions 

4.2  COMPARE  AND  TEST  INSTRUCTIONS 

The  instruction  set  of  the  68000  includes  instructions  to  compare  two  operands  or 
an  operand  with  zero.  The  comparison  is  done  by  subtracting  the  source  operand 
from  the  destination  operand.  The  result  of  the  subtraction  does  not  modify  either 
of  the  operands;  instead,  it  is  used  to  set  or  reset  condition  code  bits  (flags)  in  the 
status  register.  The  flags  affected  are:  negative  (N),  zero  (Z),  overflow  (V),  and  carry 
(C).  These  flags  can  then  be  examined  by  other  instructions  to  make  the  decision 
as  to  whether  to  execute  one  part  of  the  program  or  another. 
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The  instructions  that  have  the  ability  to  compare  operands  are  shown  in  Fig. 

4. 1 .  Basically,  two  types  of  instructions  are  available:  the  compare  (CMP)  instruction 

and  test  (TST)  instruction.  Notice  that  the  CMP  instruction  always  compares  two 

operands.  On  the  other  hand,  the  TST  instruction  compares  the  specified  operand 
with  zero. 

Mnemonic Meaning Type 
Operand  Size Status  Bits  Affected 

CMP Compare CMP  EA.Dn 8,  16,32 N,Z,  V,C 

CMPA  EA.An 16,32 N,  Z,  V,C 

CMPI  #XXX,EA 8,  16,32 N,  Z,  V,  C 

CMPM  (Ay)*, (Ay)* 
8,  16,32 N,  Z,  V,C 

TST Test TST  EA 8,  16,32 N,Z,V,C 

Figure  4-1    Compare  and  test  instructions. 

Let  us  begin  by  looking  in  detail  at  the  compare  instruction  of  the  68000.  Looking 

at  Fig.  4.1,  we  see  that  there  are  four  forms  of  this  instruction.  These  forms  are: 

compare  (CMP),  compare  address  (CMPA),  compare  immediate  (CMPI),  and 

compare  memory  (CMPM).  They  differ  in  the  manner  their  operands  are  obtained 
for  comparison. 

The  CMP  instruction  is  used  to  compare  a  source  operand  with  the  contents 

of  a  data  register.  To  specify  the  location  of  the  source  operand,  any  of  the  68000's 
addressing  modes  can  be  used.  On  the  other  hand,  the  destination  operand  must  always 

be  one  of  the  internal  data  registers.  As  indicated  in  Fig.  4.1,  the  specified  operand 

size  may  be  a  byte,  a  word,  or  a  long  word.  However,  when  an  address  register  contains 

the  source  operand,  byte-size  comparisons  cannot  be  made. 

The  result  of  the  comparison  is  reflected  by  changes  in  four  of  the  68000's  status 
flags.  Notice  in  Fig.  4.1  that  it  affects  the  sign,  zero,  overflow,  and  carry  flags.  The 

logic  state  of  these  flags  can  be  referenced  by  instructions  in  order  to  make  a  decision 
whether  or  not  to  alter  the  sequence  in  which  the  program  executes. 

The  process  of  comparison  performed  by  the  CMP  instruction  is  basically  a 
subtraction  operation.  The  source  operand  is  subtracted  from  the  destination 

operand.  However,  the  result  of  this  subtraction  is  not  saved  in  the  destination.  In- 
stead, based  on  the  result  the  appropriate  flags  are  set  or  reset. 

The  subtraction  is  done  using  2's  complement  arithmetic.  For  example,  let  us 
assume  that  the  destination  operand  equals  lOOllOOlj  =  -  103io  and  that  the  source 
operand  equals  0001 101  Ij  =  +27(0.  Subtracting  the  source  from  the  destination, 
we  get 

IOOIIOOI2  =    -103,0 

-OOOIIOII2  =    -(  +  27, 0) 

Replacing  the  destination  operand  with  its  2's  complement  and  adding  yields 
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IOOIIOOI2  =  -103,0 

IIIOOIOI2  =  -27,0 

OIIIIIIO2  =   +126,0 

In  the  process  of  obtaining  this  result,  we  set  the  status  flags  as  follows: 

1.  Bit  7  of  the  difference  is  zero  and  therefore  sign  flag  N  is  at  logic  0. 

2.  The  difference  that  is  produced  is  nonzero,  which  makes  zero  flag  Z  logic  0. 

3.  Even  though  a  carry  out  is  generated  from  bit  7,  there  is  no  carry  from  bit  6 
to  bit  7.  This  represents  an  overflow  condition  and  therefore  the  V  flag  is  logic  1. 

4.  There  is  a  carry  out  from  bit  7.  Thus,  carry  flag  C  is  logic  1. 

Notice  that  the  result  produced  by  subtracting  the  two  8-bit  numbers  is  not  correct. 
This  condition  is  indicated  by  the  fact  that  the  overflow  flag  is  set. 

An  example  of  the  instruction  is 

CMP.W     D1,D0 

When  this  instruction  is  executed,  the  word  contents  of  D,  are  subtracted  from  that 
of  Dq  and  the  flags  are  affected  according  to  the  result  produced  by  the  subtraction. 
For  instance,  if  the  value  in  D,  is  the  same  as  that  in  Do,  the  Z  bit  in  SR  is  set  and 
N,  V,  and  C  are  all  reset.  Even  though  a  subtraction  is  performed  to  determine  this 

status,  the  values  in  D,  and  Dq  are  not  changed. 
For  instance,  if  the  word  contents  of  D,  and  Do  are  1000,^  and  4000, g, 

respectively,  execution  of  the  instruction  CMP.W  D1,D0  subtracts  1000,^  from  4000,6 
and  sets  or  resets  the  status  flags  based  on  the  difference  that  results.  Since  this  result 
is  positive  and  nonzero,  both  N  and  Z  are  reset.  Moreover,  no  carry  is  generated 
by  the  subtraction;  therefore,  C  is  also  reset.  Finally,  in  the  process  of  performing 
the  subtraction,  an  overflow  condition  does  not  occur  and  V  is  also  reset.  In  this 
way,  we  find  that  at  completion  of  execution  of  the  instruction  the  statuses  are 
N  =  0,  Z  =  0,  V  =  0,  and  C  =  0. 

Compare  address  (CMPA)  is  the  same  as  CMP  except  that  the  destination 
operand  must  reside  in  an  address  register  instead  of  a  data  register.  For  this  reason 
only  word  and  long-word  operands  can  be  specified.  A  word  source  operand  is  sign 
extended  to  a  long  word  before  making  the  comparison.  Here  is  an  instruction  that 
does  a  long-word  comparison  of  the  value  of  a  long  word  in  memory  to  the  contents 
of  Ao. 

CMPA.L     (A1),A0 

Notice  that  the  address  in  A,  is  used  to  point  to  the  long  word  in  memory. 
The  next  instruction,  compare  immediate  (CMPI),  is  used  to  compare  a  byte, 

word,  or  long-word  immediate  operand  to  a  destination  operand  that  resides  in  a 
data  register,  address  register,  or  storage  location  in  memory.  The  location  of  the 
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destination  operand  can  be  specified  using  any  of  the  data-alterable  addressing  modes 
of  the  68000.  An  example  is  the  instruction 

CMPI.B     #$FF,DO 

The  last  type  of  compare  instruction  in  Fig.  4. 1  is  compare  memory  (CMPM). 

Here  both  operands  are  located  in  memory  and  must  be  specified  using  the  automatic 

postincrement  indirect  address  register  addressing  modes.  Since  this  instruction  updates 

the  address  pointers  each  time  it  is  executed,  we  are  always  ready  to  compare  the 

next  two  pieces  of  data  in  memory.  For  this  reason,  it  is  very  useful  for  performing 
string  comparisons. 

Example  4.1 

Determine  how  the  condition  codes  will  change  as  the  following  instructions  are  executed. 

CLR.L  DO 

MOVE.B         *^5A,D0 

CMP.B  DO.DO 

CMPI.B  #$60,D0 

Solution.  What  happens  to  the  condition  codes  as  these  instructions  are  executed  is 

summarized  in  Fig.  4.2.  Here  we  see  that  the  first  instruction  clears  data  register  Dq. 

This  is  written  as  a  long-word  instruction;  therefore,  all  32  bits  of  Dq  are  cleared.  That 
is,  it  is  loaded  with  00000000|g.  Due  to  the  execution  of  the  first  instruction,  the  Z 
condition  code  bit  is  set  while  N,  V,  and  C  are  cleared. 

Instruction Function 
Condition  Codes 

X N z V C 

CLR.L  DO 

MOVE.B  e$5A,D0 

CMP.B  DO.DO 

CMPI.B  a$60.D0 

Clear  Dq 

Load  5Aij  into  Dq 

Compare  Dq  with  Dq 

Compare  60,^  with  Do 

X 

X 

X 

X 

0 

0 

0 

I 

1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 Figure  4-2    Example  program  employing 
compare  instructions. 

The  next  instruction  loads  the  lower  byte  of  Dq  with  the  number  5A,g.  Since  this 
number  is  positive  and  greater  than  zero,  the  N  and  Z  bits  of  SR  are  cleared.  Moreover, 
it  always  clears  the  V  and  C  bits. 

The  third  instruction  compares  the  contents  of  Dq  with  itself.  Thus  the  Z  bit  is 
set  and  N,  V,  and  C  are  cleared. 

The  last  instruction  compares  60, g  with  the  contents  of  Dq.  Therefore,  it  subtracts 
60, g  from  5A,g.  This  subtraction  yields  a  negative  result;  therefore,  the  N  bit  is  set. 
Furthermore,  to  subtract  a  larger  number  from  a  smaller  one,  a  borrow  is  required.  Thus 
the  C  bit  is  also  set.  The  result  of  subtracting  the  two  numbers  can  be  correctly  represented 
as  a  byte.  That  is,  no  overflow  has  occurred.  Therefore,  V  is  reset.  Moreover,  the  result 
is  not  zero;  therefore,  Z  is  also  reset. 
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Test  Instruction— TST 

The  last  instruction  in  Fig.  4.1  is  the  test  (TST)  instruction.  This  instruction  performs 
an  operation  that  is  similar  to  the  compare  instruction  except  that  its  destination 
operand  is  always  assumed  to  be  zero.  The  specified  source  operand  is  subtracted 
from  zero  and  based  on  the  result,  the  condition  code  bits  in  SR  are  set  or  reset. 

Any  of  the  data-alterable  addressing  modes  can  be  used  to  specify  the  source  operand 
and  it  can  be  a  byte,  word,  or  long  word. 

The  same  four  condition  code  bits  are  affected  by  the  TST  instruction.  But  in 
this  case  only  N  and  Z  are  set  or  reset  based  on  the  result  of  the  comparison.  The 
other  two  bits,  V  and  C,  are  always  cleared. 

An  example  is  the  instruction 

TST.B     DO 

Let  us  assume  that  Dq  contains  10, g.  Executing  the  instruction  causes  10, ̂   to  be 
subtracted  from  0  and  then  the  flags  are  set  or  reset  based  on  the  difference  that 
results.  For  this  value  of  data,  the  difference  that  is  produced  is  negative  and  nonzero; 
therefore,  N  is  set  to  1  and  Z  is  cleared  to  0. 

Set  According  to  Condition  instruction— Sec 

Earlier  we  pointed  out  that  the  condition  code  bits  set  or  reset  by  the  compare  and 
test  instructions  are  examined  through  software  to  decide  whether  or  not  branching 
should  take  place  in  the  program.  One  way  of  using  these  bits  is  to  test  them  directly 
with  the  branch  instructions.  Another  approach  is  to  test  them  for  a  specific  condition 
and  then  save  a  flag  value  representing  whether  the  tested  condition  is  true  or  false. 
This  flag  value  can  then  be  used  for  program  branching  decisions.  An  instruction 
that  performs  this  operation  is  set  according  to  condition  (Sec). 

The  form  of  the  Sec  instruction  is  shown  in  Fig.  4.3(a).  The  "cc"  part  of  the 
mnemonic  stands  for  a  general  condition  code  relationship  and  must  be  replaced  with 
a  specific  relationship  when  writing  the  instruction.  Figure  4.3(b)  is  a  list  of  the 
mnemonics  and  condition  code  relationships  that  can  be  used  to  replace  cc.  For 
instance,  replacing  cc  by  LE  gives  the  instruction  mnemonic  SLE.  This  stands  for 
set  if  less  than  or  equal  to  and  tests  status  to  determine  if  the  logical  value  of 

Z  +  N  •  V  +  N  •  V 

is  equal  to  0  or  1. 

Looking  at  Fig.  4.3(a),  we  see  that  a  byte-wide  destination  operand  is  also 
specified  in  the  instruction.  Its  location  can  be  identified  using  any  of  the  data-alterable 
addressing  modes.  For  example,  an  instruction  could  be  written  as 

SGT     DO 

When  this  instruction  is  executed,  it  causes  the  condition  code  bits  to  be  checked 
to  determine  if  the  relationship 

N-V-Z-i-N-V-Z=l 



Jump  and  Branch  Instructions 

Mnemonic 
Meaning 

Format 
Operand  Size Operation 

Sec Set  according  to 
condition  code 

Sec  EA 8 1 1 1 11 1 1 1  ->■  EA  if  cc  is  true 

00000000  ->•  EA  if  cc  is  false 

Mnemonic 
Meaning 

Condition  Code  Relatioi 

ship 

sec Set  if  carry  clear 
C  =  0 scs 

Set  if  carr>-  set 

C=  1 SEQ 

Set  if  equal 
Z=  1 

SNE Set  if  not  equal 
Z  =  0 

SMI Set  if  minus 
N=  1 

SPL 
Set  if  plus N  =  0 

SVC Set  if  overflow  clear  (signed) 
V  =  0 

SVS Set  if  overflow  set  (signed) 
V=  1 

SHI 
Set  if  higher  (unsigned) 

C-Z=  1 

SLS Set  if  lower  or  same  (unsigned) 
C  +  Z=  1 

SGT Set  if  greater  than  (signed) NVZ  +  NVZ=  1 
SGE Set  if  greater  or  equal  (signed) 

NV  +  NV=  1 SLT Set  if  less  than 
NV  +  NV  =  1 

SLE Set  if  less  or  equal  (signed) Z  +  NV  +  NV  =  1 

Figure  4-3    (a)  Set  according  to  condition  code  instruction;  (b)  conditional  tests  of 
the  Sec  instruction. 

is  satisfied.  If  this  relationship  is  true,  the  bits  of  the  byte  part  of  destination  register 

Dq  are  all  set.  On  the  other  hand,  if  the  relationship  is  false,  they  are  all  reset.  For 
example,  if  N  =  V  =  0,  and  Z  =  1,  the  condition  code  relationship  evaluates  as 

N-V-Z+N-V-Z=O-0-0+   l-l-0=0 

Therefore,  the  relationship  is  false  and  the  byte  part  of  Dq  becomes  00, g. 

4.3  JUMP  AND  BRANCH  INSTRUCTIONS 

For  all  the  programs  we  have  studied  up  to  this  point,  the  sequence  in  which  the 
instructions  were  written  was  also  the  sequence  in  which  they  were  executed.  In  other 
words,  after  execution  of  an  instruction  the  program  counter  always  points  to  the 
next  sequential  instruction. 

For  most  applications,  one  must  be  able  to  aUer  the  sequence  in  which 
instructions  of  the  program  execute.  The  changes  in  sequence  may  have  to  be 
unconditionally  done  or  may  be  subject  to  satisfying  a  conditional  relationship.  To 
support  these  types  of  operations,  the  68000  is  equipped  with  jump  and  branch 
instructions. 
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The  Unconditional  and  Conditional  Branch 

The  68000  microprocessor  allows  two  different  types  of  branch  operations.  They  are 
the  unconditional  branch,  and  the  conditional  branch.  In  an  unconditional  branch, 
no  status  requirements  are  imposed  for  the  branch  to  occur.  That  is,  as  the  instruction 
is  executed,  the  branch  always  takes  place  to  change  the  execution  sequence. 

This  concept  is  illustrated  in  Fig.  4.4(a).  Notice  that  when  the  instruction  BRA 
AA  in  part  I  is  executed,  program  control  is  passed  to  a  point  in  part  III  identified 
by  the  label  AA.  Execution  resumes  with  the  instruction  corresponding  to  AA.  In 
this  way,  the  instructions  in  part  II  of  the  program  have  been  bypassed.  That  is,  they 
have  been  jumped  over. 

On  the  other  hand,  for  a  conditional  branch  instruction,  status  conditions  that 
exist  at  the  moment  the  branch  instruction  is  executed  decide  whether  or  not  the  branch 
will  occur.  If  this  condition  or  conditions  are  met,  the  branch  takes  place;  otherwise, 

Part  I 

BRA  AA 

Part  11 

AA       XXXXXX 

Part  111 

Unconditional  branch 
instruction 

Locations  skipped  due  to 
branch 

-<    Next  nistruction  executed 

Conditional  branch 

instruction 

Next  instruction  executed 
il  condition  not  met 

Locations  skipped 
it'  branch  taken 

Next  instruction 

executed  if 
condition  met 

Figure  4-4   (a)  Unconditional  branch  program  sequence;  (b)  conditional  branch  pro- 
gram sequence. 
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execution  continues  with  the  next  sequential  instruction  of  the  program.  The  conditions 
that  can  be  referenced  by  a  conditional  branch  instruction  are  status  flags  such  as 
carry  (C),  zero  (Z),  negative  (N),  and  overflow  (V). 

Looking  at  Fig.  4.4(b),  we  see  that  execution  of  the  conditional  branch 
instruction  in  part  I  causes  a  test  to  be  initiated.  If  the  conditions  of  the  test  are  not 
met,  the  NO  path  is  taken  and  execution  continues  with  the  next  sequential  instruction. 
This  corresponds  to  the  first  instruction  in  part  II.  However,  if  the  result  of  the 
conditional  test  is  YES,  a  branch  is  initiated  to  the  segment  of  the  program  identified 
as  part  III  and  the  instructions  in  part  II  are  bypassed. 

Unconditional  Jump  and  Branch  Instructions— JMP 
and  BRA 

Unconditional  changes  in  the  execution  sequence  of  a  program  are  supported  by  both 
the  jump  and  branch  instructions.  The  first  instruction  in  Fig.  4.5  is  ihejump  (JMP) 
instruction.  The  effect  of  executing  this  instruction  is  to  load  the  program  counter 
with  the  contents  of  the  effective  address  specified  by  the  operand  in  the  instruction. 
Therefore,  program  execution  resumes  at  the  location  specified  by  the  effective 
address. 

An  example  of  the  instruction  is 
JMP     (AO) 

In  this  case,  program  execution  is  directed  to  the  instruction  at  the  address  specified 
by  the  contents  of  address  register  Ag.  Only  the  control  addressing  modes  can  be 
used  to  specify  the  operand. 

A  second  way  of  initiating  unconditional  changes  in  the  program  execution 
sequence  is  by  means  of  the  branch  always  (BRA)  instruction.  The  format  of  this 
instruction  is  also  shown  in  Fig.  4.5.  Notice  that  BRA  differs  from  JMP  in  the  manner 
by  which  the  address  of  the  next  instruction  to  be  executed  is  encoded.  In  JMP,  this 
address  is  specified  directly  by  an  EA  operand.  This  permits  it  to  reside  in  a  data 
register  or  a  storage  location  in  memory.  On  the  other  hand,  in  BRA  the  difference 
between  the  address  of  the  new  instruction  and  that  of  the  BRA  instruction 

(displacement)  is  encoded  following  the  opcode.  Thus,  for  the  BRA  instruction  the 
microprocessor  computes  the  next  address  by  adding  the  displacement  to  the  current 
value  in  PC. 

The  branch  instruction  allows  the  displacement  d  to  be  encoded  either  as  an 

8-bit  (short-form)  integer  or  16-bit  (long-form)  integer.  With  an  8-bit  displacement, 
the  instruction  is  encoded  as  one  word,  but  the  branch  to  location  must  reside  within 

Mnemonic 
Meaning 

Format Operand  Size 
Operation JMP 

BRA 

Jump 

Branch  always 

JMP  EA 

BRA   Label 

8,  16 

EA-PC 

PC  +  d  ̂   PC 

Figure  4-5    Jump  and  branch  always  instructions. 
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+  129  or  -  126  bytes  of  the  current  value  in  PC.  On  the  other  hand,  the  16-bit 
displacement  is  encoded  as  a  second  instruction  word,  thereby  making  it  a  two-word 
instruction.  This  long  displacement  extends  the  range  of  the  branch  operation  to 
-1-32769  to  -32766  bytes  relative  to  the  current  PC. 

The  programmer  does  not  normally  specify  the  displacement  in  the  branch 
instruction.  Instead,  a  label  is  written  in  the  program  to  identify  the  branch  to  location. 
For  example,  the  instruction 

BRA     START 

causes  a  transfer  of  program  control  to  the  instruction  in  the  program  with  the  label 
START.  It  is  the  duty  of  the  assembler  program  to  compute  the  actual  displacement 
and  encode  it  into  the  instruction.  In  this  example,  the  displacement  will  be  encoded 
as  a  16-bit  word.  If  displacement  must  be  encoded  as  a  byte,  the  instruction  should 
be  written  as 

BRA.S     START 

JMP  and  BRA  are  called  unconditional  branch  instructions.  This  is  because 

the  change  in  instruction  sequence  that  they  initiate  takes  place  independent  of  any 
conditions  in  the  processor  status. 

Conditional  Branch  Instruction— Bcc 

The  68000  provides  a  conditional  branch  instruction  called  branch  conditionally  (Bcc). 
As  shown  in  Fig.  4.6(a),  its  general  form  is 

Bcc     LABEL 

Here  "cc"  is  used  to  specify  one  of  many  conditional  relationships.  Figure  4.6(b) 
is  a  list  of  all  the  valid  relationships  and  their  mnemonics.  For  instance,  selecting 
EQ  we  get  the  branch  on  equal  (BEQ)  instruction. 

The  conditional  branch  instruction  passes  control  to  the  specified  label  only 
if  the  conditional  relationship  is  true.  In  the  example  BEQ,  the  Z  bit  of  SR  is  tested. 
If  it  is  set,  the  branch  takes  place  to  the  location  specified  by  LABEL.  If  it  is  not 
set,  the  next  sequential  instruction  is  executed.  The  amount  of  displacement  allowed 
with  the  conditional  branch  instruction  is  the  same  as  for  the  branch  always 
instruction. 

Let  us  now  consider  an  example.  The  instruction 

BVS     START 

means  branch  to  the  instruction  identified  by  START  if  the  overflow  (V)  bit  is  set. 
If  V  is  not  set,  the  instruction  that  follows  the  BVS  instruction  is  executed.  The 
displacement  between  the  address  of  BVS  plus  two  and  the  instruction  with  label 

START  is  computed  by  the  assembler  and  encoded  into  the  instruction  as  a  16-bit 
integer.  For  encoding  the  displacement  as  a  byte,  the  instruction  should  be  written  as 

BVS.S     START 
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Mnemonic Meaning 
Format Operand  Size 

Operation 
Bcc Branch  conditionally Bcc  Label 

8,  16 
(PC)  +  d-»PCif  ccistrue; 

otherwise,  next  sequential 
instruction  executes 

Mnemonic 
Meaning 

Conditional  Code  Relationship 

BCC Branch  if  carry  clear 
C  =  0 BCS Branch  if  carry  set 
C=  1 BEQ 

Branch  if  equal Z=  1 

BNE Branch  if  not  equal Z  =  0 
BMI Branch  if  minus N=  1 

BPL 
Branch  if  plus 

N  =  0 BVC Branch  if  overflow  clear  (signed) V  =  0 
BVS Branch  if  overflow  set  (signed) 

V=  1 

BHI Branch  if  high  (unsigned) C  •  Z=  1 

ELS Branch  if  less  or  same  (unsigned) 
C  +  Z=  1 BGT Branch  if  greater  than  (signed) NVZ  +  NVZ  =  1 

BGE Branch  if  greater  or  equal  (signed) 
NV  +  NV=  1 

BLT Branch  if  less  than 
NV  +  NV=  1 

BLE Branch  if  less  or  equal  (signed) Z  +  NV  +  NV=  1 

Figure  4-6    (a)  Branch  conditionally  instruction;  (b)  conditional  tests  of  the  Bcc  in- 
struction. 

Example  4.2 

It  is  required  to  move  a  set  of  N,  16-bit  data  points  that  are  stored  in  a  block  of  memory 
that  starts  at  location  BLKl  to  a  new  block  that  starts  at  location  BLK2.  Write  a  program 
to  implement  this  operation. 

Solution.  The  flowchart  in  Fig.  4.7(a)  shows  a  plan  for  implementing  the  block  move 
function.  Initially,  we  set  up  two  pointers,  one  for  the  beginning  of  BLKl  and  the  other 

for  the  beginning  of  BLK2.  Address  registers  A,  and  A,,  respectively,  can  be  used  as 
these  pointers.  The  count  for  the  number  of  points  to  be  moved  is  placed  in  Dq.  This 
can  be  accomplished  by  the  instruction  sequence 

LEA 

LEA 

MOVE.L 

BLKl.AI 

BLK2,A2 

N,DO 
To  move  a  word  from  BLKl  to  BLK2,  we  can  use  a  move  word  instruction  with  address 
register  indirect  addressing  with  postincrement  mode  for  both  its  source  and  destination 

operands.  Moreover,  each  time  a  data  point  is  moved,  the  count  in  Dq  must  be  decreased 
by  1.  The  move  instruction  must  be  repeated  if  the  count  has  not  reached  zero.  The 
instructions  that  follow  will  perform  these  operations. 
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NXTPT        MOVE.W  (A1)  +  ,(A2)  + 

SUBQ.L  #1,00 

BNZ  NXTPT 

The  entire  program  is  shown  in  Fig.  4.7(b). 

f        Start        ̂  

\ 
Set  up  "moved  from" 

and  "moved  to" 
pointers  and 
the  counter 

,       MYTPT 

Move  the 
next  point 

N 

^^^All  points^^ "^v.^  moved?  ̂ ^ 

(        Stop        ) 

LEA BLKl.Al 
LEA BLK2,A2 

MOVE.L 
N,DO MOVE.W 
(A1)*,(A:)+ SUBQ.L 
#1,D0 

BNZ 
NXTPT 

Figure  4-7   (a)  Block  transfer  flowchart (b) 

(b)  program. 

4.4  THE  TEST  CONDITION,  DECREMENT,  AND  BRANCH 
INSTRUCTION  AND  PROGRAMS  INVOLVING  LOOPS 

The  program  we  considered  in  the  preceding  section  was  an  example  of  a  software 
loop.  In  the  earlier  example  we  found  that  when  a  software  loop  is  executed,  a  group 
of  instructions  are  executed  repeatedly.  The  repetition  may  be  unconditional  or 
conditional.  To  design  a  loop,  one  can  use  the  previously  introduced  compare,  jump, 
and  branch  instructions.  This  was  the  approach  employed  in  Example  4.2.  However, 
the  68000  provides  another  instruction  that  is  especially  useful  for  handling  loops. 
This  instruction  is  called  test  condition,  decrement,  and  branch  (DBcc)  and  has  the 
general  form 
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DBcc     Dn, Label 

Here  "cc"  represents  the  same  conditions  that  were  available  for  the  Bcc  instruction. 
They  are  listed  in  the  table  of  Fig.  4.6(b).  In  fact,  two  more  conditions,  always  true 

(T)  and  always  false  (F),  are  also  available  for  the  DBcc  instruction.  Dn  is  the  data 

register  that  contains  the  count  of  how  many  times  the  loop  is  to  be  repeated,  and 
Label  identifies  the  location  to  which  control  is  to  be  returned  by  the  branch  operation. 

When  the  DBcc  instruction  is  executed,  first  the  condition  identified  by  cc  is 

tested.  If  it  is  true,  no  branch  takes  place;  instead,  the  loop  is  terminated  and  the 

next  sequential  instruction  is  executed.  On  the  other  hand,  if  the  condition  is  not 

true,  the  contents  of  the  specified  data  register  are  decremented  by  1.  Then  another 

test  is  performed.  This  one  is  on  the  count  in  Dn.  If  it  is  equal  to  -  1,  the  branch 
does  not  take  place  because  the  loop  operation  has  run  to  completion.  In  this  case, 
execution  continues  with  the  next  sequential  instruction.  However,  if  the  count  is 

not  -  1,  program  control  branches  to  the  location  corresponding  to  Label. 
An  example  of  the  instruction  is  as  follows: 

DBLE     DO,NXTPT 

During  the  execution  of  this  instruction,  first  the  condition  code  bits  of  SR  are  tested 
to  determine  if  the  relationship 

Z  +  N-V  +  N-V=l 

is  satisfied.  If  true,  the  instruction  following  the  DBLE  instruction  is  executed.  If 

false,  Dq  is  decremented.  Next,  Dq  is  tested  to  determine  if  it  has  become  -  1.  If 
it  has,  the  next  sequential  instruction  is  executed.  But  if  Dq  is  any  number  other  than 

-  1,  execution  continues  at  the  label  NXTPT. 

For  example,  if  Z  =  0,  N  =  1,  V  =  1,  and  the  contents  of  Dq  are  03 1^,  the 
condition  code  relationship  evaluates  as 

Z-;-N-V  +  N-V  =  0+l-0  +  0-l 

=  0 

Since  the  result  is  0,  the  relationship  is  false.  Thus,  the  value  in  Dg  is  decremented 

by  1,  which  gives  02,^,  and  tested  for  -  1.  Since  Dq  does  not  contain  -  1,  control 
is  passed  to  the  instruction  corresponding  to  label  NXTPT. 

Example  4.3 

Given  N  data  points  that  are  signed  16-bit  numbers  stored  in  consecutive  memory  locations 
starting  at  address  DATA,  write  a  program  that  finds  their  average  value.  The  average 
value  that  results  is  to  be  stored  at  location  AVERAGE  in  memory.  Assume  that  N  is 
in  the  range  0  <  N  <  32K. 

Solution.  A  flowchart  that  solves  this  problem  is  shown  in  Fig.  4.8(a).  It  implements 
an  algorithm  that  finds  the  average  of  N  data  points  by  adding  their  values  and  then 
dividing  the  sum  by  N. 

Initially  we  set  the  sum,  which  will  reside  in  D^,  to  0,  the  address  pointer  in  A, 

to  DATA  so  that  it  points  to  the  first  data  point,  and  the  counter  in  Dq  equal  to  N  -  1. 
Notice  that  the  value  of  the  count  is  1  less  than  the  number  of  data  points  to  be  processed. 
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The  reason  for  this  is  that  we  intend  to  use  the  DBcc  instruction  which  branches  out 

of  the  loop  when  the  count  in  a  data  register  becomes  equal  to  -  1  and  not  0.  This 
initialization  is  performed  by  executing  the  following  instructions 

CLR.L  D7 

LEA  DATA,A1 

MOVE.L         #(N-1),D0 

To  add  a  new  data  point  to  sum,  we  first  move  it  into  D,.  Since  the  data  point 
is  of  word  length,  it  must  be  sign  extended  to  a  long  word  before  it  can  be  added  to 

the  previous  sum.  Then  the  sign-extended  data  point  in  Dj  is  added  to  the  sum  in  D^. 
Next  the  count  in  Dq  is  decremented  by  1  and  checked  to  determine  if  it  has  become 

equal  to  -  1.  A  value  of  -  1  means  that  all  points  have  been  added.  If  it  is  not  -  1, 
there  are  still  data  points  to  be  added  and  we  must  repeat  the  set  of  instructions  that 
add  a  new  data  point.  On  the  other  hand,  if  the  count  shows  that  all  points  have  been 

added,  we  are  ready  to  divide  the  sum  in  D^  by  N  to  obtain  the  average.  This  value 
can  then  be  moved  from  D^  to  the  storage  location  AVERAGE  in  memory.  All  this 
can  be  done  by  the  following  sequence  of  instructions. 

NXTPT MOVE.W 
(A1)  +  ,D1 

EXT.L Dl 

ADD.L 
D1,D7 

DBF DO,NXTPT 
DIVS 

#N,D7 

MOVE.W D7,AVERAGE 

The  complete  program  is  listed  in  Fig.  4.8(b). 

Example  4.4 

Given  a  four-digit  BCD  number  located  in  memory  location  BCDNUM,  write  a  program 
to  convert  it  to  its  equivalent  binary  number  and  place  the  result  in  memory  location 
BINNUM. 

Solution.     Let  us  begin  by  defining  an  algorithm  that  can  be  used  to  convert  a  BCD 
number  to  its  equivalent  binary  number.  For  the  general  BCD  number 

Nbcd  =  DjDp.Do 

its  equivalent  decimal  number  is  given  by  the  expression 

N,o  =  lOOOCDj)  +  100(D,)  +   10(D,)  +  Dq 

This  expression  can  be  reorganized  to  give 

N,o  =  Do  +   IO(D|  +   lOlD,  +   lOCDj))) 

Dg,  D|,  Dj,  and  Dj  in  this  expression  stand  for  BCD  digits  and  not  for  data  registers 
within  the  68000.  This  expression  suggests  an  algorithm  that  can  be  implemented  using 

a  software  loop.  Notice  that  if  we  start  with  the  MSD  Dj,  multiply  it  by  10,  and  then 

add  the  next  MSD  D^,  we  will  get  our  first  temporary  result.  This  same  sequence  can 
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r        Start        J 

Sum  =  0 
Data  pointer  =  DATA 

Count  =  (N  -  1) 

Divide  sum  by 
N 

to  obtain  average 

7~r~
 

(^         Stop        J 

Dq  =  counter 

D7  =  sum 
A|  =  pointer  to  data  points 
D,  =  temporary  register  for 

holding  data  point 

(a) 

CLR.L 
D7 LEA DATA,A1 

MOVE.L #(N-1),D0 
MOVE.W 

(A1)*,D1 EXT.L Dl 

ADD.L D1,D7 
DBF DO.NXTPT 
DIVS 

#N,D7 
MOV.W DV.AVERAGE 

Figure  4-8    (a)  Flowchart  of  a  program 
for  finding  the  average  of  N  signed 
numbers;  (b)  program. 



68000  Microprocessor  Programming  2  Chap.  4 

be  performed  twice  more  on  the  temporary  result,  first  adding  D,  to  the  product  and 
then  adding  Dg  to  the  product,  to  produce  the  final  result. 

The  flowchart  in  Fig.  4.9(a)  shows  how  this  algorithm  can  be  implemented  on 

the  68000.  Initialization  involves  setting  the  result,  which  is  in  D^,  to  zero,  setting  the 
digit  counter  in  Dg  to  3,  and  the  shift  counter  in  D[  to  12.  The  BCD  number  at  memory 
location  BCDNUM  is  copied  into  Dj.  Notice  that  the  value  of  the  digit  counter  is 
actually  one  less  than  the  number  of  digits  to  be  processed.  This  is  due  to  the  fact  that 
we  intend  to  use  the  DBcc  instruction,  which  branches  on  the  contents  of  a  data  register 

being  equal  to  -  1 .  The  shift  counter  will  be  used  to  extract  the  appropriate  digit  from 
the  number.  This  initialization  can  be  performed  with  the  instruction  sequence  that 
follows. 

CLR.L 

MOVE.L D7 
#3,  DO 

MOVE.L         #12,D1 

MOVE.W        BCDNUM,D2 

To  program  the  conversion  equation,  we  begin  with  the  most  significant  digit  of 

BCDNUM.  To  extract  the  MSD,  the  BCD  number  in  register  Dj  is  first  copied  into 
register  Dj  and  then  the  contents  of  Dj  are  shifted  right  logically  by  12  bit  positions. 
This  places  the  MSD  in  the  4  least  significant  bits  of  register  Dj.  Now  this  digit  value 
is  added  to  the  result  in  D^.  To  prepare  for  the  extraction  of  the  next  MSD,  we  shift 
the  contents  of  register  Dj  left  by  four  bit  positions.  This  places  the  next  MSD  in  the 
most  significant  digit  position  so  that  this  digit  can  now  be  treated  exactly  like  the 

preceding  one.  The  counter  in  register  Dg  is  decremented  and  tested;  if  it  is  not  equal 
to  -  1,  we  repeat  the  process  with  the  next  digit.  If  we  repeat,  we  must  multiply  the 
result  by  10  before  adding  the  value  of  the  next  digit.  All  this  can  be  done  by  the  following 
sequence  of  instructions: 

NXTDGT        MULU  #10,D7 

MOVE.W  D2,D3 

LSR.W  D1,D3 

ADD.W  D3,D7 

LSL.W  #4,D2 

DBF  DO.NXTDGT 

MOVE.W  D7,BINNUM 

The  entire  program  is  shown  in  Fig.  4.9(b). 

Example  4.5 

It  is  required  to  sort  an  array  of  16-bit  signed  binary  numbers  such  that  they  are  arranged 
in  ascending  order.  For  instance,  if  the  original  array  is 

5,  1,  29,  15,  38,  3,  -8,  -32 

after  sorting,  the  array  that  results  would  be 

-32,  -8,  1.  3,  5,  15,  29,  38 



The  Test  Condition,  Decrement,  and  Branch  Instruction 

r Start J 

Initialize 

Result  =  0 
Count  =  3 

Shift  count  =  12 
BCDNUM  -  D: 

Result  X  10-  result 

Extract  MSD 

Result  +  extracted 

MSD  -  result 

Dq  =  counter 
D]  =  shift  counter 
D^  =  given  BCD  number 

(BCDNUM) 

D,  =  equivalent  binary 
number  (BINNUM) 

Shift  the  next  digit  into 
the  MSD  location 

Store  result  at  BINNUM 

(        Stop J 
(a) 

CLR.L 

D7 
MOVE.L #3, DO 
MOVE.L #i:,Di 
MOVE.W bcdnum.d: 

NXTDGT        MULU #10.D7 
MOVE.W D2,D3 
LSR.W DI,D3 
ADD.W 

D3,D7 
LSL.W #4,D2 
DBF do.nxtdgt 
MOVE.W D7,BINNUM 

(b) 
Figure  4-9   (a)  Flowchart  for  BCD-to- 
binary  conversion  routine;  (b)  program. 
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Assume  that  the  array  of  numbers  is  stored  at  consecutive  memory  locations  from 

addresses  F400|g  through  F4FE,g  in  memory.  Write  a  sort  program. 

Solution.  First  we  will  develop  an  algorithm  that  can  be  used  to  sort  an  array  of  elements 
A(0),  A(l),  A(2),  through  A(N)  into  ascending  order.  One  way  of  doing  this  is  to  take 
the  first  number  in  the  array,  which  is  A(0),  and  compare  it  to  the  second  number  A(l). 
If  A(0)  is  greater  than  A(l),  the  two  numbers  are  swapped;  otherwise,  they  are  left  alone. 
Next  A(0)  is  compared  to  A(2)  and  based  on  the  result  of  this  comparison  they  are  either 

swapped  or  left  alone.  This  sequence  is  repeated  until  A(0)  has  been  compared  with  all 
numbers  up  through  A(N).  When  this  is  complete,  the  smallest  number  will  be  in  the 

A(0)  position. 
Now  A(l)  must  be  compared  to  A(2)  through  A(N)  in  the  same  way.  After  this 

is  done,  the  second  smallest  number  is  in  the  A(l)  position.  Up  to  this  point,  just  two 
of  the  N  numbers  have  been  put  in  ascending  order.  Therefore,  the  procedure  must  be 

continued  for  A(2)  through  A(N  -   1)  to  complete  the  sort. 
Figure  4.10(a)  illustrates  the  use  of  this  algorithm  for  an  array  with  just  four 

numbers.  The  numbers  are  A(0)  =  5,  A(l)  =  1,  A(2)  =  29,  and  A(3)  =  -8.  During 
the  sort  sequence,  A{0)  =  5  is  first  compared  to  A(l)  =  1.  Since  5  is  greater  than  1, 
A(0)  and  A(l)  are  swapped.  Now  A(0)  =  1  is  compared  to  A(2)  =  29.  This  time  1  is 
less  than  29;  therefore,  the  numbers  are  not  swapped  and  A(0)  remains  equal  to  1 .  Next, 

A(0)  =  1  is  compared  with  A(3)  =  -8.  A(0)  is  greater  than  A(3).  Thus  A(0)  and  A(3) 
are  swapped  and  A(0)  becomes  equal  to  -8.  Notice  in  Fig.  4.10(a)  that  the  lowest  of 
the  four  numbers  now  resides  in  A(0). 

The  sort  sequence  in  Fig.  4.10(a)  continues  with  A(l)  =  5  being  compared  first 
to  A(2)  =  29  and  then  to  A(3)  =  1.  In  the  first  comparison,  A(l)  is  less  than  A(2). 
For  this  reason,  their  values  are  not  swapped.  But  in  the  second  comparison,  A(l)  is 
greater  than  A(3);  therefore,  the  two  values  are  swapped.  In  this  way,  the  second  lowest 
number,  which  is  1,  is  sorted  into  A(l). 

It  just  remains  to  sort  A(2)  and  A(3).  Comparing  these  two  values,  we  see  that 

29  is  greater  than  5.  This  causes  the  two  values  to  be  swapped  such  that  A(2)  =  5  and 
A(3)  =  29.  As  shown  in  Fig.  4.10(a),  the  sorting  of  the  array  is  now  complete. 

0 1 - 3 Status 

Ad) 

Adi 

All) 

Ad) 

.Ad) 

Ad) 

Ad) 

5 1 

29 

:9 

1 

-x -8 

-8 

1 

Onginal  array 

Array  after  comparing  A(0)  and  A{  1 ) 

Array  alter  comparing  A(0)  and  .A(2) 

Array  after  comparing  A(0)  and  A(3) 

Array  after  comparing  A(  1 )  and  A(2) 

Array  after  comparing  A(  1 )  and  A(3) 

Array  alter  comparing  Al2)  and  A(3) 

5 

5 29 

-8 

-8 

-8 

-8 

5 
1 

29 

1 
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1 
1 

5 
1 

29 
1 

1 
29 
1 

5 

5 
1 

29 

Figure  4-10     (a)  Sort  example. 
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Aj  =  PNTRj  =  pointer  to  first  element 
A2  =  PNTR2  =  pointer  to  next  element 
A3  =  PNTRj  =  pointer  to  last  element 

MOVE.L $F400,AI 

MOVE.L $F4FE,A3 
MOVH.L 

A1,A2 
ADDQ.L #2,A2 

MOVE.W {A2),D0 

CMP.W (AI),DO 
BLE.S CC 

MOVE.W (A1),(A2) 

MOVE.W 
D0,(A1) 

ADDQ.L #2,A2 
CMP.L a:,a3 
BLE.S 

BB 
ADDQ.L #2,A1 

CMP.L A1,A3 

BLT 

AA 

(        Stop         J 

Figure  4-10  fcontj     (b)  Flowchart  for  sort  algorithm;  (c)  program. 

We  will  implement  this  algorithm  for  the  68000  microprocessor.  The  flowchart 
for  the  sort  algorithm  is  shown  in  Fig.  4.10(b). 

The  first  block  represents  initialization  of  pointers  PNTRl  and  PNTR3.  They 
contain  addresses  that  point  to  the  storage  locations  of  the  first  and  last  elements  of 

the  array,  respectively.  Since  registers  A,  and  A3  are  used  as  these  pointers  and  the 



68000  Microprocessor  Programming  2  Chap.  4 

addresses  of  the  first  and  last  elements  are  $F400  and  $F4FE,  respectively,  the  instructions 
used  to  perform  the  initialization  are 

MOVE.L         $F400,A1 

MOVE.L         $F4FE,A3 

Address  register  Aj  contains  another  pointer.  It  is  called  PNTR2  and  points  to  the  next 
element  to  be  processed  in  the  array.  To  initialize  PNTR2,  we  can  load  register  Aj  with 
the  contents  of  A,,  which  is  PNTRl,  and  then  increment  this  value  by  2.  In  this  way, 
the  next  word  address  is  established  for  PNTR2.  This  is  done  with  the  instructions 

AA         MOVE.L  AI,A2 

ADDQ.L  #2,A2 

As  shown  in  the  flowchart,  the  label  AA  is  used  to  implement  a  branch  point. 
Next,  starting  with  label  BB,  we  first  compare  the  two  numbers.  To  implement 

the  comparison,  the  number  pointed  to  by  PNTR2  can  be  copied  into  register  Dq;  next, 
the  value  pointed  to  by  PNTRl  can  be  compared  to  it;  and  then  a  conditional  branch 
can  be  made  if  status  shows  that 

PNTRl  <  PNTR2 

The  branch  passes  control  to  the  point  in  the  program  identified  by  label  CC.  If  the 
value  pointed  to  by  PNTRl  is  greater  than  the  value  pointed  to  by  PNTR2,  the  two 
values  must  be  swapped.  These  operations  are  performed  with  the  instructions 

BB MOVE.W 
(A2),D0 

CMP.W (A1),D0 
BLE.S CC 

To  implement  swapping  of  the  two  numbers,  the  number  pointed  to  by  PNTRl  is  copied 
into  the  memory  location  pointed  to  by  PNTR2.  Next,  the  contents  of  Dg  are  copied 
to  the  storage  location  pointed  to  by  PNTRl .  This  completes  the  swap.  The  corresponding 
instructions  are 

MOVE.W         (A1),(A2) 

MOVE.W         D0,(A1) 

Now  pointer  PNTR2  is  updated  by  incrementing  it  by  2  and  then  it  is  compared  to  PNTR3 
to  find  out  if  the  last  element  has  been  compared.  If  the  result  of  this  comparision  shows 
that 

PNTR2  <  PNTR3 

control  is  returned  to  the  point  in  the  program  identified  by  BB.  Otherwise,  program 
execution  continues  on  to  the  next  block  in  the  flowchart.  These  operations  are  done 
with  the  instructions 

CC ADDQ.L #2,A2 

CMP.L A2,A3 

BLE.S BB 
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When  the  answer  to  the  comparison  is  that 

PNTR2  >  PNTR3 

we  must  update  PNTRl  by  adding  2  and  then  compare  it  to  PNTR3.  If  it  turns  out  that 

PNTRl  <  PNTR3 

we  must  start  all  over  again  from  AA.  Otherwise,  the  program  is  complete.  The 
instructions  for  this  part  of  the  program  are 

ADDQ.L  n,M 

CMP.L  A1,A3 

BLT  AA 

The  entire  program  is  shown  in  Fig.  4.10(c). 

4.5  SUBROUTINES  AND  SUBROUTINE-HANDLING  INSTRUCTIONS 

A  subroutine  is  a  special  segment  of  program  that  can  be  called  for  execution  from 

any  point  in  a  program.  Figure  4.11  illustrates  the  concept  of  a  subroutine.  Here 

we  see  a  program  structure  where  one  part  of  the  program  is  called  the  main  pro- 
gram. In  addition  to  this,  we  find  a  smaller  segment  attached  to  the  main  program, 

known  as  a  subroutine.  The  subroutine  is  written  to  provide  a  function  that  must 

be  performed  at  various  points  in  the  main  program.  Instead  of  including  this  piece 

of  code  in  the  main  program  each  time  the  function  is  needed,  it  is  put  into  the  pro- 
gram just  once  as  a  subroutine. 

Wherever  the  function  must  be  performed,  a  single  instruction  is  inserted  into 

the  main  body  of  the  program  to  "call"  the  subroutine.  Remember  that  the  contents 
of  PC  always  identifies  the  next  instruction  to  be  executed.  Thus,  to  branch  to  a 

subroutine  that  starts  elsewhere  in  memory,  the  value  in  PC  must  be  modified.  After 

executing  the  subroutine,  we  want  to  return  control  to  the  instruction  that  follows 

Figure  4-11    Subroutine  concept. 
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the  one  that  called  the  subroutine.  In  this  way,  program  execution  resumes  in  the 
main  program  at  the  point  where  it  left  off  due  to  the  subroutine  call.  A  return 
instruction  must  be  included  at  the  end  of  the  subroutine  to  initiate  the  return  sequence 
to  the  main  program  environment. 

The  instructions  provided  to  transfer  control  from  the  main  program  to  a 
subroutine  and  return  control  back  to  the  main  program  are  called  subroutine  handling 
instructions.  Let  us  now  examine  the  instructions  provided  for  this  purpose. 

Subroutine  Control  Instructions— JSR,  BSR,  RTS,  and  RTR 

The  four  subroutine  handling  instructions  of  the  68000  microprocessor  are  shown 
in  Fig.  4. 12.  These  instructions  include ywwp  to  subroutine  (JSR),  branch  to  subroutine 
(BSR),  return  from  subroutine  (RTS),  and  return  and  restore  condition  codes  (RTR). 
These  instructions  provide  for  efficient  subroutine  handling  and  nesting. 

The  instructions  jump  to  subroutine  (JSR)  and  branch  to  subroutine  (BSR)  serve 
essentially  the  same  purpose.  This  is  to  pass  control  to  the  starting  point  of  a 
subroutine.  As  shown  in  Fig.  4.12,  they  both  save  the  current  contents  of  PC  by 
pushing  it  to  the  active  stack.  This  preserves  a  return  address  for  use  at  completion 
of  the  subroutine.  Then  they  pass  control  to  the  starting  point  of  the  subroutine. 

These  two  instructions  differ  in  how  they  specify  the  starting  address  of  the 
subroutine.  For  the  JSR  instruction  this  address  is  specified  as  an  effective  address 
and  only  the  control  addressing  modes  are  allowed.  Therefore,  the  starting  address 
can  reside  in  a  data  register,  address  register,  or  in  either  program  or  data  storage 
memory.  For  instance,  using  address  register  indirect  addressing  through  register  A,, 
we  get 

JSR     (Al) 

On  the  other  hand,  in  the  BSR  instruction,  the  displacement  between  the  current 
instruction  and  the  first  instruction  of  the  subroutine  is  determined  and  encoded  into 

the  instruction.  That  is,  it  is  stored  in  program  storage  memory.  An  example  is 

BSR     STARTSUB 

Mnemonic 
Meaning 

Format 
Operand  Size 

Operation 
JSR Jump  to  subroutine JSREA 32 PC^-(SP) 

EA-PC 

BSR Branch  to  subroutine BSR  Label 

8,  16 

PC-»-(SP) 

PC  +  d  ̂   PC 

RTS Return  from  subroutine RTS 

(SP)*  ̂ PC 
RTR Return  and  restore 

RTR 

(SP)*  -»CCR 
(SP)*  -*  PC 

Figure  4-12    Subroutine  control  instructions. 
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Thus  JSR  provides  the  abihty  to  jump  to  a  subroutine  that  resides  anywhere 

in  the  16M-byte  address  space  of  the  68000.  But  BSR  only  permits  branching  to  a 
subroutine  that  is  located  within  the  maximum  allowable  displacement  value.  The 

displacement  can  be  either  8  bits  for  the  short  form  of  the  BSR  instruction  or  16 
bits  for  the  long  form. 

The  other  two  instructions  return  from  subroutine  (RTS)  and  return  and  restore 

(RTR)  provide  the  means  for  returning  from  a  subroutine  back  to  the  calling  program. 

In  Fig.  4.12,  we  see  that  executing  RTS  simply  restores  the  program  counter  by 

popping  the  value  that  was  saved  on  the  active  stack  when  the  subroutine  was  called. 
The  second  instruction  RTR  restores  both  the  condition  code  part  of  SR  and  PC 

from  the  stack.  One  of  these  instructions  is  always  the  last  instruction  of  a  subroutine. 

Example  4.6 

In  a  Fibonacci  series,  the  first  number  is  0,  the  second  is  1,  and  each  subsequent  number 

is  obtained  by  adding  the  previous  two  numbers.  For  example,  the  first  10  numbers  of 
the  series  are 

0,  1,  1,  2,  3,  5,  8,  13,  21,  34 

Write  a  program  to  generate  the  first  20  elements  of  a  Fibonacci  series.  The  numbers 
of  the  series  are  to  be  stored  at  consecutive  locations  in  memory  starting  at  address 

FIBSER.  Use  a  subroutine  to  implement  the  part  of  the  procedure  by  which  the  next 
number  of  the  series  is  obtained  from  the  previous  two  numbers. 

Solution.  A  flowchart  for  this  program  together  with  the  assignments  of  various  registers 
is  shown  in  Fig.  4.13(a).  The  first  part  of  the  program  initializes  the  registers  and  stores 
the  first  two  numbers.  The  instructions  used  for  this  purpose  are 

SET  THE  COUNTER  TO  17 

SET  THE  POINTER  TO  FIBSER 

Dl  =  0 

D2  =  1 

STORE  THE  FIRST  NUMBER 

MOVE.W  D2,(AI)+  STORE  THE  SECOND  NUMBER 

The  next-to-Iast  instruction  causes  0  to  be  loaded  into  address  FIBSER  and  increments 

the  pointer  in  Aj  by  2  such  that  it  points  to  the  storage  location  of  the  next  number 
in  the  series.  Then  a  similar  instruction  is  executed  to  load  FIBSER +  2  with  1  and  Aj 
is  again  incremented. 

We  are  now  ready  to  call  the  subroutine  that  does  the  addition  to  form  the  next 
number  in  the  series.  Since  the  subroutine  will  be  called  repeatedly,  the  BRS  instruction 

is  identified  by  a  label  to  which  the  program  can  loop  back.  This  instruction  is 

NXTNM         BRS.S     SBRTF 

The  subroutine  starts  at  the  instruction  with  label  SBRTF.  The  purpose  of  the  subroutine 
is  to  add  the  contents  of  D,  and  D,  so  that  the  next  number  in  the  series  is  generated. 

MOVE.L #$11, DO 

LEA FIBSER,A1 

CLR.W Dl 

MOVEQ.W #1,D2 

MOVE.W D1,(A1)  + 
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r      Start        J 

\ 
Initialize 

1 1 ,6  -  Do 
FIBSER^Ai O^Di 

1    -D; 

Store  the  first  tv 
numbers  of 
the  series 

Call  subroutine 
at  SBRTF 

(        Stop        J 

Dq  =  counter  for  the  numbers 
to  be  generated 

Aj  =  pointer  to  the  address  at 
which  the  number  is  to 
be  stored 

D,  =  first  number  used  in  the 

generation 
D2  =  second  number  used  in 

the  generation 

D3  =  generated  number 

fsBRFTJ 

Generate  the 
next  number  in 

the  series 

Temporarily  save  the 
new  number  in  D3 

MOVE.L #$11, DO 
LEA FIBSER.Al 

CLR.W 
Dl MOVEQ.W #1,D2 

MOVE.W 

D1,(A1)* 
MOVE.W D2,(Air 

NXTNM BSR.S SBRTF 

MOVE.W D2,D1 
MOVE.W D3,D2 
MOVE.W 

D3,(A1)* 
DBF 

DO.NXTNM 
DONE BRA DONE 

SBRTF ADD.W D2,D1 
MOVE.W D1,D3 
RTS 

Figure  4-13   (a)  Flowchart  for  the 
Fibonacci  series  program;  (b)  program. 
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temporarily  save  this  number  in  Dj,  and  then  return  back  to  the  main  program.  This 
can  be  done  by  the  instruction  sequence 

SBRTF ADD.W 

MOVE.W 

D2,D1 

D1,D3 
RTS 

At  this  point  in  the  main  program,  we  get  ready  for  generating  the  next  number. 

This  is  done  by  saving  the  contents  of  Dj  in  Dj  and  that  of  D^  in  Dj.  Next  we  save 
the  new  number  that  was  generated  in  D3  by  moving  it  to  memory.  To  do  this,  the 
instructions  are 

MOVE.W D2,D1 

MOVE.W D3,D2 

MOVE.W 

D3,(A1)-I- 
Now  the  count  in  Dq  is  decremented  and  tested  for  -  1 .  If  it  is  not  equal  to  -  1 ,  we 
loop  back  to  the  label  NXTNM.  However,  if  it  is  -  1,  we  are  done.  The  instruction 
for  this  is 

DBF  DO.NXTNM 

DONE  BRA  DONE 

The  entire  program  is  repeated  in  Fig.  4.13(b). 

Link  and  Unlink  Instructions— LINK  and  UNLK 

Before  the  main  program  calls  a  subroutine,  quite  often  it  is  necessary  for  the  calling 

program  to  pass  the  values  of  some  variables  (parameters)  to  the  subroutine.  It  is 

a  common  practice  to  push  these  variables  onto  the  stack  before  calling  the  routine. 

Then  during  the  execution  of  the  subroutine,  they  are  accessed  by  reading  them  from 

the  stack  and  used  in  computations.  Two  instructions  are  provided  to  allocate  and 

deallocate  a  data  area  called  a  frame  in  the  stack  part  of  memory.  This  data  area 

is  used  for  local  storage  of  parameters  or  other  data.  The  two  instructions,  as  shown 

in  Fig.  4.14,  are  link  and  allocate  (LINK)  and  unlink  (VNLK).  They  make  the  process 

of  passing  and  retrieving  parameters  much  easier. 

The  LINK  instruction  is  used  at  the  beginning  of  a  subroutine  to  create  a  data 

frame.  Looking  at  the  format  of  the  instruction  in  Fig.  4.14,  we  see  that  it  has  two 

Mnemonic 
Meaning 

Format 
Operation 

LINK Link  and  allocate LINK  An,  d An  -*  -  (SP) 

SP^An 

SP  -  d  ̂   SP 

UNLK Unlink UNLK  An An-'SP 

(SP)+  -  An 

Figure  4-14    Link  and  unlink  instructions. 
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operands.  The  one  denoted  A^  is  always  an  address  register.  The  address  held  in  A^ 
is  known  as  Ihe  frame  pointer  and  it  points  to  the  lowest  storage  location  in  the  data 
frame.  The  other  operand  is  an  immediate  operand  that  specifies  the  value  of  a 
displacement.  This  displacement  specifies  the  size  of  the  data  space.  Since  it  can  be 
as  long  as  16  bits,  a  frame  data  space  can  be  as  large  as  32K  words. 

An  example  of  this  instruction  is 

LINK     A1,-#$A 

Execution  of  this  instruction  causes  the  current  contents  of  Aj  to  be  pushed  onto 
the  active  stack;  then  the  updated  contents  of  the  active  SP  register  are  loaded  into 
Aj;  finally,  A^^  is  subtracted  from  the  new  value  in  SP. 

Figure  4.15  shows  what  happens  by  executing  this  instruction.  First  we  see  that 
pushing  the  contents  of  Aj  to  the  stack  saves  the  frame  pointer  for  the  prior  data 

frame.  This  is  identified  as  "Prior  frame  pointer"  and  is  stored  at  Ajj^^^.  Loading 
A)  with  the  contents  of  SP  establishes  a  frame  pointer  to  the  new  data  frame. 
Subtracting  the  displacement  from  (SP)  modifies  the  stack  pointer  so  that  the  active 
stack  is  located  in  memory  just  below  the  data  frame.  Since  the  displacement  is  A|g, 
the  data  frame  is  10  bytes  in  length. 

The  frame  pointer  A,  provides  a  fixed  reference  into  the  data  frame  and  old 
stack.  Parameters  that  were  loaded  into  the  stack  prior  to  calling  the  subroutine  can 
be  accessed  using  address  register  indirect  with  displacement  addressing  for  the 
operand.  For  example,  the  instruction 

MOVE.W    4(A1),D0 

Stack  memory 

New  stack  continuation 

New  data  frame 
(!0  bytes) 

— " 

Prior  frame  pomter  ( A,  ̂j) 

Return  address 

Prior  used  stack 

Prior  data  frame 

Figure  4-15   Creation  of  a  data  frame 
with  the  link  instruction. 



Subroutines  and  Subroutine-Handling  Instructions 

before 

UNLK 

register 

pointer 

causes  the  word  parameter  stored  four  bytes  from  frame  pointer  A,  to  be  copied 
into  Dq.  This  parameter  is  in  the  old  stack. 

After  performing  the  operation  defined  by  the  subroutine  and  just 
returning  to  the  caUing  program,  the  prior  data  frame  must  be  restored.  The 
instruction  is  used  for  this  purpose.  Notice  in  Fig.  4.14  that  it  causes  address 
Aj,,  which  is  used  for  the  frame  pointer,  to  be  loaded  into  the  active  stack 
register.  Then  the  address  held  at  the  top  of  the  stack  is  popped  into  A^. 

For  our  example,  the  unlink  instruction  would  be 

UNLK     Al 

Earlier  we  pointed  out  that  execution  of  the  LINK  instruction  saved  the  old  frame 
pointer  on  the  stack  and  then  created  a  new  data  frame.  Executing  UNLK  Al  causes 
SP  to  be  loaded  from  A,.  Looking  at  Fig.  4.15,  we  find  that  the  stack  pointer  now 
points  to  the  location  of  the  prior  frame  pointer.  Then  Aj  is  loaded  from  the  stack. 
Therefore,  the  prior  frame  pointer  is  put  back  in  A,  and  the  prior  stack  and  data 
frame  environment  is  restored. 

To  understand  this  concept  better,  let  us  consider  the  example  illustrated  in  Fig. 
4.16.  As  we  begin  to  execute  the  first  instruction  of  the  program  segment  shown  in 
Fig.  4.16(a),  we  will  assume  that  the  active  SP  points  to  the  top  of  the  data  frame 
identified  in  Fig.  4.16(b)  as  local  storage  area  for  the  calling  routine.  Execution  of 
the  first  two  instructions 

MOVE.W     DO,-(SP) 

MOVE.W     D1,-(SP) 

passes  the  contents  of  Dq  and  Dj  as  parameters  onto  the  stack.  Looking  at  Fig. 
4.16(b),  we  see  that  at  the  completion  of  these  two  instructions  SP  points  to  the 
location  where  parameter  2  is  stored. 

MOVE.W  DO,  "(SP) 
MOVE.W  D1,-(SP) 
JSR  SBRT 

SBRT  LINK 

UNLK 
RTS 

;  parameter  1  passed  to  stack 
;  parameter  2  passed  to  stack 
;  call  subroutine  SBRT 

;  FP  and  local  storage  established  for  called  routine 

;  parameter  1  accessed 

;  FP  for  the  calling  routine  established 
;  return  to  main  program 

Figure  4-16     (a)  Program  example  with  LINK  and  UNLK  instructions. 
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Stack  memory 

SP  alter  LINK  AO.  -#$8 

FP  alter  LINK  AO,  -*$8- 

SP  after  JSR   SBRT   

SP  after  MOVE.W  D1,^(SP)— 

SP  after  MOVE.W  DO,  ~(SP)— 

SP  before  MOVE.W  DO,  "(SP)- 

FP  before  MOVE.W  DO,  "(SP)- 

Local  storage  for 
called  subroutine 

(SBRT) 

Calling  routine  FP 

(An  contents) 

Return  back  address 

(AA  +  4) 

Local  storage  for 
calling  subroutine 
or  main  program 

8  bytes 

Long  word 
-SP  after  UNLK  AO 

Long  word 
SP  after  RTS 
Word 

-^FP  after  UNLK  AO 

(b) 

Figure  4-16  (cont.)     (b)  Stack  for  the  example  program. 

The  next  instruction, 

JSR     SBRT 

which  has  the  label  AA,  calls  the  subroutine  starting  at  label  SBRT.  It  causes  the 
address  of  the  instruction  that  follows  it  to  be  pushed  onto  the  stack.  This  return 
address  is  AA  +  4  since  the  JSR  instruction  takes  up  four  bytes  of  program  memory. 
Secondly  PC  is  loaded  with  the  address  of  SBRT  such  that  program  control  picks 
up  execution  from  the  first  instruction  of  the  subroutine. 

The  subroutine  starts  with  the  instruction 

LINK     AO,  -  #$8 

It  causes  the  contents  of  Aq  to  be  saved  on  the  stack  and  then  loads  Ag  from  the 
active  stack  pointer  register.  This  sets  up  a  new  frame  pointer  FP  (Aq  register).  Then 
8  is  subtracted  from  the  value  in  SP.  Therefore,  it  points  to  the  top  of  the  data  area 
identified  in  Fig.  4.16(b)  as  local  storage  for  the  called  subroutine. 

As  subroutine  SBRT  is  being  executed,  we  may  need  to  access  parameter  1. 
The  frame  pointer  serves  as  a  reference  into  the  called  routines  data  frame.  Parameter 
1  is  at  a  displacement  of  10  bytes  from  the  frame  pointer;  therefore,  the  instruction 

MOVE.W     10(A0),D5 
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can  be  used  to  access  it.  Execution  of  this  instruction  copies  parameter  1  into  Dj. 
The  next  instruction  we  see  is 

UNLK     AO 

It  loads  SP  with  the  contents  of  Aq  and  then  pops  the  contents  at  the  top  of  the  stack 
into  Aq.  Now  Aq  once  again  contains  the  frame  pointer  for  the  calling  routine  and 
SP  points  to  the  location  where  the  return  address  AA  +  4  is  stored. 

The  last  instruction 
RTS 

loads  the  return  address  into  the  program  counter  so  that  execution  resumes  in  the 
calling  routine. 

4.6  BIT-MANIPULATION  INSTRUCTIONS 

The  bit  manipulation  instructions  of  the  68000  enable  a  programmer  to  test  the  logic 
level  of  a  bit  in  either  a  data  register  or  storage  location  in  memory.  The  tested  bit 
can  also  be  set,  reset,  or  changed  during  the  execution  of  the  instruction.  The  four 

bit  manipulation  instructions  in  the  68000's  instruction  set  are  shown  in  Fig.  4.17. 
They  are:  test  a  bit  (BTST),  test  a  bit  and  set  (BSET),  test  a  bit  and  clear  (BCLR), 
and  test  a  bit  and  change  (BCHG). 

Test  a  Bit  instruction— BTST 

The  test  a  bit  (BTST)  instruction  has  the  ability  to  test  any  one  bit  in  a  32-bit  data 
register  or  any  one  bit  of  a  byte  storage  location  in  memory.  The  logic  state  of  the 
tested  bit  is  inverted  and  copied  into  the  Z  bit  of  SR.  That  is,  when  the  bit  is  tested 
as  1,  Z  is  set  to  0  or  when  the  bit  is  tested  as  0,  Z  is  set  to  1.  The  two  valid  forms 
of  the  BTST  instruction  are  shown  in  Fig.  4.17.  In  both  forms,  the  destination 
operand,  which  contains  the  bit  to  be  tested,  is  specified  by  an  effective  address. 

These  two  forms  differ  in  the  way  the  number  of  the  bit  to  be  tested  is  specified. 
In  the  first  form,  the  number  of  the  bit  is  supplied  as  an  immediate  source  operand 

Mnemonic Meaning Format 
Operand  Size Operation 

BTST Test  a  bit BTST  #XXX,EA 

BTST  Dn.EA 8,32 

8,32 

EA  bit  -*  Z 

BSET Test  a  bit  and  set BSET  #XXX,EA 
8,32 

EA  bit  ->  Z BSET  Dn.EA 
8,32 

1  -  EA  bit 

BCLR Test  a  bit  and  clear BCLR  #XXX,EA 

8,32 EAbit-Z BCLR   Dn.EA 

8,32 

O-EAbit 

BCHG Test  a  bit  and  change BCHG  #XXX,EA 
8,32 EA  bit  -  Z BCHG  Dn.EA 

8,32 

EA  bit  -  EA  bit 

Figure  4-17   Bit-manipulation  instructions. 
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that  gets  coded  as  part  of  the  instruction  in  program  memory.  An  example  is  the 
instruction 

BTST     #5,D7 

Execution  of  this  instruction  tests  bit  5  in  data  register  D7.  The  complement  of  the 
value  found  in  this  bit  position  is  copied  into  Z.  For  example,  if  D7  contains  25, g, 
that  is 

D7  =  000000000000000000000000001001 01 2 

bit  5  is  logic  1.  Thus,  the  complement  of  1,  which  is  0,  is  copied  into  the  Z  flag. 
The  second  form  uses  the  contents  of  one  of  the  data  registers  to  specify  the 

bit  position.  For  instance,  if  Dq  contains  number  5,  then  executing  the  instruction 

BTST     D0,D7 

produces  the  same  result  as  the  instruction  that  employed  an  immediate  operand. 

Other  Test  Bit  Instructions— BSET,  BCLR,  and  BCHG 

The  other  instructions  in  Fig.  4.17,  BSET,  BCLR,  and  BCHG,  operate  similarly  to 
BTST.  However,  they  not  only  copy  the  complement  of  the  tested  bit  into  Z,  but 
also  set,  clear,  or  invert  the  bit  in  the  destination  operand,  respectively. 

An  example  is  the  instruction 
BSET     #7,(A1) 

When  this  instruction  is  executed,  bit  7  of  the  memory  location  pointed  to  by  (Al) 
is  tested.  The  complement  of  its  logic  level  is  copied  into  Z  and  then  bit  7  is  set  to 
1.  For  instance,  if  the  byte  memory  location  pointed  to  by  the  address  in  A,  contains 
7Fjg,  which  is  01111 11  Ij  in  binary  form,  bit  7  is  logic  0.  Therefore,  execution  of 
the  instruction  causes  Z  to  be  set  to  1  and  the  contents  of  the  memory  location  to 
be  changed  to  FF,g. 

When  a  memory  bit  is  addressed,  BTST  allows  use  of  the  data  addressing  modes 
to  specify  the  effective  address  of  the  destination  operand.  The  instructions  BSET, 
BCLR,  and  BCHG  allow  the  use  of  data-alterable  addressing  modes  for  EA. 

Test  and  Set  Operand  Instruction— TAS 

Another  instruction  that  is  similar  to  the  test  bit  instruction  is  test  and  set  operand 
(TAS).  As  shown  in  Fig.  4.18,  TAS  differs  from  BTST  in  that  it  tests  a  byte  operand 
in  a  data  register  or  storage  location  in  memory.  The  test  is  performed  by  comparing 
the  operand  with  zero  and  setting  or  resetting  condition  code  bits  N  and  Z  based 
on  the  resuh.  N  is  set  to  the  logic  level  of  the  most  significant  bit  of  the  operand 
and  Z  is  set  if  the  operand  is  zero.  Second,  independent  of  the  result  of  the  test,  the 
most  significant  bit  of  the  accessed  byte  is  set  to  1.  An  example  is  the  instruction 

TAS     DO 
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Mnemonic Meaning 
Format 

Operand  Size 
Operation 

TAS Test  and  set  an 

operand 

TASEA 8 If  destination  is  zero,  1  -*  Z; 

otherwise,  0  -•  Z If  destination  is  negative, 

1  -•  N;  otherwise,  0-»  N 0-*V 
0-C 

1  -♦  most  significant  bit  of  byte 
addressed  by  EA 

Figure  4-18    TAS  instruction. 

The  TAS  instruction  is  specifically  designed  to  support  multiprocessing  and 
multitasking  system  environments.  For  instance,  in  a  multiprocessing  system,  a  bit 
called  a  semaphore  in  a  byte  in  memory  is  set  for  resolving  which  processor  can  access 
a  memory  section  reserved  for  a  specific  resource.  If  a  processor  needs  to  access  this 
resource,  it  will  first  test  and  set  the  memory  byte.  If  the  resource  is  already  in  use, 
the  test  will  indicate  that  condition  and  the  processor  can  wait  until  it  is  available. 
Once  it  is  done  using  the  resource,  it  resets  the  semaphore  bit,  thus  allowing  access 
by  other  processors.  This  is  illustrated  in  Fig.  4.19. 

Resource  is  used 

by  the 
processor 

LOOP       TAS 
BMI 

BCLR 

RTS 

SFORE 

LOOP 

Reset  semaphore  bit 

Figure  4-19    Use  of  TAS  for 
multiprocessing. 
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ASSIGNMENT 

Section  4.2 

1.   Assuming  that  condition  codes  N,  Z,  V,  and  C  are  initially  zero,  specify  their  status  as 
each  of  the  instructions  that  follow  is  executed. 

SUB.L AO,AO 

CMPI.W nAOOO.AO 

TST AO 

2.  Use  move,  shift,  and  logic  instructions  to  compute  the  results  of  the  logic  equation 

F  =  Z  +  N-V  +  N-V 

where  N,  V,  and  Z  are  the  condition  code  bits  of  the  68000.  Store  the  result  F  at  a  location 

in  memory  identified  as  RESULT  as  a  byte  of  all  Is  or  all  Os,  depending  on  whether  F 
is  1  or  0. 

Section  4.3 

3.  Describe  the  difference  between  a  JMP  instruction  and  a  BRA  instruction. 

4.  Consider  the  delay  loop  program  that  follows: 

MOVE.B        #$10,D7 

DLY  SUBQ.B         #1,D7 

BGT  DLY 

NXT 

(a)  How  many  times  does  the  instruction  BGT  DLY  get  executed? 
(b)  Change  the  program  so  that  BGT  DLY  is  executed  just  17  times. 

(c)  Change  the  program  so  that  BGT  DLY  is  executed  2^^  times. 

Section  4.4 

5.  Given  a  number  N  in  the  range  0  <  N  <  5,  write  a  program  that  computes  its  factorial 
and  saves  the  result  in  the  memory  location  corresponding  to  FACT. 

6.  Write  a  program  that  compares  the  elements  of  two  arrays,  A(I)  and  B(I).  Each  array 

contains  one  hundred  16-bit  integer  numbers.  The  comparison  is  to  be  done  by  comparing 
the  corresponding  elements  of  the  two  arrays  until  either  two  elements  are  found  to  be 
unequal  or  all  elements  of  the  arrays  have  been  compared  and  found  to  be  equal.  Assume 
that  the  arrays  start  at  addresses  SAOOO  and  SBOOO,  respectively.  If  the  two  arrays  are 
found  to  be  unequal,  save  the  address  of  the  first  unequal  element  of  A(I)  at  memory 
location  FOUND.  On  the  other  hand,  if  all  elements  are  equal,  write  a  byte  of  Os  into 
FOUND. 

7.  Given  an  array  A(I)  with  one  hundred  16-bit  signed  numbers,  write  a  program  to  generate 
two  new  arrays,  P(J)  and  N(K).  P(J)  is  to  contain  all  the  positive  numbers  from  A(l)  and 
N(K)  is  to  contain  all  of  its  negative  numbers.  A(I)  starts  at  address  SAOOO  in  memory 
and  the  two  new  arrays,  P(J)  and  N(K),  are  to  start  at  addresses  SBOOO  and  SCOOO, 
respectively. 
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8.  Given  an  array  A(I)  of  one  hundred  16-bit  signed  integers,  write  a  program  to  generate 
a  new  array,  B(l),  according  to  the  following  directions. 

B(I)  =  A(I)        for  1  =  1,2,  99,  and  100 

and 

B(I)  =  median  of  A(I  -  2),  A(I  -  1),  A(I),  A(l  +  1),  and  A(I  +  2)        for  all 

other  Is 

Section  4.5 

9.  Write  a  subroutine  that  converts  a  given  32-bit  binary  number  to  its  equivalent  BCD 
number.  The  binary  number  is  to  be  passed  to  the  subroutine  as  a  parameter  in  D^  and 
the  subroutine  also  returns  the  result  in  D^. 

10.  Given  an  array  A(I)  of  100  signed  16-bit  integer  numbers,  generate  another  array  B(l) 
given  by 

B(I)  =  A(l)         for  1  =  1  and  100 

and 

B(l)  =  -J  (A(l  -  1)  +  2A(I)  +  A(l  -I- 1))        for  all  other  Is 

Use  a  subroutine  to  generate  the  terms  of  B(I).  Parameters  A(I  -  1),  A(I),  and  A(I  +  1) 
are  to  be  passed  to  the  subroutine  on  the  stack  and  the  subroutine  returns  the  result  B(l) 
on  the  stack. 

Section  4.6 

11.  Write  the  segment  of  main  program  and  show  its  subroutine  structure  to  perform  the 
following  operations.  The  program  is  to  check  repeatedly  the  3  least  significant  bits  of 

Dq  and  depending  on  their  settings,  executes  one  of  three  subroutines:  SUBA,  SUBB, 
or  SUBC.  The  subroutines  are  selected  according  to  the  priority  that  follows: 

3  LSB  of  Do Execute 

XXI SUBA 
XIO SUBB 

100 SUBC 

If  a  subroutine  is  executed,  before  returning  to  the  main  program,  the  corresponding  bit 

or  bits  in  register  D,,  are  to  be  cleared.  After  returning  from  the  subroutine,  the  main 
program  continues. 



5 Using  the  MC68000 
Educational  Microcomputer 
FOR  Program  Development 

5.1  INTRODUCTION 

In  the  previous  two  chapters,  we  studied  the  instruction  set  of  the  68000  microprocessor 
and  how  to  write  simple  assembly  language  programs.  In  this  chapter,  we  shall  describe 
how  to  use  the  MC68000  educational  microcomputer  to  verify  whether  or  not  a 
program  correctly  performs  the  application  for  which  it  was  written.  This 
microcomputer  is  manufactured  by  Motorola,  Inc.,  as  an  educational  tool  that  can 
be  used  to  teach  68000  microcomputer  system  architecture  and  assembly  language 

programming.  Here  we  will  learn  the  commands  of  the  microcomputer's  monitor 
program  and  use  them  to  assemble,  execute,  and  debug  programs.  The  following  topics 
are  covered: 

1.  The  68000  microcomputer  development  system 

2.  The  monitor  program 
3.  Monitor  commands 

4.  Register  display/modify  commands 

5.  Memory  display/modify/search  commands 
6.  Commands  for  control  of  I/O  resources 

7.  Assembly  and  disassembly  of  instructions  and  programs 

8.  Program  execution  control  commands 

9.  Executing  a  program 

10.  Debugging  a  program 
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5.2  THE  68000  MICROCOMPUTER  DEVELOPMENT  SYSTEM 

A  development  system  is  an  instrument  that  is  used  to  develop  programs  and  hardware 
for  a  microprocessor-based  system.  Typically,  the  development  system  is  designed 
to  permit  development  work  to  be  done  for  only  specific  microprocessors — for 
instance,  devices  produced  by  a  specific  manufacturer.  It  can  be  a  sophisticated  system 
that  gives  the  microcomputer  designer  important  capabilities,  such  as  the  ability  to 

develop  programs  in  either  assembly  language  or  a  variety  of  high-level  languages, 
powerful  tools  for  efficient  debugging  of  programs,  facilities  for  connection  to  external 

hardware  for  debugging  of  circuit  operation,  and  the  ability  to  integrate  the  user's 
software  and  hardware  together  for  testing  and  debugging.  Use  of  this  type  of 
development  system  is  essential  for  major  microcomputer  development  projects.  Its 
use  results  in  much  saved  time  and  higher-quality  hardware  and  software. 

The  MC68(X)0  educational  microcomputer  is  a  simplified  development  system 
that  is  intended  to  be  used  by  students  and  designers  to  learn  how  to  develop 
hardware  and  assembly  language  programs  for  68000-based  microcomputers.  Figure 
5.1  shows  the  microcomputer  board  of  the  MC68(XK)  educational  microcomputer. 
Since  this  system  is  intended  to  serve  educational  needs  and  not  a  complete 
microcomputer-based  system  design  project,  it  provides  only  limited  development 
support.  However,  the  microcomputer  board  includes  all  the  hardware  of  a  complete 
microcomputer:  32K  bytes  of  RAM  for  data  and  user  program  storage,  16K  bytes 
of  PROM  for  storage  of  the  monitor  program,  and  interfaces  for  a  variety  of 
input/output  (I/O)  devices,  such  as  a  CRT  terminal,  a  printer,  and  a  cassette 
player/recorder.  The  board  also  has  a  prototyping  area  that  allows  the  user  to  build 
custom  interfaces  easily  into  the  microcomputer. 

The  MC68000  educational  microcomputer  system  can  be  configured  in  a  number 
of  different  ways.  The  complete  system  configuration,  as  shown  in  Fig.  5.2,  includes 

the  microcomputer  module  (MEX68KECB),  a  power  supply,  an  RS-232C  compatible 
terminal,  an  audio  cassette  recorder,  a  printer,  and  even  a  communications  link  to 
a  host  computer.  This  complete  system  configuration  provides  greater  ease  and 
flexibility  for  program  development.  However,  a  more  limited  system  configuration 
can  be  used  if  necessary.  For  example,  the  host  computer  interface  is  frequently  not 
employed.  The  minimum  hardware  configuration  is  enclosed  by  dashed  lines  in  Fig. 
5.2.  Here  we  see  that  the  only  items  required  in  a  minimum  system  are  the 
microcomputer  module,  the  power  supply,  and  the  terminal. 

In  a  minimum  system  configuration,  the  terminal  acts  as  both  the  input  and 

output  device.  Programs  and  data  entered  at  the  keyboard  of  the  terminal  are  stored 

in  the  microcomputer's  RAM.  They  also  are  echoed  back  to  the  screen  of  the  terminal 
so  that  their  entry  can  be  verified  by  the  user.  Commands,  such  as  those  used  to  execute 

or  debug  a  program,  also  are  issued  to  the  microcomputer  from  the  keyboard.  These 

commands  are  interpreted  and  executed  by  the  monitor  program  that  is  stored  in 
PROM. 

The  terminal  communicates  with  the  microcomputer  through  an  RS-232C port. 

An  RS-232C  compatible  port  is  an  industry  standard  interface  that  defines  the  voltage 
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Figure  5-1    The  MC68000 
educational  microcomputer  board 

(Motorola,  Inc.). 

levels,  data  format,  and  control  lines  for  an  asynchronous  communications  interface. 

Data  are  passed  through  the  interface  in  serial  form — that  is,  one  bit  after  the  other 
over  a  single  communication  line.  The  rate  at  which  data  is  transferred  over  this  line 
is  identified  as  the  baud  rate.  In  this  case,  baud  rate  means  the  number  of  bits  of 
data  per  second.  The  data  transmission  rate  is  jumper  selectable  on  the  microcomputer 
board  and  can  be  set  at  a  variety  of  speeds  from  110  to  9,600  baud. 

The  use  of  an  audio  cassette  recorder  in  the  MC68000  educational 

microcomputer  allows  the  user  to  save  information,  such  as  programs,  on  audio 
cassette  tape.  In  this  way,  the  programmer  can  reload  the  program  from  tape  at  a 
later  time  instead  of  having  to  retype  it  at  the  keyboard.  The  audio  cassette  recorder 
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Figure  5-2    MC68000  educational  microcomputer  system  configuration  (Motorola,  Inc.). 

interface  is  implemented  as  part  of  the  parallel  I/O  interface  on  the  microcomputer 
board.  Data  transmissions  between  the  microcomputer  and  cassette  recorder  are  also 
in  serial  form.  However,  in  this  case  the  data  rate  is  between  1,000  and  2,000  baud, 
depending  on  the  bits  being  transferred  through  the  interface. 

