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Introduction

This book explains machine-language programming for the 68000
microprocessor family. The material is divided into three parts: an intro-
duction to programming, an explanation of applications programming,
and a discussion of systems programming. These three areas can be stud-
ied in succession or independently.

Chapter 1 provides an introduction to computer operation and pro-
gramming for readers with no programming background. It covers basic
hardware and software concepts. Experienced readers may wish to skim
this material.

Chapters 2 through 6 provide the background necessary to write
assembly-language appplication programs or subroutines, including the
mechanics of generating programs and debugging them. These chapters
also cover high-level languages and interfacing to operating systems. With
this information, you will be able to write applications programs in assem-
bly language. It may also be used for calling assembly-language routines
from a high-level language program for efficiency or for access to low-
level machine resources.

Chapters 7 through 8 are a lower level discussion of programming the
68000. These chapters deal with interrupts and other machine-level primi-
tives. A small multitasking “operating system” is provided as a case study.

An important part of learning machine-language programming is pick-
ing up the jargon. Computer scientists have their own language. All terms
in this book are explained as they occur. A glossary has also been pro-
vided as a study aid.

Computer programming is not difficult to learn. It does not require
extreme mathematical proficiency or supernormal intelligence. It does,
however, require diligence and, more importantly, practice. There is abso-
lutely no substitute for sitting down at the machine and trying it for yourself.
Type in the examples, try them out, make improvements, and above all,
make mistakes. You will learn more from your errors than anything else.
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Machine-level computer programming has been called art, engineering,
sorcery, and religion. It is all of these and more. Dealing with a computer
at its own level can be a very rewarding (and frustrating) experience.

This book will introduce you to the joys and woes of this wondrous
craft. We have attempted to minimize the mathematics involved; anyone
who can add, subtract, multiply, and divide can make full use of all the
material presented here.

This chapter will introduce you to the concepts on which modern com-
puting is founded: algorithms, elementary hardware operations, and the
binary and hexadecimal number schemes.

As a start toward learning how to program, consider the process of
starting an automobile engine:

1. Insert the key into the lock.

2. Turn the key past the ON position to the START position and
hold.

3. If the motor does not crank, stop.

4. If the motor does catch, proceed to step 5. If the motor does not
catch within 30 seconds, turn the key OFF and go to step 2.

5. Release the key back to the ON position, and stop.
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This simple procedure has all of the same elements of a computer program:

e Step 1 is called an initialization. This is an action which is per-
formed once at the start of a program.

« Steps 2 through 4 form a loop—a series of actions which is
repeated until some condition is satisfied. (In this case, either the
car starts or the battery expires.)

e Step 3 is an example of an error condition—some condition
which causes the procedure to terminate in an abnormal fashion.

o Step 5 is the successful completion of the procedure.

Algorithms

The above procedure, in computer terminology, is called an algorithm.
Algorithms are stepwise procedures which can be used to define the steps
in programs. Any step-by-step description is an algorithm. Some examples
from everyday life are kitchen recipes and directions for getting from one
place to another.

You can see from these examples that not all algorithms can be made
into computer programs. Even if an algorithm is suitable for transforming
into a program, it must first be put into a form the computer can recog-
nize. Computers cannot utilize even the simplest English.

Programming Languages

If you want a computer to carry out the steps you define in an algo-
rithm, you must first translate the English description into a language that
the computer can execute. Such a language is called a programming lan-
guage. There are many such languages. The task to be performed gener-
ally dictates which language is to be used. Some examples of
programming languages are:

» BASIC (Beginner’s All-purpose Symbolic Instruction Code). BASIC
is a very simple language to learn and to use. It is generally used
for short, simple programs.

» COBOL (COmmon Business Oriented Language). COBOL is
commonly used for business related software, such as payroll and
other accounting applications.
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FORTRAN (FORmula TRANslation). FORTRAN is widely used in
the scientific community for applications involving large numbers
of calculations.

» Pascal (Named for the French mathematician Blaise Pascal).
Pascal is often used in universities to teach budding computer
scientists how to program.

Assembly Language. Assembly language is the process of pro-
gramming a computer at the level of individual machine instruc-
tions. This book describes the process of assembly language
programming for the 68000 computer.

« Machine Language. Machine language deals with programming a
computer at the instruction level, without assistance from devel-
opment software. Machine language involves using a numeric
language: the binary codes directly usable by the computer. This
type of programming is incredibly tedious, and is only used for
very specialized applications.

Flowcharts

A visual method of representing an algorithm is called flowcharting. A
flowchart is a series of boxes which are connected by lines to show the
possible paths of the algorithm. Flowcharting, like algorithm descriptions,
is not done in a computer language.

Flowcharts consist of three basic symbols:

» a square box which indicates an action to be performed
« a diamond shaped box which indicates a decision

o lines which connect the two.

There is an ANSI (American National Standards Institute) standard for
flowchart symbols and flowchart layout.

A flowchart for our car-starting algorithm is shown in Figure 1.1.

A flowchart segment should fit on a single page. A flowchart for a com-
puter program will require partitioning into several pages, interconnected
by boxes. These boxes typically contain a number, indicating the mating
connector on another page. Partitioning a large program flowchart into
single-page segments is quite an involved process. It could require so
much time that the exercise is not justified.
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HOW DOES A COMPUTER WORK?

In order to learn programming, one must first understand how com-
puter hardware functions. Figure 1.2 is a block diagram showing the
major portions of a typical computer.

The memory contains the program which the computer follows, as well
as the data on which the computer operates. In this simplified model of a
computer, the box labeled central processing unit (CPU) is the “brains”
behind the computer. The connection between the CPU and the com-
puter’s memory is known as the memory bus. Input/output (I/O) devices
are the machines through which the computer interacts with the outside
world. Examples of I/O devices are cathode ray tube (CRT) terminals (the
computer’s “TV screen”), floppy disk drives, and printers. The connection
between the CPU and the /O devices is called the input/ouput bus. Let us
now examine each of these areas in detail.

Memory

Computer memory is a series of numbered slots, called locations, each
of which contains a number. The number of the location is called its

Memory
Memor Bus ~ Central Processing
/ Unit (CPU)
Input/ Output
Bus
Input / Output
Devices

Figure 1.2 - Computer block diagram
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address (like a street number). The number contained within the slot is
called the memory data or memory contents. There are two operations
associated with a computer memory:

o Change the contents of a location to a specific value. This opera-
tion is called a memory write or a memory store. The contents of
the location before the write are lost.

Obtain the present contents of a location. This operation is called
a memory read or a memory fetch. A memory read does not
alter the contents of the location—subsequent reads with no
intervening writes will return the same value.

For example, suppose we have a four location memory with the following
values:

Address Data

Note that memory addresses are always numbered sequentially, starting
with zero. If we read location 2, we will get the result 19. Writing a 6 into
location 1 gives the following values:

Address Data
0 21
1 6
2 19
3 100

Note that the memory write did not affect any other location. For
example, reading location 2 again would again yield 19. Reading location
1 will yield 6. The original contents of location 1 (before the write) have
been discarded, and may not be retrieved.
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Input/Output Devices

Input/output devices connect the computer to the outside world. These
devices typically fall into one of two categories:

1. Low-speed, character-oriented devices used to interact directly
with people. Examples of this type of device are: CRT terminals,
printers, and plotters.

2. High-speed, block-oriented devices used for bulk storage of pro-
grams or data. Devices in this category such as disks, tapes, etc.,
are usually magnetic.

Character-oriented devices typically interact with human operators. This
type of device usually transfers one character at a time. Many computer
CRT terminals send and receive characters at 960 characters per second.
Although this seems amazingly fast to a human sitting at a terminal, to a
computer (which can handle millions of operations per second), it is
extremely slow. When interacting with humans, the computer spends a
tremendous amount of time just waiting for characters from the terminal.

Block-oriented devices such as disks and tapes, on the other hand, do
not normally interact with humans. These devices typically handle multi-
character blocks at a time, with a short interval between characters within
a block, but a comparatively long interval between blocks.

Central Processing Unit

The CPU is the heart of the computer. It executes the programs and
manipulates the input/output devices.

CPU Organization

The organization of a typical CPU is shown in Figure 1.3.

The boxes on the top of the diagram are called registers. A register is a
single memory location within the CPU which is used to store a tempo-
rary result. Different CPUs use different numbers and types of registers.
The 68000 register set will be explained in detail in Chapter 2.

The CPU registers, which can be accessed much faster than main mem-
ory, are temporary memory locations used to facilitate program execu-
tion. There are usually a limited number of these registers.
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The memory address and memory data registers are used to access
memory. For example, to read memory, the correct address is placed in the
memory address register, and then the data can be read from the memory
data register. To write to memory, the data is placed in the memory data
register, and then the address is placed in the memory address register.

The program counter is a special register that is used to keep track of the
next instruction to be executed. This process is detailed in the next section.

The Arithmetic and Logic Unit (ALU) performs all of the basic arithmetic
operations, such as addition, subtraction, etc. The data on which the ALU
operates can come from any of the registers with a path into the top of
the ALU: the CPU registers, memory data, or the program counter. The
result of the operation can be placed back into any of the registers.

Fortunately, programming the machine does not require attention to the
inner operations of the ALU. The control unit supervises the movement of
data through the ALU, and defines certain basic machine functions called
instructions.

NN S

l CPU Registers l lMumovy Addvass] | Memory Data ] |P'ogmm Coumerl

S — -
v

Arithmetic and Logic
Unit (ALU}

Figure 1.3 - CPU block diagram
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Stored Program Execution
The process of executing a program works like this:
1. Fetch memory at the address indicated by the program counter,
and increment the program counter to the next instruction in

memory. The program counter is said to “point to” (i.e., contain
the address of) the next instruction.

2. Perform the instruction.

3. Go back to step 1.

To illustrate how all this works together, we will now write a short pro-
gram to add two numbers together. For simplicity, we will define a com-
puter: Our simple computer has one register, named A. The machine can
execute the following instructions:

Instruction Meaning

1nnn Copy memory location nnn into A
2nnn Add memory location nnn to A
3nnn Copy A into memory location nnn
4000 Stop

Now suppose that the computer memory contains the following:

Location Contents Instructions

100 1104 Load location 104 into A
101 2105 Add location 105 to A
102 3106 Store A into location 106
103 4000 Stop

104 0300 (Data)

105 0400 (Data)

106 0000 (Data)

If we then set the program counter to 100 and cause the computer to exe-
cute, the program will execute as follows:

1. The contents of memory location 104 (300) will be copied into
register A.
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2. The contents of location 105 (400) will be added to register A.
Register A will then contain 700.

3. Register A will then be copied to memory location 106. This
operation is called “Storing register A.”

4. The machine will stop.

Upon completion of the above program, Register A and memory loca-
tion 106 will have been altered to contain the value 700. This example is a
program which adds two memory locations together and stores the result
in a third memory location.

Programming at its most basic level is the process of putting the right
instructions (also called operations or op codes) into the proper memory
locations. The above program is an example of machine language pro-
gramming, where the programmer deals with the actual numeric values of
the instructions, and memory locations are assigned by hand. This is a
tedious process at best, and programs called “assemblers” have been
developed to handle the drudgery involved. Programming using an
assembler is commonly called assembly language programming. The
example program above, might look like this in assembly language:

LOAD AX
ADD AY
STORE AZ
STOP
X: DC 300
Y: DC 400
Z: DC 0

The words LOAD, ADD, STORE and STOP are called mnemonics. A
mnemonic is an alphabetical representation of a machine instruction. X, Y,
and Z are called labels. A label is a way to tag a memory location without
knowing what the final memory address will be. The assembler or
another tool called the linker will make the final address assignment.

Finally, the abbreviation “DC” is an assembler directive. DC stands for
“Define Constant.” This directive tells the assembler to place a constant in
memory at the location where the DC directive occurs.

Why is assembly language better than machine language? First, it is far
more readable. Second, the task of changing an existing program is much
simpler. Suppose that we wish to change our example program to add a
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third number, W, to X and Y. To add this to the assembly language version,
we need add only two lines: an

ADD W,X
addition instruction, and a declaration for the new constant:
W: DC 50

To change the machine language version of the program, we must alter
all of the instructions that reference memory, since the values to be added
are now in a different place, as illustrated below:

Location Machine Assembly  Language
Language
100 *1105 LOAD AX
101 *2106 ADD AY
102 *2107 * ADD AW
103 *3108 STORE AZ
104 4000 STOP
105 0300 X: DC 300
106 0400 Y: DC 400
107 *0050 *W: DC 50
108 0000 Z: DC 0

The asterisk character (%) shows lines that have been changed. Note
that no machine language location contains the same value as it did in the
previous example. In large programs, altering machine code is a tremen-
dous chore.

Data Representation

The vast majority of computers represent numbers in a form involving
only two possible values: ON and OFF. This is a property of the hardware
used to implement the CPU, memory, and I/O devices. This two-value
representation is called binary, or base 2.

The Binary System

The binary system represents a number as a string of two-valued quanti-
ties. Each such quantity is called a bit, which stands for Binary dig/T. The
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ON and OFF values for a bit are 1 and 0, respectively. A bit with a value
of 1 is said to be set; a bit with a value of 0 is said to be clear.

Most computers in use today organize bits in groups of eight to form a
quantity known as a byte. The bits in a byte are numbered from right to
left, starting at zero. Each bit is assigned a value twice the value of its
neighbor on the right. Bit 0, the rightmost bit, has the value 1. The values
associated with the eight bits in a byte are shown in Table 1.1.

Bit Place
Number Value

7 128

6 64

5 32

4 16

3 8

2 4

1 2

0 1

Table 1.1 - Binary Bit Values

Using this table of binary values, the binary number 0010 1111 has the
value of 47. This is how the value for our example would be calculated.

The decimal value of a binary number is equal to the bit number value
times the place value, as shown in Figure 1.4,

The largest number that can be represented using eight bits is 1111
1111, which is decimal 255. It is the result of adding 128 + 64 + 32 + 16
+ 8 + 4 + 2 + 1. For readability, we will write binary numbers as groups
of four bits. In computerese, a four bit group, or one half of a byte, is
called a nibble.

To represent numbers bigger than 255, two or more bytes are used.
Common combinations are two bytes (16 bits), and four bytes (32 bits).



Basic Concepts

13

These quantities are called a word and a longword, respectively. Dealing
with 16 and 32 digit numbers can be cumbersome, however, so an abbre-
viated form of binary representation called hexadecimal (or base 16} is
often used.

Hexadecimal Numbers

In hexadecimal (hex) representation, a nibble is encoded as one hex-
adecimal digit.

These digits have values from O to 15. The values for 10 through 15 are
represented by the letters A through F Each digit in a hex number has a
place value of sixteen times the value of its neighbor to the right. For
instance, the number 22 hex is (2 x 16) + 2, or 34.

Converting Binary to Hex

A hex number can be derived from a binary number by first grouping
the binary number into groups of four bits (nibbles), and then computing

Bit Number 76543210
Bit Value 00101111

Bit Binary Place Decimal
Number Value x Value = Value

7 0 X 128 = 0

6 0 X 64 = 0

5 1 X 32 = 32

4 0 X 16 = 0

3 1 x 8 = 8

2 1 X 4 = 4

1 1 X 2 = 2

0 1 b3 1 = 1
Converted decimal value = 47

Figure 1.4 - Computing the decimal value of a binary number
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the proper hex digit for each group using the 8-4-2-1 values for the bits
in the group. For example, the number 0010 1111 in binary is 2F in hex:

8421

0010=0x8)+O0Ox49+(1x2)+O0Ox1) =2
1M1 =(1x8)+ (1 x4+ (1x2)+(x1)=F(5

Converting Hex to Binary

Hex numbers can be converted to binary by first taking each hex digit
and then expanding it into four binary bits using the hex, decimal, and
binary values shown in Table 1.2.

Hex Value Decimal Value Binary Value
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 om
8 8 1000
9 5 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
b 14 1110
7 15 mm

Table 1.2 - Hex, Decimal, and Binary Values
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When you use this table, the hex number 2F converts to the binary
number 0010 1111.

Converting Hex to Decimal

To convert a hex number to a decimal number, first multiply each digit
by its appropriate place value, and then add the resulting numbers. The
place values for hex numbers are shown in Table 1.3.

Digit Place
Value
0 1
1 16
2 256
3 4,096
4 65,536
5 1,048,576
6 16,777,216
7 268,435,456

Table 1.3 - Hexadecimal Place Values

The digit numbered 0 is the rightmost digit in a hex number. Each place
value is derived by multiplying the previous place value by 16, starting
with a value of 1 for the rightmost digit. The digit number is also known as
a “power of 16.”

The hex number 54321 converts to its decimal value as shown in Figure
1.5, the hex number A25 converts to its decimal value as shown in
Figure 1.6, and the hex number 1234 converts to the decimal value of
4660 as shown in Figure 1.7.
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Place
Digit x Value
X 65,536
X 4,096
X 256
X 16

X 1

- N W b

Converted decimal value

Decimal
Value
327,680
= 16,384
= 768
- 32
= + 1

= 344,865

Figure 1.5 - Converting the hex number 54321

to its decimal value

Hex x Place

Digit Value
A(10)  x 256
2 X 16
5 X 1

Converted decimal value

= Decimal
Value
2,560
32
+ 5

= 2,597

Figure 1.6 - Converting the hex number A25 to its decimal value

Hex Place

Digit  Value
1 4096
2 256
3 16
4 1

Converted decimal value =

Decimal
Value
4096
512
48
+ 4

4660

Figure 1.7 - Converting the hex number 1234 to its decimal value
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Converting Decimal to Hex

Decimal numbers can be converted to hex numbers using the inverse
of the above technique. To convert a decimal number to hex, first find the
largest place value in Table 1.3 that divides into the number to be con-
verted, then divide the decimal value by this number. The quotient of this
division is the hex digit. Divide the remainder by the next smallest place
value to obtain the next hex digit (even if it's zero). Divide this remainder
by the next smallest place value, to get the next digit and so on.

To convert the decimal number 123,456 to hex, we start with a hex
place value of 65,536 and divide this hex value into the decimal value of
123,456. The result of 1 is the first hex digit and the remainder (57,920) is
the dividend for the next hex place value.

Hex

Decimal Place Hex
Remainder <+  Value = Digit

123,456 + 65,536 = 1

57,920 + 4,096 = E (14 decimal)

576 + 256 = 2

64 + 16 - 4

0 =+ 1 - 0

Read the answer down the Hex Digit column: 1E240. The next remainder
can be calculated on a decimal calculator as: Present decimal remainder
— (place value x hex digit).

For example, the remainder 576 was calculated above by first dividing
4,096 into 57,920. The answer is 14, or a hex value of E. Then the hex
place value was multiplied by 14, which equals 57,344. Finally, the
remainder of 576 was arrived at by subtracting 57,344 from the previous
remainder, 57,920,

There are several calculators on the market which will do hex and deci-
mal conversions. If you are going to be writing a lot of machine code, a
hex calculator will pay for itself in short order.

What'’s in a K?

The hex number 800 translates to 1,024 in decimal. The term K (for
“Kilo”) is used in computer terminology to represent multiples of 1,024.
Memory and disk device capacities are expressed in units of kilobytes. For
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instance, a 64 kilobyte (64K) memory contains 64 x 1,024, or 65,536 dec-
imal (or 10000 hex) bytes of memory.

Similarly, the number 100000 hex (1,048,576 decimal) is the result of mul-
tiplying 1024 x 1024. This number is commonly abbreviated M (for
Mega). Megabyte units are used to describe the capacities of larger mem-
ory and disk devices. A 5-megabyte (commonly written 5Mb) disk there-
fore contains 5 x 1,048,576, or 5,242,880 bytes.

Operations on Binary Numbers

Since decimal, binary, and hex are simply alternate ways of representing
numbers, the same operations that can be performed on decimal num-
bers can also be performed on binary or hex numbers. One can apply
techniques similar to those used for decimal numbers for the addition,
subtraction, multiplication, and division of hex and binary numbers. For
programming, however, it is important to understand the operations a
computer is capable of performing.

A computer’s ALU is capable of performing a number of very simple
operations on binary numbers. These include: One’s complement, AND,
OR, Exclusive OR, addition, two’s complement, shifts and rotates. We will
now explore these in greater detail.

One’s Complement

One of the simpler operations on binary numbers is to take the one’s
complement: Simply invert the values of all the bits. All 0's become 1’s and
vice versa.

For example, complementing the number 0011 1100 (3C hex) produces
1100 0011 (C3 hex). Complementing 0000 0000 (00 hex) yields 1111 1111
(FF hex). Complementing the complement of a number yields the original
number again.

Binary AND

Performing an AND operation on two binary numbers produces a third
binary number with 1’s in each bit position where the original numbers
both had a 1. ANDing 0000 1101 (0D hex) with 1001 1001 (99 hex) yields
0000 1001 (09 hex).

The AND operation is commonly used to obtain a remainder for a divi-
sion by a power of two (2, 4, 8, 16, etc.). To obtain such a remainder,
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AND the number with the power of 2 minus 1. For example, to find the
remainder when 0011 1101 (3D hex) is divided by 8, AND with 0000
0111 (07 hex). The result is 0000 0101 (05 hex). 3D hex is 3 x 16 + 13,
or 61 decimal. Dividing by 8 yields 7, with a remainder of 5.

Binary OR

The OR operation takes two binary numbers and produces a third
binary number that has a 1 where either of the original numbers had a 1.
For example, ORing 1010 1010 (AA hex) with 0101 0101 (55 hex) yields
1111 1111 (FF hex). (ANDing these two numbers gives all zeros.)

Binary XOR

The XOR (eXclusive OR) operation takes two binary numbers and pro-
duces a third binary number which has 1's in bit positions where one (not
both) of the original numbers had a 1. For example, XORing 0101 0101
(55 hex) with 1111 1111 (FF hex) yields 1010 1010 (AA hex). XORing a
number with all 1s yields the 1’s complement of the number. XORing a
number with itself produces zero.

Binary Addition

Adding two binary numbers is similar to adding decimal numbers. You
add each pair of digits, starting on the right, and carry any result over 1 to
the next column. For example, adding 0011 1101 (3D hex) and 0001 0101
(15 hex) is done as follows:

Carry 0011 1010
0011 1101 (3D hex)
+0001 0101 (15 hex)

Sum 0101 0010 (52 hex)

This procedure can be used for binary numbers of any length.

2’s Complement Arithmetic

Subtraction involves a bit of magic. Negative numbers are stored in a
form known as two’s complement. The two’s complement of a number is
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obtained by taking the one’s complement (as explained above), and add-
ing 1 to it. For instance, the two's complement of 0000 0001 is:

Original Number: 0000 0001 (01 hex)
One’s Complement: 1111 1110 (FE hex)
Add One: +0000 0001 (01 hex)
Two’s Complement: 1111 1111 (FF hex)

Adding the two's complement of a number is the same as subtracting the
number. As an example, consider adding 1111 1111 (FF hex) to 0000 0010
{02 hex). The leftmost bit of a two’s complement number will be a 0 if the
number is positive (zero or greater), and a 1 if the number is negative (less
than 0). For this reason, the leftmost bit is often called the sign bit.

Carry 11111 1100
0000 0010 (02 hex)
+1111 1111 (FF hex)

Sum 0000 0001 (01 hex)

Note that the carry out of the high order bit position is discarded. This is
due to the fact that all of the numbers kept in a computer have exactly the
same number of bits (eight in this example). Note that the result of adding
02 hex and FF hex is 01. This is the same as subtracting 1 from 2. FF hex is
the two’s complement of 01 hex, as shown above.

Two's complement changes the range of numbers it is possible to repre-
sent using a given number of bits. For instance, without using the two's
complement, we could represent from 0 to 255 with eight bits. Using
two’s complement, however, we can represent from — 128 to +127.

The first case is called unsigned arithmetic, meaning that only positive
numbers can be represented. The second case is called two’s complement
representation, meaning that both positive and negative numbers can be
represented.
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Shifts and Rotates

Two other operations commonly performed on binary numbers are
shifts and rotates. These operations are similar to the old “bucket brigade”
operation used in fighting fires. Bits are moved from one position to the
next position. Shifts and rotates can occur in either direction.

There are two types of shifts: logical and arithmetic. In a logical shift
operation, the bits are moved left or right as in Figure 1.8.

Zero bits are shifted into the bit vacated by the shift operation. The bit
marked C is a special status bit in one of the CPU internal registers. This
bit is called the Carry bit, and it receives the bit which would otherwise
be lost.

An arithmetic left shift is the same as a logical left shift. An arithmetic
right shift is similar to a logical right shift, except that the most significant
bit is copied into itself. Both of these are shown in Figure 1.9.

There is no difference between an arithmetic left shift and a logical
left shift.

Rotates are similar to logical shifts, except that the Carry bit is shifted
into the vacated bit, instead of a zero, as illustrated in Figure 1.10.

Logical Left Shift:

C |« |t - - . 0

Logical Right Shift:

0 —> o -1 ¢

Figure 1.8 - Logical left shift and logical right shift
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Examples

The following examples assume that the Carry bit is initially zero. The
original number is 1010 1010 (AA hex).

Logical Shifts:

Times

DNV A WD = O

Left

1010
0101
1010
0101
1010
0100
1000
0000
0000

Arithmetic shifts:

Times

N A W = O

Rotates:

Times C

0

1
2
3

0
1
0
1

Left

1010
0101
1010
0101
1010
0100
1000
0000
0000

Left

1010
0101
1010
0101

1010
0100
1000

0000
0000
0000
0000

1010
0100
1001
0010

(AA hex)
(54 hex)
(A8 hex)
(50 hex)
(AO hex)
(40 hex)
(80 hex)
(00 hex)
(00 hex)

(AA hex)
(54 hex)
(A8 hex)
(50 hex)
(AO hex)
(40 hex)
(80 hex)
(00 hex)
{00 hex)

(AA hex)
(54 hex)
(A9 hex)
(52 hex)

Right

1010
0101
0010
0001
0000
0000
0000
0000
0000

Right

1010
1101
1110
111
1111
1mn
1
1nmn
1111

Right

1010
0101
0010
1001

1010
0101
1010
0101
1010
0101
0010
0001
0000

1010
0101
1010
0101
1010
1101
1110
1
nmn

1010
0101
1010
0101

(AA hex)
(55 hex)
(2A hex)
(15 hex)
(OA hex)
(05 hex)
(02 hex)
(01 hex)
(00 hex)

(AA hex)
(D5 hex)
(EA hex)
(F5 hex)
(FA hex)
(FD hex)
(FE hex)
(FF hex)
(FF hex)

©

(AA hex) 0
(55 hex) 0
(2A hex) 1
(95 hex) 0
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Times C  Left Right C

1010 0101 (A5 hex) 0100 1010 (4A hex) 1
0100 1010 (4A hex) 1010 0101 (AShex) O
1001 0101 (95 hex) 0101 0010 (52 hex) 1
0010 1010 (2A hex) 1010 1001 (A9 hex) 0
0101 0101 (55 hex) 0101 0100 (54 hex) 1
1010 1010 (AAhex) 1010 1010 (AA hex) 0

OWoeNOU &
OO =0 =0

Shifts are very useful for multiplying and dividing. A logical shift left is
the same as multiplying a number by 2, and a logical shift right is the same
as dividing a number by 2. This is only true for unsigned numbers.

Arithmetic shifts, on the other hand, represent multiplication and divi-
sion by 2 for two’s complement numbers. The one exception is that divid-
ing (shifting right) — 1 yields —1 and not zero.

Extensions

When copying an 8-bit quantity into a 16-bit quantity, or when copying
a 16-bit quantity into a 32-bit quantity, there is a possibility of losing the
two’s complement properties of the number.

To illustrate the problem, suppose we copy FF hex (-1 as an 8-bit num-
ber) to a 16-bit number. Copying only the lower 8 bits gives us 00FF hex,
which is not —1, but 255! The way to fix this situation is to copy the sign
bit (most significant bit) into all the “extra” bits in the larger number. This
is called sign extension. If we sign extend FF hex into 16 bits, we get FFFF
hex, which is —1 in two’s complement form.

Conclusion

In this chapter we have learned basic concepts that are applicable to
most computers on the market today. In the next chapters, we shall see
how these concepts are applied to a specific type of computer, the
Motorola 68000.

Exercises

Use the following questions to help solidify your understanding of the
material presented in Chapter 1. Answers to all exercise question can be
found in Appendix A.
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. Write an algorithm for converting a decimal number to hex.
. Develop a flowchart for the algorithm in question 1.

. Suppose the computer on page 9 has an additional instruction
5nnn, which subtracts the contents of memory location nnn from
Register A. The assembly form of this instruction is SUB A,y
where v is a label on the memory location to be subtracted from
A. Modify the example of the machine-language program to com-
pute the difference between the contents of location 105 and the
contents of location 104. Store the result in location 106. (Hint:
You will have to load location 105 into Register A first. Why?)

. Move the machine-language program you wrote in question 3 to
run at address 200.

. Give the assembly language equivalent of the program for ques-
tion 3.

. Write a new assembly language program that computes the sum
of the first five integers. Use the labels A through E for the mem-
ory locations that contain the numbers to be added. Store the
result in a separate memory location, labeled F

. Convert the following decimal numbers to their hex and binary
equivalents.

273
421
1024
100

. Convert the following hex numbers to their binary and decimal
equivalents.

ABE
100
64
1024
505
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INTRODUCTION

In this chapter, we will expand the general programming concepts pre-
sented in Chapter 1 to cover the architecture of the Motorola 68000. The
information specific to the 68000 is necessary in order to understand the
instruction set contained in Chapter 3.

Most computers can be categorized by the following criteria:

« The number and type of registers that may be used by the pro-
grammer in writing software.

« How data is organized in memory, and what data types are sup-
ported with hardware instructions.

« How memory is addressed by an instruction.

« Special hardware features, such as hardware support for stacks.

We will now explore each of these areas as it relates to the 68000.
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REGISTER SET

One of the first questions you should ask when learning a new computer
is “How many registers does it have?” Another important consideration is
whether the registers can be used interchangeably or not. If the computer
has many registers that can be used interchangeably, you will have a great
deal of flexibility in handling intermediate values in a computation.

The number of registers in a computer also has an effect on program
speed and size. Computations using a register are usually smaller and faster
than computations involving a memory location. (This is due primarily to
the nature of computer hardware). A machine with a large number of
general-purpose registers is preferred over a machine with a small number
of registers or a machine whose registers are restricted in function.

The 68000 architecture trades off some generality in order to gain a
larger register set. There are two types of registers: address registers and
data registers. Address registers are normally used to contain memory
addresses, while data registers normally contain data. The two register
classes are not used interchangeably.

Address Registers

There are eight address registers, numbered AO-A7. Each address regis-
ter is a 32-bit quantity. Address registers can also be used as 16-bit quanti-
ties. When a 16-bit quantity is loaded into an address register, it is sign
extended to become a 32-bit quantity, as shown in Figure 2.1. The nota-
tion AO.W is used to mean the word part of address register AQ. (AO.L
means the entire 32 bits stored in register AQ.) The .B suffix is used to
denote an 8-bit quantity. Address registers may not be used as 8-bit quanti-
ties, however.

<— 16 bits > 16 bits

Extension la«—— An. W—>

=~ An.L .

Figure 2.1 - Address register layout
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Register A7 is a special-purpose register. A7 is the hardware stack
pointer used by 68000 exceptions and subroutine call instructions. This
register is also used by programs for temporary storage of data. The con-
cept of a stack is discussed later in this chapter.

Address registers are used as temporary locations for storing memory
addresses. These registers can be used in instructions that reference mem-
ory in order to specify the address at which data is located. The upper
byte of the register is presently ignored in such usage (by the 68000 and
68010 chips). This limits the amount of memory that you can use to 16
megabytes (16,772,216 bytes). Future processors in the 68000 family will
not ignore this byte, so it should always be set to zero for compatibility.

Data Registers

The 68000 also has eight other registers, called data registers, numbered
DO-D7. A data register can be used as an 8-bit, 16-bit, or 32-bit quantity,
as shown in Figure 2.2. Unlike address registers, loading a data register
with less than 32 bits does not cause a sign extension to occur into the
remaining bits in the register. These remaining bits are left unchanged.

Data registers cannot be used to address memory in an instruction.
These registers are used instead as temporary locations where data may
be stored. Many instructions require one or more of the operands to
reside in a data register.

<—— 16 bits —>§< 8 bits >}« 8 bits |

[« Dn.B >
l«——Dn.W —>
= Dn.L o

Figure 2.2 - Data register layout
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Program Counter

A special 32-bit register called the program counter is used to control
execution of the program in memory. The program counter always con-
tains the memory address of the next instruction to be executed. As an
instruction is executed, the program counter is advanced to point to the
next instruction.

Certain instructions can be used to affect the contents of the program
counter. These are:

Instructions that alter the contents of the program counter uncon-
ditionally. These are called unconditional branches or jumps. Such
an instruction is useful for programming loops, or for merging sev-
eral alternative sections of the program into one common section.

Instructions that alter the contents of the program counter based
on the result of a previous instruction. These are called condi-
tional branches, and enable the computer to make decisions.
Using a conditional branch, either a portion of the program can
be skipped or a previous portion repeated, based on the result of
a previous computation.

Instructions that cause a given section of code to be repeated a
specific number of times, or until a condition is satisfied. Such
instructions are called looping primitives.

Instructions that are used to branch to another area of the pro-
gram and then to return to the location following the original
branch. This technique is known as a subroutine call. A subrou-
tine call can be used to invoke a common function, such as an
1/O routine, at many points in the program, using only a single
copy of the instructions that perform the 1/O.

As with address registers, the upper eight bits of the program counter
are ignored by the 68000 and 68010 processors.

Status Register

The 68000 uses a special register, called the status register (SR) to store
information about the status of the machine. This register is used by the
conditional branch instructions to retrieve information about the last
instruction.

The status register is a 16-bit quantity, organized as shown in Figure 2.3.
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Bit

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
T L [T

T/ |S| M Imask Hi X[N|Z|V]|C
| Ll 11

S System Byte =]+ User Byte =

Figure 2.3 - Status register layout

System Byte

Bits 15-8 are called the system byte, because the information contained
here is not normally available to applications programs. The fields in the
system byte are:

1.

Bit 15 is a hardware aid for debuggers. It is called the trace bit. If
bit 15 is set, an exception will take place at the end of each
instruction. Exceptions are described in Chapter 7, Exception
Processing. This feature is used by debuggers to regain control as
each instruction is executed.

. Bit 13 is used to regulate access to certain instructions and to the

system byte of the status register. It is called the supervisor bit. If
this bit is set, access is allowed. When the supervisor bit is set, the
68000 is said to be executing in supervisor mode. When the bit is
reset, the 68000 is said to be executing in user mode. User mode
software is prevented by the hardware from executing certain
privileged instructions that might compromise the integrity of the
system software. Access to the status register’s system byte is also
prohibited when in user mode, ensuring that the user mode pro-
gram cannot change the supervisor bit.

. Bits 10-8 are called the interrupt mask. This feature is more fully

explained in Chapter 7, which deals with 68000 exception
conditions.

The system byte of the status register is of concern only to systems
software programmers. We will deal more extensively with this topic in
later chapters.



34  Programming the 68000

User Byte

The lower byte of the status register is called the user byte. The user
byte contains a set of bits known as condition codes, which are bit flags
used to record the outcome of the last arithmetic operation performed.
The user byte can be accessed at any time regardless of machine state.
The bits defined in the user byte are:

The C (carry) bit carries out the high-order bit position of an
arithmetic operation. For example, when two 8-bit numbers are
added, the C bit is the ninth bit of the result. This bit also receives
bits that are shifted out of a number during shift or rotate operations.

The V (oVerflow) bit is set whenever an operation yields a result
that cannot be properly represented. For example, when adding
the bytes 7F hex and 01 hex, the result, 80 hex is not properly
represented in eight bits. (Remember, 80 hex is — 128 decimal in
two’s complement notation.) The V bit would be set following
such an operation.

The Z (Zero) bit is set if the result of an operation is zero.

The N (Negative) bit is set if the high order bit of a result is set. (In
two’s complement, the high order bit of a number is set if the
number is less than zero.)

The X (eXtended) bit is a copy of the carry bit, but it is not
affected by every instruction that affects the carry bit. The pur-
pose of this bit is to facilitate multiprecision instructions. The X bit
is affected only by instructions that can be used for multiprecision
operations. This allows you to intermix other instructions
between multiprecision operations without having to preserve
the carry bit.

The descriptions of the instruction set in Chapter 3 describe how the
condition codes are used by each operation. Since the lower half of the
status register contains nothing but the condition codes, it is sometimes
called the condition code register (CCR).

DATA ORGANIZATION IN MEMORY

The 68000 instruction set supports several data formats: binary, BCD,
and floating point.
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Bytes, Words, and Longwords

Binary data items can be 8, 16, or 32 bits long. These data types are
known as bytes, words, and longwords, respectively. Most instructions that
operate on binary data support any of these three data lengths. For
example, the MOVE instruction, which transfers a binary data item from
one place to another, has three forms:

« MOVE.B moves a byte of data
« MOVE.W moves a word of data
¢ MOVE.L moves a longword of data

Note the use of the suffixes .B, .W, and .L to denote data length.

When a word or a longword is stored in memory, the bytes are stored
in order of decreasing magnitude. The most significant bits are stored at
the lowest address, and the least significant bits are stored at the highest
address. For example, when a 16-bit word is stored at location 1000, the
most significant byte is at focation 1000, and the least significant byte at
1001. When the long word 01234567 (hex) is stored at address 1000,
memory appears as shown in Figure 2.4.

Address Contents
1000 0000 0001 (01 hex)
1001 00100011 (23 hex)
1002 0100 0101 (45 hex)
1003 01100111 (67 hex)

Figure 2.4 - Memory with longword stored at address 1000
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We emphasize this point because all computers do not store multibyte
binary quantities in the same way. In particular, the 8080/Z-80, 6502, and
8086/8088 family of microprocessors store words and longwords in
ascending order, so that the low byte is stored at the lowest address and
the high byte at the highest address. Which order is “correct” is largely a
matter of taste, but you should be aware that the difference exists.

BCD

A special form of binary numbers, called binary coded decimal (BCD), is
often used for digital displays and input devices. The familiar displays on
digital clocks and electronic calculators are universally based on BCD.
Most computer-based laboratory and factory instruments also use BCD.

BCD is basically hexadecimal without the codes for 10-15 (i.e., A-F).
Each nibble represents a digit in a decimal number. Thus, two decimal
digits are stored in a byte. The 68000 has instructions for the addition and
subtraction of BCD numbers.

BCD is especially useful in commercial applications, such as accounting.
Many such applications require only addition and subtraction of numbers
in character format. To convert these numbers to binary for calculation
and then convert them back to character format for output requires much
multiplication and division, which are comparatively slow operations for
most computers. Using BCD avoids these expensive operations, and pro-
vides quick conversion to and from character format. In many applica-
tions, BCD is much more efficient than binary.

Floating Point

Scientific applications require a large range of possible values. For
example, to represent Avogadro’s number (a common quantity in chemi-
cal calculations, roughly 6 followed by 23 zeros) would require ten bytes
of storage. To hold the result of the multiplication of two such numbers
would require twice this much storage. Then there is the problem of rep-
resenting fractional numbers, which none of the data representations thus
far have addressed.

The clean solution to these problems is found in floating point numbers.
Floating point numbers are a computerized form of scientific notation,
which is taught in grade school mathematics. In scientific notation, a num-
ber is written as a quantity between 0 and 9 times 10 to the appropriate
power. For example, the quantity 1,935,000,000 is written as 1.935 x
10". The quantity 0.000001349 is written as 1.349 x 10-.
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Scientific notation is extremely useful in a computer. Allocating a fixed
number of bits to the exponent and fraction parts of a number yields a
very useful approximation to both very large and very small numbers.
The 68000, like most microprocessors, does not directly support floating
point with instructions. However, there is an additional feature which can
be added to provide hardware support for floating point.

The 68000 add-on is called the 68881 Floating Point Processor. It pro-
vides hardware instructions to manipulate floating-point numbers. The
68881 uses a floating-point format known as The Institute of Electrical and
Electronic Engineers (IEEE) format, named for the organization that pro-
posed the format as a standard. |EEE format provides the following floating
point format:

E I Exp l Fraction |

The field labeled S is the sign bit for the entire number. If this bit is set,
the number is negative. If the bit is not set, the number is positive.

The field labeled EXP is the exponent; it is seven bits long. The exponent
field indicates the exponent of 2 by which the fractional part of the num-
ber is multiplied. To allow for negative exponents, decimal 64 (40 hex) is
subtracted from the exponent field before it is used. The exponent range
is 00 hex (interpreted as —64) to 7F hex (interpreted as +63). Thus, the
range of representation is 2% (approximately 9.2234 x 10'8) to 2-%
(approximately 5.421 x 10-20).

The fraction part is 24 bits, or 6-7 decimal digits. This limits the number
of significant digits the floating point number may contain. A limit of 6 dig-
its means that the computer cannot correctly subtract 1 from 10,000,000,
for example.

Alternate forms of floating point allow more bits for the fraction and
exponent to avoid this and other problems with the range and precision
of floating-point representation. The remainder of this book deals strictly
with integer arithmetic.

ASClI

The final form of data storage is known as ASCI! or character format.
ASCII stands for American Standard Code for Information Interchange.
This code assigns a numeric value for each character. These values are
used to represent characters in memory and during I/O. The current
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ASCII standard for the United States defines 128 characters, with values
from 0-127. The characters are stored one per byte in memory. The
eighth bit is used for additional characters in Europe and Japan. For a
complete list of United States ASCII values, see Appendix B.

Multicharacter sequences, called strings are stored in multiple consecu-
tive bytes in memory. The 68000 provides no instructions explicitly for
string manipulation; sequences of byte instructions must be used instead.
There are three common types of string storage you may employ:

» Use a fixed length for each string to be stored. This has the
advantage of being easy to program, but wastes memory if string
length tends to vary. This technique is usually used by the FOR-
TRAN and COBOL languages.

Prefix each string with a character count. This is more difficult to
program, but wastes less memory. If the character count is stored
in a byte at the beginning of the string, then strings are limited to
255 characters. Using a word (i.e., two bytes) allows 65,535 char-
acters in a string. This is the technique usually used by the Pascal
and BASIC languages.

Terminate the string with some flag value, usually zero. This tech-
nique is used by the C language. Problems arise, however, if
strings are processed in a manner other than sequentially from
beginning to end.

ADDRESSING MODES

A computer instruction must specify two things:

1. What operation to perform, such as addition or subtraction.

2. On what data to perform the operation. Data for instructions is
usually found either in registers or memory.

A portion of the instruction, called the op code, indicates the operation
to perform. The simple example in Chapter 1 used the first digit of the
instruction as the op code. Data was in the machine’s single register and a
memory location. The memory location was identified by the address
contained in the last three digits of the instruction.
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Real computers are seldom so simple. In the 68000, instructions specify
operands by one of three techniques:

1. Some instructions imply the use of certain operands, usually a
register, such as the status register or the Program Counter (PC).

2. Some instructions work only on registers. The register number is
contained in the instruction itself.

3. Most 68000 instructions specify operands with a technique called
an effective address. This is a generalized technique for address-
ing the registers and memory.

Effective Address

An effective address is specified by six bits in the instruction (usually the
lowest six bits). The bit values indicate how to find the data for the instruc-
tion. Figure 2.5 shows how these bits are arranged into two groups of
three bits.

The mode bits determine the meaning of the entire field. Three bits give
eight possible combinations. Values 0-6 mean that a register is to be used,
either as the operand, or to determine the address of the operand in
memory. If the mode field is 7 (i.e., all 1%), then the entire six bits of the
effective address field is used to specify the mode.

In the following examples, we will illustrate the addressing modes using
the MOVE.L instruction, which moves a longword from one operand to
another. Both operands have the effective address format. We will use the
DO.L data register as the destination operand, and vary the source oper-
and to illustrate the various addressing modes. Figure 2.6 shows the for-
mat of a MOVE.L instruction.

Bit 54 3 210
T ] T T

Mode | Register
L1 [

Figure 2.5 - Format of an effective address
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Bit 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T I T T | T T

0010 Reg Mode Mode Reg

L | | [

< Destination =l Source —>

Figure 2.6 - Format of a MOVE.L instruction

The Source and Destination fields are used to select the source and des-
tination operands. Since the register and mode fields are three bits wide, it
is difficult to look at the hex representation of an instruction and deter-
mine the assembly language equivalent. This process is known as disas-
sembly. 68000 instructions in general are difficult to disassemble by hand.
Fortunately, most debuggers perform disassembly, so this problem is not as
severe as it could be.

Data Register Direct Addressing
Addressing Mode Field: 000

Register Field: 000-111 (Data Register Number)
Assembler Syntax: Dn (n is 0-7)
Description

Data register direct addressing is indicated by an effective address mode
field of 000 (binary). The register field contains a number from 000 to 111
(0-7), which indicates a data register. In data register direct addressing,
the data register (indicated by the register field) contains the operand.

Example

The instruction MOVE.L D1,DO causes the contents of data register D1
to be copied into data register DO. After the instruction executes, the two
registers contain the same information. Figure 2.7 shows the format of this
instruction.

When only a word or byte is transferred, the contents of the upper
bytes of the data register are unchanged. Figure 2.8 shows examples of
the MOVE instruction with a byte, a word, and a longword.
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Bt 151413121109 8 7 6 5 4 3 2 1 0

0(0|1]|]0]0|0|0OJOjO|O|O|(O]JO[O|O|T1] (2001 Hex)

< Reg— |+ Mode~ [+ Mode—| + Reg—~

- Destination = |+ Source =

Figure 2.7 - Format of MOVE.L D1,D0 instruction

Instruction Before After
MOVE.B D1,D0 DO= FFFFFFFF DO= FFFFFF67
D1=01234567 D1=01234567
MOVE.W D1,D0 DO= FFFFFFFF DO= FFFF4567
D1=01234567 D1=01234567
MOVE.L D1,D0 DO = FFFFFFFF D0=01234567
D1=01234567 D1=01234567

Figure 2.8 - Moving a byte, word, or longword

Address Register Direct Addressing
Addressing Mode Field: 001

Register Field: 000-111 (Address Register Number)
Assembler Syntax: An (n is 0-7)
Description

Address register direct addressing is indicated by an effective address
mode field of 001 (binary). The register field contains a number from 000
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to 111 (0-7), which indicates an address register. In address register direct
addressing, the address register indicated by the register field contains the
operand.

Example

The instruction MOVE.L A1,DO causes the contents of address register
A1 to be copied into data register DO. After the instruction executes, the
two registers contain the same information. Figure 2.9 shows the format of
this instruction.

Transfers involving an address register are restricted to word or long
size. Byte operations are not allowed. When transferring a word to an
address register, bit 15 (the sign bit of a word) is extended throughout the
upper word of the address register. Figure 2.10 gives several examples of
address register direct addressing.

Bt 1514 13121110 9 8 7 6 5 4 3 2 1 0

o|o|1|0}0|0|O0OJOfjOfO[O|[O}|1|[O]|O]| 1| (2009 Hex)

<+ Reg— |+ Mode— |+ Mode—+| < Reg—

<= Destination |- Source ™

Figure 2.9 - Format of MOVE.L A1,D0 instruction

Instruction Before After
MOVEW A1,D0 DO= FFFFFFFF DO= FFFF4567
A1=01234567 A1=01234567
MOVE.W DO0,A1 DO0=01234567 D0=01234567
A1l=FFFFFFFF A1=00004567
MOVE.W DO,A1 DO=0000FFFF DO= 0000FFFF
A1 =00000000 Al =FFFFFFFF
MOVE.L A1,D0 DO = FFFFFFFF D0=01234567
A1=01234567 A1=01234567

Figure 2.10 - Examples of address register direct addressing
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Address Register Indirect Addressing
Addressing Mode Field: 010

Register Field: 000-111 (Address Register Number)
Assembler Syntax: (An) (n is 0-7)
Description

Address register indirect addressing is indicated by an effective address
mode field of 010 (binary). The register field contains a number from 000
to 111 (0-7), which indicates an address register.

In address register indirect addressing, the address register indicated by
the register field is the address of a memory location that contains the
operand. The register is said to point to (contain the address of) the oper-
and. Address register indirection is denoted by enclosing the address reg-
ister name in parentheses. For example, (AO) denotes indirection on
address register AO. Word or longword references require that the
address contained in the address register must be even.

Example

The instruction MOVE.L (A1),D0 causes the contents of the memory
location pointed to by address register A1 to be copied into data register
DO. After the instruction executes, data register DO and the memory loca-
tion contain the same information. Figure 2.11 shows the format of this
instruction.

The instruction works as shown in Figure 2.12. $1000 indicates the con-
tents of the longword in memory at address 1000 hex.

Bit 1514 13 1211 10 9 8 7 6 5 4 3 2 1 0

o(ojtrfojojojo|ojo|O|O|T1}]OfO}O

—_

(2011 Hex)

<+ Reg— |+ Mode—~ |+ Mode—~| + Reg—

- Destination nd Source =2

Figure 2,11 - Format of MOVE.L (A1),D0 instruction
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Instruction Before After
MOVE.L (A1),D0 DO=FFFFFEFF D0=01234567
A1=00001000 A1=00001000
$1000=01234567 $1000=01234567

Figure 2.12 - An example of the MOVE.L (A1),D0 instruction

Address Register Indirect Addressing with Post-Increment
Addressing Mode Field: 011

Register Field: 000-111 (Address Register Number)
Assembler Syntax: (An)+ (n is 0-7)
Description

Address register indirect addressing is indicated by an effective address
mode field of 011 (binary). The register field contains a number from 000
to 111 (0-7), which indicates an address register. In address register indi-
rect addressing, the address register indicated by the register field contains
the address of a memory location that contains the operand. The register
is said to point to (contain the address of) the operand.

The address register is incremented after the data has been obtained from
memory. The increment is based on the length of the data item referenced
by the instruction. Thus, for a MOVE.B instruction, the address register
would be incremented by one. For a MOVE.W instruction, the address reg-
ister is incremented by two. For a MOVE.L instruction, the address register
is incremented by four.

Address register indirection with post-increment is denoted by enclosing
the address register name in parentheses followed by a plus (+) symbol.
For example, (AO)+ denotes post-increment indirection on address regis-
ter AO. Word or longword references require that the address contained
in the address register must be even.

Example

The instruction MOVE.L (A1)+,D0 causes the memory location pointed
to by address register A1 to be copied into the contents of data register
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DO. After the instruction is executed, data register DO and the memory
location contain the same information. Address register Al is incremented
by 4. Figure 2.13 shows the format of this instruction.

The instruction works as shown in Figure 2.14. $1000 indicates the con-
tents of the longword in memory at address 1000 hex.

A special case occurs when the address register specified is A7, which is
the hardware stack pointer. Byte operations on address register A7 cause
an increment by two rather than one. This ensures that the stack pointer
always contains an even address.