The  printer  can  be  used  to  produce  hard  copies  of  programs,  results  produced 
by  executing  programs,  and  debug  sequences.  The  printer  interface  used  in  the 
MC68000  educational  microcomputer  is  what  is  called  a  parallel  printer  interface 
(Centronics  interface),  and  it  is  also  implemented  using  parallel  I/O  ports  on  the 
microcomputer  board. 
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5.3  THE  MONITOR  PROGRAM 

In  Chapter  4,  we  wrote  a  number  of  programs  in  the  68000's  assembly  language. 
For  instance,  we  wrote  a  block  transfer  program  that  could  be  used  to  move  a  block 
of  data  from  one  location  in  memory  called  the  source  location  to  another  location 
called  the  destination.  Once  a  program  such  as  this  has  been  written,  we  are  ready 
to  verify  its  operation  by  running  it  on  a  microcomputer  such  as  the  MC68000 
educational  microcomputer.  To  do  this  we  must  assemble  the  program  into  the 

microcomputer's  memory  and  then  execute  it.  After  execution  is  complete,  the  correct 
operation  of  the  program  can  be  verified  by  examining  the  results  that  it  produces, 
and  if  necessary  any  errors  that  are  found  can  be  analyzed  by  performing  what  are 
known  as  debug  operations.  The  Tutor  monitor  program  that  is  provided  with  the 
MC68000  educational  microcomputer  is  what  permits  us  to  assemble,  execute,  and 
debug  programs.  We  pointed  out  earlier  that  the  monitor  is  stored  in  PROM  on  the 
microcomputer  board. 

Tutor  is  the  software  interface  through  which  the  user  can  talk  to  the  MC68000 
educational  microcomputer.  It  is  a  simple  monitor  program  that  provides  a  set  of 
commands  for  use  in  the  entry,  execution,  and  debugging  of  assembly  language 
programs.  The  monitor  program  itself  consists  of  a  number  of  subroutines  that  are 
written  to  perform  the  various  operations  that  are  needed  to  support  assembly  language 
program  development.  When  the  microcomputer  is  being  used  by  a  programmer, 
the  monitor  program  receives  a  command  that  is  keyed  in  by  the  programmer  at  the 
keyboard,  analyzes  it  to  determine  what  operation  is  to  be  performed,  initiates  a 
subroutine  to  perform  the  operation  specified  by  the  command,  and  displays  the 
information  produced  during  the  execution  of  the  command  on  the  screen  of  the 
terminal. 

The  general  operation  of  the  monitor  program  is  overviewed  by  the  flowchart 

in  Fig.  5.3.  Here  we  find  that  after  power  is  turned  on  and  the  microcomputer's  reset 
button  is  depressed,  the  monitor  program  begins  to  run.  It  first  initializes  the  memory 
and  I/O  resources  of  the  microcomputer  system.  For  instance,  all  of  the  storage 
locations  in  data  memory  are  initially  cleared.  After  initialization  is  complete,  the 
command  prompt 

TUTOR  1.3  > 

is  displayed  on  the  screen.  Here,  1.3  stands  for  the  revision  level  of  the  monitor 
program  software.  The  monitor  is  now  waiting  for  a  command  to  be  entered  from 
the  keyboard. 

When  a  command  is  entered,  the  Tutor  program  first  verifies  that  it  is  a  valid 

command.  If  the  command  is  invalid,  the  error  message  "SYNTAX  ERROR"  is 
displayed  and  software  control  is  returned  so  that  the  command  prompt  is  redisplayed. 
The  monitor  is  again  waiting  for  entry  of  a  command. 

On  the  other  hand,  if  the  command  is  valid.  Tutor  next  determines  whether 

it  specifies  a  monitor  operation  or  execution  of  the  user's  program.  Let  us  assume 
for  the  moment  that  the  command  that  was  entered  asked  for  the  data  in  a  certain 
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part  of  the  microcomputer's  memory  to  be  displayed.  This  represents  the  "execute 
command"  path  in  the  flowchart.  In  this  case,  control  is  passed  to  the  subroutine 
for  this  monitor  function;  the  command  is  performed  by  the  microcomputer;  and 
then  control  is  returned  to  the  point  in  the  monitor  that  calls  for  entry  of  another 
command.  If  the  command  asked  for  execution  of  the  user  program  instead  of  a 
monitor  operation,  the  other  path  in  the  flowchart  is  taken.  This  time,  software  control 

is  passed  to  the  starting  point  of  the  user's  program  and  its  execution  is  begun. 
Depending  on  how  the  program  was  specified  to  execute,  control  may  or  may  not 
be  returned  to  the  monitor.  However,  control  can  always  be  returned  to  the  monitor 
if  necessary  by  depressing  the  ABORT  switch. 

5.4  THE  MONITOR  COMMANDS 

In  Section  5.3,  we  introduced  the  Tutor  monitor,  how  it  prompts  for  command  entry, 
and  how  it  processes  commands  after  they  are  entered.  Here  we  will  discuss  the 
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commands  that  are  provided  in  the  monitor  program.  Figure  5.4  is  a  list  of  the 
command  set  of  the  Tutor  monitor.  This  list  includes  the  mnemonic  and  a  functional 

description  for  each  of  the  monitor's  thirty-three  commands.  These  commands  give 
the  programmer  the  ability  to  initiate  operations  such  as  to  examine  or  modify  the 
contents  of  memory  or  the  registers  within  the  68000,  control  the  execution  of  a 

Command  mnemonic Description 

MD 

MM,  M 

MS 

Memory  Display 

Memory  Modify 

Memory  Set 

AO  to  .A7 

.DO  to  .D7 

.PC 

.SR 

.SS 

.US 

DF 

Display/Set  Address  Register 

Display/Set  Data  Register 

Display/Set  Program  Counter 

Display/Set  Status  Register 

Display/Set  Supervisor  Stack  Pointer 

Display/Set  User  Stack  Pointer 

Display  Formatted  Registers 

OF 
.RO  to  .R6 

Display  Offsets 
Display/Set  Relative  Offset  Register 

BF 

BM 

BT BS 

Block  of  Memory  Fill 

Block  of  Memory  Move 

Block  of  Memory  Test 

Block  of  Memory  Search 

DC 
Data  Conversion 

BR 

NOBR 

GO,  G 

GT 
GD 

TR,  T 
TT 

Breakpoint  Set 

Breakpoint  Remove 

Go 

Go  Until  Breakpoint 

Go  Direct 
Trace 

Temporary  Breakpoint  Trace 

PA 

NOPA 

Printer  Attach 

Reset  Printer  Attach 

PF 

TM 

Port  Format 

Transparent  Mode 

Send  Message  to  Port  2 

■HE 
Help 

DU 

LO 

VE 

Dump  Memory 

Load Verify 

Figure  5-4   Tutor's  command  set  (Motorola,  Inc.). 
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program,  trace  the  state  of  the  microprocessor  as  a  program  is  executed,  and  control 
the  operation  of  I/O  resources. 

Also  included  as  part  of  Tutor  is  a  line-by-line  assembler/disassembler. 
The  assembler  capability  lets  the  programmer  enter  programs  in  assembly  language 
form  and  have  them  automatically  translated  into  machine  code  and  stored  into 
memory.  The  disassembler  function  allows  the  programmer  to  verify  that  a 
program  has  been  loaded  into  memory  correctly  by  translating  its  machine  code  into 

assembly-language-like  instructions  and  displaying  them  on  the  screen  of  the  terminal. 

Syntax  of  a  Monitor  Command 

When  commands  are  keyed  in  from  the  keyboard  of  the  terminal,  they  must  always 
be  entered  using  a  special  form  that  is  understood  by  the  monitor  program.  This  is 

known  as  the  command's  syntax,  and  if  it  is  not  correctly  followed,  the  command 
entry  will  result  in  the  display  of  a  syntax  error  message.  The  general  format  for  a 
command  entry  is 

[NO]  <  command  >  [<  parameters  >]  [;<  options  >] 

Notice  that  there  are  four  fields  within  the  format:  the  negative  form  (NO)  field, 
the  command  field,  ihc  parameters  field,  and  the  options  field.  When  entered,  each 
of  these  fields  must  be  separated  by  a  space. 

In  the  general  format,  any  field  that  is  enclosed  within  square  brackets  is 
optional.  Therefore,  the  minimum  command  entry  response  to  the  Tutor  prompt  is  just 

<  command  > 

A  field  enclosed  with  an  angle  bracket  is  to  be  replaced  by  a  syntactical  variable. 
For  instance,  the  command  field  can  be  replaced  with  a  mnemonic  from  the  list  in 
Fig.  5.4.  An  example  of  a  command  that  only  requires  entry  of  a  command  field 
is  the  display  formatted  registers  command.  It  is  issued  by  entering 

TUTOR  1.3  >  DF         (cr) 

Execution  of  this  command  causes  the  contents  of  the  68000's  internal  registers  to 
be  displayed  on  the  screen. 

Most  monitor  commands  also  require  one  or  more  entries  in  the  parameter  field. 
Examples  of  information  that  is  entered  as  parameters  are:  starting  and  ending 
addresses,  data,  counts,  and  port  numbers.  For  instance,  entry  of  the  GO  command 

TUTOR  1.3  >  GO  100        (cr) 

means  begin  execution  of  the  program  that  starts  at  address  000100|g.  Notice  that 
numeric  information  that  is  entered  as  parameters  is  assumed  to  have  been  expressed 
in  hexadecimal  form.  However,  the  interpretation  of  a  number  by  the  monitor  can 
be  converted  to  decimal  form  by  preceding  the  number  with  the  &  symbol.  For 
instance,  the  GO  command  that  we  just  introduced  can  be  written  using  a  decimal 
starting  address  as 

TUTOR  1.3  >  GO  &256        (cr) 
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The  parameter  also  may  be  written  as  an  expression.  In  the  expression,  numeric 

information  can  be  combined  with  the  +  and  -  operators.  For  example,  data  that 
are  to  be  loaded  into  a  memory  location  could  be  specified  with  the  expression 

100  +  &25 

This  expression  is  interpreted  by  the  monitor  as  a  parameter  having  the  hexadecimal 
value 

Parameters  that  represent  address  information  can  be  expressed  using  a  variety  of 
special  address  formats.  The  allowed  address  formats  are  shown  in  Fig.  5.5.  Here, 
we  find  that  the  monitor  program  references  all  address  parameters  that  are  specified 
as  a  numeric  value  or  expression  to  the  contents  of  what  is  called  an  offset  register. 

The  monitor  defines  eight  offset  registers  that  are  identified  as  Rg  through  R-^.  They 

are  software  registers  that  exist  in  the  microcomputer's  memory,  not  hardware  registers 
such  as  those  within  the  68000. 

When  executing  a  command,  the  monitor  program  combines  the  contents  of 
the  specified  offset  register  with  the  value  specified  as  the  address  parameter  to  generate 
a  physical  address.  For  instance,  in  Fig.  5.5,  we  see  that  if  an  address  parameter  is 
specified  simply  as 

140 

Format Example Description 

expression 
140 

Absolute  address  [Note:  offset  zero  is 
added) 

expression 130  +  R5 Absolute  address  plus  offset  five  (not  an 
+  offset assembler-accepted  syntax) 

expression 150  +  R7 Absolute  address  {Note:  offset  seven  is 

+  offset 
always  zero)  (not  an  assembler-accepted 

syntax) 
IA@)) (A5) Address  register  indirect 

(A@,D(S)) (A6,D4) Address  register  indirect  with  index 

(A@,A@I 

expression 
120(A3) Address  register  indirect  with  displacement 

(A@) 

expression 110|A2,D1) Address  register  indirect  with  index  plus 

(A@,D(S)) displacement 

expression 

(A@,A@) 

(expression) 11001 
Memory  indirect  (not  an  assembler- 
accepted  syntax) 

Figure  5-5    Parameter  field  address  formals  (Motorola,  Inc.). 
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the  address  parameter  is  automatically  referenced  to  register  Rq.  Therefore,  the  value 
used  as  the  physical  address  is  actually 

140i6  +  RO 
An  example  of  a  command  like  this  is 

TUTOR  1.3  >  GO  140 

and  when  executed  it  initiates  program  execution  at  the  physical  address  obtained 
by  adding  MOjg  and  the  offset  value  held  in  register  Rg.  If  an  offset  register  other 
than  Rq  is  to  be  referenced  in  the  generation  of  a  physical  address,  its  register  name 
is  simply  added  to  the  expression  that  specifies  the  value  of  the  address  in  the 
command.  For  example,  the  command 

TUTOR  1.3  >  GO  140+ R5 

references  R,  instead  of  Rq  in  the  generation  of  the  address. 
At  power  up  and  whenever  the  reset  switch  is  depressed,  all  of  the  offset  registers 

are  initialized  to  zero.  The  values  held  in  registers  Rq  through  R^  can  be  modified 
with  the  display/set  relative  offset  register  command.  However,  the  value  in  R^  is 
fixed  at  zero. 

The  last  five  address  formats  in  Fig.  5.5  show  how  the  680O0's  internal  address 
and  data  registers  can  be  used  to  specify  the  physical  address  in  a  monitor  command. 

In  general,  address  registers  A^  through  A^  can  be  used  to  hold  either  the  indirect 
address  or  an  index  that  is  to  be  added  to  the  indirect  address.  However,  data  registers 

Dq  through  D-j  can  be  used  only  to  hold  an  index.  For  instance,  the  command 
TUTOR  1.3  >  GO  (A5) 

specifies  that  the  address  at  which  program  execution  is  to  begin  is  that  held  in  address 
register  Aj.  This  is  an  example  of  what  is  called  address  register  indirect  addressing. 
Notice  that  indirect  addressing  is  specified  by  enclosing  the  register  name  with 
parentheses. 

Another  example  is  the  command 

TUTOR  1.3  >  GO  (A6,D4) 

In  this  command,  the  indirect  address  is  held  in  Ag  and  the  value  in  D4  is  used  as 
an  index.  The  index  is  added  to  the  value  in  A^  to  obtain  the  starting  address  for 
the  GO  command. 

The  last  address  format  in  Fig.  5.5  shows  how  a  storage  location  in  memory 
can  be  referenced  for  an  indirect  address.  Notice  that  the  expression  that  specifies 
the  memory  address  is  simply  enclosed  with  a  set  of  square  brackets.  For  example, 
the  command 

TUTOR  1.3  >  GO  [100] 

indicates  that  execution  is  to  resume  at  the  address  held  in  memory  location  000100|g. 

For  the  purpose  of  our  discussion,  we  will  divide  the  commands  of  Tutor's 
command  set  into  four  groups.   These  groups  are  the  register  display/modify 
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commands,  the  memory  display/modify/search  commands,  the  program  execution 
control  commands,  and  the  I/O  control  commands.  In  the  sections  that  follow,  we 
will  study  the  commands  in  each  of  these  categories. 

5.5  REGISTER  DISPLAY/MODIFY  COMMANDS 

The  first  group  of  Tutor  commands  that  we  will  examine  in  detail  are  those  in  the 
register  display/ modify  group.  The  commands  that  are  in  this  group  are  shown  in 
Fig.  5.6.  These  commands  give  the  programmer  the  ability  to  display  and  modify 
the  contents  of  the  internal  registers  of  the  68000  as  well  as  the  software  offset  registers 
of  the  Tutor  monitor. 

The  ability  to  examine  the  contents  of  the  68000's  internal  registers  is  essential 
for  debugging  the  execution  of  programs.  For  instance,  the  contents  of  a  register 
can  be  examined  prior  to  and  just  after  the  execution  of  an  instruction.  In  this  way, 
we  can  verify  that  the  instruction  performed  its  intended  function.  Moreover,  we  need 
to  use  the  modify  capability  of  these  commands  to  initialize  the  contents  of  internal 
registers  before  executing  an  instruction  or  the  complete  program. 

One  way  of  displaying  the  contents  of  the  internal  registers  of  the  68000  is  by 
using  the  display  formatted  registers  (DF)  command.  In  Fig.  5.6,  we  find  that  this 
command  is  issued  to  the  monitor  by  responding  to  the  command  prompt  by  first 
entering  DF  and  then  depressing  the  carriage  return  (cr)  key.  That  is. 

Comm and 
Meaning Format 

Explanation 

DF Display  formatted 

registers 

DF Displays  the  contents  of 

the  68000's  internal 

registers 
.AG  to .A7 Display/set .<Register> Display  the  contents  of 
.DO  to .D7 registers the  specified  registers 
PC 

.SR .<Register><Data> Loads  the  specified 
SS 

register  with  the 
.US 

specified  data 
OF Display  offset 

registers OF 
Display  the  contents  of 
the  offset  registers 

.RO  to .R6 Display/set 

offset  register 

.RX 

.RX<Data> 

.RX<Data>  +  RX 

Display  the  specified 
offset  register  contents 
Loads  the  specified 

offset  register  with 

the  specified  data 

Loads  the  specified 

offset  register  with 

the  specified  data  via 
RX 

Figure  5-6    Register  display/modify  commands. 
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TUTOR  1.3  >  DF        (cr) 

Execution  of  the  DF  command  causes  the  contents  of  all  of  the  registers  within 
the  68000  to  be  displayed  in  the  format  shown  in  Fig.  5.7.  Looking  at  this  information, 

we  find  that  the  current  value  in  the  program  counter  (PC)  is  00009072,^;  the  current 

value  in  Dq  is  0000FF0D,g;  and  the  current  value  in  Aq  is  00010040,6.  Notice  that 
the  last  line  displayed  is  the  address,  machine  code,  and  assembly  language  version 
of  the  instruction  pointed  to  by  the  current  value  in  PC. 

TUTOR   1.3  >  DF 

PC=0000'?C72  SR=2700=.S7    US=FFFFFFFF  SS=00000756 
DO=0OOOFF0D  01=00000000  02=12100010  03=00000000 
04=00000231  D5=00000FFF  06=00000004  07=00000000 
A0=00010040  A1=FFFFFFFF  A2=00000414  A3=00000554 
A4=00009FAC  A5=00000540  A6=00000540  A7=0000075(b 
  009C72     41F900010040  LEA.L    «00010040,AO 

TUTOR   1.3  ̂  

Figure  5-7    Register  data  display  format  for  the  DF  command. 

Example  5.1 

In  Fig.  5.7  what  is  the  value  displayed  for  the  current  value  held  in  the  user's  stack  pointer 
register? 

Solution.  Looking  at  the  first  line  of  register  information  in  Fig.  5.7,  we  find  that  the 

value  of  the  user's  stack  pointer  is  that  preceded  with  the  mnemonic  US  and  that  it's 
current  value  is 

US  =  FFFFFFFF,g 

The  DF  command  does  not  let  us  examine  the  contents  of  just  a  specific  register 

or  modify  the  value  held  in  a  register.  To  do  these  types  of  operations,  we  must  use 
another  command,  the  display/set  registers  command.  This  is  the  second  command 

in  the  chart  of  Fig.  5.6.  As  shown  in  the  format  column  of  this  chart,  the  display/set 

register  command  can  be  initiated  by  entering  a  "."  followed  by  the  name  of  the 
register  whose  contents  are  to  be  displayed  and  then  depressing  carriage  return  (cr). 
This  form  of  the  command  is  used  to  examine  the  contents  of  a  register.  For  instance, 

to  examine  the  contents  of  data  register  D5,  the  keyboard  entry  is 

TUTOR  1.3  >  .D5         (cr) 

The  monitor  responds  to  this  command  by  displaying  the  value  held  in  D,  in  the  form 

.D5=00000FFF 

Example  5.2 

What  is  the  effect  of  issuing  the  command 

TUTOR  1.3  >  .SS        (cr) 

Solution.  This  command  causes  the  monitor  to  display  the  value  held  in  the  user's  stack 
pointer  register  in  the  form 

.SS  =  00000756 
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To  modify  the  value  in  a  register,  such  as  D5,  the  second  command  format  in 
Fig.  5.6  is  used.  Here  we  see  that  the  command  is  initiated  in  the  same  way  as  we 

just  did  to  examine  the  register  contents,  but  this  time  the  new  value  of  data  is  entered 

prior  to  depressing  (cr).  For  example,  to  load  the  value  AAA(g  into  D5,  the  command 
is 

TUTOR  1.3  >  .D5  AAA        (cr) 

When  this  command  is  executed  by  the  monitor,  D5  is  loaded  with  the  value 

OOOOOAAA[g.  This  can  be  verified  by  displaying  the  new  value  in  D5  as  follows 

TUTOR  1.3  >  .D5         (cr) 

.05=00000  AAA 

Example  5.3 

Show  the  command  sequence  needed  to  initialize  PC  with  the  value  2000,^  and  A3  with 
the  value  2500)^.  Verify  this  initialization  with  a  DP  command. 

Solution.     The  new  values  are  loaded  into  PC  and  A3  with  the  commands 

TUTOR  1.3  >  .PC  2000        (cr) 

TUTOR  1.3  >  .A3  2500  (cr) 

and  initialization  is  verified  with  the  command 

TUTOR  1.3  >    DF  (cr) 

The  information  displayed  as  a  result  of  executing  these  commands  is  shown  in  Fig.  5.8. 

TUTOR   1.3  >  .PC  2000 

TUTOR   1.3  >  .A3  2500 

TUTOR   1.3  >  DF 
PC=00002000  SR=2700=.S7    US=FFFFFFFF  SS=00000756 
D0=OOOOFFOD  D1=00000000  D2=12100010  03=00000000 
04=00000231  D5=OOO0OFFF  06=00000004  07=00000000 
A0=00010040  A1=FFFFFFFF  A2=00000414  A3=00002500 
fi4=0000'?FAC  A5=00000540  A6=00000540  A7=00000756 
  002000     FF5B  DC.W     *FF5B 

TUTOR   1.3  > 

Figure  5-8    Display  sequence  for  example  5.3. 

The  last  two  commands  in  Fig.  5.6,  display  offset  registers  and  display /set  offset 

registers,  operate  similar  to  the  commands  we  just  introduced;  however,  these 

commands  are  used  to  examine  or  modify  the  contents  of  the  monitor's  software 

offset  registers  instead  of  the  68000's  internal  registers.  For  instance,  the  values  in 
all  of  the  offset  registers  are  displayed  by  entering  the  command 

TUTOR  1.3  >  OF         (cr) 

To  examine  the  value  held  in  a  specific  offset  register,  we  use  the  display/set 

offset  register  command.  For  example,  the  command 

TUTOR  1.3  >  .RO        (cr) 
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displays  the  contents  of  offset  register  Rq.  This  same  command  can  be  used  to  modify 

the  value  in  offset  registers  Rq  through  R^.  As  an  example,  let  us  change  the  value 

held  in  Rq  to  FOOO,g.  This  is  done  by  issuing  the  command 

TUTOR  1.3  >  .RO  FOOO        (cr) 

It  is  important  to  note  that  when  modifying  the  contents  of  an  offset  register 

other  than  Rq  the  value  held  in  Rq  is  always  added  to  the  data  entered  as  part  of  the 
command  before  it  is  loaded  into  the  specified  register.  That  is,  the  command 

TUTOR  1.3  >  .Rl  FF         (cr) 

is  really  equivalent  to  the  command 

TUTOR  1.3  >  .Rl  FF+RO        (cr) 

Assuming  that  Rq  already  contains  F0O0,g,  the  value  loaded  into  R,  when  this 
command  is  executed  is 

R,  =  FF,6  +  Rq 

=  FF,6  +  F000,6  =F0FF,6 

Remember  that  the  value  in  R7  is  always  00000000|g.  Therefore,  it  can  be  used 
as  the  reference  register  if  we  want  to  load  an  offset  register  with  a  value  and  not 

have  the  current  value  in  Rq  added.  For  instance,  issuing  the  command 

TUTOR  1.3  >  .Rl  FF+R7         (cr) 

causes  just  the  value  FFj^  to  be  loaded  into  Rj. 

5.6  MEMORY  DISPLAY/MODIFY/SEARCH  COMMANDS 

In  the  last  section,  we  learned  how  to  use  Tutor  commands  to  examine  or  modify 

the  contents  of  the  internal  registers  of  the  68000  microprocessor.  The  second  group 

of  commands  we  will  examine,  the  memory  display /modify /search  commands,  are 

the  ones  that  allow  the  programmer  to  display  or  change  the  contents  of  storage 

locations  in  memory  or  search  through  a  block  of  memory  locations  looking  for 

specific  data.  These  capabilities  are  essential  for  both  debugging  of  programs  and 
for  initializing  memory  before  executing  an  instruction  or  program.  The  commands 
in  this  group  are  summarized  in  Fig.  5.9.  Let  us  next  look  at  each  of  these  commands 
in  detail. 

Examining  Memory— MD 

To  examine  the  contents  of  memory.  Tutor  provides  the  memory  display  (MD) 

command.  In  Fig.  5.9,  we  see  that  the  general  format  for  this  command  is 

MD  [<port  number  >]  <  address  >  [<  count  >]  [;<  options  >] 

The  port  number  field  determines  the  output  device  to  which  the  memory  data  that 
is  to  be  examined  is  output.  Remember  that  the  MC68000  educational  microcomputer 
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Command Meaning Format 
Explanation 

MD Memory  display MDKport     number>) Displays  the  contents 
<address>  i<count>l of  the  specified 

|;<options>| number  (count)  of 
bytes  of  memory 

starting  from  the 
given  address,  by 

outputting  them  to 
the  specified  port  as 
hexadecimal  data 

MM Memory  modify MM  <address> The  byte  contents  of 

|;<options» the  specified  address 
are  displayed  or 
modified 

M M  <address> 

(;<options>l 
MS Memory  set MS  <address>  <data> Loads  the  list  of 

data  starting  at  the 

specified  address 

BF Block  fill BF  <starting  address> Fills  the  block  of 

<ending  address> memory  locations 
<data> beginning  at  starting 

address  and 
continuing  through 

ending  address  with 
the  word  specified  as 

data 
BM Block  move BM  <starting  address> Moves  the  contents  of 

<ending  address> the  block  of  memory 

<destination  address> locations  beginning 

at  starting  address 
and  continuing 

through  ending 

address  to  another 
block  of  memory 

locations  starting  at 
destination  address 

BS Block  search BS  <starting  address> Scans  the  block  of 

<ending  address> memory  locations 

'literal  string' from  starting  address 
through  ending 

address  for  the  literal 

string  or  data 

BS  <starting  address> 

<ending  address> 
<data>  i<mask>| 

l;<options>| 

Figure  5-9    Memory  display/modify/search  commands. 
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has  three  ports  that  can  be  used  as  outputs:  port  1 ,  which  is  the  port  where  the  terminal 
is  connected;  port  2,  which  is  the  host  computer  interface;  and  port  3,  which  is  for 
the  printer.  Any  of  these  three  port  numbers  can  be  specified  in  the  port  number 
field.  If  no  port  number  is  entered,  the  default  port,  which  is  port  1 ,  is  used  by  Tutor 
and  the  information  is  displayed  on  the  screen  of  the  terminal. 

The  next  field  is  for  the  address  of  the  storage  location  at  which  we  will  begin 
to  examine  memory.  In  the  MC68000  educational  microcomputer,  data  storage 
memory  is  located  in  the  address  range  from  000900, ^  through  007FFF,g.  However, 
the  address  entry  made  as  part  of  an  MD  command  does  not  need  to  be  restricted 
to  this  range.  Information  from  the  program  storage  memory  part  of  the  address 
space  also  can  be  displayed.  The  count  field  tells  the  monitor  how  many  of  the  bytes 
of  data  that  follow  the  specified  starting  address  are  to  be  displayed.  This  field  is 
also  optional,  and  if  no  entry  is  made  a  default  value  of  16  is  used.  Finally,  the  option 
field  is  related  to  use  of  the  disassembler,  which  we  will  discuss  in  a  later  section. 

Notice  that  the  only  field  other  than  the  command  field  that  is  not  optional 
is  the  address  field.  Let  us  assume  that  the  default  port  is  to  be  used  and  that  no 
count  or  options  are  to  be  specified.  Then  the  command  format  simplifies  to 

MD  <  address  > 

and  if  we  want  to  display  the  contents  of  the  first  16  bytes  of  data  memory  the 
command  is 

TUTOR  1.3  >  MD  900        (cr) 

Execution  of  this  command  causes  Tutor  to  display  the  data  shown  in  Fig.  5.10.  Here 

we  see  that  the  starting  address  000900,5  '^  displayed  at  the  left  margin  and  the  16 
bytes  of  data  in  the  range  000900, ^  through  00090F,g  are  listed  one  after  the  other 
to  the  right. 

TUTOR   1 . 3    MD  900 
000901.)     EE  7b    FF  FF  FF  FF  FF  FF   FF  FF  FF  FF  FF  FF  FF  FF   nl   

TUTOR  1.3  ̂ - 
000910  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF    
000920  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF    
000930  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF    
000940  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF    
000950  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF    
000960  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF    
000970  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF    
00098O  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00    
000990  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00    
0009A0  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00    
000960  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00    
0009C0  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00    
0009D0  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00    
0009EO  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00    
0009F0  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00    
OOOAOO  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF  FF    

TUTOR 

Figure  5-10    E.vamining  the  contents  of  memory  with  the  MD  command. 
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Once  a  memory  display  command  operation  has  been  initiated,  the  next  256 
consecutive  bytes  in  memory  can  be  displayed  by  simply  responding  to  the  Tutor 
prompt  by  depressing  the  return  key.  For  instance,  if  the  next  command  is 

TUTOR  1.3  >         (cr) 

the  data  for  storage  locations  000910ig  through  OO0AOF,g  are  displayed,  as  shown 
in  Fig.  5.10. 

Another  example  is  the  command 

TUTOR  1.3  >  MD  1000  15         (cr) 

Since  the  count  is  expressed  in  hexadecimal  form,  we  would  expect  the  command 
to  cause  values  in  the  21  storage  locations  from  address  1000,6  through  1015i6  to 
be  displayed.  However,  this  is  not  exactly  what  happens.  The  way  the  MD  command 
works  is  that  it  always  displays  groups  of  16  storage  locations.  Therefore,  for  this 
command,  the  contents  of  the  32  storage  locations  from  1000, ̂   through  101 F,^  are 
actually  displayed. 

Example  5.4 

How  many  bytes  of  data  are  displayed  when  the  command 

TUTOR  1.3  >  MD  1200  40        (cr) 

is  executed?  What  is  the  range  of  the  addresses  that  are  examined  with  the  command? 
Rewrite  the  command  with  the  count  specified  in  decimal  form. 

Solution.  The  count  in  the  command  is  40|g.  In  decimal  form,  this  is  the  number  64. 
Therefore,  64  bytes  of  data  are  displayed  with  the  command.  The  starting  address  of 

the  range  of  memory  that  is  examined  is  1200, g  and  the  ending  address  is  123F,g. 
To  use  the  decimal  value  of  the  count  in  the  command,  we  must  precede  it  with 

the  &  symbol.  This  gives 

TUTOR  1.3  >  MD  1200  &64        (cr) 

Modifying  Memory— MM,  MS,  BF,  and  BM 

The  MD  command  lets  us  examine  data  that  are  stored  in  memory,  but  it  does  not 
let  us  change  the  value  of  these  data.  For  use  in  modifying  the  contents  of  memory, 
Tutor  is  provided  with  four  commands:  memory  modify  (MM),  memory  set  (MS), 
block  fill  (BF),  and  block  move  (BM).  In  general,  these  commands  give  the 
programmer  the  ability  to  change  individually  the  contents  of  storage  locations  in 
memory,  initialize  a  block  of  storage  locations  with  specific  data,  and  copy  the  contents 
from  one  block  of  memory  locations  to  another  block  of  locations  in  memory. 

The  format  of  the  memory  modify  (MM)  command  is  shown  in  Fig.  5.9.  Here 
we  see  that  it  is  initiated  by  entering  MM  followed  by  the  address  of  the  memory 
location  whose  value  is  to  be  changed.  If  no  option  is  included  as  part  of  the  command, 
its  execution  causes  the  byte  of  data  stored  at  <  address  >  to  be  displayed  on  the 
screen.  For  instance,  the  command 

TUTOR  1.3  >  MM  900        (cr) 
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causes  the  following  information  to  be  displayed 

000900  00  ?   

We  have  assumed  that  the  original  data  held  at  address  900,5  '^  ̂ ^16-  Notice  that 
the  cursor  is  displayed  following  the  question  mark.  This  is  because  the  command 
is  not  yet  complete  and  the  monitor  is  waiting  for  another  entry.  If  the  data  that 
is  displayed  is  already  the  value  that  is  needed  at  address  900, g,  the  response  is  simply 
to  depress  the  return  key.  This  entry  causes  the  contents  of  the  next  consecutive  byte 
of  data  to  be  displayed  in  the  form 

000901  00  ?   

Let  us  assume  that  the  value  at  address  901, g  is  to  be  FF,^.  To  make  this  change, 
we  simply  enter  the  new  value  and  then  depress  return.  Therefore,  the  displayed 
information  on  the  screen  now  looks  like 

000901  00  ?FF 

000902  00  ?   

Assume  that  these  two  memory  locations  are  the  only  ones  that  need  to  have  their 
contents  initialized.  Since  this  has  already  been  done,  the  MM  command  can  now 
be  terminated.  To  do  this,  type  in  the  period  (.)  symbol  and  then  depress  the  return 
key.  This  entry  results  in  display  of  the  lines  of  information  that  follow 

000902  00  ?  .         (cr) 

TUTOR  1.3  >   

The  monitor  is  now  waiting  for  a  new  command  to  be  entered.  The  series  of 
information  displayed  for  this  command  is  shown  in  Fig.  5.11. 

TUTOR       1.3    ,■■    MM    900 
000900 00 ? 
000901 

00 

?FF 
000902 00 ?. Figure  5.11    Examining  and  modifying 

the  contents  of  memory  with  the  MM 
TUTOR      1.3  command. 

By  including  an  option  as  part  of  the  command,  we  can  control  the  way  in  which 
data  are  displayed  and  modified.  In  the  example  we  just  used  to  illustrate  the  operation 
of  the  MM  command,  memory  was  displayed  and  modified  one  byte  at  a  time.  This 
is  the  default  mode  of  operation.  However,  by  adding  the  option  ;  W  after  the  address, 
we  can  display  and  modify  memory  data  as  words.  For  instance,  our  earlier  example 
also  could  have  been  performed  as 

TUTOR  1.3  >  MM  900; W  (cr) 

000900  0000  ?00FF  (cr) 

000902  0000  ?  .  (cr) 

TUTOR  1.3  >   



140        Using  the  MC68000  Educational  Microcomputer  for  Program  Development  Chap.  5 

Notice  that  inclusion  of  the  ;W  option  caused  the  word  contents  of  address  900, ̂  
to  be  displayed  as  0000, g  and  then  we  changed  the  complete  word  by  entering  OOFF,^. 

Another  option  allows  us  to  display  memory  contents  as  long  words.  This  is 
the  ;L  option,  and  an  example  using  it  is  the  command 

TUTOR  1.3  >  MM  1004;L         (cr) 

Execution  of  this  command  displays  the  data  held  at  memory  addresses  1004, g 
through  1007,5  as  a  long  word. 

001004  00000000  ?   

With  what  we  have  learned  up  to  this  point,  there  are  just  three  responses  we 
can  issue  after  the  ?  symbol.  They  are:  depress  (cr)  to  display  the  contents  of  the 
next  long  word  address;  key  in  a  new  value  of  data  for  the  current  long  word  address 
and  depress  (cr);  or  terminate  the  command  by  entering  the  .  symbol  followed  by 
(cr).  However,  the  MM  command  does  allow  other  entries.  Let  us  now  look  at  them 

briefly.  One  choice  is  to  enter  the  symbol" and  then  depress  (cr).  For  instance,  the command  entry  can  be 

001004  00000000  ?  "        (cr) 
This  causes  the  address  to  be  decremented  instead  of  incremented  to  display  the 

contents  of  the  new  address.  Therefore,  the  data  at  long  word  address  0010(X),g  is 
displayed 

001000  OOFFOOOO  ?   

The  last  way  of  completing  an  MM  entry  is  to  enter  a  new  value  followed  by 
the  =  symbol  and  a  (cr).  This  entry  updates  the  value  at  the  current  address  and 
then  redisplays  it  to  verify  that  the  change  has  taken  place.  For  instance,  if  we  load 

long  word  address  001000,^  with  the  value  FFFFFFFF|g  the  displayed  response  is 

001000  00000000  ?  FFFFFFFF  =    (cr) 

001000  FFFFFFFF  ?   

There  are  two  other  options  that  can  be  used  in  the  MM  command.  They  are 
;0,  which  stands  for  display  odd  bytes  only,  and  ;V,  which  stands  for  display  even 
bytes  only.  These  commands  are  useful  in  conjunction  with  examining  and  modifying 
the  contents  of  internal  registers  of  LSI  I/O  devices.  This  is  because  their  registers 
typically  reside  at  consecutive  odd  or  even  addresses. 

Example  5.5 

Explain  what  is  being  done  with  the  command  sequence  that  follows 

TUTOR  L3  >  MM  1200;L  (cr) 

001200  00000000  7FFFFFFFF  (cr) 

001204  00000000  ?  FFFFFFFF  (cr) 

TUTOR  1.3  >   
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Solution.  This  series  of  long  word  memory  modify  commands  initialize  the  eight  bytes 

of  memory  from  address  1200|g  through  1207jg  with  the  value  FFjg. 

Another  command  that  can  be  used  to  initialize  memory  is  memory  set  (MS). 
Looking  at  the  general  format  of  the  memory  set  command  in  Fig.  5.9,  we  see  that 
it  differs  from  the  memory  modify  command  in  that  the  data  to  be  entered  is  included 
in  the  command  right  after  the  address.  This  data  can  be  a  string  of  up  to  eight 
hexadecimal  numbers  or  ASCII  characters.  In  fact,  multiple  strings  of  data  with  up 
to  eight  numbers  or  characters  can  be  entered  in  the  data  field.  When  doing  this, 
the  strings  must  be  separated  by  a  space. 

An  example  of  an  MS  command  that  is  used  to  load  hexadecimal  numbers  is 

TUTOR  1.3  >  MS  2000  ABCD        (cr) 

Execution  of  this  command  causes  AB,g  and  CD^^  to  be  loaded  into  memory  at 
addresses  ZOOOjg  and  2001, g,  respectively.  Another  example  is 

TUTOR  1.3  >  MS  2000  'ABCD'         (cr) 

Here  the  single  quote  marks  around  the  data  field  indicate  that  the  data  are  ASCII 
data  and  not  numeric  data.  Therefore,  execution  of  this  command  loads  the  four 

bytes  of  memory  starting  at  address  2000[g  with  the  codes  for  characters  A,  B,  C, 
and  D.  That  is,  the  values  41,  42,  43,  and  44  are  stored  starting  at  address  2000[6. 

Example  5.6 

Write  an  MS  command  that  performs  the  same  function  as  the  MM  commands  given 
in  Example  5.5. 

Solution.  The  MM  commands  in  Example  5.5  load  the  eight  bytes  of  memory  starting 

at  address  1200, ̂   each  with  the  value  FF,g.  This  operation  can  be  done  with  the  single 
MS  command 

TUTOR  1.3  >  MS  1200  FFFFFFFF  FFFFFFFF         (cr) 

In  Examples  5.5  and  5.6,  we  showed  how  a  block  of  consecutive  memory 
locations  can  be  filled  with  the  same  value.  This  type  of  operation  is  better  performed 
with  the  WocA:y7//(BF)  command.  As  shown  in  Fig.  5.9,  the  first  field  of  the  command 
is  the  starting  address  of  the  block  of  memory  locations.  It  is  followed  by  the  ending 
address  of  the  block  and  the  word  of  data  that  is  to  be  stored  into  these  locations. 
Notice  that  the  data  is  always  entered  as  a  word;  therefore,  both  the  starting  and 
ending  addresses  must  be  word  addresses.  That  is,  they  both  must  be  even.  To  perform 
the  same  operation  as  done  in  our  earlier  examples,  the  BF  command  is  written  as 

TUTOR  1.3  >  BF  2000  2006  FFFF        (cr) 

and  its  execution  loads  word  addresses  2000,6  through  2006, ̂   with  the  value  FFFF,g. 
The  block  fill  command  is  the  most  efficient  command  to  use  when  initializing 

large  blocks  of  memory.  For  instance,  the  command 

TUTOR  1.3  >  BF  900  9FE  0000        (cr) 

could  be  used  to  clear  the  first  256  words  of  data  memory. 
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The  last  command  that  can  be  used  to  modify  the  contents  of  memory  is  the 
block  move  (BM)  command.  It  can  be  used  to  copy  a  block  of  data  that  already  exists 
in  one  location  in  memory,  called  the  source  block,  to  another  location,  called  the 
destination  block.  Looking  at  Fig.  5.9,  we  see  that  the  command  requires  three 
addresses.  The  first  two  addresses  identify  the  starting  and  ending  points  of  the  source 
block,  while  the  third  address  identifies  the  starting  location  of  the  destination  block. 
For  instance,  the  command 

TUTOR  1.3  >  BM  1000  lOFE  1200        (cr) 

copies  the  contents  of  the  128  word  addresses  in  the  range  1000,5  through  lOFEjg 

to  the  block  of  storage  locations  from  1200ig  through  12FEig.  During  the  execution 
of  the  command,  the  data  in  the  source  block  is  not  affected  in  any  way. 

Block  Search  Command— BS 

The  last  of  the  commands  given  in  Fig.  5.9  is  the  block  search  (BS)  command.  This 
command  can  be  used  to  scan  through  a  specified  block  of  memory  locations  looking 
for  the  occurrence  of  a  special  data  pattern  or  string  of  characters.  The  general  format 
of  the  command  is  given  in  Fig.  5.9.  Here  we  see  that  the  first  two  fields  are  the 
starting  and  ending  addresses  of  the  block  of  storage  locations.  The  third  field  is 
for  entry  of  the  data  pattern  or  character  string.  For  example,  to  search  for  the  ASCII 
character  string  ABCD  in  the  memory  range  from  lOOOjg  to  1500ig,  the  command  is 

TUTOR  1.3  >  BS  1000  1500  'ABCD'         (cr) 
Every  time  a  match  to  the  character  string  is  found,  the  starting  address  of  the  string 
and  the  character  string  are  displayed.  For  instance,  if  the  pattern  ABCD  was  found 
starting  at  address  1034ig,  the  information  displayed  is 

001034  'ABCD' 
Looking  at  Fig.  5.9,  we  find  that  the  block  search  command  for  a  numeric  data 

pattern  also  can  include  an  optional  mask  and  option.  For  now,  let  us  assume  that 
there  is  no  mask  and  look  at  what  options  are  available.  The  three  allowed  options 
are  ;B,  ;W,  and  ;L,  and  they  stand  for  byte,  word,  and  long  word,  respectively.  If 
no  option  is  entered,  the  default  option,  which  is  byte,  is  used.  An  example  that  uses 
the  default  option  is  the  command 

TUTOR  1.3  >  BS  1000  1500  AB        (cr) 

When  this  command  is  executed,  a  search  is  made  of  all  byte- wide  storage  locations 
in  the  block  of  memory  looking  for  the  data  pattern  ABjg,  and  the  address  and  data 
pattern  are  displayed  for  each  match  condition  that  is  found.  If  this  command  is 
modified  with  the  ;W  option,  we  get 

TUTOR  1.3  >  BS  1000  1500  ABAB  ;W         (cr) 

The  search  performed  by  this  command  differs  from  that  performed  for  the  previous 
command  in  that  a  match  condition  requires  a  word-wide  occurrence  of  the  pattern. 
That  is,  the  search  is  for  the  pattern  ABAB,g. 
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The  mask  field  makes  the  block  search  command  more  versatile.  The 

specification  of  a  mask  allows  us  to  ignore  some  of  the  bits  of  the  data  pattern.  In 
this  case,  the  mask  and  data  pattern  are  ANDed  together  and  the  bits  that  are  masked 
off  are  not  used  in  the  comparison  with  the  data  being  searched.  Therefore,  all  bits 
that  are  logic  0  in  the  mask  are  set  to  0  in  the  data  pattern  and  are  ignored.  For 
instance,  in  the  command 

TUTOR  1.3  >  BS  1000  1500  AB  FO        (cr) 

ANDing  the  data  pattern  AB|g  with  the  mask  FO,g  masks  off  the  four  LSBs  and  they 

are  don't-care  bits.  For  this  reason,  during  the  search  the  match  condition  is  based 

on  the  data  pattern  of  AX, 5.  Here  the  X  stands  for  a  don't-care  byte;  therefore,  all 
bytes  that  have  A,g  in  their  most  significant  byte  location  represent  a  match  condition. 
The  original  contents  of  the  storage  location  are  displayed  along  with  the  address. 

5.7  COMMANDS  FOR  CONTROL  OF  I/O  RESOURCES 

The  MC68000  educational  microcomputer  has  four  I/O  ports  that  are  provided  for 
reception  of  data  from  or  transmission  of  data  to  peripheral  devices  such  as  a  terminal 
and  printer.  These  ports  are  shown  in  Fig.  5.2.  Here  we  find  that  the  terminal,  which 
provides  the  keyboard  input  and  display  output  of  the  microcomputer,  connects  to 
port  1;  port  2  is  for  a  modem  through  which  the  microcomputer  can  be  connected 
to  a  host  computer;  port  3  is  the  port  that  is  used  to  attach  a  printer  to  the 
microcomputer;  and  port  4  is  provided  for  connection  of  a  cassette  player/recorder. 

Tutor's  command  set  includes  four  commands  that  are  for  control  of  these  I/O 
resources.  These  commands  are  listed  in  Fig.  5.12. 

Let  us  start  by  looking  at  the  function  of  the  commands  that  control  the  printer's 
interface  (port  3).  The  first  two  commands  in  Fig.  5.12,  printer  attach  (PA)  and  «o 
printer  attach  (NOP A),  allow  the  programmer  to  select  or  deselect  the  printer.  The 
PA  command  is  issued  as 

TUTOR  1.3  >  PA         (cr) 

and  when  executed  it  directs  information  that  is  normally  output  on  the  display  at 
port  1  to  the  printer  at  port  3  as  well.  That  is,  now  the  information  is  both  displayed 
and  printed.  If  we  no  longer  want  the  information  to  be  printed,  the  NOPA  command 
must  be  issued  as 

TUTOR  1.3  >  NOPA        (cr) 

After  executing  this  command,  data  are  no  longer  directed  to  the  printer.  They  are 
again  only  displayed  at  the  terminal. 

The  two  serial  communication  ports  of  the  microcomputer  can  be  configured 
with  a  variety  of  operating  characteristics.  The  operation  of  each  port  is  defined  by 
four  port  parameters.  They  are  its  format,  character  nulls,  carriage  return  nulls,  and 
options.  The  port  format  (PF)  command  can  be  used  either  to  display  the  current 
port  parameters  of  both  port  1  and  port  2  or  to  change  the  parameters  to  give  a  port 
new  operating  characteristics. 
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Command Meaning Format 
Explanation 

PA Printer  attach PA Attaches  the  printer  so  that 
information  sent  to  the 

terminal  is  also  printed 

NOPA No  printer  attach NOPA Disconnects  the  printer 
from  the  microcomputer 
so  that  information 

output  to  the  terminal  is 
not  printed 

PF 
Port  format PF  Kport  number>] Displays  or  modifies  the 

characteristics  of  the 

serial  ports:  format, 
character  nulls,  CR 

nulls,  and  options 

TM Transparent  mode TM  [<exit  character>l Enters  the  transparent 

Ktrailing  character>] mode  and  specifies  the 
exit  and  trailing 
characters 

DU4 Dump  onto DU4  <starting  address> Dumps  the  contents  of 
cassette  tape <ending  address> the  specified  address 

range  to  port  4  where  it 
is  saved  on  cassette tape 

VE4 Verify  cassette 
VE4 

Verifies  that  the  data 
tape 

saved  on  tape  matches 
the  contents  of  memory 

L04 Load  from L04 Loads  memory  with  the 
cassette  tape data  held  on  a  cassette tape 

Figure  5-12    Commands  for  control  of  the  I/O  resources. 

The  format  parameter  specifies  the  number  of  stop  bits  used  during  the 
transmission  and  reception  of  character  data.  Either  one  or  two  stop  bits  can  be 
assigned.  One  stop  bit  is  selected  by  making  the  format  parameter  equal  to  15  and 
two  stop  bits  are  selected  by  making  it  11. 

Nulls  are  needed  when  communicating  with  slow-reacting  devices  such  as  a 
printer.  For  instance,  when  a  carriage  return  is  sent  to  the  printer,  a  short  interval 
of  time  is  required  to  move  the  printhead  back  to  the  beginning  of  the  next  line.  In 
such  a  case,  nulls  may  be  sent  out  to  the  printer  before  any  more  character  information 
is  output.  These  are  what  are  called  carriage  return  nulls.  Moreover,  if  the  baud  rate 
is  very  high,  nulls  may  need  to  be  sent  out  after  each  character  as  well.  These  nulls 
are  called  character  nulls.  The  number  of  carriage  return  and  character  nulls  that 
are  output  can  both  be  set  with  the  PF  command. 

The  last  characteristic  of  the  two  serial  ports  that  can  be  changed  with  the  PF 
command  is  their  options.  The  options  specify  a  RAM  address  where  6  bytes  of 
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information  are  stored.  This  information  is  used  during  what  is  called  transparent 
mode  of  operation.  When  in  this  mode,  the  terminal  port  gets  directly  connected  to 
the  host  computer  port. 

The  syntax  of  the  port  format  command  is  shown  in  Fig.  5.12.  An  example 
where  PF  is  used  to  display  the  characteristics  of  both  ports  is 

TUTOR  1.3  >  PF  (cr) 

FORMAT  =15  15 

CHAR  NULL  =  00  00 

C/R  NULL  =  00  00 

OPTIONS  =  @XXXXX 

Here  we  see  that  both  ports  are  set  for  one  stop  bit,  no  character  nulls,  and  no  carriage 
return  nulls. 

To  change  the  characteristics  of  a  port— for  instance,  port  2— we  begin  by  issuing 
the  command 

TUTOR  1.3  >  PF2         (cr) 

Tutor  responds  by  displaying  the  current  format  setting  and  prompts  with  a  ?  for 
entry  of  a  new  value.  That  is, 

FORMAT  =  15? 

At  this  point,  (cr)  can  be  depressed  if  the  value  of  format  is  not  to  be  changed. 
However,  let  us  assume  that  it  is  to  be  changed  for  two  stop  bits.  Then  the  entry  is 

FORMAT  =  15?  11  (cr) 

After  this  entry  is  made,  the  character  null  parameter  is  displayed  as 

CHAR  NULL  =  00? 

Assuming  that  this  parameter  is  not  to  be  changed,  the  entry  is  simply 

CHAR  NULL  =  00?         (cr) 

and  then  the  carriage  return  null  parameter  is  displayed 

C/R  NULL  =  00? 

We  will  change  this  parameter  to  4;  therefore,  the  entry  is 

C/R  NULL  =  00?  4        (cr) 

The  next  command  in  Fig.  5.12  is  the  transparent  mode  (TM)  command 
Transparent  mode  operation  can  be  initiated  by  issuing  the  command 

TUTOR  1.3  >  TM        (cr) 

Execution  of  this  command  connects  the  terminal  port  and  the  modem  port  together. 
In  this  way,  the  terminal  port  is  connected  directly  to  a  host  computer;  therefore, 
commands  can  now  be  issued  to  Tutor  from  the  host  computer.  When  transparent 
mode  is  initiated  in  this  way,  default  values,  which  are  CTRL  A  and  CRTL  X,  are 
used  for  what  are  called  the  exit  character  and  trailing  character  parameters. 



146        Using  the  MC68000  Educational  Microcomputer  for  Program  Development  Chap.  5 

When  operating  in  the  transparent  mode,  the  microcomputer  accepts  inputs  from 
the  host  computer  just  as  though  it  was  the  terminal.  However,  it  also  watches  the 
input  from  the  host  computer  for  the  occurrence  of  an  exit  character  (CTRL  A). 
If  the  exit  character  is  received,  transparent  mode  is  exited  and  Tutor  once  again 
accepts  inputs  from  the  terminal  at  port  1. 

5.8  ASSEMBLING  INSTRUCTIONS  AND  PROGRAMS 

The  assembly  language  instructions  of  a  source  program  are  not  in  a  form  that  can 
be  executed  by  a  68000-based  microcomputer.  They  first  must  be  converted  to  their 
equivalent  machine  language  instructions.  We  pointed  out  earlier  that  the  program 
used  to  convert  assembly  language  instructions  to  machine  language  is  called  an 
assembler.  Let  us  now  look  at  how  the  Tutor  monitor  can  be  used  to  assemble  and 
disassemble  instructions  of  a  program. 

The  Line-by-Line  Assembler 

The  assembler  provided  in  the  Tutor  monitor  of  the  MC68000  educational 

microcomputer  is  what  is  called  a  line-by-line  assembler.  It  is  an  assembler  that 
translates  each  line  of  source  code  into  its  equivalent  machine  code  as  it  is  entered 
from  the  keyboard  of  the  terminal  and  then  stores  the  machine  code  in  memory. 

Use  of  a  line-by-line  assembler  imposes  a  few  restrictions  on  the  writing  of  source 
programs.  For  instance,  it  does  not  allow  the  programmer  to  use  labels  or  symbols; 
instead,  the  specific  memory  address  or  numeric  data  must  be  entered  into  the 
instruction. 

Assembly  Language  Statement  Syntax 

When  entering  assembly  language  statements  into  the  microcomputer  with  the 
line-by-line  assembler,  certain  syntax  must  be  used.  Syntax  is  the  rules  that  govern 
how  assembly  language  source  statements  are  to  be  written.  Source  programs  written 
for  the  MC68000  educational  microcomputer  can  consist  of  two  types  of  statements. 
The  first  type,  called  an  instruction  statement,  specifies  an  instruction  of  the  program. 
The  other  type,  which  is  called  a  directive,  defines  a  constant  that  is  to  be  used  by 

the  program.  We  will  begin  by  looking  at  the  syntax  of  instruction  statements. 
The  notations  and  syntax  that  we  used  for  writing  instructions  in  Chapters  3 

and  4  are  those  required  by  the  line-by-line  assembler  of  the  MC68000  educational 
microcomputer.  Therefore,  we  will  briefly  review  this  format  here.  All  instruction 
statements  in  a  source  program  must  have  the  following  format 

   <  operation  field  >    [<  operand  field  >] 

Here,  the  first  _  means  that  a  space  must  be  entered  at  the  beginning  of  every 
source  statement  and  the  second     means  that  a  space  must  be  used  to  separate 
the  operation  field  from  the  operand  field.  Moreover,  notice  that  the  operand  field 
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is  enclosed  in  square  brackets  ([  ]).  This  means  that  the  field  is  optional  in  some 
instructions. 

The  operation  field  part  of  the  instruction  statement  format  specifies  the 
operation  that  is  to  be  performed.  That  is,  the  mnemonic  for  the  instruction.  For 

instance,  when  writing  an  addition  instruction  for  long-word  data,  this  field  is  filled 
with  ADD.L.  The  operand  field  specifies  the  operand  or  operands  that  are  to  be 
processed  during  the  execution  of  the  instruction.  For  example,  the  source  operand 
could  reside  in  data  register  Dj  and  the  destination  operand  could  reside  in  data 
register  D,.  Therefore,  the  add  instruction  statement  would  be  written  as 

ADD.L     D1,D2 

Now  that  we  have  reviewed  instruction  statement  format,  let  us  continue  with 

the  directive.  Only  one  directive  is  accepted  by  the  line-by-line  assembler.  It  is  called 
define  constant  (DC.W)  and  is  used  to  define  a  constant  in  a  word  storage  location 
in  memory.  The  define  constant  directive  uses  the  same  format  as  we  just  showed 
for  the  instruction  statement.  An  example  is 

DC.W     SAOOO 

Entry  of  this  directive  assigns  the  value  AOOOj^  to  the  current  memory  location. 
Tutor  allows  the  programmer  to  specify  the  operands  in  instructions  or  directives 

with  decimal  numbers  (no  prefix),  hexadecimal  numbers  ($  sign  prefix),  or  ASCII 
strings  (enclosed  in  apostrophes).  For  instance,  if  the  earlier  directive  was  written  as 

DC.W     7000 

the  binary  equivalent  of  decimal  number  7000  is  loaded  into  the  storage  location. 
Moreover,  if  the  directive  is  written  as 

DC.W       AA' 
the  ASCII  form  of  character  A  is  loaded  into  both  the  most  significant  byte  and  least 
significant  byte  of  the  current  memory  location. 

Assembly  and  Disassembly  of  Instructions 

The  line-by-line  assembler  function  is  one  of  the  optional  modes  of  operation  for 
the  memory  modify  (MM)  command.  Actually  the  operation  provided  by  this 
command  is  a  combined  disassembler/assembler  function.  It  is  invoked  by  specifying 
disassemble  instruction  (DI)  as  the  option.  Therefore,  the  general  syntax  for  the 
command  is 

TUTOR  1.3  >  MM      < address >;DI 

The  value  of  address  specified  in  the  command  is  the  starting  address  of  the  machine 
code  instruction  when  it  is  assembled  into  memory. 

For  instance,  to  assemble  the  instruction 

MOVE.B     D5,D0 
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into  memory  starting  at  address  002000,5,  we  bring  up  the  assembler  with  the 
command 

TUTOR  1.3  >  MM     2000;DI         (or) 

Tutor  responds  to  this  command  by  displaying 

002000     2248     MOVE.L      AO.Al  ? 

This  demonstrates  the  disassembler  mode  of  operation.  Notice  that  the  current 

contents  held  at  address  002000]g  are  displayed  as  2248,5  ̂ "'^  ̂ ^^^  ̂ ^'^  '^  ̂ ^^  machine 
code  for  the  instruction 

MOVE.L     AO.Al 

To  replace  this  instruction  with  the  new  instruction,  we  must  assemble  the  instruction 
into  memory.  This  is  done  by  simply  typing  it  following  the  ?  prompt  and  then 
depressing  the  carriage  return  key.  That  is, 

002000     2248     MOVE.L     AO.Al  ?  MOVE.B  D5,D0        (cr) 

Remember  that  for  correct  syntax  a  space  must  be  entered  before  MOVE.B  and 
another  before  Dj.  Tutor  responds  to  this  entry  by  displaying  the  information  that 
follows: 

002000       1005  MOVE.B       D5,D0 

002002       4EF81012      JMP.S  $00001012  ? 

Here  we  find  that  the  first  line  of  displayed  information  consists  of  the  starting  address 

of  the  instruction,  which  is  002000,^,  followed  by  the  machine  code  form  of  the 
instruction,  1005,6,  ̂ "'^  '^^  assembly  language  instruction  statement 

MOVE.B     D5,D0 

This  completes  the  assembly  operation.  However,  notice  that  the  next  sequential 
instruction  has  been  disassembled  and  displayed  as  a  second  line  of  information.  It 
is  again  followed  by  the  ?  prompt.  We  can  now  either  enter  another  instruction  or 
terminate  instruction  disassembly/assembly  by  entering  period  (.)  followed  by  carriage 
return  (cr).  Let  us  assume  that  instruction  assembly  is  to  be  terminated,  then  the  entry 
is 

002002      4EF81012      JMP.S     $00001012  ?  .         (cr) 

and  Tutor  responds  by  prompting  for  a  new  command 

TUTOR  1.3  > 

The  assembly  of  this  instruction  is  shown  in  Fig.  5.13. 

TUTOR   1.3    MM  2000; DI 
002000     1005  MOVE.B   D5 , DO 
002002     4EF81012  JMP.S    *00001012  ?. 

Figure  5-13   Assembly  of  an  instruction. 
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When  a  source  statement  is  entered,  the  line-by-line  assembler  first  checks  it 
for  correct  syntax.  If  invalid  syntax  is  encountered,  the  assembler  responds  by 
displaying  an  error  message  and  then  prompts  for  reentry  of  the  statement.  The  error 
conditions  may  be  due  to  an  attempt  to  access  a  location  at  which  no  memory  exists, 
use  of  improper  characters  or  symbols,  use  of  too  large  a  number,  use  of  an  invalid 
opcode,  or  even  a  missing  space  where  one  is  required.  In  most  cases,  the  error 
condition  can  be  rectified  simply  by  reentering  the  instruction.  The  error  messages 
and  the  conditions  which  generate  them  are  discussed  in  the  MC68000  educational 

microcomputer's  user's  manual. 
Let  us  assume  that  we  want  to  assemble  the  instruction 

OR.B     D5,(A6) 

at  address  006000|^.  Using  the  memory  modify  command,  we  enter 

TUTOR  1.3  >  MM  6000;DI         (cr) 

06000  FFFF     DC.W      SFFFF     ?OR.B  D5,  (A6)         (cr) 

Notice  that  we  forgot  to  leave  a  space  after  the  prompt  before  beginning  to  type  in 

the  instruction's  mnemonic.  This  is  a  syntax  error.  Therefore,  Tutor  responds  with 
X? 

which  means  that  a  syntax  error  has  been  identified.  To  correct  the  syntax  error, 
we  just  reenter  the  complete  instruction  after  the  ?  this  time  preceding  OR  with  a 
space.  That  is, 

X?      OR.B     D5,  (A6)        (cr) 

After  this  entry  is  made.  Tutor  responds  with 

006000      8B16  OR.B      D5,  (A6) 

006002      00000000      OR.B      m,  DO  ? 

Here  006000, ^  is  the  address  at  which  the  instruction  is  entered  into  memory  and 
8B16,g  is  the  machine  code  for  the  OR  instruction.  This  operation  of  the  assembler 
is  shown  in  Fig.  5.14. 

TUTOR  1.3  >  MM  6000;DI 
006000       1005  MOVE.B  D5,D0  ?OR.B  D5,(A6) 

(a) 

006000  X?  OR.B  D5,(A6) 

(b) 
006000      8B16  OR.B  D5,(A6) 
006002      00000000      OR.B  #0,D0? 

(0 

Figure  5-14   (a)  Syntax  error  in  the  entry  of  an  instruction;  (b)  Tutor's  response 
to  a  syntax  error;  (c)  corrected  instruction  entry. 
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The  disassembly  capability  of  the  MM  command  also  can  be  used  to  view 
instructions  stored  in  memory  without  modifying  them.  To  do  this,  we  initiate  the 
disassemble/assembly  mode  of  operation  and  then  respond  to  the  prompt  for  a  new 
instruction  by  simply  depressing  (cr).  In  this  way,  the  machine  code  and  assembly 
language  statement  is  displayed  for  one  instruction  after  the  other.  Figure  5.15  shows 
the  disassembly  of  three  instructions. 

TUTOR  1.3  ;  MM  6000; DI 
006000     8B16  OH.b  D5,(A6)  ? 
006002     00000000  OR.B  #0 , DO  ? 

006006     00000000  OR.B  #0,D0  ''. 

Figure  5-15    Disassembly  of  an 
TUTOR      1.3    >  instruction. 

Assembly/Disassembly  of  a  Complete  Program 

Now  that  we  have  shown  how  to  assemble  an  instruction  into  the  memory  of  the 
MC68000  educational  microcomputer  and  also  disassemble  it  to  verify  its  loading, 

let  us  look  at  how  a  complete  program  is  loaded  with  the  line-by-line  assembler.  The 
assemble  option  of  the  MM  command  allows  for  easy  entry  of  a  series  of  instructions. 
The  starting  address  of  the  program  is  first  set  up  as  part  of  calling  up  the 
line-by-line  assembler.  Then  one  instruction  after  the  other  is  typed  in  and  after  each 
instruction  the  carriage  return  key  is  depressed.  When  the  last  instruction  of  the 
program  has  been  entered,  the  assembly  process  is  terminated  by  entering  .  and  then 

(cr). 
Here  we  will  show  how  to  enter  the  program  in  Fig.  5.16  into  the  memory  of 

the  microcomputer.  Let  us  begin  by  briefly  describing  the  operation  of  this  program. 

The  program  in  Fig.  5.16  implements  what  is  known  as  a  block-move  data  transfer 
operation.  Its  function  is  to  move  a  block  of  data  called  the  source  block  from  one 
location  in  memory  to  another  location  called  the  destination  block.  The  source  block 
of  data  starts  at  memory  address  001000, ^  and  is  16  words  in  length.  It  is  to  be  moved 
to  a  destination  block,  which  starts  at  address  002000|g.  That  is,  execution  of  the 
program  causes  the  contents  of  each  address  in  the  source  block  to  be  copied  into 
the  corresponding  address  in  the  destination  block.  For  instance,  if  before  the  program 
was  executed  all  storage  locations  in  the  source  block  contained  FFFFjg  and  all 
storage  locations  in  the  destination  block  contained  0000,^,  at  completion  of  executing 
the  program  all  storage  locations  in  both  blocks  would  contain  FFFF,g. 

Let  us  assume  that  the  program  in  Fig.  5. 16  is  to  be  entered  into  memory  starting 
at  address  003000,^.  To  do  this,  a  memory  modify  (MM)  command  with  the  DI 
option  specified  is  first  used  to  bring  up  the  assembler.  This  is  done  by  issuing  the 
command 

TUTOR  1.3  >  MM  3000;DI 

Tutor  responds  with 

003000      1005      MOVE.B      D5,D0     ? 
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NXTPT 

HERE 

LEA 
LEA 
MOVE.L 
MOVE.W 
SUBQ.L 
BNE 

BRA 

$1000,A1 
$2000,A2 
#16,D0 

(A1)+,(A2)  + 

NXTPT 

HERE 

SOURCE  BLOCK  STARTS  AT  $1000 
DESTINATION  BLOCK  STARTS  AT  $2000 
BLOCK  LENGTH  EQUALS  16  WORDS 
MOVE  WORD  AND  POINT  TO  NEXT  WORD 
UPDATE  COUNT 
REPEAT  FOR  NEXT  WORD 

Figure  5-16    Block  transfer  program. 

Here  we  have  assumed  that  the  memory  location  003000, g  originally  contains  1005[5, 
which  when  disassembled  is  the  instruction 

MOVE.B  D5,D0 

The  ?  displayed  at  the  end  of  the  disassembled  instruction  is  a  prompt  for  us  to  enter 
the  new  instruction.  Now  we  enter  the  first  instruction  of  the  program  preceded  by 

a  space.  The  display  appears 

003000      1005      MOVE.B      D5,D0  ?      LEA     SlOOO.Al         (cr) 

Execution  of  this  command  replaces  the  current  contents  of  address  003000,5  and 

prompts  for  entry  of  the  next  instruction.  The  response  displayed  on  the  screen  of 
the  terminal  is 

003000       43F81000     LEA  $1000,A1 

003004        DC.W     $FFFF  ? 

The  next  instruction  is  now  entered  followed  by  (cr): 

003004  DC.W  SFFFF  ?  LEA  $2000,A2         (cr) 

In  the  same  way,  the  rest  of  the  instructions  of  the  program  are  entered  as  follows: 

003008        DC.W        SFFFF        ?       MOVE.L        #16,DO     (cr) 

003014        DC.W        SFFFF        ?  BRA   *  (cr) 

Notice  that  the  last  instruction  is  followed  by  a  period  and  a  carriage  return.  This 

entry  is  required  to  exit  the  line-by-line  assembler.  The  resuhs  produced  by  assembling 
this  program  are  shown  in  Fig.  5.17. 

Since  the  program  is  entered  using  a  line-by-line  assembler,  symbols  and  labels 
cannot  be  used.  For  instance,  the  label  NXTPT  in  the  BNE  instruction  is  replaced 

by  the  starting  address  of  the  instruction  MOVE.W  (Al)-l-  ,(A2)-f  ,  which  is  300,6. 
When  a  forward  label  reference  is  encountered,  the  corresponding  addresses  may  not 

be  available  as  yet.  In  this  case,  the  label  can  be  entered  as  a  '*'  as  a  first  step.  When 
the  rest  of  the  program  has  been  entered,  the  addresses  will  be  known  and  the 

instructions  that  contain  asterisks  can  be  reentered  with  the  correct  values  of  addresses. 
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TUTOR       1.3    ;>    MM    3000;  DI 
003000 43FS1000 LEA 

tiooo, 
Al 

003004 45F82000 
LEA 

*2000 A2 

003008 203C00000010 MOVE L 
#16,Di 

00300E 
34D9 

MOVE M 

(Al  1  + 

<A2) 

003010 5380 SUBQ L #1,D0 

003012 66FA BNE *300E 

003014 60FE BRA « 
003016 FFFF DC.W *FFFF ?. 

TUTOR       1.3    > 

Figure  5-17    Assembling  the  block  transfer  program  into  memory. 

We  can  disassemble  a  series  of  instructions  that  are  stored  at  sequential  memory 
addresses  by  initiating  the  disassemble  process  by  using  the  memory  display  (MD) 
command.  Assuming  that  the  information  is  to  be  displayed  on  the  terminal,  the 
general  format  of  the  disassemble  command  is 

MD     <address>  [<count>];DI 

In  this  command  statement,  <address>  is  the  starting  address  of  the  first  instruction 
in  the  group  of  instructions  that  are  to  be  disassembled;  the  optional  count  specifies 
the  number  of  consecutive  bytes  that  are  to  be  disassembled;  and  DI  selects  disassemble 
mode  of  operation.  For  instance,  to  disassemble  the  instructions  of  the  program  we 
just  loaded  into  the  memory  range  from  address  003000,6  ̂ °  OOSOHj^,  the  command 
is  issued  as 

TUTOR  1.3  >  MD     3000      16;DI 

The  information  that  is  displayed  for  this  command  is  shown  in  Fig.  5.18. 

TUTOR   1 .3  :>  MD  3000  lfa;DI 
003000 43F81000 LEA.L «00001000,A1 

003004 45F82000 LEA.L *00002000 , A2 

003008 203C00000010 MOVE.L #16, DO 

00300E 34D9 MOVE.W 
(Al)+, (A2) + 

003010 5380 SUBQ.L #  1  ,  DO 

003012 iSfeFA BNE.S *00300E 

003014 60FE BRA.S *003014 

TUTOR   1 .  3  > 

Figure  5-18    Disassembly  of  the  block-move  data  transfer  program. 

Saving  and  Loading  Programs  with  the  Cassette 
Recorder/Player 

The  block-move  program  that  we  just  entered  into  memory  would  be  lost  if  we  turned 

off  the  microcomputer's  power.  The  cassette  recorder/player  interface  is  provided 
as  part  of  the  MC68000  educational  microcomputer  so  that  a  permanent  record  can 
be  made  of  a  program  by  recording  it  on  a  magnetic  tape.  In  this  way,  the  programmer 
can  simply  reload  the  program  from  tape  the  next  time  it  is  to  be  run,  instead  of 
having  to  reenter  it  from  the  keyboard. 
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Three  commands  are  provided  for  saving,  verifying,  and  loading  machine  code 
programs  with  the  cassette  recorder/player.  These  commands  are  dump  memory  (DU), 
verify  (VE),  and  load  (LO).  Let  us  now  look  at  how  these  commands  can  be  used 

to  save  the  blocic-move  program  on  cassette  and  then  reload  it  into  the 

microcomputer's  memory. 
Earlier,  we  found  that  the  block-move  program  was  assembled  into  word 

addresses  in  the  range  003000|g  through  003014,^.  To  save  this  program,  we  type 
in  the  command 

TUTOR  1.3  >  DU  3000     3014 

but  do  not  yet  depress  the  carriage  return  key.  Notice  that  the  command  mnemonic 
is  followed  by  the  starting  address  and  ending  address  of  the  program.  Next  the  cassette 
recorder/player  must  be  set  up  for  recording  and  then  started.  After  the  motor  of 
the  tape  player  is  up  to  speed,  the  carriage  return  key  is  depressed.  Tutor  now  reads 
the  program  out  of  memory,  formats  it  for  recording,  and  outputs  it  to  the  tape. 
When  the  dump  memory  command  is  complete,  Tutor  signals  that  fact  by  prompting 
for  another  command. 

It  is  a  good  practice  to  verify  that  the  program  has  been  correctly  recorded  on 
tape.  This  is  one  of  the  intended  uses  of  the  verify  command.  Before  issuing  a  verify 
command,  the  tape  should  be  rewound  to  a  point  somewhat  before  the  place  where 
the  program  was  recorded.  Then  the  verify  command  is  typed  in  as 

TUTOR  1.3  >  VE4 

Again,  the  carriage  return  key  is  not  yet  depressed;  instead,  the  tape  is  rewound  and 
then  the  cassette  recorder/player  is  set  up  to  play  instead  of  record  and  started.  When 
the  motor  is  up  to  speed,  the  carriage  return  key  is  depressed.  Now  the  microcomputer 
reads  the  machine  code  of  the  program  from  tape  and  compares  it  to  what  is  held 
in  memory.  If  no  differences  are  found,  the  Tutor  prompt  is  simply  displayed  when 
the  verify  operation  is  complete.  However,  if  any  differences  are  identified,  the  errors 
are  displayed  below  the  verify  command  statement.  Assuming  that  the  verify  operation 
is  performed  without  detecting  any  error,  a  permanent  record  of  the  block-move 
program  now  exists  on  tape. 

Now  that  we  know  how  to  save  machine  code  programs  on  cassette  tape,  let 
us  look  into  how  they  can  be  reloaded  from  tape  into  the  microcomputer.  First,  the 
tape  with  the  program  is  inserted  into  the  cassette  recorder/player  and  the  tape  is 
rewound  to  a  point  just  prior  to  the  spot  where  the  program  was  recorded.  Next, 
the  load  command  is  typed  in  as 

TUTOR      1.3  >  L04 

Now  the  tape  player  is  set  to  play  mode,  and  as  the  motor  comes  up  to  full  speed 
the  carriage  return  key  is  depressed.  The  microcomputer  proceeds  to  read  the  program 
from  tape  and  load  it  into  the  appropriate  location  in  memory.  The  loading  of  the 
program  can  be  verified  by  rewinding  the  tape  and  issuing  the  command 

TUTOR  1.3  >  VE4        (cr) 
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Assuming  that  it  verifies  correctly,  we  now  can  disassemble  the  program  with  the 
command 

TUTOR  1.3  >MD      3000      16;DI         (cr) 

This  command  causes  the  assembly  language  source  statements  to  be  displayed  on 
the  screen  of  the  terminal. 

5.9  PROGRAM  EXECUTION  CONTROL  COMMANDS 

Once  a  program  has  been  loaded  into  the  memory  of  the  MC68000  educational 
microcomputer,  it  is  ready  to  be  executed.  By  executing  the  program  and  then 
examining  the  results  that  it  produces,  we  can  verify  that  it  operates  correctly.  Tutor 
contains  three  groups  of  commands  that  are  specifically  provided  for  controlling  the 
execution  of  programs:  the  trace  commands,  the  go  commands,  and  the  breakpoint 
commands.  These  commands  are  shown  in  Fig.  5.19.  Let  us  now  look  at  the  operation 
of  the  commands  in  each  of  these  groups  and  how  they  can  be  used  to  control 
execution  of  programs. 

Command Meaning Format 
Explanation 

TR Trace TR  l<count>l Execute  and  trace  the 

operation  of  the  specified 
number  of  instructions 

starting  with  the  instruction 
T T  |<count>l pointed  to  by  the  current 

value  in  PC. 

TT 
Trace  to TT  <breakpoint  address> Executes  and  traces  the 
temporary operation  of  instructions 
breakpoint starting  from  the  current 

value  in  PC  and  continues 

until  either  the  specified 

breakpoint  address  or  a 

prior  set  breakpoint  address 
is  encountered. 

GO Go  execute GO  |<address» Initiates  execution  of  the 

program  from  the  specified 
address  or  if  no  address  is 

G G  |<address>l included  from  the  current 

value  in  PC.  Trace 
information  related  to 

instruction  execution  is 

displayed  and  execution  is 
terminated  if  a  set 

breakpoint  address  is 
encountered. 

Figure  5-19    Commands  for  program  execution  control. 
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GD Go  execute GD  |<address>l Initiates  execution  of  the 
direct program  directly  from  the 

specified  address  or  if  no 
address  is  included  from 
the  current  value  in  PC.  No 

trace  information  related  to 

instruction  execution  is 

displayed  and  execution  is 
not  terminated  if  a  set 

breakpoint  address  is 
encountered. 

GT Go  until GT  <breakpoint  address> Initiates  execution  of  the 

breakpoint program  from  the  current 
value  in  PC.  Trace 
information  related  to 

instruction  execution  is 

displayed  and  execution  is 
terminated  when  either  the 

specified  breakpoint 
address  or  a  prior  set 

breakpoint  address  is 
encountered. 

BR Breakpoint BR  |<address> Sets  one  or  more  breakpoints 
set |;<count>||.  .  . by  putting  the  specified 

addresses  into  the 

breakpoint  address  table. 

NOBR Breakpoint NOBR  «address> Removes  the  breakpoints  for 
remove <address>.  .  .) the  specified  addresses. 

Figure  5-19  (Com.) 

Trace  Commands— TR  (T)  and  TT 

During  the  early  stages  of  program  development,  an  operation  known  as 

single-stepping  the  program  is  very  useful.  By  single  stepping,  we  mean  that  one 

instruction  of  the  program  is  executed  at  a  time.  The  state  of  the  microprocessor's 
internal  registers  and  data  in  memory  that  are  affected  by  the  instruction  can  be 
examined  just  before  and  just  after  it  is  executed.  In  this  way,  the  operation  of  the 
program  can  be  verified  instruction  by  instruction.  The  trace  commands  are  the 

commands  provided  in  Tutor  for  single-stepping  through  a  program. 
Tutor  has  two  trace  commands  called  trace  (TR  or  T)  and  trace  to  temporary 

breakpoint  (TT).  We  will  begin  with  the  TR  command.  This  command  can  be  used 
to  execute  either  one  or  several  instructions.  To  execute  one  instruction,  the  command 
is  issued  as  either 

or  just 

TUTOR  1.3  >  TR 

TUTOR  1.3  >  T 

(cr) 

(cr) 
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In  response  to  this  command,  the  microcomputer  executes  the  instruction  pointed 

to  by  the  current  value  in  PC  and  then  it  displays  the  contents  of  the  68000's  internal 
registers. 

In  Fig.  5.20,  we  have  initialized  PC  to  the  address  003000, g  and  then  executed 
the  instruction 

LEA.L     $1000,A1 

with  a  TR  command.  The  format  in  which  the  trace  information  is  displayed  for 
the  TR  command  is  shown  in  Fig.  5.20.  Notice  that  the  original  value  in  PC  is 

OOOOSOOOjg.  After  executing  the  TR  command,  we  find  that  the  new  value  in  PC  is 
00003004, g  and  that  A,  has  been  loaded  with  00001000, g.  Moreover,  the  disassembled 
form  of  the  instruction  that  starts  at  this  address,  which  is 

LEA.L     $2000,A2 

is  displayed  in  the  last  line  of  information.  This  type  of  information  allows  the 
programmer  to  verify  easily  that  the  instruction  performed  the  correct  operation. 

Once  a  TR  command  has  been  issued.  Tutor  enters  what  is  called  the  trace  mode. 
When  in  this  mode,  the  prompt  is  issued  as 

TUTOR  1.3  :> 

Here  we  see  that  it  now  includes  a  :  before  the  >  symbol.  This  colon  tells  the 
programmer  that  the  monitor  is  in  the  trace  mode.  While  in  trace  mode,  the  next 

instruction  is  executed  by  simply  depressing  the  return  key.  That  is,  by  making  the 
entry 

TUTOR  1.3  :  >        (cr) 

the  instruction  at  address  00003004, ^  is  executed  and  the  new  contents  of  the  registers 
and  next  instruction  are  again  displayed.  To  get  out  of  trace  mode,  just  enter  any 

TUTOR   1.3  .:  .  PC  3000 

TUTOR   1.3  :■    DF 
PC=00003000  SR=2700=.S7    US=FFFFFFFF  SS=00000756 
DO=OOOOFFOD  01=00000000  02=12100010  03=00000000 
04=00000231  D5=00000FFF  06=00000004  07=00000000 
A0=000 10040  A  1=0000 1000  A2=00000414  A3=00002500 
A4=00009FAC  A5=00000540  A6=00000540  A7=00000756 
  003000     43F81000  LEA.L    *00001000,A1 

TUTOR   1.3  >  TR 
PHYSICAL  ADDRESS=00003000 
PC=00003004  SR=2700=.S7    US=FFFFFFFF  SS=00000756 
DO=OOOOFFOO  01=00000000  02=12100010  03=00000000 
04=00000231  D5=00000FFF  06=00000004  07=00000000 
AO-000 10040  A  1=0000 1000  A2=00000414  A3=00002500 
A4=00009FAC  A5=00000540  A6=00000540  A7=00000756 
  003004     45Fe2000  LEA.L    *00002000,A2 

TUTOR   1.3  : >  .PC 
. PC=00003004 

TUTOR   1.3  > 

Figure  5-20   Executing  an  instruction  with  the  trace  command. 
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command  after  :>  and  then  depress  the  return  key.  This  entry  causes  the  specified 
command  to  be  performed  and  the  prompt  to  be  redisplayed  as 

TUTOR  1.3  > 

Notice  in  the  TR  command  format  in  Fig.  5.19  that  an  optional  count  field 
can  be  specified  as  part  of  the  command.  This  count  is  what  lets  the  TR  command 
execute  more  than  one  instruction.  For  instance,  the  command 

TUTOR  1.3  >  TR  5         (cr) 

executes  five  instructions.  After  execution  of  each  instruction,  the  internal  state  of 
the  68000  is  displayed. 

The  second  trace  command,  trace  to  temporary  breakpoint  (TT),  is  used  to 
execute  and  trace  the  operation  of  instructions  until  what  is  called  a  breakpoint  is 
reached.  A  breakpoint  is  an  address  that  identifies  a  point  in  the  program  where 
execution  is  to  be  stopped.  Looking  at  the  format  of  the  TT  command  in  Fig.  5.19, 

we  see  that  the  breakpoint  address  is  specified  in  the  field  that  follows  the  command's 
mnemonic.  An  example  is  the  command 

TUTOR  1.3  >  TT      1000        (cr) 

This  causes  all  instructions  starting  from  the  current  value  in  PC  and  up  to  breakpoint 
address  1000, ̂   to  be  executed.  The  name  of  the  command  implies  that  the  breakpoint 
is  temporary.  By  this  we  mean  that  the  breakpoint  that  is  set  up  by  the  address  specified 
in  the  command  is  automatically  cleared  after  the  address  is  reached  and  execution 
stopped. 

Go  Commands— GD,  GO,  and  GT 

The  go  commands  allow  us  to  execute  either  a  whole  program  or  a  program  as  several 
segments  of  instructions.  For  this  reason,  they  are  typically  used  to  execute  programs 
that  are  completely  functional  or  to  aid  in  the  later  stages  of  the  debugging  process. 
For  example,  if  the  early  part  of  a  program  is  already  operating  correctly,  a  go 
command  can  be  used  to  execute  through  this  group  of  instructions  and  stop  execution 
at  the  point  in  the  program  where  additional  debugging  is  to  begin.  The  point  at  which 
execution  is  to  stop  and  debugging  is  to  continue  is  identified  by  a  breakpoint  address. 