Bt 1514 13 121110 9 8 7 6 5 4 3 2 1 0

o(oj1]o0jojo|Oofo]JOojO|jO|1 |1 [O|0O]| T (2001 Hex)
+Reg— |+ Mode— |+ Mode—+| <« Reg—~
- Destination == Source =
Figure 2.13 - Format of the MOVE.L (A1) +,D0 instruction
Instruction Before After
MOVE.L (A1)+,D0 DO= FFFFFFFF DO0=01234567
A1=00001000 A1=00001004
$1000=01234567 $1000=01234567

Figure 2.14 - An example of the MOVE.L (A1)+,D0 instruction
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Address Register Indirect Addressing with Pre-decrement

Addressing Mode Field: 100

Register Field: 000-111 (Address Register Number)
Assembler Syntax: —(An) (n is 0-7)
Description

Address register indirect addressing with pre-decrement is indicated by
an effective address mode field of 100 (binary). The register field contains a
number from 000 to 111 (0-7), which indicates an address register. In
address register indirect addressing, the address register indicated by the
register field contains the address of a memory location that contains the
operand. The register is said to point to (contain the memory address of)
the operand.

The address register is decremented before the data is obtained from
memory. The decrement is based on the length of the data item refer-
enced by the instruction. Thus, for a MOVE.B instruction, the address reg-
ister is decremented by one. For a MOVE.W instruction, the address
register is decremented by two. For a MOVE.L instruction, the address
register is decremented by four.

Address register indirection with pre-decrement is denoted by enclosing
the address register name in parentheses preceded by a minus (—) sym-
bol. For example, —(AO) denotes pre-decrement indirection on address
register AO. Word or longword references require that the address con-
tained in the address register must be even.

Example

The instruction MOVE.L —(A1),DO causes address register A1 to be
decremented by four. The contents of the memory location pointed to by
address register A1 are copied into data register DO. After the instruction
executes, data register DO and the memory location would contain the
same information. Figure 2.15 shows the format of this instruction.

The instruction works as shown in Figure 2.16. $1000 indicates the con-
tents of the longword in memory at address 1000 hex.

A special case occurs when the address register specified is A7, which is
the hardware stack pointer. Byte operations on address register A7 cause
a decrement by two rather than one. This ensures that the stack pointer
always contains an even address.
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Bit 1514 13121 10 9 8 7 6 5 4 3 2 1 0

0010000000’10000](2021Hex)

< Reg—~ |+ Mode |+ Mode—>| < Reg—

- Destination =|l= Source =

Figure 2.15 - Format of the MOVE.L —(A1),D0 instruction

Instruction Before After
MOVE.L - (A1),D0 DO= FFFFFFFF D0=01234567
A1=00001004 A1=00001000
$1000=01234567 $1000=01234567

Figure 2.16 - An example of the MOVE.L —(A1),D0 instruction

Address Register Indirect Addressing with Displacement
Addressing Mode Field: 101

Register Field: 000-111 (Address Register Number)
Assembler Syntax: x(An) (x is 16 bits, n is 0-7)
Description

Address register indirect addressing with displacement is indicated by
an effective address mode field of 101 (binary). The register field contains
a number from 000 to 111 (0-7), which indicates an address register. In
this type of addressing, the address register indicated by the register field
is added to the sign-extended 16-bit number following the instruction. The

result is the address of a memory location that contains the operand.
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Address register indirect addressing with displacement is denoted by
enclosing the address register name in parentheses preceded by a 16-bit
constant. For example, 8(A0) denotes the memory location whose address
is the contents of AO plus 8. Word or longword references require that the
address generated must be even.

Example

The instruction MOVE.L 4(A1),D0 causes the contents of the memory
location pointed to by address register A1 plus 4 to be copied into data
register DO. After the instruction executes, data register DO and the mem-
ory location contain the same information. Figure 2.17 shows the format
of this instruction.

The instruction works as shown in Figure 2.18. $1004 indicates the con-
tents of the longword in memory at address 1004 hex.

Bt 15 14 13 121110 9 8 7 6 5 4 3 2 1 0

o|oft1|joJjojojo|jojJojOoj1(O})1|(0O]|O (2029 Hex)

+Reg— |+ Mode—~ |+ Mode—=| <+ Reg—

= Destination =|= Source =

0({0|0(0}J0O|0O[(0O|{0JO|0{0|0]JO|1|0|0| (0004 Hex)

Figure 2.17 - Format of the MOVE.L 4(A1),DO instruction

Instruction Before After
MOVE.L 4(A1),D0 DO= FFFFFFFF D0=01234567
A1=00001000 A1=00001000
$1004=01234567 $1004=01234567

Figure 2.18 - An example of the MOVE.L 4(A1),DO instruction
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Note that displacement values greater than 7FFF (hex) subtract from
rather than add to the value in the address register. This is due to the sign
extension.

Address Register Indirect Addressing with Index

Addressing Mode Field: 110

Register Field: 000-111 (Address Register Number)
Assembler Syntax: x(An,Dn.L) (x is 8 bits, n is 0-7)
x{An,Dn.W)
x(An,An.W)
x(An,An.L)
Description

Address register indirect addressing with index is indicated by an effec-
tive address mode field of 101 (binary). The register field contains a num-
ber from 000 to 111 (0-7), which indicates an address register. In address
register indirect addressing with index, the address register indicated by
the register field is added to the contents of another register, plus a sign-
extended 8-bit displacement. The sum of these three quantities is the
address of a memory location that contains the operand.

The second register is called the index register, and may be either a data
register or an address register. The size of the index register may be either
a word or a longword. Word quantities are sign-extended before use.

Indexed address register indirect addressing is denoted by enclosing the
index and address register names in parentheses preceded by an 8-bit
constant. The desired size of the index register is defined by using the .L
or .W suffixes on the register name. For example, 4(A0,D0.L) denotes the
memory location whose address is the contents of data register DO and
the contents of address register AO plus 4. Word or longword references
require that the address so generated must be even.

The information concerning the index register and 8-bit displacement is
contained in the 16-bit quantity that follows the instruction. This is called
an extension word, and is in the format shown in Figure 2.19.

The bit labeled A is 1 if the index register is an address register, and O if
the index register is a data register. Bits 14-12 contain the register number.
The bit labeled L is a 1 if the index register is a long quantity, and 0 if the
index is a word.
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Example

The instruction MOVE.L 4(A2.L,A1),DO0 causes the contents of data regis-
ter DO to be copied into the memory location pointed to by the sum of
address registers A2 and A1 plus 4. After the instruction executes, data
register DO and the memory location contain the same information. Fig-
ure 2.20 shows the format of this instruction.

Figure 2.21 shows how the instruction works. $2004 indicates the con-
tents of the longword in memory at address 2004 hex.

Bit

15 14 13 121110 9 8 7 6 5 4 3 2 1 0

T
A

Reg L

] T
0 0 0
1 | 1

T T T T
Displacement
I N SR |

Figure 2.19 - Format of the MOVE.L index register instruction

Bit

1514 13 1211 10 9 8 7 6 5 4 3 2 1 0O

0|0j1|0J0|0O|O|O}O|O|T1|1T}O|[0O]|O]1 (2031 Hex)
« Reg— |+ Mode |+ Mode—=| + Reg—
= Destination == Source =
1{0|1[({0]J1]0]|0|0]O|O|O[O0O]JO]|1([0]|0] (A804 Hex)
Al -Reg—= | L = Displacement =

Figure 2.20 - Format of the MOVE.L 4(A2.L,A1),D0 instruction
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Instruction Before After
MOVE.L 4(A2.L,A1),D0 DO= FFFFFFFF D0=01234567
A1=00001000 A1=00001000
A2=00001000 A2=00001000
$2004=01234567 $2004=01234567

Figure 2.21 - An example of the MOVE.L 4(A2.L,A1),D0 instruction

Absolute Short Addressing
Addressing Mode Field: 111

Register Field: 000
Assembler Syntax: X (x is a 16-bit constant)
Description

Mode 7 with a register field of zero indicates that the word following
the instruction is an absolute 16-bit address. The address is sign-extended
before use, so that address specifications 8000 hex and above refer to
addresses FFFF8000 and above. Remember, however, that the high byte of
the address is presently discarded. The sign extension means that short
addressing is useful only for the first 32,768 (32K) bytes of memory.

Example

The instruction MOVE.L $1000,D0 causes the contents of memory loca-
tion 1000 (hex) to be copied into data register DO. (Many 68000 assem-
blers use the $ prefix to indicate hex numbers.)

Figure 2.22 shows the format of this instruction.

Figure 2.23 shows how the instruction works.

$1000 indicates the contents of the longword in memory at address 1000
hex. Many 68000 assemblers use the prefix $ to indicate hex numbers.



52  Programming the 68000

Bt 1514 1312 1110 9 8 7 6 5 4 3 2 1 0

=

o(o|1]|0|J0jO0|OjO|JOjOfT1|1T}]110]|0O (2039 Hex)

+Reg— |+ Mode— [+ Mode—=>| +« Reg—

= Destination =52 Source -

0{0|0|1]0{0|0[0|Of{0O|{0|0}O0O|0|0[0]| (1000 Hex)

Figure 2.22 - Format of MOVE.L $1000,D0 instruction with 16-bit address

Instruction Before After

MOVE.L $1000,D0 DO= FFFFFFFF D0=01234567
$1000=01234567 $1000=01234567

Figure 2.23 - An example of the MOVE.L $1000,D0 instruction with 16-bit address

Absolute Long Addressing
Addressing Mode Field: 111

Register Field: 001
Assembler Syntax: x (x is a 32-bit constant)
Description

Mode 7 with a register field of one indicates that the longword following
the instruction is an absolute 32-bit address. Remember that the high byte
of the address is presently discarded.
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Bit 15141312110 9 8 7 6 5 4 3 2 1 0

cjo|1|(ojofo|ojojOofOof1j1}1(O|O (2039 Hex)

« Reg— |+ Mode—= |+ Mode =+ | + Reg—~

= Destination =l Source =

0/0|(0(0]|0|0|0|0J0O|0[0O[O|JO|O|O| 1| (0001 Hex)

0/0(0[(0|0[0|0[0]JO|0|0|0O}J0O(0]|06|O]| (0000 Hex)

Figure 2.24 - Format of MOVE.L $1000,D0 instruction with 32-bit address

Instruction Before After

MOVE.L $10000,D0 DO= FFFFFFFF D0=01234567
$10000=01234567 $10000=01234567

Figure 2.25 - An example of the MOVE.L $1000,D0 instruction with 32-bit address

Example

The instruction MOVE.L $10000,D0 causes the contents of memory
location 10000 (hex) to be copied into data register DO. Figure 2.24 shows
the format of this instruction. Figure 2.25 shows how the instruction
works.

$10000 indicates the contents of the longword in memory at address
10000 hex. Many 68000 assemblers use the prefix $ to indicate hex
numbers.
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Program Counter with Displacement

Register Field: 010
Assembler Syntax: x(PC) (x is a 16-bit constant)
Description

Mode 7 with a register field of two indicates that the word following the
instruction is a displacement to be added to the program counter in order
to obtain a memory address. The displacement is sign-extended before the
addition takes place. Thus, it is possible to address memory in a range from
—32,768 to +32,767 bytes relative to the present instruction. The value
used for the program counter is the address of the displacement word.

The program counter with displacement is denoted as xxxx(PC), where
XXxx is a constant 16-bit number.

Example

The instruction MOVE.L $100(PC),DO causes the contents of data register
DO to be copied into the memory location specified by the address of the
instruction plus 102 hex. Figure 2.26 shows the format of this instruction.

Suppose the first word of the instruction is at location 1000 hex. Figure
2.27 shows how the instruction would work.

$1102 indicates the contents of the longword in memory at address 1102
hex. Many 68000 assemblers use the prefix $ to indicate hex numbers.

Bit 1514 13121110 9 8 7 6 5 4 3 2 1 0

ojoj1f{ojofojofojofo|t1jr]1jof1]|0}f (25C0Hex)

+Reg— |+ Mode—>|+Mode—>| + Reg~

< Destination == Source =

0/0(0|0J0|0}0|1]0O|0|0|0]|JO|0O|0|O]| (0100 Hex)

Figure 2.26 - Format of the MOVE.L(PC),DO instruction
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Instruction Before After

MOVE.L $100(PC),DO DO= FFFFFFFF DO=01234567
$1102=01234567 $1102=01234567

Figure 2.27 - An example of the MOVE.L $100(PC),DO instruction

Program Counter with Index
Addressing Mode Field: 111

Register Field: 011
Assembler Syntax: x(PC,Dn.L) (x is 8 bits, n is 0-7)
x(PC,Dn.W)
x(PC,An.W)
x(PC,An.L)
Description

Mode 7 with a register field of 3 indicates that the memory address is to
be constructed using the value of the program counter, an index register,
and a sign-extended 8-bit displacement. This mode is similar to the
address register with index mode instruction. The same format extension
word is required. Figure 2.28 shows the format of this instruction.

The program counter with index is denoted as xxx(xr.s,PC), where xxx
is a constant 8-bit number, and xr.s is a register name with size specifica-
tion. For example, indexing with the word contained in DO and a dis-
placement of 10 hex is written $10(PC,DO.W).

Example

The instruction MOVE.L $10(PC,A1.L),DO causes the contents of the
memory location at the address of the instruction plus the contents of A1
plus 12 hex to be copied into data register DO. Figure 2.29 shows the for-
mat of this instruction.
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Suppose the first word of the instruction is at location 1000 hex. Figure
2.30 shows how the instruction would work.

$2012 indicates the contents of the longword in memory at address
2012 hex.

Bit 1514 13121110 9 8 7 6 5 4 3 2 1 0
T ¥ T T T T T T T T T
A Reg L|I0O 0 O Displacement

JE L T N N [ S |

Figure 2.28 - Format of program counter with index instruction

Bit 1514 13 121110 9 8 7 6 5 4 3 2 1 0

o|o|1|0Jo|O}jO|jO]JO(O|1[1])1i0(1]1| (2038 Hex)

+~Reg— |+ Mode—|+Mode—| +Reg—

= Destination == Source g

1/10{0(1]1]{0|0|0OJO[(0O|O0|1]J0O[0[0|0]| (9810 Hex)

Al <=Reg—= |L| O 0 0 |+ Displacement nd

Figure 2.29 - Format of MOVE.L $10(A1.L,PC),DO instruction

Instruction Before After
MOVE.L $10(A1.L,PC),DO DO=FFFFFFFF _DO-01 234567
$2102=01234567 $2102=01234567
A1=00001000 A1=00001000

Figure 2.30 - An example of the MOVE.L $10(A1.L,PC),DO instruction
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Immediate Mode
Addressing Mode Field: 111 (Source only)

Register Field: 100
Assembler Syntax: #x (x is 8, 16, or 32 bits)
Description

Mode 7 with a register field of 4 indicates that the source data for an
instruction is contained in the word or longword (depending on the size
of the instruction) that follows the instruction. Byte data for an immediate
mode instruction is contained in the low-order byte of the word following
the instruction.

Immediate mode is denoted by #(constant) where (constant) is a hex or
decimal number. Many assemblers allow symbols to be defined for use as
immediate quantities. (See the section on assemblers in Chapter 3 for
additional information.)

Example

The instruction MOVE.L #$10002000,D0 causes the long constant
10002000 (hex) to be loaded into data register DO. The previous contents
of DO are lost. Figure 2.31 shows the format of this instruction. Figure 2.32
shows how this instruction works.

Bit

151413 12 1110 9 8 7 6 5 4 3 2 1 0

olof1]o]o|ofo|ojojof1|[1f1]1]|0|O0O]| (203CHex
+—Reg— |+ Mode— |+ Mode—=| < Reg—~
3 Destination =>||= Source -
0({0|0(1]0{0|0|0]0OJ0[0|0]JO|O0|[O]|O0| (1000 Hex)
0(o|1]0]J0|(0|0[0}010|0|0O}JO|0|O|0]| (2000 Hex)

Figure 2,31 - Format of the MOVE.L #$10002000,D0 instruction
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Instruction Before After
MOVE.L
#$10002000,D0 D0=01234567 DO = 10002000

Figure 2.32 - An example of the MOVE.L #$10002000,D0 instruction

Status Register Addressing
Addressing Mode Field: 111 (Destination only)

Register Field: 100
Assembler Syntax: SR
CCR
Description

Mode 7 with a register field of 4, when used as a destination field on
some instructions, indicates that the operation is to be performed on the
status register. The And Immediate (ANDI), Exclusive Or Immediate
(EORI), and Or Immediate (ORI) instructions are the only operations that
can use this addressing mode.

When the instruction specifies a byte length, then only the user byte of
the status register is affected. When a word length instruction is used, then
both the system and user bytes are affected. The System bit in the status
register must be set to 1 in the latter case.

The assembler recognizes the special labels SR (for the whole status regis-
ter) and CCR (for the user byte). CCR is an acronym for Condition Code
Register. Only the condition codes are stored in the status register user byte.

Example

The ORI #5,CCR instruction sets both the carry (C) and zero (Z) flags.
Figure 2.33 shows the format of this instruction. Figure 2.34 shows how
the instruction works.
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Bt 151413121 109 8 7 6 5 4 3 2 1 0

0{0jO0(0]jJOjO{O|OJO[O|T [T ]1]|1]O[O0] (003C Hex

< Mode | < Reg—

= Destination =

0{0|0|O0OJO[(O]jO(OJO[O|O(O|O|1]|O|1] (0005 Hex)

Figure 2.33 - Format of ORI #5,CCR instruction

Instruction Before After

ORI #5,CCR CCR=0000 CCR=0005

Figure 2.34 - An example of the ORI #5,CCR instruction

Stacks and Stack Frames

Many commercial microcomputers today (including the 68000) have a
feature called a stack. A stack is a storage technique similar to the spring-
loaded platforms used for plates in a cafeteria line. The last byte, word, or
longword, placed on the stack is the first data item to be removed. This
storage scheme is called Last-In-First-Out (LIFO). The act of placing a new
data item on the stack is known as a push. Removing a data item is com-
monly called a pop.

How a Stack Works

Stacks are implemented on the 68000 using the pre-decrement and post-
increment addressing modes. An address register (called the stack pointer)
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is used to indicate the top of the stack’s position in memory. Data items
are pushed onto the stack using the —(An) addressing mode, and popped
using the (An)+ addressing mode, as illustrated in Figure 2.35.

The stack pointer always contains the address of the element on top of
the stack. Subsequent push operations cause items to be stored at lower
addresses. Pop operations cause the stack pointer to be incremented
toward higher addresses. The stack is said to “grow toward lower
addresses” on the 68000.

68000 Hardware Stack

Register A7 on the 68000 is called the hardware stack pointer. This regis-
ter is used by the 68000 hardware for addressing memory that contains
temporary data items. Most 68000 assemblers take the symbol SP (for
Stack Pointer) as an alternative to A7 in register specifications.

There are two stack pointers on the 68000: one for when the processor
is in user mode (called USP) and one for when the processor is in supervi-
sor mode (called SSP).

Address

Pushes n-2

—-(An) n-1

(An) n Item 1 | Stack Top

n+1 Item 2

Popsp n+2 | Iltem3

(An)+ n+3 Item 4

Figure 2.35 - 68000 stack operations
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When the processor is in user mode, register A7 corresponds to USP,
and in supervisor mode, register A7 corresponds to SSP. A special instruc-
tion, MOVE USP, allows the supervisor program to access the USP. The
user mode program is not allowed access to the SSP.

Typically, the stack is used for information that will be required again
later. For example, there is a common programming technique called a
subroutine.

Subroutines

Subroutines are small programs in themselves that can be used as units
of other, larger programs. Typical subroutines include /O routines and
common calculations, such as taking the square root of a number.

The 68000 supports instructions known as subroutine calls. These
instructions place the address of the next instruction on the stack and the
address of the subroutine into the program counter (PC). In this way, the
next instruction to be executed becomes the first instruction in the sub-
routine. When the subroutine has completed processing, it executes a
return instruction, which restores the address currently on top of the stack
back into the PC. This causes the program to resume execution at the
instruction that immediately follows the subroutine call.

Subroutines are powerful programming tools. A subroutine is essentially
an extension to the instruction set of the machine. The programmer can
treat subroutine calls as if they were sophisticated machine instructions.

Exceptions

A concept similar to the subroutine call is the 68000 exception mecha-
nism. The 68000 allows the suspension of a program and subsequent
resumption of the same program through a technique known as an excep-
tion. (This same technique is called an interrupt on other machines.)

An exception causes the status register and program counter to be
pushed onto the stack. A special instruction allows restoration of the pro-
gram counter/status register combination at a later point. This mechanism
is described in detail in Chapter 7, Exception Programming.

Stack Implemented in Software

You can implement a stack using any address register. All that is
required is to place the address of the end of the area to be used as a
stack into the address register. The pre-decrement and post-increment
addressing modes can then be used to push and pop data items from
this software stack.
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Stack Frames

Stacks are convenient for allocating temporary memory areas. The
68000 supports a hardware mechanism for allocating scratchpads called a
stack frame.

The 68000 LINK and UNLK (unlink) instructions allocate and free tem-
porary memory at the top of the stack. An additional address register,
called the frame pointer, is used to point to the area allocated on the
stack. References to the stack frame use the address register with displace-
ment addressing mode. The frame pointer rather than the stack pointer is
used to address the frame so that subsequent stack PUSH and POP opera-
tions will not affect the offsets of individual components of the frame.

Summary

The important points that we have covered in this chapter are:

« The 68000 has sixteen registers: eight data registers and eight
address registers. Data registers may be used as bytes, words, or
longwords. Address registers may be used only as words or
longwords. In addition, loading a word into an address register
causes the word to be sign-extended to 32 bits.

.

There are two special registers: the program counter (PC) and the
status register (SR). The program counter contains the address of
the next instruction to be executed. The status register contains
machine status bits. The upper eight bits of the status register,
called the system byte, may not be accessed by ordinary pro-
grams. The lower eight bits of the status register, called the condi-
tion code register (CCR), contain status bits (condition codes) that
indicate the result of the last instruction executed.

The 68000 supports three principle numeric data types: binary,
BCD, and floating-point. Binary data may be used in units of 8 bits
(a byte), 16 bits (a word), and 32 bits (a longword). These lengths
are indicated on register and instruction names by the suffixes .B,
W, and .L. BCD is a method of storing two decimal digits per byte.
Floating-point is a method of representing very large or very small
numbers without requiring undue amounts of memory.

» The 68000 supports fourteen distinct methods of specifying data
in an instruction. These are called addressing modes. They are
listed in Table 2.1.
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Syntax Name
Dn Data register direct
An Address register direct
(An) Address register indirect
(An) + Address register indirect post-increment
—(An) Address register indirect pre-decrement
w(An) Address register with displacement
b(An,Rn) Address register with index
w(.W) Absolute short
I(.L) Absolute long
w(PC) PC with displacement
b(PC,Rn) PC with index
#x Immediate
SR Status register (Privileged)
CCR Condition code register

- =

A 3 X

b is a byte constant.

is a word constant.

is a long consiant.

can be any of these.

is a register number, 0-7.

is a register specifier, either A or D.

Table 2.1 - Addressing Modes of The 68000

o The post-increment and pre-decrement addressing modes are
used to implement data structures called stacks. Stacks are orga-
nized in a last-in first-out (or LIFO) scheme in which the last
data item to be put on is the first one taken off. Register A7 is
used by the 68000 instructions to refer to a special stack called

the hardware stack.
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Special 68000 instructions exist that allocate and free temporary
scratchpad memory areas on the hardware stack. These scratch-
pad areas are known as stack frames.

Chapter 3 will build on this background to present the 68000 instruction
set and the mechanics of writing 68000 assembly language programs.

Exercises

1,

Given the following conditions:

« DO = 00008000
* A0 = 00001000
e A7 = 00070000
What are the results of the following instructions?

MOVE.B DO,A0
MOVEW DO,A0
MOVE.B  DO,(A0)+
MOVE.B DO, - (A7)

Give the new contents of all registers and memory locations that
change. Use the same starting conditions for all the instructions.

. The ADD binary instruction can add an effective address oper-

and to a data register. The format of this instruction is shown in
Figure 2.36.

Bit

151413 12 1 10 9 8 7 6 5 4 3 2 1 O
T T T T

1|1]0]| 1| Register [0 ] Size | Mode Register

11 1 I | L1

<+ Dest = < Source ==

Figure 2.36 - ADD binary instruction format

The Size field is 00 for byte, 01 for word, and 10 for long data.
Modify the examples for the addressing modes (except for the sta-
tus register mode) to use this instruction.
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Data Movement

Data movement instructions transport data from one location in the
68000 to another. Normally, these instructions move from one to four
bytes of data between two registers, a register and memory, or between
two memory locations.

This category of 68000 instructions includes:

The EXG (EXchanGe) instruction. Exchanges the contents of two
registers.

The LEA (Load Effective Address) instruction. Calculates a mem-
ory address and places it in an address register.

The LINK instruction. Allocates a stack frame.

The MOVE instruction. Transfers one register or memory location
to another.

The MOVEM (Move Multiple) instruction. Transfers multiple regis-
ters to or from memory.

The MOVEP (Move Peripheral) instruction. Transfers data to or
from an 8-bit peripheral.

The MOVEQ (Move Quick) instruction. Loads a data register with
a constant.

The PEA (Push Effective Address) instruction. Calculates a mem-
ory address, and pushes it onto the hardware stack.

The SWAP instruction. Swaps the words in a data register.
The UNLK (UNLinK) instruction. Deallocates a stack frame.

Integer Arithmetic Operations

Integer arithmetic instructions perform basic two’s complement opera-
tions on binary data. This class of instructions includes:

The ADD, ADDA, ADDI, ADDQ, and ADDX instructions. Used
for two’s complement addition.

The CLR instruction. Moves zero into an operand.

The CMP CMPA, CMPI, and CMPM instructions. Compares two
quantities.
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The DIVS and DIVU instructions. Perform signed and unsigned
integer division.

o The EXT instruction. Sign extends a byte to a word quantity or a
word to a long quantity.

« The MULS and MULU instructions. Used for signed and unsigned
multiplication operations.

o The NEG and NEGX operations. Form the two’s complement of a
number.

The SUB, SUBA, SUBI, SUBQ, and SUBX instructions. Used for
two's complement subtraction.

« The TAS (Test and Set) instruction. Used to synchronize multiple
processors.

o The TST instruction. Compares an operand to zero.

Logical Operations

The logical operation instruction group performs bit-wise Boolean oper-
ations on binary numbers. This class of instructions includes:

o The AND and AND! instructions. Perform a Boolean AND opera-
tion on two binary integers.

« The OR and ORI instructions. Perform a Boolean OR operation.

e The EOR and EORI instructions. Perform a Boolean exclusive OR
operation.

» The NOT instruction. Perform a one’s complement operation.

Shift and Rotate Operations

The shift and rotate instructions perform arithmetic and logical shifts,
as well as rotates with and without an auxiliary Carry bit. This group
contains:

o The ASL and ASR instructions. Arithmetic left and right shift
operations.

o The LSL and LSR instructions. Logical left and right shift
operations.
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o The ROL and ROR instructions. Left and right rotates without an
auxiliary Carry bit.

« The ROXL and ROXR instructions. Left and right rotates through
an auxiliary Carry bit.

Bit Manipulation Operations
The bit-manipulation instructions operate on single bits within a byte.
This instruction class contains:
» The BTST instruction. Tests a single bit.
o The BSET instruction. Tests a single bit and then sets the bit.
« The BCLR instruction. Tests a single bit and then clears the bit.

« The BCHG instruction. Tests a single bit and then inverts (comple-
ments) the bit.

Binary Coded Decimal Instructions
The binary coded decimal (BCD) instructions manipulate numbers in
BCD format. This group contains:
» The ABCD instruction. Performs BCD add operations.
e The SBCD instruction. Performs BCD subtract operations.
» The NBCD instruction. Performs BCD negation.

Program Control Instructions
The program contral instructions alter the instruction flow through a
program segment. This group contains:
» The Bcc instruction group of fifteen conditional-branch instruc-
tions. Conditionally alter the flow of instructions.

e The DBcc instruction group, consisting of sixteen looping-
primitive instructions.

» The Scc instruction group of sixteen conditional-set instructions.
Set a byte depending on the settings of the condition code.
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« The BSR and JSR subroutine call instructions.
o The RTS subroutine return instruction.
e The JMP absolute jump instruction.

« The RTR instruction. Restores the program counter and condition
codes from the stack.

System Control Operations

System control instructions alter the state of the 68000 hardware envi-
ronment.

Many of these instructions are “privileged,” meaning that they require
that the 68000 be executing in supervisor mode. This instruction class
contains:

« The MOVE USP instruction. Allows a supervisor mode program
access to the user mode stack pointer.
o The RESET instruction. Resets external devices.

o The RTE instruction. Returns from an exception condition.
(Exceptions are described in Chapter 7.)

e The STOP instruction. Suspends instruction processing until an
external event occurs.

¢ The CHK and TRAPV instructions. These instructions detect cata-
strophic program errors.

« The TRAP group of sixteen instructions. Provide a method for a
user mode program to call a supervisor mode program.

PROGRAM DEVELOPMENT MECHANICS

The process of writing an assembly language program works something
like this:

1. Key in the program using a text editor. The disk file resulting from
this process is known as the assembly source file.

2. Transform the program into machine code using a program
called an assembler. The machine-code file produced by the
assembler is commonly called an object file. Most assemblers also



72 Programming the 68000

produce a file that contains the instructions from the source file
along with the machine code produced (in hexadecimal). Such a
file is known as a listing file.

3. Some systems require that the object output of the assembler be
processed by a program known as a linker or linkage editor
before execution. For other systems, this step is not required.
Many large programs are split into separate source files, assem-
bled separately, and then combined with the linkage editor. The
final output of this process is a file that may be loaded into mem-
ory and executed. This file is commonly called a load file, execut-
able file, or a load module.

4. The load file produced by the assembler and linker is then loaded
into memory and executed.

Usually, each of these steps is repeated many times. The file must be
edited many times to get it to assemble without errors. The assembled file
may not link properly, necessitating more editing and assembling. Finally,
the successfully finked file may not run properly. What to do when this
happens?

An error in a program is known as a bug. Finding bugs in object pro-
grams is more of an art than a science. Fortunately, there are tools that
make the task easier. The first of these is the age-old standby of printing
out values within the program by inserting a temporary printing code. The
second, and most valuable tool is the interactive debugger. This wonderful
program allows you to stop at certain points in the program and look at
the values that are currently in registers and memory. Many debuggers
allow references to labels contained in the program source file.

Most systems that support assembly language development are
equipped with these tools in one form or another. The instructions on
how to use the tools that come with your system are usually contained in
the system manuals. For the remainder of this book, we will give
examples from two systems—UNIX and CP/M-68K.

Editing
Developing programs requires only a simple editor without word pro-
cessing capabilities such as word wrap, justification, and so on. Which

editor is best is a matter of personal preference. A screen-oriented editor
is preferred by most programmers.
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Editing a file on the UNIX and CP/M-68K systems starts with a command
like:

% ed filename.typ
A>ed filename.typ

where the % and A> represent the system prompt characters for UNIX
and CP/M-68K respectively. Filename.typ is the name of the file to be
edited or created. Many editors preserve the original contents of the file in
a backup file, often named filename.bak. For UNIX and CP/M-68K, the
typ field is usually .s.

Backups

Maintaining backup copies of source files is essential because of the possi-
bility of a hardware or software failure. While hardware failures are com-
paratively rare, they still occur from time to time. Software and media
failures are all too common. Power failures can also destroy disk files. There
is a bit of conventional engineering wisdom known as Murphy’s Law:

If anything can go wrong, it will.

You will find that this law applies to programming as well. Most pro-
grammers keep two backup copies in case the machine crashes while
making a backup. (if this occurs, it is possible to destroy both the original
and the backup.) Recovery from such a disaster is extremely painful.
Unfortunately, most people have to learn this lesson the hard way, as Ben
Franklin said:

Experience is a dear school, but fools will learn at no other.

Don’t be one of them! Back up your files!

Assembling

Assemblers come in a variety of different styles. Most assemblers take a
source file and produce an object file and a listing file. The command line
for invoking an assembler on UNIX and CP/M-68K is:

% as file.s
A>as68 -1 —p file.s >file.lis

The UNIX assembler “as” creates file.o (the obiject file) from file.s (the
source file). The command given for CP/M-68K does the same, and also
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produces file.lis (the listing file). Some UNIX assemblers use a command
similar to the CP/M-68K command line to produce a listing file.

Source File Format

The source file that you input to the assembler consists of lines of text.
Each line in the source file may be classified as one of three things:

* A comment line. Comments in most 68000 assemblers are denoted
by placing an asterisk (*) as the first character on the line.

* A 68000 instruction. Instruction lines consist of an optional label,
followed by an instruction mnemonic, followed by one or more
operands. Spaces or tabs are required between the label, mne-
monic, and operand fields. A comma is used to separate mult-
iple operands. Most assemblers do not allow spaces between
operands.

An assembler directive. Directives are a means of telling the
assembler how you want your program treated. For example,
the UNIX and CP/M assemblers have the following directives in
common:

a) .text. This directive specifies that the code that follows is to
be treated as machine instructions.

.data. This directive specifies that the code that follows is
to be treated as data.

.bss. This directive specifies that the code that follows
reserves uninitialized memory and has no particular initial
value. BSS code is not stored in the executable file. Proper
use of this directive can substantially reduce both disk stor-
age and load time for the final program.

.page. This directive causes the assembler to start a new
page on the listing file. Proper use of this directive can sub-
stantially increase program readability.

b

C.

d

Linking

After obtaining an error-free assembly, you may need to link the output
file in order to make it executable. Some UNIX systems allow you to exe-
cute the object output of the assembler (and some do not). CP/M-68K
requires the use of the linker.

The linker command for UNIX has the following syntax:

% Id - o thisfile file.o
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The “ - o thisfile” construct causes the output file to be named thisfile. The
same command on CP/M-68K has the following syntax:

A>1068 —r - o thisfile.68k file.o

The —r switch causes the relocation information to be preserved.
This flag allows the program to run on any CP/M-68K system. The
“— o thisfile.68k” construct causes the output file to be named thisfile.68k.

Debugging

Typing the filename at the system prompt level causes the file to be exe-
cuted. But what if it doesn’t work correctly? How do you figure out what
is wrong?

When something goes wrong, use the interactive debugger. Both the
UNIX and CP/M-68K systems have debugging programs that allow you to
interact with an executing program so that you can identify any problem
areas. Debuggers usually have the following features:

« The ability to select a program for debugging.

¢ The ability to examine and change the contents of a machine reg-
ister or a memory location.

« The ability to start execution at a desired location, and stop exe-
cution at one of several points (commonly called breakpoints).

 The ability to execute a single instruction at a time. This is com-
monly called tracing, because the Trace bit in the status register
provides this capability.

In explaining the 68000 instruction set, we will make use of the CP/M-
68K debugger, DDT-68K. The original version of this debugger is called a
hex debugger because it lacks the ability to use labels from the source pro-
gram. A debugger that can use these labels is called a symbolic debugger.
A later version of DDT-68K provides symbolic capability. We will use the
following commands from DDT-68K:

» The Lxxxxx,yyyyy command. This causes memory locations
xxxxx through yyyyy to be displayed as 68000 instruction mne-
monics.

¢ The Dxxxxx,yyyyy command. This causes memory locations
xxxxx through yyyyy to be displayed in hex.
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e The Sxxxxx command. This causes memory location xxxxx to be
displayed for possible modification. Pressing Return causes the
next location to be displayed. Typing a period causes the debug-
ger to prompt for the next command.

o The G,xxxxx command. This starts program execution at the
location contained in the program counter and stops program
execution immediately before the instruction at xxxxx.

e The T command. The next instruction is executed, using the
Trace bit hardware mechanism.

The UNIX debugger is called sdb, and can be used in a similar fashion.

Example

Suppose that we wish to execute the source file shown in Listing 3.1
under CP/M-68K.

.text
KRN RN RRRRARRRRRRRRRRARRARRRAR AR K
o This program adds the first
9 five integers and stores the
9 result in memory.

KRR R AR R RN AR AR AR AR AR AR R AR RRRRRRRR

start: move.w a,do Load first number
add.w b,do
add.w c,do
add.w d,d0
add.w e,do

move.w do,f Store answer
rts Return to CP/M
.data

as dc.w 1 Numbers to add

b: dc.w 2

©3 dc.w <l

d: dc.w 4

e: dc.w 5

f: dc.w (o] Answer goes here
.end

Listing 3.1 - The source file
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This program adds the first five integers and stores the result in memory.
Assume that the program has been entered into file test.s using the text
editor. We then assemble the file using the assembler (AS68) as follows:

A>as68 —| - p test.s >test.l

I

The assembler produces an object file test.o. The file “test.I” is shown in
Listing 3.2.

The first number on each line is the number of the line in the source
file, starting with one. The assembler reports errors by line number.

The second number is the hex offset at which the present line is assem-
bled. When added to the load address of the text, data, or bss segment (as
appropriate) this number yields the absolute memory address of the
instruction or data described by the line.

The third number in each line is the actual hex contents of the memory
location when the program is loaded into memory. Addresses may not be
relocated to their final value until load time. The assembly listing reflects
addresses as they are known to the assembler.

The linker relocates all addresses to the values that they will have at
execution time. Later, when the program is loaded into memory, it may be

e
NHOOVDNOUBWN

13
14
IS
16
17
18
19
20
21

00000000

00000000
00000006
0000000C
00000012
00000018
0000001E
00000024
00000000
00000000
00000002
00000004
00000006
00000008
0000000A
0000000C

.text
KRR AN R AN KRR AR AR AR AR AR AR AR AR Ak
\J This program adds the first
W five integers and stores the
i result in memory
HRRRA R AR AR AR AR AR AR AR R RARN AR A AR A&
303900000000 start: move.w a,do Load first number
D07900000002 add.w b,do
D07900000004 add.w c,d0
D07900000006 add.w 4,40
D07900000008 add.w e,do
33C00000000A move.w do,f§ Store answer
4E7S rts Return to CP/M
.data
0001 a: dc.w 1 Numbers to add
0002 b dc.w 2
0003 c: dc.w <
0004 d: dc.w 4
0005 e: dc.w 5]
0000 e dc.w ] Answer goes here
.end

Listing 3.2 - The Listing file
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relocated yet again if the base address of the program does not match the
address to which it was linked. By the time the program begins execution,
however, all addresses are absolute.

The source line as it appears in the file comes next. Source lines that
begin with an asterisk (*) are placed in the listing file as is. Such a line is
called a comment line. Comments serve only to help the human reader
understand the program.

Other lines consist of an optional label, an opcode or directive, and one
or more operands. Additional text on the line following the operands is
regarded as comments by the assembler. At least one space is required
between the end of the last operand and the beginning of the comment.
The leading asterisk is not required for a comment at the end of a line.

A label on a line establishes a symbolic name for a memory location. A
label must be the first word on a line, and must be terminated by a colon.
The label may then be referred to by instructions that reference memory.
The memory locations a: through f: in Listing 3.2 illustrate this usage.
These labels are tags for the memory locations referenced by the pro-
gram’s MOVE and ADD instructions.

We link the program as follows:

A>1068 —r -0 test.68k test.o

The linker produces an executable file called test.68k. To run the pro-
gram under the debugger, we type:

A>ddt test.68k

DDT-68K
Copyright 1982, Digital Research

text base = 00000500 data base = 00000526 bss base = 00000532
text length = 00000026 data length = 0000000C bss length = 00000000
base page address = 00000400 initial stack pointer = 0001A2B88

This information indicates that the program is loaded into memory start-
ing at 500 hex (text base). The data section of the program begins at
address 526 hex (data base). From the assembly listing, we can see that
the text portion is 26 bytes long. We can now use the debugger to list out
the program in 68000 mnemonics with the | (el) command:

-1500,524

00000500 move $526,D0
00000506 add $528,D0
0000050C add $52A,D0
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00000512 add $52C,D0
00000518 add $52E,DO
0000051E move D0,$530
00000524 rts

The data area is between addresses 526 and 532. The data base printed
out by DDT (526) and data length (Oc), when added together, produce the
first address beyond the data area (532). We can display the data area

with the Display Words (dw) command:

~dw526,532
00000526 0001 0002 0003 0004 0005 0000

The Trace (t) command is used to execute each instruction. DDT shows

the registers before the instruction is executed, as shown below:

PC =00000500 USP =0001A2B0 SSP =00002000 ST =0000=>IM=0

D 000000D0 000000D1 00000002 000000D3 000000D4 000000D5 000000D6
A 000000A0 000000A1 00000CA2 COOO00A3 000000A4 O000000AS 0O0O000A6
move $526,00

-t

PC =00000506 USP =0001A2B0 SSP =00002000 ST=0000=>IM=0

D 00000001 000000D1 00000002 00000003 000000D4 000000DS 000000D6
A 000000A0 000000A1 DOOOOOA2 O0O000A3 000000A4 000000A5 000000A6
add $528,00

-1

PC =0000050C USP =0001A2B0 SSP=00002000 ST=0000=>IM=0

D 00000003 000000D1 00000002 000000D3 00000004 000000DS 00000006
A 000000A0C 000000A1 000000A2 000000A3 000000A4 0000C0AS5 000000A6E
add $52A,D0

-t

PC =00000512 USP=0001A2B0 SSP =00002000 ST=0000=>IM=0

D 00000006 000000D1 000000D2 000000D3 000000D4 000000D5 00000006
A 000000A0 000000A1 000000A2 000000A3 000000A4 000000AS 0CO000AE
add $52C,D0

-1

PC =00000518 USP =0001A2B0 SSP =00002000 ST =0000= >IM=0

D 0000000A 000000D1 000000D2 00000003 00000004 000D00DS 00000006
A DO0000AC 000000A1 000000A2 000000A3 000000A4 000000A5 O000D00A6
add $52E,00

-t

PC =0000051E USP=0001A2B0 SSP=00002000 ST=0000=>IM=0

D 0000000F 000000D1 000000D2 000000D3 000000D4 000000DS 00000006
A 000000A0 000000A1 DDDOO0A2 0OOODODDA3 000000A4 000000DAS O00000ASE
move D0,$530

000000D7
0001A2B0

00000007
0001A2B0

00000007
0001A2B0O

00000007
0001A2B0O

00000007
0001A2B0

00000007
0001A2B0
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=it

PC =00000524 USP =0001A2B0 SSP =00002000 ST=0000=>IM=0

D 0000000F 000000D1 000000D2 000000D3 000000D4 000000D5 000000D6 000000D7
A 000000A0 000000A1 000000A2 000000A3 000000A4 000000AS5 000000A6 0001A2B0O
rts

Notice how the value of register DO changes as each number is added.
To make the actions of the instructions easier to identify, we will underline
registers that change in presenting examples. Just before returning to
CP/M, look at the answer in memory. (Location 530 hex corresponds to
the label f: in the assembly listing.)

—dw530,532
00000530 000F
-g

A>

INSTRUCTIONS

The rest of this chapter is devoted to presenting the details of the
Motorola 68000 instruction set. For ease of reference, the instructions are
listed in alphabetical order. For each instruction, the following items are
provided:

« A verbal description of what the instruction does.

* Which addressing modes are allowed. (Very few of the instruc-
tions allow all addressing modes.)

» What data sizes (byte, word, long) are allowed.
Condition codes affected by executing the instruction.
The layout of the machine code.

* Where possible, an example of how this instruction might be
used. We will use the debugger to illustrate the results of execut-
ing the instruction.

Effective Address Operands

Most instructions that reference memory do so by means of an effective
address operand. Effective address operands consist of a 3-bit mode field
and a 3-bit register field. These operands are discussed in detail in Chapter
2. The notation used in the instruction descriptions for an effective
address operand is <ea>. For each effective address operand in an
instruction, the instruction discussion will present a table of addressing
modes that is permitted with the operand.
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ABCD Instruction

The ABCD (Add BCD with extend) instruction adds two bytes in BCD
(Binary Coded Decimal) format. The destination operand is replaced with

the sum of the source and destination bytes.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) X(An,xr.s)
Yes | No No No Yes No No
xw | xI | x(PO) x(PC,xr.s) #x SR CCR
No | No No No No No No

There are only two forms of this instruction:

Data Sizes: Byte only

1. Add data register to data register (Dn addressing modes). The
low-order bytes of two data registers are added and the result
stored in the destination register.

2. Add memory to memory. This form of the instruction is designed
for adding multiple bytes in memory. The only valid addressing
mode is — (An). Since the 68000 stores BCD data with the highest
byte first, one must start at the highest address and work down to
add multibyte quantities. (Hence the use of pre-decrement
addressing.) Each instruction sets the X-bit if there was a carry out
of the most significant BCD digit in the byte. Then the X-bit is
added into the next byte.

Condition Codes Affected:

X  Set by carry out of the most significant BCD digit.

N

Undefined.

Z Cleared if the result is not zero. Unchanged otherwise.



82  Programming the 68000

V  Undefined.
C Set by carry out of the most significant BCD digit.

The Z-bit is cleared if the result was not zero. Not setting the bit when the
result of the present byte is zero allows the Z-bit to be accurate after a
series of ABCD instructions is executed. The Z-bit must be set initially in
such a case. (Comparing a register to itself is an easy way to set the Z-bit.)
The N and V bits are undefined as a result of this instruction.

Assembler Syntax: ABCD  Dx,Dy
ABCD —(Ax),—(Ay)
Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
LB T T

11170|0] D.Reg {1 ]O|0O|O|O}|F| S Reg.
Ll L1

The D. Reg and S. Reg fields specify the destination and source register
numbers. If the F (format) bit is O, then the registers are data registers. If
the F bit is a 1, then the registers are address registers and the pre-
decrement addressing mode is used.

Example:
This example adds two values in data registers:

PC =0000050C USP =0001598C SSP =0007BF08 ST=0000= >IM=0

D 00000099 00000001 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000
abcd.b D1,D0

=t

PC =0000050E USP =0001598C SSP =0007BF08 ST=0011=>IM=0 EXT CRY

D 00000000 00000001 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Since we added 1 to 99, the result is zero, with the EXT (extend) bit set
in the status register. The next example adds two two-byte BCD numbers
in memory. The addresses in registers AO and A1 point to the ends of the
BCD numbers.

PC =0000051E USP =0001598C SSP = 0007BF08 ST=0000= >IM=0

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 0000082A 0000082C 00000000 00000000 00000000 00000000 00000000
abcd.b - (AQ), - (A1)

00000000
0001598C

00000000
0001598C

00000000
0001598C
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Show the operands before the first add:

-dw828,82¢c

00000828 0099 0001

=t

PC =00000520 USP =0001598C SSP =0007BF08 ST=0011=>IM=0 EXT CRY

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000829 00000828 00000000 00000000 00000000 00000000 00000000 0001598C

abcd.b —(A0), - (A1)
Now look at the operands:

-dw828,82¢

00000828 0099 0000

=0

PC =00000522 USP = 0001598C SSP = 0007BF08 ST =0000=>IM=0

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000828 0000082A 00000000 00000000 00000000 00000000 00000000 0001598C

Now look at the results:

—dw828,82c
00000828 0099 0100

This example adds 99 to 1 to become 100. (The second operand is
destroyed.) The memory displays show exactly what happens at each step
of the process. Notice how the Extend bit gives the carry between the two

add operations.
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ADD Instruction

The ADD (Add binary) instruction adds two operands together and
stores the result in the destination operand. There are two forms of this
instruction:

1. Add an effective address operand to a data register.

2. Add a data register to an effective address operand.

Addressing Modes Allowed:
All addressing modes except SR and CCR are allowed when the effec-
tive address specifies a source operand:

Dn An (An) (An) + —(An) | x(An) X(An,xr.s)
Yes | Yes Yes Yes Yes Yes Yes
X.W x.l | x(PO) X(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes Yes No No

When the effective address field is the destination, then the following

addressing modes are allowed:

Dn An (An) (An) + —(An) [ x(An) X(An,xr.s)
No | No Yes Yes Yes Yes Yes
xw | x! | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Using a data register as a destination requires the register destination
form of the instruction.
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Data Sizes: byte, word, long
Using an address register as the source is valid only for word and long
data lengths.

Condition Codes Affected:

Set by the carry-out of the most significant bit.
Set if high-order bit of result was 1.

Set if result was zero.

Set by the carry-out of the most significant bit.
Set if operation resulted in overflow condition.

<NONZXx

Assembler Syntax: ADD  Dx,<ea>
ADD <ea>,Dx

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T T T T 1T

1110 1] Register | D | Size | Effective  Address
L1 ! [ S T |

<« Mode | « Reg.—>

The Register field gives the data register that must be one of the oper-
ands. The D-bit is O if the Register field is the destination operand. The D-
bit is 1 if the effective address is the destination.

The Size field is 00 for byte, 01 for word, and 10 for long operands.

Example:

PC =00000530 USP =0001598C SSP =0007BF08 ST=0000=>IM=0

D 0000FFFF 0000FFFF 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
add $82C,D0

Examine the Memory Operand:

-dwB2c,82e

0000082C 0001

-t

PC =00000536 USP =0001598C SSP = 0007BF08 ST=0015= >IM=0 EXT ZER CRY

D 00000000 O0O00OOFFFF 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
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ADDA Instruction

The ADDA instruction does a binary ADD operation to an address reg-
ister. In order to allow address computations to be freely intermixed with
data operations, this instruction does not affect the condition codes.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) X(An,xr.s)
Yes | Yes Yes Yes Yes Yes Yes
xw [ x1 | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes Yes No No

The effective address must be the source operand.

Data Sizes: word, long
The ADDA operation always affects all 32 bits of the destination address

register.
Condition Codes Affected: None
Assembler Syntax: ADDA  <ea>,An

Machine Code Format:

Bit 1514 131211 10 9 8 7 6 5 4 3 2 1 O
L 1 T T 7

1]1]0[1]| Register | S |1 |1 ]| Effective Address
L I I T |

+ Mode—>| « Reg.—~

The Register field gives the address register that is to be used as the destina-
tion operand. The S-bit is 1 for long operands and 0 for word operands.
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ADDI Instruction

The ADDI instruction adds a constant to an effective address operand.
The source operand is always immediate.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) X(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw [ xI | x(PO x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long

Condition Codes Affected:

Set on carry out of high-order bit.
Set if high bit of result is set.

Set if result is zero.

Set on carry out of high-order bit.
Set on overflow condition.

<ONZXx

Assembler Syntax: ADDI  #x,<ea>

Most assemblers automatically choose the ADDI instruction if the
source operand of an ADD instruction is immediate.
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Machine Code Format:

Bit 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T 1 T T T

o(o|O0fOo|Of1]1 0] Size | Effective Address
1 FI S T

«~Mode—| + Reg.—

T T T T T T T T T 1 | I 1 1
Word data (16 bits) Byte data (8 bits)
T R N N S N | [ S S I S S |

T T 1 T T T 1 T T T T T T 7T
Long data (32 bits, including previous word)
N N U [N SR N I S S N N T B |

Size is 00 for byte operations, 01 for word operations, and 10 for long
operations.

Example:

PC = 00000560 USP =0001598C SSP = 0007BF08 ST =0000= >IM =0

D 00007FFF 0000FFFF 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000
addi.l #$10,D0

=

PC =00000566 USP = 0001598C SSP =0007BF08 ST =0000= >IM=0

D 0000800F 0000FFFF 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000

This instruction adds 10 hex to the contents of register DO.L.

-t

00000000
0001598C

00000000
0001598C

PC =0000056A USP =0001598C SSP =0007BF08 ST =000F = >IM=0 NEG ZER OFL CRY
D 0000800F O0000FFFF 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000
addi #$10,D1

-t

PC =0000056E USP =0001598C SSP =0007BF08 ST=0011=>IM=0 EXT CRY

D 0000800F 0000000F 00000000 00000000 00000000 00000000 00000000

0001598C

00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This instruction adds 10 hex to register D1.W. (Note that =1 + 10 = F)
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ADDQ Instruction

The ADDQ instruction adds a three-bit immediate value to an effective
address operand. This allows adding a small number to a register or mem-
ory address using a small, fast instruction.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) X(An,xr.s)
Yes | Yes Yes Yes Yes Yes Yes
xw | x| | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long
When an address register is used as the destination, only word and long
sizes are allowed.

Condition Codes Affected:

Set on carry-out of high-order bit position.
Set if high-order bit of result is set.

Set on overflow.

Set if result is zero.

0O N< Z X

Set on carry-out of high-order bit position.

No condition codes are affected if an address register is used as the des-
tination operand.

Assembler Syntax: ADDQ #<data>,<ea>
#<data> is a constant number between 1 and 8.
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Machine Code Format:

Bit 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
T

T T L L
0(1[0][1] Data 0| Size Effective  Address
[ ] [ I

+~Mode—| + Reg.—>

Data is a three-bit immediate field, with 000 representing 8, 001-111 rep-
resenting 1-7. Size is 00 for a byte operation, 01 for a word, and 10 for a

long operation.

Example:

PC =00000580 USP =0001598C SSP =0007BF08 ST=0000=>IM=0
D 00007FFF 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000
addq.| #$1,D0

=t

PC =00000582 USP =0001598C SSP = 0007BF08 ST =0000=>IM=0
D 00008000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000

This example adds 1 to register DO.

00000000
00000000

00000000
00000000

00000000
0001598C

00000000
0001598C
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ADDX Instruction

The ADDX (ADD eXtended) instruction provides multiple precision
ADD operands. Integers of any length can be added using the ADD and
ADDX instructions. This makes it possible to represent numbers much
larger than the 32-bit longword allows.

There are two forms of this instruction:

1. Add a data register to a data register.

2. Add a memory location to a memory location. The —(An)
addressing mode must be used for both the source and destina-
tion in this form of the instruction.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No No No Yes No No
xw | x| | x(PC) x(PC,xr.s) #x SR CCR
No | No No No No No No

Data Sizes: byte, word, long
Condition Codes Affected:

X Set on carry-out of high-order bit.

N Set if result was negative.

Z Cleared if result is not zero. Unchanged otherwise.
C Set on carry-out of high-order bit.

V  Set on overflow condition.

The Z-bit is not set if the result was zero. It is cleared if the result was
not zero. This property of the instruction allows the Z bit to correctly indi-
cate the result of a multiprecision addition operation. The Z-bit must be
set before the ADD begins, however. (This can be done with a MOVE to
CCR, or by comparing a register to itself. The latter instruction is two bytes
shorter.)
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Assembler Syntax: ADDX  Dy,Dx
ADDX - (Ay), = (Ax)

Machine Code Format:

Bt 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
I T T

1]117|/0|1 ] Reg.Rx | 1} Size |0 |0 |T | Reg. Ry
L1 | sl

The Reg. Rx and Reg. Ry fields contain the destination and source regis-
ter numbers, respectively. The size field is 00 for a byte operation, 01 for a
word operation, and 10 for a long operation. The T-bit (type) is O for the
data register to data register form of the instruction. The Reg. Rx and Reg.
Ry fields identify data registers in this case. The T-bit is 1 for the memory
to memory form of the instruction. The Rx and Ry fields identify the
address registers used by this form of the instruction.

Example:

This example adds the 64-bit quantity in (D0,D1) to the 64-bit quantity
in (D2,D3). The even numbered registers contain the high order part of
the number.

PC =00000596 USP =0001598C SSP =0007BF08 ST=0000=>IM=0

D 00000000 FFFFFFFF 00000000 FFFFFFFF 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
add.l D1,D3

=4

PC =00000598 USP =0001598C SSP =0007BF08 ST=0019=>IM=0 EXT NEG CRY

D 00000000 FFFFFFFF 00000000 FFFFFFFE 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
addx.1 DO,D2

-t

PC =0000059A USP =0001598C SSP =0007BF08 ST =0000=>IM=0

D 00000000 FFFFFFFF 00000001 FFFFFFFE 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 000C0000 00000000 0001598C

The quantity (0,FFFFFFFF) and (O,FFFFFFFF) when added together
become (1,FFFFFFFE). The low-order registers (D1 and D3) were added
first. Although the low-order registers both contained negative numbers,
the final result was positive.
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AND Instruction

The AND instruction performs a bit-wise AND operation. There are two
forms of this instruction:

1. AND the contents of an effective address with a data register,
leaving the results in the data register.

2. AND the contents of a data register and an effective address,
leaving the results in the effective address.

Addressing Modes Allowed:

Effective address as Source:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw | x| | x(PO x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes Yes No No

Effective address as Destination:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
No | No Yes Yes Yes Yes Yes
xw [ xI | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long
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Condition Codes Affected:

Not affected.

Set if most significant bit of result is set. Cleared otherwise.
Set if result is zero. Cleared otherwise.

Always cleared.

Always cleared.

<NNZXx

Assembler Syntax: AND  <ea>,Dn
AND Dn,<ea>

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T T o
111]0[0] Regster | D | Size Effective Address
(- ] N I T

+—Mode = | « Reg.—~

The Register field specifies the Data register used by the instruction,
regardless of whether the register is the source or the destination. The D-
bit determines the direction of the instruction. If the D-bit is zero, then the
Data register is the destination. If the D-bit is one, then the effective
address operand is the destination. The Size field specifies the data size:

00 for byte, 01 for word, and 10 for long.

Example:

This example shows the machine operation when two data registers are

ANDed together.

PC =000005AC USP =0001598C SSP =00078F08 ST =0000= >IM=0
D AAAAAAAA 01234567 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000
and.| D1,D0

-t

PC =000005AE USP =0001598C SSP =0007BF08 ST =0000= >IM=0
D 00220022 01234567 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000

00000000
00000000

00000000
00000000

The long quantities AAAAAAAA and 01234567 are ANDed to become

00220022.

00000000
0001598C

00000000
0001598C
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ANDI Instruction

The ANDI instruction performs a bit-wise AND between an immediate
operand (always the source) and an effective address operand (always the
destination).

Addressing Modes Allowed:

Destination only. Source is always immediate.

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
x.w | x| | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes No No No Yes Yes

Using the status register (SR) as the destination requires that the 68000
executes in Supervisor state. Attempting to execute this form of the
instruction in User mode causes a privilege violation exception. (See
Chapter 7 on Exception Programming.)

Data Sizes: byte, word, long
Condition Codes Affected:

Not affected.

Set if the high-order bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Always cleared.

Always cleared.

<O NZXx

The condition codes are cleared according to bits 5-0 of the operand if
either the status register (SR) or the condition code register (CCR) is used
as the destination. The normal condition code settings do not apply for
these addressing modes.

Assembler Syntax: ANDI #<data>,<ea>
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Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T TRl =
0|0j0|0]O|O]|1]|0]| Size | Effective Address

I I N R B

+ Mode—| + Reg.—~

T T T ] T T T T T T T T T T
Word data: 16 bits Byte Data: 8 bits
I N N I T | et T

T T T I T T T T T T T | T T T
Long data: 16 bits plus previous word
[ I NN [N S N I S SO NN N N B |

The Size field determines the data size used by the instruction. Size is 00
for byte operation, 01 for word, and 10 for long. Byte and word opera-
tions are followed by a word of immediate data. (Byte operations use only
the low eight bits of this word.) Long operations are followed by two

words (32 bits) of immediate data.

Examples:

The first example ANDs an immediate quantity with a data register.

PC =000005BA USP =0001598C SSP = 0007BF08 ST =0000= >IM=0
D 55555555 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000
andi #$1234,D0

PC =000005BE USP =0001598C SSP =0007BF08 ST=0000=>IM=0
D 55551014 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000

00000000
00000000

00000000
00000000

The next example shows the effect of ANDing to the condition code
register (CCR). First, we set all the condition codes using the MOVE to

CCR instruction:

PC = 000005BE USP =0001598C SSP =0007BF08 ST=0000= >IM=0
D 55551014 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000
move #$1F,CCR

=i

00000000
00000000

00000000
0001598C

00000000
0001598C

00000000
0001598C
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PC =0005C2 USP =01598C SSP =07BF08 ST=001F = >IM=0 EXT NEG ZER OFL CRY
D 55551014 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

Next, we AND the condition code register with 11 hex. This leaves the
X and C bits set, and clears the other condition codes.

andi.b #$11,ccr

-t

PC =000005C6 USP =0001598C SSP = 0007BF08 ST =0011= >IM =0 EXT CRY

D 55551014 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
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ASL Instruction

The ASL instruction performs an arithmetic left shift on a data register or
memory operand. There are three forms of this instruction:

1.

3.

Shift a data register to the left by a constant contained in the
instruction. Shifts from one to eight bits can be accomplished
using this form of the instruction.

. Shift a data register to the left by the number of bits contained in

another data register.

Shift a memory word left by one bit only.

Addressing Modes Allowed: Memory form only

Dn | An | (An) (An) + —(An) | x(An) x(An,xr.s)
No | No Yes Yes Yes Yes Yes
xw [ x.I | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long
Data size is restricted to word for the form of the instruction that is in
memory.

Condition Codes Affected:

X

< ONZ

Set according to the last bit shifted out of the operand. Unaffected
if the shift count is zero. (This is possible only in the second form
of the instruction.)

Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set according to the last bit shifted out of the operand. Unaffected
if the shift count is zero.

Set if the most significant bit is changed at any time during the shift
operation. Cleared otherwise.
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Assembler Syntax: ASL  #<count>,Dy

ASL  Dx,Dy
ASL  <ea>

Machine Code Format:

Data Register as destination:

Bit 1514 13 121 10 9 8 7 6 5 4 3 2 1 0
T T T T T
111[1[0] Immed. [1 ]| Size | T|[O0]O | Register
11 ! L1
Memory location as destination:
Bt 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1(1(170]0]|0]|O0

1

1

1

T T T 1
Effective Address
T |

<+ Mode | + Reg.—

The T-field determines the form of the register-destination form of the
instruction. If T is 0, then the Immediate field contains the shift count, with
000 binary representing a count of 8. If T is 1, then the register number
that contains the shift count is contained in the Immediate field.

Example:

PC =000005D2 USP =0001598C SSP =0007BF08 ST =0000=>IM=0
D 01234567 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

asl #8,00
-t

PC = 00000504 USP =0001598C SSP =00078F08 ST =0013=>IM=0 EXT OFL CRY
D 01236700 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

Notice that the upper half of the register destination is unchanged when a
word shift is performed. The sign bit of the word is also changed during
the shift, resulting in an overflow condition.
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ASR Instruction

The ASR instruction performs an arithmetic right shift on a data register
or memory operand. There are three forms of this instruction:

Addressing Modes Allowed: Memory form only

1. Shift a data register to the right by a constant contained in the
instruction. Shifts from one to eight bits can be accomplished
using this form of the instruction.

2. Shift a data register to the right by the number of bits contained
in another data register.

3. Shift a memory word right by one bit only.

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
No [ No Yes Yes Yes Yes Yes
xw | x.I | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long
Data size is restricted to word for the form of the instruction that is in
memory.

Condition Codes Affected:

X

ONZ

Set according to the last bit shifted out of the operand. Unaffected
if the shift count is zero. (That is possible only in the second form
of the instruction.)
Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Set according to the last bit shifted out of the operand. Cleared if
the shift count is zero.
Always cleared.
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Assembler Syntax: ASR  #<count>,Dy
ASR  Dx,Dy
ASR  <ea>

Machine Code Format:

Data Register as destination:

Bit 15 14 13 1211 10 9 8 7 6 5 4 3 2 1 0
T T 1

111{1]|0] Immed. |[O] Size | T {0 |0 | Register
L1 I L

Memory location as destination:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I|I||

1(1[1[(0}0[0[O0[0]1]|1 ]| Effective Address

T T

«Mode—>| < Reg.—

The Tield determines the form of the register-destination form of the
instruction. If T is 0, then the Immediate field contains the shift count, with
000 binary representing a count of 8. If T is 1, then the register number
which contains the shift count is contained in the Immediate field.

Example:

PC =00000SEE USP =0001598C SSP =0007BF08 ST =0000=>IM=0

D 01234567 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000

asr #8,00
-t
PC =000005F0 USP =0001598C SSP =0007B8F08 ST =0000= >IM=0

D 01230045 00000000 00000000 00000000 00000000 00000000 00000000
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000

This instruction shifts register DO to the right by 8. The upper half of the
register is unaffected because the operation is a word operation.

PC =000005FC USP =0001598C SSP =0007BF08 ST =0000=>IM=0

D 81234567 00000010 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000

asr.l D1,D0

00000000
0001598C

00000000
0001598C

00000000
0001598C
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Bcc (Conditional Branch) Instructions

Branch instructions are a vital part of machine-language programs. They
provide a way of interrogating the condition codes and executing two or
more alternate sets of instructions based on the results of the interroga-
tion. The Bec group of instructions is the method by which the 68000 per-
forms this function. There are fifteen combinations of the condition codes
that may be tested. Each of these has a two-letter mnemonic that takes the
place of the cc in Bec.

The permissible branch instructions are:

BCC
BCS
BEQ

BGE

BGT

BHI

BLE

BLS

BLT

BMI

Branch if the C-bit (carry) is clear.

Branch if the C-bit (carry) is set.

Branch on EQual. This instruction branches if the Z (Zero) bit
is set.

Branch on Greater than or Equal. This instruction branches if
the N (negative) and V (overflow) bits are either both set or
both clear. BGE is used for two’s complement binary
numbers.

Branch on Greater Than. This instruction branches if

¢ The N and V bits are both set AND the Z-bit is clear, or,

* The N, V, and Z bits are all clear.

Branch on Higher than. This instruction branches if the C
and Z bits are both clear. BHI is similar to BGT, except it is
used for unsigned numbers.

Branch on Less than or Equal. This instruction branches if

o The Z-bit is set, or,

o The N-bit is set AND the V-bit is clear, or,

* The N-bit is clear AND the V-bit is set.

The BLE instruction is used for two’s complement binary
numbers.

Branch on Lower or Same. This instruction branches if either
the C or Z bits are set. BLS is similar to BLE, except it is used
for unsigned numbers.

Branch on Less Than. This instruction branches if

* The N-bit is set and the V-bit is clear, or,

e The N-bit is clear and the V-bit is set.

This instruction branches if the N-bit is set.
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BNE Branch on Not Equal. This instruction branches if the Z-bit is
clear.

BPL Branch on Plus. This instruction branches if the N-bit is clear.

BVC Branch on V Clear. This instruction branches if the V-bit is
clear, indicating no overflow.

BVS Branch on V Set. This instruction branches if the V-bit is set,
indicating overflow.

BRA Branch Always. This instruction always branches, regardless
of the setting of the condition codes.

The Condition Code Summary is shown in Table 3.1.

Condition Codes Branch Instructions That Succeed

N Z VvV C | BRA BHI|BLS BCC|BCS BNE BEQ BV(C| BVS| BPL|BMI BGE| BLT|BGT| BLE
9 0 0 0 LR x x x X X x

a 0 o0 1 ) X X[ % X X X X

a o 1 0 LR X X | L3 X

| 0 0 1 1 | X x| x XN X x

0o 1 0 0 X X [ x x| x \ x X
0 1 0 1 x X x x| x 3 X X
0o 1 10 X X[ x X x| x X X
o 1 1 X X X X X X X
1.0 0 0 gl 19 X X X x X X
10 0 1 x X x| x X x X x
1 0 1 0 o x X X x X[ x X
10 1 S X N [N X X[ x X

1 10 0 x X | x X Ay X X X
11 0 1 Y -I[ x X N[ x x X

I

11 1 0 X I NN X x X1 x ¥
LU B B | A} x X x » XS x

Table 3.1 - Condition Code Summary
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Addressing Modes Allowed:

There is a special addressing mode for branch instructions. Branches
can either have a byte or word displacement that is sign extended to a
long and added to the PC (Program Counter) to perform the branch. (This
is done only if the condition is satisfied.)

Data Sizes: byte, word
Condition Codes Affected: None

Assembler Syntax: Bcc.S <label>  Byte displacement
Bcc.W <label> Word displacement

<label> is a label contained in the instruction area of the program
(.text area on UNIX and CP/M-68K). The .S and .W suffixes are used to
denote the two possible displacement sizes (short and word). Many
assemblers perform this selection automatically.

Machine Code Format:

Bt 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T

T T T T ] T T T
o(1(1/0 Condition 8-bit displacement
[ I I N S N N |
T T T T 7 T T T T [ T T T
16-bit displacement if 8-bit displacement = 0
[ N NN DU U S N S S N T S O B

The Condition is a four-bit encoding of the branch condition. The con-
ditions are shown in Table 3.2.

The combination 0001 for condition is used to denote the BSR (Branch
to Subroutine) instruction, rather than a conditional branch.

The 8-bit displacement field is an 8-bit field that gives a two’s comple-
ment number to be added to the PC if the branch is successful. The PC
always contains the address of the word that follows the first word of the
branch instruction. If the 8-bit displacement is zero, then the word follow-
ing the branch instruction contains a 16-bit displacement to be added to
the PC.

One-word (8-bit) displacements give a branch range of —128 to +126
bytes away from the branch instruction. With a 16-bit displacement, this
range is expanded to — 32768 to +32766 bytes. The displacement must
always be even. (Instructions must begin on a word boundary.)
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Condition Instruction Condition Instruction
0000 BRA 1000 BVC
0001 (NONE) 1001 BVS
0010 BHI 1010 BPL
0011 BLS 1011 BMI
0100 BCC 1100 BGE
0101 BCS 1101 BLT
0110 BNE 1110 BGT
011 BEQ 1111 BLE

Table 3.2 - Condition and corresponding instruction

A one-word (8-bit displacement) branch to the next instruction is impos-
sible. The displacement would have to be zero, and the next word (i.e.,
the first word of the next instruction) would be taken as a 16-bit branch
offset. The Bcc instruction cannot be configured to yield a one word no
operation (an instruction that does nothing).

Example:

PC =00000606 USP =0001598C SSP =0007BF08 ST=0000=>IM=0
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

beq $60A

-1606,60e

00000606 beq $60A
00000608 moveq #$FF,D0
0000060A bne $60E
0000060C moveq #$FE,DO
0000060E nop

In this segment of sample code, there are two conditional branches, a
BNE and a BEQ. The BEQ will not be taken, since the Z-bit is not set at the
beginning. Thus, the first MOVEQ instruction will be executed. The Z-bit
will remain clear as a result of this instruction. The BNE will be taken, and
register DO will have a value of FFFFFFFF.
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-t

PC =00000608 USP =0001598C SSP =0007BF08 ST =0000= >IM=0

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001588C
moveq #$FF,DO

~t

PC = 0000060A USP =0001598C SSP =0007BF08 ST=0008 = >IM =0 NEG

D FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
bne $60E

=11

PC =0000060E USP =0001598C SSP = 0007BF08 ST =0008= >IM=0 NEG

D FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

The next example illustrates an anomaly of the 68000 instruction set.
The CMP instruction is used to set the condition codes as if the two oper-
ands were subtracted. The operands remain unaffected. However, the
comparison CMP DQ,D1 followed by a BGT instruction will branch if reg-
ister D1 is greater than register DO (i.e., the operands of the compare
instruction must be read backwards).

PC =00000616 USP =0001598C SSP =0007BF08 ST =0000= >IM=0

D FFFFFFFF 00000001 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 ©0000000 00000000 00000000 00000000 00000000 0001598C
cmp.l DO,D1

-1616,620

00000616 cmp.! DO,D1

00000618 bgt $61C

0000061A addq #$2,D2

0000061C bhi $620

0000061E addq #$1,D2

00000620 nop

In this code segment, DO (- 1) and D1 (1) are compared. If D1 is
greater than DO (and it is), the first ADDQ instruction will be skipped. The
BHI instruction is the unsigned version of a BGT. In this case, — 1 (actually
22 — 1, or about 4 billion) is greater than 1, so the branch will not be
taken. (Since we skipped the first ADDQ instruction, the condition codes
at the time of executing the BHI are the result of the CMPL instruction.)

Register D2 will have a value of 1.
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-t

PC =00000618 USP =0001598C SSP =0007BF08 ST =0001= >IM=0 CRY

D FFFFFFFF 00000001 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000
bgt $61C

-1

PC =0000061C USP =0001598C SSP =0007BF08 ST =0001= >IM=0 CRY

O FFFFFFFF 00000001 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000
bhi $620

-t

PC =0000061E USP =0001598C SSP =00078F08 ST =0001=>IM=0 CRY

D FFFFFFFF 00000001 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000
addq #$1,D2

=t

PC =00000620 USP =0001598C SSP =0007BF08 ST =0000=>IM=0

D FFFFFFFF 00000001 00000001 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000
0001598C

00000000
0001598C

00000000
0001598C

00000000
0001598C
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BCHG Instruction

The BCHG (test a Bit and CHanGe) instruction inverts a single bit in an
effective address operand. The Z-bit is set according to the state of the bit

before the inversion.

The bit number is contained either in a register or in an immediate field
inside the instruction itself. The operation is restricted to long data for a
data register destination, and to byte data for memory locations. Bits are
numbered from 0, with bit 0 being the least significant bit in a byte (or

long).

Addressing Modes Allowed:

Dn | An (An) (An) + —(An) | x(An) X(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw | xI | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, long

Condition Codes Affected:

Not affected.
Not affected.

Not affected.

< O N Z X

Not affected.

Assembler Syntax: BCHG Dn,<ea>

BGHG #<data>,<ea>

Set if the bit was zero before being inverted. Cleared otherwise.
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Machine Code Format:
Bit Number Dynamic:

Bit 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
L TR

0|0 |0|0| Register Effective  Address
[ [ T T

<+ Mode —* | <+ Reg.—

(=}
—

Bit Number Static:

Bit 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
T J T T 1T

0Of0O[(0|O0O|J1|O0O|0O]0O]O |1 | Effective Address
T I T |

<+ Mode = | < Reg.—*

I T T T 1
o|0|0o|OJO|O|O|O it Bit Number
L | I |

The Register field indicates the data register in which the bit number
resides for the Bit Number Dynamic form of the instruction. In the Bit
Number Static case, bits 5-7 of the extension word are ignored for data
register destinations. For memory locations, bits 4 and 3 are also ignored.
(Bit numbers in a long range from 0-31, and in a byte from 0-7.)

Example:

PC = 00000628 USP =0001598C SSP = 0007BF08 ST = 0000 = >IM =0
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
bchg #$0,D0

~t

PC =0000062C USP =0001598C SSP = 0007BF08 ST =0004 = >IM =0 ZER

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This example inverts bit O of register DO. The Z-bit is set after the
instruction, indicating that the bit was clear before the instruction.
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BCLR Instruction

The BCLR (test a Bit and CLeaR) instruction clears a single bit in an
effective address operand. The Z-bit is set according to the state of the bit
before the instruction.

The bit number is either contained in a register, or in an immediate field
inside the instruction itself. The operation is restricted to long data for a
data register destination, and to byte data for memory locations. Bits are
numbered from 0, with bit O being the least significant bit in a byte (or
long).

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw [ x| | x(PO x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, long
Condition Codes Affected:

Not affected.
Not affected.

Not affected.

X
N
Z  Set if the bit was zero before being cleared. Cleared otherwise.
C
V  Not affected.

Assembler Syntax: BCLR  Dn,<ea>
BCLR #<data>,<ea>
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Machine Code Format:
Bit Number Dynamic:

Bt 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
T T 7 T T 71

0|0|0|0]| Register Effective  Address
| (U N T |

=
-
o

<+ Mode -+ | +Reg.—*
Bit Number Static:

Bit 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
T 1 T T T

0|00 |0]J1|0|0O|0O]1 |0 Effective Address
N I S B

<+ Mode | +Reg.—~

T T | L
ofo(ojojolo|ojo | Ml Bit Number
L i | I

The Register field indicates the data register in which the bit number
resides for the Bit Number Dynamic form of the instruction. In the Bit
Number Static case, bits 5-7 of the extension word are ignored for data
register destinations. For memory locations, bits 4 and 3 are also ignored.
(Bit numbers in a long range from 0-31, and in a byte from 0-7.)

Example:

PC =00000632 USP =0001598C SSP =0007BF08 ST =0000=>IM=0

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
belr #$0,D00

=

PC =00000636 USP =0001598C SSP =0007BF08 ST =0000=>IM=0

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This instruction clears bit 0 of register DO. The Z-bit is not set after the
instruction, indicating that the bit was set before the instruction.
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BSET Instruction

The BSET (test a Bit and SET) instruction sets a single bit in an effective
address operand. The Z-bit is set according to the state of the bit before
the instruction.

The bit number is either contained in a register or in an immediate field
inside the instruction itself. The operation is restricted to long data for a
data register destination, and to byte data for memory locations. Bits are
numbered from 0, with bit O being the least significant bit in a byte (or

long).

Addressing Modes Allowed:

Dn | An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw | xI | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, long

Condition Codes Affected:

X Not affected.
N Not affected.
Z Set if the bit was zero before being set. Cleared otherwise.
C  Not affected.
V  Not affected.

Assembler Syntax: BSET Dn,<ea>
BSET #<data>,<ea>
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Machine Code Format:
Bit Number Dynamic:

Bit 15 14 13121110 9 8 7 6 5 4 3 2 1 0
U T T T T

0{0|0|O0] Register Effective  Address
[ [T S
<+ Mode | + Reg.—~

=

Bit Number Static:

Bt 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O
T 1 T T 1

0[(0{0|O|1]0|0|0O]|1}|1| Effective Address
T S |

<+ Mode | + Reg.~>

T T T T T 1
ojojofojojojlofo 1 Bit Number
L1 | D |

The Register field indicates the data register in which the bit number
resides for the Bit Number Dynamic form of the instruction. In the Bit
Number Static case, bits 5-7 of the extension word are ignored for data
register destinations. For memory locations, bits 4 and 3 are also ignored.
(Bit numbers in a long range from 0-31, and in a byte from 0-7.)

Example:

PC =00000644 USP =0001598C SSP =0007BF08 ST =0000=>IM=0

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
bset #$0,D0

~t

PC = 00000648 USP = 0001598C SSP =0007BF08 ST =0004=>IM=0ZER

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This instruction sets bit 0 of register DO. The Z-bit is set after the instruc-
tion, indicating that the bit was clear before the instruction.
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BSR Instruction

The BSR (Branch to SubRoutine) instruction places the address of the
next instruction to be executed on top of the stack. A displacement is then
added to the PC register (Program Counter), and execution continues at
that address. For the purposes of the addition, the PC points to the word
that follows the first word of the BSR instruction.

Addressing Modes Allowed:

There is a special addressing mode for branch instructions. Branch
instructions can either have a byte or word displacement that is sign
extended to a long and added to the PC (Program Counter) to perform
the branch.

Data Sizes: byte, word
Condition Codes Affected: None

Assembler Syntax: BSR.S <label> Byte displacement
BSR.W <label> Word displacement

<label> is a label contained in the instruction area of the program
(text area on UNIX and CP/M). The .S and .W suffixes are used to denote
the two possible displacement sizes (short and word). Many assemblers
perform this selection automatically.

Machine Code Format:

Bit 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O
T T T | T 1T

ojt1j1jojojojo|1 8-bit displacement
I W S S N |

1 T [ 1 1T 1 T T T 7 T 7177
16-bit displacement if 8-bit displacement = 0
I O S S OO T Y [ S TN N (SO N

The format of a BSR instruction is the same as that of the Bcc instruc-
tions, with a condition field (bits 11-8) of 0001.

As with the Bec instructions, it is not possible to have a one-word BSR
to the next instruction, since the 8-bit displacement in that case would be
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zero. The next word (which would be the first word of the next instruc-
tion) would erroneously be used as the 16-bit displacement in this case.
Most assemblers will not allow this error condition to take place.

Example:

PC =0000064E USP =0001598C SSP =0007BF08 ST=0000= >IM=0

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
bsr $652

-t

PC = 00000652 USP = 00015988 SSP =0007BF08 ST =0000= >IM=0

D 00000000 00000C0C0 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00015988
rts

—dl15988,1598¢

00015988 00000650

The BSR instruction at location 64E branches to location 652, after plac-
ing 650 (the address of the next instruction) on the stack (at location
15988).

=0

PC =00000650 USP =0001598C SSP =0007BF08 ST=0000=>IM=0

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

Following the RTS instruction, execution picks up at location 650, and
the return address has been popped off the stack. (Register A7 now con-
tains 1598C—four bytes have been popped.)
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BTST Instruction

The BTST (Bit TeST) instruction tests a single bit in an effective address
operand. The Z-bit is set according to the state of the bit.

The bit number is either contained in a register or in an immediate field
inside the instruction itself. The operation is restricted to long data for a
data register destination, and to byte data for memory locations. Bits are
numbered from O, with bit O being the least significant bit in a byte (or
long).

Addressing Modes Allowed (Bit Number Static):

Dn [ An | (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw | xd | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes No No No

Addressing Modes Allowed (Bit Number Dynamic):

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes [ No Yes Yes Yes Yes Yes
x.w | x1 | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes Yes No NO

Data Sizes: byte, long
Condition Codes Affected:

X Not affected.
N Not affected.
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Z  Set if the tested bit is zero. Cleared otherwise.
C  Not affected.
V  Not affected.

Assembler Syntax: BTST  Dn,<ea>
BTST #<data>,<ea>

Machine Code Format:

Bit Number Dynamic:

Bt 15141312110 9 8 7 6 5 4 3 2 1 0
T 1 1 T T 7T

0|0|0|0| Register |1 |0 |0 | Effective  Address
[ T T B

+~ Mode — | +-Reg.—

Bit Number Static:

Bt 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— 1 T T 1

o|o0|O0|O]1|O|0O|O|O|O]| Effective Address
TR [ T I |

«~Mode—| +Reg.~

LB | L

ojojofojo|o|O|O i Bit Number
L1 | I N

The Register field indicates the data register in which the bit number
resides for the Bit Number Dynamic form of the instruction. in the Bit
Number Static case, bits 5-7 of the extension word are ignored for data
register destinations. For memory locations, bits 4 and 3 are also ignored.
(Bit numbers in a long range from 0-31, and in a byte from 0-7.)

Example:

PC =00000658 USP =0001598C SSP =000FBF08 ST=0000=>IM=0

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
btst #$0,00
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CHK Instruction

The CHK (CHecK register against bounds) instruction verifies that a data
register contains a number within a certain positive range of values. This
instruction is normally used by high-level language systems for range
checking subscripts.

The low-order word (16 bits) of the data register is compared to an
operand specified by the effective address field of the instruction. If the
register is less than zero (i.e., bit 15 of the register is set) or greater than
the upper bound, then a CHK exception results. (See Chapter 7 on Excep-
tion Processing for details.)

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw | xI| | x(PO x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes Yes No No

Data Sizes: word

Condition Codes Affected:

X
N

Assembler Syntax: CHK  <ea>,Dn

Not affected.

Set if the data register is less than zero. Cleared if the data register
is greater than the effective address operand. Undefined
otherwise.

Undefined.
Undefined.
Undefined.
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Machine Code Format:

Bit 1514 13121110 9 8 7 6 5 4 3 2 1 0
1 T T T 1T

0f(1]0|0]| Register |1 ]1|0| Effective Address
L1 O A
<+ Mode | < Reg.—

Register is the number of the data register to be tested.
Example:

PC =00000660 USP =0001598C SSP = 000FBF08 ST =0000=>IM=0

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
chk #$1,00

St

PC =00000664 USP =0001598C SSP =000FBF08 ST=0000=>IM=0

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
chk #$0,00

=

Exception $06 at user address 00000668. Aborted.

The first CHK instruction in this example does nothing, as the register is
equal to the limit (both are 1). In the second example, an exception is
generated. The message printed here shows how CP/M-68K treats excep-
tions in a user program. Other operating systems behave in a similar fash-
ion. Exception 6 is the CHK instruction. (See Chapter 7 on Exception
Processing for details.)
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CLR Instruction

The CLR (CLeaR) instruction sets an effective address operand to zero. An
anomaly of the 68000 hardware causes memory operands to be read and
then cleared. This usually makes no difference in program behavior, with
two exceptions of initializing some memory units with parity (which may

give an erroneous parity error), or accessing memory-mapped hardware.

Addressing Modes Allowed:

Dn An

(An)

(An) +

~(An)

x(An)

x(An,xr.s)

Yes | No

Yes

Yes

Yes

Yes

Yes

xw | x|

x(PC,xr.s)

SR

CCR

Yes | Yes

No

No

No

No

Data Sizes: byte, word, long

Condition Codes Affected:

<ONZXx

Not affected.
Always cleared.
Always set.
Always cleared.
Always cleared.

Assembler Syntax: CLR <ea>

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5
T

4 3

1.0

0

1

0jo0]o0

of1]0

Size Effective

|

T I
Address
|

Size is 00 for byte data, 01 for word, and 10 for long.

+ Mode | < Reg.—*







68000 Instruction Set 127

CMP Instruction

The CMP (CoMPare) instruction compares the contents of a data regis-
ter with an effective address operand. The condition codes are set as if the
effective address were subtracted from the data register. Neither operand
is altered.

When used with conditional branches, this instruction creates a less
than desirable effect. When the combination

CMP DO,D1
BGT X1

is used, the branch takes place if register D1 is greater than register DO.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | Yes Yes Yes Yes Yes Yes
xw | x| | x(PO x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes Yes No No

Data Sizes: byte, word, long

Byte mode is not allowed when address register direct mode is used as
the effective address.

Condition Codes Affected:

X Not affected.

N  Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. (The operands are equal.) Cleared
otherwise.

C Set if a borrow is generated. Cleared otherwise.

V  Set on overflow in the subtract operation. Cleared otherwise.
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Assembler Syntax: CMP  <ea>,Dn

The CMPA instruction is used when the destination is an address regis-
ter. CMP!I compares an immediate source to an effective address operand.
CMPM compares memory to memory. Many assemblers make this distinc-
tion automatically.

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 T LN I B

1[0 |1 |1 ]| Register | 0| Size Effective Address
L1 I [ N S |
<+ Mode—| «Reg.—~

The Register field is the number of the data register used as the destina-
tion. The size field is 00 for comparing bytes 01 for words, and 10 for longs.

Example:

PC =00000674 USP =0001598C SSP = 000FBF08 ST =0000=>IM=0
D 00000001 00000002 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
cmp.l $932,D0
-s1932
00000932 00000001 .
-1674,684
00000674 cmp.| $932,D0
0000067A beq $67E
0000067C addq.! #$1,D2
0000067E cmp.| DO,D1
00000680 ble $684
00000682 addq #$2,D2
00000684 nop

This program segment compares register DO to a memory word con-
taining 1. The BEQ instruction will branch, and the first ADDQ instruction
will not be executed. The BLE instruction will not branch. (Remember that
the compare operands must be read backwards.) Register D2 will have a
value of 2.
-t
PC =0000067A USP =0001598C SSP =000FBF08 ST =0004=>IM =0 ZER
D 00000001 00000002 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
beq $67E
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=

PC =0000067E USP = 0001598C SSP =000FBF08 ST =0004=>IM=0 ZER

D 00000001 00000002 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000
cmp.| DO,D1

-1

PC = 00000680 USP =0001598C SSP =000FBF08 ST =0000=>IM=0

D 00000001 00000002 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000
ble $684

-t

PC =00000682 USP =0001598C SSP = 000FBF08 ST =0000= >IM=0

D 00000001 00000002 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000
addq #$2,02

-t

PC =00000684 USP =0001598C SSP =000FBF08 ST =0000= >IM=0

D 00000001 00000002 00000002 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000

00000000
00000000

00000000
00000000

00000000
00000000

00000000
00000000

00000000
0001598C

00000000
0001598C

00000000
0001598C

00000000
0001598C
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CMPA Instruction

The CMPA (CoMPare Address) instruction compares the contents of an
address register with an effective address operand. The condition codes
are set as if the effective address were subtracted from the address regis-
ter. Neither operand is altered.

When used with conditional branches, this instruction creates a less
than desirable effect. When the combination

CMPA AO,A1
BGT X1

is used, the branch takes place if the value in register Al is greater than
the value in register AQ.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | Yes Yes Yes Yes Yes Yes
xw | x| | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes Yes No No

Data Sizes: word, long

Condition Codes Affected:

X Not affected.

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. (The operands are equal.) Cleared
otherwise.

C Set if a borrow is generated. Cleared otherwise.

V  Set on overflow in the subtract operation. Cleared otherwise.

Assembler Syntax: CMPA <ea>,An
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The CMP instruction is used when the destination is a data register.
CMP! compares an immediate source to an effective address operand.
CMPM compares memory to memory. Many assemblers make this distinc-
tion automatically.

Machine Code Format:

Bt 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
=1 T T 71 1

10| 1|1 Register | S |1 |1} Effective  Address
11 SN I T

<+ Mode = | + Reg. >

The Register field is the number of the data register used as the destina-
tion. The S (Size) bit is O for comparing words, and 1 for longs. Comparing
a word is performed by sign-extending the source and making a 32-bit
compare.

Example:

PC =00000694 USP =0001598C SSP =000FBF08 ST =0008=>IM=0 NEG
D FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000936 0000094E 00000000 00000000 00000000 00000000 00000000 0001598C
cmpa.l AO,A1
-1694,69a

00000694 cmpa.l A0,A1

00000696 bhi $69A

00000698 cir.l DO

0000069A nop

This code segment compares address registers AO to Al. The BHI
instruction will succeed. (Remember that the compare operands must be
read backwards.) Data register DO will remain unchanged.

=i

PC =00000696 USP =0001598C SSP =000FBF08 ST=0000=>IM=0

D FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000936 0000094E 00000000 00000000 00000000 00000000 00000000 0001598C
bhi $69A

=

PC =0000069A USP =0001598C SSP =000FBF08 ST=0000=>IM=0

D FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000936 0000094E 00000000 00000000 00000000 00000000 00000000 0001598C
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CMPI Instruction

The CMPI (CoMPare Immediate) instruction compares an immediate
operand with an effective address operand. The condition codes are set as
if the immediate quantity were subtracted from the effective address. Nei-
ther operand is altered.

When used with conditional branches, this instruction creates a less
than desirable effect. When the combination

CMP} #<data>,D0
BGT X1

is used, the branch takes place if the value in data register DO is greater
than the immediate data.

Addressing Modes Allowed:

Dn | An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw [ xI | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long
Condition Codes Affected:

X Not affected.

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. (The operands are equal.) Cleared
otherwise.

C Setif a borrow is generated. Cleared otherwise.

V  Set on overflow in the subtraction operation. Cleared otherwise.

Assembler Syntax: CMPI # <data>,<ea>
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The CMP instruction compares an effective address operand to a data
register. The CMPA instruction compares an effective address operand to
an address register. The CMPM instruction compares memaory to memory.

Many assemblers make this distinction automatically.
Machine Code Format:

Bt 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0

1 T T T T

[N B DU Y |

o|ojo0fofj1|[1|0]0O] Size Effective Address

T

1

<+ Mode | < Reg.—~>

T T T | T T T T T T | T T
Word data: 16 bits Byte data: 8 bits
e oo e e I O R B |

T

!

T T [ T T T T T T T T T 7T
Long data: 32 bits, including previous word
I I (N S Y O [ Y T T

T

|

The size field is 00 for byte compares, 01 for words, and 10 for longs.

Example:

PC =000006A2 USP =0001598C SSP =000FBF08 ST=0000=>IM=0

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000
cmp.| #$1,00

~-t

PC =000006A8 USP =0001598C SSP = 000FBF08 ST =0004 = >IM =0 ZER

D 00000001 C00Q00C0 00000000 00000000 00000000 00000000 00000000
A 00000000 000000Q0 00000000 00000000 00000000 00000000 00000000
beq $6AC

-t

PC =000006AC USP =0001598C SSP = 000FBF08 ST =0004 = >IM=0 ZER

D 00000001 00000000 00000000 00000000 00000000 00000000 Q0G000000
A 00000000 00000000 00000000 00000000 00000000 0Q000000 00000000

00000000
0001598C

00000000
0001598C

00000000
0001598C

This example compares the contents of data register DO to the constant

1. The BEQ succeeds because DO also contains a 1.
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CMPM Instruction

The CMPM (CoMPare Memory) instruction compares two memory
operands using the post-increment addressing mode. The condition codes
are set as if the source operand were subtracted from the destination.
Neither operand is altered.

When used with conditional branches, this instruction creates a less
than desirable effect. When the combination

CMPM (A0 + (A1) +
BGT X1

is used, the branch takes place if the second operand is greater than the
first.

Addressing Modes Allowed: Only post-increment
Data Sizes: byte, word, long
Condition Codes Affected:

X Not affected.

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. (The operands are equal.) Cleared
otherwise.

C  Setif a borrow is generated. Cleared otherwise.

V  Set on overflow in the subtract operation. Cleared otherwise.

Assembler Syntax: CMPM (Ay) +,(Ax) +

The CMP instruction compares an effective address operand to a data reg-
ister. The CMPA instruction compares an effective address operand to an
address register. The CMPI instruction compares an immediate quantity to an
effective address. Many assemblers make this distinction automatically.

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1

T T T

1{011 )1 Reg Ax |1 | Size (O[O0 |1 Reg Ay
L1 1 L1
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The size field is 00 for comparing bytes, O1 for words, and 10 for longs.
The Ay and Ax fields specify the source and destination address registers,
respectively.

Example:

PC =0000050C USP =0001598C SSP =0007BF08 ST=0000=>IM=0
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000514 00000524 00000000 00000000 00000000 00000000 00000000 0001598C
cmpm (A0) +,(A1) +
-150¢,510
0000050C cmpm (A0) +,(A1) +
0000050E beq $50C
00000510 nop
—-dw514,534
00000514 0000 0001 0002 0003 0004 0005 0006 0008 ...
00000524 0000 0001 0002 0003 0004 0005 0006 0007 ...
-9,510
PC = 00000510 USP = 0001598C SSP =0007BF08 ST =0009 = >IM=0 NEG CRY
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000524 00000534 00000000 00000000 00000000 00000000 00000000 0001598C

The example above compares two word strings in memory until it finds a
pair that differ. From the dw command, we can see that the first pair of
words that differ is at locations 522 and 532. The address registers are incre-
mented past these locations by the post-decrement addressing modes.
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DBcc Instruction

DBcc is an instruction designed for looping. The condition cc is similar
to the conditions for conditional branches (see the Bcc instructions). DBcc
will commonly be placed at the end of a loop. The condition is the termi-
nation condition, much like the REPEAT/UNTIL condition of the Pascal
language. The loop may also be terminated on a maximum count.

The termination count is contained in the low word of a data register.
The data register is decremented until it reaches — 1. At this point the
loop is terminated. Note that the comparison is for equal to —1. If the
data register initially contains — 1, then the loop will be repeated 65,536
times (assuming the termination condition is not satisfied).

The permissiblg instructions are:

DBCC
DBCS
DBEQ

DBGE

DBGT

DBHI

DBLE

DBLS

DBLT

Terminate if the C-bit (carry) is Clear.

Terminate if the C-bit (carry) is Set.

Terminate on EQual. The loop terminates if the Z (Zero) bit
is set.

Terminate on Greater than or Equal. The loop terminates if
the N (negative) and V (overflow) bits are either both set or
both clear. GE is used for two’s complement binary
numbers.

Terminate on Greater Than. The loop terminates if

e The N and V bits are both set and the Z-bit is clear, or,

e The N, V, and Z bits are all clear.

Terminate on Higher than. The loop terminates if the C and
Z bits are both clear. DBHI is similar to DBGT, except that it
works on unsigned numbers.

Terminate Less than or Equal. The loop terminates if

« The Z-bit is set, or,

o The N-bit is set AND the V-bit is clear, or,

e The N-bit is clear AND the V-bit is set.

The DBLE instruction is used for two’s complement binary
numbers.

Terminate on Lower or Same. The loop terminates if either
the C or Z bits are set. DBLS is similar to DBLE, except that
it works on unsigned numbers.

Terminate on Less Than. The loop terminates if

s The N-bit is set and the V-bit is clear, or,
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e The N-bit is clear and the V-bit is set.

DBMI Terminate on Minus. The loop terminates if the N-bit is set.

DBNE Terminate on Not Equal. The loop terminates if the Z- bit is
clear.

DBPL Terminate on PLus. The loop terminates if the N-bit is clear.

DBVC Terminate on V Clear. The loop terminates if the V-bit is
clear, indicating no overflow.

DBVS Terminate on V Set. The loop terminates if the V-bit is set,
indicating overflow.

DBF Never terminate. The loop is terminated by count only.
Many assemblers accept DBRA as an alternate to DBF.
DBT Always terminate. This instruction does not loop at all.

The condition is tested before decrementing the data register.
Addressing Modes Allowed:

DBcc instructions use a single addressing mode, where a two's comple-
ment displacement is contained in the second word of the instruction. If
the loop is executed again, this displacement is sign-extended and added
to the PC (Program Counter).

The PC contains the address of the displacement at the time the addi-
tion takes place.

Data Sizes: word
Condition Codes Affected: None
Assembler Syntax: DBcc Dn, <label >
<label> is a label on an instruction in the program.

Machine Code Format:

Bit 1514 1312110 9 8 7 6 5 4 3 2 1 0
T T T T T

11101 Condition 1|11]0(0]1 Register
L1 L

T T T T T T T s T T TS | S ST
16-bit displacement to loop beginning
I N I Y S T T U N T I T |

The Register field specifies the data register number to be used as the
loop counter. The condition is a four-bit encoding of the branch condi-
tion. The conditions are shown in Table 3.3.
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Condition Instruction Condition Instruction
0000 DBT 1000 DBVC
0001 DBRA,DBF 1001 DBVS
0010 DBHiI 1010 DBPL
0011 DBLS 1011 DBM!
0100 DBCC 1100 DBGE
0101 DBCS 1101 DBLT
0110 DBNE 1110 DBGT
o DBEQ 1111 DBLE

Table 3.3 - Conditional corresponding instruction

Example:

PC =000006CC USP =0001598C SSP = 000FBF08 ST =0009 = >IM =0 NEG CRY
D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000952 0000095A 00000000 00000000 00000000 00000000 00000000 0001598C
moveq #$A,D0
~16ce,6d4

000006CE move.b (A0) +,(A1) +

000006D0 dbeq D0,6CE

000006D4 nop

This sample code segment moves a null-terminated string whose
address is contained in register AQ to an area whose address is in register
A1. Putting A in DO (10 decimal) means that if a zero byte is not found, up
to eleven bytes will be moved. The areas pointed to by registers AQ and
A1 are (conveniently) adjacent. The debugger display command shows:

—-d952,966
00000952 48 65 6C 6C 6F 20 00 00 00 00 00 00 00 00 00 00 Hello ..........
00000962 00 0O 0OOOQOOO L

The string Hello should be duplicated starting at address 95A. Notice
the trailing space. Executing the program shows:

-g,6d4
PC =000006D4 USP =0001598C SSP =000FBF08 ST =0004=>IM=0 ZER
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D 00000004 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000959 00000961 00000000 00000000 00000000 00000000 00000000 0001598C

The count register (D0) is now 4, indicating that six bytes were moved
out of a possible eleven. Both address registers have been incremented by
seven, and now point to the byte after the first zero byte. (The address
registers were incremented once more than the count register was decre-
mented because the move.b instruction was executed seven times, while
the dbeq instruction was executed only six.) Looking at memory again
shows:

-d952,966
00000952 48 65 6C 6C 6F 20 00 00 48 65 6C 6C 6F 20 00 00 Hello ..Hello ..
00000962 00 0O OOOOOQO

The source string has been duplicated in the destination, including the
trailing space and the null terminator.
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DIVS Instruction

The DIVS (D1Vide Signed) instruction divides a 32-bit quantity contained
in a data register by a 16-bit quantity contained in an effective address
operand. The low-order word of the data register is replaced by the quo-
tient, and the high-order word by the remainder. The remainder and quo-
tient will always have the same sign, except when the remainder is O.

Two error conditions are possible with a DIVS instruction:

1. An attempt is made to divide by zero. The 68000 processor gen-
erates an exception condition when this is attempted (see Chap-
ter 7 on Exception Conditions).

2. A large number is divided by a small number, and the quotient
will not fit in 16 bits. This is an Overflow condition. The V-bit in
the status register is set, and the contents of the data register
remain unmodified.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw | xl | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes Yes No No

Data Sizes: word
Condition Codes Affected:

X  Not affected.

N Set if the quotient is negative. Cleared otherwise. Undefined on
overflow conditions.

Z Set if the quotient is zero. Cleared otherwise. Undefined on
overflow conditions.
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C  Always cleared.
V  Set if overflow detected. Cleared otherwise.

Assembler Syntax: DIVS <ea>,Dn

Machine Code Format:

Bt 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T — T T T 1

1[0|0|0| Register 1|1 | Effective Address
L1 e e

<+ Mode = | + Reg.—~

—

The Register field specifies the data register to be used as the destination
(dividend). The Effective Address field specifies the source (divisor).

Example:

PC=000006DC USP =0001598C SSP =000FBF08 ST=0000= >IM=0

D 00008887 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
divs #$2,00

-t

PC =000006E0 USP =0001598C SSP =000FBF08 ST =0000= >IM=0

D 00014443 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This example divides 8887 by 2 to yield a quotient of 4443 with a
remainder of 1.
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DIVU Instruction

The DIVU (DIVide Unsigned) instruction divides a 32-bit quantity con-
tained in a data register by a 16-bit quantity contained in an effective
address operand. The low-order word of the data register is replaced by
the quotient, and the high-order word by the remainder. All quantities are
considered to be unsigned positive integers.

Two error conditions are possible with a DIVU instruction:

1. An attempt is made to divide by zero. The 68000 processor gen-
erates an exception condition when this is attempted (see Chap-
ter 7 on Exception Conditions).

2. A large number is divided by a small number and the quotient
will not fit in 16 bits. This is an overflow condition. The V-bit in
the status register is set and the contents of the data register
remain unmodified.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw | x! [ x(PC) x{PC,xr.s) #x SR CCR
Yes | Yes Yes Yes Yes No No

Data Sizes: word

Condition Codes Affected:

X Not affected.

N  Set if the quotient is negative. Cleared otherwise. Undefined on
overflow conditions.

Z Set if the quotient is zero. Cleared otherwise. Undefined on
overflow conditions.
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C  Always cleared.
V  Set if overflow detected. Cleared Otherwise.

Assembler Syntax: DIVU <ea>,Dn

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T — T T T 7T

1/10]0[0] Register |O | 1|1 | Effective  Address
L1 e

<+ Mode | « Reg.—~

The Register field specifies the data register to be used as the destination
(dividend). The Effective Address field specifies the source (divisor).

Example:

PC = 000006E8 USP =0001598C SSP =000FBF08 ST =0000=>IM=0

D 00008887 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
divu #$2,D0

-t

PC =000006EC USP =0001598C SSP = 000FBF08 ST =0000=>IM =0

D 00014443 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
nop

This example divides 8887 by 2 to yield a quotient of 4443 with a
remainder of 1.
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EOR Instruction

The EOR (Exclusive OR}) instruction performs an exclusive OR function
between a data register and memory. The data register is restricted to be

the source, and the effective address is the destination.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) X(An,Xr.s)
Yes | No Yes Yes Yes Yes Yes
x.w | xl | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long
Condition Codes Affected:

< NONZ X

Not affected.