Let  us  begin  with  the  go  direct  (GD)  command.  The  general  format  of  the  GD 
command  is  shown  in  Fig.  5.19.  Here  we  see  that  the  command  can  be  used  to  begin 
program  execution  directly  from  the  current  value  of  PC  or  from  an  optional  address 
that  is  specified  in  the  command.  To  initiate  program  execution  from  the  current 
value  in  PC,  the  command  is  issued  as 

TUTOR  1.3  >  GD         (cr) 

After  entering  this  command,  the  program  begins  execution  and  runs  to  completion 
or  until  either  the  ABORT  or  RESET  switch  is  depressed.  No  trace  information  is 
displayed  as  the  program  runs. 
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Alternately,  the  command  can  be  issued  with  an  address  in  the  starting  address 
field.  For  instance,  to  start  program  execution  at  address  002000|g,  the  command 
is  issued  as 

TUTOR  1.3  >  GD  2000        (cr) 

Looking  at  Fig.  5.19,  we  see  that  the  format  of  the  go  (GO  or  G)  command 
is  identical  to  that  of  the  GD  command.  However,  its  operation  differs  in  two  ways 
from  that  of  the  GD  command.  First,  trace  information  is  displayed  after  execution 
of  the  first  instruction,  and  second  execution  automatically  stops  if  a  breakpoint  is 
encountered.  Two  examples  of  the  GO  command  are 

TUTOR  1.3  >  GO         (cr) 

and 

TUTOR  1.3  >  G  2000        (cr) 

The  address,  2000, g,  which  is  specified  in  the  second  go  command,  is  not  a  breakpoint 
address.  It  specifies  the  point  at  which  program  execution  is  to  start.  We  pointed 
out  earlier  that  execution  initiated  with  the  go  command  will  stop  when  a  breakpoint 
is  reached.  This  breakpoint  must  have  been  set  up  already  by  a  special  breakpoint 
command. 

The  last  go  command,  go  until  (GT),  has  the  ability  to  set  a  temporary 
breakpoint  and  then  initiate  program  execution  with  the  instruction  pointed  to  by 
the  current  value  in  PC.  Program  execution  continues  until  the  temporary  breakpoint 
address  is  reached,  another  breakpoint  is  encountered,  or  the  ABORT  or  RESET 
switch  is  depressed.  When  execution  stops,  the  temporary  breakpoint  is  cleared. 

For  example,  if  we  have  already  set  up  breakpoints  at  addresses  00100A,g, 

001010,6,  and  001020, g,  execution  of  the  command 

TUTOR  1.3  >  GT  1006         (cr) 

when  PC  equals  001000,5  initiates  program  execution  and  it  continues  until  address 
001006,5  is  reached.  At  this  point  in  the  program,  instruction  execution  stops.  By 
next  issuing  the  command 

TUTOR  1.3  >  GT  lOOC        (cr) 

program  execution  resumes  down  through  breakpoint  address  OOIOOA,^.  In  this  case, 
a  breakpoint  was  encountered  before  reaching  the  temporary  breakpoint.  Even  though 
the  temporary  breakpoint  did  not  cause  the  break  in  program  execution,  it  is  cleared. 

Breakpoint  Commands— BR  and  NOBR 

In  our  description  of  the  trace  and  go  commands,  we  found  that  the  operation  of 
certain  commands  in  both  groups  were  affected  by  breakpoints.  Remember  that  a 
breakpoint  is  the  address  of  the  end  of  a  program  segment;  that  is,  the  addresss  of 
the  first  byte  of  the  instruction  at  which  execution  is  to  stop.  We  found  that  a 
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temporary  breakpoint  must  be  specified  directly  in  both  the  TT  and  GT  commands. 
Moreover,  if  any  additional  breakpoints  already  existed,  they  also  would  affect  the 
operation  of  these  two  commands.  On  the  other  hand,  we  found  that  the  GO 
command  did  not  specify  a  temporary  breakpoint;  instead,  it  was  only  affected  by 
breakpoints  that  were  already  defined  when  the  command  was  issued.  Commands 
are  provided  in  Tutor  for  setting  and  clearing  of  breakpoints.  Let  us  next  look  at 
the  operation  of  these  commands. 

The  command  that  is  used  to  set  up  breakpoints  is  called  breakpoint  set  (BR). 
The  format  for  this  command  is  shown  in  Fig.  5.19.  Here  we  find  that  the  address 

of  the  breakpoint  is  simply  included  after  the  command's  mnemonic.  In  fact,  up  to 
eight  breakpoint  addresses  can  be  specified  and,  if  desired,  they  all  could  be  defined 
with  one  BR  command.  An  example  is  the  command 

TUTOR  1.3  >  BR      lOOA      1010      1020        (cr) 

Execution  of  this  command  causes  addresses  OOlOOAjg,  001010, g,  and  001020,5  '° 
be  placed  into  a  table  called  the  breakpoint  address  table. 

Another  way  of  using  the  breakpoint  command  is  to  enter  it  as 

TUTOR  1.3  >  BR         (cr) 

In  this  form,  the  command  causes  the  locations  of  all  of  the  currently  defined 
breakpoints  to  be  displayed. 

In  programs  that  involve  loops,  we  may  want  to  stop  execution  at  a  breakpoint 
address  only  after  that  address  has  been  encountered  a  specific  number  of  times.  For 
instance,  the  last  time  that  the  loop  is  repeated.  In  Fig.  5.19,  we  find  that  an  optional 
count  can  be  specified  with  each  breakpoint  address  in  a  BR  command.  This  count 

gives  the  programmer  the  ability  to  execute  a  program  in  this  way.  For  instance,  the 
command 

TUTOR  1.3  >  BR  1200;5         (cr) 

sets  up  a  breakpoint  at  address  001 200, ̂   and  configures  the  breakpoint  such  that 
it  will  stop  program  execution  the  fifth  time  the  address  is  encountered. 

UnUke  the  temporary  breakpoints  defined  in  a  TT  or  GT  command,  breakpoint 
addresses  set  up  with  the  BR  command  are  not  cleared  when  encountered  during  the 
execution  of  a  program  with  the  TT,  GO,  or  GT  command.  The  only  way  that  they 
may  be  cleared  is  if  the  programmer  uses  a  remove  breakpoint  (NOBR)  command. 
For  instance,  to  remove  all  breakpoint  addresses  from  the  breakpoint  table,  the 
command  is  issued  as 

TUTOR  1.3  >  NOBR         (cr) 

However,  the  NOBR  command  also  can  be  used  to  remove  specific  breakpoints  that 
are  no  longer  needed.  For  example,  to  remove  just  the  breakpoints  at  addresses 
001010,6  3"d  001020,5,  the  command 

TUTOR  1.3  >  NOBR  1010  1020        (cr) 

is  used. 
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5.10  EXECUTING  A  PROGRAM 

By  executing  a  program  and  examining  the  results  that  it  produces,  we  can  tell  whether 
or  not  it  performs  the  operation  for  which  it  was  written.  As  discussed  earlier,  Tutor 
provides  GO  and  TRACE  commands  for  use  in  executing  programs.  Let  us  now 
demonstrate  how  programs  can  be  run  on  the  microcomputer  by  using  the 

block-move  program  we  assembled  into  memory  in  Section  5.8. 
Before  going  any  further,  let  us  disassemble  the  program  to  verify  that  it  still 

resides  in  memory.  In  Fig.  5.18,  we  find  that  the  program  resides  in  the  address  range 

3000(^  through  3014,5.  Therefore,  the  program  is  disassembled  with  the  command 
TUTOR  1.3  >  MD  3000  16;DI 

We  will  assume  that  the  sequence  of  assembly  language  instructions  displayed  by 
execution  of  this  command  is  the  same  as  that  shown  in  Fig.  5.18.  Therefore,  the 

complete  block-move  program  is  still  held  in  memory. 
We  still  are  not  ready  to  run  the  program  on  the  microcomputer.  The  internal 

registers  and  storage  locations  in  memory  that  are  used  by  the  program  must  first 
be  initialized.  For  instance,  the  status  register,  the  selected  stack  pointer  register,  the 
program  counter,  and  the  blocks  of  data  in  memory  must  all  be  assigned  initial  values. 
Let  us  first  display  the  current  contents  of  all  registers  with  the  command 

TUTOR  1.3  >  DF         (cr) 

The  information  displayed  with  this  command  is  shown  in  Fig.  5.21. 
Next,  we  choose  to  execute  the  program  in  the  user  state.  To  accomplish  this, 

bit  13  of  the  status  register  must  be  reset.  This  is  done  with  the  command  j 

TUTOR  1.3  >  .SR  0704         (cr)  | 

Next,  the  user  stack  must  be  located  in  memory  just  below  address  004000|g.  The 
command  needed  to  do  this  is 

TUTOR  1.3  >  .US  4000        (cr)  ■ 

Remember  that  the  program  starts  at  address  003000jg.  Therefore,  PC  is  initialized  as 

TUTOR  1.3  >  .PC  3000        (cr) 

To  verify  that  the  register  initialization  has  been  done  correctly,  we  again  use  the 

DF  command  to  display  the  current  contents  of  all  of  the  68000's  registers.  j 
TUTOR  1.3  >  DF         (cr)  ^ 

From  the  displayed  information  in  Fig.  5.21,  we  see  that  the  values  in  SR,  US,  and 
PC  have  been  loaded  correctly. 

We  are  not  yet  finished  initializing  the  microcomputer— the  blocks  of  storage 
locations  in  memory  must  still  be  loaded.  The  sixteen  words  in  the  source  block  are 
to  be  filled  with  the  value  FFFF|g.  This  is  done  with  the  command 

TUTOR  1.3  >  BF  1000  lOIE  FFFF        (cr) 
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TUTOR   1.3  >  DF 
PC=00003004  SR=2700=.S7    US=FFFFFFFF  SS=00000756 
D0=00OOFF0D  01=00000000  D2=121 00010  03=00000000 
04-00000231  D5=00O0OFFF  06=00000004  07=00000000 
AO-000 10040  A 1=0000 1000  A2=00000414  A3=00002500 
A4=00009FAC  A5=00000540  A6=00000540  A7=00000756 
  003004     45Fa2000  LEA.L    «00002000,A2 

TUTOR   1  .  3  :.>  .  SR  0704 

TUTOR   1 . 3  ;  . PC  3000 

TUTOR   1.3  ^-    OF 
PC=00003000  SR=0704=. . 7. . Z. .  US=00004000  33=00000756 
00=OOOOFFOO  01=00000000  02=12100010  03=00000000 
04=00000231  D5=00000FFF  06=00000004  07=00000000 
A0=000 10040  A 1=0000 1000  A2=00000414  A3=00002500 
A4=00009FAC  A5=00000540  A6=00000540  A7=00004000 
  003000     43Fei000  LEA.L    *00001000,A1 

TUTOR   1.3  >  BF  1000  lOlE  FFFF 
PHYSICAL  AOORESS=00001000  OOOOIOIE 

TUTOR   1.3  >  BF  2000  201E  0000 
PHYSICAL  ADDRESS=00002000  000020 IE 

FF  FF  FF  FF  FF  FF  FF  FF 
FF  FF  FF  FF  FF  FF  FF  FF 

00  00  00  00  00  Oo  00  00 
00  00  00  00  00  00  00  00 

TUTOR   1.3  >    BR  3014 

BREAKPOINTS 
003014     003014 

TUTOR   1 . 3  .  GO 
PHYSICAL  AOORESS=00003000 

AT  BREAKPOINT 
PC=00003014  SR=0704=. . 7. . Z. .  US=00004000  SS=00000756 
00=00000000  01=00000000  02=12100010  03=00000000 
D4=00000231  D5=00000FFF  06=00000004  07=00000000 
A0=00010040  Al=00001020  A2=00002020  A3=00002500 
A4=00009FAC  A5=00000540  A6=00000540  A7=00004000 
  003014     60FE  BRA.S    *0 

TUTOR   1.3  :  MD  1000  IE 
001000     FF  FF  FF  FF  FF  FF  FF  FF   FF  FF  FF  FF  FF  FF  FF  FF   . 
001010     FF  FF  FF  FF  FF  FF  FF  FF   FF  FF  FF  FF  FF  FF  FF  FF   . 

TUTOR   1.3  >  MO  2000  IE 
0020O0     FF  FF  FF  FF  FF  FF  FF  FF   FF  FF  FF  FF  FF  FF  FF  FF 
002010     FF  FF  FF  FF  FF  FF  FF  FF   FF  FF  FF  FF  FF  FF  FF  FF   . 

TUTOR   1.3  , 

Figure  5-21    Executing  the  block-move  data  transfer  program. 

TUTOR   1 1.3  > MO 1000  IE 
00 1 000 FF FF FF  FF  FF FF FF 

FF 

00  1  ij  1  0 FF FF FF  FF  FF FF FF FF 

TUTOR   1 1.3  > MD 2000  IE 
002000 00 00 00  00  00 

00 
00 00 

0020 1 0 00 00 00  00  00 00 00 00 
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On  the  other  hand,  the  storage  locations  in  the  destination  blocic  are  all  to  be  cleared 
to  zero.  To  do  this,  we  issue  the  command 

TUTOR  1.3  >  BF  2000  201E  0000        (cr) 

Finally,  the  initiahzation  of  the  blocks  of  data  can  be  verified  by  executing  the 
commands 

TUTOR  1.3  >  MD  1000  IE        (cr) 

TUTOR  1.3  >  MD  2000  IE        (cr) 

By  again  looking  at  the  displayed  information  in  Fig.  5.21,  we  find  that  memory 
initialization  also  was  correctly  done. 

Now  we  are  ready  to  execute  the  program.  Since  PC  has  already  been  loaded 

with  003000|g,  the  go  command  that  we  use  to  initiate  program  execution  will  not 
need  to  specify  the  starting  address  of  the  program.  However,  to  return  to  the  monitor 
at  the  end  of  the  program,  we  must  specify  the  address  of  the  last  instruction  of  the 
program  as  a  breakpoint  address.  From  the  disassembled  version  of  the  program  in 
Fig.  5.18,  we  find  that  the  last  instruction  is  at  address  003014, f,.  A  breakpoint  is 
set  up  at  this  address  with  the  command 

TUTOR  1.3  >  BR  3014        (cr) 

Now  the  program  is  executed  by  issuing  the  command 

TUTOR  1.3  >  GO         (cr) 

and  it  runs  to  completion. 
The  operation  of  the  program  can  be  verified  by  looking  at  the  blocks  of  data 

in  memory.  This  is  done  by  entering  the  commands. 

TUTOR  1.3  >  MD  1000  IE        (cr) 

TUTOR  1.3  >  MD  2000  IE        (cr) 

Looking  at  the  displayed  information  in  Fig.  5.21,  we  find  that  all  storage  locations 
in  both  blocks  now  contain  FFFFj^.  Therefore,  the  contents  of  the  source  block  have 
been  copied  into  the  destination  block. 

5.11  DEBUGGING  A  PROGRAM 

In  Sections  5.8  and  5. 10,  we  showed  how  to  load  a  program  into  the  memory  of  the 
MC68000  educational  microcomputer  and  how  to  execute  it.  Moreover,  we  verified 

that  when  executed  the  program  did  perform  the  block-move  data  transfer  operation 
for  which  it  was  written.  However,  in  practice  it  is  common  to  have  errors  in  programs, 
and  even  a  single  error  can  render  the  program  useless.  For  instance,  if  the  address 
to  which  a  branch  instruction  passes  control  is  wrong,  the  program  may  get  hung 
up.  Errors  in  a  program  are  also  referred  to  as  bugs.  The  process  of  removing  them 
is  called  debugging. 
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The  two  types  of  errors  that  can  be  made  by  a  programmer  are  syntax  errors 
and  execution  errors.  A  syntax  error  is  an  error  caused  by  not  following  the  rules 
for  coding  or  entering  an  instruction.  These  types  of  errors  are  typically  identified 

by  the  microcomputer's  assembler  or  monitor  and  signaled  to  the  user  with  error 
messages.  For  this  reason,  they  are  usually  easy  to  find  and  correct. 

For  example,  if  an  instruction  is  entered  as 

BEQU.S  $3012 

an  error  condition  exists.  This  is  because  the  mnemonic  BEQU.S  is  invalid.  The  correct 
instruction  is  written  as 

BEQ.S  $3012 

This  incorrect  entry  is  signaled  by  the  Tutor  monitor  with  an  error  message  during 
assembly. 

An  execution  error  is  an  error  in  the  logic  behind  the  development  of  the 
program.  That  is,  the  program  is  correctly  coded  and  entered,  but  it  does  not  perform 
the  operation  for  which  it  was  planned.  This  type  of  error  can  be  identified  by  entering 
the  program  into  the  microcomputer  and  executing  it.  Even  when  an  execution  error 
problem  has  been  identified,  it  can  be  difficult  to  find  the  exact  cause  of  the  problem. 

Our  ability  to  debug  execution  errors  in  a  program  is  aided  by  the  commands 
of  the  Tutor  monitor.  For  instance,  the  TR  command  allows  us  to  step  through  the 
program  by  executing  just  one  instruction  at  a  time.  In  this  way,  we  can  use  the  register 
and  memory  display  commands  to  determine  the  state  of  the  microcomputer  prior 
to  execution  of  an  instruction  and  again  just  after  its  execution.  This  information 
will  tell  us  whether  the  instruction  has  performed  the  operation  planned  for  it.  If 
an  error  is  found,  the  cause  can  be  determined  and  corrected. 

To  illustrate  the  process  of  debugging  a  program,  let  us  once  again  consider 
the  program  in  Fig.  5.16.  Its  assembled  version  is  given  in  Fig.  5.18  and  we  showed 
how  to  enter  the  program  into  the  microcomputer  in  Sec.  5.8.  Remember  that  this 

program  implements  a  block-move  data  transfer  operation.  The  block  of  data  that 
is  to  be  moved  starts  at  memory  address  OOlOOOjg  and  is  sixteen  words  in  length. 
It  is  to  be  moved  to  another  block  location  starting  at  address  002000, g.  We  will 
assume  that  the  program  already  resides  in  memory  starting  at  address  003000]^. 

Before  executing  the  program,  let  us  issue  commands  to  initialize  the  block  of 

memory  locations  from  address  001000, ^  through  OOIOIE,^  with  the  value  FFFF,^ 
and  those  from  002000, ^  through  00201E,5  with  zero.  As  shown  in  Fig.  5.22,  this 
is  done  with  the  command  sequence 

TUTOR     1.3       >       BF       1000       lOlE      FFFF  (cr) 

TUTOR     1.3       >       BF       2000      201 E      0  (cr) 

Furthermore,  we  must  initialize  the  status  register,  user  stack  pointer,  and  the  program 

counter  to  the  values  0704,^,  4000, g,  and  3000, g,  respectively.  To  do  this,  the 
commands 
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TUTOR   1.3  ■>  BF  1000  lOlE  FFFF 
PHYSICAL  ADDRESS=00001000  000010 IE 

TUTOR   1.3  >  BF  2000  20 IE  0 
PHYSICAL  ADDRESS=00002000  000020 IE 

TUTOR  1.3  >  .US  4000 

TUTOR  1.3  >  .PC  3000 

TUTOR  1.3  >  MD  1000  IE 
001000  FF  FF  FF  FF  FF  FF  FF  FF   FF  FF  FF  FF  FF  FF  FF  FF 
001010  FF  FF  FF  FF  FF  FF  FF  FF   FF  FF  FF  FF  FF  FF  FF  FF 

TUTOR   1.3  .  MD  2000  IE 
002000     00  00  00  00  00  00  00  00   00  00  00  00  00  00  00  00     
002010     00  00  00  00  00  00  00  00   00  00  00  00  00  00  00  00     

TUTOR   1.3  ,>  DF 
PC=00003000  SR=0704=. . 7. . Z. .  US=OOnoaOOO  SS=00000786 
DO=0OOOFFOO  D 1=00000002  D2=10BC5380  03=00000000 
04=00005330  D5=FFFFFF2C  06=00000002  07=00000000 
A0=000 10040  A 1=00000000  A2=00000414  A3=00000554 
A4=00009F86  A5=00000540  A6=00000540  A7=00004000 
  003000     43F81000  LEA.L    *00001000,A1 

TUTOR   1.3  ,>  BR  300E 

BREAKPOINTS 
00300E     00300E 

TUTOR   1  .  3  ,■  GO 
PHYSICAL  A0DRESS=00003000 

AT  BREAKPOINT 
PC=0000300E  SR=0700=..7    US=00004000  SS=00000786 
00=00000010  01=00000002  D2=10BC5380  03=00000000 
04=00005330  05=FFFFFF2C  06=00000002  07=00000000 
A0=000 10040  A 1=0000 1000  A2=00002000  A3=00000554 
A4=0000'?F86  A5=00000540  A6=00000540  A7=00004000 
  00300E     3409  MOVE.W   (A1)+,(A2)+ 

TUTOR   1.3  >  T 
PHYSICAL  ADDRESS=0000300E 
PC=00003010  SR=0708=. .7.N. . .  US=00004000  SS=000007B6 
00=00000010  01=00000002  02=10BC5380  03=00000000 
04=00005330  05=FFFFFF2C  06=00000002  07=00000000 
A0=000 10040  A 1=0000 1002  A2=00002002  A3=00000554 
A4=0000<?F86  A5=00000540  A6=00000540  A7=00004000 
  003010     5380  SUBG.L   #1,00 

TUTOR   1.3  t  >  T 
PHYSICAL  A0DRESS=000O3010 
PC=00003012  SR=0700=. .7    US=00004000  33=00000786 
D0=0000000F  01=00000002  02=10BC5380  03=00000000 
04=00005330  05=FFFFFF2C  06=00000002  07=00000000 
A0=000 10040  A 1=0000 1002  A2=00002002  A3=00000554 
A4=00009F86  A5=00000540  A6=00000540  A7=00004000 
  003012     66FA  BNE.S    »00300E 

Figure  5-22    Demonstration  of  program  debugging. 
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TUTOR   1.3  : >  T 
PHYSICAL  ADDRESS=00003012 

AT  BREAKPOINT 
PC=0000300E  SR=0700=..7    US=00004000  SS=O0i;>007B6 
DO=OOOOOOOF  01=00000002  D2=10BC5380  03=00000000 
04=00005330  D5=FFFFFF2C  06=00000002  07=00000000 
A0=000 10040  A 1=0000 1002  A2=00002002  A3=00000554 
A4=00009F86  A5=00000540  A6=00000540  A7=00004000 
  00300E     3409  MOVE.W   (A1)+,<A2)- 

TUTOR   1.3  :>  MD  2000  IE 
002000     FF  FF  00  00  00  00  00  00   00  00  00  00  00  00  00  00     
0020 1 0     00  00  00  00  00  00  00  00   00  00  00  00  00  00  00  00     

TUTOR   1 . 3  >    GO 
PHYSICAL  ADDRESS=0000300E 

AT  BREAKPOINT 
PC=0000300E  SR=070o=..7    US=00004000  SS=000007a6 
DO=OOOOOOOE  01=00000002  02=10BC53aO  03=00000000 
04=00005330  05=FFFFFF2C  06=00000002  07=00000000 
A0=000 10040  A 1=0000 1004  A2=00002004  A3=00000554 
A4=00009F86  A5=00000540  A6=00000540  A7=00004000 
  00300E     3409  MOVE.W   (A1)+,<A2)+ 

TUTOR   1.3  >  MD  2000 
002000     FF  FF  FF  FF  00  00  00  00   00  00  00  00  00  00  00  00     

BREAKPOINTS 

TUTOR   1.3  >  BR  3014 

BREAKPOINTS 
003014     003014 

TUTOR   1.3  >  GO 
PHYSICAL  A0DRESS=0000300E 

AT  BREAKPOINT 
PC=00003014  SR=0704=. . 7. . Z. .  US=00004000  SS=00000786 
00=00000000  01=00000002  D2=10BC5380  03=00000000 
04-00005330  05=FFFFFF2C  06=00000002  07=00000000 
AO-000 10040  A 1=0000 1020  A2=00002020  A3=00000554 
A4«=00009F86  A5=00000540  A6=00000540  A7=00004000 
  003014     60FE  BRA. 3 

TUTOR   1.3  >  MO  2000  IE 
002000     FF  FF  FF  FF  FF  FF  FF  FF   FF  FF  FF  FF  FF  FF  FF  FF 
002010     FF  FF  FF  FF  FF  FF  FF  FF   FF  FF  FF  FF  FF  FF  FF  FF 

Figure  5-22  (Com. J 

TUTOR      1.3       >        .SR 

TUTOR       1.3       >       -US 

TUTOR       1.3       >       .PC 

are  issued.  The  initialization  of  the  microcomputer  can  be  verified  using  the  following 
memory  display  and  register  display  commands. 

0704 (cr) 
4000 

(cr) 
3000 (cr) 



TUTOR 1.3 > MD 1000 IE 

TUTOR 1.3 > MD 
2000 IE 

TUTOR 1.3 > DF 
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(cr) 

(cr) 

(cr) 

The  displayed  information  in  Fig.  5.22  shows  that  the  initialization  is  correct. 
Let  us  now  execute  the  first  three  instructions  of  the  program.  To  do  this,  we 

first  set  a  breakpoint  at  the  address  of  the  fourth  instruction.  In  Fig.  5.18,  we  find 
that  this  instruction  starts  at  address  300E,g.  The  breakpoint  is  set  by  issuing  the 
command 

TUTOR      1.3  >  BR      300E         (cr) 

The  Tutor  response  shown  in  Fig.  5.22  verifies  that  the  breakpoint  address  has  been 
set.  Now  the  three  instructions  are  executed  by  issuing  the  GO  command 

TUTOR      1.3  >  GO        (cr) 

At  this  point,  we  can  verify  that  registers  A,,  A2,  and  Dq  have  been  loaded  with 
00001000,6,  00002000,6,  ̂ "d  00000010,6,  respectively. 

The  following  trace  commands  are  used  to  execute  the  next  three  instructions. 

TUTOR      1.3       >      T  (cr) 

TUTOR       1.3       >       T  (cr) 

TUTOR      1.3       >      T  (cr) 

From  Fig.  5.22,  we  find  that  the  first  T  command  executes  the  instruction 

MOVE.W  (Al)+,  (A2)  + 

and  then  displays  the  contents  of  the  68000's  internal  registers.  Notice  that  A,  now 
contains  00001002,6  and  A2  contains  (X)002002,6.  Therefore,  they  point  to  the  second 
word  in  the  source  block  and  destination  block,  respectively.  The  displayed 
information  for  the  second  trace  command  shows  that  the  contents  of  Dq  have  been 
decremented  by  one  and  that  for  the  third  command  shows  that  PC  has  been  reloaded 
with  the  address  of  the  instruction 

MOVE.W      (A1)  +  ,(A2)  + 

This  completes  one  iteration  of  the  block  transfer  loop. 

To  verify  that  the  source  word  at  0010(X),6  has  moved  to  the  destination  location 
at  002000,6,  ̂ ^  "^^  '^^  memory  display  command 

TUTOR      1.3  >MD     2000      IE         (cr) 

The  displayed  information  in  Fig.  5.22  shows  that  word  address  2000,6  '^°*  contains 
FFFF|6.  This  confirms  that  the  data  transfer  has  taken  place. 

At  this  point  the  rest  of  the  iterations  of  the  loop  can  be  executed  by  issuing 
GO  commands.  Figure  5.22  shows  that  first  a  GO  command  was  issued  followed  by 
an  MD  command.  This  command  sequence  did  not  run  the  program  to  completion; 
instead,  the  displayed  information  shows  that  just  the  second  word  of  data  has  been 
moved  into  the  destination  block. 
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To  run  the  program  to  completion,  we  must  first  remove  the  brealcpoint  that 
exists  at  address  300E|g  and  then  set  a  new  one  at  the  address  of  the  last  instruction 
in  the  program,  which  is  3014, g.  This  is  done  with  the  commands 

TUTOR       1.3       >      NOBR  (cr) 

TUTOR      1.3       >      BR        3014  (cr) 

Now  the  rest  of  the  program  is  executed  by  issuing  the  command 

TUTOR      1.3  >  GO         (cr) 

To  verify  that  all  of  the  contents  of  the  source  block  have  been  moved  to  the 
destination  block,  we  use  the  command 

TUTOR      1.3     MD     2000      IE        (cr) 

As  shown  in  Fig.  5.22,  all  word  locations  in  the  destination  block  contain  FFFF|g 
thereby  verifying  that  the  program  functions  correctly. 

ASSIGNMENT 

Section  5.2 

1.  What  purpose  is  served  by  a  development  system? 

2.  How  much  RAM  is  provided  on  the  MC68000  educational  microcomputer  for  storage 
of  user  programs? 

3.  How  many  ports  are  provided  on  the  MC68000  educational  microcomputer  board  for 
connection  of  I/O  devices? 

4.  Which  I/O  port  implements  the  Centronics  parallel  printer  interface?   Which  port 
implements  a  serial  communications  interface  for  connection  of  the  terminal? 

Section  5.3 

5.  What  is  a  monitor  program?  Where  is  it  stored? 
6.  List  the  main  functions  of  the  Tutor  monitor. 

7.  What  size  is  the  MC68000  educational  microcomputer's  monitor  program? 

Section  5.4 

8.  What  is  meant  by  a  line-by-line  assembler/disassembler? 

9.  Which  field  of  the  monitor's  command  syntax  is  always  required  in  a  command? 
10.  Describe  the  difference  between  an  offset  register  of  the  monitor  and  an  internal  register 

of  the  68000. 

11.  If  Aq  =  100, g,  Dq  =  200,5,  '^0  =  lOOOig,  and  R,  =  2000,^,  specify  the  memory  addresses 
at  which  execution  starts  when  the  commands  that  follow  are  issued. 

(a)  TUTOR      1.3      >      GO      1000 
(b)  TUTOR      1.3      >      GO      100  +  R3 



Using  the  MC68000  Educational  Microcomputer  for  Program  Development         Chap.  5 

(c)    TUTOR 1.3 > GO 
(AO) 

(d)    TUTOR 1.3 > GO (AO.DO) 

Section  5.5 

12.  Write  a  series  of  commands  that  will  load  PC,  Aq,  D,,  and  D,,  with  decimal  numbers 
100,  200,  500,  and  800,  respectively. 

13.  If  Rq  contains  1000,^,  what  is  loaded  into  Rj  as  a  result  of  executing  the  following 
commands. 
(a)  TUTOR      1.3      >      .RO      1000 
(b)  TUTOR      1.3      >      .R5      1000  +  R7 

Section  5.6 

14.  What  happens  when  we  issue  the  following  series  of  commands? 
TUTOR      1.3      >      MD      1000        (cr) 
TUTOR      1.3      >      (cr) 

15.  Write  a  command  sequence  that  will  fill  the  block  of  memory  locations  from  1000,^ 
through  10FE|g  with  the  ASCII  string  ABCD  and  the  block  of  locations  from  2000, g 
through  20FE,g  with  data  5555|g.  Verify  the  initialization  of  these  two  blocks  and  then 
move  the  contents  of  the  block  of  locations  from  1000|g  through  100F,g  to  the  block  of 
locations  starting  at  3000, g. 

Section  5.7 

16.  Write  a  command  sequence  to  set  port  2  for  one  stop  bit,  two  character  nulls,  and  ten 
carriage  return  nulls. 

17.  Wite  a  command  that  when  issued  will  set  up  the  MC68000  educational  microcomputer 
so  that  a  host  computer  can  be  used  to  send  commands  to  it. 

Section  5.8 

18.  List  two  limitations  experienced  when  working  with  a  line-by-line  assembler. 
19.  Show  how  directives  can  be  used  to  initialize  consecutive  memory  locations  starting  at 

address  1000, ̂   with  word  data  ABCD,^  and  1234, g. 
20.  Which  command  is  used  to  assemble/disassemble  instructions  into  the  memory  of  the 

MC68000  educational  microcomputer? 

Section  5.9 

21.  Which  command  is  best  used  to: 

(a)  Execute  one  instruction  of  a  program? 
(b)  Execute  an  entire  program? 
(c)  Execute  a  group  of  instructions  in  a  program? 

22.  What  is  the  use  of  a  breakpoint  during  program  execution?  How  can  a  breakpoint  be  set? 
23.  Write  a  command  that  will  set  up  a  breakpoint  at  address  1150,^  so  that  execution  will 

stop  on  the  tenth  occurrence  of  this  address. 
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Section  5.10 

24.  Why  must  some  registers  be  initialized  before  executing  a  program? 

25.  Write  a  command  sequence  that  when  executed  initializes  PC  to  point  to  the  beginning 

of  a  program  which  starts  at  address  2000|g  and  executes  the  program  until  the  address 
2014|j  is  encountered  three  times.  Before  beginning  execution,  the  appropriate  breakpoint 
should  be  set  up. 

Section  5.1 1 

26.  What  is  the  difference  between  a  syntax  error  and  an  execution  error? 

27.  How  does  Tutor  provide  debugging  support? 

28.  Repeat  the  debug  demonstration  presented  in  Section  5. 11,  but  this  time  use  the  TT  and 
GD  commands  to  execute  the  program. 



Memory 
AND  Input/Output  Interfaces 
OF  THE  68000  Microprocessor 

6.1   INTRODUCTION 

The  preceding  four  chapters  were  devoted  to  the  architecture  of  the  68000,  its 
instruction  set,  and  assembly  language  programming.  In  this  chapter  we  study  the 
memory  and  input/output  interfaces  of  this  microprocessor  together  with  the 
instructions  that  are  provided  to  implement  stack  and  I/O  operations.  In  particular, 
the  following  topics  are  the  subject  of  this  chapter: 

1.  The  asynchronous  memory  and  I/O  interface 
2.  Address  space 

3.  Data  organization 

4.  Dedicated  and  general  use  of  memory 

5.  Program  and  data  storage  memory 

6.  Memory  function  codes 

7.  Memory  and  I/O  read  and  write  cycles 

8.  User  and  supervisor  stacks 

9.  64K-byte  software  refreshed  dynamic  RAM  subsystem 
10.  I/O  instruction— MOVEP 

11.  6821  peripheral  interface  adapter 

12.  Asynchronous  bus  interface  I/O  circuitry 

13.  Synchronous  memory  and  I/O  interface 

14.  Synchronous  bus  I/O  interface  circuitry 
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15.  Serial  communication  interface 

16.  The  6850  asynchronous  communications  interface  adapter 

17.  Special  purpose  interface  controllers 

6.2  ASYNCHRONOUS  MEMORY  AND  I/O  INTERFACE 

The  asynchronous  memory  and  input/output  interface  of  the  68000  is  shown  in  Fig. 
6.1.  It  consists  of  the  address  bus,  data  bus,  function  code  bus,  and  control  bus. 
The  address  and  data  buses  of  the  68000  are  demultiplexed.  That  is,  they  do  not  share 
pins  on  the  package  of  the  IC.  The  advantage  of  this  is  that  the  interface  circuitry 
between  microprocessor  and  memory  is  simplified. 

Moreover,  in  the  68000  microcomputer  I/O  devices  are  always  memory-mapped. 
By  this,  we  mean  that  memory  and  I/O  do  not  have  separate  address  spaces.  Instead, 
the  designer  allocates  a  part  of  the  memory  address  space  to  the  I/O  devices. 
Therefore,  both  memory  and  I/O  are  accessed  in  the  same  way  through  the 
asynchronous  bus  interface. 

We  have  indicated  several  times  that  the  bus  between  the  68000  and  memory 

or  I/O  is  asynchronous.  By  "asynchronous"  we  mean  that  once  a  bus  cycle  is  initiated 
to  read  (input)  or  write  (output)  instructions  or  data,  it  is  not  completed  until  a 
response  is  provided  by  the  memory  or  I/O  subsystem.  This  response  is  an 
acknowledge  signal  that  tells  the  68000  that  it  should  complete  its  current  bus  cycle. 
For  this  reason,  the  timing  of  the  bus  cycle  in  a  68000  microcomputer  system  can 
be  easily  matched  to  slow  memories  or  I/O  devices.  This  results  in  efficient  use  of 
the  system  bus. 

6.3  ADDRESS  SPACE  AND  DATA  ORGANIZATION 

Notice  in  Fig.  6. 1  that  the  address  bus  of  the  68000  consists  of  23  independent  address 

lines,  which  are  labeled  A,  through  A23.  The  address  information  output  on  these 
lines  selects  the  storage  location  in  memory  or  the  I/O  device  that  is  to  be  accessed. 

With  this  large  23-bit  address,  the  68000  is  capable  of  generating  8M  unique  addresses. 
As  shown  in  Fig.  6.2,  they  represent  a  word  address  space  in  the  address  range 

000000, g  through  FFFFFE,g.  Here  we  see  that  word  information  such  as  instructions, 
word  operands,  or  long-word  operands  must  always  be  aligned  at  even  address 
boundaries. 

Coupling  the  upper  data  strobe  (UDS)  and  lower  data  strobe  (LDS)  control 
signals  with  this  address  bus  gives  the  68000  the  ability  to  access  bytes  of  data.  Figure 

6.3  illustrates  how  these  two  signals  can  be  used  to  enable  byte-wide  upper  d^nd  lower 
data  banks  in  memory.  Address  lines  A,  through  A23  are  applied  in  parallel  to  both 
memory  banks. 

From  an  address  point  of  view,  memory  can  now  be  considered  to  be  organized 
as  bytes,  and  as  shown  in  Fig.  6.4,  bytes  of  data  can  be  stored  at  odd  or  even  addresses. 
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68000 

A N 

Memory  and  I/O 

A1-A23 

Do-D,5 

> 
V 

FC0-FC2 \ 

AS 

R/W 
UDS 

LDS 

DTACK 

Figure  6-1    Asynchronous  memory  and 
I/O  interface. 

Word  Addresses       Memory  Contenis 
000000,6 

000002,6 

000004,, 

FFFFFC,, 

FFFFFE,, 

WordO 

Word  1 

Word  : 

Word  8,388,606 

Word  8,388,607 
Figure  6-2    Word  address  space. 

When  expressed  in  this  way,  the  size  of  the  physical  address  space  is  said  to  be  16M 

bytes. 
The  address  strobe  (AS)  control  signal  is  output  by  the  68000  along  with  the 

address  on  A,  through  A23.  It  is  used  to  signal  memory  and  I/O  devices  that  valid 
address  information  is  available  on  the  bus. 

In  Fig.  6.1  we  find  a  second  bus  between  the  68000  and  the  memory  or  I/O 
device.  It  is  the  data  bus  and  consists  of  the  16  bidirectional  data  lines  Dg  through 
D|5.  Data  are  input  to  the  microprocessor  over  these  lines  during  read  (input) 
operations  and  are  output  by  the  processor  over  these  lines  during  write  (output) 
operations. 
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Even  Byte 
Addresses 

000000, s 

000002  ,t 

000004,, 

UDS 

R/W 

AS 

DTACK 

68000 

LDS 

1 
\ 

  / 

Upper  data  bank 

^   7 /            [ 

vU r> 
A,-A,3 

u 
Lower  data  bank 

A                                                                                                N 

\, — 

D0-D7 

> 

Figure  6-3    Memory  organized  as  upper  and  lower  data  banks. 

Memory  Contents 
Odd  Byte 

Addresses 

Byte  0 Byte  1 

Byte  : 
Byte  3 

Byte  4 
Byte  5 

Byte  16,777,:  14 Byte  16,777,:i5      | 

000001,6 

000003,6 

000005, ^ 

Figure  6-4   Byte  address  space. 

The  control  signals  that  coordinate  the  data  transfers  that  take  place  between 

the  68000  andjnemory  or  I/O  devices  are  also  shown  in  Fig.  6.1.  They  are  the 
read/write  (R/W)  output  and  the  data  transfer  acknowledge  (DTACK)  input.  The 
68000  sets  R/W  to  the  appropriate  logic  level  to  tell  external  circuitry  whether 
data  are  being  input  or  output  by  the  microprocessor  during  the  current  bus  cycle. 
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On  the  other  hand,  DTACK  acknowledges  that  the  transfer  between 
microprocessor  and  memory  or  I/O  subsystem  has  taken  place.  When  the  68000 
executes  a  read  operation,  it  always  waits  until  the  DTACK  input  goes  active  before 
completing  the  bus  cycle.  DTACK  is  asserted  by  the  memory  or  I/O  device  when 
the  data  it  has  put  on  the  bus  are  valid.  In  response  to  DTACK  equal  to  0,  the  68000 
latches  in  the  data  from  the  bus  and  completes  the  read  cycle.  During  a  write  operation, 
DTACK  indicates  to  the  68000  that  data  have  been  written;  therefore,  it  terminates 
the  bus  cycle. 

7 6 5 4 3 2 1 0 

15 
14 

13 
12         11 

10 

9 8 7 6 5 4           3 2 0 

MSB ByteO LSB 
Byte  1 

Byte  2 Byte  3 

15 14 
13 12 

11 10 

9 8           7 6 5 4 3 2 1           0 

MSB 
Word  0 

LSB 

Word  1 

Word  2 

15         14         13         12 11 

10 

9 3           7 6 5 4 3 2 1           0 

MSB 

—  —  Long  Word  0 —   - 
- Higri  Order 

Low  Order 

-    - 

LSB 

—    — Long  Word  1 —    —   —    —    —   —   —    —    —    —   —   —    —    —   —    —    —    —    —   —    — 

—    —  Long  Word  2   —   ____   .   —    _   —   _ 

(d) 

Figure  6-5    Data  organization  in  memory  (Motorola,  Inc.). 
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Remember  that  most  of  the  instructions  in  the  instruction  set  of  the  68000  have 

the  abiUty  to  process  operands  expressed  in  byte,  word,  or  long-word  formats.  Let 
us  now  looic  at  how  data  expressed  in  these  forms  are  stored  in  memory.  From  Fig. 
6.5(a),  we  see  that  within  a  byte  of  data  bit  0  represents  the  least  significant  bit  and 
bit  7  represents  the  most  significant  bit.  Next,  Fig.  6.5(b)  shows  that  two  bytes  of 

data  can  be  stored  at  each  word  address.  Notice  that  even-addressed  bytes  such  as 
byte  0  and  byte  2  are  stored  in  most  significant  byte  locations  and  odd-addressed 
bytes  such  as  byte  1  and  byte  3  are  stored  in  least  significant  byte  locations.  Figure 
6.5(c)  and  (d)  show  that  a  word  is  simply  stored  at  each  word  address  and  that  a 
long  word  is  stored  at  two  consecutive  word  addresses. 

Looking  at  the  memory  subsystem  hardware  configuration  in  Fig.  6.3,  we  see 
that  for  an  addressed  word  storage  location  the  upper  8  bits  of  the  word  are  in  the 
upper  data  bank.  This  is  the  even  byte  and  it  is  transferred  between  memory  and 

microprocessor  over  data  bus  lines  Dg  through  0,5.  The  lower  8  bits  of  the  word, 
the  odd  byte,  are  in  the  lower  data  bank.  They  are  transferred  between  microprocessor 
and  memory  over  Dq  through  D7. 

For  a  word  transfer  to  take  place  over  the  bus,  both  UDS  and  LDS  must  be 
active  at  the  same  time.  Therefore,  they  are  both  switched  to  the  0  logic  level. 
Moreover,  the  direction  in  which  data  are  transferred  is  identified  by  the  logic  level  of 
R/W.  For  instance,  if  the  word  of  data  is  to  be  written  into  memory,  R/W  is  set 
to  logic  0.  UDS  and  LDS  can  also  be  set  to  access  just  the  upper  byte  or  lower  byte 
of  data.  In  this  case,  either  UDS  or  LDS  remains  at  its  inactive  1  logic  level. 

Figure  6.6  summarizes  the  types  of  data  transfers  that  can  take  place  over  the 
data  bus  and  the  corresponding  control  signal  logic  levels.  For  example,  when  an 
even  byte  is  read  from  the  high  memory  bank  UDS  =  0,  LDS  =  1,  R/W  =  1  and 
data  are  transferred  from  memory  to  the  68000  over  data  lines  Dg  through  D,5. 

UDS LDS R/W D8-D15 D0-D7 

High High - No  valid  data No  valid  data 

Low Low High 
Valid  data  bits 

8-15 
Valid  data  bits 

0-7 

High Low High No  valid  data 
Valid  data  bits 

0-7 

Low High High 
Valid  data  bits 

8-15 No  valid  data 

Low Low Low 
Valid  data  bits 

8-15 
Valid  data  bits 

0-7 

High Low Low 
Valid  data  bits 

0-7 

Valid  data  bits 

0-7 

Low High Low 
Valid  data  bits 8-15 Valid  data  bits 8-15 Figure  6-6  Relationship  between  bus 

control  signals  and  data  bus  transfers 
(Motorola,  Inc.). 
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6.4  DEDICATED  AND  GENERAL  USE  MEMORY 

Now  that  we  have  introduced  the  memory  interface  of  the  68000,  its  address  space, 
and  data  organization,  let  us  continue  by  looking  at  which  parts  of  the  address  space 
have  dedicated  uses  and  which  parts  are  for  general  use.  In  Fig.  6.7  we  see  that  the 
lower  end  of  the  address  space  has  a  dedicated  function.  That  is,  the  word  storage 
locations  over  the  address  range  from  000000, g  to  0003FE|g  are  allocated  for  storage 

of  an  address  vector  table.  As  shown,  it  contains  the  68000's  exception  vector  table. 
Each  vector  address  is  24  bits  long  and  takes  up  two  words  of  memory.  An  example 
of  68000  exceptions  are  its  hardware  interrupts.  The  exception  processing  capability 
of  the  68000  is  the  subject  of  Chapter  7. 

From  the  memory  map  in  Fig.  6.7  we  see  that  the  rest  of  the  address  space  is 
for  general  use.  Therefore,  it  can  be  used  to  store  instructions  of  the  program,  data 
operands,  or  address  information. 

0003FE,6 
000400,6 

Exception  vector table 

General  use memory 

Figure  6-7    Memory  map. 

6.5  PROGRAM  AND  DATA  STORAGE  MEMORY 

AND  THE  FUNCTION  CODES 

In  the  preceding  section,  we  showed  how  the  memory  address  space  of  the  68000 
is  partitioned  into  a  dedicated  use  area  and  a  general  use  area.  Another  way  of 
partitioning  the  memory  subsystem  in  a  68000  microcomputer  system  is  in  terms  of 
program  and  data  storage  memory.  In  general,  the  program  segment  of  memory 
contains  the  opcodes  of  the  instructions  in  the  program,  direct  addresses  of  operands, 
and  data  of  immediate  source  operands.  It  can  be  implemented  with  ROM  or  RAM. 

On  the  other  hand,  the  data  segment  is  generally  implemented  with  RAM.  This 
is  because  it  contains  data  operands  that  are  to  be  processed  by  the  instructions. 
Therefore,  it  must  be  able  to  be  read  from  or  written  into. 

During  all  bus  cycles  to  memory,  the  68000  outputs  bus  status  codes  to  indicate 
whether  it  is  accessing  program  or  data  memory.  The  bus  status  code  is  known  as 
the  function  code  and  is  output  on  function  code  bus  lines  FCq  through  FC2.  The 
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Function  code output 
Reference  class 

FCj 
PC, 

FCo 

0 0 0 
(Unassigned) 

0 

0 

0 

1 

1 

0 

User  data 

User  program 

0 

1 

1 

0 

1 

0 

(Unassigned) 

(Unassigned) 

1 

1 

0 

1 

1 

0 

Supervisor  data 

Supervisor  program 

1 1 1 Interrupt  acknowledge 
Figure  6-8    Memory  function  codes 
(Motorola,  Inc.). 

table  in  Fig.  6.8  lists  all  function  codes  output  by  the  68000  and  the  corresponding 
type  of  bus  cycle.  Notice  that  program  and  data  memory  accesses  are  further 
categorized  based  on  whether  they  occur  when  the  68000  is  in  the  user  state  or 
supervisor  state.  For  instance,  an  instruction  acquisition  bus  cycle  performed  when 

the  68000  is  in  the  user  state  is  accompanied  by  the  function  code  FC2FC|FCq  =  010, 
but  the  same  type  of  access  when  in  the  supervisor  state  is  accompanied  by 

FC2FC1FC0  =  110. 
One  use  of  the  function  codes  is  to  partition  the  memory  subsystem  hardware. 

This  can  be  done  by  decoding  the  function  codes  in  external  logic  to  produce  enable 
signals  for  the  user  program  segment,  user  data  segment,  supervisor  program  segment, 
and  supervisor  data  segment. 

One  approach  is  illustrated  in  Fig.  6.9.  Here  the  memory  subsystem  has  been 
partitioned  into  a  user  memory  segment  and  a  supervisor  memory  segment.  Looking 

Memory  map 

Supervisor 
memory 

7FFFFE,(, 
800000,6 

User 
memory 

Figure  6-9    Partitioning  memory  into  user  and  supervisor  segments  (Motorola,  Inc.). 
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at  Fig.  6.8,  we  see  that  the  logic  level  of  function  code  line  FCj  indicates  whether 
the  68000  is  in  the  user  or  supervisor  state.  Notice  that  in  this  circuit  FC2  is  gated 
with  address  strobe  AS  to  produce  select  input  Sj  for  the  supervisor  memory  bank. 
In  this  way,  the  68000  can  access  either  the  user  or  supervisor  memory  banks  when 
it  is  in  the  supervisor  state,  but  when  it  is  in  the  user  state  the  supervisor  memory 
bank  is  locked  out. 

Another  approach  would  be  to  partition  the  memory  subsystem  such  that  it 

has  an  independent  16M-byte  program  memory  segment  and  a  16M-byte  data  memory 
segment.  This  expands  the  address  space  of  the  68000  to  32M  bytes  in  a  segmented 
fashion. 

6.6  MEMORY  AND  I/O  READ  CYCLE  TIMING 

To  read  a  word  or  byte  from  an  input  device  or  memory,  the  signal  lines  that  are 
used  are  address  lines  A,  through  A23,  data  lines  Dq  through  Djj,  and  asynchronous 
control  lines:  address  strobe  (AS),  upper  and  lower  data  strobes  (UDS  and  LDS), 
read/write  (R/W),  and  data  transfer  acknowledge  (DTACK).  Figure  6.10(a)  is  a 
flowchart  that  shows  the  sequence  of  events  that  take  place  in  order  to  read  a  byte 
of  data  from  the  memory  subsystem  in  Fig.  6.3.  A  timing  diagram  for  an  upper  bank 
read  bus  cycle  is  shown  in  Fig.  6.10(b). 

From  the  timing  diagram,  we  see  that  a  read  cycle  can  be  completed  in  as  few 
as  four  clock  cycles.  Each  clock  cycle  consists  of  a  high  and  low  state  for  a  total 

of  eight  states.  They  are  labeled  Sq  through  S7  in  the  timing  diagram.  With  the  100-ns 
clock  cycle  of  the  10-MHz  68000,  this  gives  a  minimum  read  bus  cycle  time  of  400  ns. 

In  Fig.  6.10(a)  we  see  that  the  read  bus  cycle  begins  with  R/W  being  switched 
to  logic  1.  As  shown  in  Fig.  6.10(b),  this  happens  at  the  leading  edge  of  state  Sq. 
During  Sq,  a  function  code  FC2FC,FCq  is  output  and  address  lines  A,  through  A23 

are  put  in  the  high-Z  state.  Next  the  address  is  output  during  the  Sj  state  followed 
by  address  strobe  AS  and  the  appropriate  data  strobes  during  S,.  In  our  example, 
we  are  to  read  only  the  upper  byte;  therefore,  UDS  is  switched  to  its  active  0  logic 
level.  The  address  phase  of  the  bus  cycle  is  now  complete. 

Next  the  memory  or  I/O  subsystem  must  decode  the  address  and  put  the  selected 

data  on  bus  lines  Dg  through  D,5.  This  must  happen  during  S,.  Then  in  S4  it  must 
assert  DTACK  by  switching  it  to  logic  0.  This  signals  the  68000  that  valid  data  are 
on  the  bus  and  that  the  bus  cycle  should  be  continued  through  to  completion. 

DTACK  is  tested  by  the  68000  during  S5.  If  it  is  active  (logic  0),  data  are  read 
off  the  bus  at  the  end  of  S^.  During  S7,  the  68000  returns  AS  and  UDS  to  their 
inactive  logic  levels  and  the  address  bus  and  data  lines  to  the  high-Z  state.  Moreover, 
the  memory  or  I/O  subsystem  must  return  DTACK  to  the  1  level  before  another  bus 
cycle  can  be  initiated. 
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BUS  MASTER  SLAVE 

Address  Device 

II  Set  R/W  to  Read 

2)  Place  Function  Code  on  FC0-FC2 

3)  Place  Address  on  Al-A23_ 
41  Assert  Address  Strobe  IAS) 

5)  Assert  Upper  Data  Strobe  (UDS)  or  Lower 

Data  Strobe  (LDS)  (based  on  AOI 

Input  Data 

1 )  Decode  Address 

2)  Place  Data  on  D0-D7  or  D8-D15  (based  on 
UDS  or  LDS) 

3)  Assert  Data  Transfer  Aclcnowledge 
(DTACK) 

Acquire  Data 

1)  Latch  Data           

2)  Negate  UDS  or  LDS 

3)  Negate  AS 

Terminate  Cycle 

1)    Remove  Data  from  D0-D7  or  D8-D15 

21    Negate  DTACK 

Start  Next  Cycle 

(a) 

Figure  6-10     (a)  Byte  read  cycle  flowchart  (Motorola,  Inc.). 

If  the  68000  finds  DTACK  not  asserted  during  Sj,  it  inserts  wait  clock  cycles 
until  DTACK  goes  low  to  indicate  that  valid  data  are  on  the  data  bus. 

Accesses  of  byte  or  word  data  require  execution  of  one  bus  cycle  by  the  68000. 
On  the  other  hand,  long-word  accesses  require  two  words  of  data  to  be  transferred 
over  the  bus.  Therefore,  they  take  two  bus  cycles. 
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Figure  6-10    (com.)  (b)  Upper  byte  read  timing  diagram. 

6.7  MEMORY  AND  I/O  WRITE  CYCLE  TIMING 

To  write  a  word  or  a  byte  of  data  to  memory  or  an  I/O  device,  the  same  basic  interface 
signals  we  identified  for  the  read  operation  are  used.  The  flowchart  and  timing  diagram 
for  a  bus  cycle  that  writes  a  word  of  data  are  shown  in  Fig.  6. 1 1(a)  and  (b),  respectively. 
Here  we  see  that  a  minimum  of  five  clock  cycles,  which  equals  10  states  Sq  through 
S9,  are  required  to  perform  a  write  bus  cycle.  At  10  MHz  this  takes  500  ns. 

Looking  at  Fig.  6.1 1(a),  we  see  that  the  bus  cycle  begins  with  a  function  code 
being  output  on  the  FC  bus  during  Sq.  The  address  lines  that_are  floating  during  Sq 
are  asserted  with  a  valid  address  during  S,  and  AS  and  R/W  go  active  during  S2. 
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BUS  MASTER  SLAVE 

Address  Device 

1)  Place  function  Code  on  FC0-FC2 

2)  Place  Address  on  Al-A23_ 
3)  Assert  Address  Strobe  (AS) 

4)  Set  R/W  to  Write 

5)  Place  Data  on  DO  D15    
6)  Assert  Upper  Data  Strobe  (UDS)  and 

Lower  Data  Strobe  (LDS) 

Input  Data 

II    Decode  Address 

2)  Store  Data  on  D0-D15 

3)  Assert  Data  Transfer  Acknowledge 
(DTACK) 

Terminate  Output  Transfer 

1)    Negate  UDS  and  LDS 

21    Negate  AS 

3)    Remove_Data  from  D0-D15 
41    Set  R/W  to  Read 

Terminate  Cycle 

1)    Negate  DTACK 

Start  Next  Cycle 

(a) 

Figure  6-11     (a)  Word  write  cycle  flowchart  (Motorola,  Inc.). 

This  time,  R/W  is  set  to  0  to  indicate  that  a  write  operation  is  to  take  place  and  data 
are  output  on  the  complete  bus  Dq  through  0,5  during  S3. 

Selection  of  byte  or  word  data  is  made  by  the  68000  asserting  the  data  strobe 
signals.  For  a  word  access,  both  UDS  and  LDS  are  switched  to  their  active  0  logic 
level.  This  is  done  during  the  S4  state. 

Up  to  this  point,  the  68000  has  output  the  address  of  the  storage  location  and 
put  the  data  on  the  bus.  External  circuitry  must  now  decode  the  address  to  select 
the  memory  location  or  I/O  device.  Then  the  data,  which  were  put  on  the  bus  during 
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Figure  6-11    (com.)  (b)  Timing  diagram. 

S3,  are  written  into  the  enabled  device  during  S4.  After  the  write  of  data  has  been 
completed,  the  memory  or  I/O  device  must  inform  the  68000  of  this  condition  by 
pulling  DTACK  to  its  active  0  logic  level.  DTACK  is  tested  by  the  68000  at  the 

beginning  of  S-,  and  if  it  is  not  asserted,  wait  clock  cycles  are  inserted  between  the 
Sg  and  S7  states.  This  e.xtends  the  duration  of  the  write  cycle.  However,  if  DTACK 
is  found  to  be  at  its  active  0  level,  UDS,  LDS,  and  AS  are  returned  to  their  inactive 

1  logic  levels  at  the  beginning  of  the  S9  state.  Furthermore,  at_t^he  end  of  S9,  the 
address  and  data  lines  are  returned  to  the  high-Z  state  and  R/W  is  switched  to  1 . 
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Before  the  Sg  state  of  the  next  bus  cycle,  DTACK  must  be  returned  to  logic 
However,  this  is  done  by  the  memory  or  I/O  subsystem,  not  the  68000. 

6.8  THE  USER  AND  SUPERVISOR  STACKS 

The  68000  employs  a  stack-oriented  architecture.  In  Chapter  2  we  indicated  that  the 
68000  has  two  internal  stack  pointer  registers  and  that  these  stack  pointers  are  called 
the  user  stack  pointer  (USP)  and  supervisor  stack  pointer  (SSP).  As  shown  in  Fig. 
6.12,  the  addresses  held  in  these  registers  point  to  the  top  storage  locations  in  their 
respective  stacks:  that  is,  their  tops  of  stacks.  The  storage  locations  identified  as 
bottom  of  stack  represent  the  locations  pointed  to  by  the  initial  values  loaded  into 
the  stack  pointers.  When  the  stacks  are  empty,  the  stack  pointers  point  to  these 
locations.  The  user  stack  is  active  whenever  the  68000  is  in  the  user  state  and  the 

supervisor  slack  is  active  whenever  it  is  in  the  supervisor  state.  Both  stacks  can  be 
located  in  memory  anywhere  in  the  address  space  of  the  68000,  and  they  are  not  limited 
in  size. 

000000  ,< 

Memory 

Top  of  stack 

68000 Bottom  of  stack 

USP 

SSP 

Top  of  stack 

Bottom  of  stack 

FFFFFE,, 

■  Supervisor  stack 

Figure  6-12   User  and  supervisor  stacks. 
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During  exception  processing  or  subroutine  calls,  the  contents  of  certain  internal 
registers  of  the  68000  are  saved  on  the  stack.  For  instance,  when  exception  processing 
is  initiated  for  a  hardware  interrupt,  the  current  contents  of  the  program  counter 
(PC)  and  status  register  (SR)  are  automatically  pushed  to  the  stack.  In  this  way,  they 
are  temporarily  saved. 

Additional  stack  operations  are  usually  performed  as  part  of  the  exception 
processing  service  routine  or  subroutine.  These  are  push  operations  that  save  the 
contents  of  registers  that  are  to  be  used  within  the  service  routine  on  the  stack.  For 
instance,  instructions  in  a  hardware  interrupt  service  routine  can  cause  the  contents 

of  data  registers  Dq,  Dj,  and  D2  to  be  pushed  to  the  user  stack.  One  way  of  doing 
this  is  with  the  instruction  sequence 

MOVE.W     D2,-(USP) 

MOVE.W     D1,-(USP) 

MOVE.W     DO,-(USP) 

These  examples  all  push  word  data  to  the  user  stack.  Byte  data  also  can  be  pushed 
to  the  stack.  However,  each  byte  also  consumes  one  word  of  stack.  The  byte  of  data 
is  stored  in  the  most  significant  byte  location  of  the  word  storage  location  and  the 
least  significant  byte  is  not  affected. 

At  the  completion  of  processing  of  the  exception  routine,  the  saved  contents 
of  internal  registers  can  be  restored  by  popping  them  from  the  stack.  When  pushing 
or  popping  a  number  of  registers,  the  move  multiple  (MOVEM)  instruction  can  be 
used  to  perform  the  operation  efficiently.  For  example,  the  instruction 

MOVEM     (USP)+,D0/D1/D2 

would  restore  the  contents  of  Dq,  D,,  and  D,  from  the  user  stack. 
Moreover,  the  return  instructions  for  exception  processing  and  subroutines  cause 

automatic  reloading  of  some  internal  registers.  An  example  is  the  return  from 
exception  (RTE)  instruction.  It  causes  the  contents  of  both  PC  and  SR  to  be  restored 
from  the  top  of  the  stack. 

6.9  64K-BYTE  SOFTWARE-REFRESHED  DYNAMIC  RAM 
SUBSYSTEM 

The  circuit  diagram  in  Fig.  6.13  shows  one  way  of  implementing  a  dynamic  RAM 
subsystem  for  a  68000  microcomputer  system.  This  circuit  is  designed  to  provide  64K 
bytes  of  memory  which  are  mapped  into  the  address  range  OO8OOO15  through 

017FFF,6  of  the  68000's  address  space. 
Due  to  the  large  memory  support  capability  of  the  68000,  it  is  essential  to  buffer 

all  of  the  memory  interface  signals.  This  is  done  by  the  leftmost  group  of  circuits 
in  Fig.  6.13.  For  example,  two  74245  devices  are  used  to  buffer  bidirectional  data 
bus  lines  Dq  through  0,5  and  two  74LS244  devices  are  used  to  buffer  address  lines 
A|  through  A,g.  These  buffers  increase  the  drive  capability  of  the  address  and  data 
buses  over  that  supplied  directly  by  the  lines  of  the  68000. 
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Figure  6-13    Software-refreshed  dynamic  RAM  subsystem  (Motorola,  Inc.). 
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Figure  6-13    (com.) 

Let  us  next  look  at  the  storage  array  of  the  memory  subsystem.  It  is  located 

at  the  right  of  the  circuh  diagram  and  employs  thirty-two  16K  by  1  dynamic  RAMs. 

The  type  of  memory  device  used  is  the  MCM41 16.  The  circuit  is  set  up  to  implement 

a  structure  similar  to  that  shown  in  Fig.  6.3.  The  upper  16  devices  form  a  32K-byte 

upper  data  bank.  This  bank  is  used  to  store  even-addressed  bytes  of  data  and  they 

are  transferred  between  microprocessor  and  memory  over  data  bus  lines  Dg  through 

D,5.  The  lower  16  devices  form  a  32K-byte  lower  data  bank.  It  stores  odd  bytes  of 
data  which  are  carried  between  the  68000  and  memory  over  data  lines  Dq  through  D7. 
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Since  dynamic  RAMs  are  in  use  instead  of  static  RAMs,  the  address  output 
by  the  68000  on  A,  through  A|4  must  be  multiplexed  into  separate  row  and  column 
addresses  before  it  can  be  applied  to  the  memory  devices.  In  Fig.  6.13  we  see  that 
these  address  lines  are  input  to  two  74LS157  multiplexers  which  produce  7-bit  row 
and  column  addresses  at  their  outputs,  A,  through  A^.  The  timing  of  the  address 
output  on  these  lines  is  determined  by  the  PTND  output  of  a  74LS74  flip-flop  in 
IC    Ug. 

Both  bank  and  byte/word  selection  is  performed  through  the  generation  of  RAS 
signals.  Notice  that  the  control  logic  implemented  with  ICs  U2,  U4,  U5,  and  U9 
produces  four  RAS  signals.  They  are  denoted  as  RAS,y,  RASjy,  RASjl,  and 
RAS2L-  Also,  two  CAS  signals,  CASy  and  CAS^,  are  produced  by  this  section  of 
circuitry.  The  inputs  from  which  the  row  select  and  column  select  signals  are  derived 
are  address  bits  A, 4  through  Ajg,  upper  and  lower  data  select  UDS  and  LDS,  and 
the  system  clock  SYSTEM  0. 

For  example,  to  perform  a  word  access  from  the  group  1  RAMs,  both  LDS 
and  UDS  are  logic  0.  This  makes  both  the  RASl  and  RASy  signals  active.  At  the 
same  time,  the  address  code  AigA|5A,4  is  decoded  by  ICs  Uj  and  U5  to  enable  both 
RAS,y  and  RAS,l  to  the  memory  array.  These  signals  are  synchronized  to  the  output 
of  the  row  address  from  the  mukiplexer.  A  short  time  later,  the  CASy  and  CASl 
signals  are  produced.  They  are  synchronized  to  the  output  of  the  column  address 
from  the  multiplexer. 

Notice  that  the  data  acknowledge  (DTACK)  signal  is  also  produced  by  this 
section  of  control  logic.  It  is  buffered  and  then  sent  to  the  68000. 

This  memory  subsystem  employs  software  refresh  and  not  hardware  refresh. 
The  6840  device  is  provided  for  this  purpose.  It  contains  a  timer  that  is  set  up  to 
initiate  an  interrupt  to  the  68000  every  1.9  ms.  This  interrupt  has  a  priority  level  of 
7  and  execution  of  its  service  routine  performs  the  software-refresh  function.  The 
advantage  of  software  refresh  is  that  the  interface  hardware  is  simplified.  However, 
it  also  has  a  disadvantage — the  software  and  time  overhead  required  to  perform  the 
refresh  operation. 

6.10  AN  I/O  INSTRUCTION-MOVEP 

The  68000  microprocessor  has  one  instruction  that  is  specifically  designed  for 
communicating  with  LSI  peripherals  that  interface  over  an  8-bit  data  bus.  It  is  the 
move  peripheral  data  (MOVEP)  instruction.  An  example  of  an  LSI  peripheral  that 
can  be  used  in  the  68000  microcomputer  system  is  the  6821  peripheral  interface  adapter 
(PIA).  Internal  to  this  device  is  a  group  of  byte-wide  control  registers.  When  the  device 
is  built  into  the  microcomputer  system,  these  registers  will  all  reside  at  either  odd 
addresses  or  even  addresses.  This  poses  a  problem  if  we  attempt  to  make  multibyte 
transfers  by  specifying  word  or  long-word  data  operands.  For  instance,  a  MOVE 
instruction  for  word  data  would  cause  the  two  bytes  to  be  transferred  to  consecutive 
byte  addresses,  one  of  which  is  even  and  the  other  is  odd.  This  problem  is  overcome 
by  using  the  MOVEP  instruction. 
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The  general  formats  of  the  instruction  are 

MOVEP         Dn,d(An) 

and 

MOVEP        d(An),Dn 

The  first  form  of  the  instruction  is  for  output  of  data.  It  copies  the  contents  of  a 

source  operand  that  is  in  data  register  D„  to  the  location  at  the  effective  address 
specified  by  the  destination  operand.  Notice  that  the  destination  operand  must  always 
be  specified  using  address  register  indirect  with  displacement  addressing. 

As  an  example,  let  us  write  an  instruction  that  will  transfer  a  word  of  data  that 
is  in  Dq  to  two  consecutive  output  ports.  Assume  that  the  contents  of  Aq  are  1 6000(6 
and  it  is  a  pointer  to  the  first  of  a  group  of  eight  byte-wide  registers  in  an  LSI 
peripheral.  These  registers  are  at  consecutive  even  addresses.  That  is,  register  0  is 
at  address  I6OOO16,  register  1  at  IGOOl^^,  and  so  on.  We  want  to  transfer  data  to 
the  last  two  of  these  registers,  registers  6  and  7.  The  displacement  of  register  6  from 
the  address  in  Ag  is  Cj^;  therefore,  the  instruction  is 

MOVEP. W     D0,12(A0) 

Execution  of  this  instruction  causes  the  bytes  of  the  word  contents  of  Dq  to 
be  output  to  two  consecutive  even-byte  addresses.  The  most  significant  byte  is  output 
to  the  effective  destination  address,  which  is  1600C[6.  This  is  register  6.  Then  the 
address  is  incremented  by  2  to  give  1600E]6  and  the  least  significant  byte  is  output 
to  register  7.  The  pointer  address  in  Aq  remains  unchanged. 

A  MOVEP  instruction  that  employs  long-word  operands  operates  in  a  similar 
way  except  that  it  would  output  four  bytes  to  consecutive  odd  or  even  addresses. 

As  an  example,  let  us  assume  that  four  byte-wide  input  ports  are  located  at  odd-byte 
addresses  16001,5,  16003,6,  16005, g,  and  16007,6.  The  data  at  these  32  input  lines 
can  be  read  into  a  data  register  by  executing  a  single  MOVEP  instruction.  If  A, 
contains  a  pointer  to  the  first  input  port,  the  long  word  of  data  can  be  input  to  D, 
with  the  instruction 

MOVEP. L     0(A1),D1 

6.11  THE  6821  PERIPHERAL  INTERFACE  ADAPTER 

In  the  68000  microcomputer  system,  parallel  input/output  ports  can  be  implemented 
by  using  the  6821  peripheral  interface  adapter  (PIA).  The  6821  is  one  of  the  simpler 
LSI  peripherals  that  is  designed  for  implementing  parallel  input/output.  It  has  two 
byte-wide  I/O  ports  called  A  and  B.  Each  line  at  both  of  these  ports  can  be 
independently  configured  as  an  input  or  output. 

Figure  6.14  is  a  block  diagram  that  shows  the  internal  architecture  of  the  6821 
device.  Here  we  find  six  programmable  registers.  They  include  an  output  register  (OR), 
data  direction  register  (DDR),  and  control  register  (CR)  for  each  of  the  I/O  ports. 
Let  us  overview  the  function  of  each  of  these  registers  before  going  on. 
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Figure  6-14    Block  diagram  of  the  6821  (Motorola,  Inc.). 

All  input/output  data  transfers  between  the  microprocessor  and  PIA  take  place 
through  the  output  data  registers.  These  registers  are  8  bits  wide  and  their  bits 
correspond  to  the  I/O  port  lines.  For  example,  to  set  the  logic  level  of  an  output 
line  at  port  A  to  logic  1,  we  simply  write  logic  1  into  the  corresponding  bit  in  port 

A's  output  register. 
Each  I/O  line  of  the  6821  also  has  a  bit  corresponding  to  it  in  the  A  or  B  data 

direction  register.  The  logic  level  of  this  bit  decides  whether  the  corresponding  line 
works  as  an  input  or  an  output.  Logic  0  in  a  bit  position  selects  input  mode  of 
operation  for  the  corresponding  I/O  line  and  logic  1  selects  output  operation.  For 

instance,  port  A  can  be  configured  as  a  byte-wide  output  port  by  initializing  its  data 
direction  register  with  the  value  FF,g. 

The  control  register  (CR)  serves  three  main  functions.  First,  it  is  used  to  configure 
the  operation  of  control  inputs  CAp  CA2,  CB,,  and  CB2.  A  second  function  is  that 
it  can  be  read  by  the  68000  to  identify  control  status.  However,  its  third  function 
is  what  we  are  interested  in  right  now.  This  is  how  it  is  used  to  select  between  the 
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Figure  6-15    Control  register  bit  functions  (Motorola,  Inc.). 
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DDR  and  OR  registers  when  they  are  loaded  or  read  by  the  68000.  In  Fig.  6.15  we 
see  that  the  logic  level  of  bit  b2  in  CR  selects  DDR  when  it  is  zero  and  OR  when  it  is  1 . 

Looking  at  Fig.  6.14,  we  find  that  the  microprocessor  interface  of  the  6821  is 
shown  on  the  left.  The  key  signals  here  are  the  eight  data  bus  lines  Dq  through  D7. 
It  is  over  these  lines  that  the  68000  can  initialize  the  registers  of  the  6821,  write 
commands  to  the  control  registers,  read  status  from  the  control  registers,  and  read 
from  or  write  into  the  peripheral  data  registers.  The  direction  in  which  data  are  to 
be  transferred  is  signaled  to  the  6821  by  the  logic  level  of  R/W.  For  example,  logic 
0  on  R/W  indicates  that  data  are  to  be  written  into  one  of  its  registers. 

Even  though  the  6821  has  six  addressable  registers,  only  two  register  select  lines 

have  been  provided.  They  are  labeled  RSg  and  RS,.  The  table  in  Fig.  6.16  shows 
how  they  are  used  together  with  bit  b2  of  the  control  registers  to  select  the  internal 
registers.  Notice  that  if  both  RSj  and  RSq  are  logic  0,  the  data  direction  register  and 
output  register  for  port  A  are  selected.  As  we  pointed  out  earlier,  the  setting  of  b2 
in  the  A  control  register  selects  between  the  two  registers.  For  instance,  if  this  bit 
is  logic  0,  the  data  transfer  takes  place  between  the  microprocessor  and  the  DDR 
for  port  A.  In  this  way  we  see  that  bit  2  in  control  register  A  must  be  set  to  select 
the  appropriate  register  before  initiating  the  data  transfer. 

RSI 
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0 0 1 X Penphe'al  Req'ste*  A 

0 0 0 X Data  D.ieci.on  Regisie'  A 
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1 0 X 1 Pe-.pherdl  Register  B 

1 0 X 0 Data  Di  ecl.or.  Reg.iler  B 

' ' " ^ ton„ciReg,sie.  B Figure  6-16    User-accessible  register 
selection  (Motorola,  inc.). 

As  part  of  the  microprocessor  interface,  there  are  also  three  chip  select  inputs. 
They  are  labeled  CSq,  CS,,  and  CS2  and  must  be  1,  1,  and  0,  respectively,  to  enable 
the  microprocessor  interface. 

At  the  right  side  of  the  6821  block  diagram  in  Fig.  6.14,  we  find  the  A  and 

B  byte-wide  I/O  ports.  The  individual  I/O  lines  at  these  ports  are  labeled  PAq  through 
PA7  and  PBq  through  PB7,  respectively. 

Two  more  lines  are  associated  with  each  I/O  port.  They  are  control  lines.  For 
instance,  looking  at  the  A  port,  we  find  control  lines  CA,  and  CA2.  Notice  that  CA, 
is  a  dedicated  output,  but  CA2  is  bidirectional  and  can  be  configured  to  operate  as 
either  an  input  or  an  output.  The  mode  of  operation  of  these  control  lines  are 

determined  by  the  settings  of  the  bits  in  port  A's  control  register. 
These  control  lines  permit  the  user  of  the  6821  to  implement  a  variety  of  different 

I/O  handshake  mechanisms.  For  example,  port  A  could  be  configured  for  a  strobed 
mode  of  operation.  If  this  is  the  case,  a  pulse  is  output  at  CA2  whenever  new  data 
are  available  at  PAq  through  PA7.  Moreover,  the  6821  can  be  configured  such  that 
the  pulse  at  CA2  is  automatically  produced  by  the  6821  or  is  generated  under  software 
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control  from  the  68000.  In  the  automatic  mode,  the  pulse  that  is  output  is  of  a  fixed 
duration.  But  if  the  pulse  is  initiated  by  the  68000,  it  can  be  set  to  any  duration. 

6.12  DUAL  16-BIT  PORTS  FOR  THE  68000  MICROCOMPUTER  USING 
6821s 

The  circuit  in  Fig.  6.17  shows  how  6821  PIAs  can  be  used  to  implement  a  parallel 
I/O  interface  for  a  68000  microcomputer  system.  At  the  left  of  the  circuit  diagram, 
we  find  the  asynchronous  interface  bus  signals.  Included  are  address  lines  A,  through 

A|g,  data  lines  Dq  through  0,5,  and  control  signals  AS,  R/W,  and  DTACK. 
In  order  to  construct  two  16-bit  ports,  we  use  two  6821  ICs,  U,4  and  Ujj.  The 

A  ports  on  the  two  6821  ICs  are  cascaded  to  make  a  word-wide  output  port.  On  the 
other  hand,  the  B  ports  on  the  two  devices  are  cascaded  to  make  a  word-wide  input 

port. 
This  circuit  has  been  designed  such  that  the  registers  of  the  PIAs  reside  in  the 

address  range  18000,6  through  18007|g.  The  chart  in  Fig.  6.18(a)  shows  the  address 
for  each  register.  Notice  that  the  data  direction  registers  corresponding  to  the  bytes 

of  the  16-bit  output  port  are  at  addresses  18000,6  ̂ ""^  18001,6.  Those  of  the  16-bit 
input  port  are  at  18004,6  ̂ "*^  18005,6- 

The  address  decoding  for  selecting  between  the  two  chips  and  their  internal 

registers  is  shown  in  Fig.  6.18(b).  Notice  that  bits  A,  and  A2  of  the  address  are  applied 
to  register  select  inputs  RSq  and  RS,,  respectively.  Moreover,  A3  and  A4  are  applied 
to  the  CS,  and  CSq  chip  select  inputs  of  both  6821  devices.  The  rest  of  the  address 
lines,  A5  to  A, 6,  and  AS  are  decoded  by  gates  Ug^,  U93,  U,oe,  U,,^,  and  U,,g. 
Their  output  is  synchronized  with  a  2-MHz  externally  generated  clock  signal  by 

flip-flops  U,3^  and  U,33.  The  output  of  this  circuit  is  the  third  chip  select  signal,  CS2, 
for  the  PIAs. 

The  data  bus  lines  are  simply  buffered  and  then  applied  to  both  PIAs  in  parallel. 
Notice  that  the  upper  PIA  device  is  coupled  to  the  68000  over  the  lower  eight  data 
bus  lines  and  the  lower  PIA  by  the  upper  eight  data  lines.  Therefore,  as  shown  in 
Fig.  6.18(a),  the  registers  of  the  upper  device  reside  at  odd  byte  addresses  and  those 
of  the  lower  device  are  at  even  byte  addresses. 

To  use  the  B  ports  on  the  two  6821  devices  as  inputs,  their  B  port  DDRs  must 
be  initialized  with  all  zeros.  These  two  registers  are  located  at  addresses  18004,6  and 
18005,6,  respectively.  However,  to  select  these  DDRs,  bit  2  in  the  corresponding 
control  registers  must  be  loaded  with  logic  0.  These  control  registers  are  located  at 

addresses  18006,6  ̂ ^^  18007,6.  Thus,  to  configure  the  B  ports  as  inputs,  we  can 
execute  the  following  instruction  sequence; 

MOVE.W      #$0,$18006  SELECT  DATA-DIRECTION  REGISTERS  B 

MOVE.W      #$0,$  18004  PORT  B  IS  INPUT-PORT 

Execution  of  these  instructions  loads  the  word-wide  memory  locations  at  addresses 
18006,6  ̂ ^^  18004,6  with  0000,6- 
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Figure  6-18    (a)  6821  register  address  map  (Motorola,  Inc.);  (b)  address  decoding  for 
port  selection. 

To  configure  the  A  ports  on  the  two  chips,  we  first  select  the  DDRs  for  port 
A  by  clearing  bit  2  in  their  control  registers.  These  CRs  are  located  at  addresses 
18002|6  and  18003,6.  ̂ he  DDRs  are  located  at  18000, ^  and  18001, g.  To  configure 
the  A  ports  as  outputs,  we  must  load  their  DDRs  with  all  Is.  This  gives  the  following 
instruction  sequence: 

MOVE.W      #$0,$18002 

MOVE.W      #$FFFF,$  18000 

SELECT  DATA-DIRECTION  REGISTERS  A 

PORT  A  IS  OUTPUT-PORT 

Now  to  use  the  ports  for  inputting  or  outputting  of  data,  we  must  select  the 
peripheral  data  (output)  registers.  To  select  the  two  output  registers  for  port  A,  we 
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must  load  their  control  registers  so  that  bit  2  is  logic  1.  A  similar  configuration  is 
needed  for  port  B.  To  do  this,  the  following  instructions  can  be  executed: 

MOVE.W        #$0404,$18002        SELECT  DATA  REGISTERS  A 

MOVE.W        #$0404,$18006        SELECT  DATA  REGISTERS  B 

Now  the  two  ports  are  ready  to  perform  I/O  operations. 
As  an  example  of  how  data  are  input  and  output,  let  us  show  how  to  read  a 

16-bit  word  from  the  input  port,  increment  it  by  1,  and  output  the  new  value  to  the 
output  port.  This  can  be  accomplished  by  the  following  instructions: 

MOVE.W        $18004,D1 

ADDQ.W        //LDl 

MOVE.W         Dl, $18000 

The  first  instruction  moves  the  contents  of  the  input  port  to  D,.  Then  we  increment 
the  value  in  Dj  by  1.  Finally,  the  third  instruction  outputs  the  value  in  D,  to  the 
output  port. 

6.13  SYNCHRONOUS  MEMORY  AND  I/O  INTERFACE 

Up  to  this  point  in  the  chapter,  we  have  been  considering  the  asynchronous  bus 
interface  of  the  68000  microprocessor.  However,  the  68000  also  provides  a 
synchronous  bus  interface.  This  capability  is  provided  primarily  for  interface  with 
slower  8-bit  LSI  peripherals  such  as  those  in  the  6800  family.  The  synchronous 
interface  is  shown  in  Fig.  6. 19.  This  interface  looks  quite  similar  to  the  asynchronous 
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Figure  6-19   Synchronous  memory  and  I/O  interface. 
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interface  of  Fig.  6.1.  It  includes  the  complete  address  bus  Aj_through  A23'  the  16-bit 
data  bus  Dp  through  D15,  and  control  signals  UDS,  LDS,  AS,  and  R/W.  Notice  that 
DTACK  is  not  part  of  this  interface.  Instead,  it  is  replaced  by  three  synchronous 
bus  control  signals.  They  are  valid  peripheral  address  (VPA),  valid  memory  address 

(VMA),  and  enable  (E).    
Let  us  look  briefly  at  the  function  of  each  of  these  control  signals.  VPA  is  an 

input  to  the  68000.  It  must  be  switched  to  the  0  logic  level  to  tell  the  68000  to  perform 
a  synchronous  bus  cycle.  As  shown  in  Fig.  6.19,  external  decoder  circuitry  is  supplied 
in  the  interface  to  detect  that  the  address  on  the  bus  is  in  the  address  space  of  the 
synchronous  peripherals.  On  the  other  hand,  VMA  is  an  output  produced  by  the  68000 
only  during  synchronous  bus  cycles.  It  signals  that  a  valid  address  is  on  the  bus. 

E  is  an  enable  clock  that  is  produced  within  the  68000.  It  is  at  a  rate  equal  to 

1/10  that  of  the  system  clock.  For  instance,  in  a  10-Mz  68000  microcomputer  system, 
E  is  at  1  MHz.  The  duty  cycle  of  this  signal  is  such  that  the  pulse  is  at  the  1  logic 
level  for  four  clock  states  and  at  the  0  logic  level  for  six  clock  states.  This  signal  is 
applied  to  the  E  clock  input  of  6800  LSI  peripherals. 

Synchronous  Bus  Cycle 

A  flowchart  of  the  68000's  synchronous  bus  cycle  is  shown  in  Fig.  6.20(a).  Moreover, 
a  general  timing  diagram  for  the  key  interface  signals  involved  in  a  synchronous 
read/write  operation  is  shown  in  Fig.  6.20(b).  Notice  that  the  waveforms  of  the  FC, 
R/W,  UDS,  and  LDS  signals  are  not  shown.  They  have  the  same  function  and  timing 
as  in  the  asynchronous  bus  cycle. 