Set if the most significant bit of the result is set. Cleared otherwise.

Set if the result is zero. Cleared otherwise.
Always cleared.
Always cleared.

Assembler Syntax: EOR
Dn,<ea>

The EORI instruction is used to exclusive OR immediate data with an
effective address. Many assemblers allow using the EOR mnemonic for
both, and produce the proper instruction based on the source operand.

Machine Code Format:

Bt 15 14 13 12 1110 9 8 7 6 5 4 3
T T T

1 0

1

0

1

Register | 1
L1

Size Effective

|

T

|

Address

T T

1 Il

<+ Mode—| + Reg.—
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Register is the data register number to be used as the source operand.
Size is 00 for byte, 01 for word, and 10 for long data sizes.

Example:

PC =000006FA USP =0001598C SSP = 000FBF08 ST=0000=>IM=0
D 11113333 22222222 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000
eor.| D1,D0

-t

PC =000006FC USP =0001598C SSP = 000FBF08 ST =0000=>IM=0
D 33331111 22222222 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000
00000000 0001598C

00000000 00000000
00000000 0001598C

This example executes an exclusive OR on 11113333 with 22222222 to
become 33331111. The bits with place value two in all the nibbles in the
high-order word of register DO are initially zero, so the exclusive OR
operation sets these bits. The inverse is true for the bits with place value
two in the nibbles of the low-order word. (If you're still not sure about
how this works, convert the numbers to binary, do the EOR by hand, and

then convert them back to hex.)



146  Programming the 68000

EORI Instruction

The EORI (Exclusive OR Immediate) instruction performs an exclusive
OR function between an immediate operand and an effective address
operand. The immediate operand must be the source, and the effective
address is the destination.

Addressing Modes Allowed:

Dn An (An) (An) + — (An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw | x| | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes No No No Yes Yes

Data Sizes: byte, word, long

Operations specifying the status register (SR) and condition code register
(CCR) are restricted to word and byte data lengths, respectively. Opera-
tions specifying the status register (SR) are privileged. A 68000 privilege-
violation exception will result if this instruction is attempted with the SR
addressing mode from User mode. Exceptions are covered in Chapter 7,
Exception Processing.

Condition Codes Affected:

Not affected.

Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Always cleared.

Always cleared.

<NONZX

When the status register or the condition code register are used as the
destination, the condition codes are determined by the operation itself. All
bits of the register are affected. Thus, if an EORI instruction to the condi-
tion code register leaves all bits in the CCR cleared, the Z-bit is not set as it
would be with other operands.
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Assembler Syntax: EORI Dn, <ea>

The EOR instruction executes an exclusive OR on a data register with
an effective address. Many assemblers allow using the EOR mnemonic for
both EOR and EORI, and produce the proper instruction based on the

source operand.

Machine Code Format:

Bt 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
T

0l0(0fjO}J1|0O]|1]|0] Size Effective Address

T T T

Il 1 It

<« Mode—* | < Reg.—

T T 1 ] T I T i T T

T N (R I NSO U U S N B

Word data: 16 bits Byte data: 8 bits

T T T

1 1 1

T T T T T T T T T 1T

IR N NN [ T SR N S

Long data: 32 bits, including previous word

T T T

Size is 00 for byte, 01 for word, and 10 for long data sizes.

Example:

PC =00000704 USP =0001598C SSP = 000FBF08 ST =0000= >IM=0
D 11113333 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000
eori.| #$22222222,D0

-t

PC =0000070A USP =0001598C SSP =000FBF08 ST=0000=>IM=0
D 33331111 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000
00000000 0001598C

00000000 00000000
00000000 0001598C

This example executes an exclusive OR on 11113333 with 22222222 to
become 33331111. The bits with place value two in all the nibbles in the
high-order word of register DO are initially zero, so the exclusive OR
operation sets these bits. The inverse is true for the bits with place value
two in the nibbles of the low-order word. (If you're still not sure about
how this works, convert the numbers to binary, do the EOR by hand, and

then convert them back to hex.)
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EXG Instruction

The EXG instruction exchanges the complete contents of any two
address or data registers.

Addressing Modes Allowed:
Only registers may be specified as operands.

Data Sizes: long

Condition Codes Affected: None
Assembler Syntax: EXG  Rx,Ry
Machine Code Format:

Exchanging two data registers:

Bit 1514 13121110 9 8 7 6 5 4 3 2 1 0
L I

1/1]0|0] Reg.Dx {1 ]0o|1|0|0]{0]| Reg Dy
| S— |

Exchanging two address registers:

Bit 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
T L

1117|10|0f Reg. Ax [1]Of1[0]0O
1| 1|

=
~
@
@
z

Exchanging an address and a data register:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T

1{1|/0/0] RegDx |1{1[0]|0]|0]|1] Reg Ay
J l |

In exchanging an address and a data register, the address register must
always be specified in bits 0-3 of the instruction word.
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Example:

PC =00000718 USP =0001598C SSP =000FBF08 ST=0000= >IM =0

D 11111111 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 22222222 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
exg D0,A0

-t

PC =0000071A USP =0001598C SSP = 000FBF08 ST=0000=>IM=0

D 22222222 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 11111111 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This instruction exchanges the contents of registers AO and DO.
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EXT Instruction

The EXT (sign EXTend) instruction extends the sign-bit of a byte into a
word, or of a word into a long. The EXT instruction takes a single oper-
and, which must be a data register.

When extending a byte to a long, bit 7 of the register is replicated into
bits 15-8 of the register. Extension of a word into a long means extending
bit 15 of the register into bits 16-31 of the register.

Addressing Modes Allowed: Only data registers
Data Sizes: word, long

Condition Codes Affected:

Not affected.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.

Always cleared.

<NOANZX

Assembler Syntax: EXT Dn

Machine Code Format:

Bt 151413121110 9 8 7 6 5 4 3 2 1 0
T L

O(1](/0(O0f1({0|Of[O] Size [O[O|]|O | Register
1 L1

The size field is 10 to extend a byte to a word, and 11 to extend a word
to a long.

Example:

PC = 00000722 USP = 0001598C SSP = 000FBF08 ST =0000= >IM=0

D 00000080 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
ext DO
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-t

PC = 00000724 USP = 0001598C SSP = 000FBF08 ST =0008=>IM=0 NEG

D 0000FF80 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
ext.l DO

-t

PC =00000726 USP = 0001598C SSP = 000FBF08 ST =0008 = >IM =0 NEG

D FFFFFF80 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This example extends the byte 80 hex to a word, and then to a long.
Notice that 80 (hex) is a negative number (bit 7 of the byte is set).
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JMP Instruction

The JMP (JuMP) instruction is used to transfer control to an effective
address. The address to which transfer is made is the address generated
by the effective address computation. For example, if address register AQ
contains 1000 hex, a JMP 4(AQ) instruction transfers control to the instruc-
tion located at 1004.

Addressing Modes Allowed:

Dn An (An) (An) + - (An) | x(An) x(An,xr.s)
No [ No Yes No No Yes Yes
xw | xI | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes No No No

Data Sizes: Unsized
Condition Codes Affected: None
Assembler Syntax: IMP  <ea>

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L L

of1]|o|o]i|1|1]0f1|1]| Effecive  Address
T [ S |

<+ Mode | + Reg.—~

Example:

PC = 0000072E USP =0001598C SSP =000FBF08 ST =0008= >IM =0 NEG

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000736 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
imp (A0)
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JSR Instruction

The JSR (Jump to SubRoutine) instruction calls a subroutine using an
effective address operand. The address of the instruction following the JSR
is pushed onto the stack (as a long word). The next instruction to be exe-
cuted is determined by the effective address computation. For example, if
address register AQ contains 1000 hex, a JSR 4(AQ) instruction would call a

subroutine located at address 1004.
Addressing Modes Allowed:

Dn | An (An) (An) + —(An) | x(An) X(An,xr.s)
No [ No Yes No No Yes Yes
xw | xI | x(PO x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes No No No
Data Sizes: Unsized
Condition Codes Affected: None
Assembler Syntax: JSR  <ea>
Machine Code Format:
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 T T 1
oli1lojol1]t1l1]|0]|1]0]| Effective Address

[

| |

Example:

< Mode | « Reg.—

PC = 0000073A USP = 0001598C SSP = 000FBF08 ST =0008= >IM =0 NEG
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

jsr $652
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-t

PC =00000652 USP = 00015988 SSP = 000FBF08 ST=0008 = >IM =0 NEG

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00015988

rts

At this point, the subroutine has been called. We can see the return
address at the top of the stack (the address in register A7).

-s115988
00015988 0000073E .

Executing the RTS yields:
-t
PC =0000073E USP =0001598C SSP =000FBF08 ST=0008=>IM =0 NEG

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

The return address has been popped off the stack.
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LEA Instruction

The LEA (Load Effective Address) instruction places an effective address
in an address register. All 32 bits of the register are affected.

The LEA instruction is normally used to write code that must be
position-independent (i.e., can contain no code or data addresses in the
program itself). The PC or Address register with displacement addressing
modes are normally used for this type of coding.

The LEA instruction also adds a constant to an address register without
altering the condition codes. By specifying the address register with dis-
placement or index, either a constant or another register (or both) may be
added to an address register in this manner.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) X(An,xr.s)
No [ No Yes No No Yes Yes
x.w | x! | x(PO x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes No No No

Data Sizes: long
Condition Codes Affected: None
Assembler Syntax: LEA <ea>,An

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 T

0

1

0|0

Register
|

| L
1|1 Effective Address
T N T B

<« Mode—| + Reg.—~

The Register field specifies the address register used as the destination.
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The Effective Address field specifies the address to be loaded into the
address register.

Example:

PC = 00000740 USP =0001598C SSP = 000FBF08 ST =0008= >IM=0 NEG

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
lea $736,A0

-t

PC =00000746 USP =0001598C SSP =000FBF08 ST =0008= >IM =0 NEG

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000736 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
lea $2(A0),A0

=t

PC =0000074A USP =0001598C SSP =000FBF08 ST=0008=>IM=0 NEG

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000738 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This example loads a constant address into address register AQ (using
absolute long addressing). The second LEA instruction adds 2 to the
address register.
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LINK Instruction

The LINK instruction allocates a temporary area on the stack. Such an
area is normally called a stack frame. Many block structured high-level
languages, such as C, Pascal, and PL/I use this instruction for storing vari-
ables that are local to a procedure. The variables are deallocated when
the procedure is deactivated, permitting efficient memory usage.

The LINK instruction takes two operands: an address register and a 16-
bit signed displacement. The address register is pushed onto the stack,
and the resulting stack pointer is copied into the address register. The dis-
placement (which is usually negative) is added to the stack pointer to allo-
cate memory for the local variables. The stack winds up looking like
Figure 3.1.

The local storage area is addressed using negative displacements from
the address register, sometimes known as the frame pointer. In this way,
local variables may be accessed without regard for intervening pushes
and pops on the stack.

Increasing Addresses

A7 Local
Storage

Area
An —> Old An

Figure 3.1 - Example of stack layout
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LSL Instruction

The LSL (Logical Shift Left) instruction performs a logical left shift on a
data register or an effective address operand. There are three forms of this
instruction:

1. Shift a data register to the left by a constant contained in the
instruction. Shifts from one to eight bits can be accomplished
using this form of the instruction.

2. Shift a data register to the left by the number of bits contained in
another data register.

3. Shift a memory word (16 bits) left by a single bit.

Addressing Modes Allowed: Memory form only

Dn An (An) (An) + —(An) | x(An) X(An,xr.s)
No | No Yes Yes Yes Yes Yes
xw | x! [ x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long
Memory operations are restricted to word length.

Condition Codes Affected:

X  Set according to the last bit shifted out of the high-order bit
position of the operand. Unaffected if the shift count is zero.

N Set if the high order bit of the result is set (indicating a negative

result). Cleared otherwise.

Set if the result is zero. Cleared otherwise.

Always cleared.

Set according to the last bit shifted out of the high-order bit

position of the operand. Unaffected if the shift count is zero.

O<N
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Assembler Syntax: LS. Dx,Dy
LSL  #<data>,Dy
LSL  <ea>

Machine Code Format:

Data register as destination

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T T T T T

111]|1[0] Immed. | 1] Size | T |01 | Register

L1 1 I

Memory location as destination

Bit 1514 13 121110 9 8 7 6 5 4 3 2 1 0

T T T T

1{1)1foJofo|1]|1]1 |1 ]| Effective  Address

|

| 1

<+ Mode | « Reg.

The Immediate field contains either the shift count or the data register
number that contains the shift count. A 000 in this field represents a shift
count of 8. Values 001 through 111 represent shift counts of 1-7. Size is
either 00 for byte data, 01 for words, and 10 for longs. The T-bit (type) is a
0 if the shift count is contained in the instruction, and 1 if the shift count is
in a data register. Register is the destination data register number.

Example:

PC =0000075E USP=0001598C SSP =000FBF08 ST=0000=>IM=0
D 00001111 00000002 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000
Isl D1,D0

=t

PC =00000760 USP =0001598C SSP = 000FBF08 ST=0000=>IM=0
D 00004444 00000002 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000

00000000
00000000

00000000
00000000

00000000
0001598C

00000000
0001598C

This example uses the data register form of the instruction. 1111 is

shifted left by two places to become 4444.
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LSR Instruction

The LSL (Logical Shift Right) instruction performs a logical right shift on a
data register or an effective address operand. There are three forms of this
instruction:

1. Shift a data register to the right by a constant contained in the
instruction. Shifts from one to eight bits can be accomplished
using this form of the instruction.

2. Shift a data register to the right by the number of bits contained
in another data register.

3. Shift a memory word (16 bits) right by a single bit.

Addressing Modes Allowed: Memory form only

Dn An (An) (An) + - (An) | x(An) x(An,xr.s)
No | No Yes Yes Yes Yes Yes
xw | xI | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long
Memory operations are restricted to word length.
Condition Codes Affected:

X  Set according to the last bit shifted out of the low-order bit
position of the operand. Unaffected if the shift count is zero.

N Set if the high order bit of the result is set (indicating a negative

result). Cleared otherwise.

Set if the result is zero. Cleared otherwise.

Always cleared.

Set according to the last bit shifted out of the low-order bit

position of the operand. Unaffected if the shift count is zero.

Nn<N
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Assembler Syntax: LSR  Dx,Dy
LSR #<data>,Dy
LSR  <ea>

Machine Code Format:

Data register as destination

Bit 15 14 13 12 11'10|9 8 7]6 5 4 3 2|1|0
1{1|1|0}| Immed. |0 | Size | T |0 |1 | Register
L1 1 [
Memory location as destination
Bit 15 14 13 12 11 10 9 8 7 6 5]4 312[1|0
111]1|(0ojojo|1|Oo}1¢|1 Effecti\l/e Address

(|

1

<« Mode =+ | + Reg.—>

The Immediate field contains either the shift count or the data register
number that contains the shift count. A 000 in this field represents a shift
count of 8. Values 001 through 111 represent shift counts of 1-7. Size is
either 00 for byte data, 01 for words, and 10 for longs. The T-bit (type) is a
0 if the shift count is contained in the instruction, and 1 if the shift count is
in a data register. Register is the destination data register number.

Example:

PC =0000076A USP =0001598C SSP =000FBF08 ST =0000=>IM=0

D 88888888 00000002 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

Isr D1,00
—-t
PC=0000076C USP =0001598C SSP =000FBF08 ST =0000=>IM=0

D 88882222 00000002 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This example shifts data register DO.W (the low word of DO) to the right

by two places. The upper half of DO is unaffected.
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MOVE Instruction

The MOVE instruction copies a byte, word, or longword from one
effective address operand to another. The condition codes are set accord-
ing to the data that is moved during the operand.

Addressing Modes Allowed: Source operand

Dn An (An) (An) + —(An) | x(An) X(An,xr.s)
Yes | Yes Yes Yes Yes Yes Yes
xw | xl | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes Yes No No

Addressing Modes Allowed: Destination operand

Dn An (An) (An) + - (An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw | x) [ x(PO x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Use of the An (address register direct) addressing mode is restricted to
instructions with word and long data sizes.

Data Sizes: byte, word, long
Condition Codes Affected:
X Not affected.

N Set if the high order bit of the result is a one. Cleared otherwise.
Z  Set if the result is zero. Cleared otherwise.
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V  Always cleared.
C  Always cleared.

Assembler Syntax: MOVE  <ea>,<ea>

MOVEA moves to an address register. Most assemblers automatically
use the right instruction with an address register destination.

Machine Code Format:

Bt 1514 13121110 9 8 7 6 5 4 3 2 1 0
T T T T 1 ¥ T | T T T

. Destination Source

2 | <e|a>| ! | l<e|a>1

<+ Reg. —* |+ Mode—~ '-Mode-'! “Reg. -+

1 1 ! |

Size is the size of the data to be transferred: 00 for bytes, 01 for words,
and 10 for longs.

Example:

PC =00000774 USP =0001598C SSP =000FBF08 ST=0000=>IM=0

D 11111111 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
move.b $920,D0

-s92d

0000092D 99 .

-t

PC =0000077A USP =0001598C SSP =000FBF08 ST =0008=>IM=0 NEG

D 11111199 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This instruction moves a memory location into a data register. Byte
moves into a data register leave the upper three bytes of the register
unmodified.
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MOVE to CCR Instruction

The MOVE to CCR instruction moves the low-order byte of a word
operand to the condition code register (CCR), the User byte of the status
register. The high-order byte of the source is ignored.

Addressing Modes Allowed:

Dn | An (An) (An) + ~(An) | x(An) X(An,Xxr.s)
Yes | No Yes Yes Yes Yes Yes
xw | xI | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes Yes No No

Data Size: word

Condition Codes Affected:

Set from bit 4 of the source operand.
Set from bit 3 of the source operand.
Set from bit 2 of the source operand.
Set from bit 1 of the source operand.
Set from bit O of the source operand.

N<NZX

Assembler Syntax: MOVE <ea>,CCR

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L DL

O(1|(0|0JO|1|0|O]|1|1]| Effective  Address
N I B
+ Mode —~| « Reg.—~

Example:

PC =00x0077C USP =0001598C SSP =000FBF08 ST=0000= >IM=0
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
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MOVE to SR Instruction

The MOVE to SR (Status Register) instruction transfers a word operand
to the CPU status register. All bits of the status register are affected. This
instruction requires that the S-bit of the status register (bit 13) be set at the
beginning of the instruction (i.e., the CPU must be in Supervisor state).

This instruction may be used to alter the Status register Trace bit, Super-
visor bit, interrupt mask, and condition codes. Typical uses include:

« Clearing the Supervisor bit to transfer to User mode.
¢ Clearing the Interrupt mask to enable CPU interrupts.

« Setting bits in the Interrupt mask to partially or completely disable
CPU interrupts.

Changing the condition codes is normally done with the MOVE to CCR
instruction, which is not privileged, and can be executed from either
supervisor or user mode.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw [ x.I | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes Yes No No

Data Size: word

Condition Codes Affected:

Set from bit 4 of the source operand.
Set from bit 3 of the source operand.
Set from bit 2 of the source operand.
Set from bit 1 of the source operand.
Set from bit O of the source operand.

N<NZX
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Assembler Syntax: MOVE  <ea>,SR

Machine Code Format:

Bt 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0
1 T T T

ojl1|(o|OoJO|[1|1|{0O]1]| 1] Effective  Address
I |

<+ Mode = | ~ Reg.—~

Example:
-g,786
PC =00000786 USP =0001598C SSP =0007BF08 ST=2010=>SUP IM=0
EXT

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0007BF08
move #$200F,SR

-g,78a

PC =00078A USP = 01598C SSP =07BF08 ST =200F = >SUP IM=0 NEG ZER OFL CRY

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0007BFO08

This instruction sets the N, Z, O, C, condition codes, as well as the S-bit.
The S (Supervisor) bit is set before execution. A Privilege-violation excep-
tion results if this instruction is attempted from User mode. Notice that
address register A7 reflects the supervisor stack pointer (SSP) rather than
the user stack pointer (USP).
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MOVE from SR Instruction

The MOVE from SR (Status Register) instruction transfers the entire sta-
tus register to a word operand. Memory operands are read before writ-
ing. This instruction is privileged on the 68010 processor. (A privileged
instruction requires that the S-bit [bit 13] in the status register be set prior
to execution.)

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) X(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw [ x1 | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Size: word

Condition Codes Affected: None
Assembler Syntax: MOVE SR, <ea>
Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 T T T

O(1(0{0]JO|[0O{O|O}1 |1 Effective Address
T [ I

+Mode —=| +< Reg.—~

Example:

PC =0000078C USP =0001598C SSP =0007BF08 ST =200F=>SUP IM=0

NEG ZER OFL CRY

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0007BFO08
move SR,DO
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MOVE USP Instruction

The MOVE USP instruction transfers the user stack pointer to or from
an address register. This instruction is a privileged instruction. (The S-bit
[bit 13] in the status register must be set.)

A MOVE USP instruction is normally used by a supervisor program to
set up a stack area in a user program. The 68000 has separate user and
supervisor stack pointer registers, so this special instruction is required to
enable the supervisor program to access the user mode stack pointer.

Addressing Modes Allowed: Only An
Data Size: long
Condition Codes Affected: None

Assembler Syntax: MOVE  USPAn
MOVE An,USP

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T

O|1|o0|OJ1|1|[1[O}]JO|1|1]|O0]T| Register
L

To transfer the address register to the USP, the T field is 0, and 1 to trans-
fer the USP to the address register. The Register field specifies the number
of the address register to be used.

Example:

PC = 000790 USP =01558C SSP =07BF08 ST = 200F = >SUP IM=0 NEG ZER OFL CRY
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 (00000000 00000000 00000000
move.l USPAQ

=i

PC = 000792 USP =01558C SSP =07BF08 ST =200F = >SUP IM =0 NEG ZER OFL CRY
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 0001558C 00000000 00000000 00000000 00000000 00000000 00000000

This example transfers the user stack pointer (USP) to address register
AQ. The status register S bit must be set for this privileged instruction.

00000000
0007BF08

0007BF08
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MOVEA Instruction

The MOVEA (Move Address) instruction moves an effective address
operand to an address register. Only word and long data sizes are
allowed. All 32 bits of the address register are always affected. Word oper-
ations are sign extended to 32 bits before loading the address register.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | Yes | Yes Yes Yes Yes Yes
xw | x| | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes Yes No No

Data Sizes: word, long
Condition Codes Affected: None

Assembler Syntax: MOVEA  <ea>,An
Many assemblers will generate the MOVEA instruction when a MOVE
instruction specifies an address register as the destination.

Machine Code Format:

Bt 15141312110 9 8 7 6 5 4 3 2 1 0
T - T— 1 T T 1T

00| Size Register | O | O | 1 | Effective  Address
1 - [ I

+«Mode | « Reg.—

The Size field is 01 for word transfers, and 10 for long transfers. The Reg-
ister field gives the destination address register. Notice that this instruction is
really a MOVE instruction with a destination addressing mode of 001.
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MOVEM Instruction

The MOVEM (MOVE Multiple) instruction provides a means for rapidly
transferring a group of registers to or from memory. The size of the opera-
tion is restricted to word or long data. For word operations that transfer
data to the registers, each word is sign-extended to 32 bits before loading
the register. All 32 bits of the register are always affected, regardless of
whether the register is an address or data register.

The order in which the registers are stored in memory is as follows:

Address Register
(effective address)

+0 DO
+4 D1
+28 D7
+32 A0
+36 Al
+60 A7
+64 (Unused)

Any combination of the registers may be loaded or stored using this
instruction. The illustration above assumes that all registers are present
and long data size.

This instruction is used primarily for pushing a group of registers on the
stack so that they may be used temporarily and later reset to their original
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values, also using a MOVEM instruction. This technique is especially valu-
able for subroutines and exception-processing routines, where it is often
not known which registers can be modified.

An anomaly of 68000 architecture causes an extra memory reference
when transferring memory to registers using a MOVEM. In the diagram
above, offsets 64 and 65 from the base of the register area in memory
would be read (again assuming all registers were present). This is usually
not significant, but it can cause problems in certain specialized cases. For
example, trying to transfer registers from the very last locations in mem-
ory will cause an erroneous BUSERR to occur due to the access of the
next word (which is not a valid memory address in this case). The
BUSERR exception is explained in Chapter 7, Exception Processing.

Addressing Modes Allowed: Registers to memory

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
No | No Yes No Yes Yes Yes
xw | xd [ x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Memory to Registers:

Dn An (An) (An) + —(An) | x(An) X(An,xr.s)
No [ No Yes Yes No Yes Yes
xw | xI | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes No No No

Data Sizes: word, long

Condition Codes Affected: None
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Assembler Syntax: MOVEM  <register list>, <ea>
MOVEM  <ea>,<register list>

The register list is composed of a series of register specifications sepa-
rated by a slash (the / character). For example, DO/D2/A5 specifies regis-
ters DO, D2, and A5 as operands. It is also possible to use one or more
ranges in the register list. A range consists of two register specifications
separated by the - character. For instance, DO-D5/A0-A2 specifies regis-
ters DO, D1, D2, D3, D4, D5, A0, A1, and A2.

Machine Code Format:

Registers to Memory:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— T T T 7T

of1|olo]1|O0j0|O0]1 |[Sz]| Effective Address
[ N T

<+ Mode —+| < Reg.—~>

T T T T T T T ] T T T T T T T
Register List Bit Mask
[N NN RO OSSN G SO NN N TR S N

Memory to Registers:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L L

o1 |OofO}1r|1|O0|O]1|[Sz| Effective Address
Y I S B |

<+ Mode | « Reg.—*

T T T T T T T T T T T ] T T T
Register List Bit Mask
N N T N SN NN N Y SN NN N S N B

The Sz (size) bit is a O for word transfers and a 1 for long transfers. The
register list bit mask contains a single bit for each register that can be
transferred by a MOVEM instruction (16 registers). If the bit is a 1, then
the register is transferred. If the bit is 0, then the register is not transferred.

The register-list word has two possible orientations, one for pre-
decrement mode addressing and one for all other addressing modes. In
all cases, the low-order bit of the mask corresponds to the register that is
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to be transferred first. The two sets of correspondence between registers
and bits are as follows:

Pre-decrement (- (An)) addressing mode:

Bit 15 14 13 12

1110 9 8 7 6 5 4 3 2

1

0

DOo(D1{D2(D3

D4|Ds5

D6

D7 |AO

Al

A2|A3

A4 |A5

A6

A7

All other addressing modes:

Bit 15 14 13 12

1 10

9

8 7 6 5 4 3 2

A7 |A6|A5 | A4

A3 |A2

Al

A0 |D7

Dé

D5|D4

D3 (D2

D1

Example:

PC =0000079E USP =0001558C SSP =0007BF08 ST=0000=>IM=0

D 000000D0 ©000000D1 00000000 00000000 00000000 00000000 00000000 00000000
A 000000A0 000000A1 00000000 00000000 00000000 00000000 00000000 0001558C
movem.| DO-D1/A0 - A0, - (A7)

=t

PC =000007A2 USP = 00015580 SSP = 0007BF08 ST=0000= >IM=0

D 000000D0 000000D1 00000000 00000000 00000000 00000000 00000000 00000000
A 000000A0 000000A1 00000000 00000000 00000000 00000000 00000000 00015580

This instruction pushes the contents of registers DO, D1, and AO on the
stack. Using the S command, we can look at the stack and see the saved

registers.

—-$15580

00015580 00000000
00015584 000000D1
00015588 000000A0
=l

PC = 000007A4 USP = 00015580 SSP = 0007BF08 ST = 0000 = >IM =0

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 000000A1 00000000 00000000 00000000 00000000 00000000 00015580
movem.| (A7) +,D0-D1/A0 - A0
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MOVEP Instruction

The MOVEP (MOVE Peripheral) instruction provides a convenient
method for accessing 8-bit peripheral devices connected to a 68000. The
68000 is a 16-bit microprocessor. This means that there are sixteen data
lines connecting the processor to memory, as illustrated in Figure 3.2.

Many I/O devices were designed for 8-bit microprocessors, and thus
have only eight data lines. These devices can be connected to the 68000
using either the Upper byte data lines or the Lower byte data lines.
Addressing a device connected in such a fashion is done by using alter-
nate memory addresses (for example, 1,3,5 for devices connected to the
Lower byte lines, or 0,2,4 for devices connected to the Upper byte lines).
The MOVEP instruction is facilitates this process.

The MOVEP instruction transfers a word or a longword contained in a
data register to or from these alternate memory addresses. The destination
memory address is specified using the address register with displacement
addressing mode— x(An).

1

6 Address Lines (23 bits)

8

0 Upper Byte

0 K Upper 8 Datalines ) (8 bits)

0 Even Addresses
MEMORY

(o}

h Lower Byte

; Lower 8 Data Lines (8 bits)

‘l) Odd Addresses

Figure 3.2 - Sixteen data lines connecting the processor to memory
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The high-order byte of the data register is transferred to or from address
x(An), the next byte to or from x+2(An), and so forth. If the original
address was odd, then all transfers from the MOVEP will use the Lower
byte of the 68000 data bus. Even addresses use the High byte.

Addressing Modes Allowed: x(An) only
Data Sizes: word, long
Condition Codes Affected: None

Assembler Syntax: MOVEP  Dn,x(An)
MOVEP  x{An),Dn

Machine Code Format:

0(0|0|O| DnReg. |1 |Dr{Sz{0 |0 |1 | AnReg.

Displacement
N S TN NN SRR N (N N SN NN GUNY SR R R

The Dn Register and An Register give the numbers of the data and
address registers to be used, respectively. The Dr (direction) bit is O for
memory to register transfers and 1 for register to memory transfers. The
Sz (size) bit is 1 for long data and O for words. The displacement field is a
16-bit offset that is added to the address register to form the base memory
address at which the transfer begins.

Example:

PC =000007B6 USP =0001558C SSP =0007BF08 ST =0000=>IM=0

D 01234567 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000964 00000000 00000000 00000000 00000000 00000000 00000000 0001558C
movep.| DO,0(A0)

-t

PC =000007BA USP =0001558C SSP =0007BF08 ST=0000=>IM=0

D 01234567 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000964 00000000 00000000 00000000 00000000 00000000 00000000 0001558C
-d964,96¢

00000964 01 00 23 00 45 00 67 00 00 #.E.g.
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MOVEQ Instruction

The MOVEQ instruction provides a method for loading a small immedi-
ate quantity into a data register. The instruction is two bytes in length, and
can load any constant in the range — 128 to + 127 (decimal). All 32 bits of
the register are affected. (The corresponding MOVE immediate long
instruction takes six bytes.)

Data Size: long
Condition Codes Affected:

Not affected.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.

Always cleared.

N<NZX

Assembler Syntax: MOVEQ  #<data>,Dn

Many assemblers automatically convert a move with the appropriate
operands into a MOVEQ.
Machine Code Format:

Bit 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
7 T T T T T T T

Of111]1]| Register |0 Immediate Data
1 [ N I

The Register field identifies the destination data register. The Immediate
Data is an 8-bit immediate operand that is sign-extended before loading
into the data register.

Example:

PC =000007BC USP =0001558C SSP =0007BF08 ST=0000=>IM=0

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001558C
moveq #$80,00
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MULS Instruction

The MULS (MULtiply Signed) instruction multiplies a 16-bit data register
operand by a 16-bit effective address operand, leaving the 32-bit result in
the data register. The operation assumes two’s complement arithmetic.

Addressing Modes Allowed:

Dn | An | (Am) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw | xI | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes Yes No No

Data Size: word
Condition Codes Affected:

Not affected.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.

Always cleared.

N<NZX

Assembler Syntax: MULS  <ea>,Dn

Machine Code Format:

Bit 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0
T — 1 T T 1

111]0]| 0] Register 1|1 | Effective Address
1o T S B S

<+ Mode | < Reg.—>

—

The Register field identifies the data register to be used as the destination.
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MULU Instruction

The MULU (MULtiply Unsigned) instruction multiplies a 16-bit data reg-
ister operand by a 16-bit effective address operand, leaving the 32-bit
result in the data register. The operation assumes unsigned arithmetic.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
x.w { xI | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes Yes No No

Data Size: word

Condition Codes Affected:

Not affected.

Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Always cleared.

Always cleared.

0O < N Z X

Assembler Syntax: MULU  <ea>,Dn

Machine Code Format:

Bit 151413121110 9 8 7 6 5 4 3 2 1 O
T T = [T ]

1/1]/0|0]| Register [O |1 |1 | Effective  Address
- T N N T

+— Mode—=| + Reg.—~

The Register field identifies the data register to be used as the destination.
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Example:

PC =000007D2 USP =0001598C SSP = 0007BF08 ST=0000=>IM=0

D 00008000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
mulu #$5,D00

-t

PC =000007D6 USP = 0001598C SSP =0007Bf08 ST=0000= >IM=0

D 00028000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This example multiplies hex 8000 (normally a negative number) by 5.
Notice that the result is positive. This is because unsigned arithmetic was
used in the MULU instruction.
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NBCD Instruction

The NBCD (Negate BCD) instruction forms the negative of a BCD
(binary coded decimal) number. The technique used is ten’s complement,
analogous to the two’s complement used with binary numbers. The ten’s
complement of a number is formed by subtracting the number from all 9s
and then adding one. As with binary numbers, the complementing pro-
cess works only if you have a fixed number of digits.

For example, assume you have a 4-digit BCD system. The ten’s comple-
ment of 0001 is (9999 — 0001) + 1, or 9999. Adding this number to a
positive decimal number is equivalent to subtracting 1.

As with the other 68000 BCD instructions, NBCD is intended for multi-
precision BCD arithmetic. The X (eXtend) bit is added to the ten’s comple-
ment process. This bit provides the borrow necessary for multiprecision
arithmetic. The Z-bit is only cleared by this instruction. This allows the Z-
bit to accurately reflect a multiprecision result. Normally, a series of NBCD
instructions begins with the X-bit clear and the Z-bit set. The size of the
operation is restricted to byte size.

Addressing Modes Allowed:

Dn An (An) (An) + - (An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw | xI | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Size: byte
Condition Codes Affected:

X Set if a borrow was generated in the subtraction operation.
Cleared otherwise.

N Undefined.
Z Cleared if the result was not a zero. Unchanged otherwise.
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V' Undefined.
C Set if a borrow was generated in the subtraction operation.
Cleared otherwise.

Assembler Syntax: NBCD  <ea>

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T AT ey

O(1{0[0]1]|0]0|0]|0 O] Effective Address
1 TN I T |
<+ Mode = | < Reg.—

Example:

PC =000007DA USP =0001598C SSP =0007BF08 ST =0000=>IM=0

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
nbed DO

-t

PC =0000070C USP =0001598C SSP =0007BF08 ST=0019= >IM=0 EXT NEG CRY

D 00000098 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This example takes the ten’s complement of 01 to produce 99. (Remem-
ber, BCD is the same as hex.)



68000 Instruction Set 193

NEG Instruction

The NEG (NEGate) instruction forms the two’s complement of an effec-
tive address operand.

Addressing Modes Allowed:

Dn | An (An) (An) + —(An) [ x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw | x| | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long
Condition Codes Affected:

Cleared if the result is zero. Set otherwise.

Set if the result is negative. Cleared otherwise.

Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.

N < N zZ x

Cleared if the result is zero. Set otherwise.

Assembler Syntax: NEG  <ea>

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T T T T 7T

g|1|0|l0]JO|1|O]|O] Size Effective Address
1 [ U N

<« Mode | + Reg.—

The Size field is 00 for byte data, 01 for words, and 10 for longs.
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Example:

PC =000007E2 USP =0001598C SSP=0007BF08 ST=0010= >IM=0 EXT

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
neg DO

-t

PC =000007E4 USP =0001598C SSP=0007BF08 ST=0019=>IM=0 EXT NEG CRY

D 0000FFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This example takes the two’s complement in the low-order word of reg-
ister DO. (1 is complemented to become —1.)
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NEGX Instruction

The NEGX (Negate with eXtend) instruction provides a method for tak-
ing the two’s complement of a multiprecision binary number.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw [ xI | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long

Condition Codes Affected:

Set if a borrow is generated. Cleared otherwise.

Set if the result is negative. Cleared otherwise.

Cleared if the result is not zero. Unchanged otherwise.
Set if an overflow is generated. Cleared otherwise.

0 <N Z X

Set if a borrow is generated. Cleared otherwise.

As with other 68000 multiprecision instructions, a group of NEGX
instructions should begin with the Z-bit set and the X-bit clear. At the com-
pletion of the multiprecision operation, the Z-bit will then correctly indi-
cate whether the entire operand is zero. The usual storage order for
multiprecision integers on the 68000 is to place the high-order portion at
the lowest address, and the low-order portion at the highest address.
ADDs, SUBtracts, and NEGates begin with the low-order word and nor-
mally use the pre-decrement addressing mode.

Assembler Syntax: NEGX <ea>
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Machine Code Format:

Bit 1514 13121110 9 8 7 6 5 4 3 2 1 0
T — T T T 1T

0(1{0[{0]JO[0[0]|O0] Size tffective Address
! L1y

+ Mode = | + Reg.—

The Size field is 00 for byte operands, 01 for words, and 10 for longs.
Example:

PC = 000007EA USP =0001598C SSP =0007BF08 ST=0014=>IM=0 EXT ZER

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
neg.l DO

=i

PC =000007EC USP =0001598C SSP =0007BF08 ST=0019=>IM=0 EXT NEG CRY

D FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
negx.l D1

=i

PC =000007EE USP =0001598C SSP =0007BF08 ST=0019= >IM=0 EXT NEG CRY

D FFFFFFFF FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This example uses data registers DO and D1 as an 8-byte (64 bit) binary
integer. Register D1 is the high-order part of the integer. The example
complements 1 to become —1 across 64 bits.
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NOP Instruction

The NOP (No OPeration) instruction provides a way for idling the
68000 for one instruction. Nothing is changed, except that the Program
Counter is advanced to the next instruction. NOP instructions are often
used for inserting small delays, or for providing space in a program for
patching purposes.

Addressing Modes Allowed: None
Data Sizes: None

Condition Codes Affected: None
Assembler Syntax: NOP

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

—

O|1|[OfOo]1[1|1T[O0}JO|1[1[1]0|0|O0O]|1]|ME71 hex)

Example:

PC =000007F2 USP =0001598C SSP =0007BF08 ST=0019=>IM=0 EXT NEG CRY

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
nop

=t

PC =000007F4 USP =0001598C SSP =0007BF08 ST=0019=>IM=0 EXT NEG CRY

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
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NOT Instruction

The NOT instruction forms the one’s complement of an effective
address operand.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw | x1 | x(PO) x(PC,xt.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long
Condition Codes Affected:

Not affected.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.

Always cleared.

N<NZXx

Assembler Syntax: NOT <ea>

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T T T T

O|1|O0O]|OfO[1|1]0]{ Size Effective Address
) [ R

'-Mode-'| + Reg. —

The Size field is 00 for byte operations, 01 for words, and 10 for longs.
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Example:

PC =000007F6 USP =0001598C SSP =0007BF08 ST=0010= >IM =0 EXT

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
not DO

-1

PC=000007F8 USP =0001598C SSP =0007BF08 ST=0018=>IM=0 EXT NEG

D 0000FFFE 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This example takes the one’s complement of the 16-bit quantity 0001
hex to form FFFE hex.
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OR Instruction

The OR instruction performs a bit-wise inclusive binary OR operation
between a data register and an effective address operand. There are two

forms of this instruction:

1. OR the contents of the effective address operand with a data reg-

ister, leaving the result in the data register.

2. OR the contents of the effective address operand with a data reg-

ister, leaving the result in the effective address operand.

Addressing Modes Allowed:

Effective address as source:

Dn An (An) (An) + —(An) | x(An) X(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw [ x| [ x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes Yes No No
Effective address as destination:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
No No Yes Yes Yes Yes Yes
xw | x| | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long
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Condition Codes Affected:
Not affected.
Set if the result is zero. Cleared otherwise.

Always cleared.
Always cleared.

N<NZXx

Assembler Syntax: OR  <ea>,Dn
OR Dn,<ea>

Set if the most significant bit of the result is set. Cleared otherwise.

The ORI instruction is used when the source is immediate data and the
destination is not a data register. Many assemblers use the ORI instruction

when OR is specified with this combination of operands.

Machine Code Format:

Bt 15 14 13121 10 9 8 7 6 5 4 3 2 1
T

0

T T T 1t T

)| e JE

110|0]|0] Register [Dr| Size | Effective  Address

<+ Mode—+| «—Reg.—>

The Register field indicates which data register is to be used. The Dr
bit is 0 if the data register is the destination, and 1 if the effective address
is the destination. Size is 00 for byte operations, 01 for words, and 10

for longs.
Example:

PC =00000806 USP =0001598C SSP = 0007BF08 ST=0010=>IM=0 EXT

D 11111111 22222222 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000
or.l DO,D1

-t

PC = 00000808 USP = 0001598C SSP = 0007BF08 ST=0010=>IM=0 EXT

D 11111111 33333333 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000
0001598C

00000000
0001598C

This example ORs the contents of registers DO and D1, leaving the
result in D1. Notice that this is the data register destination form of the
instruction.
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ORI Instruction

The ORI (OR Immediate) performs a bit-wise OR between an immedi-
ate operand (always the source) and an effective address operand (always
the destination).

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw | x! | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes No No No Yes Yes

When the status register is specified as the destination, the S-bit in the
status register must be set (i.e., the 68000 must be executing in Supervisor
state).

Data Sizes: byte, word, long
Condition Codes Affected:

Not affected.

Set if the high-order bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Always cleared.

Always cleared.

N < N zZ X

If the status register (SR) or condition code register (CCR) is specified as
the destination, the condition code bits are set according to bits 5-0 of the
immediate source.

Assembler Syntax: ORI #<data>,<ea>
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Machine Code Format:

Bt 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T T T 7T

0|0|0[0]O|[0]|O]| 0] Size | Effective  Address
] T [ T |

«~Mode—| +Reg. -

T I T T T T T T T T ] T T T
Word data: 16 bits Byte data: 8 bits
[ R (N N N | P IO SO [ T |

T T T R s T T | [ S S | B s Tam
Long data: 32 bits, including previous word
S S S | 0 ) S M | S|

The Size field is 00 for byte data, 01 for word data, and 10 for long data.

Example:

PC=00000810 USP =0001598C SSP =0007BF08 ST=0010=>IM=0 EXT

D 11111111 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
ori.| #$22222222,00

-t

PC =00000816 USP =0001598C SSP =00078F08 ST=0010= >IM=0 EXT

D 33333333 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This example performs an OR operation on the contents of register DO
with a long constant.
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PEA Instruction

The PEA (Push Effective Address) instruction places a computed address
on top of the stack. The size of the instruction is restricted to long data.

Addressing Modes Allowed:

Dn | An (An) (An) + —(An) | x(An) x(An,xr.s)
No [ No Yes No No Yes Yes
xw | x| | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes No No No

Data Size: long

Condition Codes Affected: None
Assembler Syntax: PEA <ea>
Machine Code Format:

Bit 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
L L

Effective Address
I IR )
« Mode —~| + Reg. =~

ojtrjojojrjo|ojojo

Example:

PC = 00000816 USP =0001598C SSP =0007BF08 ST=0010= >IM=0 EXT

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
pea $81E

-t

PC =0000081C USP =00015988 SSP =0007BF08 ST=0010= >IM=0 EXT

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00015988

—-sl15988
00015988 0000081E .
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ROL Instruction

The ROL (ROtate Left) instruction performs a left rotate on a data regis-
ter or memory operand. There are three forms of this instruction:

1. Rotate a data register to the left by a constant contained in the
instruction. Shifts from one to eight bits can be accomplished
using this form of the instruction.

2. Rotate a data register to the left by the number of bits contained
in another data register.

3. Rotate a memory word left by one bit only,

The Rotate operation is performed without an auxiliary bit. Bits shifted
out of the high-order bit position go to both the carry bit and the low-
order bit position.

C Operand

Addressing Modes Allowed: Memory form only

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
No | No Yes Yes Yes Yes Yes
x.w | x] | x(PO x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long

Data size is restricted to word for the in-memory form of the instruction.
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Condition Codes Affected:

Not affected.

Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set according to the last bit shifted out of the operand. Cleared if
the shift count is zero.

Always cleared.

< NONZXx

Assembler Syntax: ROL  #<count>,Dy
ROL Dx,Dy
ROL <ea>
Machine Code Format:

Data Register as destination:

Bt 151413121110 9 8 7 6 5 4 3 2 1 0
T

11110 Immed. | 1| Size | T | 1]1]| Register
J L [

Memory location as destination:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T 1T 1T T

1(1[1]0fO| 1|1 [1]1]1| Effective Address

T B |

<+ Mode = | + Reg.—

The T-field determines the type of the register-destination form of the
instruction. If T is 0, then the Immediate field contains the shift count, with
000 binary representing a count of 8. If T is 1, then the register number
that contains the shift count is contained in the Immediate field.

Example:

PC =00000830 USP =0001598C SSP =0007BF08 ST=0000= >IM=0

D 11111111 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
rol #3,D0
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ROR Instruction

The ROR (ROtate Right) instruction performs a right rotate on a data

register or memory operand. There are three forms of this instruction:

1.

The Rotate operation is performed without an auxiliary bit. Bits shifted
out of the low-order bit position go to both the carry bit and the high-

Rotate a data register to the right by a constant contained in the
instruction. Shifts from one to eight bits can be accomplished

using this form of the instruction.

in another data register.

Rotate a memory word right by one bit only.

order bit position.

Operand

Addressing Modes Allowed: Memory form only

. Rotate a data register to the right by the number of bits contained

Dn An (An) (An) + —(An) | x(An) X(An,xr.s)
No | No Yes Yes Yes Yes Yes
xw | x! | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long

Data size is restricted to word for the in-memory form of the instruction.
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Condition Codes Affected:

X  Not affected.

N Set if the most significant bit of the result is set. Cleared otherwise.

Z  Set if the result is zero. Cleared otherwise.

C  Set according to the last bit shifted out of the operand. Cleared if
the shift count is zero.

V  Always cleared.

Assembler Syntax: ROR  #<count>,Dy
ROR Dx,Dy
ROR <ea>

Machine Code Format:

Data Register as destination:

Bit 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T T T

111 (1(0f Immed. |0 Size |T| 1|1 Register
L ! L1

Memory location as destination:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T T T 1

1T{1]1]0jo{1|[1]0|1|1]| Effective Address
T R B |

+—Mode | < Reg.—~

The T-ield determines the type of the register-destination form of the
instruction. If T is O, then the Immediate field contains the shift count, with
000 binary representing a count of 8. If T is 1, the register number that
contains the shift count is contained in the Immediate field.

Example:

PC =0000083E USP =0001598C SSP =0007BF08 ST =0000= >IM=0

D 11111111 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
ror #3,00
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ROXL Instruction

The ROXL (ROtate Left with eXtend) instruction performs a left rotate
on a data register or memory operand. There are three forms of this
instruction:

1.

Rotate a data register to the left by a constant contained in the
instruction. Shifts from one to eight bits can be accomplished
using this form of the instruction.

in another data register.

. Rotate a memory word left by one bit only.

- Rotate a data register to the left by the number of bits contained

The Rotate operation is performed using the X-bit as an auxiliary bit. Bits
shifted out of the high-order bit position go to both the carry bit and the

X-bit. The X-bit is rotated into the low-order bit position.

Addressing Modes Allowed: Memory form only

Operand

Dn An (An) (An) + - (An) | x(An) X(An,xr.s)
No | No Yes Yes Yes Yes Yes
xw | xI | x(PO) X(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long
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Data size is restricted to word for the in-memory form of the instruction.

Condition Codes Affected:

>

Set according to the last bit shifted out of the operand. Unaffected
if the shift count is zero.

Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set according to the last bit shifted out of the operand. Set to the
value of the X-bit if the shift count is zero.

Always cleared.

ONZ

<

Assembler Syntax: ROXL #<count>,Dy
ROXL Dx,Dy
ROXL <ea>

Machine Code Format:

Data Register as destination:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
T T T 1

10110 Immed. [ 1| Size [T |1 |0 | Register
R ] [

Memory location as destination:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
U

111 |(ofof[1|O0]|1]1|1] Effective Address
I I B

<+ Mode =~ | < Reg.

The T-field determines the type of the register-destination form of the
instruction. If T is 0, then the Immediate field contains the shift count, with
000 binary representing a count of 8. If T is 1, then the register number
that contains the shift count is contained in the Immediate field.

Example:

PC =0000084C USP = 0001598C SSP = 00078F08 ST =0000= >IM=0

D 11111111 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
rox| #4,D0
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ROXR Instruction

The ROXR (ROtate Right with eXtend) instruction performs a right rotate
on a data register or memory operand. There are three forms of this
instruction:

1. Rotate a data register to the right by a constant contained in the
instruction. Shifts from one to eight bits can be accomplished
using this form of the instruction.

2. Rotate a data register to the right by the number of bits contained
in another data register.

3 Rotate a memory word right by one bit only.

The Rotate operation is performed using the X bit as an auxiliary bit. Bits
shifted out of the low-order bit position go to both the carry-bit and the X
bit. The X bit is rotated into the high-order bit position.

< Operand T C

Addressing Modes Allowed: Memory form only

Dn | An | (An) (An) + —(An) | x(An) x(An,xr.s)
No | No Yes Yes Yes Yes Yes
xw | x.1 | x(PC) x(PC, xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word long
Data size is restricted to word for the in-memory form of the instruction.



68000 Instruction Set

217

Condition Codes Affected:

X Set according to the last bit shifted out of the operand. Unaffected

if the shift count is zero.

ONZ

value of the X-bit if the shift count is zero.

VvV Always cleared.

Assembler Syntax: ROXR  #<count>,Dy

ROXR Dx,Dy
ROXR <ea>

Machine Code Format:

Data Register as destination:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T i T T 1

111]1]0] Immed. |O| Size | T|1]0 | Register

1t ! L1

Memory location as destination:

Bt 1514 13121110 9 8 7 6 5 4 3 2 1 0

T 1 T T 1

1|1]1(0|O0j1|0]|0O]|1]| 1] Effective  Address

I T |

+ Mode | + Reg.—~

Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Set according to the last bit shifted out of the operand. Set to the

The T-field determines the type of the register-destination form of the
instruction. If T is O, then the Immediate field contains the shift count, with
000 binary representing a count of 8. If T is 1, then the register number
that contains the shift count is contained in the Immediate field.

Example:

PC =0000085A USP =0001598C SSP = 0007BF08 ST=0000= >IM=0
D 11111111 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

roxr #4,D0
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RTE Instruction

The RTE (ReTurn from Exception) is used to load the status register and
the program counter (PC) with a single instruction. This type of operation
is required when an operating system in supervisor mode passes control
to a user program in user mode. The new contents of the status register
and PC are popped off the stack. The status register is taken from the first
16-bit word on the stack, and the PC from the next 32-bit long word. The
stack pointer is incremented by six bytes.

This is a privileged instruction. The processor must be in supervisor
state (i.e., bit 13 of the status register must be set) at the beginning of the
RTE instruction. The RTE instruction changes all the bits of the status regis-
ter, so the processor might be in user mode at the completion of the
instruction.

Condition Codes Affected:
The condition codes are all loaded from the word at the top of the
stack.

Assembler Syntax: RTE
Machine Code Format:

Bit 15 14 13 1211 10 9 8 7 6 5 4 3 2 1 O

ofr|ojofr{rf1|[OfjO{1|[1fT1]O}|0O]|1|1 [(4E73 hex)

Example:

PC =00000868 USP =0001598C SSP =0007BF08 ST =2004= >SUP IM=0 ZER

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 Q0000000 00000000 0007BF08
pea $876

The following code pushes a new status register contents (with all the
condition code bits set), and a new PC. Since the PC is lower on the stack
than the status register, it must be pushed first.

Here is a disassembly of the program:

—-1868,876
00000868 pea $876
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0000086E move #$1F, - (A7)
00000872 rte

00000874 moveq #$FF,DO
00000876 nop

Executing this program yields the following results

-g.,876
PC = 00000876 USP =0001598C SSP =0007BF08 ST=001F = >IM=0 EXT NEG ZER OFL CRY
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

Notice that the breakpoint was set on the address that the RTE instruc-
tion loads into the PC. (The debugger will not trace RTE instructions.)

This example shows how a supervisor mode program can transfer con-
trol to a user mode program. Note how register A7 reflects the supervisor
stack pointer (SSP) before the RTE and the user stack pointer (USP)
afterward.
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RTR Instruction

The RTR (ReTurn and Restore) instruction loads the condition codes and
the program counter (PC) from the stack. The condition codes are loaded
from the low byte from the word at the top of the stack. The high byte of
this word is discarded. The PC is loaded from the long word immediately
after the word containing the condition codes. The stack pointer is incre-
mented by six by an RTR instruction.

Condition Codes Affected:
The condition codes are loaded from the first word popped from the
stack.

Assembler Syntax: RTR

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ojr1jofojryrf1yojo|1|r|{rjo|1|1

==

(4E77 hex)

Example:

PC =00000888 USP =00015986 SSP = 0007BF08 ST=0000=>IM=0

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00015986
tr

At this point, we are about to execute an RTR instruction. Using the s
command, we will examine the information on the stack.

-sw15986 (Contents of A7)

00015986 001F (New condition codes)

00015988 0000 (High word of PC)

0001598A 088C .  (Low word of PC)

=i

PC =0000088C USP =0001598C SSP =0007BF08 ST=001F = >IM=0 EXT NEG ZER OFL CRY

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

The stack pointer was incremented by six bytes and the PC and status
register now have different contents.
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RTS Instruction

The RTS (ReTurn from Subroutine) instruction reverses the action of a
BSR (Branch to SubRoutine) or JSR (Jump to SubRoutine) instruction. The
PC is loaded from the long word at the top of the stack. This causes exe-
cution to resume at the instruction that follows the JSR or BSR instruction.

Condition Codes Affected: None
Assembler Syntax: RTS

Machine Code Format:

Bit 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O

ofrjofojirfi1jrjojofifr1frjof1{o

-

Example:

PC =0000089A USP = 00015988 SSP =0007BF08 ST =0000= >IM=0
D 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000
rts

~sl15988

00015988 0000089E .

=

PC =0000089E USP =0001598C SSP =0007BF08 ST=0000= >IM=0
D 00000000 000000006 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000

(4E75 hex)

00000000
00000000

00000000
00000000

This RTS instruction causes a transfer to address 89E. The stack pointer
is incremented by four bytes (which is the size of the address that was

popped off the stack).

00000000
00015988

00000000
0001598C
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SBCD Instruction

The SBCD (Subtract BCD with extend) instruction subtracts two bytes in
BCD format. The destination operand is replaced with the difference (Des-
tination — Source — Extend bit).

Addressing Modes Allowed:

Dn | An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No No No Yes No No
xw [ xI | x(PO x(PC,xr.s) #x SR CCR
No | No No No No No No

There are two forms of this instruction:

1. Subtract data register from a data register (Dn addressing modes).
The low-order bytes of two data registers are subtracted and the
result stored in the destination register.

2. Subtract memory to memory. This form of the instruction allows
multiple bytes to be subtracted. The only valid addressing mode
is —(An). Since the 68000 stores BCD data with the highest byte
first, to subtract multibyte quantities, one must start at the highest
address and work down. (Hence the use of pre-decrement
addressing.) If there is a carry out of the most significant BCD
digit in the byte, each instruction sets the X bit. The X bit is then
subtracted from the next pair of bytes.

Data Sizes: byte only
Condition Codes Affected:
X  Set by a borrow-out of the most significant BCD digit.

N  Undefined.
Z Cleared if result is not zero. Unchanged otherwise.
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V  Undefined.
C  Set by a borrow-out of the most significant BCD digit.

The Z bit is cleared if the result is not zero. Not setting the bit when the
result of the present byte is zero allows the Z bit to be accurate after a
series of SBCD instructions is executed. The Z bit must be set before
beginning such a series. (Comparing a register to itself is an easy way to
set the Z bit.) The N and V bits are undefined as a result of this instruction.

Assembler Syntax: SBCD  Dx,Dy
SBCD - (Ax), - (Ay)

Machine Code Format:

Bt 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T T T

1/0(0|0 D.Reg |1 ]O|O0|O|O0O]F| S Reg.
1 [

The D. Reg and S. Reg fields specify the destination and source register
numbers, respectively. If the F (format) bit is O, then the registers are data
registers. If the F bit is a 1, then the registers are address registers, and the
pre-decrement addressing mode is used.

Example:

PC = 00000510 USP =0001598C SSP = 0007BF08 ST =0000= >IM=0
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000518 0000051A 00000000 00000000 00000000 00000000 00000000 0001598C
sbed - (A0), - (A1)

-d516,519

00000516 00 01 01 00

=

PC = 00000512 USP = 0001598C SSP =0007BF08 ST=0019 = >IM =0 EXT NEG CRY

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000517 00000519 00000000 00000000 00000000 00000000 00000000 0001598C
sbcd - (AD), - (A1)

-d516,519

00000516 00 01 01 99

-t

PC = 00000514 USP = 0001598C SSP = 0007BF08 ST =0000= >IM=0

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000516 00000518 00000000 00000000 00000000 00000000 00000000 0001598C
~d516,519

00000516 00 01 00 99
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Scc Instruction

The Scc instruction sets a byte specified by an effective address operand
to all ones if a specified condition is true. The byte is cleared if the condi-
tion is false. The permissible instructions are:

SCC
SCS

SEQ
SGE

SGT

SHI

SLE

SLS

Set <ea> if the C-bit (carry) is clear.
Set <ea> if the C-bit is set.
Set<ea> on EQual. The byte is set if the Z- bit is set.

Set <ea> on Greater than or Equal. The byte is set if the N
(negative) and V (overflow) bits are either both set or both clear.
SGE is used for two's complement binary numbers.

Set <ea> on Greater Than. The byte is set if:

« The N and V bits are both set and the Z-bit is clear, or,
e The N, V, and Z-bits are all clear.

Set <ea> on Higher than. The byte is set if the C and Z bits are
both clear. SHI is similar to SGT, except it works on unsigned
numbers.

Set <ea> on Less than or Equal. The byte is set if:
o The Z-bit is set, or,

o The N-bit is set and the V-bit is clear, or,

o The N-bit is clear and the V-bit is set.

The SLE instruction is used for two’s complement binary
numbers.

Set <ea> on Lower or Same.
The byte is set if either the C or Z bits are set. SLS is similar to
the SLE instruction, except it works on unsigned numbers.
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SLT  Set <ea> on Less Than. The byte is set if:

« The N-bit is set and the V-bit is clear, or,
o The N-bit is clear and the V-bit is set.

SMI  Set <ea> on Minus. The byte is set if the N-bit is set.

SNE Set <ea> on Not Equal. The byte is set if the Z-bit is clear.

SPL  Set <ea> on Plus. The byte is set if the N-bit is clear.
SVC Set <ea> on V Clear. The byte is set if the V-bit is clear,

indicating no overflow.

SVS Set <ea> on V Set. The byte is set if the V-bit is set, indicating

overflow.
SF Never set <ea>.
ST Always set <ea>.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
x.w | x| [ x(PO x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No
Data Size: byte
Condition Codes Affected: None
Assembler Syntax: Scc  <ea>
Machine Code Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L LS L
0O|1(0]|1 Condition 1|1 | Effective Address

1 1 1

it | 1

<+ Mode = | < Reg.—~
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The Condition is a four-bit encoding of the condition code combination.
The conditions are as follows:

Condition  Instruction Condition  Instruction

0000 ST 1000 SvC
0001 SF 1001 SVS
0010 SHI 1010 SPL
0011 SLS 1011 SMI
0100 SCC 1100 SGE
0101 SCS 1101 SLT
0110 SNE 1110 SGT
o111 SEQ 111 SLE
Example:

PC =000008BC USP =0001598C SSP =0007BF08 ST=0000= >IM=0

D 00000001 00000002 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
cmp.l DO,D1

-t

PC =000008BE USP =0001598C SSP =0007BF08 ST=0000= >IM=0

D 00000001 00000002 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
slt D2

-t

PC =000008C0 USP =0001598C SSP =0007BF08 ST =0000= >IM=0

D 00000001 00000002 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
sgt D2

-t

PC =000008C2 USP = 0001598C SSP = 0007BF08 ST =0000= >IM =0

D 00000001 00000002 0O0000FF 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This example illustrates the use of the Scc instruction with a compare
instruction. Since the value in register D1 is greater than the value in regis-
ter DO, the SLT instruction did not set D2, and the SGT instruction did set
D2. With the Scc instruction, as with the Bcc and DBcc instructions, the
operands of a compare instruction must be read in reverse order.
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STOP Instruction

The STOP instruction provides a way to simultaneously enable inter-
rupts and to wait for an interrupt to occur. Other processors, notably the
PDP-11, had separate instructions for enabling interrupts and for waiting
for interrupts. An interrupt between the enabling instruction and the wait-
ing instruction could result in waiting for an interrupt that has already
occurred.

The STOP instruction is a privileged instruction and is used only by
code that must service interrupts. The Supervisor bit in the status register
must be set at the beginning of the instruction. The contents of a 16-bit
immediate data field are loaded into the Status Register. Bit 13 (which cor-
responds to the S-bit in the status register) of the immediate data must be
set or a privilege violation exception will occur. See Chapter 7 on Excep-
tion Processing for additional information.

Addressing Modes Allowed: None
Data Size: unsized

Condition Codes Affected:
The condition codes are set from bits 5-0 of the immediate operand.

Assembler Syntax: STOP  #<data>

Machine Code Format:

Bit 15 14 1312 1110 9 8 7 6 5 4 3 2 1 O

ofrjojojtr|1rjtrfojojtjit|1]O[0O[1]|O0 |(4E72 hex)

1 T [ T T 17 1 T T T T T T 1
Immediate Data (16 bits)
IR S S [ (N TN [ O N R O I
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SUB Instruction

The SUB (SUBtract binary) instruction subtracts a source operand from
a destination operand and stores the result in the destination operand.
There are two forms of this instruction:

1. Subtract an effective address operand from a data register.

2. Subtract a data register from an effective address operand.

Addressing Modes Allowed:

All Addressing modes (except SR and CCR) are allowed when the effec-
tive address specifies a source operand. When the effective address field is
the destination, then the following addressing modes are allowed:

Dn An (An) (An) + —(An) | x(An) X(An,xr.s)
No | No Yes Yes Yes Yes Yes
xw | xd | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Using a data register as a destination must be accomplished using the
register destination form of the instruction.

Data Sizes: byte, word, long
Using an address register as the source is valid only for word and long
data lengths.

Condition Codes Affected:

Set by borrow out of most significant bit.

Set if high-order bit of result was 1.

Set if result is zero.

Set by borrow-out of most significant bit.

Set if operation resulted in overflow condition.

<N NZ X
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Assembler Syntax: SUB  Dx,<ea>
SUB <ea>,Dx

The SUBA instruction is used when the destination is an address regis-
ter. The SUBI and SUBQ instructions are used when the source is immedi-
ate data. Many assemblers will accept the SUB mnemonic for these
instructions, and choose the correct instruction based on the operands.

Machine Code Format:

Bt 151413121110 9 8 7 6 5 4 3 2 1 0
T T T T T T

10|01 ] Register | D| Size | Effective  Address
1 ] T I T

<+ Mode ~* | + Reg. —>

The Register field gives the data register that must be one of the oper-
ands. The D bit is 0 if the Register field is the destination operand, and 1 if
the effective address is the destination.

The Size field is 00 for byte, 01 for word, and 10 for long operands.

Example:

PC =000008CE USP =0001598C SSP =0007BF08 ST =0000=>IM=0

D 00000002 00000001 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
sub.l D1,D0

-t

PC =000008D0 USP =0001598C SSP =0007BF08 ST=0000=>IM=0

D 00000001 00000001 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This instruction subtracts 1 from 2 to form 1. When both operands are
data registers, the data register destination form of the instruction is used.
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SUBA Instruction

The SUBA instruction does a binary subtraction operation with an
address register destination. In order to allow address computations to be
freely intermixed with data operations, this instruction does not affect the
condition codes.

The source operand is subtracted from the address register. The result is
placed in the address register.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) X(An,xr.s)
Yes | Yes Yes Yes Yes Yes Yes
xw | x| [ x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes Yes Yes Yes No No

All addressing modes are allowed, except SR and CCR. The effective
address must be the source operand.

Data Sizes: word, long
The SUBA operation always affects all 32 bits of the destination address
register.

Condition Codes Affected: None

Assembler Syntax: SUBA  <ea>,An
Many assemblers will generate a SUBA instruction if a SUB instruction is
specified with an address register as the destination operand.

Machine Code Format:

Bt 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T L L

110[0| 1] Register [S |1 |1 ]| Effective  Address
- [ T T

+ Mode = | < Reg.
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The Register field gives the address register to be used as the destination
operand. The S-bit is 1 for long operands and O for word operands.

Example:

PC =000008D8 USP =0001598C SSP =0007BF08 ST=0000=>IM=0
D 00000000 00000000 00000000 00000000 00000000 00000000
A 000008DC 00000000 00000000 00000000 00000000 00000000
suba #$22,A0

=i

PC =000008DC USP =0001598C SSP =0007BF08 ST=0000= >IM=0
D 00000000 00000000 00000000 00000000 00000000 00000000
A 000008BA 00000000 00000000 00000000 00000000 00000000

00000000 00000000
00000000 0001598C

00000000 00000000
00000000 0001598C

This example subtracts a constant 22 hex from the address contained in

address register AQ.



234 Programming the 68000

SUBI Instruction

The SUBI instruction subtracts an immediate quantity from an effective

address operand. The result is left in the effective address operand.

Addressing Modes Allowed:

Dn | An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw | x| | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long

Condition Codes Affected:

< O N Z X

Assembler Syntax: SUBI

Most assemblers automatically choose the SUBI instruction if the source

Set on borrow out of high-order bit. Cleared otherwise.

Set if high-order bit of result is set. Cleared otherwise.

Set if result is zero. Cleared otherwise.

Set on borrow out of high-order bit. Cleared otherwise.

Set on overflow condition. Cleared otherwise.

#x,<ea>

operand of a SUB instruction is immediate.
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Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0

| |

0[{0jO|O0OJO}|1]|0]|O} Size Effective

T T

[ |

Address

T

<+ Mode = | + Reg.—~

T T T | T T T T T T

[ IS S N A IR N N A S

T T

Word data: 16 bits Byte data: 8 bits

T

T T T T T T T T T T T

Y | R S | |

T T

Long data: 32 bits, including previous word

The Size field is 00 for byte operands, 01 for words, and 10 for longs.

Example:

PC =000008E4 USP =0001598C SSP =0007BF08 ST=0000=>IM=0
D 00000100 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000
subi.l #$10,D0

=i

PC =000008EA USP =0001598C SSP =0007BF08 ST=0000= >IM=0
D 000000F0 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000

00000000
00000000

00000000
00000000

00000000
0001598C

00000000
0001598C

This instruction subtracts the constant 10 hex (16 decimal) from data

register DO.
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SUBQ Instruction

The SUBQ instruction subtracts a three-bit immediate value from an
effective address operand. This allows you to subtract a small number
from a register or memory address using a small, fast instruction.

Addressing Modes Allowed:

Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | Yes Yes Yes Yes Yes Yes
xw | xI | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long
When an address register is used as the destination, only word and long
sizes are allowed.

Condition Codes Affected:

Set on borrow out of high-order bit position. Cleared otherwise.
Set if high-order bit of result is set. Cleared otherwise.
Set on overflow. Cleared otherwise.

Set if result is zero. Cleared otherwise.

N N < zZz X

Set on borrow out of high-order bit position. Cleared otherwise.

No condition codes are affected if an address register is used as the des-
tination operand.

Assembler Syntax: SUBQ #<data>,<ea>
#<data> is a constant number in the range 0
to 7.
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Machine Code Format:

Bit 15 14 13 121110 9 8 7 6 5 4 3 2 1 0
T T

| L
o|t]of{1 Data 1| Size Effective Address
1| 1 T [ D |

'-Mode—’l - Reg. —~

Data is a three-bit immediate field, with 000 representing 8, 001-111
representing 1-7. Size is 00 for byte operations, 01 for word, and 10 for
long operations.

Example:

PC = 000008EE USP =0001598C SSP = 0007BF08 ST =0000=>IM=0

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
subq.! #$2,00

-t

PC =000008F0 USP =0001598C SSP =0007BF08 ST=0019=>IM=0 EXT NEG CRY

D FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This example subtracts 2 from 1 (in data register DO) to form —1.
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SUBX Instruction

The SUBX (SUBtract eXtended) instruction executes multiple precision
subtraction operations. Integers of any length can be subtracted using the
SUB and SUBKX instructions. This makes it possible to represent numbers
much larger than the 32-bit longword allows.

There are two forms of this instruction:

1. Subtract a data register from a data register.

2. Subtract a memory location from a memory location. The — (An)
addressing mode is used for both the source and destination in
this form.

In both cases, the difference (Destination — Source — X-bit) is placed in
the destination operand.

Addressing Modes Allowed:

Dn An (An) (An) + - (An) | x(An) x(An,xr.s)
Yes | No No No Yes No No
xw [ xI | x(PO) x(PC,xr.s) #x SR CCR
No | No No No No No No

Data Sizes: byte, word, long
Condition Codes Affected:

Set on borrow out of high-order bit. Cleared otherwise.
Set if result is negative. Cleared otherwise.

Cleared if result is not zero. Unchanged otherwise.

Set on carry out of high-order bit. Cleared otherwise.
Set on overflow condition. Cleared otherwise.

< O N Z X
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The Z bit is not set if the result is zero, but it is cleared if the result is not
zero. This property of the instruction allows the Z bit to correctly indicate
the result of a multiprecision subtraction operation. The Z bit must be set
before subtraction begins, however. (This can be done with a MOVE to
CCR, or by comparing a register to itself. The latter instruction is two bytes
shorter.)

Assembler Syntax: SUBX Dy,Dx
SUBX —(Ay), —(Ax)

Machine Code Format:

Bt 1514 13121110 9 8 7 6 5 4 3 2 1 0
T 7T T T

1/0[0{1]| Reg.Rx | 1| Size |0|0]T| Reg Ry
I A [

The Reg. Rx and Reg. Ry fields contain the destination and source regis-
ter numbers, respectively. The size field is 00 for byte operations, 01 for
word, and 10 for long operations. The T (type) bit is O for the data register
to data register form of the instruction. The Reg. Rx and Reg. Ry fields
identify data registers in this case. The T-bit is 1 for the memory to mem-
ory form of the instruction. The Rx and Ry fields identify the address regis-
ters used by the pre-decrement addressing mode for this form.

Example:

PC =000008FE USP =0001558C SSP =0007BF08 ST =0004= >IM =0 ZER

D 00000001 00000000 00000000 00000001 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001558C
subx.l D3,D1

-t

PC =00000900 USP =0001558C SSP = 0007BF08 ST =0019=>IM=0 EXT NEG CRY

D 00000001 FFFFFFFF 00000000 00000001 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001558C
subx.l D2,D0

-t

PC =00000902 USP =0001558C SSP =0007BF08 ST=0000=>IM=0

D 00000000 FFFFFFFF 00000000 00000001 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001558C

This operation subtracts the register pair (D2,D3) from the register pair
(DO,D1). The high-order longword of each pair is contained in the even
numbered register. The example shows that (1,0) — (0,1) is (O,FFFFFFFF).
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SWAP Instruction

The SWAP instruction exchanges the 16-bit words in a data register. Bits

31-16 are exchanged with bits 15-0.

Addressing Modes Allowed: Dn only

Data Size: word

Condition Codes Affected:

Not affected.

Set if bit 31 of the result is set. Cleared otherwise.

Set if all 32 bits of the register are zero. Cleared otherwise.

Always cleared.
Always cleared.

N<NZX

Assembler Syntax: SWAP  Dn

Machine Code Format:

Bit 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0

T T

0]/1]0|0[1]|0|0O|0]JO|1]{0[O0]O0]| Register
11

The Register field specifies which data register is to be swapped.
Example:

-x
PC =0000090A USP =0001558C SSP =00078F08 ST =0000=>IM=0
D 11112222 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000
swap DO

=

PC =0000090C USP =0001558C SSP =0007BF08 ST =0000=>IM=0
D 22221111 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000

This example swaps the words in data register DO.

00000000
00000000

00000000
00000000

00000000
0001558C

00000000
0001558C
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TAS Instruction

The TAS (Test And Set) instruction tests a byte specified by an effective
address operand. The high-order bit of the byte is set to 1. The N- and Z-
bits are set according to the value of the byte before the operation. The
operation is indivisible, using a read-modify-write memory operation.

The TAS operation provides synchronization when two or more CPU
chips have access to the same area of memory. Since TAS is indivisible, a
processor can claim a resource and mark it as claimed before another
processor can test the memory location. If the operation were not indivi-
sible, two processors could test the flag and set it in such a way that they
both assess the resource as free and claim it erroneously. The TAS instruc-
tion guarantees that one processor will win and all others lose.

Addressing Modes Allowed:

Dn | An (An) (An) + - (An) | x(An) x(An,xr.s)
Yes [ No Yes Yes Yes Yes Yes
xw | x| | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

A TAS operation on a data register (which is allowed) is of no value for
synchronization purposes.

Data Size: byte
Condition Codes Affected:

X Not affected.

N Set if the high-order bit of the operand is set prior to the
operation. Cleared otherwise.

Z Set if all bits of the operand are zero prior to the operation.
Cleared otherwise.

V  Always cleared.

C  Always cleared.
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Assembler Syntax: TAS <ea>
Machine Code Format:

Bt 151413121110 9 8 7 6 5 4 3 2 1 0
1 T T 1

O{1j0|O0J1|[O|1[O]|71 |1 Effective Address
Lt a0

«Mode -+ | + Reg.—~
Example:

PC =0000090C USP =0001558C SSP =00078F08 ST=0000= >IM=0

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001558C
tas $97C

-897¢c

0000097C 00 .

-t

PC = 00000912 USP =0001558C SSP = 00078F08 ST =0004 = >IM =0 ZER

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001558C
-3897¢

0000097C 80 .

This example executes a TAS operation on memory location 97C. The
memory location contained zero before the operation and 80 hex after-
ward. The Z-bit is set, indicating that the operand was zero initially.
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TRAP Instruction

The TRAP instruction stacks the PC and the status register on the super-
visor mode stack. The Processor is switched to supervisor state, and the
PC is taken from one of sixteen trap vectors specified by a four-bit quan-

tity in the TRAP instruction.

This instruction is normally used by user mode programs to call supervi-
sor mode programs (such as operating systems). The TRAP instruction
provides a method for the user mode program to request an operating
system function, such as I/O, without having to know where the operating

system is located in memory.
Condition Codes Affected: None
Assembler Syntax: TRAP  #<vector>

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
T T

0

o(i1jofojrjr|(i1{ojof1{o

0

L

Vector

L

1

(4E4x hex)

Vectors used by the trap instruction are located at the following abso-

lute memory locations:

Vector Address

80
84
88
8C
90
94
98
9C

NOOUdWN =0

Vector Address

8 A0

9 A4
10 A8
1 AC
12 BO
13 B4
14 B8
15 BC
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TRAPV Instruction

The TRAPV instruction tests for overflow. The TRAPV instruction does
nothing if the V-bit is clear. If the V-bit is set, the PC and the status register
are pushed onto the stack, and a new PC is loaded from absolute location
1C hex. The CPU is switched into Supervisor state. This action is called a
TRAPV exception.

The TRAPV instruction is used after computations in which an overflow
condition would result in meaningless data. Many high-level languages
use this instruction to detect overflow.

Data Size: unsized

Condition Codes Affected: None
Assembler Syntax: TRAPV
Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

of1jJojofr|tr|(rfojJOof[1|{1]1]O]|1]1

o

(4E76)
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TST Instruction

The TST instruction tests an effective address operand for negative or
zero. The results are not saved, except that the condition codes are set
appropriately.

Addressing Modes Allowed:

Dn | An (An) (An) + —(An) | x(Am) X(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw [ xI | x(PO) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Sizes: byte, word, long
Condition Codes Affected:

N<NZ X

Not affected.

Set if the high-order bit of the operand is set. Cleared otherwise.

Set if the operand is zero. Cleared otherwise.

Always cleared.
Always cleared.

Assembler Syntax: TST

Machine Code Format:

<ea>

2 1 0

Bit 15 1413 121110 9 8 7 6 5 4 3
U

0

1

0|0

1

oj1{0

Size
I

T
Effective
L1

1 I T

Address
[N

+Mode = | +Reg.—~

Size is 00 to test a byte, 01 for a word, and 10 for a long.
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Example:

PC = 00000918 USP =0001558C SSP =00078F08 ST =0004 = >IM =0 ZER

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001558C
tst.) DO

-t

PC =0000091A USP =0001558C SSP =0007BF08 ST=0000= >IM=0

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001558C
tst.| D1

=i

PC =0000091C USP =0001558C SSP = 0007BF08 ST =0004=>IM=0 ZER

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 C0000000 0001558C

This example shows two TST instructions: one on a register that is non-
zero and one on a register that is zero.
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UNLK Instruction

The UNLK (UNLinK) instruction frees a stack frame that was allocated
previously by a LINK instruction. (See the description of the LINK instruc-

tion.) The instruction works like this:

The specified address register (normally the frame pointer) is placed in
the stack pointer. A long word is then popped off the stack into the
address register. This is exactly the opposite of the action of the LINK
operation. The UNLK instruction functions properly regardless of stack

PUSHes and POPs between the LINK and UNLK instructions.
Data Size: unsized

Condition Codes Affected: None

Assembler Syntax: UNLK  An

Machine Code Format:

Bt 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0

Of1|0j0)1|1|1]0{0[1]0]1]1| Register

The Register field is the address register specified as the frame pointer.

Example:

PC =0000091E USP =0001558C SSP =00078F08 ST =0004=>IM=0 ZER

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000
link AO,#$FFF4

-t

PC = 00000922 USP =0001557C SSP = 0007BF08 ST =0004= >IM=0 ZER

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00015588 00000000 00000000 00000000 00000000 00000000 00000000
-s115588

00015588 00000000 . (Old A0 contents)

PC = 00000924 USP =0001557C SSP = 0007BF08 ST =0004=>IM=0 ZER

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00015588 00000000 00000000 00000000 00000000 00000000 00000000
unik AO

00000000
0001558C

00000000
0001557C

00000000
0001557C



248  Programming the 68000

=t

PC =00000926 USP =0001558C SSP =0007BF08 ST =0004=>IM=0 ZER

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001558C

This example shows a typical pair of LINK and UNLK instructions. The
LINK instruction pushes sixteen bytes (four for the address register and
twelve specified by the link instruction), which are in turned popped by
the UNLK instruction.

SUMMARY

In this chapter we have covered:

1. The 68000 instruction classes
2. Program development mechanics

3. The 68000 instruction set

This material is primarily for reference in later chapters. It is important
that you at least know how to generate a program on your system before
continuing, however.

EXERCISES

1. Use your own computer to run the program shown in Listing 3.1.
2. Learn how to make backup copies of your files on your system.

3. Why do the ADDX and SUBX instructions use the pre-decrement
(- (An)) addressing mode while CMPM uses the post-increment
((An)+) addressing mode?

4. Why won't the debugger trace RTE instructions? What other
instructions will the debugger fail to trace?
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INTRODUCTION

Now that we’ve been over the necessary background material, we can
start to write programs for the 68000 in earnest. Computer programming
is the art of combining a small number of simple concepts to produce
something both innovative and functional, much as an artist combines oils
and canvas to produce a painting. The materials of computer program-
ming are relatively commonplace and simple. What you can create with
them is limited only by your own ability and imagination.

DISPLAYING A LINE ON THE TERMINAL

Let's begin by writing a routine that displays a line of text on the CRT
terminal (or screen). There are two basic techniques we can use to per-
form this task. We could read the computer’s hardware manual, see how
the terminal interface is programmed, and then write a program that deals
with the terminal at a hardware level. This is not a terribly difficult task,
but it has the disadvantage of working on only one brand of computer (or
worse, a particular mode! of one brand of computer).
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An alternate technique is to write a program that uses the computer’s
operating system to display a line of text for us. This method has the
advantage that it will work on any machine that runs the operating system
for which we write our program. This is, in fact, the reason operating sys-
tems exist: programs can be written that can run on widely disparate
hardware, and the programmer need not be concerned with most hard-
ware details.

We will return to the topic of hardware-level programming in Chapters
7 and 8. system. But for now, we will use the operating system for the
service it is intended to provide.

The operation of our program to print a string works something like this:

1. If any characters remain in the string to be printed, print the next
one. Otherwise, quit.

2. Go back to step 1.

One implementation of this program is shown in Listing 4.1.

1 ARRRER AR A AR AR R AR R AR AR AR RRAR AR R AR R AR R AR
2 *
3 * This program prints "Hello World" on
4 * a CP/M-68K system.
*
2 ARRRRRRRRIRARRRRRARARRRAR AR R AR R AARR AR R AR AN
7 start:
8 00000000 41F900000000 lea string,a0 * a0 -> string
9 00000006 1218 loop: move.b (a0)+,d1 * dl = next character
10 00000008 6708 begq done * If eq, then quit
11 0000000A 303C0002 move.w #2,40 * Print char code
12 0000000E 4E42 trap #2 * Call CPM
13 00000010 60F4 bra loop “ Re?eat until done
14 00000012 4E75 done: rts * Exit to CP/M
15 00000000 .data

16 00000000 48656C6C6F20 string: .dc.b  “Hello World”®,13,10,0

Listing 4.1 - CP/M-68K string-print routine
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The program generally works like this:

« line 8. Address register AQ is initialized to the address of the string
to be printed.

* lines 9-10. Data register D1 is loaded with the next character to
be printed. If this character has the binary value zero, then the
program returns to CP/M-68K (line 14).

« lines 11-12. The character in D1 is printed on the terminal.

* line 13. The program branches back to line 9 to print the next
character.

To print a character on the terminal under CP/M-68K, you first load the
character to be printed into register D1 and the constant 2 into register
DO, and then execute a trap #2 instruction.

This program uses a zero byte to indicate the end of a string. The loop
that prints one character at a time terminates when the move.b instruction
into D1 loads the register with a zero byte, causing the Z flag to be set.
The subsequent beq instruction causes a branch to the label done,
thereby terminating the program.

Bytes 13 and 10 at the end of the Hello World text string (line 16) are
used to move the terminal cursor to the beginning of the next line. A
character with the decimal value of 13 is defined as a carriage return, and
causes the terminal cursor to move to the leftmost character position on
the current line. A character with decimal value of 10 is defined as a line
feed and causes the cursor to move to the next line. Most terminals
require both a carriage return and a line feed to position the cursor at the
beginning of the next line.

The same program under UNIX is shown in Listing 4.2.

Lines 6-12 instruct the UNIX system to print the string to standard out-
put (file descriptor 1), which in UNIX is the terminal. Lines 13-15 cause
the program to exit to the operating system.

The sequence for calling the system shown here is for a system by
Motorola called UNIDOS. This is a UNIX-like operating system that has
UNIX-compatible system calls. Each 68000 UNIX or UNIX-like system uses
slightly different conventions for calling the operating system. These con-
ventions can usually be found in their system manuals.

For each line that is to be printed, UNIX requires a single line-feed char-
acter at the end of the line. This accounts for the value 10 in line 17.
Sending a line feed (called a newline in UNIX documentation) to the ter-
minal under UNIX causes both a carriage return and a line feed to be sent
to the output device.
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PROGRAM PORTABILITY

One of the major concerns facing an applications programmer today
is the number of machines on which his program will run, particularly
for programs to be made available to the public. A program that runs
on a large number of machines and operating systems is said to be a
portable program.

Achieving Program Portability Across Operating Systems

It is possible to write a program that runs on any machine that supports
the chosen operating system when you use a machine language program
in conjunction with that operating system. Listings 4.1 and 4.2 fall into this
category. In most instances, you may take the load file from one machine
and directly execute that file on another machine that uses the same oper-
ating system. This is called object-code portability.

1 R e e e e et e Ly

2 * This Program prints "Hello, World"

3 * on a UNIDOS System.

4 B S e e e s it g

5 00000000 .text

6 00000000 3F3CO00E start: move.w #length,-(a7) * Push length
7 00000004 487900000000 pea string * Push address
8 0000000A 3F3C0001 move.w #1, -(a7) * Push file description
9 0000000E 204F move.l a7,a0 * Copy stack

10 00000010 7004 move.l #4,40 * Write

11 00000012 4E40 trap #0 * Do the call
12 00000014 50 add.l #8,a7 * Pop arguments
13 00000016 41F90000000E lea status,a0 * Now

14 0000001C 7001 move,l #1,d0 * Exit

15 0000001E 4E40 trap 40 O

16 00000000 .data E

17 00000000 48656CECEF2C string: .dc.b  “Hello, World”,10,0

17 00000008 6F726C640A00

18 length: .equ *-string

19 0000000E 00000000 status: .dc.l1 0 * Exit status

Listing 4.2 - UNIX string-print routine
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To achieve portability between machines that use the same CPU but dif-
ferent operating systems, you first define a set of subroutines that handles
the operating-system interface, and then write the bulk of the program
using calls to these subroutines.

To make a program that is designed for one operating system run on a
different operating system, you need only rewrite the operating-system
interface subroutines. This concept is called modularity A modular pro-
gram isolates a given function, such as printing a string on the terminal,
into a single subroutine. Then the required subroutine is used whenever
the program performs a particular function.

Making a modular program run under a different operating system usu-
ally involves reassembling the source code for the main body of the pro-
gram as well as rewriting the operating-system interface subroutines. The
reassembly process may call for making changes to the source program in
order to accommodate any differences in assembler syntax between the
two operating systems. The ability to move programs between different
operating systems in this fashion is called source-code portability.

A PORTABLE STRING-PRINT PROGRAM

To illustrate this concept, we are going to rewrite the previous string-print
program (see Listing 4.2) to run under both CP/M-68K and UNIX. The pro-
gram, common to both CP/M-68K and UNIX, is shown in Listing 4.3.

1 RARRRRERER * * *
2 *
3 * This program prints "Hello World"™ on
g * a CP/M-68K or UNIX system.
*
6 *hkx L)
7 00000000 .text
8 .globl prtstr * String print
9 00000000 207C00000000 start: movea.l #string,a0 * a0 -> string
10 00000006 4EB900000000 jsr prtstr * Call print routine
11 0000000C 4E75 rts * Exit
12 00000000 .data
13 00000000 48656C6CE6F20 string: .dc.b  “Hello World”,10,0

Listing 4.3 - A portable “Hello World” program
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We have defined a routine called prtstr that takes a string address in
address register AO and prints it on the terminal. The .globl directive (line
8) specifies that prtstr is a label defined in a separate source file. The linker
program combines the two assembler-output files into one executable file
and corrects the instructions that reference external labels.

Note that we have adopted the UNIX convention—a single line-feed
character—to indicate the end of a line. On CP/M-68K, the prtstr routine
(or a subsequent routine called by prtstr) must output issue both a car-
riage return and a line feed whenever a line feed is encountered in the
string to be printed.

When designing subroutines, put as much of the work in the subroutine
as possible. Following this rule means that work is done once (i.e., in the
subroutine), rather than many times in each program that calls the sub-
routine.

The prtstr routine can also be written in a way that makes it indepen-
dent of the operating system. By calling a routine to output individual
characters (a function that is is dependent on the operating system), we
can write a single version of prtstr as well, shown in Listing 4.4.

1 *k * dededkdeodokokok
2 *
3 i String-print routine:
4 2 Enter with address of string in A0.
5 * String terminates with zero byte.

*
s TRARARAR KRN RN AN RN AR RN AR RN RRAR RN AR AR AR A&
8 .globl prtchar * External reference
9 .globl prtstr * pefined here
10 00000000 48E74080 prtstr: movem.1l d1/a0,-(sp) * Save dl and a0
11 00000004 1218 loop: move.b (a0)+,d1 * Fetch next character
12 00000006 6708 beq done * If zero byte, quit
13 00000008 4EB900000000 jsr prtchar * Print this character
14 0000000E 60F4 bra loop * And repeat until done
15 00000010 4CDF0102 done: movem.l (sp)+,dl/a0 * Restore dl and a0
16 00000014 4E75 rts * And return

Listing 4.4 - Prtstr routine
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There are two things to note about prtstr. First, the .globl statement is used

two ways:

i

To define labels that are referenced but not defined in the present
assembly. Such labels are called external symbols.

. To define labels defined in the present source file and which are
referenced as external symbols by other assembly source files.

The second item of note about the prtstr routine concerns registers used
by subroutines. Registers A0 and D1 are modified by this routine and are
saved and restored so that the contents (as seen by the calling program)
do not change.

This is another example of good subroutine design. Register contents
altered by a subroutine should be saved and restored.

The prtchar routine for CP/M-68K is coded as shown in Listing 4.5.

This subroutine prints a single character that is passed in the low byte of
register D1. Lines 12 through 17 issue a carriage return/ line feed for each

REEE
w N OW OO Ut W

14
15
16
17
18
19
20
21

00000000
00000002
00000006
00000008
0000000C
0000000E
00000010
00000014
00000016
00000018
0000001A

2F00
0C01000A
660C
123C000D
7002
4E42
123C000A
7002
4E42
201F
4E75

L T L e

*

* Print a single character on the

* terminal. Enter with character in DI.
*

*

CP/M-68K Version

L L e F r e

.globl
prtchar:
move.l
cmpi.b
bne
move.b
move. 1l
trap
move.b
notlf: move.l
trap
move, 1
rts

prtchar

d0,-(sp)
#10,d1
notlf
#13,d1
42,d0

$2
$10,d1
#2,d0

#2
(sp)+,d0

*

Defined here

Save DO

Line feed?

No, just print
Print C/R first
CP/M print code
Call CP/M

Now print LF
CP/M Print code
Call CP/M
Restore DO

And return

Listing 4.5 - CP/M-68K prtchar routine
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line feed character passed by the caller. Lines 18-19 output the character
passed by the caller in register D1. Note that register DO is preserved in
the same fashion as was register D1 by the putstr subroutine.

The UNIX version of this routine is shown in Listing 4.6.

This routine writes a single character using the same sequence we used
to write several characters in Listing 4.2.

CONVERSION ROUTINES

Our print-string program is useful in that we can now print strings on
the terminal. To perform useful computational functions as well, we need
to be able to print numeric quantities. This process involves conversion
routines, which transform raw binary numbers into printable strings.

Binary to Hexadecimal Conversion

The easiest conversion is to write a program that converts binary to hex-
adecimal as shown in Listing 4.7.

1 ek kA k * *x *

2 * Prtchar Routine for UNIX

3 * Enter with character in Dl.

4 hhkk * dhhhhhhhkrkhkh

5 .globl prtchar

6 00000000 48E78080 prtchar:movem.1 d0/a0,-(a7) * Save registers

7 00000004 13C100000000 move.b dl,char * Set character

8 0000000A 3F3C0001 move.w #1,-(a7) * push caunt

9 0000000E 487900000000 pea char * Push address

10 00000014 3F3C0001 move.w #1,-(a7) * push file description
11 00000018 204F move.l a?7,a0 * Transfer to A0
12 0000001A 7004 move.l #4,d0 * Function Code

13 0000001C 4E40 trap #0 * Do the call

14 0000001E DFFC00000008 adda.l #8,a7 * Pop argquments

15 00000024 4CDF0101 movem.l (a7)+,d0/a0 * Restore registers
16 00000028 4E75 rts * Return

17 00000000 .data

18 00000000 00 char: .dc.b 0 * Buffer

Listing 4.6 - UNIX prtchar routine
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The basic technique employed by this subroutine is to take a nibble and
index into the hex character table hextab. Characters are processed from
right to left since we need the nibble in the low four bits of the index reg-
ister to select the appropriate character. In line 11, we initialize a tempo-
rary pointer (A1) to the address of the character table. Data regjster D1 is
initialized to the character count minus 1 (as required by the dbra instruc-
tion). Address register AO is incremented by 8 to point one byte beyond
the rightmost digit (as required by the pre-decrement addressing mode).

Lines 14-18 implement the actual conversion process. The current
rightmost digit is isolated in data register D2 using the andi instruction.
(This instruction guarantees that D2 will be in the range 0-15.) The
indexed-addressing mode selects the proper hex character and places it in
the next byte in the output area. We then shift data register DO right one
nibble to prepare for converting the next character.

Following the completion of the process, the contents of register AO will
have been decremented eight times, so that it then contains its original
value, i.e., the address of the output area. it is therefore unnecessary to
preserve this register explicitly.

WO N U W

10
11
12
3
14
15
16
17
18
19
20
21

* This routine converts binary to ASCII hex
*

* Pnter with:

d D0 = binary value (long)

v A0 -> Output area (8 bytes)

TRk RARARARARARAARR AR ARk A AR kR kkk kR AR Ak Ak Ak khhhk

00000000

00000000 48E7E040
00000004 43F90000002A
0000000A D1FC00000008
00000010 7207
00000012 2400
00000014 02820000000F
0000001A 11312000
0000001E E888
00000020 51C9FFFO
00000024 4CDF0207
00000028 4E75
00000027 303132333437

.text
.globl binhex

binhex: movem.l d0-d2/al,~(sp) *Save input registers

lea hextab,al *al -> character table
adda.l #8,a0 *a0 -> end of area
move.l §7,41 *Loop counter

loop: move.l d0,d2 *Copy present number
andi.l #15,32 *Get low 4 bits
move.b 0(al,d2),-(a0) *Store character
Isr.l  #4,40 *Shift 1 hex place
dbra dl, loop *Loop until done
movem,1 (sp)+,d0-d2/al *Restore registers
rts *Return to caller

hextab

.dc.b ™“0123456789ABCDEF”

Listing 4.7 - Routine to convert binary to hexadecimal
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Binary to Decimal Conversion

A more generally useful function is a routine that converts numbers
from binary to decimal ASCII. This function is harder to implement,
because you must use division to determine each new digit. This process
is further complicated by the lack of a 32-bit division instruction in the
68000. Our program to convert binary to decimal only works on 16-bit
numbers. Fortunately, this is usually adequate.

Listing 4.8 shows the decimal conversion routine.

Lines 11-15 put either a space or a minus sign in front of the converted
number. The main body of the routine (lines 18-24) work as follows:

1. Divide whatever is left of the number by 10.

2. Place the remainder (which is the high word in the data register
following the divs instruction) in the buffer. Add the ASCII code
for O (hex 30) to this byte, making it a character between 0 and 9.

1 Khkkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhd

2 * Binary to decimal ascii conversion routine.

3 *

4 * Enter with:

5 *  DO.W = number to convert

6 * A0 -> Output area (6 bytes)

7 Rkkhkhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhh

8 .globl bindec

9 00000000 48E7C080 bindec: movem.1l d0-d1/a0,-(sp} * Save registers

10 00000004 123C0020 move,b #° 7,4l * Assume positive

11 00000008 4A40 tst.w dO * Negative?

12 0000000A 6A06 bpl notneg * No, use

13 0000000C 123C002D move.b #°-7,d1 * Negative, use “-=*
14 00000010 4440 neg.w d0 * Convert to positive
15 00000012 10Cl notneg: move.b dl,{a0)+ * Move in sign

16 00000014 D1FC00000005 adda.l #5,a0 * A0 -> end of area
17 0000001A 323C0004 move.w #4,d1 * Count register

18 0000001E 48CO loop: ext.l1 do0 * Extend to long

19 00000020 81FC000A divs #10,40 * Divide by 10

20 00000024 4840 swap dag * Remainder -> low word
21 00000026 1100 move.b d0,-~{a0) * Move to area

22 00000028 06100030 add.b #°07,(a0) * Adjust to asciil

23 0000002C 4840 swap ao * Quotient -> low word
24 0000002E S51C9FFEE dbra d1,loop * Loop until done

25 00000032 4CDF0103 movem. (sp)+,d0-d1/a0 * Restore registers
26 00000036 4E75 rts

Listing 4.8 - Routine to convert binary to decimal
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3. Use the quotient from Step 1 as the new number and repeat
Steps 1 through 3 until five digits have been processed.

The output of this routine is a little crude. Possible improvements
include a floating minus sign and suppression of leading zeros. Although
this routine is not sophisticated, it is adequate for the programs in the
remaining part of this chapter.

SUMMING THE FIRST FIVE INTEGERS

Now that we have built a set of tools with which we can write pro-
grams, let’s begin by looking at the program that sums the first five inte-
gers. We can now write a version of this program that prints its output on
the terminal, so that we no longer have to use the debugger to look at the
output. We can also use the dbra instruction to make the program consid-
erably shorter, as shown in Listing 4.9.

Lines 10-16 form the sum of the first five numbers in data register DO.
Lines 20-23 convert this sum to hex and decimal at the data areas labeled
“hex” and “dec” respectively. Finally, lines 24-25 print the message on the
screen as follows:

Sum is: 0000000F (hex) or 00015 (decimal)

It is important to notice how much easier it is to write this program
given the output and conversion tools we developed earlier. This is the
essence of modular programming—build the right routines to help you do
the job in an expedient manner. We are able to treat the conversion or
output process as if it were three instructions instead of the twenty to
thirty instructions these routines actually require. Indeed, we don’t even
have to know how the routines work, only how to call them.

READING TERMINAL INPUT

Many programs require user interaction or input to function properly.
Examples of this type of software include editor programs, calculator
programs, game programs, spreadsheets, and data-base management
software.

Let’s look at the design of a subroutine that performs terminal input in a
manner independent of the operating system. Our subroutine will
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perform the following actions:

1. Read a line of input from the terminal up to 80 characters in

length.

2. Place the characters in a buffer supplied by the user. The address
of this buffer will be passed in register AO.

3. Place a terminating null character at the end of the line. No line-
termination character will be placed in the user’s buffer.

o
OOV~ LE WK

00000000
00000002
00000004
00000006
00000008
0000000A

b e b
SO e WN -

20 0000000E
21 00000014
22 0000001A
23 00000020
24 00000026
25 0000002C
26 00000032
27 00000000

31 00000000
32 00000009
33 0000001B

4280
7201
7404
D081
5281
S51CAFFFA

41F900000009
4EB900000000
41F900000018
4EB900000000
41F900000000
4EB900000000
4E75

2053756D2069
787878787878
787878787878

KRERKKIRKRRIRKRIRRRRERARRRIR KRR KRR KRR AR KKK

* This program sums the first five numbers and

* prints the result on the terminal.

KAk hkhRRRRARRRRARRRARARARAR AR AR AR A ARk RA KRR A KK
.globl prtstr * String-print routine
.globl binhex * Hex-conversion routine
.globl bindec * Decimal-conversion routine

* Compute the sum first.
*

clr.1 40 * Initialize sum
move.l #1,d1 * Initialize counter
move.l #4,d2 * Loop counter

loop: add.l dl1,d0 * Add to sum
add.1l #1,d1 * Increment integer
dbra d2,1lo0p * Loop until done

*

E Now print, both in hex and decimal

*
lea hex,a0 * AQ -> output area
jsr binhex * Convert to hex
lea dec,a0 * AQ -> decimal area
jsr bindec * Convert to decimal
lea mess,a0 * A0 -> string to print
jsr prtstr * Print entire string
rts * Return to CP/M
.data 2

*

£ Qutput message area

*

mess:  .dc.b * Sum is: *

hex: .dc.b “xxxxxxxx (hex) or ~

dec: .dc.b “xxxxxx (decimal)”,10,0

Listing 4.9 - Sum of the first five integers
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The routine should be constructed so that the user can use the normal
line editing keys (e.g., Backspace and Delete) during keyboard input. This
is typically a function of the operating system.

Listing 4.10 shows the keyboard-input function for CP/M-68K.

CP/M-68K function code 10 reads a line from the console into a buffer
consisting of two prefix bytes and an area for input. The first prefix byte (at
label “buffer”) contains the number of bytes in the input area. The second
byte is set by CP/M-68K, and contains the number of characters actually
read. CP/M-68K does not place a line-termination character in the buffer.

1 KERRRRARRRRRRARRARRARARRARARARARARRRRARRRRRRE R R AR

2 * This routine reads a line from the terminal

i : using CP/M~-68K I/0.

5 * Enter with:

6 *

; : A0 -> area to store the line

9 KRRRRRKKARAAIRRRARRARARARRARRRARARRRRARARAARARA KR K

10 .globl getlin

1n .globl prtchar

12 00000000 48E7COCO getlin: movem.l d0-dl/a0-al,-(sp)

13 00000004 43F900000000 lea buffer,al * Al -> Buffer

14 0000000A 2209 move.l al,dl * Copy to D1
15 0000000C 700A move.l #10,d0 * p0 = Function Code
16 0000000E 4E42 trap $2 * Call CP/M

17 00000010 12290001 move,b 1(al),dl * Ioad character count
18 00000014 4881 ext,w dl * Extend to word

19 00000016 5341 sub.w  #1,d1 * Decrement for dbra
20 00000018 6DOC blt blank * Blank line entered
21 0000001A D3FC00000002 adda.l #2,al * Al -> First character
22 00000020 10D9 loop: move.b (al)+,(a0)+ * Move a character

23 00000022 51CIFFFC dbra dl, loop * Repeat until done
24 00000026 4218 blank: clr.b (a0)+ * Null at end

25 00000025 720A move.l $10,d1 * D1 = Line feed char
26 0000002A 4FB900000000 jsr prtchar * Go to next line

27 00000030 4CDF0303 movem.l (sp)+,d0-dl/a0-al

28 00000034 4E75 rts * Return

29 00000000 .data

30 00000000 S50 buffer: .dc.b 80 * 80 bytes in buffer
31 00000001 00 deb 0 * Characters actually read
32 00000002 .ds.b 80 * Reserve space

Listing 4.10 - CP/M-68K keyboard line input routine
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Lines 13-16 perform a CP/M-68K function 10, reading characters into
the local buffer defined by lines 30-32. Lines 17-21 are code to set up the
loop that moves the characters read into the user-supplied buffer.

The byte value returned by CP/M-68K must be extended to word size
for proper operation of the dbra loop. The characters are moved by the
code in lines 22 and 23. The clr.b instruction at line 24 provides a null ter-
minator at the end of the input in the user buffer.