The  synchronous  bus  cycle  starts  out  just  like  an  asynchronous  bus  cycle  with 

a  function  code  being  output  on  the  FC  bus  during  state  Sq.  It  is  followed  by  the 
address  on  Aj  through  A23  during  S[.  When  the  address  is  stable  in  S2,  AS  is  switched 
to  the  0  logic  level.  At  this  time  R/W  is  set  to  0  if  a  write  cycle  is  in  progress;  otherwise, 
it  stays  at  the  1  logic  level.  Moreover,  if  a  write  operation  is  in  progress,  the  data 
are  output  on  Dq  through  Djj  and  it  is  maintained  valid  during  the  rest  of  the  bus 
cycle. 

By  the  end  of  S4,  external  circuitry  must  have  decoded  the  address  on  the  bus. 
At  this  time,  it  asserts  VPA  by  switching  it  to  the  0  logic  level.  In  response  to  this, 
the  68000  begins  to  assert  wait  states  to  extend  the  bus  cycle.  At  the  end  of  the  next 
clock  state,  the  VMA  output  is  switched  to  the  0  level.  This  signals  external  circuitry 
that  an  address  is  on  the  bus.  The  peripheral  transfers  the  data  after  E  is  active.  For 
a  read  cycle,  the  MPU  reads  the  data  when  E  goes  low.  The  data  transfer  cycle  is 
terminated  by  the  processor  by  negating  control  signals  VMA,  AS,  UDS,  and  LDS. 

Interfacing  the  6821  PIA  to  the  Synchronous  Interface  Bus 

The  circuit  diagram  of  Fig.  6.17  illustrates  how  6821  PIAs  are  interfaced  to  the  68000's 
asynchronous  bus.  This  circuit  can  be  easily  modified  so  that  the  LSI  peripherals 
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Figure  6-20    (a)  Synchronous  bus  cycle  flowchart  (Motorola,  Inc.). 

work  off  a  synchronous  bus  cycle  instead  of  an  asynchronous  bus  cycle.  Figure  6.21 
shows  a  simple  circuit  that  makes  this  modification.  First,  the  ICs  U,|^,  Upg,  U,3^, 
and  Ui3B  are  removed  from  the  circuit  of  Fig.  6.17.  This  is  because  DTACK  is  not 
required  to  support  the  synchronous  bus.  Moreover,  the  E  output  of  the  68000  now 
gets  directly  connected  to  the  E  input  of  both  6821  devices  in  parallel. 
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Pin  23,  U14and  U15 

Figure  6-21     Conversion  circuit  for  implementing  synchronous  bus  cycle  (Motorola, 
Inc.). 

Looking  at  Fig.  6.21,  we  see  that  the  chip  select  (CS)  output  at  pin  6  of  Ujig 
gets  connected  to  one  input  of  the  74LS00  NAND  gate.  The  other  input  of  this  gate 
is  supplied  by  the  VMA  output  of  the  68000  after  it  is  inverted.  The  output  of  the 
NAND  gate  goes  to  the  CS2  input  of  both  6821  devices  in  parallel.  In  this  way,  we 
see  that  the  6821s  get  chip-selected  only  when  one  of  their  addresses  is  on  the  bus 
and  the  68000  has  signaled  that  a  valid  address  is  on  the  bus  during  a  synchronous 
bus  cycle. 

The  upper  NAND  gate  in  this  circuit  also  has  CS  as  one  of  its  inputs  and  AS 
as  the  other.  Therefore,  it  detects  when  an  address  corresponding  to  one  of  the  LSI 
peripherals  is  on  the  bus.  When  this  condition  occurs,  it  switches  VPA  to  logic  0, 
thereby  signaling  to  the  processor  that  a  synchronous  bus  cycle  should  be  performed. 

6.14  SERIAL  COMMUNICATIONS  INTERFACE 

Another  type  of  I/O  interface  that  is  widely  used  in  microcomputer  systems  is  known 
as  a  serial  communications  port.  This  is  the  type  of  interface  that  is  used  to  connect 
peripheral  units,  such  as  CRT  terminals  and  printers,  to  a  microcomputer.  It  permits 
data  to  be  transferred  between  the  various  units  of  the  system.  For  instance,  data 
input  at  the  keyboard  of  a  terminal  are  passed  to  the  MRU  part  of  the  microcomputer 
through  this  type  of  interface.  Let  us  now  look  into  the  different  types  of  serial 
interfaces  that  are  implemented  in  microcomputer  systems. 

Synchronous  and  Asynchronous  Data  Communications 

Two  types  of  serial  data  communications  are  widely  used  in  microcomputer  systems. 
They  are  called  asynchronous  communications  and  synchronous  communications. 
By  synchronous,  we  mean  that  the  receiver  and  transmitter  sections  of  the  two  pieces 
of  equipment  that  are  communicating  with  each  other  must  run  synchronously.  For 
this  reason,  as  shown  in  Fig.  6.22(a),  the  interface  includes  a  Clock  line  as  well  as 
Transmit  Data,  Receive  Data,  and  Signal  Common  lines.  It  is  the  clock  signal  that 
synchronizes  both  the  transmission  and  reception  of  data. 
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Figure  6-22    (a)  Synchronous  communications  interface;   (b)  synchronous  data 
transmission  format. 

The  format  used  for  synchronous  communication  of  data  is  shown  in  Fig. 
6.22(b).  To  initiate  synchronous  transmission,  the  transmitter  first  sends  out 
synchronization  characters  to  the  receiver.  The  receiver  reads  the  synchronization 
bit  pattern  and  compares  it  to  a  known  sync  pattern.  Once  they  are  identified  as  being 
the  same,  the  receiver  begins  to  read  character  data  off  the  communications  Une. 
Transfer  of  data  continues  until  the  complete  block  of  data  is  received  or 
synchronization  is  lost  between  the  receiver  and  transmitter.  If  large  blocks  of  data 
are  being  sent,  the  synchronization  characters  may  be  periodically  resent  to  assure 
that  synchronization  is  maintained.  The  synchronous  type  of  communications  is 

typically  used  in  applications  where  high-speed  data  transfer  is  required. 
The  asynchronous  method  of  communications  eliminates  the  need  for  the  Clock 

signal.  As  shown  in  Fig.  6.23(a),  the  simplest  form  of  an  asynchronous  communication 
interface  could  consist  of  a  Receive  Data,  Transmit  Data,  and  Signal  Common 
communication  lines.  In  this  case,  the  data  to  be  transmitted  are  sent  out  one  character 
at  a  time  and  at  the  receiver  end  of  the  communication  line  synchronization  is 
performed  by  examining  synchronization  bits  that  are  included  at  the  beginning  and 
end  of  each  character. 

The  format  of  a  typical  asynchronous  character  is  shown  in  Fig.  6.23(b).  Here 
we  see  that  the  synchronization  bit  at  the  beginning  of  the  character  is  called  the  start 
bit  and  that  at  the  end  of  the  character  the  stop  bit.  Depending  on  the  communications 

scheme  and  device  used,  1,  1  y  ,  or  2  STOP  bits  can  be  used.  The  bits  of  the  character 
are  embedded  between  the  start  and  stop  bits.  Notice  that  the  start  bit  is  always  input 
or  output  first.  It  is  followed  in  the  serial  bit  stream  by  the  LSB  of  the  character, 

the  other  6  bits  of  the  character,  a  parity  bit,  and  the  stop  bits.  For  instance,  7-bit 
ASCII  can  be  used  and  parity  added  as  an  eighth  bit  for  higher  reliability  in 
transmission.  The  duration  of  each  bit  in  the  format  is  called  a  bit  time. 
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Figure  6-23    (a)  Asychronous  communicalions  interface;  (b)  asynchronous  data 
transmission  format. 

The  fact  that  an  0  or  1  logic  level  is  being  transferred  over  the  communication 
line  is  identified  by  whether  the  voltage  level  on  the  line  corresponds  to  that  of  a 
mark  or  a  space.  The  start  bit  is  always  to  the  mark  level.  It  synchronizes  the  receiver 
to  the  transmitter  and  signals  that  the  unit  receiving  data  should  start  assembling 
the  character.  Stop  bits  are  to  the  space  level.  This  assures  that  the  receiving  unit 
sees  a  transition  of  logic  level  at  the  start  bit  of  the  next  character. 

The  USART  and  UART 

Since  serial  communication  interfaces  are  so  widely  used  in  modern  electronic 
equipment,  special  LSI  peripheral  devices  have  been  developed  to  permit  easy 
implementation  of  these  types  of  interfaces.  Some  of  the  names  that  these  devices 
go  by  are  UART  (universal  asynchronous  receiver/transmitter)  and  USART  (universal 
synchronous/asynchronous  receiver/ transmitter). 

Both  UARTs  and  USARTs  have  the  ability  to  perform  the  parellel-to-serial 
conversions  needed  in  the  transmission  of  data  and  the  serial-to-parallel  conversions 
needed  in  the  reception  of  data.  For  data  that  are  transmitted  asynchronously,  they 
also  have  the  ability  to  frame  the  character  automatically  with  a  start  bit,  parity  bit, 
and  the  appropriate  stop  bits. 

Moreover,  for  reception  of  data,  UARTs  and  USARTs  typically  have  the  ability 
to  check  characters  automatically  as  they  are  received  for  correct  parity,  and  for  two 
other  errors,  known  as  framing  error  and  overrun  error.  A  framing  error  means  that 
after  the  detection  of  the  beginning  of  a  character  with  a  start  bit  the  appropriate 
number  of  stop  bits  were  not  detected.  This  means  that  the  character  that  was 
transmitted  was  not  received  correctly  and  should  be  resent.  An  overrun  error  means 
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that  the  prior  character  that  was  received  was  not  read  out  of  the  UARTs  receive 

data  register  by  the  microprocessor  before  another  character  was  received.  Therefore, 
the  first  character  was  lost  and  should  be  retransmitted. 

A  block  diagram  of  a  typical  UART  is  shown  in  Fig.  6.24.  Here  we  see  that 

it  has  four  key  signal  interfaces:  the  microprocessor  interface,  the  transmitter  interface, 
the  receiver  interface,  and  the  handshake  control  interface.  Let  us  now  look  at  each 
of  these  interfaces  in  more  detail. 

Microprocessor 
interlace 

CTS  control 
niterlace 

Figure  6-24    Block  diagram  of  a  UART. 

LSI  USARTs  and  UARTs  cannot  stand  alone  in  a  communication  system.  Their 

operation  must  be  controlled  by  a  general-purpose  processor  such  as  a  microprocessor. 
The  microprocessor  interface  is  the  interface  that  is  used  to  connect  the  UART  to 

an  MPU.  Looking  at  Figure  6.24,  we  see  that  this  interface  consists  of  an  8-bit 

bidirectional  data  bus  (Dq  -  D-^)  and  a  minimum  of  three  control  lines,  CS,  RD,  and 
WR^. 

All  data  transfers  between  the  UART  and  MPU  take  place  over  the  8-bit  data 
bus.  Two  uses  of  this  bus  are  for  the  input  of  character  data  from  the  receiver  of 

the  UART  and  for  the  output  of  character  data  to  its  transmitter.  Other  types  of 

information  are  also  passed  between  the  MPU  and  UART.  Examples  are  mode  control 

information,  operation  commands,  and  status. 

LSI  UARTs,  just  like  the  6821  LSI  peripheral  we  discussed  earlier  in  the  chapter, 

can  be  configured  for  various  modes  of  operation  through  software.  Mode  control 
instructions  are  what  must  be  issued  to  a  UART  to  initialize  its  control  registers  for 

the  desired  mode  of  operation.  For  example,  the  format  of  the  data  frame  used  for 

transmitted  or  received  data  can  be  configured  through  software.  Typical  options 

are  character  length  equal  to  from  5  to  8  bits;  even,  odd,  or  no  parity;  and  1,  ly, 
or  2  stop  bits. 

We  pointed  out  earlier  that  a  UART  cannot  perform  the  communication 

function  on  its  own.  Instead,  the  sequence  of  events  that  is  needed  to  initiate 

transmission  and  reception  is  controlled  by  commands  issued  to  the  UART  by  the 

MPU.  For  instance,  the  MPU  can  initiate  a  request  for  transmission  of  data  to  another 
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unit  by  writing  a  command  to  the  UART  that  forces  its  RTS  control  output  to  its  active 
0  logic  level.  The  logic  0  at  RTS  signals  the  system  at  the  other  end  of  the 
communication  line  to  prepare  to  receive  data.  At  the  receiver  end  of  the 
communication  line,  the  MPU  can  acknowledge  that  it  is  ready  to  receive  data  by 
sending  a  command  to  its  UART  that  forces  the  DTR  control  output  to  logic  0. 

Most  UARTs  have  a  status  register  that  contains  information  related  to  its 
current  state.  For  example,  it  may  contain  flag  bits  that  represent  the  current  logic 
state  of  signal  lines  such  as  CTS.  This  permits  the  MPU  to  examine  the  logic  state 
of  the  line  through  software. 

Besides  information  about  the  logic  level  of  control  lines,  the  status  register 
typically  contains  flag  bits  for  error  conditions  such  as  parity  error,  overrun  error, 
and  framing  error.  After  reception  of  a  character,  the  MPU  can  first  read  these  bits 
to  assure  that  a  valid  character  has  been  received,  and  if  the  bits  are  at  their  inactive 
levels,  the  character  should  be  read  from  the  receive  data  register  within  the  UART. 

At  the  other  side  of  the  block  in  Fig.  6.24,  we  find  the  transmitter  and  receiver 
interfaces.  The  transmitter  interface  has  two  signal  lines:  transmit  data  (Tx^)  and 

transmitter  ready  (Txj^oy)-  ̂ ^^d  '^  '^^  ''"^  ̂ ^^^  which  the  transmitter  section  of  the 
UART  outputs  serial  character  data.  As  shown  in  Fig.  6.25,  this  output  line  is 
connected  to  the  receive  data  (Rxq)  input  of  the  receiver  section  in  the  system  at  the 
other  end  of  the  communication  line. 
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Figure  6-25    Simple  asynchronous  com- 
munications interface  between  a 

microcomputer  and  terminal. 

Usually,  the  transmitter  section  of  an  LSI  UART  can  hold  only  one  character 
at  a  time.  This  character  datum  is  held  in  the  transmit  data  register  within  the  UART. 
Since  only  one  character  can  be  held  within  the  UART,  it  must  signal  the  MPU  when 
it  has  completed  transmission  of  this  character.  The  Txj^py  ''"^  's  provided  for  this 
purpose.  As  soon  as  transmission  of  the  character  is  complete,  the  transmitter  switches 
TX[jj5Y  to  its  active  logic  level.  This  signal  should  be  returned  to  an  interrupt  input 
of  the  MPU.  In  this  way,  its  occurrence  can  cause  program  control  to  be  passed  quickly 
to  a  service  routine  that  will  output  another  character  to  the  transmitter  data  register 
and  then  reinitiate  transmission.  In  some  UARTs,  the  transmitter  empty  condition 
is  identified  by  a  status  bit  instead  of  an  external  signal.  In  this  case  the  status  bit 
can  be  polled  through  software. 

The  receiver  section  is  similar  to  the  transmitter  we  just  described.  However, 

here  the  receive  data  (Rx^)  line  is  the  input  that  accepts  bit-serial  character  data  that 
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are  transmitted  from  the  other  system's  transmitter.  Moreover,  the  receiver  ready 

(Rxjjpy)  output  is  again  used  as  an  interrupt  to  the  MPU.  But  this  time  it  signals 
the  MPU  that  a  character  has  been  received.  The  service  routine  that  is  initiated  must 
first  determine  whether  or  not  the  character  is  valid,  and  if  it  is,  it  must  read  the 

character  out  of  the  UART's  receive  data  register.  Here  again  a  status  bit  instead 
of  a  signal  bit  can  be  used  to  signal  the  receiver  full  condition.   

Using  the  handshake  control  signals  RTS,  DSR,  DTR,  and  CTS,  different  types 

of  asynchronous  communication  protocols  can  be  implemented  through  the  serial 

I/O  interface.  By  protocol  we  mean  a  handshake  sequence  by  which  two  systems 

signal  each  other  that  they  are  ready  to  communicate. 
A  simple  asynchronous  communication  interface  that  uses  these  control  lines 

is  shown  in  Fig.  6.25.  In  this  example,  a  protocol  can  be  set  up  such  that  when  the 
terminal  wants  to  send  data  to  the  microcomputer  it  will  issue  a  request  at  its  request 
to  sent  (RTS)  output.  To  do  this,  the  MPU  of  the  terminal  must  issue  a  command 
to  the  UART  that  causes  it  to  set  the  RTS  Hne  to  its  active  0  logic  level.  RTS  of  the 
terminal  is  applied  to  the  data  terminal  ready  (DTR)  input  of  the  microcomputer. 
In  this  way,  it  tells  the  microcomputer  that  the  terminal  wants  to  transmit  data  to  it. 

When  the  microcomputer  is  ready  to  receive  data,  it  acknowledges  this  fact  to 
the  terminal  by  activating  the  data  set  ready  (DSR)  output  of  its  UART.  The  MPU 
in  the  microcomputer  does  this  by  issuing  a  command  to  the  UART  that  switches 
DSR  to  its  active  0  logic  level.  This  signal  is  returned  to  the  clear  to  send  (CTS)  input 

of  the  terminal's  UART  and  tells  the  UART  in  the  terminal  to  start  outputting  data 
on  Txq.  At  the  same  time,  the  receiver  section  in  the  UART  within  the  microcomputer 
begins  to  read  data  from  its  Rxq  input.               

If  a  UART  does  not  have  true  DSR,  DTR,  or  CTS  signal  lines,  external  logic 
circuitry  can  be  used  to  generate  these  signal  functions  from  the  provided  signals. 

Baud  Rate  and  the  Baud  Rate  Generator 

The  rate  at  which  data  transfers  take  place  over  the  receive  and  transmit  lines  is  known 
as  the  baud  rate.  By  baud  rate  we  mean  the  number  of  bits  of  data  that  are  transferred 
per  second  of  time.  For  instance,  some  of  the  common  data  transfer  rates  are  300 
baud,  1200  baud,  and  9600  baud.  They  correspond  to  300  bits/second  (bps),  1200 
bps,  and  9600  bps,  respectively. 

The  baud  rate  at  which  data  are  transferred  determines  the  bit  time.  That  is, 
the  amount  of  time  each  bit  of  data  is  on  the  communication  line.  At  300  baud,  the 
bit  time  is  found  to  be 

tgj  =   1/300  bps  =  3.33  ms 

Baud  rate  is  set  by  a  part  of  the  serial  communication  interface  called  the  baud 
rate  generator.  This  part  of  the  interface  generates  the  clock  signal  that  is  used  to 

drive  the  receiver  and  transmitter  parts  of  the  UART.  Some  LSI  UARTs  have  a  built-in 
baud  rate  generator;  others  need  an  external  circuit  to  provide  this  function. 
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The  RS-232C  Interface 

The  RS-232C  interface  is  a  standard  hardware  interface  for  implementing 
asynchronous  serial  data  communication  ports  on  devices  such  as  printers,  CRT 
terminals,  keyboards,  and  modems.  The  pin  definitions  and  electrical  characteristics 
of  this  interface  are  defined  by  the  Electronic  Industries  Association  (EIA).  The  aim 

behind  publishing  standards  such  as  the  RS-232C  is  to  assure  compatibility  between 
equipment  made  by  different  manufacturers. 

Peripherals  that  connect  to  a  microcomputer  can  be  located  anywhere  from 
several  feet  to  many  feet  from  the  system.  For  instance,  in  large  systems  it  is  common 
to  have  the  microcomputer  part  of  the  system  in  a  separate  room  from  the  terminals 
and  printers.  This  leads  us  to  the  main  advantage  of  using  a  serial  interface  to  connect 
peripherals  to  a  microcomputer,  which  is  that  as  few  as  three  signal  lines  can  be  used 
to  connect  the  peripheral  to  the  MPU:  a  Receive  Data  line,  a  Transmit  Data  line, 
and  a  Common  Ground.  This  results  in  a  large  savings  in  wiring  costs  and  the  small 
number  of  lines  that  need  to  be  put  in  place  also  leads  to  higher  reliability. 

The  RS-232C  standard  defines  a  25-pin  interface.  Figure  6.26  lists  each  pin  and 
its  function.  Note  that  the  three  signals  that  we  mentioned  earlier.  Transmit  Data, 
Receive  Data,  and  Signal  Common,  are  located  at  pins  2,  3,  and  7,  respectively.  Fins 
are  also  provided  for  additional  control  functions.  For  instance,  pins  4  and  5  are 
the  Request  To  Send  and  Clear  To  Send  control  signals.  These  two  signals  are  also 
frequently  used  when  implementing  an  asynchronous  communication  interface. 

The  RS-232C  interface  is  specified  to  operate  correctly  over  a  maximum  distance 
of  100  feet.  To  satisfy  this  distance  specification,  a  bus  driver  is  used  to  buffer  the 
transmit  line  to  provide  the  appropriate  drive  current  and  a  bus  receiver  is  used  at 
the  receive  line.  RS-232C  drivers  and  receivers  are  available  as  standard  ICs.  These 

buffers  do  both  the  voltage-level  translation  needed  to  convert  the  TTL-compatible 
outputs  of  the  UART  to  the  mark  and  space  voltage  levels  defined  for  the  RS-232C 
interface.  The  voltage  levels  that  are  normally  transmitted  for  a  mark  and  a  space 
are  -I-  12  V  dc  and  -  12  V  dc,  respectively.  For  the  RS-232C  interface,  all  voltages 
below  -  3  V  dc  are  equal  to  a  mark  and  all  voltages  above  -i-  3  V  dc  are  considered 
a  space. 

The  RS-232C  interface  is  specified  to  support  baud  rates  of  up  to  20,000  bps. 
In  general,  the  receive  and  transmit  baud  rates  do  not  have  to  be  the  same;  however, 
in  most  simpler  systems  they  are  set  to  the  same  value.  For  instance,  a  baud  rate 
that  is  widely  used  in  communication  between  an  MPU  and  a  printer  is  1200  bps. 
This  corresponds  to  a  bit  time  equal  to  .833  ms. 

Simplex,  Half-Duplex,  and  Full-Duplex  Communication  Links 

Applications  require  different  types  of  asynchronous  links  to  be  implemented.  For 
instance,  the  communication  link  needed  to  connect  a  printer  to  a  microcomputer 
just  needs  to  support  communications  in  one  direction.  That  is,  the  printer  is  an 
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Pin Signal 

1 Protective  Ground 

2 Transmitted  Data 

3 Received  Data 

4 Request  to  Send 
5 Clear  to  Send 

6 Data  Set  Ready 

7 Signal  Ground  (Common  Return) 
8 Received  Line  Signal  Detector 
9 Reserved  for  Data  Set  Testing 

10 Reserved  for  Data  Set  Testing 1  1 
Unassigned 12 

Secondary  Received  Line  Signal  Detector 13 

Secondary  Clear  to  Send 
14 Secondary  Transmitted  Data 
15 

Transmission  Signal  Element  Timing 
16 

Secondary  Received  Data 
17 Receiver  Signal  Element  Timing 
18 Unassigned 
19 

Secondary  Request  to  Send 
20 Data  Terminal  Ready 

21 
Signal  Quality  Detector 

22 Ring  Indicator 23 
Data  Signal  Rate  Selector 

24 Transmit  Signal  Element  Timing 
25 

Unassigned 

Figure  6-26    RS-232C  interface  pins  and  functions. 

output-only  device;  therefore,  the  MPU  only  needs  to  transmit  data  to  the  printer. 
Data  are  not  transmitted  back.  In  this  case,  as  shown  in  Fig.  6.27(a),  a  single 
unidirectional  communication  line  can  be  used  to  connect  the  printer  and 
microcomputer  together.  This  type  of  connection  is  known  as  a  simplex 
communication  link. 

Other  devices,  such  as  the  CRT  terminal  with  keyboard  shown  in  Fig.  6.27(b), 
need  to  both  transmit  data  to  and  receive  data  from  the  MPU.  That  is,  they  must 
both  input  and  output  data.  This  requirement  can  also  be  satisfied  with  a  single 

communication  line  by  setting  up  a  half-duplex  communication  link.  In  a  half-duplex 
link,  data  are  transmitted  and  received  over  the  same  line;  therefore,  a  system  cannot 
transmit  and  receive  data  at  the  same  time. 

If  higher-performance  communication  is  required,  separate  transmit  and  receive 
lines  can  be  used  to  connect  the  peripheral  and  microcomputer.  When  this  is  done, 
data  can  be  transferred  in  both  directions  at  the  same  time.  This  type  of  link  is 

illustrated  in  Fig.  6.27(c).  It  is  called  a  full-duplex  communication  link. 
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Figure  6-27    (a)  Simplex 

communications  link;  (b)  half-duplex 

communications  link;  (c)  full-duplex 
communications  link. 

6.15  THE  6850  ASYNCHRONOUS  COMMUNICATIONS  INTERFACE 
ADAPTER 

The  6850  asynchronous  communications  interface  adapter  is  another  important  LSI 
peripheral  that  is  frequently  used  in  68000  microcomputer  systems.  It  permits  simple 
implementation  of  a  serial  data  communications  interface.  As  its  name  implies,  the 
6850  is  capable  of  implementing  an  asynchronous  communication  interface.  For 
instance,  the  6850  can  be  used  to  implement  an  RS-232C  port.  This  is  the  type  of 
interface  that  is  used  to  connect  a  CRT  terminal  or  printer  to  a  microcomputer.  To 
support  connection  of  these  two  peripheral  devices,  the  microcomputer  would  need 
two  independent  RS-232C  I/O  ports. 

The  programmability  of  the  6850  provides  for  implementation  of  a  very  flexible 

asynchronous  communication  interface.  It  contains  a  full-duplex  receiver  and 
transmitter  that  can  be  configured  through  software  for  communication  of  data  using 
formats  with  character  lengths  of  7  or  8  bits,  with  either  even  or  odd  parity  and  1 
or  2  stop  bits.  Moreover,  the  6850  has  the  ability  to  detect  automatically  the  occurrence 
of  parity,  framing,  and  overrun  errors  during  data  reception. 

A  block  diagram  showing  the  internal  architecture  of  the  6850  is  shown  in  Fig. 
6.28.  From  this  diagram,  we  find  that  it  includes  four  key  sections:  the  bus  interface 
section,  which  consists  of  the  data  bus  buffers  block  and  the  chip  select  and  read/write 
control  block;  the  transmit  section,  which  consists  of  the  transmit  data  register. 
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23  Data  Carrier  Oe 

Figure  6-28    Block  diagram  of  the  6850  ACIA  device  (Motorola,  Inc.). 

transmit  shift  register,  and  transmit  control  blocks;  the  receive  section,  which  consists 
of  the  receive  data  register,  receive  shift  register,  and  receive  control  blocks;  and  the 
control  section,  which  consists  of  the  control  register,  status  register,  and  interrupt 
logic  blocks.  Let  us  now  look  at  each  of  these  sections  in  more  detail. 

The  bus  interface  section  is  used  to  connect  the  6850  to  a  microprocessor  such 

as  the  68000.  Notice  that  the  interface  includes  an  8-bit  bidirectional  data  bus  Dq 
through  D-j  that  is  driven  by  the  data  bus  buffers.  It  is  over  these  lines  that  the 

microprocessor  transfers  configuration  information  to  the  6850's  control  register, 
reads  its  status  register,  and  inputs  or  outputs  character  data. 

  Data  transfers  take  place  over  the  bus  under  control  of  the  signals  read/write 
(R/W),  register  select  (RS),  enable  (E),  and  chip  selects  CSq,  CS,,  and  CSj.  All  of 
these  signals  are  inputs  to  the  chip  select  and  read/write  control  block.  Typically, 

the  6850  is  located  at  a  specific  address  in  the  microcomputer's  memory  address  space. 
When  the  microprocessor  is  to  access  registers  within  the  6850,  it  puts  this  address 
on  the  address  bus.  The  address  is  decoded  by  external  circuitry  and  must  produce 

logic  1  at  the  CSq  and  CS,  inputs  and  logic  0  at  the  CS2  input.  These  three  inputs 
must  be  at  these  logic  levels  for  a  read  or  write  bus  cycle  to  take  place  to  the  6850. 

The  other  two  control  signals,  R/W  and  RS,  tell  the  6850  what  type  of  data 
transfer  is  to  take  place  over  the  bus.  Figure  6.29  shows  the  various  types  of  read/write 
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Figure  6-29   Control  signals  and  corresponding  bus  data  transfers  (Motorola,  Inc.). 

operations  that  can  occur.  For  example,  the  first  state  in  the  table,  RS  •  R/W, 
corresponds  to  a  write  of  character  data  from  the  microprocessor  to  the  transmit 

data  register  within  the  6850.  Notice  that  in  general  R/W  =  0  signals  that  the 

microprocessor  is  writing  data  to  the  6850,  R/W  =  1  indicates  that  data  are  being 
read  from  the  6850,  and  the  logic  level  of  RS  indicates  whether  character  data,  control 
information,  or  status  information  is  on  the  data  bus. 

Example  6.1 

What  type  of  data  transfer  is  taking  place  over  the  bus  if  the  control  signals  are  RS  = 
0  and  R/W  =  1? 

Solution.  Looking  at  the  table  in  Fig.  6.29,  we  see  that  RS  =  0  and  R/W  =  1  correspond 

to  the  condition  RS  ■  R/W;  therefore,  status  information  is  being  read  from  within  the 
6850. 

The  receiver  section  of  the  6850  is  responsible  for  reading  the  serial  bit-stream 

of  data  at  the  receive  data  (Rxqata)  '"Put  and  converting  it  to  parallel  form.  When 
a  mark  voltage  level  is  detected  on  this  line,  the  receiver  enables  a  counter.  As  the 

counter  increments  to  a  value  equal  to  1/2  a  bit  time,  the  logic  level  at  the  Rx^^j^^ 
line  is  sampled  again.  If  it  is  still  at  the  mark  level,  a  valid  start  pulse  has  been  detected. 

Then  Rxq^j^  is  examined  every  time  the  counter  increments  through  another  bit 
time.  This  continues  until  a  complete  character  is  assembled  in  the  receive  shift  register 

and  the  stop  bit  is  read.  After  this,  the  complete  character  is  transferred  in  parallel 
into  the  receive  data  register. 
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During  reception  of  a  character,  the  receiver  automatically  checks  the  character 
data  for  parity,  framing,  or  overrun  errors.  If  one  of  these  error  conditions  occurs, 
it  is  flagged  by  setting  a  corresponding  bit  in  the  status  register.  Then  the  receive 
data  register  full  (RDRF)  status  bit  is  set  to  1  and,  assuming  that  the  receive  interrupt 
enable  bit  in  the  control  register  is  set  to  1,  the  interrupt  request  (IRQ)  output  switches 
to  logic  0.  This  signal  can  be  sent  to  the  microprocessor  to  tell  it  that  a  character 
is  available  and  should  be  read  from  the  receive  data  register.  RDRF  is  automatically 
reset  to  logic  0  when  the  MPU  reads  the  contents  of  the  receive  data  register. 

The  6850  does  not  have  a  built  in  baud  rate  generator.  For  this  reason,  the  clock 
signal  that  is  used  to  set  the  baud  rate  must  be  externally  generated  and  applied  to 
the  receive  clock  (Rx^lj^)  input  of  the  receiver.  Through  software  the  6850  can  be 
set  up  to  internally  divide  the  clock  signal  input  at  Rx^lk  ̂ ^  '-  '^'  °^  ̂ ^• 

The  6850's  transmitter  section  does  the  opposite  of  the  receiver  section.  The 
MPU  loads  its  transmit  data  register  with  parallel  character  data  by  writing  data  to 
it  over  the  data  bus.  The  character  is  automatically  framed  with  the  start  bit,  the 
appropriate  parity  bit,  and  the  correct  number  of  stop  bits,  and  then  is  put  into  the 
transmit  data  register.  It  is  then  shifted  through  the  transmit  shift  register  to  produce 

a  bit-serial  output  on  the  transmit  (Txq^j^)  line.  When  the  transmit  data  register 
becomes  empty,  the  transmit  data  register  empty  (TDRE)  bit  of  the  status  register 
is  set  to  logic  1  and,  assuming  that  the  interrupt  on  transmitter  data  register  empty 
function  is  enabled  with  its  control  bit,  the  IRQ  output  is  switched  to  logic  0.  This 
signal  can  be  returned  to  the  MPU  to  tell  it  that  another  character  should  be  output 
to  the  transmitter  section.  When  the  MPU  writes  another  character  out  to  the  transmit 

data  register,  the  TDRE  status  bit  is  reset  automatically. 
Data  are  output  on  the  transmit  data  (Txq^j^)  line  at  a  baud  rate  set  by  the 

external  transmit  clock  signal  that  is  input  at  TX(~lk-  I"  most  applications,  the 
transmitter  and  receiver  operate  at  the  same  baud  rate.  Therefore,  both  Rx^li,;  and 

TX(~L|^  are  supplied  by  the  same  baud  rate  generator.  The  diagram  in  Fig.  6.30  shows 
this  type  of  system  configuration. 

The  operation  of  the  6850  is  controlled  through  the  setting  of  bits  in  two  internal 
registers:  the  control  register  and  the  status  register.  For  instance,  the  way  in  which 

the  6850's  receiver  and  transmitter  operate  is  determined  by  the  contents  of  the  control 
register.  The  control  register  has  eight  bits,  which  are  labeled  CRg  through  CR7. 

Figure  6.31(a)  through  (d)  shows  the  function  of  each  of  the  control  register's  bits. 
The  two  least  significant  bits,  CRq  and  CR,,  are  the  counter  divide  select  bits. 

Notice  in  Fig.  6.31(a)  that  these  two  bits  determine  how  the  signals  applied  to  the 

external  baud  rate  inputs,  Rx^li,;  and  Tx^lk-  ̂ ""^  divided  within  the  6850.  For 
example,  if  these  two  bits  are  CR|CRo=  10,  it  is  set  for  divide-by-64  operation.  The 
three  bits  that  follow,  CR^  through  CR4,  are  called  the  word  select  bits.  In  Fig. 
6.31(b),  we  find  that  they  select  the  length  of  the  character,  the  type  of  parity,  and 
the  number  of  stop  bits.  For  instance,  when  information  is  to  be  transmitted  and 
received  as  7-bit  ASCII  characters,  with  odd  parity,  and  one  stop  bit,  these  bits  must 
be  loaded  with  CR4CR3CR2  =  011. 
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The  next  two  bits,  CRj  and_CRg,  are  the  transmitter  control  bits  and  are  used 
to  set  the  active  logic  level  of  RTS,  enable  or  disable  the  IRQ  output  for  transmitter 

operation,  and  select  the  transmission  of  a  break  logic  level  (SPACE)  at  the  Txq^j^ 
output.  Looking  at  Fig.  6.31(c),  we  see  that  selecting  CR^  CR5  =01  sets  the  active 
level  of  RTS  to  logic  0,  enables  the  automatic  assertion  of  the  IRQ  output  when  the 
transmit  data  register  is  empty,  and  does  not  cause  transmission  of  a  break  level  at 

the  Txq^j^  output. 

The  last  bit,  CR7,  is  the  receiver  control  bit.  By  making  it  logic  1,  we  enable 
the  automatic  assertion  of  the  IRQ  output  whenever  the  receive  data  register  becomes 

full,  an  overrun  error  occurs,  or  on  the  low-to-high  transition  of  the  data  carrier  detect 
(DCD)  signal. 

Example  6.2 

What  value  must  be  written  into  the  control  register  in  order  to  configure  the  6850  such 
that  it  works  with  the  baud  clock  internally  divided  by  16,  character  size  equal  to  eight 
bits  for  EBCDIC,  even  parity,  one  stop  bit,  RTS  active  high,  and  the  transmitter  and 
receiver  interrupts  are  to  be  disabled? 

Solution.  From  Fig.  6.31(a),  we  find  that  CR|CRq  must  be  set  to  01  in  order  to  select 
divide  by  16  for  the  external  baud  rate  inputs. 

CR|CRo  =  01 
To  select  a  character  length  of  eight  bits,  even  parity,  and  one  stop  bit,  the  ne.xt  three 
bits  in  the  control  register  must  be  made  110.  This  gives 

CR4CR3CR,  =   110 
To  set  up  the  6850  for  RTS  active  high  with  the  transmitter  interrupt  disabled,  we  make 
the  next  two  CR  bits 

CRXR, 
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Figure  6-31    Control  register  bit  functions  (Motorola,  Inc.). 

Finally,  the  receiver  interrupt  is  disabled  by  making 

CR,  =  0 
Therefore,  the  complete  control  word  is 

CR^CRg   CRq  =  01011001, 

=  59,6 

Before  the  6850  can  be  used  to  receive  or  transmit  characters,  its  control  register 
must  be  initialized.  As  the  microcomputer  powers  up,  it  should  issue  a  software  reset 
to  the  6850.  This  is  done  by  writing  a  byte  to  the  control  register  with  bits  CRq  and 

CRj  both  one.  Looking  at  Fig.  6.31(a),  we  see  that  this  represents  a  master  reset 
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command.  This  command  causes  the  status  register  to  be  cleared  and  initializes  both 
the  receiver  and  transmitter  sections.  After  this,  another  write  operation  is  performed 
to  load  the  configuration  byte  into  the  control  register.  Assuming  that  the  6850  is 

at  address  OOFOOO,g  of  the  68000's  address  space,  the  command  byte  formed  in 
Example  6.2  can  be  written  to  the  command  register  with  the  instruction  sequence 

MOVE.B     #$C9,D0 

MOVE.L      #$OFOOO,AO 

MOVE.B      DO,(AO) 

Now  that  the  configuration  for  asynchronous  communications  has  been  set  up 
in  the  control  register,  the  6850  is  ready  for  operation. 

The  status  register  of  the  6850  is  shown  in  Fig.  6.32.  We  already  looked  briefly 
at  the  function  of  bits  0  and  1  of  the  status  register.  The  first  bit  RDRF  (receive  data 
register  full)  is  set  to  1  to  indicate  that  a  character  has  been  received  in  the  receiver 
section.  That  is,  the  receive  data  register  is  full.  If  the  interrupt  request  (IRQ)  line 
is  disabled,  the  microprocessor  must  poll  (read)  this  bit  through  software  to  determine 
if  character  data  has  been  received  through  the  communication  interface.  When  it 
is  1 ,  the  character  held  in  the  receive  data  register  must  be  read  by  the  microprocessor. 
On  the  other  hand,  the  second  bit,  TDRE  (transmit  data  register  empty),  is  set  to 
1  when  the  transmit  data  register  is  empty.  This  means  that  another  character  can 
be  written  to  the  transmit  data  register. B, 

B^ 

B, 

Bj 

Bj 

^2 

B, 
B„ 

IRQ I'l OVRN ir CIS 
bCD TDRl; 

RORI Figure  6-32    Status  register  bit 
functions. 

Notice  in  Fig.  6.32  that  bits  FE,  OVRN,  and  PE  are  the  error  flags  for  the 
receiver.  If  the  incoming  character  is  found  to  have  a  parity  error,  the  PE  (parity 
error)  bit  gets  set.  On  the  other  hand,  if  an  overrun  or  framing  error  condition  occurs, 
the  OVRN  (overrun  error)  or  FE  (framing  error)  flag  is  set,  respectively.  The  MPU 
should  always  examine  these  error  bits  before  reading  a  character  from  the  receive 
data  register.  If  an  error  is  found  to  have  occurred,  a  software  routine  can  be  initiated 
to  cause  the  character  to  be  retransmitted. 

The  other  three  bits  in  the  status  register,  bit  2,  bit  3,  and  bit  7,  represent  the 
logic  level  of  input  signals  DCD,  CTS,  and  IRQ,  respectively.  The  fact  that  these 
three  signals  are  represented  by  bits  in  the  status  register  permits  the  MPU  to  examine 
their  current  logic  levels  through  software. 

6.16  SPECIAL-PURPOSE  INTERFACE  CONTROLLERS 

Up  to  this  point  in  the  chapter,  we  have  introduced  LSI  controllers  for  two  of  the 
most  widely  used  I/O  interfaces.  They  are  the  6821 ,  which  is  used  to  implement  parallel 
input/output  ports,   and  the  6850,   which  is  used  to  implement  asynchronous 
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communication  ports.  A  large  number  of  other  LSI  devices  are  available  to  simplify 
the  implementation  of  complex  I/O  interfaces.  Some  examples  are  CRT  controllers, 

floppy  disk  controllers,  Winchester  disk  controllers,  and  IEEE-488  bus  controllers. 
Here  we  will  introduce  just  one  of  these  types  of  devices,  the  68230  parallel 
interface/timer  controller. 

The  68230  Parallel  interface/Timer 

Earlier  in  this  chapter,  we  examined  the  6821  parallel  interface  adapter  IC.  Here  we 
will  examine  a  more  general-purpose  LSI  device,  the  68230,  which  has  I/O  ports  that 
provide  for  implementation  of  parallel  I/O  interfaces  and  a  timer  that  can  be  used 
as  an  interval  timer  or  event  counter.  We  will  concentrate  on  its  use  in  implementing 
parallel  I/O  ports. 

The  block  diagram  in  Fig.  6.33  shows  the  internal  architecture  of  the  68230 
device.  From  this  diagram,  we  find  that  there  are  four  key  sections  of  circuitry.  They 
are  the  microprocessor  interface,  which  consists  of  the  data  bus  interface  and  interrupt 
vector  registers;  I/O  interfaces  for  port  A,  port  B,  port  C,  and  the  handshake  interface 
logic;  the  timer;  and  control  logic  sections  for  the  port  interrupt,  DMA,  handshake 
lines,  and  mode  of  operation. 

Microprocessor  Interface  of  the  68230 

Let  us  now  look  at  how  the  68230  is  interfaced  to  an  MPU.  Figure  6.34  shows  a 
68230  connected  to  a  68000  microprocessor.  The  68000  communicates  with  the  68230 
by  reading  or  writing  to  its  internal  control  registers  bytes  of  data,  control  information, 
and  status  information.  Data  transfers  between  the  68000  and  the  internal  registers 

of  the  68230  take  place  over  bidirectional  data  bus  lines  Dq  through  D7.  The  68000 
tells  the  68230  whether  data  are  to  be  written  into  or  read  from  its  registers  with  the 
R/W  signal.  Logic  0  at  R/W  means  that  the  68000  is  writing  information  to  the 
68230,  and  logic  1  means  that  information  is  being  read  from  the  68230. 

The  68230  does  not  receive  data  during  all  bus  cycles  performed  by  tjie  MPU. 
Instead,  its  microprocessor  interface  is  active  only  when  the  chip  select  (CS)  input 
is  at  the  0  logic  level.  Notice  in  Fig.  6.34  that  the  address  decoder  circuit  decodes 
part  of  the  address  output  by  the  MPU  along  with  LDS  and  function  code  FCq 
through  FC2  to  produce  CS  whenever  an  address  corresponding  to  a  register  within 
the  68230  is  on  the  address  bus.  The  register  select  inputs,  RS,  through  RSj,  of  the 
68230  are  supplied  by  another  part  of  the  address.  The  5-bit  code  applied  to  these 

inputs  determines  which  one  of  the  68230's  registers  is  to  be  accessed  during  the  current 
bus  cycle.  Figure  6.35  shows  that  the  68230  has  23  internal  registers.  Each  of  these 
registers  is  assigned  to  a  unique  register  select  code.  For  instance,  if  the  code  applied 
to  the  RS  inputs  is 

RS5RS4RS3RS2RS,  =  OOOIO2 
register  Rj,  which  is  also  known  as  the  port  A  data  direction  register,  is  accessed. 
Notice  that  each  of  the  registers  also  can  be  identified  with  its  mnemonic  name.  For 
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Figure  6-33    Block  diagram  of  the  68230  PI  T  device  (Motorola.  Inc.). 

example,  the  port  A  data  direction  register  that  we  just  introduced  is  denoted  by  the 
mnemonic  PADDR. 

The  type  of  access  that  the  68000  has  to  the  68230's  internal  registers  is  shown 
in  Fig.  6.35.  Looking  at  the  column  labeled  "accessible,"  we  see  that  all  registers 
can  be  read  from  but  not  all  can  be  written  into.  For  instance,  the  P.^DDR  register 

that  we  have  been  using  as  an  example  can  be  accessed  either  through  a  read  or  write 

operation.  On  the  other  hand,  R,o  (PAAR)  and  R,,  (PBAR)  are  read-only  registers. 
Example  6.3 

What  code  must  be  applied  to  the  RS  inputs  of  the  68230  during  a  bus  cycle  in  which 
the  contents  of  the  port  status  register  are  read  by  the  MPU?  What  is  the  mnemonic 
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Figure  6-34    Connecting  the  68230  PI/T  to  the  68000  MPU  (Motorola.  Inc.). 

used  to  identify  tiie  port  status  register?  Could  this  register  also  be  accessed  with  a  write 
bus  cycle? 

Solution.     Looking  at  Fig.  6.35,  we  find  that  to  select  the  port  status  register  the  register 
select  code 

RS5RS4RS3RS2RS,  =  OllOlj 

must  be  applied  to  the  68230.  Moreover,  in  the  table  of  Fig.  6.35  we  see  that  the  port 
status  register  is  identified  by  the  mnemonic  PSR  and  that  it  also  can  be  written  into. 

Remember  that  the  68000  performs  asynchronous  bus  cycles.  That  is,  once 

started  a  bus  cycle  is  not  completed  until  the  data  acknowledge  (DTACK)  input  is 

switched  to  logic  0.  Since  the  68230  is  a  68000  family  LSI  peripheral,  it  is  designed 

to  produce  the  DTACK  signal  automatically.  For  this  reason,  as  shown  in  Fig.  6.34, 
the  DTACK  output  of  the  68230  is  simply  returned  directly  to  the  DTACK  input 
of  the  68000. 

I/O  Port  Configurations 

From  Fig.  6.34,  we  see  that  ports  A,  B,  and  C  of  the  68230  are  bidirectional  and 

are  all  byte  wide.  Together,  they  give  24  input/output  lines,  which  are  labeled  PAq 

through  PA7,  PBq  through  PB7,  and  PCq  through  PC7.  There  are  also  four 

handshake  lines,  H,  through  H4,  that  can  be  used  to  implement  input  and  output 
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Figure  6-35    Registers  and  their  sdect  codes  (Motorola,  Inc.). 

handshake  protocols.  An  example  of  a  simple  handshake  protocol  for  input  of  data 
is  to  have  the  external  I/O  de\ice  that  is  supplying  data  to  the  input  port  signal  the 
68230  that  new  data  is  available  at  the  pon  by  setting  Hj  to  its  active  logic  level. 
Then  after  the  68000  reads  data  from  the  pon,  the  H,  output  of  the  68230  can  be 
set  to  its  active  logic  level  to  signal  the  I  O  device  that  the  data  has  been  read  and 
thai  it  may  now  apply  another  b>ie  of  data  to  the  pon. 

Notice  in  Fig.  6.33  that  six  of  the  lines  at  pon  C  can  be  configured  under  software 
control  to  ser^e  special  functions.  For  instance,  the  PC;  line  also  can  be  set  up  to 

work  as  a  timer  input  (T|>^).  When  the  68230's  timer  is  being  used  as  an  event  counter, 
pulses  applied  to  this  input  by  externeil  circuitn.'  are  used  to  decrement  the  value  in 
the  counter.  That  is,  T]^  is  the  clock  input  of  the  timer.  T,v,  also  can  be  configured 
to  operate  as  a  run  halt  input  for  the  timer.  When  operated  in  this  way,  logic  1  at 
T^^;  enables  the  internal  timer  clock  of  the  68230  to  the  input  of  the  timer  circuit. 
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That  is,  the  timer  is  running  when  T[]y,  equals  1.  On  the  other  hand,  logic  0  at  T[,sj 
turns  off  the  clock  and  halts  the  timer.  Another  example  is  PCg.  This  line  has  a  second 
label  PIRQ,  which  stands  for  parallel  interrupt  request.  This  signal  is  an  output  that 

is  used  when  the  68230  implements  an  interrupt-driven  parallel  I/O  configuration. 
In  this  way,  we  see  that  lines  PC2  through  PC7  at  port  C  may  or  may  not  be  available 

for  use  as  general-purpose  inputs  or  outputs. 

Example  6.4 

What  is  the  special  function  performed  by  the  PC^,  line  at  port  C  of  the  68230? 

Solution.  In  Fig.  6.33,  we  see  that  PC^  is  also  labeled  PIACK.  This  mnemonic  stands 
for  parallel  interrupt  acknowledge  and  is  an  input  with  which  the  68000  can  tell  the  68230 
that  it  has  been  granted  service  in  response  to  a  parallel  I/O  interrupt  request  initiated 
with  the  PIRQ  output. 

Internal  Registers  of  the  68230 

We  pointed  out  earlier  that  the  68230  PI/T  has  23  internal  registers,  Rq  through  R22. 
The  register  model  in  Fig.  6.36  identifies  each  of  these  registers  along  with  the  function 

of  each  of  their  bits.  In  general,  these  registers  are  used  to  configure  the  mode  of 

operation  of  the  I/O  ports  and  timer,  input  and  output  data,  and  input  status 
information  about  the  I/O  ports  and  timer. 

The  I/O  ports  of  the  68230  are  very  versatile  and  can  be  programmed  for  a 

wide  variety  of  different  modes  of  operation.  Let  us  begin  our  study  of  these  registers 

and  how  they  control  the  operation  of  the  68230  by  just  briefly  looking  at  some  of 
the  ways  in  which  ports  A  and  B  can  be  configured. 

Ports  A  and  B  of  the  68230  can  be  configured  to  work  in  one  of  four  general 

ways  called  modes.  The  first  two  of  these  modes  correspond  to  the  use  of  ports  A 

and  B  separately  as  byte-wide  unidirectional  or  bidirectional  ports.  In  the  other  two 

modes,  ports  A  and  B  are  used  together  to  form  a  single  word-wide  unidirectional 
or  bidirectional  port.  Ports  that  are  set  up  for  unidirectional  operation  must  be  further 

configured  with  what  is  called  a  submode  of  operation.  The  submode  defines  whether 

the  lines  of  the  port  all  work  as  inputs,  all  work  as  outputs,  or  act  as  bit  addressable 

inputs  or  outputs.  In  addition  to  the  modes  and  submodes  of  operation,  the  ports 
can  also  be  set  up  for  latched  input  operation,  interrupt  driven  operation,  direct 

memory  accessed  operation,  and  with  a  number  of  input/output  handshake  protocols. 

The  operation  of  the  ports  is  defined  and  controlled  by  the  contents  of  registers  Rq 

through  R,3  of  the  68230's  register  set.  For  this  reason,  we  will  now  look  at  the 
function  of  the  bits  in  each  of  these  control  registers  in  more  detail. 

Register  Rq  is  called  the  port  general  control  register  and  is  identified  by  the 
mnemonic  PGCR  for  short.  Figure  6.37(a)  shows  the  control  functions  of  its  bits. 

Notice  that  the  two  most  significant  bits  are  used  together  as  a  2-bit  port  mode  control 
code.  The  binary  combination  in  these  bits  select  one  of  four  modes  of  operation 

for  both  port  A  and  port  B.  These  modes  of  operation  are  called  mode  0,  mode  1, 

mode  2,  and  mode  3.  For  instance,  in  Fig.  6.37(b),  we  find  that  if  B^B^  equals  00 
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the  A  and  B  ports  are  configured  for  mode  0  (unidirectional  8-bit  mode)  operation. 

That  is,  they  are  set  up  to  woric  as  either  byte-wide  input  or  byte-wide  output  ports. 
The  fact  that  the  port  Hnes  are  inputs  or  outputs  is  determined  by  what  is  called 
a  submode.  The  submodes  of  operation  are  selected  by  bits  in  another  control  register. 

The  rest  of  the  bits  in  PGCR  are  used  to  enable  and  set  the  active  logic  levels 

of  handshake  lines  H,  through  H4.  For  example,  bit  B4  is  the  H|2  enable  bit.  As 
shown  in  Fig.  6.37(b),  it  must  be  set  to  logic  1  to  enable  the  H,  and  Hj  lines  for 
operation.  The  sense  (active  logic  level)  of  the  handshake  lines  is  also  programmable. 

This  is  done  with  bits  Bq  through  B3  of  PGCR.  Notice  that  the  value  in  bits  Bq  and 
B,  sets  the  active  logic  level  of  H,  and  Hj,  respectively.  For  instance,  making  Bq  logic 

1  sets  the  high-vohage  level  as  the  active  state  for  handshake  line  H,.  On  the  other 

hand,  if  B,  is  set  to  logic  0,  the  low-vohage  level  is  set  as  the  active  state  for  Hj. 
Example  6.5 

What  value  will  need  to  be  written  into  PGCR  if  mode  1  operation  is  to  be  selected  for 

ports  A  and  B;  H,,  is  to  be  disabled  and  Hj^  is  to  be  enabled;  and  all  of  the  handshake 
lines  are  to  be  set  up  with  the  low-voltage  level  as  their  active  logic  level? 

Solution.  In  Fig.  6.37(b),  we  find  that  mode  1  operation  is  selected  by  making  the  mode 
select  code  equal  to  01. 

B,B,  =  01 
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Next,  H34  is  enabled  by  setting  bit  5  to  logic  1  and  Hp  is  disabled  by  making  bit  4  logic 
0. 

B5  =  1 

B4  =  0 
Finally,  to  set  the  active  logic  levels  of  the  H  lines  for  the  low-voltage  level,  sense  bits 
0  through  3  are  all  set  to  logic  0. 

338,8,60    =  0000 

Therefore,  the  control  byte  that  is  to  be  loaded  into  PGCR  as 

B-,  Bg  85  84  83  82  B,  Bq  =  OllOOOOOj 

=  60,, 

It  must  be  noted  that  this  control  byte  cannot  be  directly  loaded  into  PGCR.  This 

is  because  the  mode  control  bits  should  only  be  altered  when  bits  H,,  and  H34  are 
both  logic  0.  For  this  reason,  PGCR  should  be  loaded  in  two  steps.  For  instance,  first 
the  byte 

B,  85  85  84  83  Bj  8,  80  =  01000000, 

=  40,6 

can  be  loaded  to  initialize  the  mode  and  disable  the  handshake  lines.  Then  the  register's 
state  is  finalized  by  writing  the  byte 

87  85  B,  84  83  Bj  8,  Bg  =  OllOOOOOj 

=  60,, 

Now  that  we  have  described  the  control  functions  performed  by  the  bits  of  Rq, 
let  us  continue  with  another  register  that  controls  general  operations  of  the  A  and 

B  ports:  register  R,,  the  port  service  request  register  (PSRR).  Earlier  in  this  section 
we  indicated  that  the  parallel  I/O  ports  of  the  68230  can  be  operated  in  a  way  that 

involves  the  interrupt  interface  of  the  68000.  When  using  interrupt-driven  mode  of 
operation  for  I/O,  control  bits  in  PSRR  are  used  to  configure  signal  lines  of  port 

C  as  interrupt  request  and  interrupt  acknowledge  lines  instead  of  as  I/O  lines  and 

to  assign  a  priority  scheme  to  the  handshake  lines.  Ports  A  and  B  of  the  68230  also 

can  be  operated  in  a  direct  memory  access  (DMA)  mode.  This  mode  of  operation 

is  configured  with  control  bits  in  R,. 

Figure  6.38(a)  shows  the  format  of  the  control  bits  in  PSRR.  The  *  in  bit  position 
7  means  that  it  is  not  in  use.  It  is  followed  in  bit  positions  5  and  6  with  a  two-bit 
service  request  (SVCRQ)  select  code.  This  code  determines  whether  the 

PC4/DMAREQ  pin  at  port  C  is  configured  as  an  I/O  pin  (PC4)  or  as  the  DMA 
request  output  (DMAREQ).  Notice  in  Fig.  6.38(b)  that  making  bit  6  logic  0  selects 

I/O  mode  of  operation  and  making  it  1  selects  the  DMA  mode.  Moreover,  we  find 

that   bit   5  determines  whether  DMA  operations  are  associated  with  the  port 
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HIS Figure  6-38    (a)  Port  service  request 

register  (PSRR)  format;  (b)  control  bit 

Ibl  functions  (Motorola,  Inc.). 

corresponding  to  the  H,  or  H3  handshake  line.  For  instance,  the  code 

BgB,  =  10 
selects  DMA  operation  associated  with  H,  and  port  A. 

The  next  two  bits  in  PSRR,  bits  3  and  4,  define  the  operation  of  the  PC5/PIRQ 
and  PCg/PIACK  pins  of  the  68230.  In  Fig.  6.38(b),  we  see  that  making  them  both 
logic  0 

B-B,  =  00 
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sets  up  both  PCj  and  PCg  to  operate  as  I/O  lines.  On  the  other  hand,  setting  these 
control  bits  to 

B^B,  =  01 

selects  the  interrupt  request  output  (PIRQ)  mode  of  operation  for  the  PCj/PIRQ 

pin  and  leaves  PCg  as  an  I/O  line. 

The  three  least  significant  bits  in  PSRR,  Bq,  Bj,  and  B2,  assign  interrupt 

priorities  to  handshake  lines  Hj  through  H4.  The  table  in  Fig.  6.38(b)  shows  all  of 
the  allowed  priority  schemes.  Notice  that  making 

BjBjBo  =  000 
assigns  priorities  in  what  is  called  ascending  order.  That  is,  H^  has  the  lowest  priority, 

it  is  followed  by  H2  with  the  next  higher  priority,  H3  follows  H2  with  still  higher 
priority,  and  finally  H4  has  the  highest  priority.  In  Fig.  6.38(b),  we  find  that  changing 
the  port  interrupt  priority  control  code  to 

B.BjBq  =111 
assigns  priorities  in  the  reverse  order;  that  is,  descending  order. 

Example  6.6 

With  what  value  should  PSRR  be  initialized  in  order  to  configure  the  68230  such  that 

PC4/DMAREQ  acts  as  an  I/O  line,  PC,/PIRQ  acts  as  an  interrupt  request  output, 
PCg/PIACK  acts  as  an  interrupt  acknowledge  input,  and  handshake  lines  Hj  through 
H4  are  configured  in  descending  priority  order  (H,  has  the  highest  priority  and  H^  has 
the  lowest  priority). 

Solution.  From  the  information  in  Fig.  6.38(b),  we  see  that  making  bits  5  and  6  both 

logic  0  configures  PC^/DMAREQ  to  act  as  an  I/O  line 

B^B,  =  00 Then  by  making  bits  3  and  4  both  logic  1,  PC5/PIRQ  acts  as  an  interrupt  request  output 
and  PCg/PIACK  acts  as  an  interrupt  acknowledge  input. 

B4B3  =  11 Finally,  the  handshake  lines  are  assigned  priorities  in  descending  order  by  making  bits 
2  through  0  all  logic  0. 

B,B|Bg  =  000 
Assuming  that  bit  7  is  set  to  logic  0,  the  complete  control  byte  is 

B,BgB5B4B,B-,B,Bo  =  00011000-, 

=  18i6 

The  next  three  registers  in  Fig.  6.36,  R2  through  R4,  are  the  port  A  data 
direction  register  (PADDR),  port  B  data  direction  register  (PBDDR),  and  port  C  data 

direction  register  (PCDDR).  The  logic  level  of  the  bits  in  these  registers  control  the 

direction  of  the  I/O  lines  at  the  respective  I/O  port  when  the  ports  are  configured 

for  unidirectional  mode  of  operation.  The  format  of  the  bits  in  PADDR  is  shown  in 

Fig.  6.39.  Each  of  the  eight  bits  in  PADDR  corresponds  to  one  of  the  I/O  lines  at 
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port  A.  That  is,  the  logic  level  of  bit  0  in  PADDR  sets  the  direction  of  I/O  line  PAq; 
the  logic  level  of  bit  1  sets  the  direction  of  PA,;  and  so  on.  If  an  I/O  line  in  port 
A  is  to  be  used  as  an  input,  its  corresponding  bit  in  PADDR  is  initialized  to  logic 

0.  On  the  other  hand,  if  it  is  to  operate  as  an  output,  the  bit  is  set  to  1  instead  of 

0.  Therefore,  to  configure  all  of  the  I/O  lines  at  port  B  as  outputs,  PBDDR  must 

be  loaded  with  FF|g. 

Example  6.7 

What  value  must  be  loaded  into  PCDDR  to  configure  all  lines  of  port  C  as  inputs? 

Solution.  The  lines  of  an  I/O  port  are  configured  as  inputs  by  setting  the  bits  in  the 
corresponding  port  data  direction  register  to  logic  0.  Therefore,  all  lines  of  port  C 
are  configured  as  inputs  by  making  all  bits  of  the  PCDDR  register  logic  0. 

Register  Rj  in  Fig.  6.36  is  used  in  conjunction  with  interrupt-driven  mode  of 
operation  for  the  parallel  I/O  ports.  It  is  the  port  interrupt  vector  register  (PIVR). 

Looking  at  the  format  diagram  in  Fig.  6.40,  we  see  that  just  six  of  its  bits  are 

implemented  and  that  they  are  loaded  under  software  control  with  the  upper  six  bits 

of  an  interrupt  vector  number.  The  two  least  significant  bits  of  the  vector  are  supplied 

by  the  prioritization  logic  within  the  68230  and  represent  the  priority  of  the  active 
handshake  line. 

7 6 5 4 3 2 1 0 

Interrupt  Vector  Number * * Figure  6-40    Port  interrupt  vector 
register  (PIVR)  format  (Motorola,  Inc.). 

Before  introducing  the  port  A  and  B  control  registers,  let  us  look  at  the  two 

groups  of  registers  that  follow  them  in  Fig.  6.36.  The  first  group,  Rg  and  R9,  are 
the  port  A  and  B  data  registers,  PADR  and  PBDR.  Each  bit  in  these  registers 
corresponds  to  one  of  the  lines  at  the  corresponding  I/O  port.  The  format  of  the 

port  A  data  register  (PADR)  is  shown  in  Fig.  6.41.  Here  bit  0  corresponds  to  signal 

line  PAq  at  port  A  and  bit  7  corresponds  to  signal  line  PA7. 
These  are  the  registers  through  which  the  68000  inputs  or  outputs  data  to  the 

I/O  ports  of  the  PI/T.  If  port  A  is  configured  as  an  input  port,  the  logic  levels  applied 

to  the  PA  inputs  can  be  latched  into  the  PADR  register  and  then  read  out  of  the 

register  by  the  68000  MPU.  In  the  case  of  port  A  configured  as  an  output  port,  data 

are  output  by  the  MPU  to  PADR  instead  of  directly  to  the  output  ports. 

As  shown  in  Fig.  6.36,  the  next  group,  R,q  and  R,,,  are  the  alternate  data 
registers:  the  port  A  alternate  data  register  (PAADR)  and  port  B  alternate  data  register 
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(PABDR).  These  registers  are  similar  to  the  data  register  we  just  described  in  that 

they  contain  a  bit  for  each  bit  of  the  corresponding  I/O  port.  However,  these  registers 

can  only  be  read  and  when  read  the  data  received  by  the  MPU  represents  the 

instantaneous  logic  levels  at  the  I/O  pins  of  the  port. 

Now  we  will  continue  with  the  port  A  and  B  control  registers  (PACR  and  PBCR) 

that  we  skipped  earlier.  In  Fig.  6.36,  they  are  identified  as  registers  R^  and  R7.  Figure 
6.42(a)  shows  the  formats  of  PACR  and  PBCR.  Notice  that  corresponding  bits  in 

the  two  registers  serve  the  same  basic  function;  however,  for  their  respective  ports. 

Earlier  in  this  section  we  found  that  two  of  the  bits  in  the  port  general  control 

register  (Rq)  are  used  to  select  between  mode  0,  mode  1,  mode  2,  or  mode  3  operation 
for  the  A  and  B  ports  and  that  submodes  of  operation  exist  within  each  of  the  general 
modes.  It  is  the  function  of  control  bits  within  PACR  and  PBCR  to  select  the 

submodes  of  operation.  In  the  format  of  PACR  and  PBCR  in  Fig.  6.42(a),  we  see 

that  the  two  most  significant  bits  of  each  register  define  the  submode  of  operation 

for  the  corresponding  port.  For  example,  if  the  mode  select  bits  in  PGCR  configure 

port  A  for  mode  0  operation  and  the  submode  bits  in  PACR  are  set  to  00  for  submode 

00,  the  I/O  configuration  is  as  shown  in  Fig.  6.42(b).  Notice  that  port  lines  PAq 

through  PA7  act  as  a  byte-wide  latched  double-buffered  input  port.  By  latched,  we 
mean  that  data  applied  to  the  PA  input  pins  are  latched  into  flip-flops  within  the 
68230  synchronously  with  the  transition  of  the  logic  level  of  the  H,  input.  Remember 
that  the  active  level  of  the  H,  handshake  input  can  be  set  to  logic  1  or  logic  0  by 
the  sense  bit  in  PGCR.  For  this  reason,  data  can  be  latched  into  the  port  A  data 

register  on  a  positive-going  transition  or  negative-going  transition  at  the  H,  input. 
Let  us  now  look  just  briefly  at  what  is  meant  by  double  buffered.  This  means 

that  the  I/O  ports  of  the  68230  have  dual  latches.  Use  of  this  double  buffering  permits 

an  overlapping  mode  of  operation  in  which  the  current  data  in  the  port  A  data  register 

can  be  read  by  the  MPU  and  at  the  same  time  external  circuitry  can  strobe  new  data 

into  the  register.  This  capabihty  of  the  68230  results  in  a  higher  maximum  input/output 
data  rate. 

Example  6.8 

How  would  port  B  operate  if  the  mode  control  bits  in  PGCR  are  00  and  the  submode 
bits  in  PBCR  are  01? 

Solution.  00  in  the  mode  control  bits  of  PGCR  selects  mode  0  operation  for  both  port 
A  and  port  B,  and  01  in  the  submode  bits  of  PBCR  selects  submode  01  operation  for 
port  B.  Looking  at  Fig.  6.42(b),  we  see  that  this  selects  the  I/O  configuration  labeled 

mode  0  submode  01 .  Notice  that  in  this  case  the  B  port  is  configured  as  a  double-buffered 

byte-wide  output  port  with  H3  and  H^  as  its  handshake  lines.  H,  is  an  input  by  which 
the  external  device  that  is  reading  data  from  the  PB  output  lines  can  signal  the  68230 
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Figure  6-42    (a)  PACR  and  PBCR  formats;  (b)  Mode  0  I/O  configurations;  (c)  Mode  1  I/O 
configurations. 

that  it  is  ready  to  receive  new  data.  Moreover,  the  H^  line  can  be  configured  to  operate 
in  a  number  of  different  ways  using  other  bits  in  PBCR. 

I/O  configurations  and  pin  function  descriptions  for  mode  1 ,  mode  2,  and  mode 
3  and  their  corresponding  submodes  are  given  in  Fig.  6.42(c),  (d),  and  (e),  respectively. 

Let  us  now  look  at  the  functions  served  by  other  control  bits  in  PACR  and 
PBCR.  From  the  format  of  PACR  in  Fig.  6.42(a),  we  find  that  the  next  three  bits, 
bits  5,  4,  and  3,  form  a  3-bit  code  that  selects  a  mode  of  operation  for  the  H^  control 
line.  However,  the  type  of  operation  depends  on  the  mode  and  submode  of  operation 
selected  for  the  port.  The  allowed  configuration  for  all  submodes  of  mode  0  operation 
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H4   -    Operation  with  H3  in  the  interlocked  or  pulsed  input 
handshake  protocols 

(e) 

H1  SVCRO  Enable 

Tfie  HI  interrupt  and  DMA  request  are  disabled. 

The  HI  interrupt  and  DMA  request  are  enabled 

PACR  Mode  0  Port  A  Submode  00 

PACR 

5    4    3 H2  Control 

PACR 

0 

X  Input  pin  -  status  only 

0  Output  pin  -  always  negated 

1  Output  pin  —  always  asserted. 

0  Output  pin    -    interlocked  input  fiandshake  pro- 

tocol. 

1  Output  pin  -  pulsed  input  handshake  protocol. 

HI  Status  Control 

PACR  Mode  0  Port  a  Submode  01 

ACR 

4    3  H2  Control 

X    X  Input  pin  —  status  only 

0    0  Output  pin  -  always  negated 

0  1  Output  pin  -  always  asserted 

1  0  Output  pin  -  interlocked  output  handshake  pro- 

tocol 
1     1  Output  pin  —  pulsed  output  handshake  protocol 

,CR 

D  HI  Status  Control 

D  The  HIS  status  bit  is  1  when  either  the  Port  A  initial  or 

final  output  latch  can  accept  new  data  It  is  0  when 

both  latches  are  full  and  cannot  accept  new  data. 

1  The  HIS  status  bit  is  1  when  both  of  the  Port  A  output 

latches  are  empty  It  is  0  when  at  least  one  latch  is  full. 

PACR  Mode  0  Port  A  Submode  IX 

PCR 

5    4    3 

X  Input  pin  - 
0  Output  pin 

1  Output  pin 

PACR 

0 

H2  Control 

status  only 

-  always  negated. 

-  always  asserted 

HI  Status  Control 

Figure  6-42     (com.)  (d)  Mode  2  I/O  configuration;  (e)  Mode  3  I/O  configuration;  (f)  Mode  0  control  bit  functions. 
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PACR  Mode  1  Port  A  Submode  XX  Port  B  Submode  XO 

PACR 
5    4    3  H2  Control 

0  X   X  Inpul  pin  -  status  cnlv 

1  X    0  Output  pin  -  always  negated 

1    X    1  Output  pin  -  always  asserted 

PACR 
0 HI  Status  Control 

PBCR  Mode  1  Port  8  Submode  XO 

5    4    3  H4  Control 

0  X    X  Input  pin  -  status  only 

1  0    0  Output  pin  -  always  negated. 
1    0    1  Output  pin  -  always  asserted. 

1     1    0  Output  pin    -    interlocked  input  handshake  pro- 

tocol 
1     1     1  Output  pin  -  pulsed  input  handshake  protocol. 

PBCR 
0  H3  Status  Control 

PACR  Mode  1  Port  A  Submode  XX  Port  B  Submode  XI 

PACR 

5   4    3  H2  Control 

0  X   X  Input  pin  -  status  only 

1  X    0  Output  pin  —  always  negated 
1    X    1  Output  pin  -  always  asserted. 

PACR 
0 HI  Status  Control 

PBCR  Mode  1  Port  B  Submode  XI 

H4  Control 

X   X  Input  pin  —  status  only 

0    0  Output  pin  —  always  negated 
0  1  Output  pin  —  always  asserted 

1  0  Output  pin  —  interlocked  output  handshake  pro- 

tocol. 1    1  Output  pin  —  pulsed  output  handshake  protocol. 

(g) 

PACR  Mode  2 

H2  Control 

PACR 

5    4    3    

X    X    0  Output  pin  -  interlocked  output  handshake  pro- 
tocol. 

X    X    1  Output  pin  —  pulsed  output  handshake  protocol 

PACR 
0 

0 

HI  Status  Control 

The  HIS  status  bit  is  1  when  either  the  Port  B  initial  or 

final  output  latch  can  accept  new  data    It  is  0  when 
both  latches  are  full  and  cannot  accept  new  data 
The  HIS  status  bit  is  1  when  both  of  the  Port  B  output 

latches  are  empty.  It  is  0  when  at  least  one  latch  is  full. 

H3  Status  Control 

The  H3S  status  bit  is  1  when  either  the  initial  or  final 

output  latch  of  Port  A  and  B  can  accept  new  data.  It  is 
0  when  both  latches  are  full  and  cannot  accept  new 
data 

The  H3S  status  bit  is  1  when  both  the  initial  and  final 

output  latches  of  Ports  A  and  B  are  empty.  It  is  0  when 
neither  the  initial  or  final  latch  of  Ports  A  and  B  is  full. 

PBCR 
5    4    3 

X    X    0  Output  pin 

tocol 

PBCR  Mode  2 

H4  Control 

nterlocked  input  handshake  pro- 

X    X    1  Output  pin  -  pulsed  input  handshake  protocol. 

'BCR 

0  H3  Status  Control 

(h) 

Figure  6-42     (com.)  (g)  Mode  1  control  bit  functions;  (h)  Mode  2  control  bit  functions. 

are  given  in  Fig.  6.42(0-  Although  this  information  is  represented  relative  to  port 

A's  handshake  signals,  it  also  is  valid  for  programming  port  B's  handshake  signals, 
H3  and  H4,  through  the  port  B  control  register.  Notice  that  for  our  earlier  mode 
0  submode  00  example  H^  can  be  configured  in  five  different  ways.  For  instance, 
if  these  three  bits  are  set  to 

B5B4B3 110 
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PACR 
5    4    3 

X    X    0  Output  pin 

tocol 

PACR  Mode  3 

H2  Control 

nterlocked  output  handshake  pro- 

X    X    1  Output  pin  -  pulsed  output  handshake  protocol 

>ACR 

0  HI  Status  Control 

0  The  HIS  status  bit  is  1  when  eithet  the  initial  or  final 

output  latch  of  Port  A  and  B  can  accept  new  data  It  is 
0  when  both  latches  are  full  and  cannot  accept  new 
data 

1  The  HIS  status  bit  is  1  when  both  the  initial  and  final 

output  latches  of  Ports  A  and  B  are  empty.  It  is  0  when 
either  the  initial  or  final  latch  of  Ports  A  and  B  is  full 

PBCR 
5    4    3 

X    X    0  Output  pin 

tocol 

PBCR  fVlode  3 

H4  Control 

interlocked  input  handshake  pro- 

X    X    1  Output  pin  -  pulsed  input  handshake  protocol 

PBCR 
0 H3  Status  Control 

Figure  6-42     (com.)  (i)  Mode  3  control  bit  functions  (Motorola,  Inc.). 

Hj  is  set  up  as  an  output  and  implements  what  is  called  the  interlock  input  handshake 
protocol. 

In  this  case,  its  operation  is  interlocked  with  that  of  the  H,  pin.  In  fact,  the 
Hj  output  will  be  at  its  active  logic  level  whenever  the  port  A  data  register  is  ready 
to  accept  new  data.  In  this  way,  it  can  signal  the  input  device  that  supplies  PAg 
through  PAy  that  the  68230  is  ready  to  accept  data  from  this  port.  The  active  logic 
level  (sense)  of  Hj  is  defined  by  a  bit  in  PGCR.  Therefore,  the  input  device  can  apply 
a  byte  of  data  to  the  PA  lines  and  then  switches  H,  to  its  active  logic  level.  In  response 

to  an  active  H,,  the  68230  latches  the  data  at  PA0-PA7  into  PADR  and  then  switches 
H2  to  its  inactive  logic  level.  This  signals  the  input  device  that  the  68230  is  no  longer 
ready  to  accept  data.  The  port  remains  in  this  state  until  the  MPU  reads  the  byte 
of  data  from  PADR. 

In  practical  applications,  H4  can  be  used  in  conjunction  with  H,  to  implement 
an  interlocked  output  handshake  protocol  for  port  B.  Let  us  look  just  briefly  at  how 
this  can  be  done  when  port  B  is  configured  for  mode  0  submode  01  operation.  In 
Fig.  6.42(f),  we  find  that  the  kinds  of  operations  that  can  be  performed  by  H,  for 
mode  0  submode  01  output  ports  are  similar  to  those  available  for  mode  0  submode 
00  input  ports.  We  will  now  describe  the  output  operation  for  H4  control  code 

B5B4B3  =110 
In  this  case,  H3  and  H4  again  operate  in  an  interlocked  mode  of  operation,  but  this 
time  the  MPU  sends  data  to  the  output  port  by  writing  it  into  PBDR.  When  PBDR 
is  loaded,  the  H4  output  switches  to  its  active  logic  level.  This  signal  line  can  be  used 
to  tell  the  output  device  attached  to  port  B  that  a  new  byte  of  data  is  available  at 

PBg-PBy.  In  response,  the  output  device  can  read  the  byte  of  data  from  the  port 
and  then  signal  the  68230  that  it  is  ready  to  accept  new  data  by  switching  the  H3 
input  to  its  active  logic  level.  The  occurrence  of  the  active  logic  level  at  H,  causes 
H4  to  return  to  its  inactive  logic  level.  H4  remains  at  its  inactive  level  until  the  MPU 
writes  another  byte  of  data  into  PBDR. 
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A  question  that  may  arise  from  our  description  of  the  interlocked  output 

handshake  protocol  is,  How  does  the  MPU  know  that  new  data  needs  to  be  sent  to 

the  output  port's  data  register.  It  turns  out  that  there  are  status  bits  for  H,  through 
H4  in  a  register  within  the  68230.  Therefore,  the  MPU  can  poll  these  bits  through 
software  to  determine  when  data  are  to  be  output.  Ahernately,  the  68230  can  be 

configured  to  operate  in  an  interrupt-driven  mode  of  operation.  When  operated  in 
this  way,  the  68230  automatically  produces  the  PIREQ  signal  whenever  the  MPU 

needs  to  output  new  data  to  the  port.  This  mode  of  operation  eliminates  the  need 
for  the  software  polling  routine. 

Bit  0  of  PACR  and  PBCR  are  control  bits  for  the  H,  and  H3  status  bits, 

H,5  and  H35,  respectively.  As  shown  in  Fig.  6.42(0  for  mode  0  submode  01  operation 
at  port  A,  this  bit  can  configure  the  operation  of  Hjs  two  different  ways.  For 

instance,  if  bit  0  is  set  to  logic  1,  H|s  will  be  logic  0  unless  both  of  the  port  B  data 
latches  are  empty. 

The  functions  of  the  control  bits  of  PACR  and  PBCR  for  mode  1,  mode  2, 

and  mode  3  operation  at  port  A  and  port  B  are  given  in  Figs.  6.42(g),  (h),  and  (i), 

respectively.  For  these  modes,  separate  bit  functions  are  given  for  port  A  and  port  B. 

We  just  mentioned  that  a  register  exists  inside  the  68230  that  contains  the  status 

of  the  handshake  lines.  This  is  register  R,,,  the  port  status  register  (PSR).  As  shown 
in  Fig.  6.43,  the  logic  levels  of  the  bits  of  this  register  represent  the  handshake  pin 

signal's  current  logic  levels  and  handshake  status  information.  The  four  most 
significant  bits  in  PSR  are  labeled  H4,  H3,  Hj,  and  Hj,  and  if  read  by  the  MPU 
they  represent  the  current  logic  levels  at  the  respective  handshake  line.  The  68000 
can  examine  the  state  of  the  handshake  lines  through  software  by  reading  the  values 

in  these  bits.  The  other  four  bits,  H|s,  Hjs-  H3S,  H4S,  are  also  handshake  status 
bits.  However,  their  logic  levels  are  set  or  reset  differently  based  on  the  port  A  and 

port  B  mode  and  submode  and  handshake  signal  activity. 

7 6 5 4 3 2 1 0 

H4 

Level 

H3 

Level 

H2 

Level 
HI 

Level 
HAS H3S 

H2S HIS 

Figure  6-43    Port  status  register  (PSR) 
format  (Motorola,  Inc.). 

Example  6.9 

How  is  port  A  configured  if  the  value  in  PACR  is  78,5?  Assume  that  mode  0  operation 
was  selected  for  ports  A  and  B  in  PGCR. 

Solution.     In  binary  form,  the  control  byte  is 

PACR  =  01111000, 

From  Fig.  6.42(b),  we  find  that  the  port  is  configured  for  mode  0  submode  01  operation. 

B7B5  =  01  =  Submode  0 

The  ne.xt  three  bits  in  the  register  set  the  mode  of  operation  for  H,.  In  Fig.  6.42(0  we 
find  that  the  code  111  sets  up  H,  for  pulsed  output  handshake  protocol. 



232  Memory  and  Input/Output  Interfaces  of  the  68000  Microprocessor  Chap.  6 

BjB^Bj  =  111=  Pulsed  output  handshake  protocol 

The  next  two  bits  are  both  0  and  disable  the  Hj  interrupt  request  and  H,  interrupt  and 
DMA  service  request  functions,  respectively. 

Bj  =  0  =  Hj  interrupt  request  disabled 

B,    =  0  =  H|  interrupt  and  DMA  request  disabled 

Finally,  bit  0  sets  the  operation  of  the  H,5  status  bit  such  that  it  is  logic  0  if  both  the 
port  A  initial  and  final  output  latches  are  full  and  logic  I  if  either  latch  is  empty. 

Bg  =  Hjg  is  0  if  both  port  A  output  latches  are  full 
and  1  if  either  is  empty 

ASSIGNMENT 

Section  6.2 

1.  Does  the  68000  employ  separate  memory  and  I/O  address  spaces? 

Section  6.3 

2.  Can  an  instruction  access  word  data  that  starts  at  an  odd  memory  address? 

3.  Write  a  sequence  of  instructions  to  store  the  long-word  contents  of  Dq  in  memory  starting 
at  address  SAOOl. 

Section  6.4 

4.  In  which  address  range  can  interrupt  service  routine  vectors  be  stored? 

Section  6.5 

5.  What  function  code  would  be  anticipated  on  the  FC  lines  when  the  result  of  an  ADD 
instruction  is  being  written  to  the  destination  location  in  memory?  Assume  that  the  68000 
is  in  the  user  state. 

6.  Why  would  a  user/supervisor  system  environment  be  employed? 

7.  Draw  a  circuit  similar  to  the  one  in  Fig.  6.9  in  which  a  16M-byte  memory  address  space 
is  implemented  as  four  4M-byte  blocks:  the  user  program  memory,  user  data  memory, 
supervisor  program  memory,  and  supervisor  data  memory.  The  supervisor  is  to  have  access 
to  all  memory  areas. 

Section  6.6 

8.  Give  an  overview  of  the  sequence  of  events  that  occur  when  an  instruction  word  is  read 
from  address  SAOOO. 

Section  6.7 

9.  Give  an  overview  of  the  sequence  of  events  that  occur  when  a  byte  of  data  is  written  to 
address  SAOOl. 
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Section  6.8 

10.  Write  a  single  instruction  to  push  the  long-word  contents  of  registers  Aq,  A,,  and  A,  onto 
the  supervisor  stack. 

11.  Restore  the  contents  of  the  registers  saved  in  problem  10  by  individually  popping  them 
from  the  stack. 

Section  6.9 

12.  Give  an  overview  of  the  operation  of  the  circuit  in  Fig.  6.13  for  an  upper  byte  access  from 
the  group  2  RAMs. 

Section  6.10 

13.  Write  an  instruction  sequence  that  will  output  the  long-word  contents  of  Dq  to  four-byte- 
wide  output  ports  starting  at  address  $16000.  The  output  ports  are  located  at  consecutive 
even  addresses. 

14.  Write  an  instruction  that  will  input  a  word  of  data  from  two  byte-wide  input  ports  and 
store  it  in  D|.  Assume  that  the  input  ports  are  located  at  consecutive  odd  addresses  which 
are  displaced  by  10  bytes  in  the  positive  direction  from  an  input  address  pointer  held  in 
register  A,. 

Section  6.1 1 

15.  Referring  to  the  table  in  Fig.  6.15,  give  an  overview  of  each  of  the  different  modes  of 

I/O  operation  for  which  a  byte-wide  port  on  the  6821  can  be  configured. 