CP/M-68K does not echo a line feed at the end of a read-buffer func-
tion. (It can be argued that this is not a feature.) Lines 25-26 output a line-
feed character so that subsequent pristr calls will not overwrite the
keyboard input. The equivalent UNIX routine is shown in Listing 4.11.

Lines 7-12 perform a UNIX read system call, which reads data from the
keyboard into the local buffer. Lines 13-18 move this data into the user’s
buffer in a manner compatible with the CP/M-68K routine. A null charac-

ter is added at the end.

1 khkhkkkdkhhhhhhhkhkhhhkhkhhhhkhkhhhkkhdkkhhrkhhhihi

2 * This program reads a line fram the

3 * console using the UNIX read call.

4 *k ok ok *

5 .globl getlin

6 00000000 48E780CO getlin: movem.l d0/a0-al,-(a7) * Save registers

7 00000004 3F3C00S0 move.w #length,=-(a7) * Max length

8 00000008 487900000000 pea buffer * Buffer address

9 0000000E 4267 clr.w -(a7) * File 0

10 00000010 7003 move,1l 43,40 * Read code

11 00000012 4E40 trap #0 * Do the trap

12 00000014 DFFC00000008 adda.l #8,a7 * Pop arguments

13 0000001A 206F0004 move.l 4(sp),a0 * Reload A0

14 0000001E 5540 sub.w  #2,d0 * Take two less

15 00000020 6FOC ble nobytes * LE => No data bytes
16 00000022 43F900000000 lea buffer,al * Al -> Temporary buffer
17 00000028 10D9 loop: move.b (al)+,(a0)+ * Move buffer

18 0000002A 51C8FFFC dbra 40, loop * Util done

19 0000002E 4218 nobytes:clr.b  (a0)+ * Drop in null

20 00000030 4CDF0301 movem.l (a7)+,d0/a0-al * Restore registers
21 00000034 4E75 rts * Return

22 00000000 .bss * Data area

23 00000000 buffer: .ds.b 80 * 80 bytes

24 length: .equ *-buffer * Length

Listing 4.11 - UNIX getlin routine
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INPUT CONVERSION

In order to use numeric keyboard input, one must first convert it from
ASCII characters to binary. This is the reverse of output conversion and is
perhaps the most difficult input routine to write.

The routine called decbin, shown in Listing 4.12, converts decimal
input. Register AO contains the address of the ASCII input and the binary
equivalent is returned in DO.

The routine works using a technique called an accumulator variable
{which is register DO in this case). The input is processed from left to right,
starting with the most significant digit. For each digit processed, the accu-
mulator is multiplied by 10 and the digit added. (This obviates the need to
assign a place value to the first digit encountered.) Processing stops when a

l ARRRARRARRARRRRRRRRRRRRRRRRRRRARRRARRRRRRRRRRAR
2 *
3 * This subroutine converts decimal ASCII to
54', * longword binary.
*
6 * Enter with:
7 L4 A0 -> Decimal string
8 * Exit with:
9 © DO = Converted number
10 &
11 * Conversion terminates on first non-decimal
g * character. No overflow detection.
*
14 khkRRRXR LR
15 .globl decbin
16 00000000 48E74080 decbin: movem.l d1/a0,-(sp) * Save starting registers
17 00000004 4280 clr.,l do * Zero out accumulator
18 00000006 0C100039 loop: cmpi.b #°9”,(a0) * Upper bound
19 0000000A 621A bhi notdec * Not a decimal digit
20 0000000C 0C100030 capi.b $#707,(a0) * Lower bound
21 00000010 6514 blo notdec * Not a decimal digit
22 00000012 E388 1sl.1 #1,40 * Multiply by 2
23 00000014 2200 move.l d0,dl * Save this
24 00000016 E588 1s1.1 #2,40 * Now multiplied by 8
25 00000018 DO8L add.l d1,d0 * Now by 10
26 0000001A 1218 move.b (a0)+,dl * Fetch digit
27 0000001C 02810000000F andi.l #$0f,dl * Isolate binary digit
28 00000022 D081 add.l d1,d0 * Add into accumlator
29 00000024 60EQ bra * Try another digit
30 00000026 4CDF0102 notdec: movem.l (sp)+,a0/dl * Unsave registers
31 0000002A 4E75 rts * Return to caller

Listing 4.12 - Routine to convert decimal ASCII to binary
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non-decimal digit is encountered. There is no provision for overflow detec-
tion or for the calling program to learn how many digits were processed.
Lines 18-21 perform a range check to ensure that the next byte in the
buffer does, in fact, contain a decimal digit. Lines 22-25 multiply register
DO by 10. This technique is a holdover from machines that had no hard-
ware multiplication feature. You use shift operations to calculate 2n and
8n. Adding these two quantities yields 10n. We used this trick because the
68000 hardware multiply instruction does not work on 32-bit quantities.
Lines 26-28 convert the digit to binary and add it to the accumulator.

DECIMAL TO HEX CONVERSION

Now that we have both input and output routines, let’s use them to
write a program that receives a decimal number as input and gives its
hexadecimal equivalent. The program should prompt for input, read the
number from the keyboard, and produce both the original number and
its hex equivalent.

Listing 4.13 shows the finished conversion program.

Lines 13-19 print a prompt on the screen and read a line from the ter-
minal. If the line is null (i.e., the user only presses Return), the program
goes back to the operating system. Lines 20-24 convert the number to
binary and then to ASCII hex and finally to ASCII decimal. Line 25 prints
the answer on the screen.

Consider how long this program would have been if all the subroutines
that we developed earlier had destroyed register contents or had taken
their inputs in different registers. The program to convert decimal to hex
is very short because the subroutines all expect parameters in the same
registers. This allows you to code many move instructions, which set up
parameters, only once.

Running the program with a few sample inputs shows:

A>dechex

Enter decimal number: 100 <Return>
00100 decimal is 00000064 hex

Enter decimal number: 16 <Return>
00016 decimal is 00000010 hex

Enter decimal number: 9998 <Return>
09999 decimal is 0000270F hex

Enter decimal number: 99999 <Return>
—-31073 decimal is 0001869F hex

Enter decimal number:

A>
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=
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

00000000
00000006
0000000C
00000012
00000018
0000001A
0000001C
0000001E
00000024
00000028
00000030
00000036
0000003C
00000042
00000000
00000000
00000017
00000029
00000038
00000000

41F900000000
4FB900000000
41F900000000
4EB900000000
4A10

6602

4E75

4EB900000000
41F900000029
4EB900000000
41F900000017
4EB900000000
4EB900000000
60BC

456E74657220
585858585858
585858585858

AARARRKKKRRRKIRAR KKK AR KR RRRRRKRRIRRA KKK AR KRR AR KRR KR

*

* This program converts decimal numbers to hex.
* Numbers are input from the keyboard and output to
* the screen.

*

KRARRKKKRKKRKAKRAKRKERRKRRARRRRRARKRRARRAA KR AR KA AR A AR

gotnum:

prompt:
decbuf:
hexbuf:

inbuf:

.globl
.globl
.globl
.globl
.globl
lea
jsr
lea
jsc
tst.b
bne
rts

prtstr
binhex
bindec
decbin
getlin
prompt, a0
prtstr
inbuf, a0
getlin
(a0)
gotnum

decbin
hexbuf,a0
binhex
decbuf,al
bindec
prtstr
loop

*

* ok N K % % Ok % Ok % % Ok ¥ % % % * %

Line print routine
Output converter
Output converter
Input converter
Keyboard input

A0 -> output area
Print prompt

A0 -> input area
Get keyboard input
Null line?

No, continue

Yes, exit to CP/M
Convert to binary

A0 -> conversion area
Convert to hex
Reconvert to decimal

Print answer
Repeat until done

“Enter decimal number: “,0
“XXXXXX decimal is *
“X0000XKX hex”, 10,0

80

*

Input buffer

Listing 4.13 - Routine to convert decimal to hex

Notice that the value 99999 caused an incorrect decimal value. Recall
that, due to the limitation of the 68000 divs instruction, the binary to deci-
mal routine (see Listing 4.8) works only for 16-bit quantities. (See the exer-
cises at the end of the chapter for the solution to this bug.)

SUMMARY

In this chapter, we have developed the background material for writing
sophisticated programs: terminal input, terminal output, and numeric con-
version. This basic tool kit provides us with the building blocks necessary
to construct larger programs.
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EXERCISES

1. A division instruction may be simulated as a loop that subtracts
until the dividend is reduced to a number less than the divisor.
Write a subroutine called “Idiv” that divides a 32-bit number. Use
the following calling convention:

Enter with:
DO = dividend
D1 = divisor
Exit with:
DO = quotient
D1 = remainder

What is the major disadvantage of this scheme?

2. Use the “Idiv” subroutine developed in question 1 to create a
new routine that successfully converts 32-bit decimal numbers to
decimal ASCII. Use a 10-byte output area.

3. Modify the decimal to hex conversion program (Listing 4.13) to
use the “Idiv’ conversion routine developed for question 2.

4. Write a routine that converts hexadecimal ASCI! to binary in a
manner similar to Listing 4.12. Allow both upper and lower case
letters for the hex digits A through F.

5. Write a program that converts hex numbers to decimal.
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INTRODUCTION

In this chapter, we will explore the various methods of /O available to
assembly language programmers. As with the previous chapters, we will
confine ourselves to using an operating system to perform the 1/O. In Chap-
ter 7, we will explore performing 1/O directly to the hardware interface.

Another topic we will explore in this chapter is mixing assembly language
with a high-level language. Writing assembly language subroutines for
high-level language programs is a common practice and a powerful tool.
Programming in this fashion allows you to retain the speed of assembly-
language routines, while taking advantage of the large library of subroutines
available with most high-level languages. Our discussion will center around
accessing the language 1/O routines from assembly language.

TYPES OF 1/0

Most 1/0O performed by applications programs falls into one of four
categories:
1. Terminal I/O. This is used for interaction with the operator.

2. File I/O. This type of 1/O generally involves the retrieval or stor-
age of large amounts of data.
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3.

Character I/O. Output to printers and plotters, 1/O over com-
munications links, and other I/O performed a byte at a time falls
into this class.

. Special 1/O. Devices that do not meet the standard model of an

I/O device belong to this category. This includes things like real-
time devices, computer control devices, and instrumentation.

The remainder of this chapter will deal with the first three types of I/O
listed above.

Terminal 1/0

I/O to the terminal is normally done either one character at a time or a
block of characters at a time. In addition, many operating systems per-
form line editing on the incoming characters. Line editing means that the
operating system attaches special meaning to certain characters. The per-
son using the computer can use these keys to correct simple typing mis-
takes. Here is a sample of line editing characters and their functions.

The BACKSPACE key causes the last character typed to be
deleted. On video terminals, the character is erased and the cur-
sor moves left one position.

The Control-R key advances the terminal to the next line and
echoes any characters typed on the current line. This is particu-
larly useful on terminals that do not support the erasing of char-
acters on the screen (such as hardcopy terminals, which produce
output on paper rather than on the screen).

The Control-U key cancels all input on a partially typed line (i.e.,
before the operator presses Return).

The Control-C key interrupts the program that is currently exe-
cuting and returns control to the operating system. This provides
the user with a way to stop a program that is out of control.

The Control-Z key is used to indicate the end of terminal input,
or to a program reading the terminal, Control Z indicates an end-
of-file condition.

The carriage return (Control-M) and line feed (Control-)) keys
indicate the end of a line.
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Each operating system interprets terminal input in its own peculiar fash-
ion. The control keys listed above are common to CP/M-68K and most
68000 implementations of UNIX.

You can also perform terminal input without line editing. In this case,
your program receives each character, including control characters,
exactly as typed. This is called raw mode in many operating systems. (Line
editing is also occasionally referred to as cooked mode.)

Raw mode is extremely useful for programs that are highly interactive
or visual in nature. Such programs often perform some action on every
keystroke. This type of program includes word processors, spreadsheets,
and many data-base management systems.

A significant side effect of raw mode is that you lose the ability to termi-
nate the program via Control-C. For this reason, some operating systems,
including UNIX, define yet a third way of reading the terminal, called rare
mode, in which all characters except Contro!-C are given to the program
as they are typed.

For the remainder of this chapter, we will use cooked mode, or line
editing, for console input.

File 1/0

Devices such as floppy or hard disks are generally accessed through a
part of the operating system known as the “file system.” A file is simply a
way of associating a name with a group of bytes. Files may contain exe-
cutable programs, text, data, and operating system commands.

The operating system provides the programmer with ways of creating,
deleting, modifying, and retrieving the information contained in a file. Pro-
viding a user with access to files is the single most important function that
the computer system provides. Typical file access operations provided by
an operating system are:

» Open an existing file or Create a new file. This causes the operat-
ing system to logically connect program 1/O to a file on the disk.

* Read data from the file. A Read operation transfers data from the
file into the program’s memory. The CP/M-68K type command or
the UNIX cat command Reads a file and displays the contents on
the screen.

o Write data to the file. A Write operation transfers part of the pro-
gram’s memory to a file. When you instruct a text editor to save a
file on disk, the editor performs Write operations to accomplish
your request.
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e Close a file. The Close operation tells the operating system that
you are through with a file. Many systems impose a limit on the
number of files you can have open at any one time. Thus, it is
good programming practice to use Opens and Closes in pairs.

File access techniques vary widely from system to system. UNIX files are
simply considered as streams of bytes. You can read or write any number
of bytes starting at any arbitrary location in the file.

CP/M-68K, on the other hand, does file I/O in 128 byte units. You can
transfer only 128 bytes at a time and data transfers must start on 128-byte
boundaries within the file.

Other operating systems use different schemes. To write portable pro-
grams that access files, you must define a set of subroutines that hide the
differences in the way operating systems perform file operations.

For CP/M-68K and UNIX, this work has already been done. A high-level
language called C contains a set of file access routines that can be used to
write programs that are portable between CP/M-68K and UNIX.

Character 1/0

Other devices commonly found on microcomputers include printers,
modems (a device that connects a computer to a telephone line), and
plotters. 1/O to these devices is typically done one character at a time.
Operating-system support for such devices usually consists of single-
character or block (multicharacter) 1/0.

Special 1/0

Instrumentation and control devices are typically not accessed in a
manner similar to the other, more standard devices. Many operating sys-
tems have separate facilities for accessing these devices. The facilities for
special I/O often perform special functions on devices normally accessed
by other means. Examples of such functions include formatting disks, for-
warding and rewinding magnetic tape drives, and controlling modem sig-
nals such as “answer the phone” and “dial this number.”

DEVICE INDEPENDENCE

Many operating systems have a feature known as device independence.
This means that most of the devices on the system can be accessed as if
they were files. UNIX is an example of such a system. On UNIX, you use
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the same 1/O functions to access the terminal, disk files, and the printer.
CP/M-68K is an example of a system that is not device independent.
CP/M-68K uses different function calls for each of these device types.

The advantage of device-independent 1/O is that you do not have to be
concerned with what type of device your program uses for 1/0. For most
programs, this is a tremendous advantage. Device independence makes it
possible to enter input to a program that normally receives input from a
disk file or to output information to a printer that normally goes to a disk
file. It is device independence that makes the highly-touted UNIX pipes,
filters, and 1/O redirection possible.

Fortunately for users of CP/M-68K and other operating systems that do
not provide device independence, it is possible to use calls to a high-level
language to obtain this feature. Most high-level languages incorporate the
necessary code for device independence in the language run-time library.
A run-time library is a set of routines that are called by the machine code
(which is generated by the language compiler). These routines are nor-
mally added to the program by the linker program.

INTERFACING TO HIGH-LEVEL LANGUAGES

One of the most common uses for assembly language is to add func-
tionality or speed to a program written in a high-level language. Since this
is a such a common technique, there are very few high-level language
compilers that do not allow it. You can take advantage of this capability in
your assembly-language programs by using features from the language
run-time library.

The technique for interfacing assembly language to a high-level lan-
guage is different for each compiler. Some compilers insist on having a
main program written in a high-level language. Others allow a main pro-
gram to be in assembly language, but require certain initialization proce-
dures in the main program. Still others have no such restrictions. The
proper techniques are usually documented (although not always well) in
one of the manuals associated with the high-level language you are using.

In interfacing to a high-level language, you need to answer the following
questions:

1. Does the language require a high-level main program? Certain
compilers, such as the UCSD P-system require this.

2. If the language allows the main program to be in assembly lan-
guage, does the main program have to do anything to make the
run-time library work?
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3. How does one call a high-level procedure from assembly lan-
guage? Is the sequence any different for calling the run-time mod-
ules directly?

4. What registers are preserved by the runtime modules and the
routines written in the high-level language? What registers are
destroyed?

5. Do you have to do anything special to exit to the operating sys-
tem? Many languages automatically close all open files upon exit-
ing. If you are coding a main program in assembly language, you
may have to code a call to the language exit or stop routine.

6. What techniques are available for accessing global data areas
from assembly language? Do you have to pass all data as parame-
ters to the assembly language procedure?

For the rest of the chapter, we will explore techniques for interfacing to
the CP/M-68K run-time library for the C language. The same techniques
can also be used to access C routines under most UNIX systems.

INTERFACING TO C

The C language used by CP/M-68K allows a main program to be written
in assembly language. The program begins execution at the label
“_main,” which must be declared in a “.globl” statement. No run-time ini-
tialization is required. Any run-time library routine that may be called
from C may be called from assembly language. There are no special con-
siderations for calling run-time routines.

Calling Sequences

Names of functions and global data areas are the same as the C identi-
fier with an underscore character as the first character of the name. Thus,
the C function “main” becomes “_main,” and so on. The C language does
distinguish between upper- and lower-case, so the label “_main” is differ-
ent from “_MAIN.”

You call a C-language library routine by pushing its arguments in
reverse order onto the stack and then executing a JSR instruction (Jump to
SubRoutine) to the desired routine. Following the return from the C rou-
tine, you normally pop the arguments off the stack. (The routine called by
the JSR instructions does not do this for you.) This prevents running out of
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stack space, and allows you to easily find the return address of the run-
time initializer routine. Table 5.1 shows the data sizes of arguments on the
stack.

Notice that although the character data type (char) is 8 bits, it is passed
on the stack as a 16-bit word. All addresses in C are 32 bits. A character in
single quotes is treated as an argument of type “char.” A string in double
quotes is treated as a “char *”, i.e., the address of the string is passed to
the subroutine.

This C call

int x,a,c;
char »b;
X = xyz(a,b,c);

generates assembly code that appears as shown in Listing 5.1.

This code which is generated by the compiler, puts the local variables a,
b, ¢, and x on the stack. The variables are accessed as negative offsets
from address register A6, which is used as the frame pointer. You can look
at the assembly language generated by many compilers to see what
instructions are used for subroutine calls.

C Argument Size in

Type Bytes (Bits)
char 2 (16)
char % 4 (32)
int 2 (16)
int % 4 (32)
long 4 (32)
long * 4 (32)
double quoted string 4 (32)
single quoted character 2 (16)

Table 5.1 - Sizes of argument types in C
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Many other C compilers use four bytes on the stack for each argument,
regardless of argument type. On the 68000, many compilers also use 32
bits for the “int” data type instead of the 16 bits used by the CP/M-68K
compiler.

C functions that return values place the return value in register DO just
before the rts (Return from Subroutine) instruction. (Some compilers use
data register D7 for this purpose.) Byte (char) values are placed in the
low-order 8 bits of DO. Word (int or short) values are returned in the low-
order 16 bits of DO. Longs and addresses occupy the entire 32 bits of reg-
ister DO.

The CP/M-68K C compiler treats registers DO, D1, D2, AQ, Al, and A2
as “scratch” registers; they are not preserved across C function calls.
When you call routines from the C library, the contents of these registers
may be altered upon return.

Two Arguments: Argc and Argv

The C function “main” is called with two arguments: argc and argv. The
argument called argc is a 16-bit quantity that gives the number of argu-
ments typed on the command line. The argument called argv is the
address of an array of pointers to each of the argument strings. Each argu-
ment string is terminated with a null character. Figure 5.1 shows
the arrangement of the stack and argc and argv arguments for a sample
command.

Some systems do not correctly fill in the argv[0] pointer with the pro-
gram name. It is recommended, therefore, that you not use this argument
for anything critical to the program’s results.

move.w c(ab6),=(sp) * Push arguments

move.l b{a6),-(sp) * In reverse

move.w a(aé),-(sp) * Order

jst _Xyz * Call function

add.l #8,sp * Pops arguments off stack
move.w dO0,x(a6) * Store return value

Listing 5.1 - Code generated by the C compiler
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Using Printf from Assembly Language

By far, the most commonly used C-language routine is printf—a formatted
print routine. A famous C program is the “Hello, world” program, which
uses printf to print the string “Hello, world” on the screen. Listing 5.2 shows
how assembly language can be used to code the same program.

The “\n” character in C is a line feed (decimal 10) byte. Double-quoted
strings in C also end with a null character (hence the zero byte in line 16).

C PROGRAM 1/0

C programs can perform 1/O in two ways:

« 1/O can use the operating system primitives open, creat, read,
write, Iseek, and close. These routines are known collectively as
unbuffered 1/O routines.

Command: A> program argl arg1 arg2 arg3

0(A7)[  Return address

4(A7) 4 (16 bits)

6 (A7) Argv address argv [0] address  |— “Program”

+4 argv[1] address  |—= "argt”

+8 argv [2] address  —» "arg2”

+12 argv [3) address  —> "arg3”

Figure 5.1 - Arrangement of argc and argv arguments
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¢ 1/O can use routines from the C-language run-time library that
perform local buffering in the application. These routines are
fopen, fclose, fread, fwrite, gets, fgets, fgetc, getw, fputc, putw,
puts, fputs, feof, and fseek. This type of /O is called buffered I/O,

or stream 1/O.

Which of these two sets of routines to use depends on the amount of
1/O performed at any one time. Unbuffered I/O yields very high through-
put when large amounts of data are transferred in a single read or write
call. Transferring small amounts of data at a time is very slow using unbuf-

fered 1/O, however.

Stream [/O, on the other hand, performs well when only a few bytes
are transferred at a time and poorly when large numbers of bytes are

transferred at once.

Unbuffered 1/0

The unbuffered 1/O routines are used in the following fashion:

1. First, the file or device is “connected” to the program via the
open (for existing files) or the creat (for new files) calls. These

1 hkkhkhhh Ak hhhhhhhhh kb hrhhrhhhrdhdrrhhhhhdh td
2 * This program is the same as the C "hello

3 * world" program:

4 *

5 * main() {

6 * printf("Hello, world\n"):

7 *

8 *hk *khkkk

9 .globl _main

10 .globl “printf

11 00000000 487900000000 _main: pea hello * Push string address
12 00000006 4EB300000000 jsr _printf * Call printf routine
13 0000000C S88F addq.l #4,sp * Pop argument

14 0000000E 4E75 rts * Return to library
15 00000000 .data J

16 00000000 48656C6C6F2C2077 hello: .dc.b "Hello, world",10,0

Listing 5.2 - The “Hello world” program
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routines return a 16-bit quantity called a file descriptor which
identifies the file on subsequent read or write calls. A value of —1
(FFFF hex) is returned if the file cannot be accessed.

2. The read and write routines are called to transfer data to and
from the file. Use the lseek call to select the position within the
file for starting the transfer.

3. Terminate file access with the close call.

Unbuffered Calling Sequences

Unbuffered /O routines are relatively simple to call and use. Here is a
brief summary of the routines and how they are called.

Open Routine

The open routine is called with two parameters:

1. The name of the file to be opened as a string terminated with a
null character, and

2. A 16 bit integer that determines how the file is to be accessed.
The integers are O for read only, 1 for write only, and 2 for read
and write.

The file descriptor is returned in data register DO.W. The filename string
can contain a disk drive specification. Listing 5.3 shows the code that the
file foo.bar for reading on drive A:.

The file descriptor of the open file is contained in register DO. If the file
cannot be opened, register DO.W will have the value FFFF (- 1).

Creat Routine

The creat function is called in the following manner. Push the file’s pro-
tection mask (16 bits) followed by a pointer to the null-terminated
filename.

The protection mask is the access permission mechanism under UNIX.
This word contains three 3-bit fields for read, write, and execute permis-
sion by the owner, group, and world. The value 511 (decimal) allows all
access by all users. CP/M-68K ignores this field. Listing 5.4 shows the
sequence of code that creates a new foo.bar file:

The file descriptor of the open file is contained in register DO. If the file
cannot be created, DO.W will have the value FFFF (—1).
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Read and Write Routines
Data transfer is accomplished by the read and write routines, which
transfer data from and to the file. Call these routines as follows:
1. Push the number of bytes you wish transferred (16 bits).

2. Push the address of the memory area where the file data is to be
transferred. This address is a buffer which receives data on a read
call and is a data source on a write call.

3. Push the file descriptor (16 bits).
4. Call _read or _write.

5. Register DO.W contains the number of bytes actually transferred.
For a read request, this may be less than the number of bytes
requested. For a write request, if DO.W is different from the num-
ber of bytes requested, an error occurred.

move.w #0,-(sp) * Push "open type" word
pea foo * push filename address
jsr _open * Call open routine
add.l 6, sp * Pop arguments

tst.w do * Is file open?

blt badopen * If LE, no, branch

foo: .dc.b “as:foo.bar”,0 * File name

Listing 5.3 - Calling the open routine

move.w 4511,-(sp}  * Push protection word
pea * push filename address
jsr _Creat * Call creat routine
add.l #6,sp * Pop arquments

tst.w do * Is file open?

blt badcreat * If LE, no, branch

foo: .dc.b “foo.bar”’,0 * File name

Listing 5.4 - Calling the creat routine
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Listing 5.5 shows code that reads 42 bytes from the file whose file descrip-
tor is in D3.W:

The write routine is called in the same fashion, except the error check
should compare DO.W to the number of bytes requested, and branch if
not equal to an error-handling routine.

Close Routine

The close routine is called by pushing the file descriptor and calling
_close via a jsr instruction. Listing 5.6 shows the code that closes the file
whose file descriptor is contained in D3.W.

Lseek Routine

The Iseek routine alters the position within the file at which the next
read or write begins. Normally, each read or write begins where the last
one left off. Thus, the file is normally processed sequentially, from begin-

ning to end.
move.w $#42,-(sp) +* Push byte count
pea buffer * push buffer address
move.w d3,-(sp) * Push file descriptor
jsr read * Call read routine
add.l  "#8,sp * Pop arguments
tst.w 4ao * Any bytes read?
eof * If no bytes, end of file
blt readerr * If LE, error on read
buffer: .ds.b 42 * Receives file data
Listing 5.5 - Calling the read routine
move.w d3,-(sp) * push file descriptor
jsr _Close * Call close routine
add. 1 #2,sp * Pop argument

Listing 5.6 - Calling the close routine
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Lseek allows the file to be accessed in a random fashion. You call Iseek
by pushing a word which determines the interpretation of the file offset. A
value of 0 means an offset from the beginning of the file, a value of 1 indi-
cates an offset from the current file position, and a value of 2 indicates an
offset from the end of the file. You then push the file offset (32 bits). This
can be a negative quantity (making it possible to back up from your cur-
rent position, or from the end of the file). Next, push the file descriptor
and call Iseek. DO.L returns with the resulting absolute offset from the
beginning of the file. Listing 5.7 shows the code that sets the file pointer to
1000H from the beginning of the file.

If the seek could not be performed, DO.L is set to a value of - 1.

A File-Copy program

Now that we’ve learned how to call I/O routines from the C library, let’s
write a program that copies one file to another. The program should be
invoked as follows:

A>copy file1 file2

The program should duplicate the contents of file1 in file2. (File1 should
be left unchanged.) Our program should be a professional quality pro-
gram. It should report errors on open, creat, read, and write, identifying
the file by name.

Stop for a moment and consider the value of device-independent I/O in a
program like this. In addition to copying files, we can use the CP/M-68K
con: (terminal) and Ist: (printer) devices to perform other functions as well.

 copy filel con: transfers a disk file to the console. This is the
equivalent of the CP/M-68K TYPE command.

« copy filel Ist: transfers a disk file to the printer. This is a function
which normally must be performed with the CP/M-68K PIP

program.
move.w $0,~(sp) * Push sense word
move.l $#$1000,~-(sp) * Push file offset
move.w d3,-(sp) * Push file descriptor
jsr _lseek * Call lseek routine
add. 1 48,sp * Pop arguments

Listing 5.7 - Calling the Iseek routine
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« copy con: filel allows you to create a disk file by typing it at the
terminal. This is useful for short files.

The completed program is shown in Listing 5.8. Lines 18 to 21 load val-
ues for argc and argv into registers DO and A5. Lines 28 to 33 open the
input file, and lines 35 to 40 create the output file.

Lines 46 to 62 execute the file copy operations. Notice the use of the
equated label “buffsiz,” which controls the number of bytes copied by each
iteration of the loop. You can control how many bytes are read and the size
of the buffer by changing the .equ (equates) directive on line 16. Equates
are used extensively in large programs to facilitate program changes. Imag-
ine having to change the constant 1024 to 2048 everywhere in a 300 page
program. Clearly, equates can save enormous amounts of time.

The _read routine returns the number of bytes actually read in DO.W.
This number does not always equal the number of bytes requested. When
reading from the terminal, input is processed one line at a time. When
copying files, it is very important to ensure that the number of bytes writ-
ten is the same as the number of bytes read.

A value of zero bytes read indicates the end of the input file. Upon
sensing this condition, the program branches to the label done:. In lines
64 to 70, the program closes the input and output files and returns to the
operating system.

Lines 76 to 110 are error routines that print out error messages when-
ever anything goes wrong. In this program, the error routines print out a
message and cause the program to exit to the operating system.

Buffered 1/0

Buffered 1/O run-time routines in the C language are designed to pro-
cess 1/O a few characters at a time. These functions are used in the follow-
ing fashion:

1. The file or device is connected to the program via the fopen call.
fopen returns the address of a memory structure. This address is
known as the stream pointer. If the open fails, fopen returns a
value of zero.

2. 1/O operations use a variety of routines. These routines are listed
in Table 5.2. Each of these routines operate on the stream pointer
returned by fopen. In addition, a modified version of printf,
called fprintf, produces formatted output to a stream file.
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3. Random access to the file can be performed using the fseek rou-
tine, which is analogous to the unbuffered lseek routine.

4. The stream buffer may be emptied using the fflush routine. This
procedure guarantees that all data output to the stream is actually
transferred to the output device.

5. The fclose routine closes the file.

Buffered Calling Sequences

The buffered I/O routines have calling sequences that are relatively easy
to use. We will examine each of them.

Fopen Routine

You must supply two arguments to the fopen routine: the address of the
filename string, and the address of a string that describes how the file is to
be accessed:

First Character  Access Type

ror R Read only
wor W Write only
aorA Append

Opening a file for write access causes any existing data in the file to be
destroyed. Requesting access to Read or append requires that the file
already exist. Write access will create a new file if necessary.

Data Size Input Output
byte fgetc fputc
word getw putw
long getl putl
string fgets fputs

Table 5.2 - List of /O routines
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Listing 5.9 shows how fopen is called to create a new file, foo.bar.

A non-zero value in data register DO (the stream pointer) indicates a
successful open operation. Notice that it is necessary to save the entire 32-
bit quantity returned in DO.L for subsequent 1/O calls.

Input Routines

The routines fgetc, getw, getl, and fgets produce input from the stream.
The fgetc, getw, and getl routines share a common calling sequence, as
shown in Listing 5.10.

Register DO contains the data read from the input stream. Fgetc, getw,
and getl return, respectively, a byte in D0.B, a word in DO.W and a
longword in DO.L. If an attempt is made to read past the end of the file,
the return value is — 1. Since this value is also a legitimate data value
within the file, a function called feof is available to determine if the stream
is at end-of-file. feof is a routine implemented via macros. You can call this
routine by building a brief C program, as shown in Listing 5.11.

-globl _fopen
pea wstring * Push access string
pea fname * Push filename string
jsr _fopen * Call open routine
add.l #8,sp * Pop argument
tst.l do * Open succeed?
beq badopen * If EQ, error
move.l 40,43 * Save stream pointer
.data
wstring:.dc.b  "w",0 * String for write
fname: .dc.b "foo.bar",0 * Filename

Listing 5.9 - Calling the fopen routine

.globl _fgetc

move.l d3,-(sp) * Push stream pointer
Jsr fgetc * Call routine

add.1  "#4,sp * Pop argument

Listing 5.10 - A comm

on calling sequence for input routines
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Then use Listing 5.12 to call the C routine from assembly language.

Feof is not necessary when using fgetc, as the value of —1 returned as
an error is placed in register DO.W, and thus cannot be a value obtained
from the file.

The fgets routine obtains a line terminated by a line-feed character (dec-
imal 10) from the stream. Fgets adds a null (zero) byte to the end of the
line (following the line-feed character). The calling sequence for fgets is
shown in Listing 5.13.

The value returned from fgets is O for the end of file; otherwise, the
value returned is the address of the string buffer.

Output Routines

The input routines described above have corresponding counterparts
for output. Fputc, putw, putl, and fputs, output a byte, word, long, and
string, respectively. Fputc and putw share a common calling sequence, as
shown is Listing 5.14.

Putl has a slightly different calling sequence, as shown in Listing 5.15.

#include <stdio.h>
int xeof (p)
FILE *p;

return(feof(p)):

Listing 5.11 - Calling the feof routine

.globl _xeof

move.l d3,-(sp) * Push stream pointer
jsr _xeof * Call routine

add. 1 #4,sp * Pop argument

tst.w 40 * At end of file?
beq ateof * M => Yes

Listing 5.12 - Calling the C feof routine
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.globl _fgets

linelen:.equ 81 * Input line length
move,l d3,-(sp) * push stream address
move,w #linelen,-(sp) * Push length
pea buffer * push buffer address
Jsr _fgets * Call routine
add.1l #10,sp * Pop arguments
tst.1 do * Test return
beg ateof * p) => Bnd of file
.data

buffer: .ds.b 1linelen * Input area

Listing 5.13 - Calling sequence for fgets

.globl _fputc

move.l d3,-(sp) * pPush stream address
move.w d4,~-(sp) * push character/word
jsr _fputc * Call output routine
add.l #6,sp * Pop arguments

Listing 5.14 - Calling sequence for fputc and putw

.globl _putl

move.l d3,-(sp) * Push stream address
move.l d4,-(sp) * push long word

Jsr _fputc * Call output routine
add.l #8,sp * Pop arguments

Listing 5.15 - Calling sequence for put!
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In both of these examples, register D3 contains the stream pointer
returned by fopen, and register D4 contains the data to be output.

The fputs routine is used to output a nuil-terminated string to a stream
file. The trailing null is not output. Listing 5.16 shows the calling sequence
for fputs.

This listing outputs the string “Hello, World” to the stream whose
address is contained in register D3.

Fprintf Routine

Fprintf, a formatted-print routine, produces formatted output, including
numeric conversion. The output can be directed to a stream. Listing 5.17
shows the calling sequence for this routine.

The fprintf routine takes a format string and a series of arguments. The
arguments are converted and output as defined by the format string. You
specify the conversion of the arguments in the format string by using a
percent sign (%) followed by a conversion operator.

Conversion operators take the form:

—ddd.dddlc

where ddd represents a string of decimal digits and ¢ represents the con-
version specifier.

All of the fields are optional, except for ¢, the conversion specification.
The minus sign indicates that the field is to be left-justified instead of right-
justified.

.globl _fputs

move.l d3,-(sp) * push stream address
pea string * push string address
jsr _fputs * Call routine

add.l #8,sp * Pop arguments

.data ’

string: .dc.b "Hello, World",10,0

Listing 5.16 - Calling sequence for fputs
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The first decimal field (i.e., before the period) specifies the width of the
field for the converted output. The next set of digits (i.e., after the period)
specifies the number of decimal places to the right of the decimal point.
This specification is only valid for floating-point numbers.

The | specifies that the argument is a 32-bit quantity instead of a 16-bit
quantity. This is meaningful only for numeric conversion. Capitalizing the
conversion character also causes the argument to be taken as a 32-bit
rather than a 16-bit quantity.

Table 5.3 shows the conversion characters accepted by fprintf.

.globl _fprintf
move.w d4,-(sp)
pea format
move.l d3,-(sp)
jsr _fprintf
add.1 #10,sp

format: .dc.b "D4 = 8d4",10,0

Arg 1

format string
Stream address
Call routine
Pop arguments

* % % ¥ W

* Format string

Listing 5.17 - Calling sequence for fprintf

Character

Argument is

w O X Qa0

A single character

A 16-bit number output as decimal
A 16-bit number output as hex

A 16-bit number output as octal

Address of a string terminated by
a null character

Table 5.3 - Conversion characters accepted by fprintf
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Fseek Routine

The fseek routine in the C library positions a stream file just as the Iseek
positions an unbuffered file. The calling sequence for the fseek routine is
described below.

1. Push a word that describes how you want the offset to be inter-
preted. This quantity is known as the “sense word.” You have
three options, as shown below.

Word  Offset

0 From the beginning of the file
1 From the current position
2 From the end of the file

2. Push the offset (32 bits).
3. Push the stream pointer (32 bits) and call the routine.

You should pop the arguments following the call (10 bytes). Fseek
returns the absolute offset from the beginning of the file, or — 1 if the seek
could not be performed, fseek returns a value of —1. Thus, you can
determine the current position by specifying an offset of 0 and a sense
word of 1.

Listing 5.18 positions the stream whose stream pointer is contained in
register D3 to offset 1000 (decimal).

Fclose Routine

The fclose routine is used to deactivate a stream that has been opened
with an fopen call. Listing 5.19 shows the calling sequence for this routine.
This code assumes the stream pointer is in register D3.L.

.globl _fseek
move.w  #0,-(sp)
move.l  #1000,-(sp)
move.l d3,-(sp)

jsr _fseek

add.1 #10,sp

Seek "sense" word
Offset

Stream pointer
Call routine

Pop arguments

* * % % *

Listing 5.18 - The fseek routine
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BUFFERED FILE COPY PROGRAM

Listing 5.20 is a revised version of Listing 5.8, the unbuffered file copy
utility. The routine has been rewritten to use stream 1/O instead of unbuf-
fered 1/O.

The principal advantages of using buffered 1/O are:

1. The copy loop (see lines 44 to 54) is shorter.
2. There is no need for the 1024 byte buffer.

These advantages are offset by the difficulty in checking for 1/O errors
and increased execution time.

STANDARD 1/0

Most implementations of the C language define a set of three files that
are open when the program starts. Table 5.4 shows how these files are
accessed.

In most implementations, the standard input and standard output may
be redirected from the command line. The default is to attach these files
to the terminal. The standard error file provides a mechanism for printing
error messages on a file (usually the terminal) that is different from the
standard output. These standard files are used in UNIX to implement the
UNIX concept of pipes and filters.

Accessing the standard 1/O files from assembly language is difficult
because the symbols stdin, stdout, and stderr are defined by the C prepro-
cessor. To circumvent this problem, use a C program to define external
variables that contain the stream addresses, as shown in Listing 5.21.

.globl _fclose

move.l d3,-(sp) * Push stream pointer
jsr fclose * call routine
add.1 " #4,sp * Pop arguments

Listing 5.19 - The fclose routine
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You can then reference the symbols _xstdin, _xstdout, and _xstderr as
external in your assembly-language program.

CALLING AN ASSEMBLY LANGUAGE ROUTINE FROM C

To call an assembly-language routine from C, you need only follow
these three conventions:
e register usage
e argument passing

» global routine naming

Listing 5.22 shows a function that initializes an area of memory when
called from C.

This function may be used in C to initialize large arrays or structures
more efficiently than the compiler-generated code would.

File Stream File
Function Pointer Descriptor
Standard input stdin STDIN (0)
Standard output stdout STDOUT (1)
Standard error stderr STDERR (2)

Table 5.4 - Standard input, output, and error

finclude <stdio.h>
FILE *xstdin = stdin;
FILE *xstdout = stdout;
FILE *xstderr = stderr;

Listing 5.21 - Defining external variables
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SUMMARY
In this chapter, we have covered the following material:
» The various types of 1O performed by applications programs,
including Terminal 1/O, File 1/0, Character I/O, and Special /0.

» The concept of device-independent 1/O and why this concept is
important.

e The requirements for interfacing to a high-level language in gen-
eral, and to CP/M-68K C in particular.

C run-time library routines for unbuffered and stream 1/Q, includ-
ing the calling sequences and samples of how to use these
routines.

» How to write assembly-language subroutines to be called from C.

Now that we have a good understanding of 1/O techniques, we will
apply these techniques in Chapter 6 to write more complicated applica-
tions programs.

EXERCISES

1. Write Listing 4.9 (Sum of the first five integers) using the “%d"”
feature of printf. (see Listing 5.17).

2. Write a program that produces a table of the powers of two from
1 hex to 100000 hex. Print the answers in both decimal and hex.
Use the fprintf function, and print the answers to the filename
contained in argv[1]. Hint: You can derive the powers of two
starting with 1 and shifting left one bit at a time.

3. Write a function to be called from C that copies one area of
memory to another. Use the calling sequence:

char *SrC;
char *dst;

int count;
mcpy(src,dst,count);
where

e src is the source address
o dst is the destination address
e count is the number of bytes to copy.
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INTRODUCTION

In this chapter we will introduce topics essential to writing advanced
applications. These include data storage techniques, sorting, and searching.

We will develop a computerized telephone directory as a sample appli-
cation. This sample application will use many of the advanced concepts
presented here and will have many of the characteristics of a large com-
mercial application system.

DATA ORGANIZATION

One of the most important considerations in writing a large program is
how to organize the data both inside and outside the program. You can
organize data in the form of records, arrays, linked lists, trees, queues,
and dequeues. We will now look at each of these types in detail.

Records

One of the simplest forms of data structure is called a record. A record
is a set of contiguous memory locations that contains related data.
Records are also called structures, especially in the C language. For
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instance, a program that organizes data into a telephone directory would
probably have a record with fields for name, address, and telephone number.

Records may exist both in primary memory or on disk. There is an
almost infinite variety of record formats. Two of the most popular ones are
fixed length records and variable length records.

Fixed Length Records

Fixed-length records (abbreviated FLR) have the same number of bytes in
each record. This has distinct advantages when accessing records randomly,

When the records in a file contain differing amounts of information,
however, the FLR technique wastes storage space.

Fixed-length records are a natural outgrowth of the days when punched
cards were used to run programs and enter data into a computer. Cards
had a fixed number of columns, usually 80 or 96. Each column held one
byte of information. A common practice in programming machines that
used punched-cards was to place each field of the record in a particular
card column. When the card was read into memory, the fields would
always be offset the same distance from the beginning of the card image
in memory.

The FORTRAN language is an example of a holdover from this tech-
nique. FORTRAN statements begin in column 7 of the card, which is very
difficult on a terminal! If a FORTRAN statement overflows from one line to
the next, you have to put a nonblank character in column 6. Fortunately,
most systems no longer use cards.

Many present-day storage techniques rely on fixed-length techniques.
This is especially true for records contained in primary memory. The sim-
plicity and speed of the FLR technique often outweigh considerations of
storage inefficiency.

Variable Length Records

Variable-length records (abbreviated VLR) allow for having a different
number of bytes in each record. This technique avoids the problem of
wasted space inherent in fixed-length records, but it makes random
access slower and more difficult. ASCII text files often use one of the VLR
techniques. Here are some of the more popular methods.

1. Records are prefixed with a count field that gives the number of
bytes in the record. Minor variations on this technique are the
number of bytes dedicated to the count field, whether the count
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field includes the number of bytes in the count field, and count-
ing units other than bytes. Most implementations of BASIC on
microcomputers use the count technique for string variables. This
technique is also used to store text files on many operating sys-
tems for mainframes and minicomputers.

2. Records are terminated with some special character or character
sequence that cannot occur within the record itself. For example,
UNIX text files terminate lines of text with a newline character
(decimal 10). CP/M text files terminate each line with a carriage
return (decimal 13) / newline sequence. The C language uses a
null byte (decimal 0) to terminate strings.

3. The beginning of a record is marked with a unique sequence.
This technique is often used in work involving communications,
where faulty transmission may distort, add, or delete bytes within
a record. A unique sequence of bytes helps resynchronize the
receiver and transmitter.

Hybrid Techniques

A number of techniques have been devised that combine the desirable
features of fixed and variable length techniques. These “hybrid” tech-
niques usually allow reasonable random access with reasonable storage
efficiency.

For records that are processed sequentially, a common technique is to
use a fixed portion of the record in combination with a variable portion of
the record. The fixed portion of the record contains an indication of how
big the variable portion is. This technique is useful for applications that
must represent variable-length tables.

Another common technique is to split the fixed and variable portions of
the records and store the fixed portions together and the variable portions
separately. The fixed portion contains the address of the variable portion.
In this way, the capability of fixed-length records to enhance random
access is combined with the storage efficiency of variable-length records.

Describing Records in Assembly Language

There are some common techniques for manipulating records in assem-
bly language that are advantageous on the 68000 chip. If a record is less
than 32K (as most are), then the “address register indirect with displace-
ment” addressing mode can be used to access the individual fields. This is
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particularly advantageous when more than one record must be handled
at one time.

In coding references to records, it is good practice to use equated
names for the different fields in the record. This allows you to go back
later and change the size and order of the fields in the record without
changing all the references to those fields.

Listing 6.1 gives the definition of the records used in our sample applica-
tions program—a computerized telephone directory. For simplicity, we
store only the person’s name and telephone number, not the address or
any other information. The record stores the last name, first name, and
middle name, each as ASCH strings terminated with a null character. Each
name field can have up to twenty characters. The telephone number (14
characters) and its extension (6 characters) are also stored as null-
terminated ASCII strings.

Note how the fields in the record are defined with symbolic expressions
(lines 48 to 53). Using the previous field name in defining the next field
allows you to change the size of a single field without changing the rest of
the description. It is usually helpful to have an eguate that gives the total
size of the record, such as found in line 53.

STORAGE ALLOCATION

The way in which records are arranged in memory is often critical to a
program'’s performance. There are two techniques commonly used to
allocate memory:

1. Allocating the records contiguously, i.e., one following the other.
A collection of records arranged this way is called an array.

2. Allocating the records non-contiguously, with each record con-
taining the address of the next record in logical order. This is
called a linked list.

Arrays

An array is composed of records arranged contiguously in memory.
When used with fixed-length records, the array technique makes random
access extremely easy. To access the record n, you calculate the address as:

address = (n — 1) x (record size) + the starting address of the array

This technique is used in many programs for matrix calculations, tables,
and other data that must be accessed randomly. The same technique can
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be used for accessing fixed length records in a disk file. This is sometimes
called direct access.

The disadvantage of arrays comes in adding or deleting items. The rapid
retrieval of information often depends on the information occurring in
some particular order. Adding items to or deleting items to an ordered
array requires moving all items below the insertion or deletion point. For
example, consider the array of numbers displayed in Figure 6.1.

Let’s say that we need to insert the number 101 into this array. In order
to make room for a new entry between 100 and 103, we must move the
lower three elements down. When manipulating large tables, this process
can require a lot of time.

Another example of array storage is the argv array of pointers passed to
the main routine of a C program (as illustrated in Chapter 5).

Linked Lists

Another technique for allocating storage to a group of records is a
linked list. With a linked list, each element of the list contains a way of
finding the next entry. This is usually accomplished by inserting the
address of the next element in each item of the list. There are several vari-
ations of the linked list technique.

Linked lists may be either linear or circular. Examples of both types are
shown in Figure 6.2. Both types of linked lists start at some known point
called the list head. This is usually a memory location that contains the
address of the first element in the list. The linear list terminates with some

100

103

105

107

Figure 6.1 - An array of numbers
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special value in the link portion of the record (usually zero). This value
indicates that there are no more records in the list. The circular list is
linked in a circle, with the last element pointing either to the first element
in the list or the list head.

Linked lists are extremely flexible for inserting and deleting items. To
insert an item, you modify two links: the link in the item before the item
to be inserted and the link in the item to be inserted. To delete an item,
you only need to modify the link that points to the item to be deleted. The
cost of this flexibility is the additional processing time it requires to access
a random element of a linked list. To access element number k in a linked
list, it is necessary to access the previous k — 1 elements.

One advantage of a circular list is that you can tell whether one of the
links in the list is corrupt. If you cannot reach the list head within a rea-
sonable number of tries, something is amiss. This reliability is purchased at
the cost of extra processing time.

A second variation of a linked-list is to use two pointers in each record
in the list; one to the next record and one to the previous record. This

Linear Linked List

Record [—*| Record [ Record [ ‘' | Record [
1 2 3 n T
List
Head
Circular Linked List
l———> Record ™| Record [~ Record [™ | Record
1 2 3 n
List
Head
Vv

Figure 6.2 - Linear and circular linked lists
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technique is called a doubly-linked list. To insert or delete items from a
linked list, you need to know the address of the previous element in the
list. The advantage of a having a pointer to the previous element is that it
speeds insertion and deletion of random elements in the list.

Yet another variation of the linked list technique is to maintain a pointer
to the last element in the list. Such a pointer is known as a tail pointer.
This is useful when elements are added to the end of a list. To facilitate
removal from the end of a list, you would need to use a doubly-linked list
with a tail pointer or alternatively, a circular doubly-linked list.

It is poor programming practice to use a linked list on a disk or other
form of external memory. The reason for this is that in order to add or
delete items from a list, you need to modify two items in the list. If the
machine crashes between these updates (and this does happen), the
linked-list structure is no longer consistent. This can lead to situations
where a disk block appears in two files or cannot be used at all. This was
a problem in many early versions of UNIX.

DATA STRUCTURES

There are several logical data structures that can be superimposed on
top of arrays or linked lists such as stacks, queues, and trees. We will now
explore these structures in more detail.

Stacks

You are already familiar with the concept of a stack (the 68000 has a
stack implemented in hardware). A stack is a data structure in which the
last item added is the first item removed. This is also called a Last In First
Out (LIFO) arrangement.

Stacks may be implemented either as arrays or linked lists. Implementa-
tion of a stack as an array requires a separate variable that defines the top
of the stack. The 68000 hardware stack pointer (register A7) is an example
of such a variable. Implementation of a stack as a linked list requires add-
ing and removing elements of the list only at the beginning of the list.

Two types of error conditions that you will probably encounter when
using stacks are:

1. Running out of room for new stack entries. This condition is
known as a stack overflow. This can happen, for example, when
a program gets caught in an infinite loop that pushes items on the
stack.
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2. Popping more entries off the stack than were pushed on the
stack. This condition is known as a stack underflow.

Queues

A queue is a list of items in which the first item added is the first item
removed. This is also known as a First In First Out (FIFO) or a First Come
First Served (FCFS) arrangement. FIFO arrangements can be observed in
any environment where people wait in lines for service. The first person
to arrive is the first person served.

You can implement a queue either as an array or as a linked list. Effi-
cient implementation as an array often uses a circular (or ring) buffer, as
shown in Figure 6.3. This data structure consists of two pointers: an inser-
tion pointer and a removal pointer.

Insertion
Pointer

3p4 (5|6 ||| 1]2]| RingBuffer

Removal Pointer

Figure 6.3 - A circular buffer
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ltems are added using an insertion pointer and removed using a
removal pointer. When the pointers are equal, the buffer is empty. If add-
ing an element causes the pointers to become equal, the buffer is full.
Notice that this means you can’t use one of the locations in the buffer
(i.e., if the pointers are equal, you can’t tell if the buffer is empty or full).
You can eliminate this problem by keeping a counter of the number of
items in the buffer.

Figure 6.3 shows an example of a circular buffer. ltems are added and
removed from left to right. Whenever a pointer runs off the right end of
the buffer, it is moved back to the left end. Thus, the pointers move in a
circular fashion. The shaded areas represent unused elements in the
buffer.

Implementing a queue with a linked list is best done using a tail pointer.
This makes both insertion and deletion operations quite simple.

Several modifications to the basic queue technique are also useful in
many applications. For example, a queue may be based on some order
other than chronological. The most common example of this technique is
the notion of a priority order list of jobs in a larger computer system. A
linked list organized according to priorities is often used in an operating
system to determine who gets what resources. For additional information,
see the discussion of priority-driven scheduling in Chapter 8.

A special form of queue, called a double-ended queue, or dequeue
{(pronounced “deck”), allows insertion and removal of elements at both
ends. Altered forms of this technique provide for insertion at both ends
but removal at only one, or removal at both ends and insertion at only
one. These are called output-restricted and input-restricted dequeues
respectively.

Trees

A tree is a data structure in which each item can point to more than
one item. A tree begins with a single element, called the root. The root
points to other nodes, which in turn point to still other nodes, and so on.
(An element in a tree is often called a node.) Figure 6.4 shows an example
of a tree structure. The elements of the tree are shown as numbered
boxes.

Borrowing terminology from genealogy, element two is termed a child
of the root, as are elements three and four. The root is said to be the par-
ent of these elements. Elements that are children of the same node are
termed siblings. Nodes five and six in Figure 6.4 are siblings. A node
which has no children is called a leaf of the tree. Any given node and all
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its descendants is called a subtree. For example, nodes two, five, and six
form a subtree of the root.

A tree is useful for describing something that may be defined in terms of
itself. This is called recursion. For example, on the UNIX operating system,
disk devices have a directory of files on the disk. It is also possible for one
of these files to be another directory. This directory can contain other
directories, which can contain other directories, and so on.

A tree is an ideal representation for this concept. There is a single direc-
tory, called the root directory, which corresponds to the root of the tree.
Nodes in the tree are either directories or ordinary files. Ordinary files are
always leaves of the tree, as are empty directories.

Modifying the definition of a tree so that each node has at most two
children gives us a special kind of tree called a binary tree. The children of

1 | (Root)
2 3 4
7 | (Leaf)

5 |(Leaf) | 6 | (Leaf)

Figure 6.4 - Example of a tree structure
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a binary tree are called the left and right descendants, and the distinction
between the two is meaningful. A node with a single right descendant is
different from the same node with a single left descendant. Binary trees
are used extensively in many areas of computer science. One of the best
examples is an expression tree, which is found in many high-level lan-
guage compilers and interpreters.

An excellent example of an expression tree is the handling of arithmetic
expressions in assignment statements. For example, the statement

X = (a+b)/2
would cause the compiler to generate instructions to first add a and b,

divide this sum by 2, and then place the result in x. A compiler would
represent this expression in a tree as shown in Figure 6.5.

Figure 6.5 - An expression tree
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Note how the assignment for the equal sign operator (=) is treated as if
it were an arithmetic operation. Since most arithmetic operations involve
an operator and two operands, the binary tree is a convenient way of rep-
resenting expressions.

In evaluating this expression, you evaluate the subtree on the left first,
and then the subtree on the right. In order to evaluate the equal sign
operator, you must first evaluate the division operator (/). To evaluate the
division operator you must evaluate the plus sign operator (+). This is
called traversing the tree. Notice that traversing the binary tree produces
the same evaluation order that you would use in evaluating the expression
by hand.

There is a great deal more to the area of data structures than we have
presented in the brief overview. See the Recommended Reading List for
reference on this and other topics.

ADVANCED PROGRAMMING CONCEPTS

There are three areas of programming which deserve more in-depth
study:

1. Sorting. The process of taking randomly ordered data and placing
it into a specified order.

2. Searching. The process of retrieving a specified piece of informa-
tion from a large set of data.

3. Recursion. The ability to define a particular function or set of
functions in terms of itself.

Sorting

Sorting is the process of ordering a randomly ordered set of records.
Sorting has received considerable attention in programming literature
because it is so easy to do poorly. We will discuss some of the simple tech-
niques used to sort records. Our discussion assumes that the data to be
sorted is in memory rather than on disk.

Insertion Sort

An insertion sort is generally performed as data is being input to a
program. To perform such a sort, take the items one at a time and put
each item that is in the memory array in sorted order. When you have
placed all the records in the array, you have sorted data. Due to the large
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number of insertions required, this technique is particularly suited to a
linked-list structure in memory.

Interchange Sort

An interchange sort is usually performed on data that is arranged con-
tinguously in memory. The simplest form of interchange sort involves tak-
ing the top element and comparing it to each element in turn, exchanging
where items are out of order. When all the elements have been com-
pared, the top element is certain to be correct. Each element is then
compared to all the elements below it. This type of sort requires n - 1
passes through the data, where “n” is the number of records.

Bubble Sort

A more efficient type of sort is the bubble sort, which compares succes-
sive pairs of elements throughout an array and then swaps elements that
are out of order. When a pass is made through the data without exchang-
ing any items, the sort is complete. This method takes advantage of data
that may already be in a partially correct order.

Listing 6.2 shows a simple bubble sort program that sorts an array of
memory words at the label “list” Lines 5 through 17 constitute a single

1 NARRRRR AR R R AR R R RN AR R AR AR AR R RAR AR

2 * Sample bubble sort. Sorts

3 * words at "list."

4 2R 2 2222222222222 2R RS RS R 222 R 2 )

S 000000 41F900000000 bubble: lea list,a0 * A0 -> Data

6 000006 4240 clr.w dao * DO is flag

7 000008 3210 bloop: move.w (a0),dl * Load for cmp

8 00000A B2680002 cmp.w 2(a0) ,dl * Compare 2 elts

9 00000E 6FOC ble noswap * LE => Don”t swap
10 000010 30A80002 move.w 2(a0),(a0) * Swap pair of words
11 000014 31410002 move.w dl,2(a0) L

12 000018 303c0001 move.w #1,d40 * Set flag

13 00001C 5488 noswap: add.l $2,a0 * A0 -> Next word
14 00001E B1FC0000000C cmp.1 fendbuf,al * Past end?

15 000024 65E2 blo bloop * No, continue

16 000026 4A40 tst.w do0 * Plag set?

17 000028 66D6 bne bubble * Yes, another pass
18 00002A 4E7S rts * Return

19 000000 .data

20 000000 0006000500030004 1list: .dc.w 6,5,3,4,1,2,0

21 endbuf: .equ L)

Listing 6.2 - Bubble sort routine
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pass through the data. Register DO.W is used as a flag to indicate whether
any exchanges have taken place on the current pass. Lines 7 through 15
perform one pass on the data, with the comparison taking place at lines 7
through 9 and the exchange at lines 10 through 12.

Searching

Searching is the process of finding an arbitrary record in a large collec-
tion. For large amounts of data or frequent searches, the search algorithm
can be extremely important.

Sequential Searches

The simplest technique for finding an entry in the table is to start at the
beginning of the table and look at each entry in the table until you find
the desired one. If you run off the end of the table, then the item you
want is not in the table. The average number of comparisons using this
technique is one-half the number of entries in the table (assuming that all
the entries in the table are accessed an equal number of times). Significant
improvements in search times can be made if the data is not accessed in
an evenly distributed manner. Simply placing the most commonly
accessed data at the beginning of the table can make an amazing differ-
ence in performance.

The advantage of the sequential technique is that it does not require the
data to be in any particular order. Most of the faster search techniques
impose some ordering criteria on the data. A linear search may well be
the best method to use, especially if the effort to sort the data outweighs
the effort expended in the search. The decision is based on the relative
frequency of sorts to searches. For rapidly changing data that is searched
infrequently, a linear search is probably the best technique.

Binary Search

For data that is in sorted order, a binary search technique can be used
to substantially reduce search time. A binary search works like this:

1. Given a table of n elements in sorted order, establish two pointers
to the first and last entries in the table.

2. Compute the element that is halfway between the two pointers.
(We'll call this element H.) Compare this element to the desired
element. If the elements are equal, then you have found the
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desired data. If the element is less than the desired value, move
the bottom pointer to element H. If element H is greater than the
desired element, move the top pointer. Reverse these conditions
if the table is in descending order instead of ascending order.

3. If the two pointers are equal or adjacent, then the item is not in
the table. Otherwise, repeat step 2.

Figure 6.6 shows a sample search sequence. T is the Top pointer, 8 is
the Bottom pointer, and H is the Halfway pointer. In this example, the
desired entry is found in three tries, as opposed to five for a sequential
search. The desired entry is 135.

The size of the table being considered is reduced by a factor of two for
each iteration of the search. For large tables, this is a substantial savings
over sequential-search techniques. This is true only if the effort to main-
tain a sorted table is less than the effort saved by the binary search tech-
nique. Effort is measured in terms of program execution time and
programming time. The number of times a program is used determines
the wisdom of spending a lot of time putting in features which save execu-
tion time.

Hashing

Another technique for reducing search times is called hashing. Hashing
imposes a different kind of structure on the table to be searched. A

li00|110’123|134| l35| l37|145‘155|1801200|207|256|298 Step

[y

i H/ 2 U
H B 2

Figure 6.6 - Example of a binary search
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transformation is performed on the data to be looked up in the table. This
transformation is called a hash function. The hash function yields a num-
ber indicating a position in the table. This number is called a hash code.
Entries are placed in the table at the locations dictated by their hash
codes. A simple way to generate a hash code for alphanumeric (i.e.,
string) data is to add each of the characters in the string and take the
resulting sum as the hash code.

When two or more different table entries have the same hash code, a
situation known as a hash collision results. The number of hash collisions
is an indication of the quality of the hash function. A good hash function
will produce few collisions. A hash collision is normally detected when
you need to add an entry to the table and you find that an old entry has
the same hash code as the new entry. One solution to this problem is to
place the new entry in the next free slot in the table. Then do a sequential
search starting at the position indicated by the hash code.

Another technique for dealing with hash collisions is to use a large num-
ber of linked-list heads. The hash code determines the list in which a
given element belongs. Then the lists are searched sequentially. If the hash
function yields a reasonably even distribution of elements across the lists,
the savings over a sequential search is the number of list heads divided by
two. Thus if you used fifty list heads, you would expect to see an improve-
ment of 25 to 1 over a sequential search.

Recursion

Recursion is the ability to define a function in terms of itself. For
example, the factorial function can be defined recursively. A factorial mul-
tiplies a number by all the integers less than the desired number. Thus,
five factorial (written 5! is 5 x 4 x 3 x 2 x 1, or 120. Zero factorial is
defined to be 1. The factorial function for a number n may be defined
recursively as:

1. Ifnis 0 or 1, then n factorial is 1.

2. Otherwise, n factorial is n times n — 1 factorial.

Listing 6.3 shows a factorial routine that uses this definition to compute
factorials.

Lines 8 through 11 handle the case where n is 0 or 1. Lines 12 through
16 handle the case where n is greater than 1. The fact function is called
with n — 1 as the argument. Note that when n reaches 1, the recursion
will stop.
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In general, recursive routines may not modify registers or static vari-
ables without saving and restoring them on the stack. Languages such as
C and Pascal, which support recursion, put all variables local to a proce-
dure on the stack. You can do the same in assembly language using the
LINK and UNLK instructions to allocate the stack space and the Address
register indirect with displacement addressing mode to access the data.

SAMPLE APPLICATION SYSTEM

Our sample telephone directory system performs three functions:

» Adding a new telephone number to the file.

» Recalling a number for a given person.

« Listing the entire file.

In designing this system, we are faced with a fundamental choice: one
program or three? We could write three separate programs, each of
which would perform one of these three functions. Or we could write a
single program that performs all three. To make this decision, consider

00000000
00000004
10 00000006
11 0000000A
12 0000000C
13 0000000E
14 00000010
15 00000012
16 00000014

VRN BWN

B07C0001
6E06
303C0001
4E75
3r00
5340
61EE
C1DF
4E75

Ikhhkhkhhhhhhhhhdhhhkhkhhhkkhhddkhkdhdddkdhdhkh

W Recursive factorial routine
*

= Enter with number in DO.W

X Exit with answer in DO.W

KRR KK RRR KKK R AR AR R KRk Ak hhhkkkhkkkkkkhk Kk X

.globl fact

fact: cmp.w #1,d0
bgt dofact
move.w #1,d0 1! or 0! is 1
rts Done

* Easy?

*
*
*

dofact: move.w d0,-(a7) * Save present value

*
*
*
*

No, do recursion

sub.w #1,d0 Decrement

jsr fact Take (n-1)!
muls (a7)+,d0 n! =n * (n-1)!
rts Quit

Listing 6.3 - Recursive factorial routine
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how the program will be used. Recall operations are very frequent, addi-
tion operations are relatively infrequent, and listing the file even more
infrequent. Addition volume is also quite low. A typical user will add only
one or two numbers at a time.

These facts argue for three separate programs. Two of the programs will
be used infrequently. Thus, the user can find and add phone numbers
from the operating system command level with a minimum of interfer-
ence with his other activities. The command set we will use is:

PADD first middle last (aaa)eee — nnnn xxxxxx
PFIND name
PLIST

PADD is the command to add a phone number to the existing phone
number file. (If no file exists, the PADD program should create it, thereby
sparing the user additional inconvenience.) The “first,” “middle,” and
“last” arguments comprise the name of the person. The next two argu-
ments are the phone number. “Aaa” is the area code, “eee” is the
exchange, and “nnnn” is the rest of the number. “Xxxxxx” is an optional
extension.

PFIND is used to locate a phone number. PFIND prints a list of phone
numbers whose first or last names match the given name. This helps
locate a person whose full name you can’t remember.

PLIST prints the entire phone list on the terminal, sorted by name. By
typing PLIST >filename, you can also put the listing in a file. The com-
mand PLIST >lst: sends the listing to the printer.

The record layout for the telephone number file was shown in Listing
6.1. The file on disk consists of an array of these records, sorted by name.
All three programs use the length of the file to determine the number of
records present.

The PADD Program

Listing 6.4 shows the main entry point for the PADD program. This pro-
gram is designed in a “top-down” fashion. This means that the program is
partitioned into modules, each of which perform a single function. The
PADD program has the following modules:

1. The setfield routine, which moves the arguments from the com-
mand line into a local storage area called irec. The command line
data is also checked for errors at this point.
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2. The readfile routine, which reads the entire file into memory at a
location called buffer. If the file does not exist, readfile creates it.
If the file will not fit in memory, an error message is generated
and the program exits to the operating system.

3. The insert routine, which takes the data in the command line
record irec and inserts it into the buffer read from disk. This is a
type of insertion sort.

4. The wrtfile routine, which writes the modified buffer back out
to disk.

Writing programs in this fashion allows you to partition a large task into
several smaller and more manageable ones. The main routine in such
programs often consists of only subroutine calls.

The Setfield Function

Listing 6.5 shows the code for the setfield function, which moves the
fields from the command line (argv) into a temporary area called irec. Set-
field mainly checks for the proper number of arguments on the command
line and moves the arguments into the proper fields. Two subsidiary func-
tions are used:

e A function called movestr, which moves a variable length string
into a fixed-length area. Nulls are added to fill out unused space
in the destination area.

« A function called valid, which checks a telephone number for the
proper syntax.

The Readfile Function

The function called readfile is shown in Listing 6.6. This function uses
read calls in the C run-time library file to open the file, read it, and close
it. Lines 223 through 235 open the file PHONE.DAT. If the file does not
exist (see lines 228 through 235), it is created. Failure to create the file ter-
minates the program with an error message.

Lines 239 through 253 read the file. Each call to the C _read routine
attempts to read 4K into the buffer. (4K is a purely arbitrary size.) When
the read operation returns zero bytes read, the program has reached the
end of the file.
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Lines 254 through 256 perform the file close operation. The first free
byte in the buffer is recorded at line 257. This address is used by later por-
tions of the program to determine the number of records to process.

The Insert Routine

Listing 6.7 shows the insertion routine called insert and its subsidiary func-
tion ncmp. Inserting a new record in the buffer requires three actions:

1. Finding the place to insert the new record (lines 271-278). The
function ncmp (lines 297-328) compares the name fields in two
records. This function is called repeatedly until either the end of
the buffer is encountered or the record in the buffer is greater
than the record in irec. When either case becomes true, control
is transferred to line 282.

2. Moving the entire buffer down to make a space in the middle of
the buffer in order to insert the new record (lines 282-286).

3. Moving the new record into the newly vacated space in the
buffer (lines 290-294). Notice that the buffer size was adjusted at
line 283 to reflect the insertion of the new record.

The ncmp function takes advantage of the fact that the fields in the
record are arranged in the proper order for comparison. Ncmp compares
the three name fields as if they were one very large string. The null-
padding of these fields ensures that this technique will work.

The Wrtfile Routine

Listing 6.8 contains the code for the wrtfile routine, which copies the
modified file from memory back out to disk. Lines 341 through 346 create
a new copy of the file. (The old file is deleted by _creat.) Lines 350
through 367 write the file out in segments 4K bytes long. (Again, 4K was
chosen quite arbitrarily.)

The only tricky code comes when less than 4K remains to be written to
disk. Register A5 is set to point to the first byte not to be written at lines
352 through 356. This byte is either at the top of the buffer or 4K beyond
the first byte to be written.
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The Data Area

Listing 6.9 shows the remainder of the program—error routines, error
messages, and data areas. The program handles error conditions by print-
ing a message to the terminal screen and exiting. This type of error is
sometimes called a fatal error, in that the program cannot recover and
continue processing.

Notice that the majority of data is in the bss segment. This is not acci-
dental. The buffer area is quite large, and placing it in the bss segment
means that it is not stored on the disk. This reduces both disk storage
requirements and the time it takes to load the program.

The PFIND Program

Listing 6.10 shows the main program for the PFIND command. This
program calls the readfile routine to load the data file into memory. (For
this program, we removed the code that created an empty data file.) The
print routine then prints out all entries in the table that match the name
specified in the single argument on the program’s command line.

Reusing the readfile routine illustrates one of the great truths in pro-
gramming: There ain't nothing new under the sun. Most programming
efforts involve modifying existing code rather than writing new code. Writ-
ing modular code ensures that pieces from one program can readily be
used in another program.

The Print Routine

The only new code in the PFIND program is the print routine. This is
shown in Listing 6.11. The code at lines 147 through 159 forms a loop that
checks each entry in the buffer using a local subroutine called match. The
return parameter of match is the Z condition-code bit. The Z-bit is set
when the record pointed to by A3 matches the string pointed to by A5.
Using condition-code bits in this way saves a few instructions and is a use-
ful technique for improving the performance of routines that are called
frequently.

The match routine at lines 169 through 186 attempts to match the string
(whose address is in A5) with the first and last name fields pointed to by
A3. This routine checks only the command argument for termination so
that a match occurs when the argument name is a prefix of the record
name. For example, “White” will match “White,” but it will also match
“Whitehead.” This is a useful feature if you can’t remember the exact
spelling of a name.
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Data Area

Listing 6.12 shows the data area and error routines for the PFIND pro-
gram. This data area is largely a subset of the PADD program.

The PLIST Program

The PLIST program is a trivial modification to the PFIND program, and
is left as an exercise for the reader.

SUMMARY

In this chapter, we have touched briefly on a number of important top-
ics. Among them are:

The concept of records and the various types of records: fixed-
length, variable-length and hybrid records.

How records are arranged in memory: arrays and linked lists.
Data structures: stacks, queues, and trees.

Simple methods of sorting data: insertion sorts and interchange
sorts.

Sequential, binary and hash techniques of searching a table.
The concept of recursive programming.

Sample application of a phone directory.

In the next two chapters, we will progress from writing applications to
writing low-level operating system software. This type of software makes
extensive use of the stack and queue data structures.

EXERCISES

1l
23

Derive the PLIST program from the PFIND program.

The Fibonacci series of numbers, denoted as F(n), is recursively
defined as follows:

a. F(0) = 0, and F(1) = 1.

b. For all other numbers, F(n) = Fin — 1) + F(n -~ 2).









Exception Processing



INTRODUCTION

This chapter will introduce you to the concept of a machine “excep-
tion,” and to programming techniques used in processing exceptions. We
will develop two sample programs that handle exceptions and discuss the
types of exceptions possible on the 68000 chip.

WHAT IS AN EXCEPTION?

An exception is the machine’s ability to interrupt what it is doing, do
something else, and if necessary, return to the interrupted task. Exceptions
caused by external events are called interrupts. Exceptions are also used by
the 68000 for certain types of programming errors, such as division by zero.

A common use of the exception mechanism is to overlap I/O processing
with computation. Since I/O devices are typically much slower than the
CPU, sophisticated programs can perform both I/O and computations
simultaneously. This technique reduces the time required to perform a task.

The exception mechanism is used as follows: the program starts an 1/O
operation and begins doing computations. When the 1/0 is complete, an
exception occurs, causing the computational work to be suspended. If
there is more I/O to be done, the program starts another 1/0O operation.
Computation can then resume until another exception occurs. This type
of /O is commonly called interrupt-driven 1/O.
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General Exception Processing

Exceptions on the 68000 fall into one of two categories: exceptions
caused by I/0O devices and exceptions caused by internal operations, such
as program errors or the trap instructions. Each possible exception is asso-
ciated with a unique longword in memory called a vector.

Vectors

There are 256 possible vectors, numbered from O to 255. Each vector is
a longword in memory that contains the address of the routine that pro-
cesses the exception. Vectors are organized contiguously in memory, start-
ing at absolute address 0. The address of a vector is the vector number
times 4. Internally generated exceptions use dedicated vector numbers.
There are seven dedicated vector numbers for I/O, called the auto-vector
interrupt vectors. In addition, a mechanism exists for 1/0 devices to spec-
ify vectors to be used for /O interrupts.

Table 7.1 lists the vector numbers that are preassigned by the 68000.

Locations 0 and 4 are used for the initial stack and Program counter
when the processor is first powered up or when the RESET signal is
applied. (Most microcomputer systems have a button for this purpose.)

A BUSERR (Bus Error) indicates a program reference to a memory loca-
tion that does not exist. (This is colloquially known as “missing the bus.”)
References to a word or longword at an odd address cause an addressing-
error exception. An illegal instruction (e.g., an op code of 4AFC) causes
an exception through vector number 4. Two exceptions are op codes
Axxx and Fxxx, which trap through the Line 1010 and Line 1111 vectors
(10 and 11 respectively).

Division by zero causes an exception through vector 5. The CHK and
TRAPV exceptions are caused by the CHK and TRAPV instructions (see
Chapter 3). These instructions trap through vectors 6 and 7. A privilege
violation exception results when a priviliged instruction is atempted while
the processor is in user mode.

Many debugger programs use exception vector 9 (TRACE) for executing
single instructions in a program to be debugged. The normal procedure
for single-stepping is to (1) push the PC of the instruction to be debugged
on the stack, (2) push the SR with the TRACE bit set (bit 15), and (3) exe-
cute an RTE instruction.

The processor will execute one instruction with the TRACE bit set, and
then trap through the trace vector. Any instruction that affects all bits of
the status register may set the trace bit.
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Whenever a memory violation (BUSERR) occurs during an external
interrupt, the spurious exception (vector 24) is taken. This is normally an
error condition, but may possibly be used in an obscure manner by a
hardware designer.

Vector Address Function
0 0 RESET initial SSP (supervisor stack pointer)
1 4 RESET initial PC (program counter)
2 8 BUSERR (nonexistent memory)
3 C Address (boundary) error
4 10 lllegal instruction
5 14 Zero divide
6 18 CHK instruction
7 1C TRAPV instruction
8 20 Privilege violation
9 24 TRACE
10 8 Line 1010 emulator
11 2C Line 1111 emulator
12-14 30-38 Unassigned (reserved)
15 3C Uninitialized interrupt vector
16-23 40-5C Unassigned (reserved)
24 60 Spurious interrupt
25-31 64-7C Level 0-7 autovector interrupts
32-47 80-8BF TRAP 0-15 instruction vectors
48-63 CO-FC Unassigned (reserved)
64-255 100-3FF User interrupt vectors

Table 7.1 - Preassigned vectors
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WHAT HAPPENS DURING AN EXCEPTION?

When the 68000 recognizes an exception condition, several things
occur:

1. The current values of the PC (which normally points to the next
instruction to be executed) and status register are pushed onto
the supervisor-mode stack.

2. The T bit in the status register is turned off and the S bit is turned
on. This prevents a TRACE exception, and forces the 68000 into
supervisor state. For external exceptions, the Interrupt Mask in
the status register is also updated.

3. For a BUSERR or addressing error exception, extra information is
pushed onto the stack.

4. The PC is loaded from the appropriate vector, and execution
begins at this address.

The routine whose address is contained in the vector is called an excep-
tion handler. This routine normally saves the registers on the stack, per-
forms some action, restores the registers, and executes an RTE instruction.
Thus, the 68000 provides the ability to interrupt a program and later
resume executing the program with no noticeable effect, other than
increased processing time. This ability is normally used with interrupt-
driven 1/O.

RESET

A special pin on the 68000 chip called RESET causes a special exception
to take place. A signal asserted on the RESET pin causes the processor to
load the Supervisor stack pointer from location 0 and the Program
counter from location 4. This provides a mechanism for starting the 68000
in a known state. RESET is normally used for the bootstrap button on
68000 microcomputers. This exception provides a mechanism for starting
the 68000 when power is applied, as well as the ability to recover from
catastrophic software failures.

BUSERR and Addressing Error Exceptions

Vectors 2 and 3 are used for errors detected in references to memory.
The BUSERR exception (vector 2) indicates that the program has refer-
enced memory that does not exist.
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An addressing-error exception means that the program has referenced a
memory word or longword at an odd address. If a program references a
memory word or longword at an odd address that is also nonexistent (i.e.,
both bus and addressing error conditions), the processor will detect the
addressing error first, and only the addressing error exception will take
place.

These two exceptions differ from all other exceptions in that the pro-
cessor puts extra information on the stack. On entry to the exception han-
dler, the stack appears as shown in Figure 7.1.

The first word on the stack contains information about the type of mem-
ory access that caused the fault. Bits 5 through 15 of this word are unde-
fined. If the access error occurred during a memory read, the R/W bit is
1. If the access error occurred during a memory write, the R/W bit is 0.

The I/N bit is 0 if the processor was processing an instruction, and 1 if
the error was detected by an external device. (Most of these errors are the
result of instruction processing.) The Access code contained in the lower

Bits 15 5 4 3 2 1 0
a7 | |riw] N /:\cces%
+2 High word of erroneous address
+4 Low word of erroneous address
+6 First word of instruction
+8 Status register
+10 Program counter high word
+12 Program counter low word

Figure 7.1~ Stack after bus or addressing error
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three bits describes the type of memory access being performed. Table
7.2 shows the type of memory access indicated by each access code.

Thus, these bits tell you two things: whether the processor was refer-
encing data or program instructions and whether the processor was in
supervisor mode or user mode. Data references include all accesses to
memory that use all addressing modes except the two PC-relative modes.
Program references include the PC-relative addressing modes as well as
fetching instruction words from memory.

The next two words on the stack give the address where the fault
occurred. The processor saves a copy of the op code of the instruction
that caused the fault in the next word on the stack. As with all other
exceptions, the status register and Program counter are present. The value
stored as the Program counter is advanced from the beginning of the
instruction by two to ten bytes.

In the event that the error occurred when the instruction was being
fetched, the stored Program counter will be in the vicinity of the previous
instruction. Normally, this error is caused by taking a wild branch. In this
case, the PC and op code word on the stack will indicate the branch
instruction, rather than the erroneous address where transfer was
attempted. The erroneous address words on the stack will contain the
erroneous address (see Figure 7.1).

Code Type of Access

000 (unassigned)

001 User mode data reference

010 User mode program reference

011 (unassigned)

100 (unassigned)

101 Supervisor mode data reference

110 Supervisor mode program reference
11 Interrupt acknowledge

Table 7.2 - Memory access codes
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If the processor encounters a second BUSERR or addressing error dur-
ing the processing of one of these errors, a situation called a double bus
fault occurs. This can occur if the Supervisor stack pointer is corrupt and
the processor is unable to save any information on the stack. The pro-
cessor halts and can only be restarted using the RESET input on the chip.

Illegal Instruction Exceptions

Whenever the 68000 fetches an op code that cannot be interpreted as a
legal 68000 instruction, an exception through vectors 4, 10, or 11 occurs.
Vectors 10 and 11 are used for op codes that have 1010 or 1111 in the
high order four bits. Vector 4 is used for all other illegal instructions.
These include:

» lllegal op codes other than Axxx or Fxxx.

« lllegal addressing modes, such as PC-refative operands specified
as an instruction destination.

+ lllegal addressing mode or instruction combinations, such as byte
operations on address registers.

A beneficial use of illegal instructions is software simulation of extended
68000 instructions. Op codes Axxx and Fxxx are normally used for this
purpose. To simulate an extended instruction, first define an illegal op
code pattern for this instruction and then write an exception handler for
the appropriate illegal instruction vector that simulates the action of the
instruction. A program can then make use of the instruction without
knowing that the instruction is simulated. There is, of course, a significant
cost in terms of processing speed.

This technique is often used for optional hardware extensions to a pro-
cessor’s instruction set, such as floating point. With simulation, you can
write a program that uses floating-point operations and run that program
on any machine, whether it has the floating-point hardware or not. The
only difference is that the program will run much faster on a machine
with the optional hardware.

TRAP Exceptions

The notion of an operating-system call instruction is similar to software
simulation of illegal instructions. The program first issues an operating-
system call instruction and then the operating system performs some func-
tion and returns an indication of its success or failure to the program.
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The program can treat these operating-system calls as if they were single
instructions. The operating system can provide a set of functions, some-
times called the extended instruction set, which is the same on machines
that have substantially different hardware. This is the appeal of standard
operating systems, which allow the same applications software to run
unchanged on many different machines.

The 68000 has sixteen operating-system call instructions, TRAP O
through TRAP 15. lllegal instructions could be used to extend this set
almost infinitely. The TRAP instructions use vectors 32 through 47. The
advantage of a large number of such instructions is that the operating sys-
tem can dedicate a TRAP instruction to a frequently used operating sys-
tem service and reduce the number of instructions required to perform
this service. Less frequently called services may be invoked by requiring
the application to load a function code into a register before performing
the TRAP instructions.

The TRAP instruction allows a convenient transition between user mode
and supervisor mode. Applications are normally run in user mode while
the operating system normally runs in supervisor mode. To enter the oper-
ating system, the TRAP instruction automatically places the processor into
supervisor mode.

When the RTE instruction is used to return to the user program, the
user program’s status register is loaded from the stack, causing the pro-
cessor to go back to user mode. This mechanism also makes it possible for
both supervisor mode and user mode programs to call the operating sys-
tem, or even for the operating system to call itself.

Another advantage of the TRAP instruction is that the user program
need not know the location of the operating system. Many systems
require that the application program jump to some fixed address to call
the operating system. The TRAP instruction allows the location of the
operating system to change without affecting the application program.

Exceptions Used for Debuggers

The DDT-68K debugger explained in Chapter 3 provides two mecha-
nisms for controlling program execution: breakpoints and single-
instruction execution. These mechanisms make use of two 68000
exceptions: the illegal instruction and trace exceptions.

To set a breakpoint in a program being debugged, the most common
technique is to save the instruction at the breakpoint location and place
an illegal instruction at that location. The debugger then allows the pro-
gram to execute until an illegal-instruction exception occurs. This
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technique will fail if a breakpoint is set in the middle of a multiword
instruction or if the program uses the instruction as data. Also, continuing
from a breakpoint requires that the instruction at the breakpoint be single-
stepped before program execution resumes.

Single-stepping an instruction involves setting the Trace bit in the status
register. The most common method is to stack the Program counter and
status register, set the Trace bit in the stacked status register, and execute
an RTE instruction. A trace exception will occur immediately following the
execution of the target instruction. Some side effects of this technique are:

e Since an exception clears the trace bit, an exception caused by
the instruction being traced causes the debugger to lose control,
unless the debugger receives control when exceptions occur.

TRAP instructions that call an operating-system function appear
as a single instruction.

Tracing an RTE instruction causes the debugger to lose control
because the RTE instruction reloads the status register. Tracing an
instruction which reloads SR has the same effect. These instruc-
tions include MOVE to SR, ANDI to SR, and EORI to SR.

Tracing a MOVE from SR instruction can cause the program to
malfunction because the trace bit will be set in the copy of the
status register that the program receives. If the program com-
pares this copy without masking the trace bit, it could execute
incorrectly.

The real problems with this technique appear when the debugger is
used on supervisor-mode programs (which are relatively rare). You can
still debug a supervisor-mode program with this type of debugger if you
exercise care in tracing the instructions which reload SR.

Other Error Exceptions

The TRAPV, CHK, and Zero divide exceptions are also mechanisms that
detect malfunction. These exceptions are used to assist the application in
detecting problems with overflow, array subscript range, and division
by zero.

The application program may need to regain control after one of these
exceptions in order to print out a message that identifies the error and its
cause. High-level language programs may have a way of identifying the
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routine and its line number in the source program. Operating systems
usually have some mechanism that allows the application program to
regain control following an error exception.

Privilege Violation Exception

A user-mode program that attempts to execute a privileged instruction
causes a privilege-violation exception through vector 8. This is normally
an error condition. With some computer systems, however, you can use
the privilege-violation exception to execute multiple supervisor-mode pro-
grams. The multiple supervisor-mode programs run in user state and a
supervisor-mode monitor simulates the action of all the privileged-mode
instructions. This technique is sometimes known as the virtual machine
technique.

Virtual machines are used to run multiple operating systems on a single
computer. A hardware device called a Memory Management Unit, or
MMU, simulates different memory spaces for each operating system. This
allows each system to have its own vector area as well as other dedicated
memory locations. Since the operating systems are run in user mode, they
do not interfere with each other.

The 68000 chip is capable of running a virtual machine system with a
single exception—the MOVE from SR instruction is not privileged. If soft-
ware that needs to run in supervisor state uses the MOVE from SR instruc-
tion and looks at the S bit, it may malfunction. On the 68010 chip, MOVE
from SR is privileged.

An Exception-Processing Program

Listing 7.1 shows a sample program that handles exceptions. The pro-
gram runs under CP/M-68K and handles the type of exceptions that are
common program errors. When an exception occurs, the program prints
out a message that identifies the type of exception, the contents of all regis-
ters, and the extra information on a BUSERR or addressing error exception.

Lines 11 through 19 are the program-initialization routine. Routine
v_init is designed to be called by the applications program in order to set
up the exception vectors. The technique used most frequently is to use
the CP/M-68K service that allows applications to intercept exceptions.
However, the purpose of Listing 7.1 is to illustrate how to deal directly
with the 68000 hardware. Thus, the initialization routine stores the
address of the exception handlers into the vector locations directly.

Lines 23 through 37 are the entry points for the exception handler. This
table of BSR instructions (branch to subroutine) allows us, in a minimal
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amount of space, to both handle all exceptions with a single routine and
determine which exception occurred.

By taking the return address pushed by the BSR instruction, and sub-
tracting the beginning of the table (in lines 41 through 44), we get the off-
set of the BSR instruction in the table. Multiplying this number by 2 gives
us a zero-relative index into a table of long pointers. (That is, the value for
BUSERR would be 0, for addressing error, 4, for illegal instruction, 8, and
so on.)

Lines 45 through 48 compute the address of the string that corresponds
to the exception. These lines of code also print this string, using the prtstr
routine from Chapter 4. Lines 51 through 58 print the content of the regis-
ters using a subroutine called pregs, which we will look at later.

Lines 64 through 79 determine if the exception is a BUSERR or an
addressing error. If the exception is either of these, the extra information is
popped from the stack and printed. Hex numbers are printed with the
routines called pword (which prints a 16-bit number) and plong (which
prints a 32-bit number). If the exception was not a BUSERR or an address-
ing error, the branch at line 65 causes this code to be skipped.

Lines 83 through 95 print the status register, program counter, and user
stack pointer. (The system stack pointer was previously printed as register
A7.) Lines 96 through 97 return control to CP/M-68K.

It is not necessary to restore the interrupt vectors since CP/M-68K does
this when each program exits. With another system, it might be necessary
to save the old contents in the routine v_init, and then restore them
before returning to the operating system.

Lines 104 through 112 form a routine called pregs, which on entry
prints eight longwords pointed to by register Al. The routine called plong
produces the actual output. Following the eight longwords, a line-feed
character is printed, causing the terminal to advance to the beginning of
the next line.

Lines 116 through 131 contain the routines plong and pword, which
print 32-bit and 16-bit hex numbers. The pword routine prints the last four
characters of the number, which is always converted to ASCII as a 32-bit
quantity. The routine called binhex from Chapter 4 (see Listing 4.1) per-
forms the conversion.

Interrupts

Exceptions that come from external sources are often called interrupts.
The 68000 provides two techniques for external devices to interrupt the
CPU: vectored interrupts and autovectored interrupts.
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There are three pins on the 68000 chip that an external device may use
to cause an interrupt. These pins are called IPLO, IPL1, and IPL2. IPL
stands for interrupt priority level. These three inputs to the 68000 form a
3-bit code used to request interrupts. The special code 000 means no
interrupt. Combinations 1 through 7 request an interrupt with priority 1-
7. The 68000 chip recognizes an interrupt if the interrupt mask (contained
in status register bits 8-10) is less than the priority presented on the {PLO-2
pins. Thus, an interrupt mask of O allows all interrupts and an interrupt
mask of 7 allows no interrupts (except level 7).

When an interrupt occurs, the interrupt mask in the status register is set
to the priority level of the interrupt. This prevents the interrupt, or any
interrupt with the same priority, from recurring until it is activated under
software control.

Interrupt level 7 is a special case. Level-7 interrupts cannot be masked
off. This interrupt level is normally reserved for extremely high-priority
devices or for a “panic button” that can be used to recover from a run-
away program. A level-7 interrupt is sometimes called a Nonmaskable
Interrupt or NMI.

An interrupt requested at a lower level than the current processor prior-
ity remains pending until the processor priority is lowered. The maximum
amount of time that an interrupt may remain pending is called interrupt
latency. This time is determined by the maximum number of instructions a
program can execute with interrupts masked off. Several applications,
including instrumentation, industrial automation, and communications,
require rapid interrupt response. In programming interrupt-driven soft-
ware, there are usually restrictions on the amount of time interrupts can
be disabled.

When the 68000 recognizes an interrupt, an additional control pin may
be used to request an autovectored interrupt. Autovectored interrupts use
vectors 25 through 31 for interrupt levels 1-7. If an autovectored interrupt
is not requested, the 68000 reads a vector number from the device request-
ing the interrupt. Deciding which type of interrupt to use is the prerogative
of the engineer who designs the 68000 computer system. Autovectored
interrupts have the advantage of requiring less hardware, but are slower
and may require more sophisticated software. Vectored interrupts provide
better interrupt response time at the cost of extra hardware.

The association of a device with a particular vector and an interrupt
priority-level is dependent on the physical connection between the 68000
and the hardware device. This relationship differs for each type (and pos-
sibly model) of computer. Interrupt programming usually requires differ-
ent coding for each machine on which the program runs. (It is possible to
write a fixed program that processes software exceptions, such as
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BUSERR, addressing error, and so on, because these are a characteristic of
the 68000 chip and do not change from machine to machine.)

INTERRUPT-DRIVEN SERIAL OUTPUT

Many devices communicate with a computer one bit at a time. To com-
municate a byte of information, the eight bits are sent one after another.
The computer usually communicates through a device called a “serial
port” that controls the conversion of data to and from serialized binary
format. The amount of time required to send a single byte of information
is quite large compared with the speed at which the computer executes
instructions. For this reason, serial ports often interrupt the computer
once per character transferred.

Sage IV Serial Output

The 68000 addresses external devices as if they were memory locations.
This technique is called Memory Mapped 1/0O, and has the advantage that
normal memory-reference instructions can be used to perform 1/O. Listing
7.2 shows a program that uses I/O interrupts to print the string “Hello,
world” on the (serial) terminal of a Sage IV microcomputer.

The terminal output port on the Sage IV responds to two addresses:
FFC071 and FFC073. The first port is used to output data to the terminal.
A byte placed in this location is transmitted to the terminal. The second
port gives commands to the interface. A value of 25 hex causes the port to
interrupt after each character has been transmitted. A value of 24 hex dis-
ables these interrupts.

The Sage IV microcomputer has a number of different devices con-
nected to the autovector 1 interrupt. Upon receipt of an interrupt, it is
necessary to poll an interrupt-controller device to determine which device
actually requested the interrupt. The interrupt controller is located at loca-
tion FFC041. A value of OC written to this location requests a poll.

To find out which device interrupted, read location FFC041. Then, to
prevent the interrupt from occurring again, write a value of 20 hex back
to this location. The value read contains a device identifier in the low-
order three bits. On the Sage IV, a value of 2 indicates the terminal.

Lines 28 and 29 of Listing 7.2 issue the CP/M-68K request to put the
program in supervisor state. This is necessary to allow the program to
use privileged instructions. Lines 31 and 32 save the old contents of the
level-1 autovector location and set this location to the address of the inter-
rupt-service routine. Lines 33 through 37 set up the transfer,
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including (1) enabling the terminal-output interrupt, (2) transferring the
first character, and (3) enabling interrupts to allow the transfer to take
place. The program loops at line 38 until the transfer is complete.

Level-1 autovector interrupts are handled starting at line 56. Lines 57
through 64 verify that an interrupt was a terminal-output interrupt. Lines
65 and 66 test for the presence of another character to output. If no char-
acters remain, lines 67 through 72 (1) restore the vector, (2) disable termi-
nal interrupts, and (3) alter the return address to point to the exit routine
at lines 40 and 41. When the RTE instruction at line 72 is executed, con-
trol is returned to CP/M-68K.

If more characters remain to be output, the code at lines 77 through 82
output the next character, decrement the count, and return to the inter-
rupted code.

This example glosses over a lot of the details of programming serial-
output devices, but the purpose of the example is to illustrate 68000 inter-
rupt coding. The programming for a serial device is largely dependent on
the device, particularly how the device is addressed from the 68000 and
how the device interrupts the 68000. This is different for each type of
computer. How to program a particular device on a particular computer
is usually documented by the computer manufacturer.

SUMMARY

In this chapter we have presented the exception conditions on the
68000, both internal and external, and how to write programs that use
this feature. We have also explored some of the uses for exceptions that
are not immediately obvious. The examples of coding contained in this
chapter illustrate techniques for dealing with both program-error excep-
tions and /O exceptions.

In the next chapter, we will combine exception processing with operat-
ing system concepts to produce a very small multitasking operating sys-
tem. This will provide you with a better understanding of how /O
exceptions are generally used in larger systems.

EXERCISES

1. The 68000 lacks a block move instruction, i.e., a single instruc-
tion that transfers a block of memory from one place to another.
Suppose we define such an instruction as in Figure 7.2, where An
Src and An Dest are source and destination address register
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specifications. Dn Cnt is a data register specification that gives
byte count of the number of bytes to be transferred. Write an
exception handler that simulates the action of such an instruction.

Bt 1514 13 1211 10 9 8 7 6 5 4 3 2 1 0
¥ 1 | I T |
11| An Src An Dest DnCnt (OO0
Lt | I L1

Figure 7.2 - Instruction for transferring a block of memory from one place to
another

2. Write a privileged program that prints a trace of another pro-
gram. The program to be traced should begin with jsr trace,
where “trace” is your tracing routine. The output of the trace
should include the PC, status register, and contents of all the CPU
registers. You may assume that the program to be traced is a user
mode program and you need not worry about RTE and MOVE
SR instructions.
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INTRODUCTION

In this chapter, we will look at writing operating systems for the 68000.
We will first cover important concepts common to most operating systems
and wil! then look at a simple operating system. This sample system is by
no means complete—it lacks capabilities found in even the most rudimen-
tary commercial systems. However, it is small enough so that you can
understand the entire system in relatively short order. The sample system
contains many of the design concepts found in large operating systems.

OPERATING SYSTEM CONCEPTS

An operating system is often likened to a traffic cop for a computer. The
operating system controls the computing resources and allocates them to
competing programs. The operating system also implements standard pro-
cedures for functions such as 1/O, so that the underlying hardware may
change, and still allow programs written for the operating system to con-
tinue to run. The relationship between an applications program, the oper-
ating system, and the hardware is shown in Figure 8.1.
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Since an application program goes through the operating system to
access the computer hardware, the hardware can change without affect-
ing the application. It is important to preserve the applications programs
because the cost of producing software is so high.

Multitasking

An important concept on the 68000 and other 16-bit microprocessors is
the ability of the operating system to run more than one application pro-
gram at a time. This is called multitasking. To perform multitasking, the
operating system keeps a copy of each of the machine resources that are
shared by the programs, such as the machine registers. Each program is

Hardware (disks,terminals,etc.)

Operating Systems

Application Program

Figure 8.1 - An application program and operating system relationship
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called a task. When it is time to switch from one program to another, the
operating system saves the current copy of the resources and loads the
next copy. This process is known as context switching.

A minimal context switch involves saving the current register set and
the operating system'’s indicator of the current task. The registers for the
new task are loaded and the operating system’s global variables are set to
indicate the new task. More complex context switching preserves the con-
tents of various memory locations and I/O device registers for each task.

The real benefit of multitasking is the ability to keep more of a
machine’s resources busy at the same time. For instance, printing a docu-
ment or a program listing is usually limited by the speed of the printer.
The computer’s disk drives and CPU are largely idle during this process.
By overlapping printing with another computing task, such as running the
assembler or linker, you can keep the CPU, disk, and printer busy. Adding
another task, such as editing a file, keeps the computer operator busy as
well. You don’t have to wait for one task to finish before starting another.

Resource Management

The major problem posed by multitasking is that of resource manage-
ment. Obviously, if you have one program using the printer, you shouldn’t
allow a second program to use the printer as well. To do so would result
in the output of the first program mixed in with the output of the second.
There are a number of things which the operating system must manage in
a multitasking environment:

1. Memory. The operating system must control which tasks get
which portions of memory, so that two tasks do not try to use the
same memory area.

2. Nonshareable devices. A printer is an example of a device that is
not shareable. Other examples are tape drives and terminals.
Some devices that are normally shareable may have nonshare-
able uses. For instance, formatting a disk normally requires exclu-
sive control of the disk drive. Thus, the operating system must
provide some means for a task to gain and relinquish exclusive
control of a device.

3. The CPU. Since there are now many tasks desiring to use the
CPU, the operating system must have a policy for distributing
CPU time.

4. A mechanism for tasks to cooperate and communicate with
another. Many applications require the use of cooperating tasks.
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Scheduling

The process of deciding which task may use the CPU’s resources is
called scheduling. The portion of the operating system that contains the
code that makes this decision is called the scheduler or the dispatcher.
There are a number of techniques used for allocating CPU time:

1. Priority-driven. In a priority-driven scheme, there is a priority
associated with each task in the system. A priority-driven sched-
uler allocates the CPU to the highest priority task that is ready to
run. The task keeps the CPU until it either terminates or requests
some activity which prevents it from running, such as I/O. At this
point, the dispatcher assigns the CPU to the highest priority task
that is ready to run.

2. Preemptive priority-driven. The preemptive priority-driven tech-
nique forces a lower priority task to give up the CPU whenever a
high-priority task becomes ready to use it. This prevents a high-
priority task from being shut out by a low-priority task that uses a
lot of CPU time.

3. Pure time-slicing, or round robin. This technique requires an
external piece of hardware called a clock or a tick that interrupts
the CPU at frequent intervals (normally 10 to 100 times a sec-
ond). The time-slicing technique gives the CPU for some small
fixed quantity of time to each task in turn.

4. Preemptive priority-driven with time-slicing. This technique modi-
fies the preemptive priority-driven method so that tasks with
equal priority are time-sliced.

Which Technique Is Best?

The preemptive priority-driven technique is preferred for systems that
are strictly real-time in nature. This includes multitasking systems used for
industrial control, instrumentation, and communications. The ability to
guarantee a maximum response time is required for these applications.
Preemptive priority-driven scheduling is the only way to achieve this goal.

Typical multiuser time-sharing systems try to guarantee each user an
equal share of the computer. These systems tend to use some form of
time-slicing technique. Simpler systems tend to use pure time-slicing,
while more complicated systems require the preemptive priority-driven
with time-slicing technique. These systems typically have both real-time
requirements and time-sharing requirements. Fortunately, typical real-time
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tasks use very little of the CPU. However, a real-time task requires almost
immediate response when it needs the CPU. It is possible to “steal” a little
time from the time-sharing users to meet real-time requirements.

A further modification of the preemptive/time-sharing technique pro-
vides pure preemptive priority-driven scheduling above a certain priority
level. This enhances real-time response without noticeably affecting the
other tasks.

Who Gets Priority?

Assigning the priority for each task is sometimes a difficult task. Some
systems dynamically vary the priority of a task as task behavior changes.
In general, tasks that do a lot of I/O, especially I/O to slow devices, should
be preferred over tasks that use large amounts of CPU time. This tends to
keep the 1/0 devices, as well as the CPU active. Many large operating sys-
tems reevaluate task priority periodically and give more priority to tasks
that have performed a large number of /O operations since the last prior-
ity evaluations. Tasks that used most of the CPU time they had available
are given less priority. Simple absence of 1/O is not sufficient. A low-
priority task may not have had a chance to do much since the last priority
evaluation.

A task that performs a great deal of 1/O is often called I/O bound. A task
that requires a lot of CPU time is called Compute bound or CPU bound.

Reentrant Coding

A section of code is said to be reentrant if more than one task can be
executing the same code simultaneously. Code is normally reentrant if it
does not use global variables. Most multitasking systems have a data area
for each task in the system. Using only these specific data areas and the
stack allows most of the operating system to be reentrant.

The most commonly used technique is to have a global location in
memory that contains the address of the task’s data area for the task that is
currently executing. Reentrant code in the operating system commonly
loads this address into an address register and uses the “address register
indirect with displacement” addressing mode to access fields in the speci-
fied task data area.

Mutual Exclusion

Obviously, all of the coding in an operating system cannot be reentrant.
There must be global variables and be code that modifies these global
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variables. A section of code that modifies these shared variables is often
called a critical region. The operating system must have some mechanism
for making sure that only one task at a time can gain access to critical-
region code. The same problem exists for variables that must be shared
between task code and an interrupt routine.

Disabling Interrupts

Protecting critical-region code is often called mutual exclusion. The sim-
plest form of mutual exclusion is simply to turn off interrupts while code
in the critical region is executing. This works because an interrupt is
required for a task swap to occur. This technique also protects variables
that are shared between a task and interrupt code. The disadvantage to
this form of mutual exclusion is that each instruction executed with inter-
rupts that are turned off adds to the maximum response time for a real-
time process. In order to protect critical-region code that is longer than a
few instructions, other techniques are required.

A problem unique to microcomputers is that it may not be possible to
disable interrupts completely. All microprocessor chips have at least one
interrupt that may not be masked out. If the hardware designer connects
this interrupt to something that interrupts frequently, it can pose a very dif-
ficult software-design problem. For example, one major computer manu-
facturer of Z-80 equipment used this interrupt for the clock! The
computer receives an interrupt from this device thirty times a second.
Designing an operating system to accommodate this design flaw required
a lot of effort.