Section  6.12 

16.  For  the  circuit  in  Fig.  6.17  and  the  address  map  in  Fig.  6.18(a),  write  instructions  that 
do  the  following: 

(a)  Configure  the  B  port  of  both  U,4  and  U,;  as  output  ports. 
(b)  Configure  the  A  port  of  both  U,^  and  U,;  as  input  ports. 
(c)  Configure  the  B  output  ports  such  that  they  produce  a  fixed  duration  strobe  pulse 

at  their  CB,  output  and  select  its  data  output  register. 
(d)  Configure  the  A  input  ports  such  that  they  initiate  an  interrupt  request  through  their 

CA,  inputs;  the  interrupt  is  to  be  initiated  by  a  high-to-low  transition  at  CA,;  and 
the  output  register  is  to  be  selected. 

17.  Write  a  program  that  moves  five  bytes  of  data  from  a  table  in  memory  starting  at  address 

SAOOO  to  the  B  port  of  U,4  in  the  circuit  of  Fig.  6. 17.  Assume  that  the  B  port  is  configured 
as  defined  in  problem  16(c). 

Section  6.13 

18.  What  is  meant  by  synchronous  bus  operation  for  the  68000? 

19.  How  does  the  synchronous  bus  cycle  of  Fig.  6.20(a)  differ  from  the  asynchronous  bus 
cycle  in  Fig.  6.10(a)? 
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Section  6.14 

20.  Name  a  signal  line  that  distinguishes  an  asynchronous  communication  interface  from  that 
of  a  synchronous  communication  interface. 

21.  Describe  the  sequence  of  signals  that  become  active  in  Fig.  6.5  when  the  microcomputer 
transfers  a  character  to  the  terminal. 

22.  Define  a  simplex,  a  half-duple.x,  and  a  full-duplex  communication  link.  j 

Section  6.1  5 

23.  If  the  control  inputs  of  a  6850  are  RS  =  1  and  R/W  =  1,  what  type  of  operation  is  taking 
place  over  the  microprocessor  bus? 

24.  Describe  the  internal  operation  of  the  receiver  section  of  the  6850  as  a  serial  data  character 
is  read  from  the  Rxdaj^^  input.  How  does  the  6850  signal  the  microprocessor  that  a  valid 
character  has  been  received? 

25.  Overview  the  operation  of  the  6850  as  it  accepts  a  byte  of  character  data  from  the 
microprocessor  and  then  transmits  it  over  the  Tx^ata  lin^- 

26.  If  the  control  register  of  the  6850  contains  BE15,  how  is  the  device  configured  for 
operation? 

27.  Write  an  instruction  sequence  that  will  reset  the  6850.  Assume  that  the  device  resides  at 
address  QOABCD,^. 

28.  If  the  contents  of  the  6850's  status  register  are  read  as  OOOOOOlOj^,  in  which  state  of  data communications  is  the  device? 

Section  6.16 

29.  If  RS5  RS4  RS3  RS,  RS,  =  8,g  is  applied  to  the  68230,  which  of  its  internal  registers  is 
selected? 

30.  The  PGCR  register  of  a  68230  is  found  to  contain  OOOIOOIO2.  What  mode  of  operation 
is  selected  for  the  I/O  ports,  which  handshake  lines  are  enabled,  and  what  active  logic 
levels  are  selected  for  the  enabled  handshake  lines? 

31.  Write  a  sequence  of  instructions  to  load  PGCR  with  6O16.  Assume  that  the  68230  is 
located  at  address  A001|g. 

32.  The  contents  of  the  68230's  PSRR  are  03,6.  What  functions  are  selected  for  the  PC4,  PC5, 
and  PCft  lines?  How  is  interrupt  priority  assigned  to  the  handshake  lines? 

33.  Write  a  sequence  of  instructions  to  configure  ports  A,  B,  and  C  as  input,  output,  and 
input  ports,  respectively.  Assume  that  register  PADDR  is  located  at  address  AOOSi^; 
PBDDR  is  at  address  A007,g;  and  PCDDR  is  at  address  A009|e,. 

34.  Specify  the  mode  bits  in  PGCR  and  the  submode  bits  in  PBCR  that  are  needed  to  configure 

the  B  port  as  a  16-bit  input  port  and  so  that  H3  is  used  to  latch  the  input  data. 

i 



Exception  Processing 
OF  THE  68000  Microprocessor 

7.1   INTRODUCTION 

In  the  last  chapter,  we  covered  the  memory  and  input/output  interfaces  for  the 
68000-based  microcomputer.  Here  we  will  consider  the  exception  processing  capability 
of  the  68000  and  a  special  input  interface,  the  external  hardware  interrupt  interface. 
The  topics  covered  are  as  follows: 

1.  Types  of  exceptions 

2.  Exception  vector  table 

3.  Exception  group  priorities 

4.  External  hardware  interrupt  interface 

5.  External  interrupt  priorities  and  the  interrupt  mask 

6.  General  interrupt  processing  sequence 

7.  General  interrupt  interface  circuit 

8.  Autovector  interrupt  mechanism 

9.  Autovector  interrupt  interface  circuit 

10.  Exception  instructions 
11.  Bus  error 

12.  Reset 

13.  Internal  exception  functions 

235 
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7.2  TYPES  OF  EXCEPTIONS 

For  the  68000  microcomputer  system,  Motorola,  Inc.,  has  defined  the  concept  of 
exception  processing.  Exception  processing  is  similar  to  what  is  more  generally  known 
as  interrupt  processing.  Just  like  the  interrupt  capabilities  of  other  microprocessors, 
the  exception  mechanism  allows  the  68000  to  respond  quickly  to  special  internal  or 
external  events.  Based  on  the  occurrence  of  this  type  of  event,  the  main  program 
is  terminated  and  a  context  switch  is  initiated  to  a  new  program  environment.  This 
new  program  environment,  the  exception  service  routine,  is  a  segment  of  program 
designed  to  service  the  requesting  condition.  At  completion  of  exception  processing, 
program  control  can  be  returned  to  the  point  at  which  the  exception  occurred  in  the 
main  program. 

The  68000  has  a  broad  variety  of  methods  by  which  exception  processing  can 
be  initiated.  They  include  the  external  exception  functions,  hardware  reset,  bus  error, 
and  user  defined  interrupts.  Furthermore,  the  68000  has  a  number  of  instructions 
that  can  initiate  exception  processing.  Some  examples  of  these  instructions  are  TRAP, 
TRAPV,  and  CHK.  The  68000  also  has  extensive  internal  exception  capability.  It 
includes  exceptions  for  internal  error  conditions  {address  error,  illegal/unimplemented 
opcodes,  and  privilege  violation)  and  internal  functions  {trace  and  spurious  interrupt). 

7.3  EXCEPTION  VECTOR  TABLE 

Each  of  the  exception  functions  that  is  performed  by  the  68000  has  a  number  called 
the  vector  number  assigned  to  it.  For  external  interrupts,  the  interrupting  device 
supplies  the  vector  number  to  the  68000.  On  the  other  hand,  for  other  types  of 
interrupts,  the  vector  number  is  generated  within  the  microprocessor.  The  68000 
converts  the  vector  number  to  the  address  of  a  corresponding  long-word  storage 
location  in  memory.  Held  at  this  memory  location  is  a  24-bit  address  known  as  the 
vector  address  of  the  exception.  It  defines  the  starting  point  of  the  service  routine 
in  program  storage  memory.  Figure  7.1  shows  the  format  in  which  the  address  vector 
is  stored  in  memory.  As  shown,  it  takes  up  two  word  locations.  The  lower  addressed 
word  is  the  high  word  of  the  new  program  counter  and  the  higher  addressed  word 
is  the  low  word  of  PC.  Only  the  8  LSBs  of  the  high  word  are  used. 

The  vector  addresses  are  stored  in  a  part  of  the  68000's  memory  system  known 
as  the  exception  vector  table.  As  shown  in  Fig.  7.2,  the  vector  table  contains  up  to 
256  vectors,  which  are  labeled  with  vector  numbers  0  through  255.  Notice  that  the 

table  must  reside  in  the  address  range  OOOOOOig  through  0003FF,g,  which  is  the  first 

Word  0 

Word  1 

New  Program  Counter  (High) 

New  Program  Counter  (Low) 

A0  =  0,  A1=0 

A0  =  0.  Al  =  1 

Figure  7-1    Exception  vector  organization  (Motorola,  Inc.). 



Exception  Vector  Table 

Vector 

Nurnber(s) 

Address 

Assignment Dec Hex 
Space 

0 0 000 

SP 

Reset    Initial  SSP 

- 4 
004 

SP 

Reset:  Initial  PC 

2 8 008 SD Bus  Error 

3 

12 

OOC SD Address  Error 

4 

16 

010 SD Illegal  Instruction 

5 20 
014 

SD Zero  Divide 

6 

24 

018 

SD 

CHK  Instruction 

7 28 01C SD TRAPV  Instruction 

8 32 020 SD Privilege  Violation 

9 36 
024 

SD 
Trace 

10 

40 

028 SD Line  1010  Emulator 

11 

44 

02C 

SD 

Line  1111  Emulator 

12*
 

48 

030 SD (Unassigned,  reserved! 

13-
 

52 
034 

SD (Unassigned,  reserved) 

14"
 

56 038 SD (Unassigned,  reserved) 
15 

60 03C SD Uninitialized  Interrupt  Vector 

16-23' 
64 

04C SD (Unassigned,  reserved) 95 

05F 
- 

24 

96 060 SD Spunous  Interrupt 

25 
100 

064 
SD Level  1  Interrupt  Autovector 

26 
104 068 SD Level  2  Interrupt  Autovector 

27 

108 
06C SD Level  3  Interrupt  Autovector 

28 112 070 
SD Level  4  Interrupt  Autovector 

29 

116 

074 
SD Level  5  Interrupt  Autovector 

30 
120 078 

SD Level  6  Interrupt  Autovector 

31 124 
07C 

SD 

Level  7  Interrupt  Autovector 

32-47 

128 

080 SD TRAP  Instruction  Vectors 

191 
OBF 

- 

48-63- 

192 

OCO SD (Unassigned,  reserved) 

255 

OFF 

- 
64-255 256 

100 

SD User  Interrupt  Vectors 

1023 
3FF 

- 

Figure  7-2    Vector  table  (Motorola,  Inc.). 

1024  bytes  of  the  68000's  16M-byte  address  space.  All  vectors  other  than  vector  0 
must  reside  in  supervisor  data  memory.  Vector  0,  which  is  assigned  to  the  hardware 
reset  function,  must  be  stored  in  supervisor  program  memory. 

The  hexadecimal  address  at  which  each  vector  is  located  in  memory  is  also 
provided  in  the  table  of  Fig.  7.2.  The  address  of  the  most  significant  word  of  any 
vector  can  be  determined  by  multiplying  its  vector  number  by  4.  For  instance,  vector 

8  is  stored  starting  at  address  4,q  x  8,q  =  32, q  =  000020, g. 
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All  of  the  low-numbered  vectors  serve  special  functions  of  the  68000 
microcomputer  system.  Examples  are  the  bus  error  exception  vector  at  address 

000008 15,  address  error  exception  vector  at  OOOOOC,g,  CHK  instruction  vector  at 

00001 8, g,  and  spurious  interrupt  vector  at  OOOOeOjg.  Within  this  group  we  also  find 
a  small  number  of  reserved  vector  locations.  For  instance,  vectors  12  through  14  are 

unassigned  and  reserved  for  future  use. 

The  next  group,  vectors  25  through  31  at  addresses  000064, ^  through  OOOOTCj^, 
is  dedicated  to  what  are  known  as  the  autovector  interrupts.  They  are  followed  by 

the  trap  instruction  vectors  in  the  address  range  000080,6  through  OOOOBF,^  and  some 
more  reserved  vector  locations.  The  last  192  vectors,  which  are  said  to  be  user 

definable,  are  used  for  the  external  hardware  interrupts. 

Since  the  addresses  that  are  held  in  this  table  are  defined  by  the  programmer, 

the  corresponding  exception  service  routines  can  reside  anywhere  in  the  68000's  16M- 
byte  address  space. 

Example  7.1 

At  what  address  is  the  vector  for  TRAP  #5  stored  in  the  memory?  If  the  service  routine 

for  this  exception  is  to  start  at  address  010200,^,  what  will  be  the  stored  vector? 

Solution.     The  TRAP  ttS  instruction  corresponds  to  vector  number  37.  Therefore,  its 
address  is  calculated  as 

4,0  X  37,0  =  148,0  =  000094,, 

The  vector  address  010200, ,  is  broken  into  two  words  for  storage  in  memory.  These 
words  are 

Most  significant  word  =  0001, , 

Least  significant  word  =  0200, , 

They  get  stored  as 

000 l,g    at  address  000094, g 

0200,,     at  address  000096,^ 

7.4  EXCEPTION  PRIORITIES 

The  exception  processing  of  the  68000  is  handled  on  a  priority  basis.  The  priority 
level  of  an  exception  or  interrupt  function  determines  whether  or  not  its  operation 

can  be  interrupted  by  another  exception.  In  general,  the  68000  will  acknowledge  a 

request  for  service  by  an  exception  only  if  there  is  no  other  exception  already  in 

progress  or  if  the  requesting  function  is  at  a  higher-priority  level  then  the  currently 
active  exception. 

Figure  7.3  shows  that  the  exception  functions  are  divided  into  three  basic  priority 

groups  and  then  assigned  additional  priority  levels  within  these  groups.  Here  group 

0  represents  the  highest-priority  group.  It  includes  the  exception  functions  of  external 
events  such  as  reset  and  bus  error,  as  well  as  the  internal  address  error  detection 



External  Hardware  Interrupts 

Group Exception 
Processing 

0 

Reset 

Bus  Error 

Address  Error 

Exception  processing  begins 

within  two  clock  cycles 

1 

Trace 

Interrupt 

Illegal 

Privilege 

Exception  processing  begins  before 
the  next  instruction 

2 

TRAP.  TRAPV, 
CHK. 

Zero  Divide 

Exception  processing  is  started  by 

normal  instruction  execution Figure  7-3    Exception  priority  groups 
(Motorola,  Inc.). 

condition.  Within  group  0,  reset  has  the  highest  priority.  It  is  followed  by  bus  error 
and  address  error  in  that  order. 

Exception  functions  from  group  0  always  override  an  active  exception  from 
group  1  or  group  2.  Moreover,  a  group  0  function  does  not  wait  for  completion  of 
execution  of  the  current  instruction;  instead,  it  is  initiated  at  the  completion  of  the 
bus  cycle  that  is  in  progress. 

The  next-to-highest  priority  group,  group  1,  includes  the  external  hardware 
interrupts  and  internal  functions:  trace,  illegal/unimplemented  opcode,  and  privilege 
violation.  In  this  group,  trace  has  the  highest  priority  and  it  is  followed  in  order  of 
descending  priority  by  external  interrupts,  illegal/unimplemented  instruction,  and 
privilege  violation. 

In  all  four  cases  in  group  1,  exception  processing  is  initiated  with  the  completion 
of  the  current  instruction.  If  a  group  1  exception  is  in  progress,  its  service  routine 
can  be  interrupted  only  by  a  group  0  exception  or  another  exception  from  group  1 
with  higher  priority.  For  instance,  if  an  interrupt  service  routine  is  in  progress  when 
an  illegal  instruction  is  detected,  the  interrupt  service  routine  will  run  to  completion 
before  service  is  initiated  for  the  illegal  opcode. 

Group  2  is  the  lowest-priority  group  and  its  exceptions  will  be  interrupted  by 
any  group  0  or  group  1  exception  request.  This  group  includes  the  software  exception 
functions,  TRAP,  TRAPV,  CHK,  and  divide  by  zero.  These  exceptions  differ  from 
those  in  the  other  groups  in  that  they  are  initiated  through  execution  of  an  instruction. 
Therefore,  there  are  no  individual  priority  levels  within  group  2. 

Let  us  assume  that  a  TRAP  exception  is  in  progress  when  an  external  device 
requests  service  using  an  interrupt  input.  In  this  case  the  hardware  interrupt  is  of 
higher  priority.  Therefore,  the  trap  routine  is  suspended  and  execution  resumes  with 
the  first  instruction  of  the  interrupt  service  routine. 

7.5  EXTERNAL  HARDWARE  INTERRUPTS 

The  first  type  of  68000  exception  that  we  shall  consider  in  detail  is  the  external 
hardware  interrupts.  The  external  hardware  interrupt  interface  can  be  considered  to 
be  a  special-purpose  input  interface.  It  allows  the  68000  to  respond  quickly  and 
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efficiently  to  events  that  occur  in  its  external  hardware.  Through  it,  external  devices 
can  signal  the  68000  whenever  they  need  to  be  serviced.  For  this  reason,  the  processor 
does  not  have  to  dedicate  any  of  its  processing  time  for  checking  to  determine  which 
of  the  external  devices  needs  service.  For  example,  the  occurrence  of  a  power  failure 
is  typically  detected  by  an  external  power  failure  detection  circuit  and  signaled  to 
the  microprocessor  as  an  interrupt. 

The  General  Interrupt  Interface 

Figure  7.4  shows  the  general  interrupt  interface  of  the  68000.  Here  we  have  shown 
the  signals  that  are  involved  in  the  interface  and  see  that  some  circuitry  is  required 
to  interface  external  devices  to  the  interrupt  request  inputs  of  the  68000.  Notice  that 
as  many  as  192  unique  devices  could  apply  interrupt  requests  to  the  68000.  However, 
few  applications  require  this  many. 

CO 

> 

:>
 

c 

Intemipt 
interface circuitry 

Figure  7-4    General  interrupt  interface. 

Let  us  now  look  just  briefly  at  the  function  of  each  of  the  signals  involved  in 
the  interrupt  interface.  First  we  find  that  three  address  lines,  A,  through  Aj,  are  in 
use.  They  carry  an  interrupt  priority  number  that  is  output  during  the  interrupt 
acknowledge  bus  cycle.  The  logic  level  of  AS  signals  external  circuitry  when  this  code 

is  available  at  A3A2A1.  Accompanying  this  priority-level  number  is  the  interrupt 
acknowledge  (lACK)  function  code  at  outputs  FC2  through  FCq. 

During  the  interrupt  acknowledge  bus  cycle,  external  circuitry  must  return  an 

8-bit  vector  number  to  the  68000.  Data  bus  lines  Dq  through  D7  are  used  to  input 
this  vector  number.  The  external  device  signals  that  the  vector  number  is  available 
on  the  bus  with  the  data  transfer  acknowledge  (DTACK)  signal.  R/W  and  LDS 
control  the  direction  and  timing  of  data  transfer  over  the  bus. 
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External  devices  must  issue  a  request  for  service  to  the  68000.  The  external 
interrupt  request  inputs  of  the  68000  are  labeled  IPLj,  IPL,,  and  IPLq.  The  code  OOOj 
at  these  inputs  represents  no  interrupt  request.  On  the  other  hand,  a  nonzero  input 
represents  an  active  interrupt  request. 

External  Hardware  Interrupt  Priorities 

The  external  hardware  interrupts  of  the  68000  have  another  priority  scheme  within 
their  group  1  priority  assignment.  The  number  of  priority  levels  that  can  be  assigned 
is  determined  by  the  number  of  interrupt  inputs.  As  shown  in  Fig.  7.5,  for  three 
interrupt  inputs  we  get  seven  independent  priority  levels.  They  are  identified  as  1 
through  7  and  correspond  to  interrupt  codes  IPLjIPLjIPLq  equal  001  j  through  lllj, 
respectively.  Here  7  represents  the  highest  priority  level  and  1  the  lowest  priority  level. 

Priority  Level 

Interrupt  Code           1 
IPL2 

IPL, 
IPLo 

None 

1 

2 

3 

4 

5 

6 

7 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

Figure  7-5    External  interrpul  priorities. 

The  external  interrupt  circuitry  can  be  designed  to  allow  a  large  number  of 
devices  to  respond  at  each  of  these  interrupt  levels.  It  is  for  this  reason  that  we  have 
identified  192  external  devices  in  Fig.  7.4.  Any  number  of  these  192  devices  can  be 
assigned  to  any  one  of  the  interrupt  levels.  Moreover,  additional  external  priority 
logic  circuitry  can  be  added  to  prioritize  the  interrupts  into  192  unique  priority  levels. 

Interrupt  Mask 

Bits  8  through  10  in  the  system  byte  of  the  status  register  are  used  as  a  mask  for 
the  external  hardware  interrupts.  Figure  7.6  shows  that  these  bits  are  labeled  Ig 
through  I2,  respectively.  Only  active  interrupts  with  a  priority  level  higher  than  the 
current  value  of  the  mask  are  enabled  for  operation.  Those  of  equal  or  lower  priority 
level  are  masked  out. 

When  the  68000  is  reset  at  power-up,  the  mask  is  automatically  set  to  lllj. 
This  disables  interrupts  from  occurring.  For  the  interrupt  interface  to  be  enabled, 
the  mask  must  be  modified  to  a  lower  priority  level  through  software.  For  instance, 
it  could  be  set  to  OOOj.  This  would  enable  all  interrupts  for  operation. 

Whenever  a  higher-priority  interrupt  occurs,  the  mask  is  automatically  changed 
so  that  equal-  or  lower-priority  interrupts  are  masked  out.  For  instance,  with  initiation 
of  a  level  5  interrupt  it  is  changed  to  IOI2.  This  masks  out  from  level  5  down  through 
level  1. 
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System  Byte                            User  Byte 

'fs          13               10          8^                  4 

. ,?: IT^^SJV^^V^I^^^^ 

M^l 
Interrupt 

Mask 

Figure  7-6    Interrput  mask  bits  in  the 
status  register  (Motorola,  Inc.)- 

The  level  7  interrupt  request  code  is  not  actually  masked  out  with  the  interrupt 
mask.  Even  if  the  mask  is  set  to  11  Ij,  it  remains  enabled.  For  this  reason,  it  can 
be  used  to  implement  a  nonmaskable  interrupt  for  the  68000  microcomputer  system. 

7.6  GENERAL  INTERRUPT  PROCESSING  SEQUENCE 

Whenever  the  code  at  interrupt  inputs  IPL2IPL,IPLq  is  nonzero,  an  external  device 
is  requesting  service.  It  is  said  that  an  interrupt  is  pending.  At  the  completion  of  the 
current  instruction,  the  68000  compares  this  code  to  the  contents  of  the  interrupt 

mask,  I2I1I0  '"  ̂ ^^^  1^  through  8  of  the  status  register.  If  the  priority  level  of  the 
active  request  is  higher  than  that  already  in  the  mask,  the  request  for  service  is 
accepted.  Otherwise,  execution  continues  with  the  next  instruction  in  the  currently 
active  exception  processing  service  routine. 

Upon  accepting  the  exception  service  request,  the  68000  initiates  a  sequence  by 
which  it  passes  control  to  the  service  routine  located  at  the  address  specified  by  the 

interrupt's  vector.  First,  the  contents  of  the  status  register  are  temporarily  saved.  Next, 
the  S-bit,  bit  13,  of  the  status  register  is  set  to  1  and  the  T-bit,  bit  15,  is  cleared  to 
0.  They  enable  the  supervisor  mode  of  operation  and  disable  the  trace  function, 
respectively.  Then  interrupt  mask  I2I1I0  'S  set  to  the  priority  level  of  the  interrupt 
request  just  granted. 

Now  the  68000  initiates  an  interrupt  acknowledge  (lACK)  bus  cycle.  The 
sequence  of  events  that  occur  during  this  bus  cycle  are  summarized  in  Fig.  7.7(a) 
and  are  shown  by  waveforms  in  Fig.  7.7(b).  Here  we  see  that  it  first  signals  external 
devices  that  service  has  been  granted.  It  does  this  by  outputting  the  interrupt  code 
of  the  device  to  which  service  was  granted  on  address  bus  lines  A;  through  A3  and 
then  makes  control  signals  R/W  =  1,AS  =  0,  and  LDS  =  0.  When  R/W  =  land 
LDS  =  0,  a  byte  of  data  will  be  transferred  over  data  bus  lines  Dq  through  D7.  At 
the  same  time,  it  outputs  the  interrupt  acknowledge  function  code.  This  code  is 

FC2FC1FC0  equal  to  111.  In  this  way,  it  tells  the  external  circuitry  which  priority- 
level  interrupt  is  being  processed. 

In  response  to  the  interrupt  acknowledge  function  code,  the  external  device  that 

corresponds  to  the  interrupt  code  on  A,  through  A3  must  put  an  8-bit  vector  number 
on  data  bus  lines  Dq  through  D7.  Then  it  must  switch  DTACK  to  logic  0  to  signal 
the  68000  that  the  vector  number  is  available  on  the  bu^The  68000  reads  the  vector 
number  off  the  bus  and  then  returns  both  LDS  and  AS  to  logic  1 . 

I 
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Request  Interrupt 

Grant  Interrupt 

1)    Compare  interrupt  level  in  status  register 

and  wait  for  current  instruction  to  complete 

21    Place  interrupt  level  on  Al,  A2,  A3 

3)  Set  R/W  to  read 

4)  Set  function  code  to  interrupt  acknowledge 

5)  Assert  address  strobe  (ASJ   
6)  Assert  lower  data  strobe  ILDSI 

Provide  Vector  Number 

1)    Place  vector  number  of  D0-D7          
21    Assert  data  transfer  acknowledge  IDTACK) 

Acquire  Vector  Number 

1)    Latch  vector  number 

21    Negate  LPS 

3)    Negate  AS 

11    Negate  DTACK 

,   I 

Start  Interrupt  Processing 

Figure  7-7(a)    lACK  bus  cycle  flowchart 
(a)  (Motorola,  Inc.). 

It  is  this  8-bit  code  that  tells  the  68000  which  of  the  devices  associated  with 
the  active  interrupt  level  is  requesting  service.  Notice  in  Fig.  7.2  that  not  all  of  the 
256  vectors  in  the  table  are  to  be  used  with  the  user-defined  external  hardware 
interrupts.  Only  the  192  vectors  from  vector  64  through  255  should  be  used  for  this 
purpose. 

Finally,  the  interrupt  knowledge  bus  cycle  is  completed  when  the  external  device 
returns  DTACK  to  the  1  logic  level. 

Next,  the  68000  pushes  the  current  contents  of  its  program  counter  onto  the 
top  of  the  supervisor  stack.  Since  PC  is  24  bits  long,  it  requires  two  words  of  stack 
and  takes  two  write  bus  cycles.  Then  the  contents  of  the  old  status  register,  which 
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were  saved  earlier,  are  also  pushed  to  the  supervisor  stack.  It  takes  just  one  word 
of  memory  and  is  accomplished  with  one  write  cycle. 

Now  the  address  of  the  interrupt's  vector,  which  the  68000  calculates  from  the 
interrupt  vector  number,  is  put  on  the  address  bus.  The  value  at  this  address  in  the 
vector  table  is  read  over  the  data  bus  and  loaded  into  PC.  It  takes  two  read  bus  cycles 

to  fetch  the  complete  vector.  During  the  first  bus  cycle,  the  most  significant  word 
is  carried  over  the  bus  and  during  the  second  bus  cycle,  the  least  significant  word. 
The  68000  now  has  the  new  address  at  which  it  begins  executing  the  routine  that 
services  the  interrupt. 

A  return  from  exception  (RTE)  instruction  must  be  included  at  the  end  of  the 
service  routine.  Its  execution  initiates  return  of  software  control  to  the  original 

program  environment. 
Figure  7.8  shows  how  the  68000  internally  generates  a  vector  address  from  an 

8-bit  vector  number.  As  shown  in  Fig.  7.8(a),  the  vector  number  was  read  off  of  the 
lower  eight  data  bus  lines,  Dg  through  D7.  First,  the  68000  multiples  the  vector 
number  by  4.  This  is  done  by  performing  a  shift  left  by  two  bit  positions.  Then  it 
fills  the  upper  14  bits  with  Os  to  form  a  24-bit  address.  This  gives  the  address  shown 
in  Fig.  7.8(b),  which  points  to  the  vector  in  the  table. 

Ignored 
v7 

v6 v5 

v4 

v3 v2 

v1 

vO 
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v7  IS  the  MSB  of  the  Vector  Number 
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All  Zeroes 
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v4 

., 

u2 

vl 

vQ 

0 0 

Figure  7-8    (a)  Vector  for  address  generation  (Motorola,  Inc.);  (b)  generated  address 
(Motorola,  Inc.). 

7.7  GENERAL  INTERRUPT  INTERFACE  OF  THE  68000 

The  block  diagram  of  Fig.  7.9  illustrates  the  type  of  circuitry  needed  to  support  a 
general  interrupt  interface  for  the  68000  microcomputer  system.  This  circuit  has  192 

interrupt  request  inputs,  which  are  labeled  IRQq  through  IRQ19,.  These  inputs  are 
synchronized  by  latching  them  into  an  interrupt  latch  circuit. 

The  192  outputs  of  the  interrupt  latch  circuit  are  applied  to  inputs  of  the  interrupt 
absolute  priority  encoder  circuit.  Here  they  are  prioritized  and  encoded  to  produce 
an  8-bit  output  code  which  identifies  the  highest-priority  active  interrupt  request.  These 
codes  are  in  the  range  IRQq  equal  to  00000000-,  =  0,q  to  IRQ191  equal  to 
10111111,6  =   191,0- 



Exception  Processing  of  the  68000  Microprocessor  Chap.  7 

IRQ191  IRQO 

500  ns 
Delay 

1-  •  •  -1 
Interrupt 

>LE         Latches 

•      •      •      • 

interrupt 

Absolute  Prioritv 

Encoder 

Vector 

Number 

\7 
Three-State 

Vector  Number 

      Latch  »2 OE 

<3=' 

sz IPLO 

IPLl 
IPL2 

^ 

MC68000 
Interrupt 

Encoder 

A 
D  Flip-Flops 

To  Sync  Inputs 

to  8  MHz  Clock 

IXC68000  Only) 

A 

Figure  7-9    Typical  general  interrput  interface  circuit  (Motorola,  Inc.)- 

Remember  that  in  the  vector  table  of  Fig.  7.2,  the  vectors  assigned  to  the  user- 
defined  external  interrupts  are  in  the  range  64  through  255,  not  0  to  191.  For  this 
reason,  the  priority  codes  that  are  produced  by  the  encoder  circuit  must  be  displaced 
by  64  before  they  are  applied  to  the  data  bus  of  the  68000  during  the  lACK  bus  cycle. 

The  circuit  labeled  add  64  is  provided  for  this  purpose.  It  simply  adds  64  to  the  8-bit 
code  at  its  input. 
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The  output  of  the  add  64  circuit,  which  is  the  correct  vector  number,  is  latched 

into  the  three-state  output  vector  number  latch  circuit.  Notice  that  the  outputs  of 
this  latch  are  enabled  by  lACK.  In  this  way,  the  vector  number  is  put  on  data  bus 
lines  Dq  through  D7  only  during  the  interrupt  acknowledge  bus  cycle.  At  all  other 
times,  the  outputs  of  the  latch  are  in  the  high-Z  state. 

Up  to  this  point,  we  have  just  described  the  part  of  the  interrupt  interface  circuit 
that  is  used  to  generate  the  vector  number.  But  at  the  same  time,  another  circuit  path, 
which  includes  the  interrupt  encoder  and  synchronization  flip-flops,  must  produce 
an  interrupt  request  to  the  68000. 

Notice  that  the  interrupt  absolute  priority  encoder  circuit  outputs  a  7-bit  code 
in  addition  to  the  8-bit  priority  code.  The  7-bit  code  is  input  to  the  interrupt  encoder 
circuit.  In  this  code,  just  one  bit  is  set  to  0  and  it  identifies  the  priority  level  of  the 
interrupt  request.  In  response,  the  encoder  produces  a  3-bit  request  code  for  this 
priority  level  at  its  output.  This  code  is  latched  onto  the  IPLj  through  IPLq  inputs  of 
the  68000,  where  it  represents  an  interrupt  request. 

7.8  AUTOVECTOR  INTERRUPT  MECHANISM 

In  68000  microcomputer  systems  that  do  not  require  more  than  seven  interrupt  inputs, 
a  modified  interrupt  interface  configuration  can  be  used.  This  interface  decreases 
the  amount  of  external  support  circuits  and  at  the  same  time  shortens  the  response 
time  from  interrupt  request  to  initiation  of  the  service  routine.  This  simplified  interrupt 
mechanism  uses  what  is  known  as  the  autovector  mode  of  operation. 

The  autovector  interrupt  interface  is  shown  in  Fig.  7. 10.  It  simphfies  the  interface 
requirements  between  external  devices  and  the  68000.  In  this  case,  external  hardware 
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Figure  7-10   Autovector  interrput  interface. 
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need  just  recognize  the  lACK  function  code  at  FC2FC1FC0  and  respond  by  switching 
VPA  to  logic  0.  This  signals  the  68000  to  follow  its  autovector  interrupt  sequence. 

When  using  autovector  exception  processing,  the  source  of  the  interrupt  vector 

is  determined  in  a  different  way.  Instead  of  external  circuitry  supplying  an  8-bit  vector 
number  on  D7  through  Dq,  the  68000  generates  the  vector  address  internally  from 
the  interrupt  request  code  IPL2IPL1IPLQ  and  the  address  of  the  service  routine  is 
fetched  from  the  autovector  section  of  the  vector  table  in  Fig.  7.2.  In  this  way,  we 
see  that  the  interrupt  acknowledge  sequence  is  shortened.  This  is  the  reason  that  the 
response  time  between  interrupt  request  and  entry  of  the  service  routine  is  decreased. 

As  an  example,  assume  that  autovector  interrupt  request  code  IOI2  is  applied 
to  IPL,  through  IPLq.  Looking  at  the  table  in  Fig.  7.2,  we  see  that  vector  29  is  fetched 

from  a'ddresses  000074,6  and  000076,6  and  loaded  into  the  PC  of  the  68000. 

7.9  AUTOVECTOR  INTERFACE  SUPPORT  CIRCUIT 

Now  that  we  have  introduced  the  autovector  interrupt  mechanism  of  the  68000,  let 
us  look  at  a  simple  circuit  that  can  be  used  to  implement  the  external  hardware 
interface. 

The  circuit  of  Fig.  7.11  can  be  used  to  implement  the  autovector  interface  in 
a  68000  microcomputer  system.  Here  we  find  the  seven  interrupt  request  inputs 
identified  as  level  1  through  level  7.  The  logic  levels  at  these  inputs  are  latched  into 
the  74LS273  octal  latch  synchronously  with  the  CLK  signal  from  the  68000.  This 
latch  is  provided  to  synchronize  the  application  of  interrupt  inputs  to  the  priority 
encoder. 

Interrupt  requests  must  be  prioritized  and  encoded  into  a  3-bit  interrupt  request 
code  for  input  to  the  68000.  This  is  done  by  the  74LS348  8-line  to  3-line  priority 
encoder.  Notice  that  the  inputs  of  this  device  are  active  low,  with  input  7  corresponding 

to  the  highest-priority  input  and  0  to  the  lowest-priority  input.  The  binary  code 
corresponding  to  the  highest-priority  active  input  is  output  at  AjAiAq.  This  interrupt 
code  is  latched  in  a  74LS175  latch  and  its  outputs  applied  to  the  iPLj  through  IPLq 
inputs  of  the  68000. 

In  addition  to  this  interrupt  request  code  interface  circuit,  another  circuit  is 
required  to  support  the  autovector  interrupt  interface.  This  circuit  is  required  to  detect 
the  lACK  code  when  it  is  output  by  the  68000  and  in  response  assert  the  VPA  signal. 
Typically,  this  is  done  by  the  function  decoder  circuit  of  the  68000  microcomputer 
system.  Alternatively,  a  single  three-input  NAND  gate  can  be  used. 

7.10  EXCEPTION  INSTRUCTIONS 

The  instruction  set  of  the  68000  includes  a  number  of  instructions  that  use  the 

exception  processing  mechanism.  They  differ  from  the  hardware-initiated  exceptions 
that  we  have  covered  up  to  this  point  in  that  they  are  initiated  as  the  result  of  the 



a.      fi.     0- 

o    o   o 

^ o    o    o    a 

_1  5  i. 

^ 

Q      Q      Q      Q 

i; 

<S    (S    6   I   L 

<    <     <  o     S 

^ 

Q     Q     O     p     Q     O     O 

ao'C/ooo'    oc 

In, 

r-      00 

-}  ̂     -I 

sjndui  )dnu3)ui 



250  Exception  Processing  of  the  68000  Microprocessor         Chap.  7 

68000  executing  an  instruction.  Some  of  these  instructions  maice  a  conditional  test 
to  determine  whether  or  not  to  initiate  exception  processing. 

There  are  five  such  instructions.  They  are  trap  (TRAP),  trap  on  overflow 
(TRAPV),  check  register  against  bounds  (CHK),  signed  divide  (DIVS),  and  unsigned 
divide  (DIVU).  The  operation  of  these  instructions  is  summarized  in  Fig.  7.12.  Let 
us  now  look  at  the  exception  processing  for  each  of  these  instructions  in  more  detail. 

Instruction Condition 
Operation 

TRAP#n None Trap  sequence  using  trap  vector  n 

TRAPV 
V=  1 

Trap  sequence  using  TRAPV  vector 

CHK  EA,Dn Dn  <  0  or  Dn  >  (EA) Trap  sequence  using  CHK  vector 

DIVS  EA,Dn 

(EA)  =  0 

Trap  sequence  using  zero  divide  vector 
DIVU  EA,Dn 

RTE Return  from  exception  routine  to  the 
program  in  which  exception  occurred 

Figure  7-12    Exception  instructions. 

Trap  Instruction— TRAP 

The  TRAP  instruction  can  be  considered  to  be  the  software  interrupt  instruction  of 
the  68000.  It  permits  the  programmer  to  perform  a  vectored  call  of  an  exception  service 
routine.  We  can  call  this  routine  the  trap  service  routine  and  it  is  typically  used  to 
perform  vectored  subroutine  calls  such  as  supervisory  calls. 

The  trap  instruction  is  simply  written  as 

TRAP     #n 

Here  n  represents  the  trap  vector  number  that  is  to  be  used  to  locate  the  starting  point 
of  the  exception  processing  routine  in  program  memory.  Looking  at  the  vector  table 

in  Fig.  7.2,  we  see  that  the  24-bit  starting  addresses  for  the  trap  instructions  are  located 
at  addresses  in  the  range  OOOO8O15  through  OOOOBF,^.  This  gives  a  total  of  32  words 
of  memory  allocated  to  storage  of  trap  vectors.  Since  each  vector  requires  two  words 
of  memory,  there  is  room  for  16  vectors,  which  correspond  to  instructions  TRAP 
m  through  TRAP  #15. 

For  instance,  the  most  significant  word  of  the  vector  for  TRAP  #0  is  held  at 
000080, g  and  its  least  significant  word  at  000082, g.  Execution  of  the  TRAP  #0 
instruction  causes  the  24-bit  value  stored  at  these  locations  to  be  loaded  into  the  PC 
of  the  68000.  Therefore,  program  execution  resumes  with  the  first  instruction  of  the 
TRAP  #0  service  routine. 

Let  us  look  more  closely  at  the  series  of  events  that  takes  place  to  pass  control 
to  the  exception  service  routine  of  a  trap  instruction.  After  the  68000  executes  the 
trap  instruction,  it  first  saves  the  current  contents  of  its  status  register  in  a  temporary 

holding  register.  Then  the  S-bit  of  SR  is  set.  This  enables  the  supervisor  system 
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environment.  Next,  bit  T  of  SR  is  cleared  to  disable  the  trace  mode  of  operation. 
Now  the  68000  preserves  the  current  program  environment  such  that  it  can  be 

reentered  at  completion  of  exception  processing.  It  does  this  by  pushing  the  current 
contents  of  PC  onto  the  supervisor  stack.  This  value  of  PC  points  to  the  instruction 
following  the  TRAP  instruction  that  just  initiated  exception  processing.  Then  the 
status  word  is  pushed  onto  the  supervisor  stack. 

We  are  now  ready  to  enter  the  exception  service  routine.  The  address  of  the 
trap  vector  is  automatically  calculated  by  the  68000  from  the  trap  number.  The  trap 
vector  is  read  from  this  location  and  loaded  into  PC.  Execution  picks  up  with  the 
first  instruction  of  the  service  routine. 

Notice  that  just  the  old  PC  and  SR  are  automatically  saved  on  the  supervisor 
stack  by  the  exception-processing  mechanism.  Frequently,  the  exception  service  routine 

will  require  use  of  the  68000's  data  or  address  registers.  For  this  reason,  their  contents 
may  also  be  saved  on  the  stack.  The  68000  does  not  have  PUSH  or  POP  instructions 
for  this  purpose.  Instead,  its  MOVE  instruction  is  used  to  perform  these  types  of 
operations.  For  example,  the  instruction 

MOVE.L     DO,-(SP) 

will  effectively  push  the  32-bit  contents  of  Dg  onto  the  top  of  the  supervisor  stack. 
Typically,  this  is  done  with  the  first  few  instructions  of  the  service  routine. 

Just  as  for  interrupts,  the  return  mechanism  of  the  TRAP  instruction  is  the 
return  from  exception  (RTE)  instruction.  Execution  of  this  instruction  at  the  end  of 
the  service  routine  causes  the  saved  values  of  PC  and  SR  to  be  popped  from  the 
supervisor  stack.  Prior  to  executing  the  RTE  instruction,  the  contents  of  any  additional 
registers  saved  on  the  stack  must  also  be  popped  back  into  the  68000.  Again,  this 
can  be  done  with  the  MOVE  instruction.  For  example, 

MOVE.L     (SP)-(-,D0 

causes  the  32-bit  value  at  the  top  of  the  stack  to  effectively  be  popped  into  register  Dg. 

TRAPV,  CHK,  and  DIVU/DIVS  Instructions 

The  rest  of  the  exception  instructions  initiate  a  trap  to  an  exception  service  routine 
only  upon  detection  of  an  abnormal  processing  condition.  For  instance,  the  trap  on 
overflow  (TRAPV)  instruction  checks  overflow  bit  V,  bit  1  of  the  status  register, 
to  determine  whether  or  not  an  overflow  has  resulted  from  execution  of  the  previous 
instruction.  If  V  is  found  to  be  set,  an  overflow  has  occurred  and  exception  processing 
is  initiated  with  an  overflow  service  routine.  In  this  case  control  is  passed  to  the 
overflow  service  routine  pointed  to  by  the  TRAPV  vector  at  addresses  00001C|g  and 
00001  E,g  of  the  vector  table.  On  the  other  hand,  if  V  is  not  set,  execution  continues 
with  the  next  sequential  instruction  in  the  program. 

The  check  register  against  boundaries  (CHK)  instruction,  as  its  name  implies, 
can  determine  if  the  contents  of  a  register  lie  within  a  set  of  minimum/maximum 
values.  The  minimum  value  (boundary)  is  always  0000, g.  On  the  other  hand,  the 
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maximum  value  (boundary),  MMMMjg,  is  specified  as  a  source  operand  and  can 
reside  in  an  internal  register  or  a  location  in  external  memory. 

An  example  is  the  instruction 

CHK     #$5A,D0 

Here  register  Dq  contains  the  parameter  under  test  and  $5A  is  the  maximum 
boundary.  If  during  execution  of  the  instruction,  the  contents  of  Dg  are  found  to 
be  within  the  range  0000)^  to  the  value  5A,g,  the  parameter  is  within  bounds  and 
exception  processing  is  not  initiated.  On  the  other  hand,  if  it  is  negative  or  greater 
than  5A,g,  it  is  out  of  bounds  and  exception  processing  is  initiated.  The  change  in 
program  environment  is  to  the  address  defined  by  vector  6  at  addresses  OOOOlSi^  and 
OOOOIA,^  in  the  vector  table. 

The  last  two  exception  instructions,  DIVU  and  DIVS,  cause  a  trap  to  a 
service  routine  if  the  division  they  perform  involves  a  divisor  equal  to  zero.  This 
divide-by-zero  exception  is  initiated  through  the  vector  at  addresses  000014,^  and 
000016... 

7.11   BUS  ERROR 

It  is  possible  with  the  asynchronous  bus  of  the  68000  to  get  into  a  situation  where 
a  bus  cycle  is  not  completed.  This  would  be  due  to  the  fact  that  the  data  acknowledge 
(DTACK)  signal  is  not  received  by  the  68000.  If  this  happens,  execution  of  the  current 
instruction  would  not  be  completed;  instead,  the  MPU  would  be  hung  up  at  the 
instruction.  This  represents  what  is  known  as  a  bus  error  condition. 

To  resolve  this  problem,  bus  error  exception  capability  is  provided  on  the  68000. 
This  exception  provides  a  way  of  assuring  that  bus  cycles  initiated  by  the  68000  are 
carried  through  to  completion.  The  bus  error  condition  is  not  detected  automatically 
by  the  68000  itself;  instead,  it  must  be  detected  with  external  circuitry  and  signaled 
to  the  68000.  External  logic  would  do  this  by  switching  the  BERR  (bus  error)  input 
of  the  68000  to  logic  0.  In  fact,  BERR  and  HALT  can  be  used  together  to 
automatically  rerun  bus  cycles  that  resuh  in  a  bus  error. 

Remember  that  earlier  we  indicated  that  the  only  exception  with  higher-priority 
than  the  bus  error  function  is  reset.  Therefore,  the  bus  error  exception  takes  precedence 
and  occurs  as  long  as  the  reset  exception  is  not  already  in  progress.  Moreover,  we 
found  that  it  does  not  wait  for  the  completion  of  the  current  instruction  before  it 
is  initiated.  This  is  also  important  because  when  a  bus  error  occurs,  execution  of  the 
instruction  that  is  in  progress  will  not  be  completed. 

When  BERR  is  switched  to  the  0  level,  the  MPU  aborts  the  current  bus  cycle 
and  initiates  exception  processing.  A  change  in  program  environment  is  initiated  to 
a  service  routine  for  the  bus  error  condition.  The  location  of  this  service  routine  is 

defined  by  vector  2  in  the  table  of  Fig.  7.2.  Execution  of  this  service  routine  can 
attempt  to  correct  the  bus  error  by  rerunning  the  bus  cycle  or  signal  its  occurrence 
by  displaying  or  printing  information  such  as  the  address  at  which  the  error  occurred 
and  the  type  of  bus  cycle  that  was  in  progress. 



An  example  of  a  type  of  circuit  that  can  be  used  to  determine  whether  or  not 
bus  cycles  are  completed  is  a  watchdog  timer.  This  timer  can  be  started  as  each  bus 

cycle  is  initiated  and  then  the  68000's  bus  control  signals  observed  to  assure  that  the 
cycle  is  completed  before  a  maximum  period  of  time  has  elapsed.  If  the  timer  times 
out  before  the  bus  cycle  is  finished,  the  circuit  sets  BERR  to  logic  0  signaling  the 
68000  of  the  bus  error  condition. 

The  sequence  of  events  by  which  the  68000  passes  control  to  the  bus  error 
exception  service  routine  is  almost  the  same  as  that  described  earlier  for  the  TRAP 
instruction.  For  this  reason,  we  will  just  look  at  how  they  differ. 

The  only  difference  between  the  two  exception-processing  control  transfer 
sequences  is  that  several  additional  parameters  are  pushed  to  the  supervisor  stack 
in  the  case  of  a  bus  error.  Figure  7.13  shows  this  information  and  the  order  in  which 
they  are  put  onto  the  stack.  Notice  that,  again,  SR  and  PC  are  pushed  to  the  stack. 
But  this  time  they  are  followed  by  the  first  word  of  the  instruction  that  was  in  progress 
when  the  bus  error  occurred,  the  address  used  in  the  bus  cycle  that  resulted  in  the 
bus  error,  and  a  special  access-type  error  word. 

IS        14        13        12 

1  1 

10 9         8         7         6 5 4 3         2 
1          0 

Lower  address Access  error  word 

High 

Low 

Instruction  register 

Status  register 

High 

Low 

Figure  7-13    Informalion  pushed  to  the  stack  during  a  bus  error  exception  (Motorola, 
Inc.). 

In  Fig.  7.14  we  have  shown  the  implemented  bits  of  the  error  word  and  their 
meanings.  Just  5  bits  are  in  use.  Bit  4  identifies  whether  the  bus  cycle  that  was  aborted 
due  to  the  bus  error  condition  was  a  read  or  a  write  cycle.  It  is  reset  if  the  bus  cycle 
was  for  a  write  operation  and  is  set  if  it  was  for  a  read  operation. 

15        14        13       12        11        10        9         8  7         6  5         4          3  2  1  0 

Tr/wI  I/N  I   Function  code    I 

Figure  7-14    Access  error  word  (Motorola,  Inc.). 

The  next  bit,  bit  3,  indicates  whether  the  bus  cycle  was  related  to  normal 
instruction  execution  or  exception  processing.  Logic  0  represents  instruction  execution 
and  logic  I  means  exception  processing.  The  68000  considers  the  occurrence  of  a  bus 
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error  for  any  group  2  exception,  that  is,  during  the  execution  of  an  exception 
instruction,  to  be  a  normal  instruction  execution  bus  error.  For  this  reason,  bit  3 

is  set  to  logic  0  for  this  type  of  occurrence. 

The  last  3  bits  are  used  to  store  the  code,  FC2FC,FCo,  that  was  output  on  the 
function  code  bus  during  the  bus  error  cycle.  This  code  tells  what  type  of  memory 

reference  was  in  process  when  the  bus  error  took  place,  that  is,  whether  user  or 

supervisor  memory  was  being  accessed  or  if  it  was  an  interrupt  acknowledge  reference. 
The  bus  error  service  routine  can  access  this  bus  error  information  in  the  stack. 

In  this  way,  it  can  identify  the  type  of  error  made  and  initiate  an  appropriate  response 

in  an  attempt  to  recover  from  the  condition  or  simply  signal  that  the  error  condition 
has  occurred. 

Example  7.2 

If  the  access-type  error  word  pushed  to  the  stack  as  the  result  of  a  bus  error  condition 
is  0005 ]g,  what  type  of  bus  cycle  was  in  progress  when  the  error  occurred? 

Solution.  To  identify  how  the  bus  error  bits  are  set,  let  us  first  express  the  error  word 
in  binary  form.  This  gives 

0005, g  =  OOOOOOOOOOOOOlOlj 

Looking  at  bit  4,  we  see  that  it  is  set  to  0.  This  stands  for  a  write  cycle.  Bit  3  is  also 
0  and  means  that  a  normal  instruction  was  being  executed  when  the  error  took  place. 

Finally,  the  function  code  that  was  output  for  the  bus  cycle  was  lOlj  or  5jg.  This 
represents  an  access  of  supervisor  data  memory.  Thus  the  bus  error  occurred  when  the 
68000  was  writing  to  supervisor  data  memory. 

7.12  RESET  EXCEPTION 

Typically,  a  microcomputer  system  must  be  reset  either  at  power-up  or  to  recover 
from  a  system  failure  condition.  An  example  of  a  system  failure  thai  may  require 

a  reset  to  be  performed  is  the  bus  error  condition  we  discussed  in  the  preceding  section. 
A  reset  will  cause  the  microcomputer  to  be  initialized. 

The  RESET  line  is  provided  on  the  68000  for  initiating  initialization.  Actually, 
RESET  is  a  bidirectional  line  that  provides  for  68000  initialization  when  a  reset  signal 

is  applied  to  it  by  the  external  hardware,  and  system  initialization  when  the  68000 

applies  a  reset  signal  to  external  hardware.  Let  us  look  first  at  its  operation  for  68000 

initialization.    

A  reset  exception  at  power-up  is  initiated  by  switching  the  RESET  input  of  the 
68000  to  the  0  logic  level.  It  must  be  maintained  at  this  level  for  a  minimum  of  100 

ms.  Earlier  we  indicated  that  reset  is  the  highest-priority  exception  function.  Therefore, 
its  exception  processing  sequence  is  always  initiated  and  cannot  be  interrupted  by 
any  of  the  other  exception  functions. 

The  reset  exception  processing  sequence  begins  just  like  other  exception 

processing  sequences,  with  the  S-bit  of  the  status  register  being  set  and  the  T-bit  being 
cleared.  This  puts  the  68000  in  the  supervisor  mode  and  disables  its  trace  function. 

But  this  is  where  the  similarity  ends.  Next,  the  interrupt  mask  bits  of  the  status  register, 
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bits  8  through  10,  are  all  set  to  1.  This  makes  the  interrupt  mask  equal  to  7,  which 
is  the  highest-priority  level,  and  masks  out  all  external  interrupts  other  than  level 
7  (nonmaskable  interrupt),  preventing  them  from  being  serviced. 

It  is  at  this  point  in  the  control  transfer  sequence  of  an  exception  that  the  contents 
of  the  status  register  and  program  counter  should  be  pushed  to  the  stack.  However, 
when  the  MPU  is  being  reinitialized,  control  would  never  be  returned  to  the  program 
environment  that  existed  prior  to  the  reset.  Therefore,  the  reset  sequence  does  not 
save  these  values  on  the  stack.  Instead,  it  initiates  automatic  loading  of  the  internal 

supervisor  stack  pointer  (SSP)  register  and  program  counter  from  supervisor  program 
memory  and  supervisor  data  memory,  respectively. 

First,  the  SSP  register  is  loaded  with  vector  0  at  addresses  000000|g  and 
000002, g.  This  defines  a  supervisor  stack  in  supervisor  data  memory.  Next,  PC  is 
loaded  with  vector  1  at  addresses  000004, f,  and  000006, ^  and  then  execution  begins 
with  the  first  instruction  of  the  reset  exception  service  routine. 

The  reset  exception  service  routine  is  normally  a  power-up  routine  for  the 

microcomputer  system.  It  is  used  to  initialize  all  of  the  system's  resources.  For  instance, 
it  could  clear  the  MPU's  internal  data  and  address  registers,  load  its  user  stack  pointer 
(USP)  register,  and  modify  the  contents  of  the  system  byte  of  the  status  register  to 
enable  interrupts. 

The  output  function  of  RESET  is  initiated  through  software  by  the  RESET 
instruction.  When  a  RESET  instruction  is  executed  by  the  68000,  its  internal  registers 
are  not  affected;  instead,  the  RESET  line  is  set  to  act  as  an  output  and  a  pulse  is 
generated.  The  pulse  produced  at  RESET  is  to  the  0  logic  level  and  has  a  duration 
of  124  clock  periods.  This  pulse  can  be  applied  to  the  reset,  clear,  or  preset  inputs 

of  external  devices,  such  as  LSI  peripherals  or  flip-flops,  to  initialize  their  operation. 
The  reset  instruction  can  be  included  as  part  of  the  power-up  service  routine. 

In  this  way,  external  devices  can  be  initialized  and  then  their  internal  registers  loaded 
to  configure  their  mode  of  operation. 

7.13  INTERNAL  EXCEPTION  FUNCTIONS 

The  68000  also  has  a  number  of  internally  initiated  exception  functions.  In  fact,  it 
has  four  such  functions:  address  error,  privilege  violation,  trace,  and 
illegal/unimplemented  opcode  detection.  We  will  look  next  at  each  of  these  internal 
exception  functions  in  detail. 

Address  Error  Exception 

In  Chapter  6  we  discussed  how  data  are  organized  in  the  memory  of  a  68000 
microcomputer  system.  At  that  time,  we  pointed  out  that  instructions,  words  of  data, 
and  long  words  of  data  all  must  always  reside  at  even-address  boundaries.  However, 
software  can  be  written  that  incorrectly  attempts  to  access  one  of  these  types  of 
information  from  an  odd-address  boundary.  It  is  to  detect  and  correct  for  this  error 
condition  that  the  address  error  feature  is  provided  on  the  68000. 
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Address  error  detection  does  not  have  to  be  done  with  external  circuitry  as  we 
saw  earUer  for  bus  error  detection.  Instead,  this  capability  is  built  within  the  68000 
as  an  internal  exception  function.  Whenever  an  attempt  is  made  to  read  or  write 
word-wide  data  from  an  odd-address  boundary,  the  68000  automatically  recognizes 
the  memory  access  as  an  address  error  condition.  Upon  detection,  the  exception 
processing  sequence  is  initiated  and  control  is  passed  to  the  address  error  exception 
service  routine.  This  routine  can  attempt  to  correct  the  error  condition,  or  if  correction 
is  not  possible,  its  occurrence  can  be  signaled  in  some  way.  For  instance,  the  address 
and  type  of  access  could  be  displayed  on  a  panel  of  LEDs. 

The  control  transfer  sequence  that  takes  place  for  address  error  exceptions  is 
identical  to  that  performed  for  the  bus  error  condition.  As  mentioned  in  Section  7.11, 
the  information  pushed  to  the  stack  includes  the  contents  of  SR  and  PC,  the  first 

word  of  the  current  instruction,  the  address  that  was  in  error,  and  an  access-type 
error  word.  The  format  of  the  access-type  error  word  saved  on  the  stack  during  an 
address  error  exception  is  identical  to  that  shown  for  the  bus  error  in  Fig.  7.14. 
One  difference  is  that  vector  3  instead  of  vector  2  is  used  to  locate  the  service  routine. 

As  shown  in  Fig.  7.2,  this  vector  resides  at  addresses  OOOOOC,g  and  OOOOOE,^  of  the 
vector  table. 

Privilege  Violation  Exception 

In  earlier  chapters,  we  found  that  the  68000  has  the  ability  to  easily  implement  a 
user /supervisor  microcomputer  system  environment  and  that  the  state  of  operation 
can  be  selected  under  software  control.  The  importance  of  this  capability  lies  in  that 
it  permits  certain  system  resources  to  be  accessible  only  by  the  supervisor.  In  this 
way,  it  provides  a  level  of  security  in  the  system  design. 

Another  internal  exception  feature  of  the  68000  that  we  have  not  yet  considered 
gives  it  the  ability  to  identify  when  a  user  attempts  to  use  a  supervisor  resource.  These 
illegal  accesses  are  referred  to  as  privilege  state  violations. 

Remember  that  the  S-bit  in  the  system  byte  of  the  status  register  determines 
whether  the  68000  is  in  the  user  state  or  the  supervisor  state.  For  instance,  when  S 
is  set  to  logic  0,  the  user  state  of  operation  is  selected.  The  user  state  is  the  lower 
security  level.  Switching  S  to  logic  1  under  software  control  puts  the  microprocessor 
at  the  higher  security  level  or  supervisor  state. 

When  in  the  supervisor  state,  the  68000  can  execute  all  of  the  instructions  of 
its  instruction  set.  However,  when  in  the  user  mode,  certain  instructions  are  considered 
privileged  and  cannot  be  executed.  For  example,  instructions  that  AND,  OR,  or 
exclusive-OR  an  immediate  word  operand  with  the  contents  of  the  status  register  are 
not  permitted.  Any  attempt  to  execute  one  of  these  privileged  instructions,  while  in 
the  user  state,  results  in  a  privileged  state  violation  exception.  The  privilege  violation 
exception  service  routine  can  signal  the  occurrence  of  the  violation  and  provide  a 
means  of  recovery. 

\ 
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Figure  7.2  shows  that  the  privilege  mode  violation  uses  vector  8  at  addresses 
000020,6  and  000022,6  of  the  vector  table. 

Trace  Exception 

The  68000  has  a  trace  option  that  allows  for  implementation  of  the  single-step  mode 
of  operation.  Just  like  the  privileged  state,  this  option  can  be  enabled  or  disabled 
under  software  control  by  toggling  a  bit  in  the  status  register.  Trace  is  controlled 
by  the  T-bit  in  the  system  byte  of  SR.  Trace  is  turned  on  by  setting  T  to  logic  1  and 
turned  off  by  clearing  it  to  0. 

When  trace  mode  is  enabled,  the  68000  initiates  a  trace  exception  through  vector 
9  at  completion  of  execution  of  each  instruction.  This  exception  routine  can  pass 

control  to  a  monitor  that  allows  examination  of  the  MPU's  internal  registers  or 
external  memory.  This  type  of  information  is  necessary  for  debugging  software.  The 
monitor  can  also  be  used  to  initiate  execution  of  the  next  instruction.  In  this  way, 
the  instructions  of  the  program  can  be  stepped  through  one  after  the  other  and  their 
operations  verified. 

Illegal/Unimplemented  Instructions 

The  last  internal  exception  function  of  the  68000  is  its  illegal /unimplemented 
instruction  detection  capability.  This  feature  of  the  68000  permits  it  to  detect 
automatically  whether  or  not  the  opcode  fetched  as  an  instruction  corresponds  to 
one  of  the  instructions  in  the  instruction  set.  If  it  does  not,  execution  is  not  attempted; 

instead,  the  opcode  is  identified  as  being  illegal  and  exception  processing  is  initiated. 
This  illegal  opcode  detection  mechanism  permits  the  68000  to  detect  errors  in  its 
instruction  stream. 

Occurrence  of  an  illegal  opcode  initiates  a  change  of  program  context  through 
the  illegal  instruction  vector,  vector  4  in  the  table  of  Fig.  7.2.  The  exception  service 
routine  that  gets  initiated  can  signal  the  occurrence  of  the  error  condition. 

The  unimplemented  instruction  concept  is  an  extension  of  the  illegal  instruction 
detection  mechanism  by  which  the  instruction  set  of  the  68000  can  be  expanded.  It 
lets  us  use  two  ranges  of  unused  opcodes  to  define  new  instructions.  They  correspond 

to  all  opcodes  of  the  form  FXXX,6  and  AXXXjg.  Here  the  X's  stand  for  don't-care 
digits  and  can  be  any  hexadecimal  numbers. 

Whenever  an  opcode  of  the  form  FXXXjg  is  detected  by  the  68000,  control 
is  passed  to  an  exception-processing  routine  through  vector  1 1  at  addresses  00002C|6 
and  00002E,6  of  the  exception  vector  table.  The  service  routine  pointed  to  by  this 
vector  should  be  a  macroinstruction  emulation  routine  for  the  new  instruction.  For 

example,  floating-point  arithmetic  or  double-precision  arithmetic  emulation  routines 
could  be  implemented.  The  emulation  routine  is  written  and  debugged  in  assembly 
language  and  then  stored  in  main  memory  as  machine  code.  To  use  the  new  instruction 
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in  a  program,  we  just  insert  this  opcode,  FXXXjg,  as  an  instruction  statement. 

As  shown  in  Fig.  7.2,  the  other  unimplemented  instruction  opcode,  AXXXj^, 

vectors  out  of  addresses  000028i6  and  OOOOZAj^. 

ASSIGNMENT 

Section  7.2 

1.  What  are  the  different  types  of  exceptions  available  on  the  68000? 

Section  7.3 

2.  Where  in  memory  must  the  exception  vector  table  be  stored? 

3.  The  illegal  instruction  exception  service  routine  starts  at  address  SBOOO.  Show  where  and 
how  its  vector  will  be  stored  in  the  exception  vector  table. 

Section  7.4 

4.  If  the  service  routine  for  TRAPV  is  in  progress  when  an  external  interrupt  occurs,  what 

happens? 

Section  7.5 

5.  What  is  the  highest  priority  level  for  external  hardware  interrupts? 

6.  If  the  interrupt  mask  value  is  5  when  the  68000  receives  an  external  hardware  interrupt 

request  with  code  lOOj,  will  the  request  be  acknowledged  or  ignored? 
7.  Write  an  instruction  to  load  the  interrupt  mask  with  the  value  01 1,  without  changing  any 

of  the  other  bits  in  the  status  register.  Assume  that  the  68000  is  in  the  supervisor  state. 

Section  7.6 

8.  Give  an  overview  of  the  events  that  take  place  during  the  lACK  bus  cycle. 

Section  7.7 

9.  Overview  the  response  of  the  circuit  in  Fig.  7.9  to  an  active  IRQ50  input. 

Sections  7.8  and  7.9 

10.  Overview  the  operation  of  the  autovector  interrupt  interface  circuit  in  Fig.  7. 1 1  when  a 
level  2  request  for  service  is  received. 

Section  7.10 

11.  Show  the  general  structure  of  a  TRAP  service  routine.  Assume  that  the  service  routine 
uses  registers  Dq,  D,,  and  A^. 

12.  Write  an  instruction  sequence  that  will  check  the  index  of  an  array.  The  index  is  stored 
in  memory  location  INDEX  and  the  upper  bound  of  the  array  is  stored  at  UBD. 
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Section  7.1 1 

13.  What  is  a  bus  error  in  the  68000  microcomputer  system? 

14.  Explain  how  a  bus  error  condition  is  handled  by  the  68000. 

Section  7.12 

15.  Write  a  reset  service  routine  that  will  clear  the  data  registers,  address  registers,  and  set 

the  supervisor  stack  pointer  to  SFFFFFE.  Then  branch  to  SAOOO,  where  the  application 
program  begins. 

Section  7.13 

16.  What  internal  exceptions  are  implemented  in  the  68000? 

17.  Explain  what  is  meant  by  an  address  error  exception. 

18.  What  happens  when  the  unused  opcode  FlOO,^  is  encountered  during  instruction 
execution? 



8 The  Hardware 
OF  THE  MC68000 
Educational  Microcomputer 

8.1  INTRODUCTION 

In  the  previous  two  chapters,  we  presented  in  detail  the  memory,  I/O,  and  interrupt 
interfaces  of  the  68000  microprocessor  and  its  microcomputer  system.  In  this  chapter, 
we  will  examine  how  these  interfaces  are  implemented  in  a  simple  microcomputer 

system.  The  microcomputer  used  for  this  purpose  is  that  employed  in  Motorola's 
MC68000  educational  microcomputer  board.  The  topics  presented  in  the  chapter  are: 

1.  The  microcomputer  of  the  MC68000  educational  microcomputer  board 

2.  Clock  generator  circuitry 

3.  Interrupt  interface 

4.  Program  storage  memory 

5.  Data  storage  memory 

6.  Parallel  I/O— the  68230 

7.  Serial  I/O— the  6850 

8.2  THE    MICROCOMPUTER    OF    THE    MC68000    EDUCATIONAL 

MICROCOMPUTER  BOARD 

The  circuitry  of  the  MC68000  educational  microcomputer  board  represents  the 
implementation  of  a  complete  68000-based  microcomputer  system.  A  block  diagram 
of  this  microcomputer  is  shown  in  Fig.  8.1.  The  heart  of  the  microcomputer,  the 
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Figure  8-1    Block  diagram  of  the  MC68000  educational  microcomputer. 

MPU,  is  an  68000L4  microprocessor.  It  is  this  device  that  performs  the  arithmetic, 
logic,  and  control  operations. 

The  operation  of  the  microprocessor  and  other  devices  in  the  microcomputer 
system  are  synchronized  by  the  clock  signals  produced  by  the  clock  generator  section. 
The  68000  microprocessor  in  this  microcomputer  is  set  up  to  operate  at  a  frequency 
of  4  MHz. 

The  program  memory  section  stores  the  instructions  of  the  monitor  program. 
Program  memory  in  the  MC68000  educational  microcomputer  is  implemented  with 
PROMs  and  has  a  total  storage  capacity  of  16K  bytes.  Use  of  PROMs  makes  the 
program  storage  nonvolatile.  That  is,  the  monitor  program  is  maintained  within  the 
PROMs  even  when  power  is  removed  from  the  system.  The  program  that  is  run  on 
the  MC68000  educational  microcomputer  is  called  the  Tutor  monitor.  The  68000 
fetches  the  instructions  of  the  monitor  program  over  the  system  bus  and  executes  them. 

Data  that  is  being  processed  by  the  microcomputer  are  stored  in  the  data  memory 
section.  For  instance,  during  the  execution  of  an  instruction,  the  68000  accesses  source 

or  destination  operands  that  reside  in  data  memory  over  the  system's  bus.  This  section 
of  memory  is  implemented  with  4116  dynamic  RAMs  and  is  64K  bytes  in  size.  This 
part  of  the  memory  subsystem  is  actually  volatile;  therefore,  any  information  stored 
in  it  is  lost  when  power  is  turned  off. 
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Figure  8-2    68000  Educational  Microcomputer  Board  Schematic  Diagram  (Motorola,  Inc.).   SH  1  of  3 
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When  using  the  educational  microcomputer  to  enter,  execute,  and  debug  68000 
assembly  language  programs,  the  instructions  of  the  program  are  stored  and  executed 
from  data  storage  memory,  not  from  program  memory.  This  permits  the  program 
to  be  loaded  and  modified  by  the  user  from  the  keyboard.  Only  the  Tutor  monitor 
program  resides  in  program  storage  memory. 

The  microcomputer  in  the  educational  microcomputer  also  has  a  number  of 
I/O  resources.  Looking  at  the  block  diagram  in  Fig.  8. 1 ,  we  see  that  there  is  a  parallel 
I/O  section  and  RS-232C  serial  communication  ports. 

The  parallel  I/O  section  of  the  microcomputer  provides  24  individual  I/O  lines. 
This  part  of  the  I/O  interface  is  implemented  with  the  68230  parallel  interface/timer 
device  and  can  be  configured  under  software  control  to  work  as  inputs  or  outputs 
and  with  a  variety  of  different  modes  of  operation.  These  parallel  I/O  ports  are 
designed  to  interface  to  a  parallel  printer  (Centronics  interface)  and  a  tape  recorder. 

The  serial  communication  ports  permit  a  CRT  terminal  to  be  connected  to  the 
microcomputer  and  also  provide  for  connection  to  a  host  computer.  The  serial  ports 
are  implemented  with  6850  asynchronous  communications  interface  adapters. 

The  keyboard  of  the  terminal  allows  the  user  to  input  information  to  the 
microcomputer.  For  example,  in  Chapter  5,  we  showed  that  monitor  commands  such 
as  DU  or  DF  are  issued  from  the  keyboard.  Commands  like  these  allow  the 
programmer  to  modify  the  contents  of  data  memory,  single  step  executive  programs, 
and  implement  program  debug  operations  by  giving  the  ability  to  examine  the  contents 
of  registers  or  memory. 

The  terminal,  which  connects  to  one  of  the  RS-232C  ports,  is  also  an  output 
device.  On  the  screen,  it  provides  the  user  with  a  visual  representation  of  data  related 
to  the  monitor  commands  that  are  entered  through  the  keyboard.  For  instance,  as 
the  MM  command  is  used  to  enter  a  byte  of  data,  the  current  contents  of  the  memory 
location  are  first  displayed  and  then  the  new  value  is  displayed  digit  by  digit  as  it 
is  entered  from  the  keyboard.  Similarly,  when  a  DF  command  is  issued  to  examine 

the  contents  of  the  68000's  internal  registers,  their  descriptors  and  contents  are 
displayed. 

Figure  8.2  shows  schematic  diagrams  that  detail  the  circuits  used  to  implement 
each  of  the  functional  blocks  of  the  microcomputer  in  the  MC68000  educational 
microcomputer  board. 

8.3  CLOCK  GENERATOR  CIRCUITRY 

Now  that  we  have  introduced  the  architecture  and  functions  of  the  fundamental  blocks 
in  the  MC68000  educational  microcomputer,  let  us  continue  by  examining  the 
operation  of  the  circuitry  used  to  implement  these  blocks.  We  will  begin  in  this  section 
with  the  clock  generator  circuit.  Figure  8.3  shows  this  segment  of  circuitry. 

Looking  at  Fig.  8.3,  we  find  that  clock  signals  are  generated  by  an  8-MHz  crystal 
controlled  oscillator  and  a  74LS93  binary  counter  IC.  This  circuit  produces  three 
different  frequency  clock  signals — 8  MHz,  4  MHz,  and  1  MHz. 



Interrupt  Interface 

U16 

BMHz 

8  MHz  for  distribution 

to  logic  circuitry 

4  MH2  for  distribution 
to  68000  family 

peripherals 
1  MHz  for  distribution 
to  6800  family 

peripfierals 

Figure  8-3    Clock  generator  circuitry. 

The  8-MHz  clock  is  directly  produced  by  the  crystal  controlled  oscillator  U]^. 
One  use  of  the  8-MHz  output  at  pin  8  of  this  oscillator  is  that  it  is  distributed  to 
control  logic  circuitry  within  the  microcomputer.  Notice  that  the  8-MHz  clock  is  also 
applied  to  the  CKA  input  of  74LS93  counter.  Here  it  is  divided  by  2  to  produce 

a  4-MHz  clock  at  the  QA  output.  This  is  the  clock  signal  that  is  applied  to  the  CLK 
input  at  pin  15  of  the  68000  microprocessor.  In  Fig.  8.3,  we  see  that  the  4-MHz  clock 
is  also  distributed  to  other  parts  of  the  microcomputer  system.  For  instance,  it  is 
required  to  synchronize  the  operation  of  all  68000  family  LSI  peripherals.  For  this 
reason,  one  place  that  it  is  supplied  is  to  the  68230  PI/T  device. 

The  4-MHz  clock  signal  is  also  supplied  to  the  CKB  input  of  the  74LS93.  CKB 
is  the  input  to  the  other  three  stages  of  the  counter.  It  is  divided  by  2  to  produce 
the  QB  output,  by  4  to  give  the  QC  output,  and  by  8  to  give  the  QD  output.  Notice 

that  just  the  divide-by-4  output  (1  MHz)  at  pin  8  of  U,;  is  in  use.  This  1-MHz  clock 
is  required  by  6800  family  LSI  peripherals  within  the  microcomputer  system,  such 
as  the  6850  ACIA. 

8.4  INTERRUPT  INTERFACE 

The  interrupts  of  the  MC68000  educational  microcomputer  can  be  categorized  into 
three  groups:  the  reset  interrupt,  the  nonmaskable  interrupt,  and  the  maskable 

hardware  interrupts.  The  circuitry  needed  to  support  these  three  parts  of  the  68000's 
interrupt  interface  is  shown  in  Fig.  8.4.  In  this  section,  we  will  examine  the  operation 
of  the  interrupt  interface  circuits  for  each  of  these  interrupts. 

Reset  Interrupt 

The  reset  interrupt  is  used  to  initialize  the  operation  of  the  68000  microcomputer 

at  power-up.  This  section  of  circuitry  is  located  in  the  upper  left  corner  of  the  circuit 
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Figure  8-4    Interrupt  interface  circuitry. 
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diagram  of  Fig.  8.4  and  consists  of  a  reset  flip-flop  constructed  from  two  of  the  AND 
gates  on  the  74LS00  IC  U44  and  a  monostable  and  multivibrator  formed  with  the 
MC3456  timer  IC  U42. 

The  monostable  multivibrator  circuit  is  used  to  initialize  the  complete 

microcomputer  system  at  power  on.  When  the  power  switch  is  turned  on,  capacitor 
C26,  which  is  connected  from  pin  8  of  U42  to  ground,  acts  like  a  short  circuit  to 
ground  and  forces  the  trigger.  (TRG)  input  of  the  MC3456  timer  to  logic  0.  This 
causes  the  OP  output  at  pin  9  to  switch  to  the  1  logic  level.  As  time  elapses,  €25 
charges  toward  the  1  logic  level  threshold  of  the  TRG  input.  As  it  exceeds  this  value, 
the  OP  output  returns  to  the  0  logic  level.  In  this  way,  we  see  that  a  single  pulse  to 

the  1  logic  level  is  produced  at  the  timer's  OP  output. 
The  pulse  output  at  OP  is  buffered  with  7405  inverts  to  give  signals:  power  on 

reset  (POR),  halt  (HALT),  and  reset  (RESET).  RESET  is  applied  to  both  the  68000 
microprocessor  and  the  68230  parallel  interface/timer  IC.  As  it  switches  to  logic  0, 

the  operation  of  these  devices  is  initialized.  Initialization  causes  the  S  bit  in  the  68000's 
status  register  to  be  set  and  the  T  bit  to  be  cleared.  In  this  way,  it  is  put  into  the 
supervisor  mode  and  the  trace  mode  of  operation  is  disabled.  Then  the  interrupt  mask, 
which  is  also  in  the  status  register  of  the  68000,  is  set  to  7.  This  masks  out  all  external 
hardware  interrupts.  Moreover,  the  supervisor  stack  pointer  register  is  loaded  with 
vector  0  from  addresses  OOOOOOig  and  000002,5.  ̂ ^^^  creates  a  supervisor  stack  in 
data  memory.  Next  the  program  counter  is  loaded  with  vector  1  (actually  the  second 

half  of  vector  0)  from  addresses  000004[g  and  000006ig.  The  new  value  of  PC  points 
to  the  beginning  of  the  Tutor  firmware  package  in  program  memory. 

At  the  same  time,  the  pulse  at  OP  produces  a  pulse  to  logic  0  at  POR.  This 

stands  for  power  on  reset  and  is  used  to  initialize  some  of  the  on-board  logic  circuits. 
For  instance,  it  is  used  to  clear  or  preset  a  number  of  flip-flop  circuits. 

Notice  that  the  HALT  signal  is  also  generated  from  OP  at  power-on.  It  is  apphed 
to  the  HALT  input  at  pin  17  of  the  68000.  This  halts  the  operation  of  the  MPU  and 

lights  the  LED  labeled  CR3  to  indicate  this  fact.  As  the  reset  pulse  is  completed,  the 
HALT  Hne  of  the  MPU  is  also  released.  Therefore,  the  68000  begins  execution  of 
the  Tutor  program.  The  early  part  of  this  program  is  an  initialization  routine  for 

the  microcomputer's  resources.  For  instance,  it  causes  initial  values  to  be  loaded  into 
the  internal  registers  of  the  68000  MPU  as  well  as  the  68230  and  6850  LSI  peripherals. 

Besides  this,  it  causes  all  storage  locations  in  the  microcomputer's  data  storage  memory 
to  be  initialized. 

The  microcomputer  can  also  be  reset  without  turning  off  the  main  power.  This 
is  done  by  depressing  the  reset  switch  on  the  microcomputer  board.  Looking  at  Fig. 
8.4,  we  find  that  the  reset  switch  is  the  input  of  the  reset  flip-flop.  Notice  that  this 
flip-flop  is  formed  from  two  NAND  gates  of  IC  U44.  When  the  switch  is  depressed, 
the  output  of  the  flip-flop  at  pin  6  of  U44  is  set  to  1  and  as  it  is  released  the  output 
is  reset  to  0.  The  reset  pulse  output  at  pin  6  is  inverted  by  U43P  and  applied  to  the 
reset  inputs  of  the  68000  and  68230.  This  reset  mechanism  represents  what  is  called 
a  warm  start  and  does  not  cause  the  POR  or  HALT  outputs  to  be  produced. 

i 
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Maskable  Hardware  Interrupts 

The  next  part  of  the  interrupt  interface  that  we  will  look  at  is  the  part  that  provides 
what  are  called  maskable  hardware  interrupts.  By  hardware  interrupt,  we  mean  that 
it  represents  a  device  external  to  the  68000  microprocessor  that  requests  service  by 
the  MPU  by  asserting  a  hardware  signal  called  an  interrupt  request.  By  maskable 
interrupt,  we  mean  that  the  interrupt  input  is  accepted  on  a  priority  basis.  That  is, 
when  a  device  issues  a  request  for  service  to  the  MPU  by  issuing  an  interrupt  request, 
the  68000  first  compares  its  priority  to  the  setting  of  the  interrupt  mask  in  the  status 
register.  If  the  value  already  in  the  mask  is  that  of  an  equal  or  higher  priority  interrupt, 
the  request  for  service  is  ignored.  Otherwise,  the  request  for  service  is  granted. 

In  Fig.  8.4,  the  74LS148  priority  encoder  U40  and  74LS273  interrupt  latch  U4,, 
which  are  located  just  to  the  left  of  the  MPU,  as  well  as  all  of  the  circuitry  located 
to  the  right  of  the  MPU  are  used  to  implement  the  maskable  interrupt  interface.  The 
circuitry  on  the  left  is  for  input  of  interrupt  requests.  Notice  that  there  are  five 
maskable  hardware  interrupt  inputs:  TOUT,  PIRQ,  6800IRQ,  ACIIRQ,  and  AC2IRQ. 
Figure  8.5  Hsts  the  priority  level,  function,  and  autovector  number  for  each  of  these 
interrupts.  For  instance,  AC2IRQ  stands  for  asynchronous  communications  controller 
2  interrupt  request.  It  has  a  priority  level  of  6  and  uses  autovector  30  at  address 

000078 [g  to  define  the  starting  point  of  its  service  routine. 

Signal 
Priority 

AutoVector 
Mnemonic Level Function Number 

ABORT 7 Abort  logic  request 

31 

AC2IRQ 6 Asynchronous  communication 

30 
5 

controller  2  request 

Asynchronous  communication 

29 

ACIIRQ 

4 
controller  1  request 

6800  device  request 28 6800IRQ 
PIRQ 3 Pl/T  parallel  ports  request Not  used 

TOUT 2 Pl/T  timer  request Not  used 
1 Not  used Not  used 

Figure  8-S    Maskable  interrupts. 

Also  notice  in  Fig.  8.5  that  the  TOUT  and  PIRQ  interrupt  requests  are  for  the 
timer  and  parallel  ports  of  the  68230  PI/T  device,  respectively,  and  that  they  do  not 
use  autovector  interrupt  levels.  Instead,  their  interrupt  vectors  are  stored  in  registers 
within  the  PI/T  device  and  are  output  to  the  68000  over  the  data  bus  during  an 
interrupt  acknowledge  bus  cycle. 

Let  us  now  look  at  what  happens  when  an  interrupt  request  becomes  active. 
Assume  that  the  ACIIRQ  input  at  pin  3  of  U4,  has  been  switched  to  logic  0.  This 
means  that  the  6850  device  U,3  in  Fig.  8.2(b)  is  requesting  service.  On  the  next  pulse 
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of  4MHZCLK  (pin  11  of  1)4,),  the  logic  levels  of  the  interrupt  request  inputs  are 
latched  at  the  outputs  of  the  74LS273  interrupt  latch.  The  latched  interrupt  requests 
are  applied  to  inputs  2  through  6  of  the  74LS148  priority  encoder.  Since  just  AC  1  IRQ 
is  active,  only  the  5  input  at  pin  2  of  the  priority  encoder  (U40)  is  at  logic  0.  This 

input  makes  the  encoder  output  equal  to  A2A1AQ  =  101.  This  output  is  returned 
to  inputs  D2  through  D4  of  the  interrupt  latch.  On  the  next  pulse  at  4MHZCLK, 
the  code  is  latched  at  outputs  Q2  through  Q4  and  is  applied  to  the  interrupt  request 
inputs  (1PL2IPL,IPLq)  of  the  microprocessor.        

Earlier  we  pointed  out  that  interrupt  requests,  ABORT,  AC2IRQ,  ACIIRQ, 
and  6800IRQ,  are  serviced  as  autovector  interrupts.  For  this  reason,  when  one  of  them 
is  acknowledged  for  service  by  the  68000,  the  external  logic  circuitry  must  switch  the 
VPA  input  of  the  68000  to  logic  0.  This  signals  the  MPU  that  an  autovector  operation 
is  in  progress.  In  this  case,  it  internally  generates  the  vector  addresses  and  fetches 
the  vector  from  external  memory.  The  circuitry  that  produces  the  VPA  signal  is  located 
to  the  right  of  the  68000  in  Fig.  8.4.           

Let  us  now  look  in  more  detail  at  how  VPA  is  generated.  For  our  earlier  example, 

ACIIRQ,  the  interrupt  code  is  IPLjIPLiIpLq  =  101.  During  the  interrupt 
acknowledge  bus  cycle,  the  interrupt  acknowledge  function  code  1 1 1  is  output  on 
function  code  lines  FC2FC1FC0.  At  the  same  time,  the  interrupt  code  101  is  output 
on  address  lines  A2A,Aq.  Looking  at  the  circuits  in  Fig.  8.4,  we  see  that  the  function 
code  is  gated  together  with  AS  by  the  74LS21  AND  gate  U,9b.  Since  all  of  its  inputs 
are  logic  1,  the  output  at  pin  8  of  the  AND  gate  switches  to  logic  1.  This  output  is 
an  enable  input  to  the  74LS00  NAND  gate  U25D.  Here  it  is  gated  with  the  logic  level 
on  the  A3  address  line.  This  signal  is  also  1;  therefore,  output  VPAIRQ  switches  to 
logic  0  to  indicate  that  the  current  interrupt  bus  cycle  is  to  use  autovectoring.  The 
logic  0  at  VPAIRQ  is  input  to  the  74LS1 1  AND  gate  U45C  at  pin  1 1  and  causes  the 
VPA  input  of  the  68000  to  switch  to  logic  0.  This  completes  the  signaling  sequence 
required  to  initiate  an  autovector  interrupt  response. 

Earlier  we  pointed  out  that  the  parallel  I/O  ports  and  timer  within  the  68230 

device  are  not  serviced  using  autovector  interrupts.  This  is  because  it  has  internal 

vector  registers  that  can  be  programmed  by  the  user  with  a  vector  number.  During 

the  interrupt  acknowledge  bus  cycle,  the  68230  supplies  the  vector  number  to  the  68000 

by  outputting  it  on  data  bus  hnes  Dq  through  D7.  For  instance,  let  us  assume  that 

the  TOUT  interrupt  request  input  is  active.  This  causes  the  code  010  to  be  apphed 
to  the  IPL  inputs  of  the  68000.  As  the  interrupt  acknowledge  bus  cycle  is  initiated, 

the  function  code  FC2FC1FC0  =  1 1 1  is  again  output  and  the  output  at  pin  8  of 
AND  gate  U19B  switches  to  logic  0.  However,  this  time  the  code  output  on  address 
lines  A3  through  A,  is  010.  This  makes  all  inputs  on  NAND  gate  LI, 73  1  and  its 

output,  TIACK  at  pin  8,  switches  to  logic  0.  TIACK  signals  the  68230  that  the  timer's 
request  for  service  has  been  granted  and  that  it  should  put  the  timer's  interrupt  vector 
on  the  bus.  Later  in  the  bus  cycle,  the  68000  reads  the  vector  number  off  the  data 
bus  and  then  passes  control  to  the  address  held  in  this  vector  location. 
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Nonmaskable  Interrupt— ABORT 

The  ABORT  switch,  which  is  located  by  the  RESET  switch  on  the 
microcomputer  board,  when  depressed  causes  software  to  be  returned  to  the  monitor 
program.  For  instance,  if  the  microcomputer  became  hung  up  during  execution  of 

a  user-written  program,  control  can  be  returned  to  the  monitor  by  simply  depressing 
the  ABORT  switch.  The  ABORT  service  routine  does  not  reinitialize  the  MPU,  it  just 
returns  control  to  the  monitor  without  changing  the  contents  of  internal  registers  or 
data  memory. 

The  abort  request  signal  (ABTIRQ)  is  generated  by  a  flip-flop  similar  to  the  one 
described  earlier  in  this  section  for  the  reset  switch.  In  fact,  as  shown  in  Fig.  8.4, 

this  flip-flop  is  made  with  the  other  two  AND  gates  of  IC  U44. 
When  the  ABORT  switch  is  depressed,  the  ABTIRQ,  which  is  output  at  pin  8 

of  U44,  switches  to  logic  0  and  as  it  is  released,  this  output  returns  to  logic  1.  The 
pulse  to  logic  0  at  ABTIRQ  is  applied  to  the  7  input  at  pin  4  of  the  74LS148  priority 
encoder.  This  is  the  highest-priority  input  and  causes  the  code  111  to  be  output  on 
A2A1AQ.  This  code  is  latched  into  the  74LS273  latch  U41  synchronously  with 
4MHZCLK.  From  the  output  of  the  latch,  it  is  supplied  to  interrupt  request  inputs 
IPL2IPL,IPLq  of  the  68000.  Here  code  111  represents  a  nonmaskable  interrupt 
request  and  is  serviced  by  the  routine  pointed  to  by  autovector  interrupt  vector  31 
at  address  000070, g.  When  executed,  this  routine  returns  software  control  to  the 
monitor  program. 

8.5  PROGRAM  AND  DATA  STORAGE  MEMORY 

In  Section  8.4,  we  covered  the  interrupt  interface  of  the  MC68000  educational 
microcomputer.  Here  we  will  continue  with  the  circuitry  used  to  implement  the 
memory  interfaces.  This  represents  three  separate  sections  of  circuitry,  the  program 
storage  memory,  data  storage  memory,  and  the  watchdog  timer. 

Program  Storage  Memory 

Figure  8.6  shows  the  68000  MPU  and  the  program  storage  part  the  MC68000 

educational  microcomputer's  memory  subsystem.  Notice  that  it  involves  three  key 
elements  of  circuitry:  the  ROM  address  decoder,  the  read-only  memories,  and  the 
ROM  DTACK  circuit.  The  storage  array  is  formed  from  two  MC68A364  ROMs. 

These  devices  are  organized  as  8K  x  8-bits  and  are  connected  together  to  give  an 
8K  X  16  bank  of  memory  for  a  total  of  16K  bytes  of  program  storage  memory.  Notice 
that  the  MPU  supplies  address  information  to  both  ROMs  in  parallel  over  address 
lines  A,  through  A, 3.  Device  Ujq  supplies  the  lower  bits  of  the  instruction  word  to 
the  MPU  over  data  bus  lines  Dg  through  Dy,  while  U,,  supplies  it  with  the  upper 
byte  over  Dg  through  D15. 
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Figure  8-6    Program  storage  memory. 
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The  address  map  in  Fig.  8.7  shows  that  ROM  resides  in  two  pages  of  the  68000's 
address  space.  One  part  is  the  page  in  the  address  range  from  008000,^  to  OOBFFFjg. 
It  is  in  this  section  of  memory  that  the  instructions  of  the  Tutor  monitor  program 
are  stored.  The  other  part  of  the  ROM  address  space  is  the  eight  bytes  from  address 

000000,6  through  000007 jg.  This  part  of  memory  stores  the  reset  interrupt  vector. 

Function Type Address 

Exception  vector  table 
ROM 

000000,3  *°  000007, g 
RAM 000008, g  to  0003FF,g 

Tutor  scratchpad RAM 000400, g  to  0008FF,g 

User  memory 
RAM 

000900, g  to  007FFF,g 
Tutor  firmware 

ROM 
008000, g  to00BFFF,g 

Not  used 00C000,g  to  00FFFF,g 
Pl/T I/O 010000, g  to  01003F,g 

ACIA2  (lower  byte) 
I/O 

010040, g  to  010043, g 

ACIAl   (upper  byte) 
Redundant  mapping 

I/O 
010044, g  to  01FFFF,g 

Not  used 020000, g  to  02FFFF,g 

6800  page  (E6) 030000, g  to  03FFFF,g 
Not  used 040000, g  to  FFFFFF,g 

Figure  8-7    Memory  address  map  (Motorola,  Inc.). 

Whenever  an  address  in  these  ranges  is  output  on  address  bus  Hnes  A,  through 

A23,  the  address  decoder  circuit  detects  its  occurrence  and  produces  the  ROM  enable 
(ROMEN)  signal.  ROMEN  is  supplied  by  the  output  of  the  74LS260  NOR  gate  Ujgs- 
For  this  output  to  be  logic  1,  all  of  its  inputs  must  be  logic  0.  Notice  in  Fig.  8.6  that 
switching  ROMEN  to  logic  1  enables  both  the  ROM  DTACK  circuit  and  the  two 
ROM  ICs.    

The  ROM  DTACK  circuit  is  used  to  produce  the  DTACK  ROM  signal  that  tells 
the  MPU  to  complete  asynchronous  bus  cycles  that  are  performed  to  the  program 

memory.  This  circuit  is  actually  a  counter  constructed  from  the  D-type  flip-flops  of 
the  74LS175  IC  U22-  The  flip-flops  on  this  IC  are  connected  to  form  a  4-bit  binary 
counter.  The  CK  input  at  pin  5  of  this  counter  is  supplied  by  the  8-MHz  clock  signal. 
Whenever  a  ROM  bus  cycle  is  not  in  progress,  the  output  of  the  74LS21  AND  gate 

U|9ys^  is  logic  0  and  the  output  of  the  counter  is  cleared.  As  a  memory  bus  cycle  is 
initiated  to  program  memory,  ROMEN  is  switched  to  1  and  the  counter  increments 
toward  a  count  of  1000.  When  this  count  is  reached,  the  Q  output  at  pin  14  switches 
to  the  0  logic  level.  This  makes  the  signal  DTACK  ROM  logic  0  and  the  output  of 
the  74LS11  AND  gate  U24A  signals  the  68000  that  the  bus  cycle  can  be  completed 
by  switching  DTACK  to  logic  0. 

Let  us  now  look  more  closely  at  the  address  decoding  that  takes  place  at  the 
address  decoder  to  produce  the  ROMEN  signal.  Assume  that  the  address  output  on 
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the  address  bus  during  an  instruction  acquisition  bus  cycle  is  008000|g.  Expressing 
this  address  in  binary  form,  we  get 

A23A22.  .  .  .A,  =  00000000 IOOOOOOOOOOOOOO2 

To  make  ROMEN  equal  to  1 ,  this  address  must  cause  all  inputs  to  the  74LS260  NOR 

gate  U29B  logic  0.  Looking  at  this  gate,  we  see  that  its  first  input  is  A|4  and  that 
this  bit  is  at  logic  0  in  the  address.  The  next  input  of  the  gate  is  supplied  by  the  random 

logic  section  of  the  address  decoder.  The  address  inputs  to  this  section  of  circuitry  are: 

A7A6A5A4  =  OOOO2 
which  makes  the  output  at  pin  6  of  the  74LS260  NOR  gate  U37B  equal  to  1, 

A,2A,,A,oA9  =  OOOO2 
which  makes  the  output  at  pin  5  of  NOR  gate  1)37^  equal  to  1,  and 

A,4A,3  =  OO2 
which  makes  the  output  at  pin  10  of  NOR  gate  U33C  equal  to  1 .  These  three  outputs 

are  inputs  from  the  74LS10  NAND  gate  Ujgg-  Since  all^f  its  inputs  are  logic  1,  the 
output  at  pin  6  is  logic  0.  This  signal  is  combined  with  Ajj,  which  is  logic  0,  by  the 
74LS08  AND  gate  U233.  This  output,  which  is  at  pin  6,  gives  a  second  input  of  NOR 

gate  U293,  which  is  also  0.  Next,  R/W,  which  is  at  logic  1  during  read  bus  cycles  of 

program  memory,  is  inverted  by  U33B  to  give  logic  0  at  output  pin  4  and  applied 

to  the  third  input  of  NOR  gate  U29B.  Finally 

Ai8A,7A,6  =  OOO2 

selects  the  Yq  output  at  pin  15  of  the  74LS138  three-line  to  8-line  decoder. 

A23A22A2lA2oA,9   =   OOOOO2 
causes  the  output  at  pin  5  of  U29A  to  switch  to  logic  1  and  supplies  one  of  the  enable 

inputs  at  pin  6  of  U3Q.  AS  =  0  at  pin  4  supplies  the  last  signal  needed  to  enable  the 
decoder  for  operation.  Therefore,  Yq  switches  to  logic  0  to  produce  the  last  input 

of  NOR  gate  U29B.  Since  all  inputs  of  U29B  are  now  at  logic  0,  this  address  causes 
the  ROMEN  output  to  switch  to  the  1  logic  level. 

Data  Storage  Memory 

The  data  storage  memory  interface  of  the  MC68000  educational  microcomputer  is 

quite  different  than  that  just  described  for  program  storage  memory.  Looking  at  Fig. 
8.8,  we  see  that  it  includes  the  address  decoder,  the  RAM  timing/DTACK  circuit, 

the  address  multiplexer,  the  RAM  storage  array,  and  the  RAM  refresh  control  circuit. 

The  RAM  storage  array  is  32K  bytes  in  size  and  is  organized  as  16K  words. 

In  Fig.  8.8,  we  find  that  it  is  formed  with  sixteen  41 16  dynamic  RAM  ICs.  Each  of 

these  devices  is  organized  16K  x  1-bit.  It  is  this  part  of  the  memory  subsystem  that 
is  used  as  a  scratchpad  memory  for  the  Tutor  program  and  to  store  data  and  programs 
that  are  keyed  in  for  execution  and  debugging. 
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Figure  8-8    Data  storage  memory. 
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Figure  8-8  (cont.) 
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The  data  input  (DI)  leads  and  data  output  (DO)  leads  of  the  individual  RAMs 
are  wired  together  and  then  tied  to  the  corresponding  data  bus  lines  of  the  68000. 
For  instance,  DI  and  DO  from  IC  U47  are  connected  together  and  supplied  to  the 
Dq  line  of  the  data  bus. 

Unlike  the  ROMs  used  in  the  program  storage  part  of  the  memory  subsystem, 

these  DRAMs  require  a  muUiplexed  address.  That  is,  a  14-bit  address  is  input  to  the 
address  multiplexer  circuit  over  address  lines  Aj  through  A14  and  under  control  of 
the  RAM  timing/DTACK  circuit,  it  is  multiplexed  into  a  7-bit  row  select  address 
(RAS)  and  7-bit  column  select  address  (CAS).  These  two  parts  of  the  address  are 
output  one  after  the  other  in  time  on  the  RAq  through  RA^  lines  and  applied  to 
address  inputs  Ag  through  Ag  of  all  memory  devices  in  parallel. 

The  application  of  these  two  addresses  are  synchronized  with  the  ROW  address 
select  (RAS)  signal  and  column  address  select  signal,  column  upper  (CU)  and  column 
lower  (CL).  Looking  at  Fig.  8.8,  we  find  that  these  signals  are  applied  to  the  RAS 
and  CAS  inputs  of  the  RAMs,  respectively. 

The  last  control  signal  that  is  applied  to  the  memory  devices  in  the  RAM  storage 
array  is  RAW.  Note  that  it  is  applied  to  the  W  input  of  all  RAM  ICs  in  parallel. 
This  line  is  used  to  signal  to  the  data  storage  memory  subsystem  whether  a  read  or 
write  bus  cycle  is  in  progress. 

The  same  address  decoder  that  we  discussed  relative  to  program  storage  memory 

is  shown  in  Fig.  8.8  to  decode  the  68000's  address  to  give  the  RAM  enable  (RAMEN) 
signal.  Again  address  bits  A3  through  A14  must  all  be  logic  0  to  make  the  output 
at  pin  6  of  U3gg  switch  to  logic  0;  A^  must  be  logic  0,  instead  of  1,  to  make  the 
output  at  pin  6  of  U32C  logic  1;  and  finally  A,g  through  A23  must  equal  0  to  make 
the  Yq  output  at  pin  15  of  U30  equal  to  0.  This  output  is  inverted  by  U32E  to  give 
logic  1  at  the  output  at  pin  11.  Therefore,  all  three  inputs  of  AND  gate  U24C  are 
logic  1  and  RAMEN  switches  to  the  active  1  logic  level. 

RAMEN  does  not  directly  enable  the  memory  array.  Instead,  it  is  applied  along 

with  the  output  of  NAND  gate  U25C  to  inputs  of  AND  gate  U23c-  The  output  of 
U25C  is  generated  from  lower  data  select  (LDS)  and  upper  data  select  (UDS).  If  either 
or  both  of  these  signals  are  logic  0,  the  output  at  pin  8  of  U25C  is  logic  1.  This 
condition  makes  both  inputs  of  U23C  'og'c  1  and  its  output  at  pin  8  switches  to  the 
1  level,  thereby  releasing  the  clear  input  of  the  74LS175  device  (U39).  U39  contains 
four  D-type  flip-flops  that  are  interconnected  to  form  a  4-bit  binary  counter. 
Therefore,  as  CLR  is  released,  the  output  of  the  counter  begins  to  increment  through 

its  count  sequence  synchronously  with  the  8-MHz  clock  signal  that  is  applied  to  its 
CK  input.    

After  the  first  clock  pulse,  output  Q  at  pin  15  is  logic  1.  This  makes  the  RAS 

output  at  pin  13  of  U33D  switch  to  logic  0.  RAS  signals  the  devices  in  the  memory 
array  that  a  row  address  is  available  at  address  inputs  Aq  through  A^.  On  the  next 
clock  pulse,  the  Q  output  at  pin  1 1  of  U39  switches  to  logic  0  and  enables  the  R/W 
signal  to  the  RAW  output  at  pin  8  of  V-^^q  and  signals  the  memory  array  whether 
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data  will  be  read  from  or  written  into  data  memory  during  the  current  bus  cycle. 

The  fourth  clock  pulse  causes  Q  at  pin  6  of  U39  to  switch  to  the  0  logic  level  and 
enables  LDS  and  UDS  to  the  CL  and  CU  outputs,  respectively.  This  tells  the  RAMs 

in  the  memory  array  that  a  column  address  is  applied  at  inputs  Aq  through  A^.  In 
this  way,  we  find  that  the  counter  controls  the  timing  of  memory  bus  control  signals 

RAS,  CU,  CL,  and  RAW.  _ 
As  the  fifth  clock  pulse  occurs,  Q  at  pin  3  of  U39  switches  to  logic  0.  This 

produces  the  signal  DTACK  RAM,  which  is  returned  by  way  of  AND  gate  U-,4^  to 

the  DTACK  input  of  the  68000.  When  the  DTACK  RA"M  input  at  pin  1  of  this  gate switches  to  logic  0,  the  output  at  pin  12  and  DTACK  input  of  the  68000  are  also 

switched  to  logic  0.  This  signals  the  68000  that  the  current  data  memory  bus  cycle 
can  be  completed. 

From  the  memory  map  of  Fig.  8.7  we  see  that  RAM  is  located  from  address 

000008, g  through  007FFF,6.  Notice  that  the  addresses  in  the  range  from  000008,6 
through  0003FF,g  are  used  to  store  exception  vectors.  This  area  of  memory  is 

followed  by  a  2K-byte  segment  of  RAM  at  addresses  000400, ^  through  0008FF,6, 
which  is  used  as  a  scratchpad  by  the  Tutor  program.  The  rest  of  the  RAM,  which 

resides  from  address  000900, g  through  OOTFFF,^,  provides  user  memory  for  storage 
of  programs  and  data.  In  this  way,  we  see  that  RAM  is  located  at  the  lower  part 

of  the  68000's  address  space. 
Now  that  we  know  how  the  W,  RAS,  and  CAS  signals  are  generated  for  the 

RAMs,  let  us  look  more  closely  at  how  the  address  on  A,  through  A,j  is  multiplexed 

to  the  Aq  through  A^  inputs  of  the  RAMs  in  the  RAM  storage  array.  The  address 

multiplexer  is  formed  with  four  dual  4-line  to  1-line  mutliplexer  ICs.  These  are  devices 

U27,  U2g,  U35,  and  U36  in  Fig.  8.8.  Notice  that  address  bits  A,,  A3,  A,,  and  A7  are 
applied  to  the  ICq  inputs  of  the  multiplexer  devices  and  A9,  A,,  and  A, 3  are  applied 

to  their  2C,  inputs.  These  seven  address  bits  form  the  row  address  (RAS)  part  of 
the  memory  address.  Moreover,  we  find  that  address  bits  Ag,  A,o,  A, 2,  and  A, 4  are 

applied  to  the  ICg  inputs  of  the  multiplexer  devices  and  A9,  A,,,  and  A, 3  are  applied 

to  their  2Cq  input.  This  is  the  7-bit  column  address  (CAS)  part  of  the  memory  address. 
The  two  bit  code  applied  to  the  BA  select  inputs  of  the  multiplexer  determines  whether 
the  RAS  or  CAS  part  of  the  address  is  passed  to  the  RA  lines  at  the  outputs  of  the 

multiplexers.  These  outputs  are  supplied  to  address  inputs  Aq  through  A^;  of  all  RAMs 

in  parallel.  For  instance,  when  BA  =  01,  address  bits  A,  through  Ay  are  output  on 
lines  RAq  through  RA7,  respectively.  This  address  is  accompanied  by  a  logic  0  at 
the  RAS  input. 

Now  that  we  have  described  the  operation  of  the  circuits  involved  in  the  memory 

interface,  let  us  trace  through  their  operation  as  the  68000  writes  a  word  of  data  to 

memory.  The  write  bus  cycle  that  is  performed  to  write  data  to  the  data  storage 

memory  begins  with  the  68000  outputting  the  address  of  the  storage  location  that 

is  to  be  accessed  on  address  bus  lines  A,  through  A23.  Then  it  switches  the  AS  output 
to  its  active  0  logic  level.  This  signal  tells  external  circuitry  that  a  valid  address  is 
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available  on  the  bus.  We  will  assume  that  this  address  is  for  a  storage  location  in 
the  data  storage  memory  part  of  the  memory  subsystem. 

At  the  same  time,  the  68000  sets  R/W  to  logic  0  to  signal  that  a  write  bus  cycle 

is  in  progress.  Morever,  it  sets  both  UDS  and  LDS  to  their  active  0  logic  level 

to  signal  that  a  word  data  transfer  is  to  take  place  over  the  data  bus.  Finally,  the 

word  of  data  that  is  to  be  written  into  memory  is  output  on  data  bus  lines  Dq  through 

Address  bits  A3  through  A,5  and  A|g  through  A23  are  decoded  by  the  address 
decoder  circuit.  Since  we  have  assumed  that  the  address  on  the  bus  corresponds  to 

a  storage  location  in  data  memory,  the  RAMEN  output  of  AND  gate  U24C  becomes 

active  (logic  1).  This  makes  the  pin  9  input  of  AND  gate  U23C  logic  1.  At  the  same 

moment,  both  inputs  (LDS  and  UDS)  of  NAND  gate  U25C  are  logic  0;  therefore,  its 

output  switches  to  logic  1.  This  makes  the  other  input  (pin  10)  of  \J2jQ  logic  1  and 
its  output  switches  to  the  1  level.  As  the  output  switches  to  1,  the  CLR  input  of  the 
RAM  timing/DTACK  counter  circuit  is  released. 

Now  the  counter  begins  to  increment  at  a  rate  set  by  the  8  MHz  clock  and  as 

it  increments  through  its  counting  sequence,  signals  RAS,  RAW,  CL,  CU,  and 

DTACK  RAM  are  generated  in  that  order.  When  RAS  is  switched  to  logic  0,  the 

control  input  of  the  address  multiplexer  is  logic  1  and  B  is  logic  0.  This  causes  the 

RAS  part  of  the  address,  A,  through  Ay,  to  be  multiplexed  to  RAq  through  RA-^ 
and  then  applied  to  the  Ag  through  Ag  inputs  of  the  RAMs. 

As  the  counter  continues  to  increment,  the  A  multiplexer  control  signal  is 

switched  to  logic  0,  while  B  remains  at  logic  0.  This  causes  the  CAS  part  of  the  address, 

Ag  through  A14,  to  be  output  on  RAq  through  RAg.  Then  memory  control  signals 
CL  and  CU  are  switched  to  logic  0  to  signal  the  memory  devices  that  the  CAS  address 

is  available  at  their  Aq  through  A5  inputs. 
Each  RAM  IC  inputs  the  bit  of  the  data  word  that  is  applied  to  its  data  input 

(DI)  line  and  stores  the  corresponding  logic  level  into  the  storage  location  selected 

by  the  RAS  and  CAS  address. 

At  this  point,  the  data  has  already  been  written  into  memory.  However,  the 
68000  does  not  yet  know  that  the  bus  cycle  can  be  completed.  But  as  the  RAM 

timing/DTACK  circuit  continues  to  count  it  next  switches  DTACK  RAM  to  logic  0. 

This  signal  is  returned  to  one  input  of  AND  gate  U24A  and  makes  the  output  at  pin 
12  switch  to  logic  0.  This  output  is  applied  directly  to  the  DTACK  input  of  the  68000. 

Switching  DTACK  to  logic  0  signals  the  68000  that  it  can  terminate  the  current  bus 

cycle.  In  response  to  DTACK,  it  returns  outputs  UDS,  LDS,  and  AS  to  their  inactive 

1  logic  level;  R/W  is  returned  to  the  1  logic  level;  and  the  data  word  is  removed  from 

bus  lines  Dq  through  D15.  As  the  counter  continues  to  increment,  DTACK  RAM  is 
returned  to  logic  1.  This  represents  the  end  of  the  write  bus  cycle. 

Example  8.1 

Write  an  instruction  sequence  that  can  be  used  to  clear  Tutor's  scratchpad  memory. 
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Solution.  As  shown  in  Fig.  8.7,  the  Tutor's  scratchpad  RAM  resides  in  the  address 
range  from  000400,^  to  0008FF,5.  This  range  is 

0008FF|g-000400,g+  1  =  500,^  bytes 

=  280|g  words 

=  140|g  long  words 

in  length. 

Let  us  use  A,  as  an  address  pointer  to  the  scratchpad  RAM  and  Dq  as  a  counter 
of  the  number  of  word  addresses  to  be  initialized.  Furthermore,  D,  will  be  loaded  with 
the  value  0,^.  This  is  the  value  that  will  be  written  to  each  word  storage  location  in  the 
scratchpad  RAM.  To  initialize  these  three  registers,  the  following  sequence  of  instructions 
can  be  executed 

MOVE.L       #$400,A1 

MOVE.L       #$280,D0 

MOVE.L       #0,01 

Next  we  need  to  execute  instructions  that  write  the  word  contents  of  D,  (0000, g)  to  the 
memory  location  pointed  to  by  A,;  increment  the  address  in  A,;  decrement  the  count 
in  Dg,  and  test  the  count  in  D^,  to  determine  if  it  is  0.  If  the  value  in  Dq  is  not  0,  the 
data  write,  address  increment,  count  decrement,  and  zero  test  operations  must  be  repeated. 

However,  when  the  count  in  Dq  becomes  equal  to  0,  all  storage  locations  in  the 
scratchpad  RAM  have  been  cleared  and  initialization  is  done.  These  operations  are 
performed  with  the  instruction  sequence  that  follows 

NXT MOVE.W D1,(A1)  + 

SUBQ.L #I,DO 

BNZ NXT 

DONE       B  DONE 

The  complete  program  is  repeated  in  Fig.  8.9. 

NXT 

DONE 

MOVE.L 
MOVE.L 

MOVE.L 

MOVE.W 

SUBQ.L 
BNZ 

B 

#$400,A1 

#$280,  DO 

m,D\ 
D1,(A1)  + 
#1,D0 
NXT 

DONE 
Figure  8-9   Scratchpad  memory 
inilialization  routine. 

Watchdog  Timer  Circuit 

The  68000  system  bus  is  asynchronous.  That  is,  once  a  bus  cycle  is  started,  the  data 

transfer  is  not  complete  until  the  external  circuitry  indicates  that  the  bus  cycle  is  to 

be  finished.  We  have  found  in  our  description  of  the  program  and  data  storage 
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memory  subsystems  that  external  circuitry  is  provided  to  switch  the  DTACK  input  of 
the  68000  to  logic  0.  Notice  in  Fig.  8.10  that  three  different  signals  drive  the  DTACK 
input  through  the  74LS 11  AND  gate  024^-  These  signals,  DTACK  PIT,  DTACK  RAM, 
and  DTACK  ROM,  correspond  to  bus  cycles  initiated  to  the  68230  PI/T  device,  data 
memory  (RAM),  and  program  memory  (ROM),  respectively.  If  none  of  these  signals 
is  received  to  indicate  that  the  bus  cycle  is  to  be  completed,  a  bus  error  condition  exists. 

A  watchdog  timer  circuit  is  provided  in  the  MC68(X)0  educational  microcomputer 
to  detect  a  bus  error  condition.  This  circuit,  as  shown  in  Fig.  8.10,  is  constructed 

with  U21,  a  74LS175  D-type  flip-flop  IC.  Looking  at  the  circuit  diagram,  we  see  that 
the  flip-flops  in  this  device  are  cascaded  to  form  a  4-bit  binary  counter.  When  a  bus 
cycle  is  not  in  progress,  the  data  input  D  at  pin  4  and  CLR  input  at  pin  1  are  at  logic 
0.  Therefore,  the  flip-flops  are  all  reset  and  the  Q  output  at  pin  14  is  at  logic  1.  This 
output  is  applied  to  the  bus  error  (BERR)  input  of  the  68000  and  signals  that  a  bus 
error  has  not  occurred.    

When  a  bus  cycle  is  initiated,  the  AS  output  of  the  MPU  is  switched  to  logic  0 
and  maintained  at  that  level  throughout  the  bus  cycle.  AS  is  inverted  by  U,gp  and 
supplies  logic  1  to  the  CLR  and  D  inputs.  The  counter  is  now  released  and  begins 
to  count  through  its  binary  sequence  at  a  rate  set  by  the  clock  pulse  at  the  E  output 
of  the  68000.  As  long  as  DTACK  becomes  active  before  this  count  reaches  IOOO2  no 
bus  error  occurs;  however,  if  DTACK  is  not  received,  the  BERR  input  is  switched  to 
logic  0  and  a  bus  error  exception  has  occurred.  In  this  way,  we  see  that  the  watchdog 
timer  observes  all  bus  activities  and  assures  that  all  bus  cycles  that  are  initiated  are 
also  completed. 

8.6  PARALLEL  AND  SERIAL  I/O  INTERFACES 

There  are  four  I/O  interfaces  provided  in  the  MC68000  educational  microcomputer. 

Looking  at  the  block  diagram  in  Fig.  8.1,  we  find  that  there  are  two  RS-232C  serial 
ports,  one  for  connection  to  the  terminal  and  the  other  for  connection  to  a  host 
computer,  and  two  parallel  I/O  interfaces,  one  for  connection  to  a  printer  and  the 
other  for  connection  of  an  audio  cassette.  Let  us  now  look  at  how  each  of  these 
interfaces  is  implemented  in  the  microcomputer  system. 

Parallel  I/O  Interfaces 

The  parallel  I/O  circuitry  of  the  MC68000  educational  microcomputer  is  shown  in 
Fig.  8.11.  Here  we  see  that  a  single  68230  parallel  interface/timer  (PI/T)  IC  has  been 
used  to  implement  the  printer  and  audio  cassette  interfaces.  This  device  has  three 

byte-wide  I/O  ports,  port  A  (PA0-PA7),  port  B  (PBq-PB,),  and  port  C  (PCg-PC,) 
and  four  programmable  handshake  lines,  H,  through  H4.  This  gives  a  total  of  28 
I/O  lines  for  implementation  of  the  printer  and  audio  cassette  interfaces. 

Input  or  output  data  transfers  between  the  68000  and  the  A,  B,  and  C  ports 
are  performed  by  reading  from  or  writing  to  a  corresponding  data  register  within 
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Figure  8-11    Parallel  I/O  interface— printer  and  audio  cassette. 
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the  68230.  Figure  8.12  lists  the  location  of  all  of  the  68230's  registers  in  the 
microcomputer's  address  space.  For  example,  the  port  A  I/O  lines  are  accessed 
through  the  port  A  data  register  (PADR)  at  address  01001  l,g. 

Remember  that  the  I/O  lines  on  a  68230  can  be  configured  for  many  different 
modes  of  operation.  In  general,  they  can  be  set  up  to  work  as  bit  addressable  inputs 

or  outputs,  byte-wide  unidirectional  inputs  or  outputs,  or  byte-wide  bidirectional 
inputs/outputs.  Moreover,  the  A  and  B  ports  can  be  configured  to  work  together 
as  a  word-wide  unidirectional  or  bidirectional  port.  In  Chapter  6,  we  found  that  four 
control  registers  must  be  loaded  with  appropriate  control  bytes  to  configure  the  I/O 
lines  of  the  A  port  as  inputs  or  outputs,  select  between  mode  0,  mode  1,  mode  2, 
or  mode  3  operation,  select  the  submode  of  operation,  define  the  operation  of  the 
handshake  signals,  and  assign  handshake  pin  interrupt  priorities.  These  registers  are 
called  the  port  general  control  register  (PGCR),  the  port  service  request  register 
(PSRR),  and  port  A  data  direction  register  (PADDR),  and  the  port  A  control  register 

(PACR).  From  Fig.  8.12,  we  find  that  they  are  located  at  addresses  010001  jg, 

010003,6,  010005,6,  2nd  OlOOOD,^,  respectively,  of  the  68000's  address  space. 
Let  us  continue  by  looking  at  how  the  68000  is  interfaced  to  the  PI/T  device. 

The  microprocessor  interface  is  shown  to  the  left  of  the  PI/T  device  (Ug)  in  Fig.  8.11. 
Looking  at  the  circuit  diagram,  we  find  that  the  68230  is  located  on  the  lower  eight 

Address 
Register 

010001, g 
Port  general  control  register  (PGCR) 010003, g Port  service  request  register  (PSRR) 010005, g Port  A  data  direction  register  (PADDR) 010007, g Port  B  data  direction  register  (PBDDR) 010009, g 
Port  C  data  direction  register  (PCDDR) 01000B,g 
Port  interrupt  vector  register  (PIVR) 01000D,g Port  A  control  register  (PACR) 01000F,6 Port  B  control  register  (PBCR) 010011, g Port  A  data  register  (PADR) 010013, g Port  B  data  register  (PBDR) 010015, g Port  A  alternate  register  (PAAR) 010017, g Port  B  alternate  register  (PBAR) 010019, g 
Port  C  data  register  (PCDR) 01001B,g 
Port  status  register  (PSR) 010021, g Timer  control  register  (TCR) 010023, g Timer  interrupt  vector  register  (TIVR) 010027, g 
Counter  preload  register  high  (CPRH) 010029, g 
Counter  preload  register  middle  (CPRM) 01002B,g 
Counter  preload  register  low  (CPRL) 01002F,g 
Count  register  high  (CNTRH) 010031, g 
Count  register  middle  (CNTRM) 010033, g 
Count  register  low  (CNTRL) 010035, g Timer  status  register  (TSR) 

Figure  8-12    Addresses  of  ihe  68230's  internal  registers. 
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data  bus  lines  Dg  through  Dy.  It  is  over  these  Hnes  that  the  68000  accesses  the  internal 
registers  of  the  PI/T  to  input  or  output  data,  load  or  read  configuration  information, 
or  read  status  information. 

The  next  group  of  inputs  at  the  microprocessor  interface  is  the  register  select 
lines  RS|  through  RSj.  The  binary  code  applied  at  these  inputs  determines  which 

of  the  68230's  23  internal  registers  is  accessed.  They  are  supplied  directly  by  address 
bus  lines  A,  through  A,.  Other  bits  of  the  address  are  decoded  by  the  74LS138 
address  decoder  (U30)  to  produce  the  Pl/T  chip  select  signal  PITCS.  This  signal  is 

applied  to  the  CS  input  of  the  PI/T  and  when  it  is  switched  to  logic  0,  the  68230's 
microprocessor  interface  is  enabled  for  operation. 

The  PI/T  is  a  68000  family  peripheral.  For  this  reason,  it  is  designed  so  that 
its  internal  registers  are  to  be  accessed  with  asynchronous  bus  cycles.  A  data  transfer 
acknowledge  (DTACK)  output  is  provided  on  the  68230  for  this  purpose.  During  write 
cycles,  the  logic  level  of  DTACK  is  switched  to  logic  0  just  after  the  68230  has  accepted 
the  data  off  the  bus.  In  this  way,  it  tells  the  68000  to  complete  the  current  bus  cycle. 
On  the  other  hand,  when  data  is  being  read  from  within  the  68230,  DTACK  is  switched 
to  0  when  valid  data  is  available  at  Dq  through  Dy.  This  time  it  signals  the  68000 
to  first  read  the  data  off  the  bus  and  then  complete  the  bus  cycle. 

Now  that  we  have  introduced  the  parallel  I/O  interface  let  us  trace  through 
the  operation  of  the  circuitry  in  Fig.  8.1 1  as  the  68000  writes  a  byte  of  data  to  the 
port  A  data  register.  Since  the  68230  is  located  in  the  memory  address  space,  this 
represents  a  write  bus  cycle  and  could  be  initiated  by  executing  a  MOVE  instruction. 

As  the  write  bus  cycle  begins,  the  address  of  the  port  A  data  register,  which 

is  01001  Ijg,  is  output  on  address  bus  lines  A,  through  A23  and  lower  data  strobe  LDS 
is  switched  to  its  active  (logic  0)  level.  This  gives  the  binary  address 

A23A22   A,  =  000000 100000000000 10001 2 
and 

Ids  =  0 
At  the  same  time,  address  strobe  (AS)  is  asserted  (logic  0)  and  R/W  is  set  to  logic  0 
to  signal  that  a  write  operation  is  to  take  place. 

Address  lines  Ag  and  A,^  through  A23  are  inputs  to  the  address  decoder  circuit. 
From  the  binary  form  of  the  address,  we  find  that  bits  A, 9  through  A23  are  all  logic 
0;  therefore,  the  output  of  the  74LS260  NOR  gate  II29A  '^  'oS'*^  ̂ -  '^'  ̂ ^^  ̂^""^  ̂ ''"^' 
AS  is  at  the  0  logic  level.  These  two  signals  enable  the  74LS138  3-line  to  8-line  decoder 
(U3Q)  for  operation.  Now  that  the  decoder  is  enabled  address  lines  A|(,  through  Ajg 
at  the  A  through  C  inputs,  which  are  001,  causes  the  Y,  output  to  switch  to  logic 
0.  A  logic  0  on  this  line  signals  that  an  I/O  operation  is  in  progress. 

Next,  the  logic  0  at  Y,  is  combined  with  the  logic  0  at  LDS  and  the  logic  0  at 
A5  by  the  74LS27  NOR  gate  on  IC  Uj,^.  Since  all  three  inputs  are  logic  0,  the  output 
of  the  NOR  gate  switches  to  the  1  logic  level.  This  output  is  inverted  by  U32B  to  give 
an  0  logic  level  at  PITCS.  This  logic  0  is  applied  to  the  CS  input  of  the  68230,  thereby 
enabling  it  for  operation. 
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The  68230  is  now  enabled  for  operation  and  the  logic  0  at  R/W  has  signaled 
that  the  68000  is  going  to  write  data  into  one  of  its  registers.  Moreover,  this  data 

also  has  already  been  output  on  data  bus  lines  Dg  through  D-^  and  the  register  select 
code  of  01000  on  A,  through  A5  has  selected  the  port  A  data  register.  The  68230 
reads  the  data  off  the  bus;  enters  it  into  PADR;  and  then  switches  the  DTACK  output 
to  logic  0.  DTACK  is  carried  over  the  DTACK  PIT  line  to  one  input  of  AND  gate 
U24A  and  causes  the  output  at  pin  12  to  switch  to  logic  0.  This  output  is  connected 
to  the  DTACK  input  of  the  68000  and  signals  it  to  complete  the  cujrent  write  cycle.  In 
response,  the  MPU  returns  LDS,  AS,  Dq  through  Dy,  and  R/W  to  their  inactive 
logic  levels. 

Having  examined  the  microprocessor  interface  in  detail,  let  us  now  look  at  the 
circuitry  on  the  I/O  port  side  of  the  68230.  Here  we  find  that  all  of  port  A  and  B 
and  the  handshake  lines  are  used  to  implement  a  parallel  (Centronics)  printer  interface 

at  connector  Jj.  Notice  that  the  port  A  lines,  PAq  through  PA7  are  buffered  to 
produce  printer  data  lines  PDq  through  PD7.  It  is  on  these  lines  that  the 
microcomputer  outputs  character  data  to  the  printer.  The  handshake  lines  H,  through 
H4  at  PBq  through  PB2  are  used  to  implement  control  signals  for  the  Centronics 
interface.  For  instance,  Hj  is  buffered  by  IC  U,g  and  then  output  to  the  printer  as 
the  DATA  STROBE  signal.  This  line  signals  the  printer  that  there  is  data  available 
to  it  on  data  lines  PDp  through  PD7.  Moreover,  H,  is  supplied  by  an  input  signal 
called  ACKNOWLEDGE,  with  which  the  printer  can  tell  the  microcomputer  that 
it  has  read  the  character  data  from  the  PD  lines. 

Looking  at  port  C  of  the  68230  in  Fig.  8.11,  we  find  that  lines  PCq  through 
PC2  are  used  to  implement  the  interface  to  the  audio  cassette  at  connector  J2.  Data 
or  other  information  that  is  to  be  recorded  are  output  in  bit  serial  form  to  the  audio 

cassette  recorder  over  line  PC,.  Notice  that  the  voltage  at  PC,  is  first  divided  between 
resistors  R,  and  R2  and  then  A.C.  coupled  to  the  DATA  Hne  at  pin  3  of  J2  through 

capacitor  Cj.  The  0  and  1  logic  levels  output  at  DATA  OUT  are  encoded  as  a  1-kHz 
50  percent-duty  cycle  square  wave  and  a  2-kHz  50  percent-duty  cycle  square  wave, 
respectively. 

When  loading  information  such  as  programs  from  the  tape  player,  data  are  input 
to  the  microcomputer  from  the  DATA  IN  line  at  pin  1  of  Jj.  Diodes  CR,  and  CR2 
and  the  MC3302  comparator  IC  (U4g)  square  and  clip  the  analog  signal  input  from 
the  tape.  The  microprocessor  reads  this  signal  at  PCq  and  by  evaluating  its  frequency 
through  software  determines  whether  the  input  data  is  at  logic  0  or  logic  1. 

Example  8.2 

Write  a  sequence  of  instructions  that  will  set  up  the  68230  in  the  MC68000  educational 
microcomputer  to  work  as  follows: 

(a)  Unidirectional  8-bit  ports  operate  with  active  handshake  lines 
(b)  DMA  and  interrupts  not  used 

(c)  Port  A  is  an  8-bit  output  port 
(d)  Port  B  is  an  8-bit  input  port 
(e)  Initialize  the  printer 
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Solution.  In  Chapter  6,  we  studied  the  68230  and  how  the  bits  in  its  internal  registers 
are  used  to  configure  various  modes  of  operation.  Here  we  will  just  list  the  registers 
and  the  values  with  which  they  must  be  loaded  to  achieve  the  modes  of  operation  described 

in  steps  a  through  e. 
To  configure  the  68230  as  described  in  step  a,  the  PGCR  register  must  be  loaded 

with 

followed  by 

PGCR  =  OOOOOOOOj  =  00 

PGCR  =  00110000,  =  30, 

•'1 

Next  to  configure  the  68230  for  no  DMA  or  interrupts  as  described  in  step  b,  PSRR 
must  be  loaded  with 

PSRR  =  00000000,  =  00, g 

To  configure  port  A  as  described  in  step  c,  PADDR  is  loaded  with 

PADDR  =  llllllllj  =  FF,g 

and  PACR  must  be  initialized  with 

PACR  =  OIIOOOOO2  =  60,6 

Now  port  B  is  configured  as  described  in  step  d  by  loading  PBDDR  with  the  value 

PBDDR  =  OOOOOOOO2  =  00,(; 

and  PBCR  with 

PBCR  =  IOIOOOOO2  =  A0,g 

Finally,  to  initialize  the  printer  for  step  e,  bit  3  of  PBCR  is  first  set  and  then  reset.  This 
sends  out  an  initialization  pulse  to  the  printer.  To  do  this,  we  must  first  load  PBCR  with 

PBCR  =  IOIOIOOO2  =  A8,g 

and  then  reload  it  with 

PBCR  =   IOIOOOOO2  =  AO,g 

To  initialize  the  68230,  we  must  write  the  values  just  given  into  the  identified 

registers.  Figure  8.13(a)  lists  the  initialization  parameters  as  a  block  of  data.  Notice 

that  the  parameter  table  begins  in  memory  at  address  X  and  has  one  parameter  stored 
at  each  word  address  up  through  X+  16.  Notice  that  the  value  of  each  parameter, 
the  mnemonic  for  the  register  to  which  it  is  to  be  written,  and  the  address  of  the 

register  are  listed  in  the  table. 

Let  us  now  write  the  sequence  of  instructions  that  are  needed  to  load  the  68230's 
registers.  We  begin  by  loading  address  register  A,  with  the  address  X.  In  this  way, 
it  acts  as  a  pointer  to  the  beginning  of  the  table  in  memory.  This  is  done  by  executing 
the  instruction 

MOVE.L     #X,A1 
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Address Contents 
Register Register  address 

X 

00,6 

PGCR 

10001, g 

X  +  2 

00,6 

PSRR 

10003, g 

X  +  4 

F^6 

PADDR 

10005, g 

X  +  6 

00,6 

PBDDR 

10007, g 

X  +  8 

60,6 

PACR 

1000D,g 

X+10 

A0,6 

PBCR 

1000F,6 

X+12 

30i6 

PGCR 

10001, g 

X+14 

A8,6 

PBCR 

1000F,g 

X+16 

A0,6 

PBCR 

1000F,g 

MOVE.L 

MOVEP 

MOVE.L 

MOVEP 
MOVE.B 

MOVE.B 
MOVE.B 

MOVE.B 

MOVE.B 

MOVE.B 
MOVE.B 

MOVE.B 

MOVE.B 

MOVE.B 
MOVE.B 

MOVE.B 

#X,A1 

(A1),D0 
#$10001,A2 
D0,(A2) 

#$00,  DO 
D0,$7(A2) 

#$60,  DO 
D0,$D(A2) 

#$A0,D0 
D0,$F(A2) 

#$30,D0 
D0,$1(A2) 

#$A8,D0 
D0,$F(A2) 

#$A0,D0 
D0,$F(A2) 

(b) 

Figure  8-13    (a)  Parameter  table  for  initializing  the  68230;  (b)  initialization  instruc- 
tion sequence. 

Next  we  read  the  first  four  byte  wide  parameters  in  the  table  as  a  long  word  into 

data  register  Dg.  To  do  this  we  use  the  instruction 

MOVEP     (A1),D0 

Now  we  load  a  pointer  to  the  first  of  the  four  registers  into  A2  and  then  write  them 
into  the  registers  of  the  68230  with  the  instruction 

MOVE.L       #$10001, A2 

MOVEP        D0,{A2) 
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The  rest  of  the  parameters  in  the  table  are  written  to  their  respective  register  within 
the  68230  with  the  instructions  that  follow: 

MOVE.B  #$00,D0 

MOVE.B  D0,$7(A2) 

MOVE.B  #$60,D0 

MOVE.B  D0,$D(A2) 

MOVE.B  #$AO,DO 

MOVE.B  D0,$F(A2) 

MOVE.B  #$30,D0 

MOVE.B  D0,$1(A2) 

MOVE.B  #$A8,D0 

MOVE.B  D0,$F(A2) 

MOVE.B  #$AO,DO 

MOVE.B  D0,$F(A2) 

The  complete  sequence  of  instructions  is  repeated  in  Fig.  8.13(b). 

RS-232C  Communications  Interface 

Another  important  I/O  interface  in  the  MC68000  educational  microcomputer  is  its 

RS-232C  serial  I/O  ports.  In  Fig.  8.1,  we  find  that  the  microcomputer  has  two  serial 
ports.  One  of  these  ports  permits  a  CRT  terminal  to  be  connected  to  the 
microcomputer.  In  this  way,  the  user  can  input  information  to  the  microcomputer 
from  the  keyboard  of  the  terminal  and  the  microcomputer  outputs  results  on  the 
display  for  the  user  to  read.  The  other  serial  port  is  provided  for  a  modem 
communication  link  to  a  host  computer. 

The  circuitry  involved  in  implementing  the  serial  ports  is  shown  in  detail  in  Fig. 
8.14.  Here  we  will  concentrate  on  the  port  1  UART,  which  is  the  one  that  is  used 
to  connect  the  terminal  to  the  microcomputer.  Looking  at  the  circuit  diagram,  we 
find  that  this  port  is  implemented  at  connector  J3.  Notice  that  the  6850  ACIA  device 
is  the  communications  controller  that  is  used.  In  Chapter  6  we  introduced  this  LSI 
device. 

At  power  up,  the  control  register  within  the  port  1  ACIA  (U13)  is  loaded  by 
the  Tutor  software  to  configure  the  serial  port  to  operate  as  follows:  8-bit  character 
length,  even  parity,  and  one  stop  bit.  Moreover,  it  sets  up  the  internal  clock  divider 
circuitry  such  that  the  externally  generated  baud  clock  signal  that  is  applied  to  the 
receiver  and  transmitter  clock  inputs  is  divided  by  16  within  the  device;  RTS  is  set  for 
an  active  low  logic  level;  and  the  transmitter  interrupt  is  disabled. 
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VxxVxVV 

Figure  8-14   Serial  I/O  interface — the  terminal  and  host  computer  ports. 
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Figure  8-14  (com.) 
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The  table  in  Fig.  8.15  shows  that  the  registers  within  the  6850  that  implements 

RS-232C  port  1  in  the  MC68000  educational  microcomputer  are  located  on  even  byte 
address  boundaries  starting  at  address  010040ig.  For  instance,  execution  of  a  MOVE 
instruction  with  a  source  operand  at  address  01 0040, g  lets  the  68000  read  the  contents 

of  the  6850's  status  register.  Executing  a  similar  instruction  with  the  destination 
operand  at  address  010040|g  would  let  us  write  a  byte  of  control  information  into 
its  control  register.  Moreover,  executing  a  MOVE  instruction  to  address  010042, g 
permits  either  reading  of  a  byte  of  data  from  the  receive  data  register  or  loading  of 
a  byte  of  data  into  the  transmit  data  register. 

Address R/W Register 
010040, g Write ACIA1  control  register 

Read 
ACIA1  status  register 010041, g Write ACIA2  control  register 

Read ACIA2  status  register 010042, g Write ACIA1  transmit  data  register 
Read ACIA1  receive  data  register 010043, g Write ACIA2  transmit  data  register 
Read ACIA2  receive  data  register 

Figure  8-15    Addresses  of  the  6850's  internal  registers  (Motorola,  Inc.). 

Now  that  we  know  where  the  registers  of  the  6850  are  located  in  the  68000's 
address  space,  let  us  trace  through  the  operation  of  the  circuitry  as  the  68000  reads 
a  byte  of  data  from  the  receive  data  register  of  ACIAl  (U[3). 

Looking  at  Fig.  8.14,  we  find  that  chip  select  inputs,  CSg,  CS,,  and  CS2,  of  the 
6850  are  driven  by  the  signals  Ag,  ACIA  CSl,  and  UDS,  respectively.  These  inputs 
must  be  set  to  the  1 ,  1 ,  and  0  logic  levels,  respectively,  to  enable  the  6850  for  operation. 
Let  us  assume  that  the  instruction 

MOVE.B     ACIAl. DATA.DO 

which  is  correctly  written  to  access  the  receiver  data  register  of  the  ACIA  for  serial 
port  1,  is  executed  by  the  68000.  When  the  instruction  is  executed,  it  initiates  a  memory 
read  bus  cycle.  During  the  bus  cycle,  the  68000  sets  UDS  to  logic  0  to  signal  external 
circuitry  that  a  byte  of  data  is  to  be  transferred  over  the  upper  part  of  the  data  bus, 
Dg  through  Djj.  In  the  circuit  diagram,  we  see  that  UDS  is  applied  directly  to  the 
CS2  input  of  0,3.  At  the  same  time,  the  logic  level  applied  to  the  CSq  input  of  the 
ACIA  is  bit  Ag  of  the  address.  Since  we  are  accessing  the  receive  data  register  within 
ACIA,,  the  address  is 

ACIA_DATA  =  0100042, 

and  in  binary  form  it  is 

A23A22   A,  =  000000 10000000000001 0000 IO2 

Notice  that  in  the  binary  form  of  the  address  Ag  is  at  the  1  logic  level.  This  is  the 
level  needed  at  CSq  to  enable  the  6850  for  operation. 
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The  third  chip  select  input,  CS,,  of  6850  Ujj  is  supplied  by  signal  ACIA  CSl. 

This  signal  is  produced  by  decoding  address  bits  A,^  through  A23  in  the  3-line  to 
8-line  decoder  Ujq.  From  the  binary  form  of  the  address,  we  see  that  bits  A, 9  through 
A23  are  all  at  logic  0.  Therefore,  all  inputs  of  the  74LS260  NOR  gate  Ujg^  are  logic 
0.  This  makes  its  output,  which  is  applied  to  pin  6  of  Ujq,  logic  1.  This  signal  and 
the  logic  0  that  is  output  at  AS  whenever  an  address  is  on  the  system  bus  are  used 
to  enable  decoder  Ujg  for  operation.  Again  looking  at  the  binary  form  of  the  address, 
we  see  that  bits  Aj^  through  A,g  are  001.  Applying  this  binary  combination  to  the 
inputs  of  the  decoder  causes  output  Y,  to  be  switched  to  the  0  logic  level. 

The  6850  is  one  of  the  LSI  peripherals  produced  by  Motorola  for  use  with  its 
older  6800  family  of  microprocessors.  For  this  reason,  read/write  transfers  that  take 
place  to  it  must  be  performed  using  synchronous  instead  of  asynchronous  memory 
bus  cycles.  Notice  in  Fig.  8.14  that  the  logic  1  at  bit  Ag  of  the  address  is  inverted 
to  logic  0  and  then  gated  with  the  logic  0  at  the  Y,  output  of  the  decoder  by  the 
74LS32  NOR  gate  1)343.  Since  both  inputs  are  at  the  0  logic  level,  the  output  of  the 
gate  switches  to  logic  0  and  forces  the  VPA  output  of  the  74LS1 1  AND  gate  U45C 
to  the  0  level.  This  signal  is  returned  to  pin  2  of  the  68000,  which  is  the  valid  peripheral 
address  (VPA)  input.  Logic  0  at  VPA  signals  the  68000  that  the  current  bus  cycle  is 
to  be  synchronous,  instead  of  asynchronous. 

In  response  to  the  logic  0  at  VPA,  the  68000  switches  its  valid  memory  address 
(VMA)  output  to  the  0  logic  level.  In  Fig.  8.14  we  see  that  VMA  is  input  along  with 
Y,  to  the  74LS02  NOR  gate  U33A.  Both  of  these  signals  are  now  logic  0;  therefore, 
output  ACIA  CSl  switches  to  logic  1.  Now  the  chip  select  inputs  of  U^  are: 

CSo  =  Ag  =  1 

CS,  =  ACIA  CSl  =  1 
and 

CS2  =  UDS  =  0 

Therefore,  ACIA  device  U|3  is  enabled  for  operation. 
The  68000  sets  memory  control  signal  R/W  to  logic  1  to  tell  the  6850  that  a  read 

bus  cycle  is  in  progress.  At  the  same  time,  the  register  select  (RS)  input  of  the  6850 

is  supplied  by  bit  A,  of  the  address  and  in  our  example  it  is  logic  1.  This  tells  the 
6850  that  the  receive  data  register,  not  the  status  register,  is  to  be  accessed.  Next, 
the  68000  switches  its  enable  (E)  output  to  logic  0.  This  signals  the  6850  to  put  the 
byte  of  data  held  in  the  receive  data  register  onto  the  data  bus  Hues  Dg  through  Djj. 
Then  the  68000  completes  the  bus  cycle  by  reading  the  data  off  the  bus  and  returning 
the  VMA,  AS,  and  UDS  signal  lines  to  their  inactive  logic  levels. 

Now  that  we  have  examined  the  operation  of  the  microprocessor's  interface 
to  the  6850  let  us  continue  by  looking  at  how  the  clock  signal  that  sets  the  baud  rate 
of  the  receiver  and  transmitter  sections  of  the  UART  is  generated.  In  Fig.  8.14,  we 
see  that  the  baud  rate  generator  is  formed  by  a  MC1441 1  oscillator/clock  generator 
device.  The  clock  rate  of  this  oscillator  is  set  by  the  1.8432-MHz  crystal  Yj  that  is 
connected  between  pins  XI  and  XO.  Once  power  is  applied  to  the  MC14411,  the 
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oscillator  circuit  begins  to  run  and  the  counters  within  the  device  generate  sixteen 
different  clock  signals  at  parallel  outputs  F,  through  F,g.  To  select  the  baud  for  port 
1,  we  simply  install  a  jumper  between  one  set  of  the  terminal  pairs  at  J|q.  For 

instance,  putting  the  jumper  in  position  5-6  selects  clock  output  Fj  and  sets  the  data 
communication  rate  at  2,400  baud.  Figure  8.16  summarizes  all  of  the  jumper  settings 
and  their  corresponding  baud  rates. 

Jumper  pins Baud  rate 

1-2 9600 

3-4 
4800 

5-6 2400 
7-8 1200 

9-10 600 

11-12 300 

13-14 150 

15-16 
110 Figure  8-16    Baud  rate  selection  table 

(Motorola,  Inc.). 

In  the  circuit  of  Fig.  8.14,  both  the  receiver  and  transmitter  are  run  at  the  same 

baud  rate;  therefore,  the  T\(-  and  Rxq  inputs  of  Ujj  are  connected  together  by  jumper 
Jg.  This  common  baud  rate  input  is  connected  through  the  jumper  at  5-6  to  the  F5 
output  of  the  baud  rate  generator. 

Example  8.3 

If  a  jumper  is  installed  in  position  15-16  of  J^,  what  baud  rate  is  selected  for  ACIA  U|2? 

Solution.     Looking  at  Fig.  8.14,  we  see  that  installing  a  jumper  at  position  15-16  of 
J,o  selects  a  baud  rate  of  110  baud  for  U,,. 

The  last  part  of  the  port  1  serial  communications  interface  in  Fig.  8.14  is  the 
RS-232C  port  interface  itself.  Here  we  see  that  this  part  of  the  circuit  involves  the 
receive  data  (Rxp)  and  transmit  data  (Txp)  lines  of  the  6850  and  interface  control 
signals  request-to-send  (RTS)  and  clear-to-send  (CTS).  The  logic  included  at  this 
interface  sets  the  transmission  and  reception  voltage  levels  for  signals  Tx^^j^  and 

Rxj)ATA'  g^tes  data  from  the  Tx^  output  of  the  6850  onto  the  Rxqaj^  output;  and 
creates  three  additional  communication  interface  signals,  data  terminal  ready  (DTR), 
data  set  ready  (DSR),  and  data  carrier  detect  (DCD),  from  CTS. 

The  microcomputer  receives  character  data  from  the  terminal  over  the  Txp^j^ 
line  and  sends  character  data  to  it  over  the  Rxq^ta  1'"^-  Moreover,  the  handshake 
control  for  these  data  transfers  is  provided  by  control  lines  DTR,  CTS,  DSR,  and 
DCD.  For  instance,  to  write  data  to  the  terminal,  the  port  1  ACIA  produces  the  CTS, 
DSR,  and  DCD  signals  by  outputting  logic  0  at  CTS.  All  of  these  signals  are  available 
to  the  terminal  through  its  RS-232C  interface.  Therefore,  any  of  them  can  be  tested 
by  the  terminal  to  determine  if  it  needs  to  read  data  from  the  Rxd^-ta  1'"^- 
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ASSIGNMENT 

Section  8.2 

1.  What  is  the  capacity  of  the  program  storage  memory  in  the  MC68000  educational 
microcomputer  system?  What  is  its  function? 

2.  How  much  RAM  is  supplied  in  the  data  storage  part  of  the  MC68000  educational 

microcomputer's  memory? 
3.  What  happens  to  the  contents  of  program  storage  memory  when  power  is  turned  off? 

What  would  happen  to  the  contents  of  the  data  storage  memory? 

4.  Where  are  user-written  programs  that  are  typed  in  at  the  keyboard  of  the  terminal  stored 
by  the  microcomputer? 

5.  What  I/O  resources  are  supplied  on  the  MC68000  educational  microcomputer? 

6.  What  LSI  device  is  used  to  interface  the  terminal  to  the  68000  microprocessor? 

7.  What  does  the  68230  device  implement  in  the  MC68000  educational  microcomputer? 

Section  8.3 

8.  At  what  frequency  is  the  microprocessor  in  the  MC68000  educational  microcomputer  run? 

9.  Name  a  peripheral  device  in  the  educational  microcomputer  that  is  operated  with  the  1-MHz 
clock. 

10.   What  clock  frequency  is  output  at  QB  and  QD  of  U,,  in  Fig.  8.3? 

Section  8.4 

11.  Which  devices  in  the  educational  microcomputer  are  initialized  with  the  RESET  signal? 
12.  What  happens  within  the  68000  microprocessor  when  a  reset  pulse  is  applied  to  its  RESET 

input? 

13.  What  purpose  is  served  by  the  POR  signal? 

14.  Why  is  a  HALT  pulse  generated  along  with  the  RESET  pulse  when  the  microcomputer's 
power  is  turned  on? 

15.  What  is  meant  by  a  warm  start"] 
16.  What  interrupt  priority  code  (IPL^JPLiIPLp)  is  applied  to  the  68000  in  Fig.  8.4  if 

the  maskable  interrupt  signal  6800IRQ  becomes  active? 

17.  Assuming  that  the  request  for  service  by  the  6800IRQ  interrupt  signal  is  granted  by  the 

68000  in  Fig.  8.4,  specify  the  logic  states  produced  at  FCjFCjFCg,  A^A^A,,  VPAIRQ, 
PIACK,  TIACK,  and  VPA  during  the  interrupt  acknowledge  sequence.  How  is  the 
exception  vector  produced? 

18.  What  is  the  difference  between  the  response  of  the  68000  to  the  closure  of  the  ABORT 
switch  in  Fig.  8.4  and  closure  of  the  RESET  switch? 

Section  8.5 

19.  What  time  elapses  between  the  occurrence  of  a  valid  ROM  address  on  the  bus  and  the 
return  of  the  DTACK  signal  to  the  MPU  in  Fig.  8.6? 
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20.  In  Fig.  8.6  what  will  be  the  logic  state  of  signals  ROMEN,  DTACK,  and  R/W  in  response 

to  an  instruction  fetch  from  address  9000, g? 

21.  What  signals  are  generated  by  the  timing/RAM  DTACK  circuit  in  Fig.  8.8?  In  what  order 

are  they  produced  during  a  read  cycle  to  a  valid  RAM  address? 

22.  Trace  the  operation  of  the  circuit  in  Fig.  8.8  for  a  bus  cycle  in  which  data  are  read  from 
an  address  in  RAM. 

23.  What  is  the  function  of  the  watchdog  timer  in  Fig.  8.10? 

Section  8.6 

24.  Trace  the  sequence  of  events  that  take  place  as  a  bus  cycle  is  performed  to  read  the  contents 

of  the  68230's  port  B  data  register  in  Fig.  8.11. 
25.  Describe  the  functions  of  the  DATA  STROBE  and  ACKNOWLEDGE  control  signals  of 

the  printer  interface  in  Fig  8.11. 

26.  What  frequency  signals  are  used  to  record  logic  0  and  logic  1  on  cassette  tape? 

27.  What  is  the  maximum  baud  rate  for  the  terminal  port  of  the  educational  microcomputer? 
The  minimum  baud  rate? 

28.  What  is  the  difference  between  the  terminal  and  host  computer  ports? 
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Answers 
TO  Selected  Problems 

Chapter  1 

Section  1.2 

1.   Computer  program. 

Section  1.3    ' 

5.   A  computer  that  has  been  tailored  to  meet  the  needs  of  a  specific  application. 

Section  1.4 

7.  Secondary  storage  is  for  long-term  storage  of  data  that  are  not  in  use.  On  the  other  hand, 
the  data  that  are  currently  being  processed  are  held  temporarily  in  primary  storage  memory. 

Section  1.5 

9.  Program  storage  memory  is  the  part  of  the  memory  subsystem  that  contains  the  program 
that  is  executed  by  the  microcomputer.  On  the  other  hand,  the  data  that  are  processed 
during  execution  of  the  program  are  held  in  the  data  storage  part  of  memory. 

Section  1.6 

11.   4-bit,  8-bit,  16-bit,  and  32-bit. 

Chapter  2 

Section  2.2 

1.    High-density  N-channel  MOS  (HMOS). 
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3.  16  general-purpose  registers,  8  data  registers  Dq  through  D,  and  8  address  registers  Aq 
through  A-j,  and  all  are  32  bits  in  length. 

Section  2.3 

5.   23  address  lines  A,  through  Ajj,  2^^  unique  addresses. 
7.    For  an  asynchronous  bus,  once  the  bus  cycle  is  initiated,  it  is  not  completed  until  external 

circuitry  returns  a  signal  to  the  processor. 

9.   The  address  lines  A,  through  Ajj  present  a  word  address  and  the  upper  and  lower  bytes 
of  that  word  are  accessed  using  the  UDS  and  LDS  signals. 

11.   FC2FC1FC,  =  110. 
13.  The  code  value  applied  at  the  interrupt  priority  inputs  is  compared  to  the  internal  mask. 

If  its  value  is  more  than  that  in  the  mask,  the  interrupt  is  serviced;  otherwise,  it  is  ignored. 

To  provide  interface  signals  so  that  low-speed  6800  synchronous  peripheral  devices  can 
be  used  with  the  high-speed  68000  CPU. 

15 

Section  2.5 

17 

19. 

In  general,  the  address  registers  are  meant  for  use  in  storing  memory  addresses  such  as 
pointers,  while  the  data  registers  are  to  be  used  to  store  data  that  are  to  be  processed  by 
the  CPU.  However,  their  functions  can  be  interchanged  according  to  the  need. 

The  program  counter  provides  the  address  of  the  next  instruction  to  be  executed. 

Section  2.6 

21.  Macroinstructions  are  the  basic  assembly  language  instructions  defined  by  the  instruction 
set  of  the  68000.  Microinstructions  are  the  internal  machine  instructions  which  are  executed 

by  the  CPU  in  order  to  perform  the  function  defined  by  a  macroinstruction. 

Chapter  3 

Section  3.2 

1.    No,  all  words  of  data  must  be  at  even-address  boundaries. 

3.    Bit,  byte,  word,  long  word,  and  BCD. 

Section  3.4 

7. Instruction 

(a) MOVE.W  D3,D2 

(b) MOVE.B  D3,A2 
(c) MOVE.B  D3,$ABCD 
(d) MOVE.L  XYZ,D2 
(e) MOVE.W  XYZ(A0.L),D2 

(f)  MOVE.B  D3,(A2) 

(g)  MOVE.L  Al,(A2)-l- 

(h)    MOVE.L  -(A2),D3 

Source  Addressing 
Mode 

Data  register  direct 
Data  register  direct 
Data  register  direct 
Immediate/absolute 

Register  indirect 
with  offset 

Data  register  direct 
Address  register 

direct 

Predecrement  register 
indirect 

Destination  Addressing 
Mode 

Data  register  direct 
Address  register  direct 
Absolute  short 

Data  register  direct 
Data  register  direct 

Register  indirect 
Postincrement  register 

indirect 

Data  register  direct 
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(i)     MOVE.W  10(A2),D3  Register  indirect  with       Data  register  direct 
offset 

(j)    MOVE.B  10(A2,A3.L),$A123       Indexed  register  Absolute  short 
indirect  with  offset 

(k)    MOVE.W  #$ABCD, $1122  Immediate  Absolute  short 

9.   SABCD  =  $10  +  Al   =  $100  +  A2  +  Dl 

Section  3.6 

11.    MOVEM  $B000,D5/D6/D7 

A3. 

Section  3.7 

13. MOVE.L 

MOVE.L 

ADD.L 
MOVE.L 
MOVE.L 
SUB.L 
MOVE.L 
MOVE.L 
MULU 

MOVE.L 
MOVE.L 

DIVU 
MOVE.W 

Section  3.9 

15. MOVE.B 

AND.B 
MOVE.B 

NOT.B 

AND.B 
OR.B 
ORB 

MOVE.B 

Section  3.10 

17.    MOVE.B 

ROR.L 
MOVE.W 
ROR.L 
ROR.L 
MOVE.B 
ROR.L 

//SCOOCAl 

$AOOO,DO 
$BOOO,DO 
D0,(A1) 

$AOOO,DO 

$BOOO,DO 
D0,4(A1) 

$A000,D0 
$B0OO,D0 
D0,8(A1) 

$A000,D0 
$B000,D0 
D0,12(A1) 

D0,D7 
NUM1,D7 
NUM2,D6 
D6 

D0,D6 
D1,D6 

D6,D7 
D7, RESULT 

D0,$B001 
tt%,DO 

D0,$B002 
#8,  DO 
<'8,D0 

D0,$B004 
#8,  DO 

;QUOTlENT 

31 24 23 16 15 8 7 0 

Do 

' 

$B001 

$B002 

$B003 

$B004 
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Chapter  4 

Section  4.2 

1. 
Instruction N        Z        V        C 

Initial  value 
SUB.L  AO.AO 
CMPI.W  #$AOOO,AO 
TST  AO 

0         0         0         0 
0         10         0 
0         0        0         1 
0         10        0 

Section  4.3 

3 The  JMP  instruction  encodes  the  address  of  the  location  to  which  the  jump  is  to  take 
place  into  the  instruction.  On  the  other  hand,  the  BRA  instruction  encodes  the  displacement, 

the  number  of  bytes,  of  the  "branch  to  address"  from  the  BRA  instruction,  into  the 
instruction  word.  Therefore,  BRA  both  encodes  in  fewer  bytes  and  executes  faster  than 
JMP. 

Section  4.4 

5. MOVEQ 
#1,D7 

CLR.W D6 

LOOP CMP.B N,D6 BEQ 

DONE 
ADDQ.W #1,D6 
MULU D6,D7 
BRA LOOP 

DONE MOVE.L D7,FACT 

Save  result 
in  FACT 

I Increment  count 

by  1 
(       Stop       ) 

Result  =  Result  ■  Count 



Answers  to  Selected  Problems 

MOVE.B it\0O,Dl 
MOVE.L $A000,A6 
MOVE.L $B00O,A5 

MOVE.L $C000,A4 
LOOP CMPLW /W),(A6) 

BMI NEGTV 
POSTV MOVE.W (A6)+,(A5)  + 

BRA NXT 

NEGTV MOVE.W (A6)  +  ,(A4)  + 
NXT SUBI 

n,Di 
BNE LOOP 

DONE BRA DONE 

(PNTR2)-^(PNTR,) (PNTR3)-(PNTR,) 

Update PNTRj  and  PNTRj 

NXT 

Update 
PNTR3  and  PNTRi 

(      Stop       J 



318 Answers  to  Selected  Problems 

Section  4.6 

11.   AGAIN BTST.B #0,D0 
BNE SUBA 
BTST.B /i'l.DO 

BNE SUBB 
BTST.B #2,D0 
BNE SUBC 
BRA AGAIN 

SUBA 

SUBB 

SUBC 

EORI.B 
RTS 

EORI.B 

#1,D0 

#2,D0 

EORI.B 

RTS 
#4,D0 

Chapter  5 

Section  5.2 

1.    Software  and  hardware  development  and  debugging  for  a  project  involving  one  of  the 
microprocessors  that  the  development  system  supports. 

3.   Four  ports:  one  each  for  the  cassette  player/recorder,  printer,  CRT  terminal,  and  a  host 
computer  communications  link. 

Section  5.3 

5.  A  monitor  program  provides  the  programmer  with  the  ability  to  enter  (assemble),  store, 
execute,  and  debug  assembly  language  programs.  It  is  stored  in  PROMs  on  the  IVIC68000 
educational  microcomputer  board. 

7.    32K  bytes 

Section  5.4 

9.   Command  field. 

11.    (a)    100,g  +  RO  =  1100, (, 
(b)  100,g  +  R3  =  2100,g 
(c)  AO  +  RO  =  1100,g 
(d)  AO  +  DO  +  RO  =  1300,^ 
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Section  5.5 

13.   (a)    R5  =  1000,6  +  RO  =  2000,^ 
(b)    R5  =  1000, g  +  0  =  1000,6 

Section  5.6 

15.    TUTOR  1.3  >  BF  1000  lOFE  'ABCD'         (cr) 
TUTOR  1.3  >  BF  2000  20FE  5555        (cr) 
TUTOR  1.3  >  MD  1000  FE         (cr) 
TUTOR  1.3  >  MD  2000  FE         (cr) 
TUTOR  1.3  >  BM  1000  1  OOF  3000        (cr) 

Section  5.7 

17.   TUTOR  1.3  >  TM         (cr) 

Section  5.8 

19.    TUTOR  1.3  >  MM  1000;DI 
001000  DC.W  SABCD        (cr) 
001002  DC.W  $1234  .         (cr) 

Section  5.9 

21.  To  execute  a  single  instruction  in  a  program  the  command  is  TR  (T);  to  execute  the  entire 
program  the  command  is  GD;  and  to  execute  a  block  of  instructions  in  a  program  the 
commands  are  TT,  GO,  or  GT. 

23.   TUTOR  1.3  >  BR  1150  10        (cr) 

Section  5.11 

11.  TUTOR  supports  debugging  of  programs  by  providing  commands  that  give  the  programmer 
the  abihty  to  display/modify  registers,  display/modify  memory  locations,  control  program 
execution  (trace,  breakpoint,  etc.),  and  assemble/disassemble  instructions. 

Chapter  6 

Section  6.2 

1.    No,  both  memory  and  I/O  are  located  in  the  same  address  space. 

Section  6.3 

3.    See  Problem  17,  Section  3.10. 

Section  6.5 

5.    FC,FC,FCn  =  001. 
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7. 

68000 

AS 

K 
FC,FC,FCo            ) 

V 
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User  data  memory 

User  program  memory 

Supervisor  data  memory 

Supervisor  program  memory 

Section  6. 7 

(a)  68000  outputs  FCjFCjFCq  =  001  in  user  mode  or  101  in  supervisor  mode. 
(b)  68000  places  address  SAOOl  on  A^j  through  A,. 
(c)  68000  asserts  AS  (logic  0). 
(d)  68000  sets  R/W  to  logic  0. 

(e)  68000  places  the  byte  of  data  on  D,  through  Dq. 
(f)  68000  asserts  LDS  (logic  0). 
(g)  Memory  interface  decodes  the  address  and  enables  memory  devices. 

(h)  Memory  stores  data  available  at  D,  through  Dq  in  SAOOl  using  LDS. 
(i)  Memory  interface  asserts  DTACK  (logic  0). 
(j)  68000  negates  LDS  and  AS  (logic  I). 

(k)  68000  removes  data  from  D,  through  Dq. 
(I)  68000  returns  R/W  to  logic  1. 
(m)  Memory  interface  negates  DTACK  (logic  1). 
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Section  6.8 

11.    MOVE.L (SSP)+,A2 
MOVE.L (SSP)  +  ,A1 
MOVE.L (SSP)  +  ,AO 

Section  6  JO 

13.    MOVE.L <'$16000,A0 

MOVEP.L          DO,0{AO) 

Section  6.12 

17. MOVE.L        nAOOO.Al 

MOVE.L        /l'$18007,A2 
MOVE.L        #5,00 

NXT MOVE.B        (A1),D1 
MOVE.B        D1,(A2) 

SUBQ.L         #1,D0 
BNZ                 NXT 

DONE B                      DONE 

Section  6.13 

19.  In  a  synchronous  bus  cycle,  the  data  transfers  are  synchronized  with  the  enable  (E)  clock 
signal.  In  an  asynchronous  bus  cycle,  the  microprocessor  waits  for  the  DTACK  to  be 
returned  by  the  peripheral  device  to  terminate  the  write  bus  cycle  or  to  read  data  off  the 
bus  and  then  terminate  the  read  bus  cycle. 

Section  6.15 

23.   These  inputs  represent  the  control  state  identified  as  RS  ■  R/W  in  Fig.  6.29.  From  the 
table,  we  find  that  character  data  is  being  read  from  the  6850  over  the  bus. 

25.    (a)    The  MPU  outputs  the  address  of  the  6850  on  the  address  bus.  This  address  is  decoded 
in  external  circuitry  to  select  the  6850  for  operation. 

(b)  At  the  same  time,  the  MPU  puts  a  byte  of  character  data  on  the  data  bus  and  signals 
the  6850  that  a  write  bus  cycle  is  in  progress  with  R/W. 

(c)  The  6850  accepts  the  data  off  the  bus. 
(d)  The  6850  frames  the  byte  of  character  data  with  a  start  bit,  parity  bit,  and  stop  bits 

and  then  loads  it  into  the  transmit  data  register. 
(e)  The  framed  character  is  converted  to  serial  form  by  shifting  it  through  the  transmit 

shift  register  and  output  over  the  TXp^^^  line. 
(f)  When  the  transmit  data  register  becomes  empty,  the  6850  sets  the  transmit  data  register 

empty  (TDRE)  flag  in  the  status  register. 
(g)  If  the  interrupt  on  TDRE  function  is  enabled,  the  IRQ  output  becomes  active.  This 

signal  can  be  applied  to  an  interrupt  input  of  the  68000  to  tell  it  that  the  character 
has  been  transmitted. 

(h)   The  MPU  must  next  output  another  character  to  the  6850. 
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27. MOVE.B 
MOVE.L 
MOVE.B 

#3,  DO 
#$OABCD,AO 
DO,(AO) 

Section  6.16 

29.    RS5RS4RS3RS2RS,  =  8,g  =  OIOOO2 
Looking  at  the  table  in  Fig.  6.35,  we  see  that  register  Rg  (PADR)  is  selected. 

31.  MOVE.L 
MOVE.B 
MOVE.B 

33.  MOVE.L 
MOVE.B 
MOVE.B 
MOVE.B 

Chapter  7 

#$0A00LA1 
#$40,(A1) 
#$60,(A1) 

#$0A001,A1 
/W),(A1) 
nFF,2(Al) 
«),4(A1) 

Section  7.2 

1.    External  exceptions: 
Internal  exceptions: 

reset,  interrupts,  and  bus  error. 
instructions  (TRAP,  TRAPV,  CHK,  DIVS,  DIVU),  privilege 
violation,  trace,  illegal  address,  illegal  instruction,  and 
unimplemented  instruction. 

Section  7.3 

3. 
Vector  Address Contents 

$10 

$12 
$0 

$B000 

Section  7.5 

5.   7 

7.    ORl  /S'$0300,SR 

Section  7.10 

11 
Save  registers 

Dq,  D|,  and  A2 
Service 
routine  body 

Restore  registers 

Dq,  D|,  and  Aj 

Return  to  calling 

program 
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Section  7.11 

13.  "Bus  error"  means  that  an  error  has  occurred  during  the  execution  of  a  bus  cycle.  For 
instance,  external  circuitry  has  detected  a  parity  error  or  a  watchdog  timer  has  timed  out 
before  DTACK  was  asserted. 

Section  7.12 

15.   CLR.L  DO 

CLR.L  Dl 

CLR.L D7 
CLR.L AO 
CLR.L Al 

CLR.L 
A6 

MOVE.L $FFFFFE,SSP 
BRA SAOOO 

Section  7.13 

17.   An  attempt  is  made  to  access  a  word  or  long  word  that  resides  at  an  odd-numbered  address. 

Chapter  8 

Section  8.2 

1.    16K  bytes;  stores  the  Tutor  monitor. 

3.   Program  storage  memory  is  nonvolatile;  therefore,  its  contents  remain  intact  even  when 
power  is  turned  off.  Data  storage  memory  is  volatile  and  if  power  is  turned  off  its  contents 
are  lost. 

5.   Parallel  I/O— 24  I/O  lines  that  are  used  to  implement  the  parallel  printer  (Centronics) 
and  cassette  player/recorder  interfaces. 
RS-232C  serial  communication  ports— 2:  one  for  connection  of  a  CRT  terminal  and  the 
second  for  implementing  a  communication  link  to  a  host  computer. 

7.    Parallel  I/O  interfaces  for  the  printer  and  cassette  player/recorder. 

Section  8.3 

9.   6850  ACIA. 

Section  8.4 

11.   68000  microprocessor  and  68230  parallel  interface/timer. 

13.    POR  is  used  to  reset  on-board  logic  circuits  such  as  flip-flops. 
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15.  When  the  microcomputer  is  reset  by  pressing  the  reset  button,  it  is  called  a  warm  reset. 
In  this  case,  only  the  68000  and  68230  devices  receive  pulses  at  their  reset  inputs. 
Furthermore,  the  HALT  and  POR  signals  are  not  produced  as  they  are  when  power  is 
turned  on. 

17.  FC2FC1FC0  =  111,  A3A2A,  =  100,  VPAIRQ  =  0,  PIACK  =  1,  TIACK  =  1,  and 
VPA  =  0.  In  this  case,  the  68000  uses  its  autovector  capability  to  generate  an  interrupt 

vector  from  the  code  IPLj  IPL,  IPLq.  As  shown  in  Fig.  8.5,  the  autovector  number  is  28. 

"•   Ll(lKkx8  =  lus         
21.    RAS,  RAW,  CL,  CU,  and  DTACK  RAM. 

23.  If  the  data  transfer  acknowledge  (DTACK)  signal  is  not  received  by  the  68000  during  a 
read  or  write  bus  cycle  prior  to  the  watchdog  timer  timing  out,  the  watchdog  timer  circuit 
outputs  the  BERR  signal.  BERR  is  returned  to  the  68000  to  tell  it  that  a  bus  error  condition 
has  occurred. 

Section  8.6 

25.  DATA  STROBE  is  an  output  by  which  the  Pl/T  tells  the  printer  that  valid  character  data 

is  available  on  data  lines  PDq  through  PD.^;  ACKNOWLEDGE  is  an  input  by  which  the 
printer  tells  the  PI/T  that  it  has  read  the  character  data  from  the  data  lines. 

27.    Maximum  baud  rate  =  9,600,  minimum  baud  rate  =  110. 



appendix: 

68230  Data  Sheet* 

I 
•Data  Sheets  Courtesy  of  Motorola,  Inc. 
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Advance  Information 

MC68230  PARALLEL  INTERFACE/TIMER 

The  MC68230  Parallel  Inierface/Timer  provides  versatile  double  but 

fered  parallel  interfaces  and  an  operating  system  oriented  timer  to 

MC68000  systems  The  parallel  interfaces  operate  m  unidirectional  or 

bidirectional  modes,  either  8  or  16  bits  wide  In  the  unidirectional 

modes,  an  associated  data  direction  register  determines  whether  the 

port  pins  are  inputs  or  outputs  In  the  bidirectional  modes  the  data 

direction  registers  are  ignored  and  the  direction  is  determined 

dynamically  by  the  state  of  four  handshake  pins  These  programmable 

handshake  pins  provide  an  interface  flexible  enough  for  connection  to  a 

wide  variety  of  low,  medium,  or  high  speed  peripherals  or  other  com- 

puter systems  The  PI,  T  ports  allow  use  of  vectored  or  autovectored  in- 
terrupts, and  also  provide  a  DMA  Request  pin  for  connection  to  the 

MC68450  Direct  Memory  Access  Controller  or  a  similar  circuit  The  Pl/T 

timer  contains  a  24-bit  wide  counter  and  a  5-bit  prescaler  The  timer 

may  be  clocked  by  the  system  clock  IPI/T  CLK  pin)  or  by  an  external 

clock  ITIN  pinl,  and  a  5-bit  prescaler  can  be  used  It  can  generate 

periodic  interrupts,  a  square  wave,  or  a  single  interrupt  after  a  pro- 

grammed time  period.  Also  it  can  be  used  for  elapsed  lime  measure 

ment  or  as  a  device  watchdog 

•  MC68000  Bus  Compatible 

•  Port  Modes  Include; 

Bit  I/O 

Unidirectonal  8-Bit  and  16-Bit 

Bidirectional  8-Bit  and  16-Bit 

•  Selectable  Handshaking  Options 

•  24-Bit  Programmable  Timer 

•  Software  Programmable  Timer  Modes 

•  Contains  Interrupt  Vector  Generation  Logic 

•  Separate  Port  and  Timer  Interrupt  Service  Requests 

•  Registers  are  Read/Write  and  Directly  Addressable 

•  Registers  are  Addressed  for  MOVEP  (Move  Peripheral!  and  DMAC 

Compatibility 

MC68230L8 
MC68230L10 

HMOS 
(HIGH-DENSITY  N-CHANNEL 

SILICON-GATEl 

PARALLEL  INTERFACE/TIMER 

^^^ 

^P^ 
P  SUFFIX 

L  SUFFIX 
CEBAMIC  PACKAGE 

CASE  740 

PLASTIC  PACKAGE 
AVAILABLE  2Q82 

PIN  ASSIGNMENT 
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1 
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]D4 

D6t 

2 

47 

3D3 

D7t 
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46 

1D2 

PAO[ 
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45 
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PA2[ 
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43 

IR'W 
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41 
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40 

ICLK 
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10 

39 

jBESET 

PA?[ 

11 38 
IVSS 

VCC  t 

12 

37 

)PC7,TIACI<; 

H,[ 

13 

36 

)  PC6'PIACK 

H2[ 
14 

35 

)PC6/PiRQ 

H3( 15 

34 

)PC4:DMAREQ 

H4[ 16 

33 

JPC3-T0UT 

PBO[ 

17 32 

JPC2.TIN 

PB1[ 
18 

31 

J  PCI 

PB2  C 19 

30 

JPCO 

PB3t 

20 

29 

]RS1 

PB4C 

21 
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]RS2 

PBS  I 

22 

27 

)RS3 

PB6  C 

23 

26 

JRS4 

pbM 

24 

26 

]RS6 
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IV1C68230L8*  MC68230L10 

FIGURE  1   -  PI  T  SYSTEM  BLOCK  DIAGRAM 

PC6.P1ACK 
PC7/TIACK 

MC68230 

PCS.  pIrq 

PC3/T0UT 
PI.  T 

TTTT 
POWER  CONSIDERATIONS 

The  average  chip-juncTion  lemperature.  Tj,  m  "^C  can  be  obtained  from 
Tj  =  Ta  +  iPd*9jAI  '11 

Where 

T/^sAmbieni  Temperature,  °C 

8jA=  Package  Thermal  Resistance,  Junction-to-Ambient,  °C/W 
PD*P|NT  +  PpORT 

PlNT^'CC  ^CC-  Watts  -  Chip  Internal  Power 

PpORT^Port  Power  Dissipation,  Watts  -  User  Determined 
For  most  applications  PpQRT^PlNT  ahd  can  be  neglected    PpoRT  mav  become  significant  if  the  device  is  configured  to 

dnve  Darlington  bases  or  sink  LEO  loadS- 

An  approximate  relationship  between  Pq  and  Tj  (if  PpORT  'S  neglected)  is 

PD=K-(Tj  +  273°C1  121 
Solving  equations  1  and  2  for  K  gives 

K  =  Po»iTA*27yci+9jA*PD^  '3' 
Where  K  is  a  constant  pertaining  to  the  particular  part  K  can  be  determined  from  equation  3  by  measuring  Pp  lat  equilibrium! 

for  a  known  T^.  Using  this  value  of  K  the  values  of  Pd  and  T  j  can  be  obtained  by  solving  equations  1 1 1  and  12)  iteratively  for  any 
value  of  Ta 
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MAXIMUM  RATINGS 

Characteristics 
Symbol 

Value 

Unit 

Supply  VoUage 

vcc 

-0  3  to  +7  0 V 

Inpul  Voltage 

V|n 

-0  3  to  +70 V 

Operating  Tempefature  Range 

Ta 

Oto70 

"C 

Storage  Temperature 

Tstg 

-56  to   +150 

"C 

THERMAL  CHARACTERISTICS 

Characteristics 
Symbol 

Value 

Rating 

Thermal  Resistance 

Ceramic 

«JA 

50 

°C/W 

This  device  contains  cifcuitrv  lo  protect  the 

inputs  against  damage  due  to  high  static 

voltages  or  electric  fields,  however,  n  is  ad- 
vised that  normal  precuations  be  taken  to 

avoid  application  of  anv  voltage  higher  than 

maximum-taled  voltages  to  this  high- 
impedance  circuit  Reliability  ot  operation  is 

enhanced  if  unused  inputs  are  tied  to  an  ap- 
propriate logic  voltage  level  le  g  ,  either  Vss 

or  Vcci 

DC  ELECTRICAL  CHARACTERISTICS  i Vcc  =  5  0  Vdc  ±  5% ,  T a  =  0  to  70°C  unless  otherwise  noted 
Characteristics 

Symbol 

Min Max 
Unit 

Input  Higti  Voltage                                                                                                       All  Inputs 

V|H 

Vss+20 

Vcc 

V 

Input  Low  Voltage                                                                                                        All  Inputs 

V|L 

Vss-03 VsS  +  08 

V 

Input  Leakage  Current  (V|n=0to  5  25  VI         HI,  H3.  R/W,  Re4'eT,  CLK,  RS1-RS5.  C5 

lin 

- 100 

„A 

Three-State  10(1  State)  Input  Current  IV,n  =  0  4to  2  41              DTACK.  PC0-PC7,  D0-D7 

H2,  H4,  PA0-PA7,  PB0-PB7 

ITSI -0.1 

20 

-10 

cA 

mA 

Output  High  Voltage 

(l|_gg(j=  -400 ^A,  Vcc  =  mini                                                                    DTACK,  D0-D7 
"Load=  -ISO^A,  Vcc  =  mini                                              H2,  H4.  PB0-PB7,  PA0-PA7 

llL03d=-'a)MA.Vcc  =  m,nl                                                                                PC0-PC7 

Vqh 

Vss  +  24 

- V 

Output  Low  Voltage 

nLoad  =  B8mA.Vcc  =  min)                                                          PC37TOUT.  PC6/PIRQ 

llLoad=5  3mA,Vcc=minl                                                                        D0-D7,  DTACK 
llLoad  =  2  4mA,  Vcc  =  mini     PA0-PA7,  PB0-PB7,  H2.  H4.  PC0-PC2,  PC4,  PC6,  PC7 

Vol 

- 05 V 

Internal  Power  Dissipation  (Measured  at  T;\  =  0°C1 

Pint 

- 
600 

mW 

Input  Capacitance  IVm^O,  Ta  =  25»C.  1=  1  MHzl 

Cin 

- 

16 

pl-
 

CLOCK  TIMING  (See  Figure  21 

Characteristic 

Symbol 

8  MHz 
MC68230L8 

10  MHz 

MC68230L10 Unit 

Min Max Mm Max 

Frequency  of  Operation 1 20 80 2  0 

10  0 
MHz 

Cycle  Time 

125 

500 

100 

600 

ns 

Clock  Pulse  Width 

'CL 

tCH 

56 

55 

260 

250 

45 

46 

250 

250 

ns 

Cloclr  Rise  and  Fall  Times 

'C. 'CI 

- 

10 

10 

: 

10 

10 
ns 

FIGURE  2  -  INPUT  CLOCK  WAVEFORM 

328 
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AC  ELECTRICAL  CHARACTERISTICS  IVcc  =  5  0  Vdc  1 5% .  Vs  =  0  Vdc.  Ta  =  0°C  lo  70°C) 

Number Characteristic 

8  MHz 

MC68230L8 

10  MHz 

MC68230L10 Unit 
Min Max Min Max 

1 R/W,  RS1-RS5  Valid  to  CS  Low  (Setup  T.me) 0 - 0 - 

ns 

21101 CS  Low  to  R/W  and  RS1-RS5  Invalid  IHold  Time) 

100 

- 65 - 

ns 

3111 CS  Low  to  CLK  Low  (Setup  Time) 30 - 20 - 

ns 

412) CS  Low  to  data  Out  Valid  (Delav) 
- 

75 

- 

60 ns 

5 RS1-RS5  Valid  to  Data  Out  Valid  (Delay) 
- 

140 

- 
100 

ns 

6 CLK  Low  to  DTACK  Low  (Read/Write  Cycle!  (Delay) 0 

70 

0 60 

ns 

7(31 DTACK  Low  10  (5S  High  (Hold  Time) 0 - 0 - 

ns 

8 CS  Of  PIACK  or  TiACK  High  to  Data  Out  Invalid  IHold  Timel 0 - 0 - 

ns 

9 CS  o(  PIACK  or  TIACK  High  to  D0-D7  High-Impedance  (Delay) 
- 50 - 

45 

ns 

10 
CS  Of  PIACK  Of  TIACK  High  to  DTACK  High  (Delay) 

- 50 30 

ns 

11 CS  Of  PIACK  Of  TIACK  High  to  DTACK  High  Impedance  (Delay) 
- 

100 

- 

55 

ns 

12 
Data  Invalid  to  (5S  Low  (Setup  Time) 0 - 0 - 

ns 

13 
(!S  Low  to  Data  In  INvalid  (Hold  Time) 

100 

- 65 - ns 

14 Input  Data  Valid  to  H1IH3)  Assetled  (Setup  Time) 

100 

- 60 - 

ns 

16 
H1IH3)  Asserted  to  Input  Data  Invalid  IHold  Time) 20 - 20 - 

ns 

16 
Handsha)<e  Input  H1(H4I  Pulse  Width  Asserted 

40 

- 

40 

- 

ns 

17 Handshake  Input  (H1-H4)  Pulse  Width  Negated 

40 

- 

40 ns 

18 H1(H3)  Asserted  lo  H2(H4)  Negated  (Delay) 
- 

150 

- 
120 

ns 

19 
CLK  Low  10  H2IH4)  Asserted  IDetay) 

- 
100 

- 
100 

ns 

20141 H2IH4I  Asserted  to  H1IH3I  Asserted 0 - 0 - 

ns 

2115) CLK  Low  to  H2(H4I  Pulse  Negated  (Delay) 
- 

125 

- 

125 
ns 

2219,  11) Synchronized  H1IH3)  to  CLK  Low  on  which  DMAREQ  is  Asserted 

(See  Figures  13  and  14) 
25 

35 25 36 
CLK  Per 

23 CLK  Low  DMAREQ  is  Asserted  to  CLK  Low  on  which  DMAREQ  is  Negated 3 3 3 3 

CLK  Per 

24 
CLK  Low  to  Output  Data  Valid  (Delay)  (Modes  0,  11 

- 
150 

120 ns 

25(9,  111 Synchronized  H1(H3)  to  Output  Data  Invalid  (Modes  0,  1) 

1  6 

25 

1  5 

2  5 
CLK  Per 

26 HI  Negated  to  Output  Data  Vatid  (Modes  2,  31 
- 

70 

- 60 

ns 

27 HI  Asserted  to  Output  Data  High  Impedance  (Modes  2,  3) 0 

70 

0 

70 

ns 

28 Read  Data  Valid  to  DTACK  Low  (Setup  Time) 0 - 0 - 

ns 

29 CLK  Low  to  Data  Output  Valid  (Intertupt  Acknowledge  Cycle) 
- 

120 

- 
100 

ns 

30171 H1(H3)  Asserted  to  CLK  High  (Setup  Time) 50 

40 
ns 

31 PIACK  or  TIACK  Low  to  CLK  Low  (Setup  Time) 50 

40 

- ns 

321111 Synchronized  CS  to  CLK  Low  on  which  DMAREQ  is  Asserted 

(See  Figures  13  and  141 

3 3 3 3 
CLK  Pet 

3319,  11) Synchronized  H1(H3I  to  CLK  Low  on  which  H2(H4)  is  Asserted 35 

4  5 

35 

46 

CLK  Per 
34 CLK  Low  to  DTACK  Low  (Interrupt  Acknowledge  Cycle  (Delay) 

- 75 - 

60 ns 

36 CLK  Low  to  DMAREQ  Low  (Delay) 0 

120 

0 

100 ns 

36 0 

120 

0 

100 

ns 
CLK  Low  to  DMAREQ  High  (Delay) _ CLK  Low  to  PIRQ  Low  or  High  Impedance 

- 200 - 160 

ns 

-18) 
TIN  Freguency  lExternal  Clock)  -  Prescaler  Used 

0 1 0 1 Fclk(Hz)(6) 

_ 
TIN  Freguency  lExternal  Clock)  -  Prescaler  Not  used 

0 

1/32 

0 

1/32 

FclklHz)(6) 

_ 
TIN  Pulse  Width  High  or  Low  (External  Clockl 

55 - 

45 

ns 

TIN  Pulse  Width  Low  (Run/Hal;  Control) 1 - 1 - 
CLK 

_ 
CLK  Low  to  TOUT  High,  Low,  or  High  Impedance 0 200 0 

150 

ns 

- 
CS,  PIACK,  or  TIACK  High  to  CS,  PIACK,  or  TIACK  Low 

50 - 

30 

- 

ns 

NOTES  _ 

1  This  specificaiion  onlv  applies  it  the  Pl/T  had  completed  all  operations  initiated  bv  the  previous  bus  cycle  when  CS  was  asserted  Follow- 
ing  a  normal  read  Of  write  bus  cycle,  all  operations  are  complete  withm  three  CLKs  after  the  (ailing  edge  of  the  CLK  pin  on  which  DTACK 
was  asserted   II  CS  is  asserted  prior  to  completion  of  these  operations,  the  new  bus  cycle,  and  hence.  DTACK  is  postponed 

If  all  operations  of  the  previous  bus  cycle  were  complete  when  CS  was  asserted,  this  specification  is  made  only  to  insure  that  DTACK  is  as- 
serted with  respect  to  the  falling  edge  of  the  CLK  pm  as  shown  in  the  timing  diagram,  not  to  guarantee  operation  of  the  part  II  the  CS 

setup  time  is  violated,  DTACK  may  be  asserted  as  shown,  or  may  be  asserted  one  clock  cycle  later 

2  Assuming  the  RS1RS5  to  Data  Valid  time  has  also  expired 
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3  This  speciticanon  imposes  a  lower  bound  on  CS  low  iime.  guaranteeing  ihat  CS  will  be  low  tor  at  least  1  CLK  period 

4  This  specification  assures  recognition  ot  the  asserted  edge  ot  HHH3) 

5  This  specitication  applies  only  when  a  pulsed  handshake  option  is  chosen  and  the  pulse  is  not  shortened  due  to  an  early  asserted  edge  ot 
H1(H3l 

6-  CLK  refers  to  the  actual  frequency  of  the  CLK  pin,  not  the  maximum  allowable  CLK  frequency 

7  If  the  setup  time  on  the  nsing  edge  of  the  clock  is  violated,  HHH3)  may  not  be  recognized  until  the  next  rising  of  the  clock, 

8  This  limit  applies  to  the  frequency  of  the  signal  at  TIN  compared  to  the  frequency  of  the  CLK  signal  during  each  clock  cycle  If  any  period  of 

the  waveform  at  TIN  is  smaller  than  the  period  of  the  CLK  signal  at  that  instant,  then  it  is  likely  that  the  timer  circuit  will  completely  ignore 

one  cycle  of  the  TIN  signal 

If  these  two  signals  are  derived  from  different  sources  they  will  have  different  instantaneous  frequency  variations.  In  this  case  the  frequency 

applied  to  the  TIN  pin  must  be  distinctly  less  than  the  frequency  at  the  CLK  pin  to  avoid  lost  cycles  of  the  TIN  signal  With  signals  derived 

from  different  crystal  oscillators  applied  to  the  TIN  and  CLK  pins  with  fast  rise  and  fall  times,  the  TIN  frequency  can  approach  80  to  90%  of 

the  frequency  of  the  CLK  signal  without  a  loss  of  a  cycle  of  the  TIN  signal 

If  these  two  signals  are  derived  from  the  same  frequency  source  then  the  frequency  of  the  signal  applied  to  TIN  can  be  100%  of  the  fre 
quency  at  the  CLK  pm  They  may  be  generated  by  different  buffers  from  the  same  signal  or  one  may  be  an  inverted  version  of  the  other 

The  TIN  signal  may  be  generated  by  an  'AND'  function  of  the  dock  and  a  control  signal 

9  The  maximum  value  is  caused  by  a  penpheral  access  IHKHSI  asserted!  and  bus  access  (US  asserted)  occurnng  ai  the  same  time 

10  See  BUS  INTERFACE  CONNECTION  section  for  exception 

1 1  Synchronized  means  that  the  input  signal  has  been  seen  by  the  Pl/T  on  the  appropriate  edge  of  the  clock  (rising  edge  (or  H1(H31  and  falling 

edge  forTTS).  (Refer  to  the  BUS  INTERFACE  CONNECTION  section  for  the  exception  concerning  CS  1 

FIGURE  3  -  BUS  READ  CYCLE  TIfVIING 

DMAREQ 

NOTE    Timing  measui i  referenced  to  and  from  a  low  voltage  ot  0  8  volts  and  a  high  voltage  of  2  0  volts,  unless  otherwise  noted 
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FIGURE  4  -  BUS  WRITE  CYCLE  TIMING 

FIGURE  5  -  INTERRUPT  ACKNOWLEDGE 

FUNCTIONAL  TIMING  DIAGRAM 

Noie    T,m,ng  measu.emenis  are  -eleterced  to  and  Irom  a  low  voltage  ol  0  8  volts  and  a  h.gh  voltage 
 ot  2  0  volts,  unless  othenv.se  noted 
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FIGURE  6  -  PERIPHERAL  INTERFACE  INPUT  TIMING 

NOTE    Timing  diagram  shows  HI.  H2.  H3,  am 

FIGURE  7  -  PERIPHERAL  INTERFACE  OUTPUT  TIMING 
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GENERAL  DESCRIPTION 

The  Pl/T  consists  of  two  logicallv  independent  sections 

the  ports  and  the  tinner  The  port  section  consists  of  Port  A 

IPAO-7),  Port  B  (PBO  71,  four  handshake  pins  IHl.  H2,  H3. 

and  H4I.  two  general  I/O  pins,  and  six  dual-function  pins 

The  dual-function  pins  can  individually  operate  as  a  third 
port  (Port  C)  or  an  alternate  function  related  to  either  Ports  A 

and  B,  or  the  timer  The  four  programmable  handshake  pins, 

depending  on  the  mode,  can  control  data  transfer  to  and 

from  the  ports,  or  can  be  used  as  interrupt  generating  inputs, 

or  I/O  pins 

The  timer  consists  of  a  24-bit  counter,  optionally  clocked 

by  a  5-bit  prescaler  Three  pins  provide  complete  timer  I/O: 

PC2/TIN,  PC3/T0UT.  and  PC7/TIACK  Of  course,  only  the 

ones  needed  for  the  given  configuration  perform  the  timer 

function,  while  the  others  remain  Port  C  I/O 

The  system  bus  interface  provides  for  asynchronous 

transfer  of  data  from  the  Pl/T  to  a  bus  master  over  the  data 

bus  ID0-D7I  Data  transfer  acknowledge  IDTACKI,  register 

selects  (RS1-RS5I,  chip  select,  the  read/wnie  line  IR/Wl, 

and  Port  Interrup  Acknowledge  (PIACKI  or  Timer  Interrupt 

Acknowledge  ITIACK)  control  data  transfer  between  the 
Pl/T  and  the  MC68000 

FIGURE  8  -  MC6a230  BLOCK  DIAGRAtUI 

38  39         40  41^         42  43_      44        45       46        47       48         1  2  3 
Vss       RESET    CLK  CS    DTACK    R/W      DO       Dl        D2       03       D4       D5       06        07 

I      I       I M    t   It   t   M   I   I   I 
Daia  Bus  Iniertace  and 

Interrupt  Vectof  Registers 

Port 

interrupt/ 

DMA 

Control 

Logic 

c I 
■RAO 

-PAl 

•PA2 
■PA3 

•  PA4 

-PAS 
-PA6 

-PA7 

Handshake 
Interface 

Logic 

-«   HI 

—   »-PBl  18 

-•   »-PB2  19 -■   ^PB3  20 

-«   »-PB4  21 —   »PB6  22 

-«   ^PB6  23 

—   ^PB7  24 

Port  C  and  Pin  Function  Muitiplexi 

Ml    t    MM 
PC7;         PC6/         PC6/  PC4/     PC3/T0UT  PC2/TIN    PCI       PCO 

TIACK      PIACK       PTTO      OMAREQ  33  32  31  30 

I  t  f  I  I 
RSI        RS2        RS3       RS4       RS5 
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Pl/T  PIN  DESCRIPTION 

Throughout  the  data  sheet,  signals  are  presented  using 

the  terms  active  and  inactive  or  asserted  and  negated  in- 
dependent of  whether  the  signal  is  active  in  the  high-voltage 

state  or  low-voltage  state.  (The  active  state  of  each  logic  pin 
IS  given  below  )  Active  low  signals  are  denoted  by  a 
superscript  bar  R/W  indicates  a  write  is  active  low  and  a 
read  active  high. 

FIGURE  9  - -  LOGICAL  PIN  ASSIGNMENT 

00-07—— — PAO-7 

RSI  RS5  -m. 

«-— PBO-7 

R/W   — »■ 

—  HI 

CS   -— 

■•— H3 

DTACK—— 
MC68230 

RESET    -» PI.'T ■»»-PC7/TIACK' 
■••-PC6/PIACK* 

■»»-PC6.'PIRQ' 

CLK    -» 

— PC4  DMAREO 

—PCS.  TOUT- vcc  — 
—  PC2/TIN' 

GND  -— 

—PCI 

—^PCO 

*!ndividuall> 

Prog 

ammable  Due Function  Pin 

D0-D7  -  Bidirectional  Data  Bus.  The  data  bus  pins  D0-D7 
form  an  8-bit  bidirectional  data  bus  to/ from  the  MC68000  or 
other  bus  master   These  pins  are  active  high 

RS1-RS5  -  Register  Selects.  RS1-RS5  are  active  high 
high  impedance  inputs  that  determine  which  of  the  25  possi- 

ble registers  is  being  addressed.  They  are  provided  by  the 
MC68000  or  other  bus  master 

R/W  -  Read/Write  Input  -  R/W  is  the  high-impedance 

Read/Write  signal  from  the  MC68000  or  bus  master,  in- 
dicating whether  the  current  bus  cycle  is  a  read  (high)  or 

write  (low)  cycle. 

CS  -  Chip  Select  Input  CS  is  a  high-impedance  input 

that  selects  the  Pl/T  registers  for  the  current  bus  cycle  Ad- 
dress strobe  and  the  data  strobe  (upper  or  lower)  of  the  bus 

master,  along  with  the  appropnate  address  bits,  must  be  in- 
cluded in  the  chip  select  equation.  A  low  level  corresponds 

to  an  asserted  chip  select 

DTACK  -  Data  Transfer  Acknowledge  Output.  DTACK  is 
an  active  low  output  that  signals  the  completion  of  the  bus 
cycle  During  read  or  interrupt  acknowledge  cycles,  DTACK 
IS  asserted  by  the  MC68230  after  data  has  been  provided  on 

the  data  bus,  during  write  cycles  it  is  asserted  after  data  has 
been  accepted  at  the  data  bus  Data  transfer  acknowledge  is 
compatible  with  the  MC680C0  and  with  other  Motorola  bus 
masters  such  as  the  MC68450  DMA  controller  A  holding 
resistor  is  required  to  maintain  DTACK  high  between  bus 

cycles 

RESET  -  Reset  Input  RESET  is  a  high-impedance  input 
used  to  initialize  all  Pl/T  functions  All  control  and  data 

direction  registers  are  cleared  and  most  internal  operations 
are  disabled  by  the  assertion  of  RESET  (low) 

CLK-  Clock  Input  Theclock  pin  is  a  high-impedance  TTL- 
compatible  signal  with  the  same  specifications  as  the 
MC68000  The  Pl/T  contains  dynamic  logic  throughout,  and 
hence  this  clock  must  not  be  gated  off  at  any  time  It  is  not 

necessary  that  this  clock  maintain  any  particular  phase  rela- 
tionship with  the  MC680(X)  clock  It  may  be  connected  to  an 

independent  frequency  source  (faster  or  slower)  as  long  as 
all  bus  specifications  are  met. 

PA0-PA7  and  PB0-PB7  -  Port  A  and  Port  B  Ports  A  and 

B  are  8-bit  pons  that  may  be  concatenated  to  form  a  16-bit 

port  in  certain  modes.  The  ports  may  be  controlled  in  con- 
junction with  the  handshake  pins  H1-H4  For  stabilization 

during  system  power-up.  Ports  A  and  B  have  internal  pullup 
resistors  to  ̂ qq    All  port  pins  are  active  high. 

H1-H4  -  Handshake  pins  (I/O  depending  on  the  Mode 

and  Submodel  Handshake  pins  H1-H4  are  multi-purpose 
pins  that  (depending  on  the  operational  mode)  may  provide 
an  interlocked  handshake,  a  pulsed  handshake,  an  interrupt 

input  (independent  of  data  transfers),  or  simple  I/O  pins.  For 

stabilization  during  system  power-up,  H2  and  H4  have  inter- 
nal pullup  resistors  to  V^q  Their  sense  (active  high  or  low) 

may  be  programmed  in  the  Port  General  Control  Register 
bits  3-0  Independent  of  the  mode,  the  instantaneous  level  of 
the  handshake  pins  can  be  read  from  the  Port  Status 

Register 

Port  C  -  (PC0-PC7/ Alternate  function).  This  port  can  be 

used  as  eight  general  purpose  I/O  pins  (PC0-PC7)  or  any 
combination  of  six  special  function  pins  and  two  general  pur- 

pose I/O  pins  (PCO-PCl)  (Each  dual  function  pin  can  be 
standard  I/O  or  a  special  function  independent  of  the  other 

port  C  pins  )  The  dual  function  pins  are  defined  in  the  follow- 
ing paragraphs  When  used  as  a  port  C  pin,  these  pins  are 

active  high  They  may  be  individually  programmed  as  inputs 
or  outputs  by  the  Port  C  Data  Direction  Register 

The  alternate  functions  (TIN,  TO(JT,  and  TIACK)  are  timer 

1/0  pins  TIN  may  be  used  as  a  rising-edge  triggered  external 
clock  input  or  an  external  run/  halt  control  pin  ( the  timer  is  in 
the  run  state  if  run/halt  is  high  and  in  the  halt  state  if 

run/  halt  is  low)  TOUT  may  provide  an  active  low  timer  inter- 
rupt request  output  or  a  general-purpose  square-wave  out- 
put, initially  high  TIACK  is  an  active  low  high-impedance  in- 
put used  tor  timer  interrupt  acknowledge 

Port  A  and  B  functions  have  an  independent  pair  of  active 

low  interrupt  request  (PIRQ)  and  interrupt  acknowledge 
(PIACK)  pins. 

The  DMAREQ  (Direct  Memory  Access  Request)  pin  pro- 
vides an  active  low  Direct  Memory  Access  Controller 

I  DM  AC)  request  pulse  of  3  clock  cycles,  completely  com- 
patible with  the  MC68450  DMAC 

REGISTER  MODEL 

A  register  model  that  includes  the  corresponding  Register 
Selects  IS  shown  in  Table  1 
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TABLE  1   -  REGISTER  MODEL 

1         1 

1         1 

1         1 

1         1 

1  1 

1  1 

1         1 

Port  Mode 

Conlrol 
H34 Enable 

H12 

Enable 

H4 

Sense 

H3 

Sense 

H2 

Sense 

HI 
Sense • SVCRQ 

Select 
PFS 

Port  Interrupt 

Pr.orilv  Conlrol 

B.; 

Bii 
6 

B.t 
6 

B.t 
4 

B.t 
3 

Bit 
2 

B.l 

B.l 

0 

Bil 7 
Bit 6 

B.' 

6 
Bit B.t 

3 

B.t 

2 

B.l 

1 

B.t 

0 

B.I Bil 6 

Bii 

Bil 
B.l B.t 

B., 

B.t 

0 

;r.:er-upl    vfijMi  Number • « 

Pom  a 

Submode 
HJConlio, 

H2 

Inl 

Enable HI 

SVCRQ 

Enable HI 
Slal 

Ctrl Pon  B 

Submoae 

H4  Control 

H4 

Int 

Enable 

H3 

SVCRQ 
Enable 

H3 

Stat 

Ctrl 

Bil 
7 

Bit 
6 

B.I 
5 

B.t 

4 
B.t 
3 

Bit 
2 

B.t 

1 
B.t 
0 

B.t 7 
B.t 
6 

B.I 
5 

B.t 

S.l 
3 

B.t 

2 
Bit 
1 

Bit 
0 

Bit 
7 

B.I 
6 

B.I B.t 
4 

B.l 

3 
B.l 
2 

B.t 

1 

B.t 

0 

B.I 7 
B.t 6 

B.t 
5 

B.t 
4 

B.t 

3 

B.l 

2 

B.l 

1 
B.t 
0 

Bil B.I 
6 

B.l 

5 
B.t 

B.t 

3 

B.t 

2 
B.l 
1 

B.t 

0 

H4 

Level 

H3 

Lev/el .evHl 

HI 

Level 

H4S H3S 

H2S 

HIS 

» • • » . • . ♦ 
. • • » * • ♦ • 

TOUT   TiACK zu ' 

sz~ 

Timer 

Enable 

Bjl 
Br 

Si' 

Bii 

Bil 

Bil 
B'l 

Bil 
* « • • » • • * 

B'l 

:3 

Bit Bil 

21 

Bil 
20 

Bil 

B.I 

18 

Bii 

1? 

Bil 

16 

Bil 

15 

Bil 14 

Bit 

13 

Bil 

12 

'
u
 

Bii 

10 

B.l 

9 

B.l 

8 

Bil Bit 
6 

B.t 
5 

B.t 8.1 

3 
B.t 

2 
B.t 
1 

8.1 

0 

, , , . . . » * 

Bii 

23 

B:I 
Bii 

e.- 

Bii 

B.l 
8.1 

Bii 

16 

Bil 

15 

Bil 

B.I 
Bii 

B'l 11 
Bii 

10 

Bil 

B.l 

8 

Bii B.I 
6 

Bi' 

B.l 

Bn Bii 

Bii Bii 

. . . . . 
ZDS 

. . . . . . 
» • • • • • 
. • . • • • 
. . . . . • 
♦ • • • • • 

Port  General 

Control  Register 

Port  Service 

Request  Register 
Port  A  Data 

Direction  Register 

Port  B  Data 

Direction  Register 

Port  C  Data 

Direction  Register 

Port  Interrupt 

Vector  Register 

Port  A  Control 

Register 

Port  A  Data 

Register Port  B  Data 

Register 
Port  A  Alternate 

Register 
Port  B  Alternate 

Register Port  C  Data 

Register 
Port  Status 

Register (null) 

(null) 

Timer  Control 

Register Timer  Interrupt 

Vector  Register 
(null) 

Counter  Preload 

Register  (High) 

Inull) 

(nultl 

(nulll 

(nulll 

"Unused,  read  as  zero 
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PORT  CONTROL  STRUCTURE 

The  primary  focus  of  most  applications  will  be  on  Ports  A 
and  B,  Itie  fiandsfiake  pins,  the  port  interrupt  pins,  and  the 

DMA  request  pin  They  are  controlled  in  the  following  way 
the  Port  General  Control  Register  contains  a  2-bit  field  that 
specifies  a  set  of  four  operation  modes  These  govern  the 
overall  operation  of  the  ports  and  determine  their  interrela- 

tionships Some  modes  require  additional  information  from 
each  ports  control  register  to  further  define  its  operation  In 

each  port  control  register,  there  is  a  2-bit  submode  field  that 
serves  this  purpose  Each  port  mode/ submode  combination 

specifies  a  set  of  programmable  charactenslics  that  fully 
define  the  behavior  of  that  port  and  two  of  the  handshake 

pins.  This  structure  is  summanzed  in  Table  2  and  Figure  10 

FIGURE  10  -  PORT  MODE  LAYOUT 

Mode  0  Submode  00  f^ode  0  Submode  01  r^ode  0  Submode  1 

1^ A  iBi 

^-
 

A    iBl 
8 

Doubte-Buttefe( 

o 

MoOe  1  Po'T  B  Submode  XO  Mode  I  Pot!  8  Submode  XI 

B.l  1.0 

10 
H4'  Translers 

TABLE  2  -  PORT  MODE  CONTROL  SUMMARY 

Mode  0  (Unrdireciionai  8-Bii  Mode) 
Pen  A 

Submode  00  -  Oouble-Buffered  input 
HI    -   Latches  input  data 

H2  -   Status/interrupt  generating  input,   general-purpose 
output.  Of  operation  with  HI  in  the  interlocked  or 

pulsed  input  handshake  protocols 

Submode  01  -  Double-Buftered  Output 

HI    -   Indicates  data  received  bv  peripheral 

H2   —    Status/ inierrupt   generating   input,    general-purpose 
output,  or  operation  with  HI   m  the  interlocked  or 

pulsed  output  handshake  protocols 

Submode  IX  -  Bit  I/O 

HI    -    Status/interrupt  generating  input 

H2  -   Status/ interrupt  generating  input  or  general  purpose 
output 

Port  B.  H3  and  H4  -  Identical  to  Port  A.  HI  and    H2 

Mode  1  (Unidirectional  16-Bit  Model 

Port  A  -  Double-Buffered  Data  (Most  sigmftcantl 
Submode  XX  (not  used! 

HI    —    Status/interrupt  generating  input 

H2  -    Status/interrupt  generating  input  or  general-purpose output 

Port  B  -  Double-Buffered  Data  (Least  Significant! 

Submode  XO  -  Unidirectional  16-Bit  Input 
H3  -    Latches  input  data 

H4    -    Status/ interrupi    generating   input,    general- purpose 
output,   or  operation  with  H3  in  the  interlocked  or 

pulsed  input  handshake  protocols 

Submode  XI   -  Unidirectional  16-Bit  Output 

H3  -   Indicates  data  received  by  peripheral 

H4   -    Siatus/inierrupt   generating   input,    general-purpose 
output,  or  operation  with  H3  m  the  interlocked  or 

pulsed  output  handshake  protocols 

Mode  2  (Bidirectional  8-Bit  Model 

Port  A  -   Bit  I/O  (with  no  handshaking  pms) 
Submode  XX  (not  used) 

Port  B  -  Bidirectional  8Bit  Data  iDouble-Bufferedl 
Submode  XX  (not  usedl 

HI    -   Indicates  output  data  received  bv  peripheral 

H2   -    Operation  With  HI  in  the  interlocked  or  pulsed  output 
handshake  protocols 

H3  -    Latches  input  data 

H4    -    Operation  with  H3  in  the  interlocked  or  pulsed  input 
handshake  protocols 

Mode  3  (Bidirectional  16-Bit  Model 

Port  A  -  Double-Buffered  Data  (Most  significantl 
Submode  XX  (not  usedl 

Port  B  -  Double-Buffered  Data  (Least  sigmficanil 
Submode  XX  (not  usedl 

HI    -   Indicates  output  data  received  bv  peripheral 

H2  -   Operation  with  HI  in  the  interlocked  or  pulsed  output 
handshake  protocols 

H3  -   Latches  input  data 

H4  -   Operation  with  H3  in  the  interlocked  or  pulsed  input 
handshake  protocols 
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PORT  GENERAL  INFORMATION  AND  CONVENTIONS 

The  following  paragraphs  introduce  concepts  thai  are 
generally  applicable  to  the  Pl/T  ports  independent  of  the 
chosen  mode  and  submode  For  this  reason,  no  particular 
pon  or  handshake  pins  are  mentioned,  the  notation  HI  IH3) 

indicates  that,  depending  on  the  chosen  mode  and  sub- 
mode,  the  statement  given  mav  be  true  for  either  the  HI  or 
H3  handshake  pin 

Unidirectional  vs  Bidirectional  -  Figure  10  shows  the  con- 
figuration of  Ports  A  and  8  and  each  of  the  handshake  pins 

in  each  port  mode  and  submode  In  Modes  0  and  1,  a  data 
direction  register  is  associated  with  each  of  the  ports  These 
registers  contain  one  bit  for  each  port  pin  to  determine 
whether  that  pin  is  an  input  or  an  output  Modes  0  and  1  are, 
thus,  called  unidirectional  modes  because  each  pin  assumes 
a  constant  direction,  changeable  only  by  a  reset  condition  or 

a  programming  change  These  modes  allow  double-buffered 
data  transfers  in  one  direction  This  direction,  determined  by 
the  mode  and  submode  definition,  is  known  as  the  primary 
direction  Data  transfers  in  the  primary  direction  are  con- 

trolled by  the  handshake  pins  Data  transfers  not  in  the 

Drimary  direction  are  generally  unrelated,  and  single  or  un- 
buffered data  paths  exist 

In  Modes  2  and  3  there  is  no  concept  of  primary  direction 
as  in  Modes  0  and  1  Except  for  Port  A  in  Mode  2  (Bit  l/OI. 
the  data  direction  registers  have  no  effect  These  modes  are 
bidirectional,  in  that  the  direction  of  each  transfer  (always  8 

or  16  bits,  double-buffered)  is  determined  dynamically  by  the 
state  of  the  handshake  pins  Thus,  for  example,  data  may  be 
transferred  out  of  the  ports,  followed  very  shortly  by  a 
transfer  into  the  same  port  pins  Transfers  to  and  from  the 
ports  are  independent  and  may  occur  in  any  sequence  Since 

the  instantaneous  direction  is  always  determined  by  the  ex- 

ternal system,  a  small  amount  of  arbitration  logic  may  be  re- 
quired 

Control  of  Double- Buffered  Data  Paths  -  Generally 
speaking,  the  Pl/T  is  a  double-buffered  device  In  the 
primary  direction,  double-buffering  allows  orderly  transfers 
by  using  the  handshake  pins  in  any  of  several  programmable 

protocols  (When  Bit  I/O  is  used,  double-butfenng  is  not 
available  and  the  handshake  pins  are  used  as  outputs  or 
status/ interrupt  inputs  I 

Use  of  double-buffering  is  most  beneficial  in  situations 
where  a  peripheral  device  and  the  computer  system  are 
capable  of  transferring  data  at  roughly  the  same  speed 

Double-buffering  allows  the  fetch  operation  of  the  data 
transmitter  to  be  overlapped  with  the  store  operation  of  the 

data  receiver  Thus,  throughput  measured  in  bytes  or  words- 
per-second  may  be  greatly  enhanced  if  there  is  a  large 
mismatch  in  transfer  capability  between  the  computer  and 
the  peripheral,  little  or  no  benefit  is  obtained  In  these  cases 

there  is  no  penalty  in  using  double-buffering, 

Double-Buffered  Input  Transfers  -  In  all  modes,  the  Pl/T 
supports  double-buffered  input  transfers.  Data  that  meets 
the  port  setup  and  hold  times  is  latched  on  the  asserted  edge 

of  H1(H3I  H1(H3I  IS  edge-sensitive,  and  may  assume  any 

duty-cycle  as  long  as  both  high  and  low  minimum  times  are 
observed  The  Pl/T  contains  a  Port  Status  Register  whose 
H1SIH3SI  status  bit  is  set  anytime  any  input  data  is  present 

in  the  double-buffered  latches  that  has  not  been  read  by  the 
bus  master  The  action  of  H2(H4)  is  programmable,  it  may 
indicate  whether  there  is  room  for  more  data  in  the  Pl/T 

latches  or  it  may  serve  other  purposes  The  following  options 
are  available,  depending  on  the  mode 

1  H2IH4)  may  be  an  edge-sensitive  input  that  is  in- 
dependent of  H1IH3)  and  the  transfer  of  port  data 

On  the  asserted  edge  of  H2(H41.  the  H2S(H4SI 
status  bit  IS  set  It  is  cleared  by  the  direct  method 

I  refer  to  Direct  Method  of  Resetting  Status),  the 
RESET  pin  being  asserted,  or  when  the  H12  Enable 
(H34  Enablel  bit  of  the  Port  General  Control  Register isO 

2.  H2IH4)  may  be  a  general  purpose  output  pin  that  is 
always  negated.  The  H2S(H4SI  status  bit  is 
always  0, 

3.  H2IH4)  may  be  a  general  purpose  output  pin  that  is 
always  asserted  The  H2SIH4S)  status  bit  is  always 
0 

4.  H2(H4)  may  be  an  output  pin  in  the  interlocked  input 

handshake  protocol  It  is  asserted  when  the  port  in- 
put latches  are  ready  to  accept  new  data  It  is 

negated  asynchronously  following  the  asserted  edge 
of  the  H1(H3)  input  As  soon  as  the  input  latches 

become  ready.  H2(H4)  is  again  asserted.  When  the 

input  double-buffered  latches  are  full.  H2(H4)  re- 
mains negated  until  data  is  removed  Thus,  anytime 

the  H2(H4I  output  is  asserted,  new  input  data  may 

be  entered  by  asserting  H1IH3)  At  other  times  tran- 
sitions on  H1(H3)  are  ignored  The  H2S(H4S)  status 

bit  is  always  0  When  H12  Enable  IH34  Enablel  is  0. 
H2(H4I  IS  held  negated 

5     H2(H4)  may  be  an  output  pin  in  the  pulsed  input 
handshake  protocol    It  is  asserted  exactly  as  in  the 
interlocked    input    protocol,     but    never    remains 

asserted  longer  than  4  clock  cycles   Typically,  a  four 
clock  cycle  pulse  is  generated   But  in  the  case  that  a 

subsequent  H1IH3I  asserted  edge  occurs  before  ter- 
mination  of   the   pulse.    H2IH4)   is  negated   asyn- 

chronously  Thus,  anytime  after  the  leading  edge  of 
the  H2(H4I  pulse,  new  data  may  be  entered  in  the 

Pl/T  double-buffered  input  latches.  The  H2SIH4SI 
status  bit  IS  always  0  When  HI 2  Enable  (H34  Enable) 
IS  0.  H2(H4I  is  held  negated 

A  sample  timing  diagram  is  shown   in  Figure   11     The 
H2(H4)  interlocked  and  pulsed  input  handshake  protocols 
are  shown    The  DMAREQ  pin  is  also  shown  assuming  it  is 
enabled   All  handshake  pm  sense  bits  are  assumed  to  be  0 
(refer  to  Port  General  Control  Register),  thus,  the  pins  are  m 

the  low  state  when  asserted   Due  to  the  great  similarity  be- 
tween modes,  this  timing  diagram  is  applicable  to  all  double- 

buffered  input  transfers 
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FIGURE  11  -  DOUBLE-BUFFERED  INPUT  TRANSFERS 
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Double-Buffered  Output  Transfers  -  The  Pl/T  supports 

double-buffered  output  transfers  in  all  modes  Data,  written 

bv  the  bus  master  to  the  Pl/T,  is  stored  in  the  port's  output 
latch  The  peripheral  accepts  the  data  by  asserting  H1(H3), 

which  causes  the  next  data  to  be  moved  to  the  port's  output 
latch  as  soon  as  it  is  available  The  function  of  H2(H4)  is  pro- 

grammable, It  may  indicate  whether  new  data  has  been  mov- 
ed to  the  output  latch  or  it  may  serve  other  purposes  The 

H1S(H3S1  status  bit  may  be  programmed  for  two  interpreta- 
tions Normally  the  status  bit  is  a  1  when  there  is  at  least  one 

latch  in  the  double-buffered  data  path  that  can  accept  new 

data.  After  writing  one  byte/word  of  data  to  the  ports,  an  in- 
terrupt service  routine  could  check  this  bit  to  determine  if  it 

could  store  another  byte/word,  thus,  filling  both  latches 

When  the  bus  master  is  finished,  it  is  often  useful  to  be  able 

to  check  whether  all  of  the  data  has  been  transferred  to  the 

peripheral  The  HISIH3SI  Status  Control  bit  of  the  Port  A 

and  B  Control  Registers  provide  this  flexibility  The  program- 
mable options  of  the  H2(H41  pin  are  given  below,  depending 

on  the  mode 

T  H2(H4I  may  be  an  edge-sensitive  input  pin  indepen- 
dent of  H1(H3)  and  the  transfer  of  port  data  On  the 

asserted  edge  of  H2IH4I.  the  H2S(H4S)  status  bit  is 

set  It  IS  reset  by  the  direct  method  (refer  to  Direct 

Method  of  Resetting  Status),  the  RESET  pin  being 

asserted,  or  when  the  H12  Enable  (H34  Enable!  bit  of 

the  Port  General  Control  Register  is  0 

2  H2(H4I  may  be  a  general-purpose  output  pin  that  is 

always  negated  The  H2S(H4S)  status  bit  is 

always  0 

3  H2(H4)  may  be  a  general-purpose  output  pin  that  is 
always  asserted.  The  H2S(H4S)  status  bit  is  always 

\ 

"A   

^   f 
f 

4.  H2(H41  may  be  an  output  pm  in  the  interlocked  out- 

put handshake  protocol  H2(H4)  is  asserted  two 

clock  cycles  after  data  is  transferred  to  the  double- 
buffered  output  latches  The  data  remains  stable  and 

H2(H4I  remains  asserted  until  the  next  asserted  edge 

of  the  H1{H3)  input  At  that  time.  H2(H4)  is  asyn- 

chronously negated  As  soon  as  the  next  data  is 

available,  it  is  transferred  to  the  output  latches 

When  H2(H4)  is  negated,  asserted  transitions  on 

HHH3)  have  no  effect  on  the  data  paths  As  is  ex- 
plained later,  however,  in  Modes  2  and  3  they  do 

control  the  three-state  output  buffers  of  the  bidirec- 
tional portlsl  The  H2S(H4S)  status  bit  is  always  0 

When  H12  Enable  (H34  Enable)  is  0.  H2(H41  is  held 

negated 
5  H2IH4)  may  be  an  output  pin  in  the  pulsed  output 

handshake  protocol.  It  is  asserted  exactly  as  in  the 

interlocked  output  protocol  above,  but  never  re- 
mains asserted  longer  than  four  clock  cycles 

Typically,  a  four  clock  pulse  is  generated  But  m  the 

case  that  a  subsequent  H 1  ( H3I  asserted  edge  occurs 

before  termination  of  the  pulse,  H2(H4)  is  negated 

asynchronously  shortening  the  pulse  The  H2SIH4S) 

status  bit  IS  always 0.  When  H12  Enable  (H34  Enable) 
isO  H2{H4)  IS  held  negated. 

A  sample  timing  diagram  is  shown  in  Figure  12  The 

H2(H4)  interlocked  and  pulsed  output  handshake  protocols 

are  shown  The  DMAREQ  pin  is  also  shown  assuming  it  is 

enabled  All  handshake  pin  sense  bits  are  assumed  to  be  0, 

thus,  the  pins  are  in  the  low  state  when  asserted  Due  to  the 

great  similarity  between  modes,  this  timing  diagram  is  ap- 

plicable to  all  double-buffered  output  transfer 

FIGURE  12  -  DOUBLE-BUFFERED  OUTPUT  TRANSFERS 
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Requesting  Bus  Master  Service  -  The  Pl/T  has  several 
means  of  indicating  a  need  for  service  by  a  bus  master  First, 

the  processor  may  poll  the  Port  Status  Register  It  contains  a 

status  bit  for  each  handshake  pin,  plus  a  level  bit  that  always 

reflects  the  instantaneous  state  of  thai  handshake  pin  A 

status  bit  IS  1  when  the  Pl/T  needs  servicing,  i  e  ,  generally 

when  the  bus  master  needs  to  read  or  write  data  to  the  ports, 

or  when  a  handshake  pin  used  as  a  simple  status  input  has 

been  asserted  The  interpretation  of  these  bits  is  dependent 

on  the  chosen  mode  and  submode 

Second,  the  Pl/T  may  be  placed  in  the  processor's  inter 
rupl  structure  As  mentioned  previously,  the  Pl/T  contains 

Port  A  and  B  Control  Registers  that  configure  the  handshake 

pins  Other  bits  in  these  registers  enable  an  interrupt 

associated  with  each  handshake  pin  This  interrupt  is  made 

available  through  the  PC5/PIRQ  pin.  if  the  PIRQ  function  is 

selected  Three  additional  conditions  are  required  for  PIRQ 

to  be  asserted  111  the  handshake  pm  status  bit  set.  12)  the 

corresponding  interrupt  (service  request)  enable  bit  is  set.  13) 

and  DIVIA  requests  are  not  associated  with  that  data  transfer 

(HI  and  H3  only)  The  conditions  from  each  of  the  four 

handshake  pins  and  corresponding  status  bits  are  ORed  to 

determine  PIRQ 

The  third  method  of  requesting  service  is  via  the 

PC4/DfVlAREQ  pin.  This  pin  can  be  associated  with  double- 

buffered  transfers  in  each  mode  If  it  is  used  as  a  DIV1A  con- 

troller request,  it  can  inmate  requests  to  keep  the  Pl/T's 
input/output  double-buffering  empty/full  as  much  as  possi- 

ble It  will  not  overrun  the  Df^/IA  controller  The  pin  is  com- 
patible with  the  f^C68450  Direct  f\^emory  Access  Controller 

(DIVIAC) 

Vectored,  Priorrtized  Port  Interrupts  -  Use  of  l\/IC68000 
compatible  vectored  interrupts  with  the  Pl/T  requires  the 

PIRQ  and  PIACK  pins  When  PIACK  is  asserted,  the  Pl/T 

places  an  8-bii  vector  on  the  data  pins  D0-D7  Under  normal 
conditions,  this  vector  corresponds  to  highest  priority, 

enabled,  active  port  interrupt  source  with  which  the 

DMAREQ  pin  is  not  currently  associated  The  most- 

significant  six  bits  are  provided  by  the  Port  Interrupt  Vector 

Register  (PIVRI.  with  the  lower  two  bits  supplied  by 

prioritization  logic  according  to  conditions  present  when 

PIACK  IS  asserted  It  is  important  to  note  that  the  only  affect 

on  the  Pl/T  caused  by  interrupt  acknowledge  cycles  is  that 

the  vector  is  placed  on  the  data  bus  Specifically,  no 

registers,  data,  status,  or  other  internal  states  of  the  Pl/T  are 
affected  by  the  cycle    

Several  conditions  may  be  present  when  the  PIACK  input 

IS  asserted  to  the  Pl/T,  These  conditions  affect  the  Pl/T's 
response  and  the  termination  of  the  bus  cycle  If  the  Pl/T 

has  no  interrupt  function  selected,  or  is  not  asserting  PIRQ. 

the  Pl/T  will  make  no  response  to  PIACK  (DTACK  will  not  be 

asserted)  If  the  Pl/T  is  asserting  PIRQ  when  PIACK  is 

received,  the  Pl/T  will  output  the  contents  of  the  Port  Inter 

rupt  Vector  Register  and  the  prioritization  bits  If  the  PIVR 
has  not  been  initialized,  SOF  will  be  read  from  this  register 

These  conditions  are  summarized  in  Table  3 

TABLE  3  -  RESPONSE  TO  PORT  INTERRUPT  ACKNOWLEDGE 

Conditions 

PIRQ  negated  OR  interrupt 

request  function  not  selected PIRQ  asserted 

PIVR  has  not  been  initialized 

since  RESET 
No  response  from  Pl/T 

No  DTACK 

Pl/T  provides  50F,  the 

Uninilialized  Vecior  ' 
PIVR  has  been  initialized 

since  RESET 
No  response  from  Pl/T 
No  DTACK 

Pl/T  provides  PIVR  contents 

With  prioritization  bits 

'The  uninitialized  vector  is  the  value  returned  fror 

The  vector  table  entries  for  the  Pl/T  appear  as  a  con- 

tiguous block  of  four  vector  numbers  whose  common  upper 

SIX  bits  are  programmed  in  the  PIVR.  The  following  table 

pairs  each  interrupt  source  with  the  2-bit  value  provided  by 

the  prioritization  logic,  when  interrupt  acknowledge  is 
asserted 

H1  source  -  CX) 

H2  source  -  01 

H3  source  -  10 

H4  source  -  11 

Autovectored  Port  Interrupts  -  Autovecored  interrupts 

use  only  the  PIRQ  pin.  The  operation  of  the  Pl/T  with  vec- 
tored and  autovectored  interrupts  is  identical  except  that  no 

vectors  are  supplied  and  the  PC6/ PIACK  pin  can  be  used  as 

a  Port  C  pin 

Direct  Method  of  Resetting  Status  -  In  certain  modes 

one  or  more  handshake  pins  can  be  used  as  edge-sensitive 

inputs  for  sole  purpose  of  setting  bits  in  the  Port  Status 

Register  These  bits  consist  of  simple  flip-flops.  They  are  set 

(to  1)  by  the  occurrence  of  the  asserted  edge  of  the  hand- 

lerrupt  vector  register  before  it  has  been  initialized 

shake  pin  input  Resetting  a  handshake  status  bit  can  be 

done  by  writing  an  8-bit  mask  to  the  Port  Status  Register 
This  IS  called  the  direct  method  of  resetting  To  reset  a  status 

bit  that  IS  resettable  by  the  direct  method,  the  mask  must 

contain  a  1  in  the  bit  position  of  the  Port  Status  Register  cor- 

responding to  the  desired  bit  Other  positions  must  contain 

O's  For  status  bits  that  are  not  resettable  by  the  direct 
method  in  the  chosen  mode,  the  data  written  to  the  port 

status  register  has  no  effect  For  status  bits  that  are  reset- 
table by  the  direct  method  in  the  chosen  mode,  a  0  in  the 

mask  has  no  effect 

Handshake  Pin  Sense  Control  -  The  Pl/T  contains 

exclusive-OR  gates  to  control  the  sense  of  each  of  the  hand- 
shake pins,  whether  used  as  inputs  or  outputs  Four  bus  in 

the  Port  General  Control  Register  may  bt  programmed  to 

determine  whether  the  pins  are  asserted  in  the  low  or  high 

voltage  state  As  with  other  control  registers,  these  bits  are 

reset  to  0  when  the  RESET  pin  is  asserted,  defaulting  the 

asserted  level  to  be  low 

Enabling  Ports  A  and  B  -  Certain  functions  involved  with 
double-buffered  data  transfers,  the  handshake  pins,  and  the 

status  bits,  may  be  disabled  by  the  external  system  or  by  the 
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programmer  during  initialization  The  Port  General  Control 
Register  contains  two  bits.  H12  Enable  and  H34  Enable, 
which  control  these  functions  These  bits  are  cleared  to  the  o 

state  when  the  RESET  pin  is  asserted,  and  the  functions  are 
disabled   The  functions  are  the  following: 

1  Independent  of  other  actions  by  the  bus  master  or 

peripheral  Ivia  the  handshake  pinsi,  the  Pl/T's 
disabled  handshake  controller  is  held  to  the  "empty" 
state,  I  e  ,  no  data  is  present  in  the  double-buffered 
data  path 

2  When  any  handshake  pin  is  used  to  set  a  simple  status 

flip-flop,  unrelated  to  double-buffered  transfers,  these 
flip-flops  are  held  reset  to  0   (See  Table  2  ) 

3.  When  H2(H4)  is  used  in  an  interlocked  or  pulsed  hand- 
shake with  H1IH3I,  H2(H4)  IS  held  negated,  regardless 

of  the  chosen  mode,  submode,  and  primary  direction. 

Thus,  for  double-buffered  input  transfers,  the  pro- 
grammer may  signal  a  penpheral  when  the  Pl/T  is 

ready  to  begin  transfers  by  setting  the  associated 
handshake  enable  bit  to  1. 

The  Ron  A  and  B  Alternate  Registers  -  In  addition  to  the 
Port  A  and  B  Data  Registers,  the  Pl/T  contains  Port  A  and  B 

Alternate  Registers.  These  registers  are  read-only,  and 
simply  provide  the  instantaneous  level  of  each  port  pin  They 
have  no  effect  on  the  operation  of  the  handshake  pins, 

double-buffered  transfers,  status  bits,  or  any  other  aspect  of 
the  Pl/T,  and  they  are  mode/submode  independent. 

PORT  MODES 

This  section  contains  information  that  distinguishes  the 
various  port  modes  and  submodes  General  characteristics, 
common  to  all  modes,  have  been  defined  previously 

MODE  0  -  UNIDIRECTIONAL  8-BIT  (VIODE 

In  Mode  0,  Ports  A  and  B  operate  independently    Each 

may  be  configured  in  any  of  its  three  possible  submodes 

Submode  00  -  Double-Buffered  Input 

Submode  01   -  Double-Buffered  Output 

Submode  IX  -  Bit  I/O 
Handshake  pins  HI  and  H2  are  associated  with  Port  A  and 

configured  by  programming  the  Port  A  Control  Register 
(The  H12  Enable  bit  of  the  Port  General  Control  Register 
enables  Port  A  transfers  1  Handshake  pins  H3  and  H4  are 
associated  with  Port  B  and  configured  by  programming  the 

Port  B  Control  Register    (The  H34  Enable  bit  of  the  Port 
General  Control  Register  enables  Port  B  transfers  1  The  Port 

A  and  B  Data  Direction  Registers  operate  in  all  three  sub- 
modes.  Along  with  the  submode,  they  affect  the  data  read 
and  written  at  the  associated  data  register  according  to  Table 
4    They  also  enable  the  output  buffer  associated  with  each 
port  pin.  The  DfVlAREQ  pin  may  be  associated  with  either 
(not  both)  Port  A  or  Port  B.  but  does  not  function  if  the  Bit 
I/O  submode  is  programmed  for  the  chosen  port 

TABLE  4  -  MODE  0  PORT  DATA  PATHS 

Hflode 
Read  Port  A/B 

Data  Register 

Write  Port  A/B 

Data  Register 

DDR  =  0 DDR=1 DDH  =  X 
0  Submode  00 

0  Submode  01 

0  Submode  1X 

FlL,  D  B 

Pin 

Pin 

FOL  Note  3 

FOL  Note  3 

FOL  Note  3 

FOL,  S  B              Note  1 

lOL/FOL,  DB          Note  2 

FOL,  S  B              Note  1 

Abbreviations 

lOL  -  Initial  Output  Latch                          SB-  Single  Buffered 

FOL  -   Final  Output  Latch                          D  B    -   Double  Buffered 

FlL  -  Final  Input  Latch                             DDR  -  Data  Direction  Register 

Note  1    Data  is  latched  in  the  output  data  registers  (final  output  latch)  and  will  be 

single  buffered  at  the  pin  if  the  DDR  is  1    The  output  buffers  will  be  turned 
oft  if  the  DDR  IS  0 

Note  2:  Data  is  latched  in  the  double-buffered  output  data  registers.  The  data  in  the 
final  output  latch  will  appear  on  the  port  pin  if  the  DDR  is  a  1 

Note  3    The  output  drivers  that  connect  ihe  final  output  latch  to  the  pins  are  turned 
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Port  A  or  8  Submode  00  (8-Bit  Oouble-Buffered  Input) 

Mode  0  Submode  00 

Port  A  or  B  Submode  IX  (Brt  l/OI 

Mode  0  Submode  13 

<^ 
Latched.  Double 
Buffered  Inpui 

■   HI  fH3l 

In  Mode  0.  double-buffered  input  transfers  of  up  to  8-bits  are 

available  by  progrannnning  Submode  00  in  the  desired  port's 
control  register  The  operation  of  H2  and  H4  may  be  selected 
by  programming  the  Port  A  and  Port  B  Control  Registers, 

respectively  All  five  double-buffered  input  handshake  op- 
tions, previously  mentioned  in  the  Port  General  Information 

and  Conventions  section,  are  available 

For  pins  used  as  outputs,  the  data  path  consists  of  a  single 

latch  dnving  the  output  buffer,  Data  written  to  the  port's 
data  register  does  not  affect  the  operation  of  any  handshake 
pin.  status  bit.  or  any  other  aspect  of  the  Pl/T  Output  pins 
may  be  used  independently  of  the  input  transfer  However, 
read  bus  cycles  to  the  data  register  do  remove  data  from  the 

port  Therefore,  care  should  be  taken  to  avoid  processor  in- 
structions that  perform  unwanted  read  cycles 

Refer  to  PARALLEL  PORTS  Double-Buffered  Input 
Transfers  for  a  sample  timing  diagram  (Figure  11) 

Port    A    or    B     Submode    01     (8-Bit    Double-Buffered 

Output)  - 

Mode  0  Submode  01 

r^". Double-Butlefed 
Ouipui 

m   HI  (H3I 

1^     ̂ -  H2  IH4I 

In  iVlode  0.  double-buffered  output  transfers  of  up  to  8  bits 
are  available  by  programming  submode  01  in  the  desired 

port's  control  register  The  operation  of  H2  and  H4  may  be 
selected  by  programming  the  Port  A  and  Port  B  Control 

Registers,  respectively  All  five  double-buffered  output 
handshake  options,  previously  mentioned  m  the  Port 
General  Information  and  Conventions  section,  are  available 

For  pins  used  as  inputs,  data  written  to  the  associated 

data  register  is  double-buffered  and  passed  to  the  initial  or 
final  output  latch,  as  usual,  but  the  output  buffer  is  disabled 

Refer  to  PARALLEL  PORTS  Double-Buffered  Output 
Transfers  for  a  sample  liming  diagram  (Figure  12) 

O 
■  H2      IH4I 

In  Mode  0,  simple  Bit  I/O  is  available  by  programming  Sub- 

mode  IX  in  the  desired  port's  control  register  This  submode 
IS  intended  for  applications  in  which  several  independent 
devices  must  be  controlled  or  monitored  Data  written  to  the 

associated  data  register  is  single-buffered  If  the  data  direc- 
tion register  bit  for  that  pin  is  a  1  loutput),  the  output  buffer 

IS  enabled  If  it  isO  linput),  data  written  is  still  latched,  but  is 
not  available  at  the  pm  Data  read  from  the  data  register  is 
the  instantaneous  value  of  the  pin  or  what  was  written  to  the 

data  register,  depending  on  the  contents  of  the  data  direc- 
tion register  H1(H3I  is  an  edge-sensitive  status  input  pin 

only  and  it  controls  no  data-related  function  The  H1S(H3S) 
status  bit  IS  set  following  the  asserted  edge  of  the  input 
waveform  It  is  reset  by  the  direct  method,  the  RESET  pin 

being  asserted,  or  when  the  H12  Enable  IH34  Enable)  bit  isO 

H2(H4)  can  be  programmed  as  a  simple  status  input  (iden- 
tical to  H)(H3)I,  or  as  an  asserted  or  negated  output  The  in- 

terlocked or  pulsed  handshake  configurations  are  not 
available 

MODE  1  -  UNIDIRECTIONAL  16-BIT  IVIODE 

In  rvlode  1,  Ports  A  and  B  are  concatenated  to  form  a 

single  16-bit  port  The  Port  B  Submode  field  controls  the 
configuration  of  both  ports   The  possible  submodes  are 

Port  B  Submode  XO  -  Double-Buffered  Input 

Port  B  Submode  XI  -  Double-Buffered  Output 

Handshake  pins  H3  and  H4,  configured  by  programming  the 

Port  B  Control  Register,  are  associated  with  the  16-bit 
double-buffered  transfer  These  16-bit  transfers,  are  enabled 
by  the  H34  Enable  bit  of  the  Port  General  Control  Register 

Handshake  pins  HI  and  H2  may  be  used  as  simple  status  in- 
puts not  related  to  the  16-bit  data  transfer  or  H2  may  be  an 

output  Enabling  of  the  HI  and  H2  handshake  pins  is  done  by 
the  H12  Enable  bit  of  the  Port  General  Control  Register,  The 

Port  A  and  B  Data  Direction  Registers  operate  in  each  sub- 
mode  Along  with  the  submode,  they  affect  the  data  read 
and  written  at  the  data  register  according  lo  Table  6  They 
also  enable  the  output  buffer  associated  with  each  port  pin 

The  DMAREO  pin  may  be  associated  only  with  H3 

Mode  1  can  provide  convenient,  high-speed  16-bit 
transfers  The  Port  A  and  B  data  registers  are  addressed  for 
compatibility  with  the  MC680C0  Move  Peripheral  (MOVER) 
instruction  and  with  the  MC68450  DMAC  To  take  advan- 

tage of  this.  Port  A  should  contain  the  most-significant  byte 
of  data  and  always  be  read  or  written  by  the  bus  master  first 
The  interlocked  and  pulsed  handshake  protocols  are  keyed 

to  accesses  to  the  Port  B  Data  Register  in  Mode  1  If  it  is  ac- 
cessed last,  the  16-bit  double-buffered  transfers  proceed 

smoothly. 
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TABLE  5  -  MODE  1  PORT  DATA  PATHS 

Mode 

Read  Port  A/B 

Register 

Write  Port  A/  B 

Register 

DDR  =  0 DDR=1 DDR  =  0 

D0R=1 1.  Port  B 

Submode  XO 

1 ,  Poet  B 

Submode  XI 

FIL,  D  B 

Pin 

FOL 

Note  3 
FOL 

Note  3 

FOL,  S  B 

Note  2 
lOL/FOL, 

D  B  , 

Note  1 

FOL,  SB 

Note  2 
lOL/FOL, DB  , 

Note  1 

Note  1:  Data  written  to  Port  A  goes  to  a  temporary  latch  Wtten  the  Port  B  data 

register  is  later  written,  Port  A  data  is  transferred  to  lOL/FOL 
Note  2:  Data  is  latched  in  the  output  data  registers  (final  output  latchl  and  will  be 

single  buffered  at  the  pin  if  the  DDR  is  1  The  output  buffers  will  be  turned 
off  if  the  DDR  is  0 

Note  3    The  output  drivers  that  connect  the  final  output  latch  to  the  pins  are  turned 

Abbreviations 

lOL  -  Initial  Output  Latch                        SB-  Single  Buffered 

FOL  -  Final  Output  Latch                          D  B    -   Double  Buffered 

FIL  -  Final  Input  Latch                             DDR  -  Data  Direction  Register 

Port  B  Submode  XO  (16-Bit  Double-Buffered  InputI 

Mode  1  Pori  B  Submode  XO 

Port  B  Submode  XI  (16-Brt  Double-Buffered  Output)  - 

Mode  I  Pon  B  Submode  xl 

\  \  A  and  B \|   '       1161 
Laiched.  Double 
Buttered  Input 

A  and  B 
1161 

Double  Bullered 

In  Mode  1  Pott  B  Submode  XO,  double-buffered  input 
transfers  of  up  to  16  bits  nnay  be  obtained  The  level  of  all  16 
pins  IS  asynchronously  latched  with  the  asserted  edge  of  H3 

The  processor  may  cfieck_H3S_ status  bit  to  determine  if  new 
data  IS  present  The  DMAREQ  pin  may  be  used  to  signal  a 
DMA  controller  to  empty  the  input  buffers  Regardless  of  the 
bus  master.  Port  A  data  should  be  read  first  (Actually,  Port 
A  data  need  not  be  read  at  all  )  Port  B  data  should  be  read 

last  The  operation  of  the  internal  handshake  controller,  the 
H3S  bit,  and  DMAREQ  are  keyed  to  the  reading  of  the  Port  B 

data  register  (The  MC68450  DMAC  can  be  programmed  to 
perform  the  exact  transfers  needed  for  compatibility  with  the 
Pl/T  )  H4  may  be  programmed  for  all  five  of  the  handshake 

options  mentioned  in  the  Port  General  Information  and  Con- 
ventions section 

For  pins  used  as  outputs,  the  data  path  consists  of  a  single 

latcli  driving  the  output  buffer.  Data  written  to  the  port's 
data  register  does  not  affect  the  operation  of  any  handshake 
pin,  status  bit,  or  any  other  aspect  of  the  Pl/T  Thus,  output 
pins  may  be  used  independently  of  the  input  transfer 
However,  read  bus  cycles  to  the  Port  B  Data  Register  do 
remove  data,  so  care  should  be  taken  to  avoid  unwanted 

read  cycles 

Refer  to  PARALLEL  PORTS  Double-Buffered  Input 
Transfers  for  a  sample  timing  diagram  (Figure  111 

In  l^^ode  1  Port  B  Submode  XI,  double-buffered  output 
transfers  of  up  to  16  bits  may  be  obtained  Data  is  written  by 
the  bus  master  Iprocessor  or  DfVlA  controller!  m  two  bytes 

The  first  byte  (most-significant)  is  written  to  the  Port  A  Data 
Register  It  is  stored  in  a  temporary  latch  until  the  next  byte 
IS  written  to  the  Port  B  Data  Register  Then  all  16  bits  are 
transferred  to  the  final  output  latches  of  Ports  A  and  B  Both 

options  tor  interpretation  of  the  H3S  status  bit.  mentioned  in 
Port  General  Information  and  Comments  section,  are 

available  and  apply  to  the  16-bit  port  as  a  whole  The 
DMAREQ  pin  may  be  used  to  signal  a  DMA  controller  to 
transfer  another  word  to  the  port  output  latches  (The 

MC68450  DMAC  can  be  programmed  to  perform  the  exact 
transfers  needed  for  compatibility  with  the  Pl/T  I  H4  may  be 

programmed  for  all  five  of  the  handshake  options  mentioned 
in  the  Port  General  Information  and  Comments  section 

For  pins  used  as  inputs,  data  written  to  either  data  register 
IS  double-buffered  and  passed  to  the  initial  or  final  output 

latch,  as  usual,  but  the  output  buffer  is  disabled 

Refer  to  PARALLEL  PORTS  Double-Buffered  Input/Out- 
put Transfer  for  a  sample  timing  diagram  (Figure  12) 
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MODE  2  -  BIDIRECTIONAL  8-BIT  MODE 

Mode  2 

o 
liiectiondl  e 

Tfans)ers 
Input 

Translers 

In  Mode  2,  Port  A  is  used  for  simple  bit  I/O  with  no 
associated  handshake  pins  Port  B  is  used  for  bidirectional 

8-bit  double-buffered  transfers  HI  and  H2.  enabled  by  the 
H12  Enable  bit  in  the  Port  General  Control  Register,  control 
output  transfers,  while  H3  and  H4,  enabled  by  the  Port 
General  Control  Register  bit  H34  Enable,  control  input 
transfers  The  instantaneous  direction  of  the  data  is  deter- 

mined by  the  HI  handshake  pin  The  Port  B  Data  Direction 

Register  is  not  used.  The  Port  A  and  Port  B  submode  fields 
do  not  affect  Pl/T  operation  in  lylode  2 

Double-Buffered  I/O  (Port  B)  -  The  only  aspect  of 
bidirectional  double-buffered  transfers  that  differs  from  the 
unidirectional  modes  lies  in  controlling  the  Port  B  output  but 
fers  They  are  controlled  by  the  level  of  HI  When  HI  is 
negated,  the  Port  B  output  buffers  (all  8)  are  enabled  and  the 
pins  drive  the  bidirectional  bus  Generally.  HI  is  negated  in 
response  to  an  asserted  H2.  which  indicates  that  new  output 

data  IS  present  in  the  double-buffered  latches  Following  ac 
ceptanceof  the  data,  the  peripheral  asserts  HI,  disabling  the 
Port  B  output  buffers  Other  than  controlling  the  output  buf 

fer.  H1  IS  edge-sensiiive  as  in  other  modes  Input  transfers 
proceed  identically  to  the  double-buffered  input  protocol 
described  in  the  Port  General  Information  and  Conventions 

Section  In  fvlode  2.  only  the  interlocked  and  pulsed  hand- 
shake  pin  options  are  available  on  H2  and  H4   The  DMAREQ 

pin  may  be  associated  with  either  input  transfers  (H3)  or  out- 
put transfers  (Hll,  but  not  both.  Refer  to  Table6  for  a  sum- 

mary of  the  Port  B  Data  Register  responses  in  Mode  2 

Bit  I/O  (Port  Al  -  Mode  2.  Port  A  performs  simple  bit  I/O 
with  no  associated  handshake  pins  This  configuration  is  in- 

tended for  applications  in  which  several  independent  devices 
must  be  controlled  or  monitored  Data  wntten  to  the  Port  A 

data  register  is  single-buffered  If  the  Port  A  Data  Direction 
Register  bit  for  that  pin  is  1  loutputl.  the  output  buffer  is 
enabled  If  it  is  0,  data  written  is  still  latched  but  not  available 

at  the  pin  Data  read  from  the  data  register  is  either  the  in- 
stantaneous value  of  the  pin  or  what  was  written  to  the  data 

register,  depending  on  the  contents  of  the  Port  A  Data 
Direction  Register   This  is  summarized  in  Table  7 

MODE  3  -  BIDIRECTIONAL  16^BIT  DOUBLE- 
BUFFERED  I/O 

o 

In  Mode  3,  Ports  A  and  B  are  used  for  bidirectional  16-bit 
double-buffered  transfers.  HI  and  H2  control  output 
transfers,  while  H3  and  H4  control  input  transfers  (HI  and 

H2  are  enabled  by  the  H12  Enable  bit  while  H3  and  H-J  are 

enabled  by  the  H34  Enable  bit  of  the  Port  General  Control 

Register  1  The  instantaneous  direction  of  the  data  is  deter- 
mined by  the  HI  handshake  pm.  and  thus,  the  data  direction 

registers  are  not  used  The  Port  A  and  Port  B  submode  fields 
do  not  affect  PI '  T  operation  m  Mode  3 

The  only  aspect  of  bidirectional  double-buffered  transfers 
that  differs  from  the  unidirectional  modes  lies  in  controlling 
the  Port  A  and  B  output  buffers  They  are  controlled  by  the 

level  of  HI  When  HI  is  negated,  the  output  buffers  lall  161 

are  enabled  and  the  pins  drive  the  bidirectional  bus  General- 

TABLE  6  -  MODE  2  PORT  B  DATA  PATHS 

Mode 
Read  Port  B 

Data  Register 

Write  Port  B 

Data  Register 

2 FlL,  D  B lOL.FOL,  D  8 

Abbreviations 

lOL  -  initial  Output  Latch 

FOL  -   Final  Output  Latch 

FIL  -   Final  Input  Latch 
D  B    - 

Double  Bullered 

TABLE  7  -  MODE  2  PORT  A  DATA  PATHS 

Mode 

Read  Port  A 

Data  Register 

Write  P 

Data  Re( 
jrt  A 

jisler 
DDR  =  0 

DDR=1 
DDR  =  0 

DDR=1 2 

Pin 
FOL 

FOL 
FOL,  S  B 

Abbre 

S  B FOL 

DDR 

viations 

-  Single  Buffered 
-  Final  Output  Latch 

-  Data  Direction  Register 
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ly,  HI  IS  negated  in  response  to  an  asserted  H2,  which  in- 

dicates that  new  output  data  is  present  in  the  double- 
buffered  latches  Following  acceptance  of  the  data,  the 

peripheral  asserts  HI,  disabling  the  output  buffers  Other 

than  controlling  the  output  buffers,  HI  is  edge-sensitive  as  in 
other  modes  input  transfers  proceed  identically  to  the 

double-buffered  input  protocol  described  in  the  Port  General 
Information  and  Conventions  section  Port  A  and  B  data  is 

latched  with  the  asserted  edge  of  H3  In  Mode  3,  only  the  in- 
terlocked and  pulsed  handshake  pin  options  are  available  to 

H2  and  H4  The  DI*/IAREQ  pin  may  be  associated  with  either 

input  transfers  (H3I  or  output  transfers  (Hll,  but  not  both 

H2  indicates  when  new  data  is  available  in  the  Port  B  (and 

implicitly  Port  Al  output  latches,  but  unless  the  buffer  is 

enabled  by  HI,  the  data  is  not  driving  the  pins 

Mode  3  can  provide  convenient  high-speed  16-bit 

transfers  The  Port  A  and  B  Data  Registers  are  addressed  for 

compatibility  with  the  MC68000's  Move  Penpheral  (MOVER) 
instruction  and  with  the  MC68450  DMAC  To  take  advan- 

tage of  this.  Port  A  should  contain  the  most-significant  data 
and  always  be  read  or  written  by  the  bus  master  first.  The 

interlocked  and  pulsed  handshake  protocols  are  keyed  to 

accesses  to  the  Port  B  Data  Register  in  Mode  3  If  it  is 

accessed  last,  the  16-bit  double-buffered  transfer  proceed 

smoothly.  Refer  to  Table  8  for  a  summary  of  the  Port  A  and 

B  data  paths  in  Mode  3. 

DMA  REQUEST  OPERATION 

The  Direct  Memory  Access  Request  (DMAREOI  pulse 

(when  enabled)  is  associated  with  output  or  input  transfers 

to  keep  the  initial  and  final  output  latches  full  or  initial  and 

final  input  latches  empty,  respectively  Figures  13  and  14 

show  all  the  possible  paths  in  generating  DMA  requests 

DMAREQ  is  generated  on  the  bus  side  of  the  MC68230  by 

the  synchronized'  Chip  Select  If  the  conditions  of  Figures 
13  and  14  are  met,  an  access  of  the  bus  (assertion  of  CS)  will 

cause  DMAREQ  to  be  asserted  3  Pl/T  clocks  (plus  the  delay 

time  from  the  clock  edge)  after  CS  is  synchronized.' 
DMAREQ  remains  asserted  3  clock  cycles  (plus  the  delay 

time  from  the  clock  edge)  and  is  then  negated 

The  DMAREQ  pulse  associated  with  a  peripheral  or  port 

side  of  the  Pl/T  is  caused  by  the  synchronized'  H1(H3)  in- 
put. If  the  conditions  of  Figures  13  and  14  are  met,  a  port  ac- 

cess  (assertion  of  the  H1(H3)  input)  will  cause  DMAREQ  to 

be  asserted  2  5  Pl/T  clock  cycles  (plus  the  delay  time  from 

clock  edge)  after  H1(H3]  is  sycnhronized  '  DMAREQ  re- 
mains asserted  3  clock  cycles  (plus  the  delay  time  from  the 

clock  edge)  and  is  then  negated 

TABLE  8  -  MODE  3  PORT  A  AND  B  DATA  PATHS 

Mods 
Read  Port  A  and  B 

Data  Register 

Write  Port  A  and  B 

Data  Register 

3 FIL,  D  B lOL/FOL,  D  B  ,  Note  1 

Note  1    Data  written  to  Port  A  goes  10  a  temporarv  latch   When  the  Port  B  data 

register  is  later  written,  Port  A  data  is  transferred  to  lOL/FOL 

Abbreviations 

lOL  -  Initial  Output  Latch                        SB-  Single  Buffered 

FOL  -  Final  Output  Latch                        D  B    -  Double  Buffered 
FIL  -   Final  Input  Latch 

FIGURE  13  -  DMAREQ  ASSOCIATED 
WITH  OUTPUT  TRANSFERS 

Daia  in  Output  Latches 

Peripheral  Accepts  Data 

FIGURE  14  -  DMAREQ  ASSOCIATED 

WITH  INPUT  TRANSFERS 
Data  in  Input  Latches 

Peripheral  Provides  Data 

i 
DMA  Request 

No  DMA  Request Peripheral  Accepts  Data 

Peripheral  Provides  Data 

No  DMA  Request 

"Svnchronjzed  means  that  the  input  signal  has  been  seen  by  the  Pl/T  on  the  appropriate  edge  of  the  clock  (using  edge  for  H1(H3)  andjalling 
edge  (or  CSI   (Refer  to  the  BUS  INTERFACE  CONNECTION  section  for  the  exception  concerning  CS  )  II  a  bus  access  (assertion  of  CS)  and 

   1,^5  will  be  recognized  without  any  delay  HI  (H3)  will  be  recognized  one  clock  cycle 
a  port  access  (assertion  of  H 1  ( H3) )  occur  at  the  s 
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TIMER 

The  MC68230  timer  can  provide  several  facililies  needed 

by  MC68000  operating  systems  It  can  generate  periodic  in- 
terrupts, a  square  wave,  or  a  single  interrupt  after  a  pro- 
grammed time  period.  Also,  it  can  be  used  for  elapsed  time 

measurement  or  as  a  device  watchdog  This  section 

describes  the  programmable  options  available,  capabilities, 
and  restrictions  that  apply  to  the  timer. 

The  Pl/T  timer  contains  a  24-bil  synchronous  down 
counter  that  is  loaded  trom  three  8-bit  Counter  Preload 
Registers  The  24  bit  counter  may  be  clocked  by  the  output 

ot  a  5-bit  ldivide-by-321  prescaler  or  by  an  external  timer  in- 
put TIN  If  the  prescaler  is  used,  it  may  be  clocked  by  tfie 

system  clock  (CLK  pin)  or  by  the  TIN  external  input  The 
counter  signals  the  occurrence  of  an  event  primarily  through 
zero  detection  (A  zero  is  when  the  counter  of  the  24-bit 
timer  is  equal  to  zero  1  This  sets  the  zero  detect  status  (ZDS) 
bit  in  the  Timer  Status  Register  It  may  be  checked  by  the 
processor  or  may  be  used  to  generate  a  timer  interrupt  The 
ZDS  bit  IS  reset  by  writing  a  1  to  the  Timer  Status  Register  in 
that  bit  position 

The  general  operation  of  the  timer  is  flexible  and  easily 
programmable  The  timer  is  fully  configured  and  controlled 

by  programming  the  8- bit  Timer  Control  Register  It  controls 
111  the  choice  between  the  Port  C  operation  and  the  timer 

operation  of  three  timer  pins.  12)  whether  the  counter  is  load- 
ed from  the  Counter  Preload  Register  or  rolls  over  when  zero 

detect  IS  reach.  131  the  clock  input,  (4)  whether  the  prescaler 
IS  used,  and  151  whether  the  timer  is  enabled 

RUN/HALT  DEFINITION 

The  overall  operation  of  the  timer  is  described  in  terms  of 
the  run  or  halt  states  The  control  of  the  current  state  is 

determined  by  programming  the  Timer  Control  Register 
When  in  the  halt  state,  all  of  the  following  occur 

1  The  prior  contents  of  the  counter  is  not  altered  and  is 

reliably  readable  via  the  Count  Registers 

2  The  prescaler  is  forced  to  S 1 F  whether  or  not  it  is  used 

3  The  ZDS  status  bit  is  forced  to  0,  regardless  i.l  the 

possible  zero  contents  of  the  24-bit  counter. 
The  run  state  is  characterized  by: 

1 .  The  counter  is  clocked  by  the  source  programmed  in 
the  Timer  Control  Register 

2  The  counter  is  not  reliably  readable 

3  The  prescaler  is  allowed  to  decrement  if  programmed 
for  use 

4  The  ZDS  status  bit  is  set  when  the  24  bit  counter  tran- 
sitions from  $000001  to  SOOOOOO 

TIMER  RULES 

This  section  provides  a  set  of  rules  that  allow  easy  applica 
lion  of  the  timer. 

1  Refer  to'the  Run/ Halt  Definition  above. 
2  When  the  RESET  pin  is  asserted,  all  bits  of  the  Timer 

Control  Register  go  to  0.  configunng  the  dual  function 
pins  as  Port  C  inputs 

3  The  contents  of  the  Counter  Preload  Registers  and 
counter  are  not  affected  by  the  RESET  pin 

4  The  Count  Registers  provide  a  direct  read  data  path 

from  each  portion  of  the  24-bit  counter,  but  data  wnt- 
ten  to  their  addresses  is  ignored  IThis  results  in  a  nor- 

mal bus  cycle  I  These  registers  are  readable  at  any 

time,  but  their  contents  are  never  latched  Unreliable 

data  may  be  read  when  the  timer  is  in  the  run  state. 

5.  The  Counter  Preload  Registers  are  readable  and 
writable  at  any  time  and  this  occurs  independently  of 

any  timer  operation  No  protection  mechanisms  are 

provided  against  ill- timed  writes 
6.  The  input  frequency  to  the  24-bit  counter  from  the  TIN 

pin  or  prescaler  output,  must  be  between  0  and  the  in- 

put frequency  at  CLK  pin  divided  by  32  regardless  of 
the  configuration  chosen 

7  For  configurations  in  which  the  prescaler  is  used  Iwith 
the  CLK  pin  or  TIN  pin  as  an  inputl.  the  contents  of 

the  Counter  Preload  Register  ICPR)  is  transferred  to 
the  counter  the  first  time  that  the  prescaler  passes 

trom$00to$1F  Irollsover)  after  entering  the  run  state 
Thereafter,  the  counter  decrements  or  is  loaded  from 

the  Counter  Preload  Register  when  the  prescaler  rolls 

over. 
8.  For  configurations  in  which  the  prescaler  is  not  used, 

the  contents  of  the  Counter  Preload  Registers  are 
transferred  to  the  counter  on  the  first  asserted  edge  of 

the  TIN  input  after  entering  the  run  state  On  subse- 
quent asserted  edges  the  counter  decrements  or  is 

loaded  from  the  Counter  Preload  Registers 

9.  The  lowest  value  allowed  in  the  Counter  Preload 

Register  for  use  with  the  counter  is  S000001 

TIMER  INTERRUPT  ACKNOWLEDGE  CYCLES 
Several  conditions  may  be  present  when  the  timer  inter- 

rupt acknowledge  pin  (TlACKl  is  asserted   These  conditions 

affect  the  Pl/T's  response  and  the  termination  of  the  bus  cy- 
cle  ISee  Table  9  1 

TABLE  9  -  RESPONSE  TO  TIMER  INTERRUPT  ACKNOWLEDGE 

PC3/T0UT  Function Response  to  Asserted  TIACK 

PC3  -   Port  C  P.n No  response 

No  DTACK 

TOUT  -   Square  Wave No  response 

No  DTACK 
TOUT   -   Negated  Timer 
Interrupt  Request 

No  response 

No  DTACK 
TOUT   -   Asserted  Timer 
Interrupt  Request 

Timer  Interrupt  Vector  Contents 
DTACK  Asserted 

PROGRAMMER'S  MODEL 
The  internal  accessible  register  organization  is  represented 

in  Table  10  Address  space  within  the  address  map  is  re- 
served for  future  expansion  Throughout  the  Pl/T  data  sheet 

the  following  conventions  are  maintained: 
1  A  read  from  a  reserved  location  in  the  map  results  in  a 

read  from  the  "null  register  "  The  null  register  returns 
all  zeros  for  data  and  results  in  a  normal  bus  cycle  A 
write  to  one  of  these  locations  results  in  a  normal  bus 

cycle  but  no  write  occurs 

2.    Unused  bits  of  a  defined  register  are  denoted  by   
and  are  read  as  zeroes 

3  Bits  that  are  unused  in  the  chosen  mode/submode  but 

are  used  in  others,  are  denoted  by  "X".  and  are 
readable  and  wnteable  Their  content,  however,  is  ig- 

nored in  the  chosen  mode/submode. 

4  All  registers  are  addressable  as  8-bit  quantities.  To 
facilitate  operation  with  the  MOVER  instruction  and 
the  DMAC.  addresses  are  ordered  such  that  certain 

sets  ol  registers  may  also  be  accessed  as  words  (2 
bytes)  or  long  words  14  bytes). 
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TABLE  10  -  Pl/T  REGISTER  ADDRESSING  ASSIGNMENTS 

Register 

Register 
Select  Bits Accessible 

Affected 

by 

Reset 

Affected 

by  Read 

Cycle 

5 4 3 2 

Pon  Genefal  Control  Regisier  IPGCRI 0 0 0 0 

R   W 
Yes 

No 

Pon  Serv.ee  Reguesl  Regisier  IPSRRI 0 0 0 0 

P   W 
Yes 

No 

Port  A  Daia  Direction  Register  IPADDRI 0 0 0 1 

R   W 
Yes 

No 

Port  B  Data  Direction  Register  (PBDDRI 0 0 0 1 R  W 

Yes 

No 

Port  C  Data  Direction  Register  IPCDDRl 0 0 1 0 

R  W 
Yes 

No 

Port  Interrupt  Vector  Register  (PIVRI 0 0 1 0 

R  W 
Yes 

No 

Port  A  Control  Register  IPACRI 0 0 1 1 

R   W 
Yes 

No 

Port  B  Control  Register  IPBCR) 0 0 1 1 

R   W 
Yes 

No 

Port  A  Data  Register  tPADRI 0 0 0 0 R   W 

No 

*    * 
Port  8  Data  Register  IPBDRI 0 0 0 R  W 

No 

*    * Port  A  Alternate  Register  IPAARl 0 0 1 0 R 

No No 

Port  B  Alternate  Register  IPBARl 0 0 1 R 

No No 

Port  C  Data  Register  IPCDRI 0 1 0 0 

R   W 

No 
No 

Port  Status  Register  IPSRl 0 1 0 

R   W* 

Yes 

No 

Timer  Control  Register  ITCRI 0 0 0 0 

R  W 
Yes 

No 

Timer  Interrupt  Vector  Register  ITIVRI 0 0 0 

R  W 
Yes 

No 

Counter  Preload  Register  High  ICPRHI 1 0 0 1 

R  W 

No No 

Counter  Preload  Register  Middle  ICPRM) 0 1 0 0 

R  W 

No 
No 

Counter  Preload  Register  Low  ICPRL) 0 1 0 

R   W 
No 

No 

Count  Register  High  ICNTRHI 0 1 1 R 

No No 

Count  Register  Middle  ICNTRMl 
1 0 0 0 R 

No No 

Count  Register  Low  ICNTRL) 
1 0 0 1 R 

No No 

Timer  Status  Register  ITSR) 1 0 1 0 

R  W* 

Yes 

No 

'  A  write  lo  this  register  may  perform  a  special  ; 
» Mode  dependent 

)  resetting  operati R-  Read 

W-Wriie 

Port  General  Control  Register  (PGCR) 

7      1     6 5 4 3 2 1 0 

Port  Mode 

Control 

H34 
Enable 

H12 

Enable 

H4 

Sense 

H3 

Sense 

H2 

Sense 

HI 

Sense 

Port  Mode  Control 

Mode  0  (Unidirectional  8-Bit  Model 

Mode  1  (Unidirectional  16-Bii  Model 

Mode  2  (Bidirectional  8-Bit  Mode) 

Mode  3  (Bidirectional  16-Bit  Model 

Tfie  Port  General  Control  Register  controls  many  of  the  func- 

tions that  are  common  to  the  overall  operation  of  the  ports 

The  PGCR  is  composed  of  three  maior  fields:  bits  7  and  6 

define  the  operational  mode  of  Ports  A  and  B  and  affect 

operation  of  the  handshake  pins  and  status  bits,  bits  5  and  4 

allow  a  software  controlled  disabling  of  particular  hardware 

associated  with  the  handshake  pins  of  each  port,  and  bus  3-0 

define  the  sense  of  the  handshake  pins.  The  PGCR  is  always 
readable  and  writeable 

All  bits  are  reset  to  0  when  the  RESET  pin  is  asserted 

The  Port  Mode  Control  field  should  be  altered  only  when 

the  H12  Enable  and  H34  Enable  bits  are  0  Except  when 

Mode  0  IS  desired,  the  Port  General  Control  register  must  be 

written  once  lo  establish  the  mode,  and  again  to  enable  the 

respective  operationlsl. 

0     Disabled 

1      Enabled 

PGCR 
4 H12  Enable 

0     Disabled 
1      Enabled 

PGCR 

3:0 Handshake  Pin  Sense 

The  associated  pm  is  at  the  high-voltage  level  when 

negated  and  at  the  low-voltage  level  when  asserted 

The  associated  pin  is  at  the  low-voltage  level  when 

negated  and  at  the  high-voltage  level  when  asserted 
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Port  Service  Request  Register  (PSRRI 

7 6 5 4 3 2 0 

♦ SVCRQ 

Selecl 

Inlerrupl 
PFS 

Porl  Interrupl 

PnorHV  Control 

The  Port  Service  Request  Register  controls  other  functions 
that  are  common  to  the  overall  operation  to  the  ports.  It  is 

composed  of  four  major  fields  bit  7  is  unused  and  is  always 

read  as  0.  bits  6  and  5  define  whether  interrupt  or  DMA  re- 

quests are  generated  from  activity  on  the  HI  and  H3  hand- 
shake pins,  bits  4  and  3  determine  whether  two  dual  function 

pins  operate  as  Port  C  or  port  interrupt  request/- 
acknowledge  pins,  and  bits  2,  1,  and  0  control  the  priority 
among  all  port  interrupt  sources  Since  bits  2,  1 ,  and  0  affect 
interrupt  operation,  it  is  recommended  that  they  be  changed 
only  when  the  affected  interruptisi  is  (are)  disabled  or  known 
to  remain  inactive  The  PSRR  is  always  readable  and 
writeable 

All  bus  are  reset  to  0  when  the  RESET  pin  is  asserted. 

SVCRQ  Select 

0  X  The  PC4/  DMAREQ  pin  carries  the  PC4  function;  DMA 
IS  not  used 

1  0  The  PC4,' DMAREQ  pin  carries  the  DMAREQ  function 
and  IS  associated  with  double  buffered  transfers  con- 

trolled by  HI  HI  IS  removed  from  the  Pl/T's  interrupt 
structure,  and  thus,  does  not  cause  interrupt  requests 

to  be  generated  To  obtain  DMAREQ  pulses.  Port  A 
Control  Register  bit  1  iHI  SVCRQ  Enable!  must  be  a  1 

1  1  The  PC4/DMAREQ  pin  carnes  the  DMAREQ  function 

and  IS  associated  with  double-buffered  transfers  con- 

trolled by  H3  H3  IS  removed  from  the  Pl/T's  interrupt 
structure,  and  thus,  does  not  cause  interrupt  requests 

to  be  generated  To  obtain  DMAREQ  pulses.  Port  B 
Control  Register  bit  1  IH3  SVCRQ  Enablel  must  be  1 

PSRR 

4    3  Interrupt  Pin  Function  Select 

0    0  The  PC5/PIRQ  pm  carnes  the  PC5  function. 
The  PC6;PIACK  pin  carries  the  PC6  function. 

0  1  The  PC5/PIRQ  pin  carries  the  PIRQ  function. 
The  PC6/PIACK  pm  carries  the  PC6  function. 

1  0  The  PCS/ PIRQ  pin  carries  the  PC5  function. 
The  PC6/PIACK  pm  carries  the  PIACK  function. 

1     1  The  PCS;  PIRQ  pin  carries  the  PIRQ  function 
The  PC6/ PIACK  pm  carries  the  PIACK  function 

Bits  2,  1 ,  and  0  determine  port  interrupt  r'lonty  The  prionty 
IS  shown  in  descending  order  left  to  right 

PSRR    Port     Interrupt  Priority  Control 

2    1    0  Highest   Lowest 

0    0    0      HIS         H2S  H3S  H4S 

0    0    1       H2S         HIS  H3S  H4S 

0    10      HIS         H2S  H4S  H3S 

Oil       H2S         HIS  H4S  H3S 

10    0      H3S         H4S  HIS  H2S 

10    1       H3S         H4S  H2S  HIS 

110  H4S    H3S  HIS  H2S 

111  H4S    H3S  H2S  HIS 

Port  A  Data  Direction  Register  IPADDR)  -  The  Port  A 
Data  Direction  Register  determines  the  direction  and  buffer- 

ing characteristics  of  each  of  the  Port  A  pms  Qne  bit  in  the 
PADDR  IS  assigned  to  each  pin.  A  0  indicates  that  the  pin  is 
used  as  an  input,  while  a  1  indicates  it  is  used  as  an  output. 
The  PADDR  is  always  readable  and  writeable  This  register  is 
ignored  in  Mode  3.    

All  bits  are  reset  to  the  0  (input)  state  when  the  RESET  pm 
is  asserted. 

Port  8  Data  Direction  Register  (PBDDR)  -  The  PBDDR  is 
identical  to  the  PADDR  for  the  Port  B  pins  and  the  Port  B 

Data  Register,  except  that  this  register  is  ignored  in  Modes  2 
and  3 

Port  C  Data  Direction  Register  (PCDDR)  -  The  Port  C 
Data  Direction  Register  specifies  whether  each  dual  function 
pin  that  IS  chosen  for  Port  C  operation  is  an  input  (0)  or  an 
output  (1)  pin.  The  PCDDR.  along  with  bits  that  determine 

the  respective  pin's  function,  also  specify  the  exact  hardware 
to  be  accessed  at  the  Port  C  Data  Register  address  I  See  the 
Port  C  Data  Register  description  for  more  details  )  The 
PCDDR  IS  an  8-bit  register  that  is  readable  and  writeable  at  all 
times  Its  operation  is  independent  of  the  chosen  Pl/T  mode 
These  bits  are  cleared  to  0  when  the  RESET  pm  is 

asserted. 

Port  Interrupt  Vector  Register  (PIVR)  - 

7 6 5 4 3 2 1 0 

Interrupt  Vecior  Number 
' » 

The  Port  Interrupt  Vector  Register  contains  the  upper  order 

SIX  bits  of  the  four  port  interrupt  vectors.  The  contents  of 

this  register  may  be  read  two  ways  by  an  ordinary  read  cy- 
cle, or  by  a  port  interrupt  acknowledge  bus  cycle  The  exact 

data  read  depends  on  how  the  cycle  was  initiated  and  other 
factors  Behavior  during  a  port  interrupt  acknowledge  cycle 
IS  summarized  above  in  Table  3. 
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From  a  normal  read  cycle  (CS),  there  is  never  a  conse- 
quence 10  reading  this  register.  Following  negation  of  the 

RESET  pin,  but  prior  to  writing  to  the  PIVR.  a  $0F  will  be 
read  After  writing  to  the  register,  the  upper  6  bits  may  be 
read  and  the  lower  2  bits  are  forced  to  0  No  prioritization 
computation  is  performed 

Port  A  Control  Register  (PACR)  - 

7 6 5 4 3 2 1 0 

Pon  A 

Submode 
H2  Control 

H2 
Int 

Enable 

HI 

SVCRQ 
Enable 

HI 
Slat 

Ctrl. 

The  Port  A  Control  Register,  in  coniunction  with  the  pro- 
grammed mode  and  the  Port  B  submode.  control  the  opera- 

tion of  Port  A  and  the  handshake  pins  HI  and  H2  The  Port  A 

Control  Register  contains  five  fields:  bits  7  and  6  specify  the 
Port  A  submode,  bits  5.  4,  and  3  control  the  operation  of  the 

H2  handshake  pin  and  H2S  status  bit.  bil  2  determines 
whether  an  interrupt  will  be  generated  when  the  H2S  status 

bit  goes  to  1.  bit  1  determines  whether  a  service  request  (in- 
terrupt request  or  DM  A  request)  will  occur;  bit  0  controls  the 

operation  of  the  HIS  status  bit  The  PACR  is  always 

readable  and  wnteable    
All  bits  are  cleared  to  0  when  the  RESET  pin  is  asserted 

When  the  Port  A  submode  field  is  relevant  in  a  mode/ sub- 
mode  definition,  it  must  not  be  altered  unless  the  H12  Enable 

bit  in  the  Port  General  Control  Register  is  0   (See  Table  2  I 
The  operation  of  HI  and  H2  and  their  related  status  bits  is 

given  below,  for  each  of  the  modes  specified  by  Port  General 
Control  Register  bus  7  and  6  This  description  is  organized 
such  that  for  each  mode/ submode  all  programmable  options 
of  each  pm  and  status  bit  are  given 

Bits  2  and  1  carry  the  same  meaning  in  each  mode/sub- 
mode,  and  thus  are  specified  only  once. 

PACR 

2  H2  interrupt  Enable 

0  The  H2  interrupt  is  disabled 

1  The  H2  interrupt  is  enabled. 

PACR 
HI  SVCRQ  Enable 

The  HI  interrupt  and  DMA  request  are  disabled 
The  HI  interrupt  and  DMA  request  are  enabled. 

PACR  Mode  0  Port  A  Submode  00 

PACR 
5    4    3 H2  Control 

0  X   X  Input  pin  -  status  only. 

1  0    0  Output  pin  -  always  negated. 

1    0    1  Output  pin  —  always  asserted  . 

1     1    0  Output  pin   —   interlocked  input  handshake  pro- 
tocol 

1     1     1  Output  pin  -  pulsed  input  handshake  protocol 

H1  Status  Control 

PACR  Mode  0  Port  a  Submode  01 

H2  Control 

PACR 
5    4    3    

0  X   X  Input  pin  -  status  only 

1  0    0  Output  pin  -  always  negated 

1    0    1  Output  pin  -  always  asserted 

1     1    0  Output  pin   -   interlocked  output  handshake  pro- 

tocol . 
1     1     1  Output  pin  -  pulsed  output  handshake  protocol 

PACR 

HI  Status  Control 

The  HIS  status  bit  is  1  when  either  the  Port  A  initial  or 

final  output  latch  can  accept  new  data    It  is  0  when 
both  latches  are  full  and  cannot  accept  new  data. 

The  H1 S  status  bit  is  1  when  both  of  the  Port  A  output 

latches  are  empty.  It  is  0  when  at  least  one  latch  is  full 

PACR  Mode  0  Port  A  Submode  IX 

0  X   X  Input  pin  -  status  only 

1  X    0  Output  pin  -  always  negated. 

1    X    1  Output  pin  -  always  asserted. 

HI  Status  Control 

X     Not  used 

PACR  Mode  1  Port  A  Submode  XX  Port  B  Submode  XO 

PACR 
5    4    3  H2  Control 

0  X   X  Input  pin  -  status  only. 

1  X    0  Output  pin  -  always  negated. 

1    X    1  Output  pin  -  always  asserted 
PACR 

0 HI  Status  Control 

Not  used 

PACR  Mode  1  Port  A  Submode  XX  Port  B  Submode  XI 
PACR 

5    4    3  H2  Control 

0  X   X  Input  pin  -  status  only. 
1  X   0  Output  pin  -  always  negated. 
1    X    1  Output  pin  -  always  asserted 

PACR 
HI  Status  Control 
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PACR  Mode  2 

H2  Control 

PACR 

5    4    3    

X    X    0  Output  pin  -   interlocked  output  handshake  pro- 

tocol 

X   X    1  Output  pin  -  pulsed  output  handshake  protocol. 

m  Status  Control 

The  HIS  status  bit  is  1  when  either  the  Port  B  initial  or 

final  output  latch  can  accept  new  data    U  is  0  when 

both  latches  are  full  and  cannot  accept  new  data- 

The  HIS  status  bit  is  1  when  both  of  the  Port  B  output 

latches  are  empty  It  ts  0  when  at  least  one  latch  is  full 

PACR  Mode  3 

H2  Control 

-   interlocked  output  handshake  pro- 

pulsed  output  handshake  protocol. 

HI  Status  Control 

The  H1S  status  bit  is  1  when  either  the  initial  or  final 

output  latch  of  Port  A  and  B  can  accept  new  data.  It  is 

0  when  both  latches  are  full  and  cannot  accept  new 
data 

The  HIS  status  bit  is  1  when  both  the  Initial  and  final 

output  latches  of  Ports  A  and  B  are  empty.  It  is  0  when 

either  the  initial  or  final  latch  of  Ports  A  and  B  is  full 

PACR 

6    4    3 

X    X    0  Output  pin 

tocol 

X    X    1  Output  pin 

PACR 

Port  B  Control  Register  IPBCR) 

7 6 6 4 ' 2 > 0 

Port  B 

Submode H4  Conlroi 

H4 
Inl 

Enable 

H3 

SVCFIQ 
Enable 

H3 

Slat. 

Ctrl 

The  Port  B  Control  Register  specifies  the  operation  of  Port  8 

and  the  handshake  pins  H3  and  H4.  The  Port  B  control 

register  contains  five  fields:  bits  7  and  6  specify  the  Port  B 

submode,  bits  5,  4,  and  3  control  the  operation  of  the  H4 

handshake  pin  and  H4S  status  bit,  bit  2  determines  whether 

an  interrupt  will  be  generated  when  the  H4S  status  bit  goes 

to  1,  bit  1  determines  whether  a  service  request  (interrupt  re- 

quest or  DMA  requesil  will  occur,  bit  0  controls  the  opera- 

tion of  the  H3S  status  bit  The  PACR  is  always  readable  and 

writeable  There  is  never  a  consequence  to  reading  the 

register    
All  bits  are  cleared  to  0  when  the  RESET  pin  is  asserted 

When  the  Port  B  submode  field  is  relevant  m  a  mode/sub- 

mode  definition.  ,t  must  not  be  altered  unless  the  H34  Enable 

bit  in  the  Port  General  Control  Register  is  0   (See  Table  2  ) 

The  operation  of  H3  and  H4  and  their  related  status  bus  is 

given  below,  for  each  of  the  modes  specified  by  Port  General 

Control  Register  bits  7  and  6  This  description  is  organized 

such  that  for  each  mode/submode  all  programmable  options 

of  each  pm  and  status  bit  are  given 

Bits  2  and  1  carry  the  same  meaning  in  each  mode/sub- 
mode, and  thus  are  specified  only  once 

PBCR 

2  H4  Interrupt  Enable 

0  The  H4  interrupt  is  disabled 

1  The  H4  interrupt  is  enabled 

PBCR 

H3  SVCRQ  Enable 

0  The  H3  interrupt  and  DMA  request  are  disabled 

1  The  H3  interrupt  and  DMA  request  are  enabled 

PBCR  Mode  0  Port  B  Submode  00 

H4  Control 

PBCR 

5    4    3 

0  X   X  Input  pin  -  status  only 

1  0    0  Output  pin  -  always  negated. 

1    0    1  Output  pin  -  always  asserted. 

1     1    0  Output  pin   -   interlocked  input  handshake  pro- 

tocol 
1     1     1  Output  pin  —  pulsed  input  handshake  protocol 

PBCR 

H3  Status  Control 

PBCR  Mode  0  Port  B  Submode  01 

BCR 4    3  H4  Control 

X    X  Input  pin  -  status  only 

0    0  Output  pin  -  always  negated. 

0  1  Output  pm  —  always  asserted. 

1  0  Output  pin  —  interlocked  output  handshake  pro- 

tocol 1    1  Output  pm  -  pulsed  output  handshake  protocol 

H3  Status  Control 

The  H3S  status  bit  is  1  when  either  the  Port  B  initial  or 

final  output  latch  can  accept  new  data    It  is  0  when 

both  latches  are  full  and  cannot  accept  new  data 

The  H3S  status  bit  is  1  when  both  of  the  Port  B  output 

latches  are  empty.  It  is  0  when  at  least  one  latch  is  full. 

PBCR  Mode  0  Port  B  Submode  IX 

0  X   X  Input  Pin  -  status  only 

1  X    0  Output  pin  -  always  negated 

t    X    1  Output  pin  —  always  asserted 

H3  Status  Control 

PBCR  Mode  1  Port  B  Submode  XO 

4    3  H4  Control 

X    X  Input  pin  -  status  only 

0   0  Output  pin  —  always  negated 

0  1  Output  pin  -  always  asserted 

1  0  Output  pin   -    interlocked  input  handshake  pro- 

tocol. 
1     1  Output  pin  -  pulsed  input  handshake  protocol. 
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H3  Status  Control 

PBCR  Mode  1  Port  B  Submode  XI 

0  X    X  Input  pin  - 
1  0    0  Output  pin 

1     0     1  Output  pin 

1     1    0  Output  pin 

tocol 

1     1     1  Output  pin 

-  status  only 

-  always  negated 

-  always  asserted 

-  interlocked  output  handshake  pro 

-  pulsed  output  handshake  protocol 

PBCR 

0 H3  Status  Control 

The  H3S  status  bit  is  1  when  either  the  initial  or  final 

output  latch  of  Port  A  and  B  can  accept  new  data  It  is 

0  when  both  latches  are  full  and  cannot  accept  new 

data 

The  H3S  status  bit  is  1  when  both  the  initial  and  final 

output  latches  of  Ports  A  and  B  are  empty   It  is  0  when 

neither  the  initial  or  final  latch  of  Ports  A  and  B  is  full 

Port  B  Data  Register  IPBDR)  -  The  Port  B  Data  Register 
IS  an  address  for  moving  data  to  and  from  the  Port  B  pins 

The  Port  B  Data  Direction  Register  determines  whether  each 

pin  IS  an  input  (Olor  an  output  (1),  and  is  used  in  configuring 

the  actual  data  paths  This  is  mode  dependent  and  is 
described  with  the  modes,  above 

This  register  is  readable  and  writeable  at  all  timeS-  Depend 

ing  on  the  chosen  mode/submode,  reading  or  writing  may 

affect  the  double-buffered  handshake  mechanism.  The  Port 

B  Data  Register  is  not  affected  bytheassertionof  theRESET 

pin. 

Port  A  Alternate  Register  I PAAR)  -  The  Port  A  Alternate 
Register  is  an  alternate  address  for  reading  the  Port  A  pins  It 

IS  a  read-only  address  and  no  other  Pl/T  condition  is  af- 
fected In  all  modes  and  the  instantaneous  pin  level  is  read 

and  no  input  latching  is  performed  except  at  the  data  bus  in- 

terface (see  Bus  Interface  Connection).  Wntes  to  this  ad- 

dress are  answered  with  DTACK,  but  the  data  is  ignored. 

Port  B  Alternate  Register  (PBAR)  -  The  Port  B  Alternate 
Register  is  an  alternate  address  for  reading  the  Port  B  pins  It 

IS  a  read-only  address  and  no  other  Pl/T  condition  is  af- 
fected In  all  modes  the  instantaneous  pin  level  is  read  and 

no  input  latching  is  performed  except  at  the  data  bus  inter- 
face (see  Bus  Interface  Connection)  Writes  to  this  address 

are  answered  with  DTACK,  but  the  data  is  ignored 

PBCR 

5    4    3 

X    X    0  Output  pir 

tocol 

X    X    1  Output  pin 

PBCR 

0 

X     Not  used 

PBCR 

5    4    3 

X    X    0  Output  pir 

tocol 

X    X    1  Output  pin 

PBCR 

PBCR  Mode  2 

H4  Control 

-  interlocked  input  handshake  pro- 

-  pulsed  input  handshake  protocol 

H3  Status  Control 

PBCR  Mode  3 

H4  Control 

-  interlocked  input  handshake  pro- 

-  pulsed  input  handshake  protocol 

H3  Status  Control 

Port  A  Data  Register  (PADR)  -  The  Port  A  Data  Register 
IS  an  address  for  moving  data  to  and  from  the  Port  A  pins 

The  Port  A  Data  Direction  Register  determines  whether  each 

pin  IS  an  input  (01  or  an  output  ( 1 ) .  and  is  used  in  configuring 

the  actual  data  paths  This  is  mode  dependent  and  is 
described  with  the  modes  above 

This  register  is  readable  and  writeable  at  all  times.  Depend- 
ing on  the  chosen  mode/submode.  reading  or  writing  may 

affect  the  double-buffered  handshake  mechanism  The  Port 

A  Data  Register  is  not  affected  by  the  assertion  of  the 

RESET  pin 

Port  C  Data  Register  (PCDR)  -  The  Port  C  Data  Register 
IS  an  address  for  moving  data  to  and  from  each  of  the  eight 

Port  C/alternate-function  pins  The  exact  hardware 
accessed  is  determined  by  the  type  of  bus  cycle  (read  or 

wnte)  and  individual  conditions  affecting  each  pin  These 

conditions  are  (11  whether  the  pin  is  used  for  the  Port  C  or 

alternate  function,  and  (21  whether  the  Port  C  Data  Direction 

Register  indicates  the  input  or  output  direction  The  Port  C 

Data  Register  is  single  buffered  for  output  pins  and  not  buf 

fered  for  input  pins  These  conditions  are  summarized  in 

Table  11 

The  Port  C  Data  Register  is  not  affected  by  the  assertion 
of  the  RESET  pin. 

The  operation  of  the  PCDR  is  independent  of  the  chosen 
Pl/T  mode 

TABLE  11   -  PCDR  HARDWARE  ACCESSES 

Read  Port  C  Data  Register                                   ] 

Port  C  function 

PCDDR=0 

Port  C  function 

PCDDR  =  1 

Alternate 

function 

PCDDR=0 

Alternate 

function 

PCDDR-  1 

P,„ 

PorlC 

outpul 

teqisier 

pin 

Port  C 

oulpul 

register Write  Port  C  Data  Register                                | 

Port  C  Function 

PCDDR=0 

Port  C  Function 

PCDDR=1 

Alternate 

function 

PCDDR=0 

Alternate 

function 

PCDDR-  1 Port  C 

output  register. 
buKer  disabled 

Pofi  C 

output  register. 
butter  enabled 

Port  C 

output  register 

Port  C 

output  register 
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Note  that  two  additional  useful  benefits  result  from  tfiis 

structure  First,  n  is  possible  to  directly  read  Ifie  state  of  a 

dual-function  pin  while  used  for  thte  non-Port  C  function  Se- 

cond, It  IS  possible  to  generate  program  controlled  transi- 

tions on  alternate-function  pins  by  switcfiing  back  to  tfie 
Port  C  function,  and  wnling  to  tfie  PCDR 

Tills  register  is  readable  and  writeable  at  all  times 

Port  Status  Register  IPSR - 

7 6 5 4 3 2 1 0 

H4 

Level 

H3 

Level 

H2 

Level 

HI 

Level 

H4S H3S H2S HIS 

The  Port  Status  Register  coniams  information  about  hand- 
shake pin  activity  Bus  7-4  show  the  instantaneous  level  of 

the  respective  handshake  pm,  and  is  independent  of  the 
handshake  pm  sense  bits  in  the  Port  General  Control 

Register  Bit  3-0  are  the  respective, status  bits  referred  to 
throughout  this  data  sheet  Their  interpretation  depends  on 

the  programmed  mode/submode  of  the  Pl/T,  For  Bits  3-0  a 
1  IS  the  active  or  asserted  state 

Timer  Control  Register  (TCR)  - 

7           6           5 4 3 

2     1      1 
0 

TOUT/TIACK 

Control 

Z  D 

Ctrl 

• Clock 

Control 

Timer 

Enable 

Tfie  Timer  Control  Register  (TCR)  determines  all  operations 

of  tfie  timer  Bits  7-5  configure  Ifie  PC3/T0UT  and 
PC7/T1ACK  pins  for  Port  C.  square  wave,  vectored  inter- 

rupt, or  autovectored  interrupt  operation,  bit  4  specifies 
whether  the  counter  receives  data  from  the  Counter  Preload 

Register  or  continues  counting  when  zero  detect  is  reached, 
bit  3  IS  unused  and  is  read  as  0;  bits  2  and  1  configure  the 
path  from  the  CLK  and  TIN  pins  to  the  counter  controller;  bit 

0  enables  the  timer.  This  register  is  readable  and  writeable  at 

all  times    
All  bits  are  cleared  to  0  when  the  RESET  pin  is  asserted 

TCR 

TOUT/TIACK  Control 

0  X  The  dual-function  pins  PCS/TOUT  and  PC7/TIACK 
carry  the  Port  C  function 

1  X  The  dual-function  pin  PCS/TOUT  carries  the  TOUT 
function  In  the  run  state  it  is  used  as  a  square  wave 

output  and  IS  toggled  on  zero  detect  The  TOUT 

pin  IS  high  while  in  the  halt  state.  The  dual-function 
pin  PC7/TIACK  carries  the  PC7  function. 

0  0  The  dual-function  pin  PC3/T0UT  carries  the  TOUT 
function  In  the  run  or  halt  state  it  is  used  as  a  timer 

interrupt  request  output  The  timer  interrupt  is 

disabled,  thus,  the  pm  is  always  three-stated.  The 
dual-function  pin  PC7/TIACK  carnes  the  TIACK 
function,  however,  since  interrupt  request  is 
negated,  the  Pl/T  produces  no  response,  i  e.,  no 
data  or  DTACK.  to  an  asserted  TIACK  Refer  to 

Timer  Interrupt  Cycle  section  for  details  This  com- 
bination and  the  101  state  below  support  vectored 

timer  interrupts. 

1  0  1  The  dual-function  pin  PC3/T0UT  carries  the  TOUT 
function  and  is  used  as  a  timer  interrupt  request 
output.  The  timer  interrupt  is  enabled,  thus,  the  pin 
is  low  when  the  timer  ZDS  status  bit  is  1  The  dual 

function  pin  PC7/TIACK  carries  the  TIACK  func- 
tion and  IS  used  as  a  timer  interrupt  acknowledge 

input  Refer  to  the  Timer  Interrupt  Acknowledge 
Cycle  section  lor  details  This  combination  and  the 

100  state  above  support  vectored  timer  interrupts 
1  1  0  The  dual  function  pin  PC3/T0UT  carries  the  TOUT 

function.  In  the  run  or  halt  state  it  is  used  as  a  timer 

interrupt  request  output  The  timer  interrupt  is 

disabled,  thus,  the  pin  is  always  three-stated.  The 
dual-function  pin  PC7/TIACK  carries  the  PC7  func- 
tion 

1  1     1  The  dual-function  pin  PC3/T0UT  carnes  the  TOUT 
function  and  is  used  as  a  timer  interrupt  request 

output.  The  timer  interrupt  is  enabled,  thus,  the  pin 
IS  low  when  the  timer  ZDS  status  bit  is  1  The  dual- 
function  pin  PC7/TIACK  carries  the  PC7  function 
and  autovectored  interrupts  are  supported 

TCR 
4  Zero  Detect  Control 

0  The  counter  is  loaded  from  the  Counter  Preload 

Register  on  the  first  clock  to  the  24-bit  counter  after 
zero  detect,  and  resumes  counting 

1  The  counter  rolls  over  on  zero  detect,  then  continues 
counting. 

Bit  3  IS  unused  and  is  always  read  as  0 

TCR 

2  2  Clock  Control 
0  0  The  PC2/TIN  input  pin  carries  the  Port  C  function  and 

the  CLK  pin  and  prescaler  are  used  The  prescaler  is 
decremented  on  the  falling  transition  of  the  CLK  pm; 
the  24-bit  counter  is  decremented  or  loaded  from  the 
Counter  Preload  Registers  when  the  prescaler  rolls 
over  from  SOO  to  S 1 F  The  Timer  Enable  bit  determines 
whether  the  timer  is  in  the  run  or  halt  state 

0  1  The  PC2/TIN  pin  serves  as  a  timer  input  and  the  CLK 
pm  and  prescaler  are  used  The  prescaler  is 
decremented  on  the  falling  transition  of  the  CLK  pin. 
the  24-bit  counter  is  decremented  or  loaded  from  the 
Counter  Preload  Registers  when  the  prescaler  rolls 
over  from  $00  to  SIF  The  timer  is  in  the  run  state 

when  the  Timer  Enable  bit  is  1  and  the  TIN  pin  is  high; 
otherwise  the  timer  is  in  the  halt  state 

1  0  The  PC2/TIN  pm  serves  as  a  timer  input  and  the 

prescaler  is  used  The  prescaler  is  decremented  follow- 
ing the  rising  transition  of  the  TIN  pm  after  syncing 

with  the  internal  clock  The  24-bit  counter  is 
decremented  or  loaded  from  the  counter  preload 

registers  when  the  prescaler  rolls  over  from  SOO  to  SI  F. 
The  Timer  Enable  bit  determines  whether  the  timer  is 
in  the  run  or  halt  state, 

1  1  The  PC2/TIN  pin  serves  as  a  timer  input  and  the 

prescaler  is  unused.  The  24-bit  counter  is  decremented 
or  loaded  from  the  Counter  Preload  Registers  follow 

ing  the  rising  edge  of  the  TIN  pin  after  syncing  with 
the  internal  clock.  The  Timer  Enable  bit  determines 
whether  the  timer  is  in  the  tun  or  halt  state, 
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Disabled 
Enabled. 

Tinner  Interrupt  Vector  Register  (TIVR)  —  The  timer  inter- 
rupt vector  register  contains  the  8-bit  vector  supplied  when 

the  timer  interrupt  acknowledge  pin  HACK  is  asserted  The 
register  is  readable  and  writeable  at  all  times,  and  the  same 
value  is  always  obtained  from  a  normal  read  cycle  and  a  timer 

interrupt  acknowledge  bus  cycle  (TIACK)  When  the  RESET 
pin  IS  asserted  the  value  of  SOF  is  automatically  loaded  into 

the  register  Refer  to  Timer  Interrupt  Acknowledge  Cycle 
section  for  more  details 

Counter  Preload  Register  H,  M,  I  (CPRH-L) 

CPRL 

The  Counter  Preload  Registers  are  a  group  of  three  8-bit 
registers  used  for  storing  data  to  be  transferred  to  the 
counter  Each  of  the  registers  is  individually  addressable,  or 
the  group  may  be  accessed  with  the  fvlOVEP  L  or  the 
MOVER  W  instructions  The  address  one  less  than  the  ad- 

dress of  CPRH  IS  the  null  register,  and  is  reserved  so  that 
zeros  are  read  in  the  upper  8  bits  of  the  destination  data 

register  when  a  MOVER  L  is  used  Data  written  to  this  ad- 
dress is  ignored 

The  registers  are  readable  and  writeable  at  all  times  A 
read  cycle  proceeds  independently  of  any  transfer  to  the 
counter,  which  may  be  occuring  simultaneously 

To  insure  proper  operation  of  the  Pl/T  Timer,  a  value  of 

SOOOOCXD  may  not  be  stored  in  the  Counter  Preload  Registers 
for  use  with  the  counter 

The  RESET  pin  does  not  affect  the  contents  of  these 
registers 

Count  Register  H,  M,  L  (CNTRH-U  - 
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The  count  registers  are  a  group  of  three  8-bit  addresses  at 
which  the  counter  can  be  read  The  contents  of  the  counter 

are  not  latched  dunng  a  read  bus  cycle,  thus,  the  data  read  at 
these  addresses  is  not  guaranteed  if  the  timer  is  in  the  run 

stale.  (Bits  2,  1.  and  0  of  the  Timer  Control  Register  specify 
the  state  I  Write  operations  to  these  addresses  result  in  a 
normal  bus  cycle  bul  the  data  is  ignored 

Each  of  the  registers  is  individually  addressable,  or  the 
group  may  be  accessed  with  the  MOVER  L  or  the  MOVEP  W 
instructions  The  address  one  less  than  the  address  of 

CNTRH  IS  the  null  register,  and  is  reserved  so  that  zeros  are 

read  in  the  upper  8  bits  of  the  destination  data  register  when 
a  MOVEP  L  IS  used   Data  written  to  this  address  is  ignored 

Timer  Status  Register  (TSR)  - 

7 6 6 4 3 2 1 0 

• • * * * * * ZDS 

The  Timer  Status  Register  contains  one  bit  from  which  the 
zero  detect  status  can  be  determined  The  ZDS  status  bit  Ibit 

01  IS  an  edge-sensitive  flip  flop  that  is  set  to  1  when  the  24  bit 
counter  decrements  from  $000001  to  $000000  The  ZDS 

status  bit  IS  cleared  to  0  following  the  direct  clear  operation 
Isimilat  to  that  of  the  ports!,  or  when  the  timer  is  halted 

Note  also  that  when  the  RESET  pin  is  asserted  the  timer  is 
disabled,  and  thus  enters  the  halt  state 

This  register  is  always  readable  without  consequence  A 
write  access  performs  a  direct  clear  operation  if  bit  0  in  the 
written  data  is  1    Following  that,  the  ZDS  bit  is  0 

This  register  is  constructed  with  a  reset  dominant  S-R  flip- 
flop  so  that  all  clearing  conditions  prevail  over  the  possible 
zero  detect  condition 

Bits  7-1  are  unused  and  are  read  as  0 

TIMER  APPLICATIONS  SUMMARY 

This  section  outlines  programming  of  the  Timer  Control 

Register  for  several  typical  examples 

Periodic  Interrupt  Generator 

7      1     6      1     5 J 3 

2      1     ' 

0 

TOUT    TIACK Z    D 

Clrl 

* 
Clock 

Conliol 

Timer 

Enable 

00  or    IX 

cf^af^qed 

In  this  configuralion  the  timer  generates  a  periodic  inter 

rupt  The  TOUT  pm  is  connected  to  the  system's  interrupt 
request  circuitry  and  the  TIACK  pm  may  be  used  as  an  inter 
rupt  acknowledge  input  to  the  timer  The  TIN  pm  may  be 
used  as  a  clock  input 

The  processor  loads  the  Counter  Preload  Registers  and 
Timer  Control  Register,  and  then  enables  the  timer  When 

the  24-bit  counter  passes  from  $000001  to  $000000  the  ZDS 
status  bit  IS  set  and  the  TOUT  (mterrupl  request)  pm  is 

asserted  At  the  next  clock  lo  the  24-biI  counter  it  is  again 

loaded  with  the  contents  of  the  CPR's,  and  thereafter 
decrements  In  normal  operation,  the  processor  must  direct 
clear  the  status  bit  to  negaie  the  interrupt  request  (see 

Figure  15) 
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FIGURE  15  -  PERIODIC  INTERRUPT  GENERATOR 
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In  this  configuraiion  ihe  timer  produces  a  square  wave  at 

the  TOUT  pin  The  TOUT  pin  is  connected  lo  the  user's  cir 
cuilry  and  the  TIACK  pin  is  not  used  The  TIN  pin  may  be  us 

ed  as  a  clock  input 

The  processor  loads  the  Counter  Preload  Registers  and 

Timer  Control  Register,  and  then  enables  the  timer  When 

the  24-bil  counter  passes  from  $000001  to  5000000  the  ZDS 

status  btt  IS  set  and  the  TOUT  (square  wave  output)  pm  ts 

toggled  At  the  next  clock  to  the  24  bit  counter  it  is  again 

loaded  wtth  the  contents  of  the  CPRs.  and  thereafter 

decrements  In  this  applical'on  there  is  no  need  for  the  pro 

cessor  to  direct  dear  the  ZDS  status  bit.  however,  ii  is  possi 

ble  for  the  processor  to  sync  itself  with  the  square  wave  by 

cleanng  the  ZDS  status  bu.  then  polling  n  The  processor 

may  also  fead  the  TOUT  level  at  Ihe  Port  C  address 

Note  that  the  PC3/T0UT  pm  functions  as  PC3  following 

the  negation  of  RESET  If  used  in  the  square  wave  con- 
figuration a  pullup  resistor  may  be  required  to  keep  a  known 

level  prior  to  programming  Prior  to  enabling  the  timer. 

TOUT  is  high  (see  Figure  161 

FIGURE  16  -  SQUARE  WAVE  GENERATOR 
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In  this  configuration  the  timer  generates  an  interrupt  after 

a  programmed  time  period  has  expired  The  TOUT  pm  is 

connected  to  the  system's  interrupt  request  circuitry  and  the 
TIACK  pin  may  be  an  interrupt  acknowledge  inpu!  lo  the 

timer   The  TIN  pm  may  be  used  as  a  clock  input 

This  configuration  is  similar  to  the  periodic  mterrupt 

generator  except  that  the  Zero  Detect  Control  bit  is  set  This 
forces  the  counter  roll  over  after  Zero  Detect  is  reached, 

rather  than  reloadmg  from  the  CPRs  When  the  processor 

takes  the  interrupt  it  can  halt  the  timer  and  read  the  counter 

This  allows  the  processor  to  measure  the  delay  time  from 

Zero  Detect  (interrupt  request)  to  entering  the  service 

routine  Accurate  knowledge  of  the  interrupt  latency  may  be 

useful  m  some  applications  (see  Figure  17) 

FIGURE  17 

N   

SINGLE  INTERRUPT  AFTER  TIMEOUT 
   R,..    H 

.J 

soooooo 

Elapsed  Time  Measurement 

Elapsed  time  measurement  takes  several  forms,  iwo  < 

described  below 

System  Clock 
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This  configuration  allows  time  interval  measurement  bv 

software   No  timet  pins  are  used 

Trie  processor  loads  the  Counter  Preload  Registers 

(generally  with  all  Isl  and  Timer  Control  Register,  and  then 

enables  the  timer  The  counter  decrements  until  the  ending 

event  takes  place  When  it  is  desired  lo  read  ihe  time  inter 

val,  the  processor  must  hall  the  timer,  then  read  the  counter 

For  applications  in  which  the  interval  could  have  exceeded 

that  programmable  in  this  timer,  interrupts  can  be  counted 

to  provide  the  equivalent  of  additional  timer  bits  At  Ihe  end, 

the  timer  can  be  halted  and  read  Isee  Figure  181 
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FIGURE  18  -  ELAPSED  TIME  MEASUREMENT 
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This  configuration  allows  measurement  (counting)  of  the 
number  of  input  pulses  occurnng  in  an  interval  in  which  the 
counter  is  enabled  The  TIN  input  pm  provides  the  input 
pulses   Generally  the  TOUT  and  TIACK  pins  are  not  used 

This  configuration  is  identical  To  the  Elapsed  Time 

Measurement/System  Clock  configuration  except  that  the 
TIN  pin  IS  used  to  provide  the  input  frequency  It  can  be  con 
necied  to  a  simple  oscillator,  and  the  same  methods  could  be 

used  Alternately,  il  could  be  gated  off  and  on  externally  and 
the  number  of  cycles  occurring  while  m  the  run  state  can  be 
counted  However,  minimum  pulse  width  high  and  low 
specifications  must  be  met 

Device  Watchdog 
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This  configuration  provides  the  watchdog  function  need- 
ed in  many  systems  The  TIN  pin  is  the  timer  input  whose 

period  at  the  high  ( 1 )  level  is  to  be  checked  Once  allowed  by 
the  processor,  the  TIN  input  pm  controls  the  run/halt  mode 
The  TOUT  pm  is  connected  to  external  circuitry  requiring 
notification  when  the  TIN  pm  has  been  asserted  longer  than 
the  programmed  time  The  TIACK  pm  (interrupt 
acknowledge!  is  only  needed  if  the  TOUT  pm  is  connected  to 
interrupt  circuitry 

The  processor  loads  the  Counter  Preload  Register  and 
Timer  Control  Register,  and  then  enables  the  timer  When 

the  TIN  input  is  asserted  1 1 .  highl  t^e  timer  transfers  the  con- 
tents of  the  Counter  Preload  Register  to  the  counter  and 

begins  counting  If  the  TIN  input  is  negated  before  Zero 
Detect  IS  reached,  the  TOUT  output  and  the  ZDS  status  bit 

remain  negated  If  Zero  Detect  is  reached  while  the  TIN  input 
IS  still  asserted  the  ZDS  status  bit  is  set  and  the  TOUT  output 

IS  asserted    (The  counter  rolls  over  and  keeps  on  counting  1 
In  either  case,  when  the  TIN  input  is  negated  the  ZDS 

status  bit  IS  0.  the  TOUT  output  is  negated,  the  counting 
Slops,  and  the  prescater  is  forced  to  all  Is  (see  Figure  19). 

TOUT 

'Analog  tepreseniaiion  ol 

BUS  INTERFACE  CONNECTION 

The  Pl/T  has  an  asynchronous  bus  interface,  primarily 

designed  for  use  with  the  MC68000  microprocessor  With 
care,  however,  it  can  be  connected  to  synchronous 
microprocessor  buses.  This  section  completely  describes  the 

Pl/T's  bus  interface,  and  is  intended  for  the  asynchronous 
■bus  designer  unless  otherwise  mentioned. 

In  an  asynchronous  system  the  Pl/T  CLK  may  operate  at  a 
significantly  different  frequency,  either  higher  or  lower,  than 
the  bus  master  and  other  system  components,  as  long  as  all 
bus  specifications  are  met.  The  MC68230  CLK  pin  has  the 
same  specifications  as  the  MC68000  CLK,  and  must  not  be 

gated  off  at  any  time. 
The  following  signals  generate  normal_read  and  wnte 

cycles  to  the  Pl/T  CS  (Chip  Select),  R/W  (Read/Wnte), 

RS1-RS5  (five  Register  Select  bits),  D0-D7  (theS-bit  bidirec- 
tional data  bus),  and  DTACK  (Data  Transfer  Acknowledge) 

To  generate  interrupt  acknowledge  cycles  PC6/PIACK  or 
PC7/TIACK  IS  used  instead  of  CS,  and  the  Register  Select 
pins  are  ignored  No  combination  of  the  following  pins  may 
be  asserted  simultaneously   CS,  PIACK.  or  TIACK 

READ  CYCLES  VIA  CHIP  SELECT 

This  catagory  includes  all  register  reads,  except  port  or 
timer  interrupt  acknowledge  cycles  When  CS  is  asserted, 
the  Register  Select  and  R/W  inputs  are  latched  internallly 
They  must  meet  small  setup  and  hold  time  requirements  with 

respect  to  the  asserted  edge  of  CS,  (See  the  AC  ELEC- 
TRICAL CHARACTERISTICS  table.)  The  Pl/T  is  not  pro- 

tected against  aborted  (shortened)  bus  cycles  generated  by 
an  Address  Error  or  Bus  Error  exception  in  which  it  is 
addressed. 

Certain  operations  triggered  by  normal  read  (or  write)  bus 
cycles  are  not  complete  within  the  time  allotted  to  the  bus 

cycle  One  example  is  transfers  to/ from  the  double-buffered 
latches  that  occur  as  a  result  of  the  bus  cycle.  If  the  bus 

master's  CLK  is  significantly  faster  than  the  PJ/T's  the 
possibility  exists  that,  following  the  bus  cycle,  CS  can  be 
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negated  then  re-asserted  before  completion  of  ihese  internal 
operations  In  Ihiis  situation  the  Pl/T  does  not  recognize  the 
re  assertion  of  CS  until  these  operations  are  complete  Only 
at  that  time  does  it  begin  the  internal  sequencing  necessary 
to  react  to  the  asserted  CS  Since  CS  also  controls  the 

DTACK  response,  this  "bus  cycle  recovery  time"  can  be 
related  to  the  CLK  edge  on  which  DTACK  is  asserted  for  that 
cycle  The  Pl/T  will  recognize  the  subsequent  assertion  of 
CS  three  (31  CLK  periods  after  the  CLK  edge  on  which 

DTACK  was  previously  asserted_ 
The  Register  Select  and  R/W  inputs  pass  through  an 

internal  latch  thal^  is  transparent  when  the  Pl/T  can 
recognize  a  new  CS  pulse  (see  above  paragraph)  Since  the 
internal  data  bus  of  the  Pt/T  is  continuously  enabled  for  read 
transfers,  the  read  access  time  (to  the  data  bus  buffers) 

begins  when  the  Register  Selects  are  stabilized  internally 
Also,  when  the  Pl/T  is  ready  to  begin  a  new  bus  cycle,  the 
assertion  of  CS  enables  the  data  bus  buffers  within  a  short 

propagation  delay  This  does  not  contribute  to  the  overall 

read  access  time  unless_CS  is  asserted  significantly  after  the 
Register  Select  and  R/W  inputs  are  stabilized  (as  may  occur 
with  synchronous  bus  microprocessors) 

In  addition  to  Chip  Select's  previously  mentioned  duties,  il 
controls  the  assertion  of  DTACK  and  latching  of  read  data  at 
the  data  bus  interface  Except  for  controlling  input  latches 

and  enabling  the_data  bus  buffers,  all  of  these  functions 

occur  only  after  CS  has  been  recognized  internally  and  syn- 
chronized with  the  internal  clock  Chip  Select  is  recognized 

on  the  falling  edge  of  the  CLK  if  the  setup  time  is  met. 
DTACK  IS  asserted  (low)  on  the  next  falling  edge  of  the  CLK 

Read  data  is  latched  at  the  Pl/T's  data  bus  interface  at  the 
same  time  DTACK  is  asserted.  It  is  stable  as  long  as  Chip 

Select  remains  asserted  independent  of  other  external  condi- 
tions   

From  the  above  discussion  it  is  dear  that  if  the  CS  setup 

lime  prior  to  the  falling  edge  of  the  CLK  is  met.  the  PI/  T  can 
consistently  respond  to  a  new  read  or  write  bus  cycle  every 
four  (4)  CLK  cycles  This  fact  is  especially  useful  in  designing 

the  Pl/T's  clock  in  synchronous  bus  systems  not  using 
DTACK  lAn  extra  CLK  period  is  required  in  interrupt 

acknowledge  cycles,  see  Read  Cycles  via  Interrupt 
Acknowledge  I 

In  asynchronous  bus  systems  m  which  the  Pl/T's  CLK  dif- 
fers from  that  of  the  bus  master,  generally  there  is  no  way  to 

guarantee  that  the  CS  setup  time  with  respect  to  the  Pl/T 

CLK  IS  met  Thus,  the  onlv_way  to  determine  that  the  Pl/T 
recognized  the  assertion  of  CS  is  to  wait  for  the  assertion  of 
DTACK  In  this  situation,  all  latched  bus  inputs  to  the  Pl/T 
must  be  held  stable  until  DTACK  is  asserted  These  include 

Register  Select,  R/W.  and  wnte  data  inputs  (see  below) 
System  specifications  impose  a  maximum  delay  from  the 

trailing  (negated)  edge  of  Chip  Select  to  the  negated  edge  of 

DTACK  As  system  speeds  increase  this  becomes  more  dif- 
ficult  to  meet  with  a  simple  pullup  resistor  tied  to  the  DTACK 
line  Therefore,  the  Pl/T  provides  an  internal  active  pullup 

device  to  reduce  the  rtse  time,  and  a  level-sensitive  circuit 

that  later  turns  this  device  off  DTACK  is  negated  asyn- 
chronously as  fast  as  possible  following  the  rising  edge  of 

Chip  Select,  then  three-stated  to  avoid  interference  with  the 
next  bus  cycle. 

The  system  designer  must  take  care  that  DTACK  is 

negated  and  three-stated  quickly  enough  after  each  bus 
cycle  to  avoid  interference  with  the  next  one  With  the 
MC68(XX)  this  necessitates  a  relatively  fast  external  path  from 
the  data  strobe  to  CS  going  negated 

WRITE  CYCLES 

In  many  ways  write  cycles  are  similar  to  normal  read  cycles 

(see  above)  On  write  cycles,  data  at  the  D0-D7  pins  must 
meet  the^  same  setup  specifications  as  the  Register  Select 
and  R/W  lines,  Like  the_se  signals,  write  data  is  latched  on 
the  asserted  edge  of  CS,  and  must  meet  small  setup  and 
hold  time  requirements  with  respect  to  that  edge.  The  same 
bus  cycle  recovery  conditions  exist  as  for  normal  read  cycles. 
No  other  differences  exist 

READ  CYCLES  VIA  INTERRUPT  ACKNOWLEDGE 

Special  internal  operations  take  place  on  Pl/T  interrupt 
acknowledge  cycles  The  Port  Interrupt  Vector  Register  or 
the  Timer  Interrupt  Vector  Register  are  implicitly  addressed 
by  the  assertion  of  PC6/PIACK  or  PC7/TIACK,  respectively 
The  signals  are  first  synchronized  with  the  falling  edge  of  the 
CLK  One  dock  period  after  they  are  recognized  the  data  bus 
buffers  are  enabled  and  the  vector  is  driven  onto  the  bus 

DTACK  IS  asserted  after  another  clock  period  to  allow  the 
vector  some  setup  time  prior  to  DTACK  DTACK  is  negated, 
then  three-stated  as  with  normal  read  or  write  cycle,  when 
PIACK  or  TIACK  is  negated 
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Addressing  modes  (of  the  68000), 
37-57 

absolute  long,  40,  42 
absolute  short,  40-42 
address  register  direct,  38,  56,  60, 

66,  68,  77,  81,  82 
data  register  direct,  38,  57,  60,  75, 

81 

immediate,  55,  56,  57 

implied  register,  56 
indexed  register  indirect  with  offset, 

44,  50-55 
postincrement  register  indirect, 

46-48,  64 

predecrement  register  indirect, 
46-48,  63,  64,  69 

program  counter  relative  with  index 

and  offset,  42-43 
program  counter  relative  with  offset, 

42 

quick  immediate,  55 
register  indirect,  44,  63 
register  indirect  with  offset,  44, 

49-50 

ALU  (arithmetic  logic  unit),  29 
Arithmetic  shift,  82 

Array,  52-55 
Assembler,  36,  41,  42,  43,  98,  146 

line  by  line,  146 
Assembly  language,  35,  36,  129,  146, 

257 
Asynchronous,  18,  171 
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Asynchronous  communications 
interface,  124 

Asynchronous  communications 
interface  adapter  (6850),  171, 
208-14,  306,  307 

control  register,  211,  213,  214 
receiver,  210,  214 
status  register,  211 
transmitter,  211,  214 

Asynchronous  control  bus  signals  (of 

the  68000),^,  18,  19,  171 
address  strobe  (AS),  18,  22,  172, 

178,  182,  192,  197,  242   
data  transfer  acknowledge  (DTACK), 

18,  19,  22,  173,  178,  182,  192, 
240,  243,  252    

lower  data  strobe  (LDS),  18,  19, 
171,  175,  178,  182,  197,  240, 
242  _ 

read/write  (R/W),  18,  19,  171,  175, 
178,  182,  192,  197,  240,  242 

upper  data  strobe  (UDS),  18,  19, 
171,  175,  178,  182,  197 

Asynchronous  data  communications, 
200,  201 

Asynchronous  data  communications 

signals,  201-6,  308 
clear  to  send  (CTS),  204,  206,  308 
data  set  ready  (DSR),  205,  308 
data  terminal  ready  (DTR),  204, 

205,  206,  308 
ready  to  send  (RTS),  204,  205,  206, 

211,  308 

receive  data  (RXd),  201,  206 
transmit  data  (XXq),  201,  206 

Asynchronous  memory  I/O  interface 
(of  the  68000),  170,  171-96 

Autoindexing: 
postincrement,  44 
predecrement,  44 

Average  calculation  program,  101-2 

B 

Baud  rate,  124,  205 

Baud  rate  generator,  205,  211,  307 
BCD  to  binary  conversion  program, 

102-4 Bit  manipulation  instructions  (of  the 

68000),  117-19 
test  a  bit  (BTST),  117-18 
test  a  bit  and  change  (BCHG),  118 
test  a  bit  and  clear  (BCLR),  118 
test  a  bit  and  set  (BSET),  118 
test  and  set  an  operand  (TAS), 

118-19 
Bit  time,  201,  205 

Block  move  program,  99-l(X) 
Block  transfer,  48 
Borrow,  26 

Bus  arbitration  control  bus  (of  the 

68000),  17,  21-22 
bus  grant  (BG),  22    
bus  grant  acknowledge  (BGACK), 

22    

bus  request  (BR),  22 
Bus  arbitration  handshake,  22 
Bus  cycle,  17,  19,  20,  21,  22,  171,  177, 

178,  243,  252,  298 
duration,  178,  180 
I/O  read  (input),  18 
instruction  acquisition  memory  (code 

fetch),  20,  177 

interrupt  acknowledge,  242-45 
read,  18,  19,  20,  178-79,  197 
synchronous,  197,  339 

write,  20,  180-83,  243 
Bus  master,  22 
Bus  status  (codes),  176 
Byte,  17,  19,  23,  24,  46,  60,  66,  69, 

72,  91,  94,  118,  171,  175,  179, 

184 
even-addressed,  171,  175,  186 
odd-addressed,  171,  175 

Call,  25,  184 
Carry,  26 



Clock  (of  the  68000): 
clock  input  (CLK),  23 
fall  time,  23 
frequency,  23 

Clock  generator,  260,  261,  272-73 
pulse  width,  23 
rise  time,  23 

Code  (program),  35-36 
object,  36 
source,  36 

Compare  and  test  instructions  (of  the 
68000),  90-95,  100 

compare  (CMP),  91 
compare  address  (CMPA),  92 

compare  immediate  (CMPI),  92-93 
compare  memory  (CMPM),  93 
set  according  to  condition  code 

(Sec),  94-95 
test  (TST),  94 

Computer,  2-11 
block  diagram,  7-11 
central  processing  unit  (CPU),  7,  8-9 
definition,  2 
external  memory,  7,  8,  9 

general-purpose,  2,  6,  8,  12 
input  unit,  7,  8,  9 
internal  memory,  7,  8,  9 
mainframe,  2,  4,  8,  9 

memory  unit,  7,  8-9 
microcomputer,  1,  5,  6,  8-12 
minicomputer,  5,  7,  8,  9 
output  unit,  7,  8,  9 
primary  storage,  7 
secondary  storage,  7 

special-purpose,  4,  6,  8,  11 
Condition-code  relationship,  94-95, 

98,  101 
Count  (counter),  83,  84,  85,  101 

Data,  2,  9,  17,  19,  24,  46,  55,  92,  171, 
175,  176,  184,  197 

bus,  16,  17,  19,  22,  171,  178,  186, 

192,  197,  240,  242,  245 
storage  memory,  9,  12,  62,  66,  70, 

110,  176-77 Data  formats  (of  the  68000),  17 
bit,  17,  82 
byte,  17,  19,  23,  24,  33,  46,  60,  66, 

67,  69,  72,  91,  94,  118,  175, 179 

long  word,  17,  24,  33,  39,  40,  45, 
55,  60,  63,  66,  67,  69,  70,  72, 
73,  91,  94,  175,  187,  188 

packed  BCD,  17,  34,  74-79 
signed  number,  67,  72,  73 
unsigned  number,  67,  72,  73 
word,  17,  19,  23,  24,  33,  46,  52,  60, 

66,  67,  69,  70,  72,  91,  94,  175, 
179,  186,  187 

Data  storage  memory,  261,  272, 

283-90 
Data  transfer  instructions  (of  the 

68000),  57-66 
clear  (CLR),  59,  66 

exchange  (EXG),  59,  65-66 
load  effective  address  (LEA),  59,  65 
move  (MOVE),  17,  24,  38,  40,  42, 

43,  45,  49,  51,  59-63,  114,  115, 
116,  184,  192,  195,  196,  251 

move  address  (MOVEA),  62-63 
move  multiple  register  (MOVEM), 

59,  63-64,  184 
move  quick  (MOVEQ),  55,  63 
swap  (SWAP),  59,  66 

Decimal  arithmetic  instructions  (of  the 

68000),  57,  74-79 
add  binary-coded  decimal  (ABCD), 

74-75 

negate  binary-coded  decimal 

(NBCD),  74,  76-77 
subtract  binary-coded  decimal 

(SBCD),  74,  76 
Dedicated  memory,  176 
Destination  operand,  24,  38,  45,  59, 

60,  62,  63,  65,  68,  70,  72,  75, 
79,  80,  82,  90,  91,  94,  117 
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Development  system,  123 
Direct  memory  access  (DMA),  222, 

223 

Disassembly  (of  a  program),  129, 
147-52 

Displacemem,  43,  97,  98,  110,  114, 
116 

Double-precision  arithmetic,  257 
Dual  16-bit  ports  using  6821s,  192 

Educational  microcomputer,  260-308 
block  diagram,  260 
clock  generator  circuitry,  260,  272 
data  storage  memory,  260,  279, 

283-90 
interrupt  interface,  260,  273-79 
parallel  I/O,  260,  293-302 
program  storage  memory,  260, 

279-83 
serial  I/O,  260,  302-8 

Effective  address,  37,  40,  43,  49,  50, 
53,  55,  60,  62,  65,  68,  69,  70, 
79,  80,  110,  117 

Emulation  routine,  29,  257 

Even-addressed  boundary,  171,  255 
Exception  instructions  (of  the  68000), 

248-52 
check  register  against  bounds 

(CHK),  236,  238,  250,  251-52 
divide-by-zero  (DIVU/DIVS), 

251-52 
return  from  exception  (RTE),  184, 

250,  251 

trap  (TRAP),  236,  238,  250-51 
trap  on  overflow  (TRAPV),  236, 

238,  250,  251 

Exceptions,  25,  245-58 
autovector  interrupt,  238,  247 
autovector  interrupt  interface, 

247-55 
autovector  interrupt  sequence,  248 
autovector  mode,  247 

bus  error,  236,  238,  252-61 
instructions,  236,  248-52 
internal,  25,  236,  238,  255-58 
interrupt,  25,  27,  176,  184,  235,  236, 

238,  239-42 
interrupt  interface,  240-41,  245-47, 248 

interrupt  sequence,  242-45 

mask,  241-42 
nonmaskable,  242,  255 

priority,  21,  27,  238-39,  240,  241, 
252,  254 

priority  level,  238,  241,  242,  255 
processing,  184,  235,  236 

reset,  236,  237,  238,  254-55 
service  routine,  27,  184,  236,  238, 

242,  245,  248,  250,  251,  252, 
255,  256 

software,  25,  238,  250 

vector,  176,  236-38,  245,  251,  252, 
255 

vector  address,  236-38,  245,  248 
vector  number,  236,  238,  242,  245, 248 

vector  table,  176,  236-38,  245,  248, 
250,  251,  252,  256,  257 

Execution  control  architecture  (of  the 

68000),  27-29 ALU,  28 
control  store,  28 
control  unit,  28 
control  word,  29 
execution  unit,  28 
instruction  decoder,  28,  29 
instruction  register,  28 
micro-control  store,  29 
nano-control  store,  29 

Frame,  1 14 
Frame  data  space,  114 
Frame  pointer,  114,  115,  116 
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Framing  error,  202,  208,  211,  214 

Full  duplex  communications  lini<,  207, 
208 

Functional  addressing  categories  (of 

the  68000),  56-57 
alterable  addressing,  56,  57,  60,  62, 

66,  68,  72,  77,  80,  82,  93,  94 

control  addressing,  56,  63,  64,  65 

data  addressing,  56,  72,  79,  81 

memory  addressing,  56 
Function  codes,  20,  171,  177,  178, 

197,  240,  242,  248,  253 

General  use  memory,  176 

H 

Half  duplex  communications  link,  207 
Hardware  refresh,  187 

HMOS  (high-performance  metal-oxide- 
semiconductor)  technology,  212 

Illegal  instruction,  257 

Illegal  opcode  detection,  257 
Immediate  operand,  25,  55,  56,  63,  69, 

80,  83,  85,  92,  114,  117 

Index  (registers),  24,  32,  43,  50-53 
Initialization,  21,  61 

I/O  (input/output),  7,  9,  17,  170 

address  space,  17,  171,  176,  184 
asynchronous  I/O  interface  (of  the 

68000),  170,  171 

port,  188 
synchronous  I/O  interface  (of  the 

68000),  196-200 
I/O  control  commands  (of  Tutor 

monitor),  143-46 

dump  onto  cassette  (DU4),  153 
load  from  cassette  (L04),  153 

no  printer  attach  (NOPA),  143 

port  format  (PF),  144-45 
printer  attach  (PA),  143 

transparent  mode  (TM),  145,  146 
verify  cassette  (VE4),  153 

I/O  instruction  (of  the  68000),  187-88 
move  peripheral  data  (MOVEP), 

187-88 
Instruction,  2,  7,  9,  24,  28,  29,  32-86, 

90-119,  171,  176,  238,  248-52, 
255,  256 

decode,  29 

execution,  28-29 
fetch,  29 

Instruction  set,  29,  34,  57,  67,  79,  90 
Integer  arithmetic  instructions  (of  the 

68000),  57,  67-74 
add  (ADD),  67,  68 
add  address  (ADDA),  68,  70 

add  immediate  (ADDl),  29 

add  quick  (ADDQ),  69,  196 
add  with  extend  (ADDX),  69 

negate  (NEG),  67,  71-72 
negate  with  extend  (NEGX),  72 

signed  divide  (DIVS),  73 

signed  multiply  (MULS),  72 

sign  extend  (EXT),  67,  73 
subtract  (SUB),  67,  70 
subtract  address  (SUBA),  71 

subtract  immediate  (SUBI),  71 

subtract  quick  (SUBQ),  71 
subtract  with  extend  (SUBX),  71 

unsigned  divide  (DIVU),  73 

unsigned  multiply  (MULU),  72 
Integrated  circuit  (IC),  2 

Interfacing  the  6821  PIA  to  the 

synchronous  interface  bus, 

197-200 
Interlocked  input  handshake  protocol, 

230 

Interlocked  output  handshake 

protocol,  231 
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Internal  exceptions  (of  the  68000), 

236,  255-58 
address  error,  236,  238,  255-56 
illegal/unimplemented  opcode,  238, 

255,  257 
privilege  violation,  236,  238,  255, 

256 

spurious  interrupt,  236,  238 
trace  interrupt,  236,  238,  242,  251, 

254,  255,  257 
Internal  registers  (of  the  68000),  17, 

23-37,  31-35 
address  registers  (A),  17,  23,  24,  29, 

32,  34,  39,  44,  45,  49-53,  60, 
62,  63,  64,  65,  66,  68,  70,  80, 
91,  92,  97,  113,  255 

data  registers  (D),  17,  23-24,  29,  32, 
34,  38,  40,  51,  60,  62,  63,  64, 
66,  68,  69,  70,  71,  72,  73,  75, 
79,  80,  83,  91,  92,  101,  110, 
118,  188,  255 

mask,  27 

program  counter  (PC),  23,  25-26, 
32-34,  42-43,  56,  95,  98,  110, 
184,  236,  250,  251,  253,  255 

stack  pointers  (SP),  23,  24,  32,  56, 

62,  114-17,  183,  255 
status  register  (SR),  21,  23,  26-27, 

90-92,  56,  60,  61,  62,  67,  68, 
69,  72,  76,  80,  83,  84,  90,  94, 
98,  111,  117,  184,  241,  242, 
245,  253,  254,  255,  256,  257 

Internal  registers  (of  the  68230), 
219-231 

port  A  alternate  register  (PAAR), 
225 

port  B  alternate  register  (PBAR), 
226 

port  A  control  register  (PACR), 
226,  227,  231,  297 

port  B  control  register  (PBCR),  226, 
227,  231 

port  A  data  register  (PADR),  225, 
230,  297 

port  B  data  register  (PBDR),  225, 
230 

port  A  data  direction  register 
(PADDR),  224,  225,  297 

port  B  data  direction  register 
(PBDDR),  224,  225 

port  C  data  direction  register 
(PCDDR),  224 

port  general  control  register 
(PGCR),  219,  220,  230,  297 

port  service  request  register  (PSRR), 
222,  223,  224,  297 

port  status  register  (PSR),  231 
Interrupt  acknowledge  bus  status  code, 

20 

Interrupt  interface  signsds  (of  the 

68000),  21,  240-41,  247-48 
bus  error  (BERR),  21,  252,  253 
halt  (HALT),  21,  252   
interrupt  request  lines  (IPLj  IPL] 

IPLq),  21,  240-41,  242,  248 
reset  (RESET),  21,  254      
valid  peripheral  address  (VPA),  248 

Interval/event  timer,  12 

Jump  (branch),  96-97 
conditional,  96-97 
unconditional,  96 

Jump  and  branch  instructions  (of  the 

68000),  95-101 
branch  always  (BRA),  97-98 
branch  conditionally  (Bcc),  98 

jump  (JMP),  97 
test  condition,  decrement,  and 

branch  (DBcc),  100-101 

Label,  42,  43,  98,  100 
LED  (light  emitting  diode),  9,  256 
Logical  shift,  82 
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Logic  instructions  (of  the  68000), 
79-82 

AND  (AND),  79-80 
AND  immediate  (ANDI),  80-81 
exclusive-OR  (EOR),  81-82 
exclusive-OR  immediate  (EORI), 

81-82 
NOT  (NOT),  82 
OR  (OR),  81 
OR  immediate  (ORI),  81 

Long  word,  17,  24,  32,  39,  40,  45,  55, 
60,  63,  66,  67,  69,  70,  72,  73, 
91,  94,  175,  179,  187,  188,  255 

Loop,  100 
LSI  (large  scale  integration),  1,  2,  4, 

273 

LSI  peripheral,  15,  21,  22,  187,  188, 
196,  197,  255 

M 

Machine  code  instruction,  36 
Macroinstruction,  29 
Macroinstruction  static,  28 
Main  program,  109 
Mark,  202 
Mask,  64 
Memory  address  space,  17,  26,  34,  41, 

42,  171,  176,  184,  197,  344 
Memory  display/modify/search 

commands  (of  Tutor  monitor), 

135-43 
block  fill  (BF),  141 
block  move  (BM),  142 

block  search  (BS),  142-43 
memory  display  (MD),  135-38 
memory  modify  (MM),  138-40 
memory  search  (MS),  141 

Memory  interface,  170-87 
Memory  map,  176 
Memory-mapped  I/O,  171 
Memory  organization  (of  the  68000), 

175 

lower  (odd)  data  bank,  171,  175, 186 

upper  (even)  data  bank,  171,  175, 
178,  186 

Microcode,  29 

Microcomputer,  1,  5,  6,  8-12,  260 
architecture,  8-11 
8-bit,  11-12 
4-bit,  11-12 

multichip,  9,  11-12 
single-chip,  9-11 
16-bit,  11-12 

Microinstructions,  29 

Microprocessor,  1,  5,  6,  9-12,  256 
Microsequence  starting  address,  28 
Mnemonic,  36,  57,  79,  94,  128 

Monitor  commands,  126,  127-59 
Monitor  command  syntax,  129-32,  146 
Monitor  program,  123,  126-27,  261 
MPU  (microprocessor  unit),  8-9 
MSI  (medium  scale  integration),  4,  9 
Multiplexed,  16 
Multiprocessor,  17,  119 
Multitasking,  17,  119 

N 

Nibble,  11 
Nonmaskable  interrupt  (exception), 

242,  255 
Nonvolatile,  9 

Odd-addressed  boundary,  255,  256 

Offset,  24,  43,  49-51 
Opcode  (operation  code),  36,  41,  97, 

176 

Operand,  23,  24,  29,  36,  37,  39,  43, 
57,  82,  90,  175,  176,  187 

Orthogonality,  57 
Overrun  error,  202,  208,  211,  214 
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Parallel  I/O,  272,  293 
Parallel  printer  interface,  125,  299 
Parameters,  24,  113,  115,  116,  252, 

253 

Parity  error,  208,  211,  214 
Peripheral  interface  adapter  (6821 

PIA),  187,  188-92 
automatic  mode,  192 
chip  select  inputs,  191,  192 
control  lines,  189,  191 

control  register  (CR),  188,  189-91, 
196 

data  bus,  191 
data  direction  register  (DDR),  188, 

189,  190,  192,  195 
handshake  mechanism,  191 
I/O  port  lines,  189 

output  register  (OR),  188-89 
R/W  line,  191 
register  select  Hnes,  191,  192 
strobed  mode,  191 

Pointer,  24,  32 
Priority  encoder,  245,  248 
Privileged  instructions,  61,  62,  81,  256 
Processor  status  bus,  17,  216 

function  code  lines  (FC2FC1FC0), 
20,  177,  178,  240,  242,  248,  253 

Program,  9,  32,  94,  95,  98,  109,  113, 
117,  176,  236,  245,  252 

Program  counter  (PC),  23,  25-26, 
32-34,  42-43,  56,  95,  98,  110, 
184,  236,  250,  251,  253,  255 

Program  development,  122-67 
assembly/disassembly,  122,  147-52 
debugging,  122,  162-67 
execution,  122,  160-62 
loading,  152-54 
saving,  152-54 

Program  execution  control  commands 

(of  Tutor  monitor),  154-59 
breakpoint  (BR),  158-59 
breakpoint  remove  (NOBR),  159 

go  (G,  GO),  129,  158 

go  direct  (GD),  157-58 
go  until  break  (GT),  158 

trace  (TR,  T),  155-57 
trace  to  temporary  breakpoint  (TT), 

155,  157 
Programmer,  2,  17,  32,  62,  98,  238, 

256 
Programming,  2 
Program  storage  memory,  9,  26,  32, 

41,  69,  71,  80,  110,  116,  118, 
176-78,  236,  237,  250,  261,  272, 

279-83 

RAM  (random  access  read/write 

memory),  8,  9,  176,  184-87 
dynamic,  184 

Register  display/modify  commands  (of 

Tutor  monitor),  132-35 
display  formatted  registers  (DF), 

129,  132-33 
display  offset  registers  (OF),  134 

display/set  offset  registers,  134-35 
display/set  registers,  133 

Register  list,  63 
Register  list  mask,  64 

Reset,  21,  236,  237,  238,  254-55 
Reset  (RESET)  instructions  (of  the 

68000),  21 
ROM  (read  only  memory),  8,  9,  176 
Rotate  instructions  (of  the  68000),  82, 

84-86 

rotate  left  (ROL),  84-85 
rotate  left  with  extend  (ROXL),  84, 

86 

rotate  right  (ROR),  84,  86 
rotate  right  with  extend  (ROXR), 

84,  86 

RS-232C  port,  123-24,  206,  208,  272, 
293,  302,  306,  308 
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s 

Segment  (register),  177 

Semaphore,  1 19 

Serial  communications  interface,  171, 
200-201 

Serial  communications  port,  200,  272 

Shift  instructions  (of  the  68000),  82-84 
arithmetic  shift  left  (ASL),  84 

arithmetic  shift  right  (ASR),  84 

logical  shift  left  (LSL),  82-84 
logical  shift  right  (LSR),  82,  84 

Sign  bit,  27,  73,  84 

Sign  extension,  41,  49,  55,  62,  73,  92 

Simplex  communications  link,  207 

68000  microprocessor,  1,  15-17 
address  bus,  16,  17 

address  registers,  17,  23,  24,  29,  34, 

39,  44,  45,  49,  60,  62,  63,  64, 

65,  66,  68,  70,  80,  91,  92,  114, 
255 

asynchronous  control  bus,  15,  17,  18 

block  diagram,  17 

bus  arbitration,  21-22 
data  bus,  16,  17,  18 

data  registers,  17,  23-24,  29,  34,  39, 
40,  51,  60,  62,  63,  64,  66,  68, 

69,  70,  71,  72,  73,  75,  79,  80, 

83,  91,  92,  101,  110,  118,  188, 
255 

instruction  execution,  27-29 
interrupt  control  bus,  17,  21 

package,  16 
processor  status  bus,  17,  20 

software  model,  21-35 
synchronous  control  bus,  17,  22 

system  control  bus,  17,  21 

68230  parallel  interface/timer,  215-31, 
293,  297,  298,  299,  302 

block  diagram,  215 

internal  registers,  219-31 

microprocessor  interface,  215-19 
64K-byte  software  refreshed  dynamic 

RAM  subsystem,  184-87 
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Software  refresh,  187 

Sort  program,  104-9 
Source  operand,  23,  24,  38,  41,  43, 

45,  49,  51,  56,  59,  60,  62,  64, 

65,  68,  69,  70,  71,  72,  75,  79, 

80,  90,  91,  94,  188,  252 
Source  program,  146 

Space,  202 
SSI  (small  scale  integration),  4,  9 

Stack,  34,  111,  114-17,  170,  251,  253, 255 

bottom  of,  183 

supervisor,  24,  34,  183,  243,  251, 253 

top  of,  24,  34,  115,  116,  183,  184, 
251 

user,  34,  183,  184 

Stack  pointers  (of  the  68000),  32,  56, 

62,  114-17,  183,  255 
supervisor  stack  pointer  (SSP),  24, 

32,  183,  255 
user  stack  pointer  (USP),  24,  32,  62, 

183,  255 
Start  bit,  201 

Status  register  (SR)  (of  the  68000),  32, 
56,  60,  61,  62,  67,  68,  69,  72, 

76,  80,  83,  84,  90,  94,  98,  111, 
117,  184,  241,  242,  245,  253, 

254,  255,  256,  257 

carry  (C),  26,  34,  60,  64,  66,  67,  72, 
73,  76,  79,  83,  86,  90 

extended  carry  (X),  26,  27,  34,  61, 

66,  67,  69,  72,  73,  75,  76,  83,  84 

interrupt  mask  (I2I1I0).  27,  256 

negative  (N),  26,  27,  34,  60,  61,  66, 

67,  72,  73,  79,  90,  92,  94 
overflow  (V),  26,  34,  60,  61,  66,  67, 

72,  73,  79,  84,  90,  92,  98,  251 

supervisor  state  (S),  27,  34,  242, 
250,  254,  256 

system  byte,  26,  27,  61,  241,  255, 

256,  257 
trace  mode  (T),  27,  242,  251,  254, 

257 
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user  byte,  26,  60,  254 
zero  (Z),  26,  34,  60,  61,  66,  67,  72, 

73,  76,  79,  90,  92,  94,  98,  117, 
118 

Stop  bit,  201,  211 
String  comparison,  93 
String  search,  48 

Subroutine,  24,  56,  63,  109-16,  184 
Subroutine  handling  instructions  (of 

the  68000),  109-17 
branch  to  subroutine  (BSR),  56, 

110-11 
jump  to  subroutine  (JSR),  110-11, 

116 

link  and  allocate  (LINK),  113-17 
return  and  restore  condition  codes 

(RTR),  111 
return  from  subroutine  (RTS),  111, 

117 
unlink  (UNLK),  113-17 

Supervisor  call,  25,  250 
Supervisor  data  memory,  237,  254, 

255 

Supervisor  program  memory,  20,  237, 
254,  255 

Supervisor  state,  20,  25,  27,  61,  62, 
81,  177,  178,  237,  242,  250, 
254,  256 

Synchronous  control  bus  (of  the 
68000),  17,  22 

enable  (E),  22,  197          
valid  memory  address  (VMA),  22, 

197 

valid  peripheral  address  (VPA),  22, 
197,  200,  248 

Synchronous  data  communications, 
200-201 

Synchronous  data  communications 
signals,  200 

receive  data,  200 

signal  common,  200 
transmit  data,  200 

Synchronous  memory  I/O  interface  (of 

the  68000),  196-200 
Syntax  error,  126 
System  control  bus  (of  the  68000),  17, 

21          

bus  error  (BERR),  21,  252,  253 
halt  (HALT),  21,  252 
reset  (RESET),  21,  254 

Table,  43,  63 

Tag,  42 
Trace,  27,  257 

U 

UART  (universal  asynchronous  re- 
ceiver/transmitter), 12,  202 

Unimplemented  instruction,  257 

USART  (universal  synchronous/asyn- 
chronous receiver/transmitter), 

202 
User  state,  20,  24,  27,  62,  256 
User/supervisor  system  environment, 

17,  256 

Vectored  subroutine  call,  250 

W 

Watchdog  timer,  253,  291-93 
Word,  17,  19,  23,  24,  34,  46,  52,  60, 

66,  67,  69,  70,  72,  91,  94,  175, 
179,  184,  187,  255,  256 
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