Practically all of the other techniques that have been developed to pro-
tect critical-region code employ some sort of queueing mechanism. These
techniques include:

 Disabling dispatching
» Semaphores
* Monitor procedures

* Message switching

Disabling the Dispatcher

The simplest way to protect critical-region code that does not require an
interrupt routine is to have a flag variable that the dispatcher interprets as
prohibiting task swaps. This flag is set before entering a critical region and
reset after leaving the critical region.
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The disadvantage of this technique is that all critical-region code shares
the same protection flag. This means that a high-priority task must wait for
a low-priority task to exit a critical region, even though the high-priority
task does not require access to the same critical-region code. This makes
the maximum response time to a real-time event equal to the time
required to execute the longest section of critical-region code in the oper-
ating system.

Semaphores

A better technique than disabling the dispatcher is the use of sema-
phores. A semaphore is a data structure consisting of a count and a
pointer. The count is usually initialized to the value 1. There are two oper-
ations associated with a semaphore: wait and signal. These operations are
defined as follows:

* A wait operation decrements the counter. If the result is not less
than zero, the task is allowed to proceed. If the result is negative,
the task is added to a list of tasks whose list head is the pointer
variable of the semaphore.

« A signal operation increments the value of the counter. Then the
first task in the list is allowed to run.

The semaphore data structure keeps track of the number of tasks wait-
ing for a resource. The semaphore count is initialized to the number of
these resources present in the system. For a situation requiring mutual
exclusion, the count is set to one. Before entering a critical region, a pro-
cess performs a wait on a semaphore associated with the critical region.
Upon exiting the critical region, the process performs a signal operation
on the semaphore. Each task in a semaphore operation waits only for
other tasks that need access to the same protected resource. The real-time
response using this method is a tremendous improvement over disabling
the dispatcher.

Monitor Procedures

Monitor procedures are an extension of the semaphore technique. A
monitor procedure is a subroutine that is protected by a semaphore or
other mutual exclusion mechanism. Only one task at a time may execute
a monitor procedure.

When programming a system with monitor procedures, the usual tech-
nique is to place all critical-region code that uses a set of shared variables
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inside a single monitor procedure. This technique is especially useful
when the monitor construction is integrated into a programming lan-
guage. An integration of this concept into the Pascal programming lan-
guage is described in The Architecture of Concurrent Programs (New
Jersey: Prentice-Hall, 1977).

Message Switching

Another technique for synchronizing processes is message switching. An
operating system built on this architecture provides three functions for a
task to communicate with another task. These functions are:

1. SEND data from one task to another.
2. RECEIVE data from another task.

3. REPLY to a message previously RECEIVED.

This technique uses the scheduling mechanism of the operating system
itself to provide mutual exclusion.

A task that is similar in nature to a monitor procedure is set up to handle
functions that would normally require critical-region code. This task, called
a server task, receives messages from other tasks, performs the desired func-
tions, and replies to each message as it completes each function. Messages
not yet received are queued up in a “mailbox” associated with the task.
This queue corresponds to the waiting queue for a semaphore.

Fork Queues

Providing synchronization between task-level code and interrupt code is
a major concern in designing operating systems. One of the most clever
schemes employed in many commercial systems is providing a way for an
interrupt routine to schedule a high-priority task to execute as soon as an
interrupt is finished. This normally involves setting up both some special
code in the dispatcher and a queue of these “tasks,” which are waiting
to run.

This queue is usually known as the fork queue. The dispatcher checks
the fork queue before it checks the normal list of tasks. Thus, a task in the
fork queue has a higher priority than normal tasks. By allowing tasks in
the fork queue to use some subset of the system calls that are normally
available to ordinary tasks, you can use any of the previous techniques to
synchronize task-level code with interrupt routines as well.
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Deadlocks

When incorrectly applied, mutual exclusion can produce an unpleasant
result. The area in which this problem is most often encountered is
resource management. Suppose the system has two printers P1 and P2,
and two tasks T1 and T2, that require both printers. If task T1 acquires
printer P1 and asks for P2 and task T2 acquires P2 and asks for P1 at the
same time, neither task will be able to finish. Since each task requires both
printers and each task has one and is waiting for the other, they will both
wait forever.

This situation is called a deadlock or a deadly embrace. There are many
techniques to prevent this situation. One of the simplest is to require that
all tasks acquire resources in the same order. In the example above, if
both tasks acquired printer P1 and then printer P2, one of the tasks would
wait until the other had finished, and no deadlock would occur.

Sample Operating System

The rest of this chapter is devoted to the sample operating system. This
system, called LBOS (for “Little-Bitty Operating System”), is a message-
switched system that allows user tasks to perform the following functions
through the operating system:

* Delay for a period of time.

* Print a line on the terminal.

» Send a message to another task.

» Receive a message from another task.

*» Reply to a message previously received.

Enter dispatcher.

These functions are called SVCs (Supervisor Calls). The delay and print
SVCs are implemented as tasks accessed through message-switching.
LBOS uses a preemptive priority-driven scheduler without time-slicing.
Tasks have fixed priorities. The system runs on the same SAGE IV micro-
computer used in Chapter 7.

System Services

The system SVCs are accessed by executing a TRAP #0 instruction.
Parameters are passed in registers. The application loads a code into
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register DO that indicates the SVC desired. These codes are listed in Table 8.1.

In the event that a request could not be satisfied, register DO.L contains
an error code following return from the TRAP #0 instruction. These codes
are all less than zero, to allow a simple TST.L DO / BLT sequence to test for
errors.

Newtask SVC

The Newtask SVC provides a convenient means for a task to suspend
itself. This SVC is used internally by the operating system to suspend a task
that requests a service requiring that the task wait until the service is com-
plete. The server tasks that provide the terminal output and delay capabil-
ity also use this SVC to “put themselves to sleep” until an interrupt occurs.

Printline SVC

The Printline SVC writes a series of bytes on the SAGE IV terminal. The
name Printline is actually a misnomer; the SVC just puts out a stream of
bytes. This stream could contain many separate lines. The application
requesting terminal output loads the address of the first byte to be output
in register AO and the number of bytes to be output in register D1.L. The
task is suspended until the printing is complete.

Code SvC

New task (enter dispatcher)
Print line on terminal
Delay

Send message

Receive message

wn s W KN = O

Reply to message

Table 8.1 - LBOS SVC codes
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Delay SVC

The Delay SVC allows a task to delay for an amount of time expressed
in units of 1/100 second. The application puts the number of 1/100-
second units desired into register D1.L. The task is suspended until the
delay is complete.

Send Message SVC

The Send Message SVC sends a message to another task. The task that
needs to send a message puts a byte count into register D1.L and an
address into register AO. The task number to which the message is to be
sent is contained in register D2.W. The task number is determined by a
table inside the send code. The sending task is suspended until the task to
which the message was sent has received the message and issues a REPLY
SVC for that message.

Receive Message SVC

The Receive Message SVC suspends the issuing task until a message is
available. Upon return from the TRAP #0 instruction, register DO.L contains
the address of a data structure called a Message Control Block (MCB). This
data structure contains all the parameters relevant to the message.

Reply to Message SVC

The Reply to Message SVC causes the task that originally sent the mes-
sage to be marked dispatchable. The task issuing the Reply to Message SVC
places the address of the Message Control Block (MCB) in register AO. The
same address is returned by the Receive Message SVC in register DO.L.

Listing 8.1 contains the definitions for the SAGE IV hardware used, error
codes returned, and equates for the SVC numbers. (The terminal hard-
ware for this machine was explained in Chapter 7.) The clock is a single-
interrupt count-down device. To use the clock, load a count into the
clock-count register and get an interrupt some time later. To get another
interrupt, you must reload the clock. LBOS uses the clock to interrupt at
1/100-second intervals.

Data Structures

LBOS uses two major data structures: a structure that represents each
task, called a Task Control Block (TCB), and a structure for messages,
called a Message Control Block (MCB). Both of these structures are ele-
ments on different linked lists. Listing 8.2 gives the definitions of both of
these data areas.
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Task Control Block

Task control blocks (TCB) are kept in a singly-linked linear list. The first
longword of the TCB is used for linkage. There are some portions of the
LBOS code that depend on this fact. There are two list heads on the task
control block that deal with messages. LBOS keeps a list of messages not
yet received, as well as a list of messages that have been received, but for
which no reply has been issued.

The TCB contains a stack to be used by the system when the task makes
an SVC request or for an interrupt that occurs when the task is running.
The contents of all the registers except the two stack pointers are saved on
the stack when the task is not running. There are two separate longwords
in the task control block that are used to save the two stack pointers.

The one remaining word in the TCB, the flag word, keeps track of
whether or not the task may run. A task may be marked “not dispatch-
able” for three reasons:

1. The task is waiting for an interrupt. This flag is used by the server
tasks to prevent dispatching while the tasks are waiting for some
external event.

2. The task is waiting for a reply to a message.

3. The task is waiting to receive a message.

Message Control Block

Messages in the system are represented by a data structure known as a
Message Control Block (MCB). The Message Control Block contains a link
word that the operating system uses to link MCBs on the two lists of mes-
sages on the task control block. The contents of registers AO and D1.L are
stored in the MCB at the time the Send Message SVC was issued. Interpre-
tation of these quantities is left up to the receiving task.

In order to provide the operating system with a way to associate the
MCB with the task that originally sent the message, the address of the
sending tasks task control block is maintained in the message control
block. A longword is provided in the message control block for the receiv-
ing task. Anything stored in this word by the receiver will be placed in
register DO.L when the sending task resumes execution. This allows an
SVC to be implemented as a task rather than as a part of the operating
system proper.
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Initialization Code

LBOS is designed to be loaded under CP/M-68K, and to take over con-
trol of the machine. There is no way back to CP/M-68K from LBOS. To
return to CP/M, the machine must be rebooted. Listing 8.3 contains the
code that takes over from CP/M-68K and sets up LBOS.

Lines 180 and 181 issue the Set Supervisor request to CP/M so that
LBOS can use privileged instructions. Lines 183 to 185 set up the SAGE IV
hardware: loading the interrupt vectors and disabling the clock interrupt.
Notice that instructions executed with interrupts off are tagged with three
asterisks (* * *) in the comment field.

Lines 186 to 202 initialize the task control block fields for the four tasks
in LBOS. A table in the initialized data area gives the TCB address and the
initial PC and status register contents for each task in the system. The tasks
are entered in this initialization table in order of priority. LBOS supports
tasks that run in both supervisor and user modes.

Lines 206 to 213 link together an area of memory to become a linked
list of message control blocks. When a Send Message SVC is issued, a free
MCB is obtained from this area in memory. When the corresponding
Reply SVC is issued, the MCB is placed back into this list.

The last two lines of initialization code start LBOS by entering the dis-
patcher. The longword at the label “current” always contains the address
of the TCB of the currently executing task. When “current” is zero, no
task is executing.

TRAP #0 Exception Handler

Listing 8.4 contains the code that is executed when a task executes a
TRAP #0 instruction, indicating a request for an LBOS function. The appli-
cation loads the code corresponding to the desired service into register
DO.L. The code at lines 241 to 247 computes the address of the LBOS rou-
tine that performs the indicated function and jumps to this routine. Notice
the use of a single unsigned branch to perform the range check on func-
tion numbers.

Lines 251 to 253 execute if the application requests an illegal function.
The application’s registers are restored, and —1 is loaded into register
DO.L. The RTE instruction at line 253 returns control to the application.

The data at lines 258 to 264 forms a table of SVC routine addresses. The
addresses are ordered by SVC number, so that the function number
shifted left twice (times four) is the index into the table. Notice the use of
an equate to define a symbol for the first illegal SVC number.



System 393

ing

A Sample Operati

Case Study:

3pod uonezifeniul SOFT - €' Sunsiy

UNOD 319-ZE . p+3Ing_u nba-:3unos uw
0/1 103 ssaippe 1333ng ¥ P4YUTT W nba* "uuanE
pios juig . 0 nba* syury w

ISUOT3ITUTISQ IaTqUasSSY

R P P e o

*OAS X1d3¥ e
$anssy yse3 burazas ayj TI3un papuadsns ST ySe3 BUTNSST ayl °DAS
JAIEOFN 3y3 Bursn paATadal pue DAS ANAS 9Y3 Bursn juas s7 abessaw y

Jeas w g sn3Ie3s pauinzay

i 91T
Qo3r w | Ssaippe g1 burisanbay | 21
junoo m (owty Aetap 10 3junod wu>nw|m::ou 319-2€ 1 8
jnquw g (pa11nbai 37) ssarppe 1933ng | v
qurT W GOW 3X3U OU JT 0132z 10 §DW 3IX3U 03 xcumnﬂ 0
suen Shusiuod 395330

:anoker burmorlo; sy3 sey eaze sTyL * o018

ToI3uc) abessan, B payres eale ejep yzbuay paxt3 e Aq pajussaidsr st
abessaw yoe3 ‘uor3ouny a3eridoidde ay3 swioziad YoTym j%se3 e 03 jse3y
Bur3ysanbsi ay3 woiy abessaw e buranoi Xq saorazas we3sis swiozzad sogT

3200714 T013uo0) abessoan

*
*
»
.
*
*
¥
*
»
.
*
x
*
»
»
x
x
*
*
¥
x
»
*
*
*
x
-
*
*
*
»
*

R R R P S P R PR T T vy




394 Programming the 68000

(panunuod) apoo uonezifeniul SO - £°g Sunsty

Bale }de3s jo puj <- Ze sy Nm.ﬁamvxowuwuu
dsn s_ysei Ie3rd sy (Te)dsn™3

B31e QO3 Y3itm Buop <= 0F S5 auopqoy
2394 auog ) =08

(P2, 37UTUNn) ®E3ie QO3 <- TP vew Te’+(0®)
w805 snotasid, <- ze P €2 ’3ST1Q03
eale JTUT DL <- Q° P oe‘BIEPITUT
3dnaiaju; J3ur3 arqestd PN Z+1T0d 04
103034 O/I 39S vy oaa” Te’3urTTOd$

10303a deiy 38§ e oaadea3’odeasg
s3dnizajur moyresia * Is’a1qesTpd
10st1Aa33dng . k4 3

398 * op‘zo

Ry P T PR T R Y LT T T Py Py

13yo3edsip o3 dunp

ASIT 9913 @OW SzITeI3Tul

eale gJL 9zTTETITUI

saur3noi 3dniiajur azeridoizdde o3 eaie 103094 SZITeTITUI

i21® pawiojiad suor3ov
6u1a13931 S08T 03 2011d UOTIEZITRIITUT Swiojiad ,3Tul,

@2 pod uortrTi3iezirer3rTurl sodg1

R L R P TR TR Ty ey

9DW JO 23zI§ " p+ieis_u
piom sn3eis . p+qo3x_u
Ssaappe gl bur3sanbay . p+3unod w

Trear BTIT06dSy 0V000000 Z6T
17112 20006¥Z¥ DE000000 T6T
baq dTL9 VED000000 06T
1*edud 000000000dE8 YED00000 68T
T sa0u :Qo33TUT 852Z Z£000000 88T
eat $000000064LY DT000000 LBT

eat 81000000641y 92000000 98T
39s8q €v00330000006480 AT000000 S8T
T°3aou ¥900000090T0000004EZ ¥T000000 ¥8T
1°aaou 080000003800000024€Z ¥0000000 €8T
Mcdaou 0042249 90000000 Z8T
dex3 Zvdy ¥0000000 T8T
mc3aou dE00D€£0€ 00000000 08T
f3tur 6LT

L R Y 8LT
. LLT

(v . 9Lt

(e . SLT

‘(z * vLl

‘(1 - €LT

. LT

*10I3ucd * TLT
aur3jnoy * 0Lt
» 691

» 89T

* L9t

- 991

R R PP TY S91
abed- 00000000 ¥9T
nba-:azrsqow £9T
nba* :je3s w T9T
nba* :qo3a"w 191




(panupuos) apoo uoezieniul SOFT - £°g Supsiy

A Sample Operating System 395

13yd3eds1p 03 09 “xr ya3edstp du( d2000000633¢ 88000000 81z

%Se3 3u33INd ON ree 3usaamd 17112 00000000662y ZB000000 LIZ

» 912

E I3yo3edsip 133uUa o3 aiedaig * (4 ¢4
S _ . iz
= 0 03 pIOM juIl 3IsE 338 ae (Te)yurt"w  1raro 00006Y¥Zy FL000000 €12
3uop 1713 3eadaz s dootqau’ op eiqp v33d801S ¥L000000 ZTC

M pPIOoM YUIT 33§ e (Te)yuIT w/ge {-3a0u 00008VEZ 9L000000 TTZ
(¥] qow 3xXaN <~ Qe wry 0®‘(0e)azrsGou eay PTO08ETY ZL0DO000O 0TT
SS21ppe 3U31IND 2aeg vy Te‘pe 1*daou :doorqow 8¥ZZ 0L000000 60Z

pe3y 3ISTT 3TUL rex ISTIqouU’pe  T-@a0u 89r000008J€Z ¥9000000 80Z

eaze <- pe e oe‘eaieqou eay 09%¥0000064TV $9000000 L0

ITUT 03 Sqouw jo 1aqunu = Qp e 0p1-sqouwug 1-aa0u #00000000£0Z 5000000 90T

. s0Z

B3le 30079 [013U0D abessaw 3ITul » voz

M €02

PIOM YUIT 3ISET 3n0 TTNN wxa (O 10 SUETIE 48§ £ 00008¥ZY ¥S000000 z0Z

$auopqoy 102

auop 1113 doot ven CEEER{TH e1q 8009 85000000 002

$S31ppe o3 sno1aa1d aaeg vas ge‘Te  1'aaow 6v¥9Z 95000000 66T

PIom JUIT 923 snotaaid 3ag xan (€2) yUTIT_3‘1e T-240u 00006¥LZ 25000000 86T

J0e3IS T3UIBY 335 o (Te)dss™3/ze 1-aaou 0TOOY¥PEZ 3¥000000 L6T

w5133s1621, aaes P (ze)=‘9e-pe/LP-0p 1°‘wdAouU 3334738y ¥¥000000 96T

¥S S_%se3 ysnd e (ze)-‘+(0e) M-2a0u 8TSE 8000000 S6T

¥S 3o prom ybry diys ex +(0®)  a‘3s3y 8SYy 9¥000000 v6T

wods S,%SE3 ysng LLEd (ze)~‘+(0e) T1-2a0uw 8TSZ ¥¥000000 €61




uonmdNNSUl 0 VYL SOFT 3yl 10} J3puey uondadxy - p°g Sunsiy

- :124
2UTIN0I DAS 133ud . (9e) dul 9ady 9V000000 L¥Z
2UIINOI DAS <- 9P 3 9e’ (1°0P’'9®)0 T1'aaow 00809LD07 TV000000 9FT

arqey 3o buruurbaq <- 9e 5 ge’qe3oas  1-ear 0000000063ar 56000000 5¥Z

v £q op Ardritnu ¥ op‘zé 1°1sT 8853 ¥6000000 ¥bT

J0113 uin3al ‘ou ‘SIH 3II * oaspeq s14q d0r9 86000000 E€¥C

¢abuex utr 04 SI ¥ 0p’dasxeug 1°duws 900000002808 Z6000000 ZT¥T

s133s1bax1 TP daes ¥ (Le}=‘9e~08/LP-0P 1 waaouw a434L38% 38000000 TvZ

1pdea3 ove

D L T 6€T
. 8€T

-.tode13, sT saur3nox DAS 303 juyod Kijua aylr . LEZ

* 9ET

/N ¥/N $S21ppv €JW S obessan 03 Arday . SEZ
/K /N /N ¥ 26eSSaN 2a12034 » (124

4 ¥sey juno) SSaiIppy Xajing € sbessap puag " €€
/N 3junop Zetaq /N & £etag . TET
/N juno) 33&a §§3Ippy 133304 1 TeUTWId] UO SUTTIUTId - 1€
¥/N /N Y/N 0 ysBIMAN * (13%4
======== =====ss=== === == ===z==z== . 622
za 1a ov o0a uoy3dung 3 82T

] Lz

$3TqeTIeAR 2J® SUOTIOUN] BuIMOTTOI BYL °UOTIINIISUT 0F JVHL - 9z

e Burinoaxa pue T°0d O3IUT 9pod uolijouny ajeradoadde ay3 Huypeor . (Y44
Xq psasanbai ST DAS UV * (STT®D 10s1Azadng) s_0AS 9 s3roddns 5047 * vz
3 €T

IR, e zz2

suorjusauo) burrred s 09 1 . Tze

* 0z

D L T TN T P TR s 612

396  Programming the 68000




Case Study: A Sample Operating System 397

(Panunuod) UONINNSUL O dY¥1 SOFT Y1 10} 13|pury uondadx] - p'g Suisty

1 + _Jaqunu DAS XeW
abessaw 03 Atday
abessaw e 2ara23y
abessau e puag
Keyap awri-teay
3nd3anQg TeuTwiIaL
Jayojedsip Iajul

“eex

O HNO =

13pI0 2pOD UOT3IDUNG Uy

2pod jse3 o3 uinyay .
8poD uinN3al1 peoy o
512351621 210353y M

abed*

3Ixa3*

¥/ (qe3oas—-y) nba-
Krdaa T*2p*

ad21  1°0p°

puas =oba

Aetap T°2p°
aurtiazd  {rop*
jyseimau  ['op°
e3ep”

$25521ppPe 3UTI3INOI DAS 3JO 3[qel
231

op‘oaspeq o T*aaouw
9e-ge/Lp-0p’ +(ds) T wsaou

*T- uin3ai ‘sbuei Jo 3INO Ia3QWAU UOT3IDUN] IT

ioasxeu

1qe3oas

-

:0aSpRq
.
.

84100000
20100000
J€T00000
95200000
05200000
08000000

€Ly
EE(TA
444, a0y

08000000
08000000

¥1000000
01000000
20000000
80000000
¥0000000
00000000
00000000

av000000
ov000000
8v000000




398  Programming the 68000

Newtask SVC and Dispatcher

Listing 8.5 shows the Newtask SVC and the LBOS dispatcher. The New-
task SVC provides a convenient method for a task to call the dispatcher.
Lines 285 to 291 save the state of the user task. All exception-handling
routines within LBOS are required to save all registers on the stack except
A7. Notice that the contents of register DO are in the first longword on
the stack.

The dispatcher is located at lines 297 to 315. The dispatcher requires
that the task registers (including both stack pointers) be saved, as is done
in the Newtask SVC code. The dispatcher should, therefore, only be
entered if there is no “current task.” The dispatch algorithm is quite
simple: scan down the list of TCBs until you find one that is not blocked.
(Blocked tasks have at least one bit set in the TCB flag word.) Upon find-
ing a dispatchable task, load location “current” with the TCB address (line
304), load up the task’s registers (lines 305 to 308), and begin executing
the task code (line 309).

The code at lines 313 to 314 executes if no task is dispatchable. The
STOP instruction reduces the processor priority to zero and waits for an
interrupt. The dispatch code is executed again to see if any tasks have
been made dispatchable by the interrupt.

Data Area

Listing 8.6 contains the LBOS data area. Lines 329 to 335 contain initial
data for four TCBs: a task to handle the clock (timer), a task to handle ter-
minal output, and two applications tasks. The tasks are linked in priority
order from the “tcblist” memory location. The storage for each of the
TCBs is reserved in lines 342 to 345.

A linked list of free Message Control blocks is created by the initializa-
tion code using the memory reserved by lines 349 to 351. Location
“mcblist” contains the address of the first free MCB.

Interrupt Polling Routine

Both the clock and terminal-output interrupt are tied to the 68000 level
1 autovector interrupt. This is a modification of the routine used in Chap-
ter 7 for the interrupt-driven serial output program.

On each interrupt, the registers are saved on the stack of the current
task. If there is no current task, the last task to execute provides the stack
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space. If a decision is made to switch context as a result of the interrupt,
only the two stack pointers need be saved.

The code shown in Listing 8.7 handles Level 1 interrupts. The interrupt-
controller device is polled and the interrupt is cleared in lines 365 to 367.
Lines 368 to 376 determine which device interrupted and jump to the
appropriate interrupt-service code. LBOS uses only two of the devices on
the interrupt controller, as indicated by the table at lines 378 to 386. All
other interrupts are ignored by transferring to the label “noint,” which
returns to the interrupted task.

Send Message SVC

Listing 8.8 contains the code that performs the Send Message SVC. This
code is entered from the TRAP #0 exception handler. Lines 401 to 406
allocate an MCB for the message. Notice that this is critical-region code. If
the task were to get suspended between lines 402 and 406, another task
could also issue a Send Message SVC, and the two tasks would try to use
the same MCB. (The shared variable which must be protected is
“mcblist”.)

Lines 407 to 413 prepare the fields in the message contro! block. Line
414 marks the current task for suspension until the target task issues a
Reply. Lines 415 to 418 compute the address of the receiving task task
conrol block from the index passed by the sender in register D2. The task
index is determined by the list of TCB addresses at line 436.

Lines 419 to 426 place the MCB in the receiving task’s mailbox. To pre-
serve the order in which the messages were sent, the message list
(“m_link” in the TCB) is kept in strict FIFO order. This segment of code is
also a critical region, protecting the task’s entire list of MCBs.

Line 427 clears the bit in the receiving task’s TCB that corresponds to
“waiting to Receive a Message.” If the receiving task is waiting for a mes-
sage, it will now “wake up” and complete the Receive Message SVC. Line
428 branches to the Newtask SVC to cause another task to run. Notice
that the current task is blocked, so a task swap is guaranteed.

The Send Message SVC can return two errors. The first, “e_badtask,”
occurs when the requesting task passes an invalid task index in register
D2. The second, “e_nomcbs,” occurs when no MCB is available to send
the message.

Receive Message SVC

Listing 8.9 contains the code for the Receive Message SVC. Because it
must protect the integrity of the receiving task’s message lists, this entire
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routine is critical-region code. Lines 456 to 457 test for the presence of
messages in the task’s mailbox. If there are no messages, lines 464 to 467
cause the task to be suspended until another task sends a message to the
current task. Lines 458 to 461 move the MCB from the “waiting for
receive” list (t_msg) to the “waiting for reply” list (t_rply). Line 462 puts
the address of the MCB into the receiving task’s register DO.

Reply to Message SVC

Listing 8.10 contains the code for the Reply to Message SVC. Lines 480
to 488 attempt to find the MCB specified by the requesting task in register
AQ. If the specified MCB is not in the “waiting for reply” list, lines 498 and
499 return an error to the task that invoked the SVC. Line 489 removes
the MCB from the “t_rply” list.

Lines 490 to 492 put the return code (which is placed by the receiving
task in the MCB at the label “m_stat”) in the sender’s register DO.L. Line
493 makes the sending task dispatchable again. Lines 494 and 495 return
the MCB to the free pool of MCBs. Line 497 exits to the dispatcher, since
the sending task might have a higher priority than the receiving task.

Printline and Delay SVCs

Listing 8.11 gives the code for the Printline and Delay SVCs. This code is
trivial due to the fact that these SVCs are handled by separate tasks. Since
the registers used by the Printline and Delay SVCs correspond to the reg-
isters for the Send Message SVC, all that is necessary is to load the proper
task index into register D2 and branch to the send code.

Timer Task Code

Listing 8.12 shows the code for processing the Delay SVC. Lines 534 to
535 perform a Receive SVC. Lines 536 to 544 load two global variables
that communicate with the interrupt routine, mark the timer task nondis-
patchable, and call the dispatcher using the Newtask SVC. When the task
becomes dispatchable again (after the delay), the task issues a Reply SVC.
Only one delay can be active at a time.

The interrupt routine (lines 552 to 564) decrements the global counter
(“tcount”) until it reaches zero. When the count reaches zero, lines 560 to
564 cause the timer task to resume execution. The flag “tstatus” is used to
prevent unnecessary timer interrupts when no delays are taking place.
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The subroutine called trset (lines 568 to 576) causes a timer interrupt
after 1/100 second. The timer is a two-stage counter, which counts at a
basic clock rate of 64,000 times per second. Lines 571 to 574 load the
four bytes of the count register with appropriate constants to make the
count register 640. The clock will then interrupt 1/100 second later. This
subroutine must be called each time an interrupt is desired.

Terminal Output Task

Listing 8.13 contains the code for the task that handles the LBOS
Printline SVC. Lines 590 and 591 execute a Receive Message SVC to get
information on the output desired. Lines 592 to 603 set up the terminal
output, mark the task as not dispatchable, and exit to the dispatcher via
the New task SVC. This code actually puts out the first character, so the
interrupt routine is always started by the completion of the character out-
put. When the interrupt routine finishes outputting the buffer, the terminal
task resumes execution. Lines 604 to 606 issue a Reply to Message SVC to
wake up the task that originally requested the terminal output.

The terminal-output interrupt handler begins at line 612. If no more
characters remain to be output, the task disables the serial port, and
wakes up the terminal task (lines 612 to 617). If the count of characters is
greater than 0, there is another character to be output. Lines 619 to 623
output the next character and decrement the character count.

Application Tasks

Listings 8.14 and 8.15 show two “applications” programs. The first
application issues a Delay SVC for 2.5 seconds, and then prints a message
on the terminal. The second application executes a CPU-intensive loop
and outputs a similar message on the terminal. Since the first task has a
higher priority than the second, both the clock and the CPU tend to
remain busy. i

SUMMARY

In this chapter, we have covered most of the basic concepts involved in
writing multitasking operating systems. These topics are:

» Multitasking.
* Resource management.
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The various types of CPU scheduling: (1) priority-driven, (2) pre-
emptive priority-driven, (3) pure time-slicing, and (4) preemptive
priority-driven with time-slicing,

Reentrant coding.

The various forms of mutual exclusion techniques: (1) disabling
interrupts, (2) disabling dispatching, (3) semaphores, (4) monitor
procedures, (5) message switching, and (6) fork queues.

A sample multitasking system.

EXERCISES

1.

In a situation in which no task is dispatchable, why is an interrupt
necessary for a task to become dispatchable?

. What areas in LBOS have a potentially high interrupt latency?

Can any of these be improved? How?






CHAPTER 1

This appendix gives the answers to the exercise questions found at the
end of each chapter.

1. There are many correct solutions to this question. Here is one:

1. Select the highest place value from the table that will
divide into the number to be converted. Let the converted
number be the initial remainder.

2. Calculate the new quotient and remainder when the cur-
rent remainder is divided by the present table entry.

3. If place value table entries remain, repeat step 2 with the
next table entry and the remainder just calculated.

4. Read the answer as the successive quotients.

2. The flowchart for the above would look like Figure A.1.
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3. The machine language program would look like Table A.1.

Location Contents Instruction
100 1105 Load A from location 105
101 5104 Subtract location 104
102 3106 Store into location 106
104 0300 <Data>
105 0400 <Data>
106 0000 <Data>

Table A.1 - Machine language program at location 100

You must load the contents of location 105 first because the dif-
ference to be computed is (Location 105 — location 104). The
subtraction instruction works by subtracting memory from the
register. Therefore, you must have the contents of location 105 in
the register to perform the subtraction operaton.

4. Moving to location 200 yields the results in Table A.2.

Location Contents Instruction
200 1205 Load A from location 205
201 5204 Subtract location 204
202 3206 Store into location 206
204 0300 <Data>
205 0400 <Data>
206 0000 <Data>

Table A.2 - Machine language program at location 200
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5. The assembly language version is:

LOAD
sus
STORE
STOP

X: DC

Y: DC

Z: OC

AY
AX
AZ

300
400
o]

6. To add the first five integers,

program will work:

LOAD
ADD
AOD

ST OR RO,
o
o

AA
A.B
AC
A,D
A.E
AF

o UhAE WON =

a modified version of the previous

7. Conversion to hex and binary is shown in Table A.3.

Decimal Hex Binary
273 11 0001 0001 0001
421 1A5 0001 1010 0101
1024 400 0100 0000 0000
100 64 0000 0110 0100

Table A.3 - Conversion to hex and binary
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8. Conversion to binary and decimal is shown in Table A.4.

Hex Binary Decimal
ABE 0000 1010 1011 1110 2750
100 0000 0001 0000 0000 256
64 0000 0000 0110 0100 100
1024 0001 0000 0010 0100 4132
505 0000 0101 0000 0101 1285

Table A.4 - Conversion to binary and decimal

9. Complements are shown in Table A.5.

Number One’s Complement Two’s Complement

OABE F541 F542

0100 FEFF FFOO

0064 FF9B FFoC

1024 EFDB EFDC

0505 FAFA FAFB

Table A.5 - Complements
10. Binary operations are shown in Table A.6.

Number Pair AND OR XOR ADD C
ASAS SASA | 0000 | FFFF | FFFF | FEFF | 0
FFFF 0001 0001 FFEF | FFFE | 0000 1
1234 4321 0220 5335 5115 5555 0

Table A.6 - Binary operations
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11. Shift and Rotate Tables:

Logical Shifts

Times

= NV A WN = O
=
[}
w

XN A WD = O

Left

1111 1111 (FF hex)
1111 1110 (FE hex)
1111 1100 (FC hex)
1111 1000 (F8 hex)
1111 0000 (FO hex)
1110 0000 (EO hex)
1100 0000 (CO hex)
1000 0000 (80 hex)
0000 0000 (00 hex)

Left

0101 0101 (55 hex)
1010 1010 (AA hex)
0101 0100 (54 hex)
1010 1000 (A8 hex)
0101 0000 (50 hex)
1010 0000 (AQ hex)
0100 0000 (40 hex)
1000 0000 (80 hex)
0000 0000 (00 hex)

Arithmetic Shifts

Times

ONO U DA W —=O

Left

1111 1111 (FF hex)
1111 1110 (FE hex)
1111 1100 (FC hex)
1111 1000 (F8 hex)
1111 0000 (FO hex)
1110 0000 (EO hex)
1100 0000 (CO hex)
1000 0000 (80 hex)
0000 0000 (00 hex)

Right

1111 1111 (FF hex)
0111 1111 {7F hex)
0011 1111 (3F hex)
0001 1111 (1F hex)
0000 1111 (OF hex)
0000 0111 (07 hex)
0000 0011 (03 hex)
0000 0001 (01 hex)
0000 0000 (00 hex)

Right

0101 0101 (55 hex)
0010 1010 (2A hex)
0001 0101 (15 hex)
0000 1010 (0A hex)
0000 0101 (05 hex)
0000 0010 (02 hex)
0000 0001 (01 hex)
0000 0000 (00 hex)
0000 0000 (00 hex)

Right

1111 1111 (FF hex)
1111 1111 (FF hex)
1111 1111 (FF hex)
1111 1111 (FF hex)
1111 11171 (FF hex)
1111 1111 (FF hex)
1111 1117 (FF hex)
1111 1111 (FF hex)
1111 1111 (FF hex)
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Times

ONOU R WN = O

Rotates

Times

- OC®NOULWN = O
=)

O ©® N O UV kWi = O

Left

0101 0101 (55 hex)
1010 1010 (AA hex)
0101 0100 (54 hex)
1010 1000 (A8 hex)
0101 0000 (50 hex)
1010 0000 (AO hex)
0100 0000 (40 hex)
1000 0000 (80 hex)
0000 0000 (00 hex)

C Left

01111 1111 (FF hex)
1 1111 1110 (FE hex)
11111 1101 (FD hex)
11111 1011 (FB hex)
11111 0111 (F7 hex)
11110 1111 (EF hex)
1 1101 1111 (DF hex)
11011 1111 (BF hex)
10111 1111 (7F hex)
01111 1111 (FF hex)

C Left

0 0101 0101 (55 hex)
0 1010 1010 (AA hex)
1 0101 0100 (54 hex)
0 1010 1001 (A9 hex)
1 0101 0010 (52 hex)
0 1010 0101 (A5 hex)
1 0100 1010 (4A hex)
0 1001 0101 (95 hex)
1 0010 1010 (2A hex)
00101 0101 (55 hex)

Right

0101 0101 (55 hex)
0010 1010 (2A hex)
0001 0101 (15 hex)
0000 1010 (0A hex)
0000 0101 (05 hex)
0000 0010 (02 hex)
0000 0001 (01 hex)
0000 0000 (00 hex)
0000 0000 (00 hex)

Right C

1111 1111 O (FF hex)
0111 1111 1 (7F hex)
1011 1111 1 (BF hex)
1101 1111 1 (DF hex)
1110 1111 1 (EF hex)
1111 0111 1 (F7 hex)
1111 1011 1 (FB hex)
1111 1101 1 (FD hex)
1111 1110 1 (FE hex)
1111 1111 O (FF hex)

Right C

0101 0101 O (55 hex)
0010 1010 1 (2A hex)
1001 0101 0 (95 hex)
0100 1010 1 (4A hex)
1010 0101 O (A5 hex)
0101 0010 1 (52 hex)
1010 1001 0 (A9 hex)
0101 0100 1 (54 hex)
1010 1010 O (AA hex)
0101 0101 0 (55 hex)
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CHAPTER 2

1. The instructions would result in:
MOVE.B D0,A0
This instruction is illegal because address registers can only be

accessed as words or longs. Give yourself extra points if you
knew that an lllegal Instruction exception would occur.

MOVE.W D0,A0

This instruction causes the contents of register A0 to become
FFFF8000. Remember that word moves to an address register
cause sign extension.

MOVE.B DO,(A0) +

The byte at location 1000 becomes 0. Register AO becomes 1001.

MOVE.B DO, - (A7)

The byte at memory location 10000 becomes 0. The contents of
register A7 becomes FFFE. Remember that A7 is the hardware
stack pointer, and is incremented or decremented by 2 in byte
operations.

2. The instructions as modified are:

Instruction Hex Changes

ADD.L D1,D0 D081 DO0=01234566
ADD.L A1,DO D089 D0=01234566
ADD.L (A1),DO D091 D0=01234566
ADD.L (A1)+,D0 D099 DO0=01234566
ADD.L -{A1),D0 DOA1 D0=01234566
ADD.L 4(A1),DO DOA9 0004 D0=01234566
ADD.L 4(A1,A2.1),D0 DOB1 A804 DO0=01234566
ADD.L $1000,D0 DOB8 1000 DO0=01234566
ADD.L $10000,D0 DOB9 0001 0000 DO0=01234566
ADD.L $100(PC),DO DOBA 0100 DO0=01234566
ADD.L $10(PC,A1.L) DOBB 9810 DO0=01234566

ADD.L #$10002000,00  DOBC 1000 2000 DO= 11234566
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3. The pre-decrement and post-increment modes may be used to
implement a stack as follows:

PUSH operation is MOVE.s xxx,(An)+

POP operation is MOVE.s — (An),xxx

The difference between this technique and a stack that grows
toward lower addresses is that the address register no longer con-
tains the address of the top item of the stack. Instead, the register
points to the next stack location to be used. By changing the
addressing modes to pre-increment and post-decrement (+ (An)
and (An)-), the stacking would be equivalent to the present
technique.

CHAPTER 3

1-2. There aren’t any answers back here. Either you can use your sys-
tem or you can’t. If you can’t, you should first learn how. The
basic mechanical steps are essential, and you will learn to pro-
gram faster if you can do the mechanics well.

3. The ADDX and SUBX instructions perform arithmetic on multiple
memory locations. You must start with the least significant digit in
doing arithmetic. Comparisons, however, must be done starting
with the most significant digit.

4. The RTE instruction reloads the status register (SR). This changes
the Trace bit in the status register. Normally, the Trace bit is
cleared by an RTE instruction. This prevents the instruction from
being traced, and causes the debugger to lose control. Other
instructions that can clear the Trace bit will have the same effect:
MOVE to SR, ANDI to SR, and EORI to SR.

CHAPTER 4

1. The long division routine.
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LA AR R R R R R R e e R R R R RS

* 32-bit division routine.

* Enter with:

& DO = dividend

& D1 = divisor

* Exit with:

G D0 = quotient

& D1 = remainder

AR AR AR AR AR R AR AR AR AR R R AR AR AR R AR R R AR AR R RN A AR R
.globl 1ldiv

ldiv: movem.1l d2-d3,-(sp) Temporary registers.

clr.1 dz2 Quotient

clr.1 d3 Sign flag
tst.l do Dividend < 07
bge x1 If gt, no
addq.l 41,43 Increment flag
neg.1l 4ao Make positive

x1: tst.l dl Divisor < 0?2

bge loop If ge, no
addq,1 #1,43 Increment flag
neg.l dl Make positive

-

-

-

»

»

*

*

*

*

*

*

loop: cmp.l d0,dl * pividend : divisor

bgt done * If gt, don“t subtract
* Subtract divisor
* Increment quotient
*
*
*
»
*
*
»
*
*

bra loop Loop again

done: btst _$0,a3 Like signs?
beq x2 Yes, skip negate
neg.l dz2 Make negative
neg.l do

x2: move.l d0,dl
move.l 42,40
movem.l (sp)+,d2-43
rts

This is remainder
This is quotient
Restore registers
Return

Handling negative numbers is not required for the next question.
The real disadvantage to doing division in this manner is the
excessive amount of time required to divide a very large number
by a very small one. It can take several minutes for a single divi-
sion operation.

2. This is the modified binary to decimal ASCll-conversion routine.

L R R R R R R R R s
Binary to decimal ASCII conversion routine.

D0.L = number to convert
A0 -> Output area (10 bytes)

*
*
* Enter with:
*
*
LR R R R R R R R R R R R R S R

.globl bindec
.9lobl 1div

bindec: movem.l d0-d32/a0,-(sp) * Save registers
move.b - 7,41 * Assume positive
£S5t 4o * Negative?
bpl notneg * No, use ~ °
*

o_-

move.b #°-7,d1 Negative, use ‘-
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neg.1l
notneg: move.b
adda.l
nove.w
loop: move.l
jsr
move.b
add.b
dbra

movem.1l (sp)+,d0-d2/a0

rts

dao * Convert to positive
dl, (a0)+ * Move in sign
#9,a0 * A0 -> end of area
#8,d2 * Count register
$#10,d1 * Set divisor
1div * Divide by 10
dl,-(a0) * Remainder to area
£°0°, (a0) * Adjust to ASCII
d2,loop * Loop until done

*

Restore registers

3. The finished conversion program looks like this:

RRRRRRARRRRR AR AR AR AR AR AR AR AR AR AR AR AR R RN R AR R R RN RN RN

This program converts decimal numbers to hex.
Numbers are input from the keyboard and output to

L
L]
.
* the screen.
*
L

AR R AN R R AR R R R R RN R R RN RN R RN R R AR A RN R R R AR R RRRR AR

.globl
.globl
.globl
.globl
.globl
loop: lea
jsr
lea
jsr
tst.b
bne

gotnum: jsr

prompt: .dc.b
decbuf: .dc.b
hexbuf: .dc.b

inbuf: .ds.b

prtstr * Line-print routine
binhex * Output converter
bindec * OQutput converter
decbin * Input converter
getlin * Keyboard input
prompt,al * A0 -> output area
prtstr * Print prompt
inbuf, a0 * A0 -> input area
getlin * Get keyboard input
(a0) * Null line?
gotnum * No, continue to process
* Yes, exit to CP/M
decbin * Convert to binary
hexbuf,a0 * A0 -> conversion area
binhex * Convert to hex
decbuf,al * Reconvert to decimal
bindec *
prtstr * Print answer
loop * Repeat until °C

“Enter decimal number: °,0
XXXXXXXXXX decimal is *
“XXXXXXXX hex”,10,0

80 * Input buffer

Notice that the only change required was to expand the size of
the decimal output conversion area.
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4. The hex conversion routine looks like this:

KRN RR R AR R AR R NI RAR RN RN AN RN R AN AN RN R AR AR R AR

This subroutine converts hex ASCII to
longword binary.

*
*

*

*

* Enter with:

* AO0 -> Hex string

* Exit with:

Q DO = Converted number
*
*
*
*
L]

Conversion terminates on first nonhexadecimal
character. No overflow detection.

HRN AR AR NI R RR AR AR RN AR AN RN AR R AR AN SRR RN R AR AR AR

.globl hexbin

hexbin: movem.l dl1-d2/a0,~-(sp) * Save starting registers
clr.l do * Zero out accumulator
loop: G dl * Zero out D1
cmpi.b 4797, (a0) * Upper bound
bhi notdec * Not a decimal digit
cmpi.b #°0°, (a0) * Lower bound
blo nothex * Not a hex digit
move.b #°0°,d1 * Correction factor
bra gotdig * Accumulate
notdec: cmpi.b #°A°, (a0) * Check letters
blo nothex * Not a hex digit
cmpi.b #°F7, (a0) * Upper case hex?
bhi notuc * No, try lower
move.b #°A°-10,dl1 * Correction factor
bra gotdig * Got digit
notuc: cmpi.b #%a”, (a0) * Lower case?
blo nothex * No
cmpi.b $#°£7, (a0) * Test upper bound
bhi nothex * Not hex
move.b #7a”-10,41 * Correction factor
gotdig: clr.l daz2 * Zero high byte
move.b (a0)+,d2 * Get next digit
sub.1 dl,d2 * Convert to binary
1sl.1 44,40 * Multiply by 16
add.l d2,d0 * Add in digit
bra loop * Try another digit
nothex: movem.l (sp)+,a0/dl-d2 * Unsave registers
rts * Return to caller

A slightly tricky piece of code to yield the proper binary nibble
uses register D1 as the factor to be subtracted from the ASCII
byte.

5. The program for converting hex to decimal can be derived from
the earlier solution to converting the longword decimal to hex.
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KA KRR AR R R R R AR R A AR R A AR R AR AR R R AR RN RN AN R AR R R R R AR R AR

*
* This program converts hex numbers to decimal.

* Numbers are input from the keyboard and output to
* the screen.
*
*

RRRR AR AR AR AR RRRAAR R AR AR AR A AR AR AR R R R AR R R R R R R AR AR R AR
.globl prtstr * Line-print routine

.globl binhex * Qutput converter
.globl bindec * Qutput converter
-.globl hexbin * Input converter
.globl getlin * Keyboard input
loop: lea prompt,al * A0 -> output area
jsr prtstr * Print prompt
lea inbuf, a0 * A0 -> input area
jsr getlin * Get keyboard input
tst.b (a0) * Null line?
bne gotnum * No, continue to process
rts * Yes, exit to CP/M
gotnum: jsr hexbin * Convert to binary
lea hexbuf, a0 * A0 -> conversion area
jsr binhex * Convert to hex
lea decbuf, a0 * Reconvert to decimal
jsr bindec *
lea hexbuf,a0 * A0 -> Answer
jsr prtstr * Print answer
bra loop * Repeat until “C
.data

prompt: .dc.b “Enter hex number: ~,0

hexbuf: .dc.b “XXXXXXXX hex is

decbuf: .dc.b “XXXXXXXXXX decimal”’, 10,0
.bss

inbuf: .ds.b 80 * Input buffer
.end

CHAPTER 5

1. The summation program is:

LA R R R E E E R R R R RS2 ]
* sum of first five integers using printf
KR AR R R AR R R R R R R AR R R AR R AR A R AR AR R AR R AR R AR Rk k&
.globl main
.globl _printf

main: move.w #1,40 * First integer

- move.w 44,41 * Counter
clr.l a2 * Accumulator

loop: add.w do,d2 * Add next integer
add.w $#1,40 * increment
dbra dl,loop * Loop until done
move.w d2,-(sp) * Push answer
pea format * Push format string
jsr _printf * Call printf
add.l 46,sp * Pop arguments
rts EREIE
.data

format: .dc.b "The sum is %4",10,0
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2. The program to generate the powers of two is:

L e Y

* Table of powers of two using fprintf
L R R T e Y

_main:

loop:

done:

argerr:

.globl
.globl
.globl
.globl
.globl
move.w
move.l
cmp.w
bne
pea
move,l
jsr
add.l
move.l
beq
move.l
clr.w
move,l
move.l
move.w
pea
move.l
jsr
add. 1
add.w
cmp. 1l
beg
1sl.1
bra
move.l
jsr
add.l
rts
pea
bra

openerr :pea
errcom: jsr

format:
wstr:
errl:
err2:

add. 1l
rts

.data
.dc.b
.dc.b
.dc.b
.dc.b

_fopen
_printf
_fprintf
_fclose
_main

4 (sp) ,do0 * argc

6 (sp) ,a5 * -> argv

$#2,d40 * One argument?
argerr * No, quit now
wstr * o> "y"
4(as5),-(sp) * -> filename
_fopen * Try to open file

#8,sp * Pop arguments
d0,d43 * Save stream pointer
openerr * Couldn”t open

#1,d4 * First power of two
das * Power counter
d4,-(sp) * Push
d4,-(sp) * Twice
d5,-(sp) * Push power number
format * -> Format string
d3,-(sp) * Push Stream pointer
_fprintf * Do the print

#18,sp * Pop arguments

#1,45 * Bump counter

#$100000,d4 * Compare against limit
done * EQ => just printed last

#1,d44 * Shift right one place
loop * Do another one
d3,-(sp) * Prepare to close
_fclose * Do the close

44,sp * Pop arguments

* Exit

errl * Push error message
errcom * Merge
err2 * Push error message
_printf * Call printf

#4,sp © Pog arguments

* Exit

"2*#32d = %91d (decimal) %81lx
"a",0

"Invalid argument count",10,0
"Unable to open output",10,0

The copy function is:

(hex)",10,0

AR AR AR R AR R RN AR R R AR AR R RN AR AR R AN AR AR AN A A ARk Nk
Memory copy function for C. Calling sequence:

*
*
*

*
*

mepy (src,dst,length) ;

Where

"src"

is the source address
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= "dst" is the destination address.

© "length" is the number of bytes to copy.
*

* No return parameter.
KRR AR R R AR R A KRR AR KRR NN R AR R R R A AR AR RRARAN RN A IR R R R AR

.globl _mcpy
_mcpy: move.l d4(sp),a0 * Source address
move.l 8(sp),al * Destination address
move.w 12(sp),do * Length
sub.w $#1,d0 * Decrement for dbra
loop: move.b (a0)+,(al)+ * Copy a byte
dbra do, loop * Loop until done
rts * Return

CHAPTER 6

1. The PLIST program can be derived from the PFIND program as
follows:
1. Change line 84 to compare “argc” to 1 instead of 2.
2. Delete lines 87-88 and 148.
You can also delete lines 147 and 169-186, and put the

“ploop:” label on line 149. Notice that the program will
still work with the useless code in place.

2. The Fibonacci program is:

ARK KRR KRR AR IR IR KRR AR AR KRR AN RN Rk Rk kR kR Rk hkk Rk

* Recursive Fibonacci routine
*
G Enter with number in DO.W
* Exit with answer in DO.W
KRR KRR KRR AR AR R AR AR AR R R AR AR R R R R R AR AR AR Ak h Ak
.globl fib
fib: cmp.w #1,d0 * Easy?
bgt dofib * No, do recursion
rts * Done
dofib: move.w d0,-(a7) * Save present value
sub.w #1,40 * Decrement
jsr fib * Take F(n-1)})
move.w d0,-(a7) * Save result
move.w 2(a7),d0 * Restore n
sub.w 42,40 * Decrement
jsr £ib * Take F(n-2)
add.w (a7)+,d40 * Compute sum
add.l $2,a7 * Pop saved word
*

rts Quit
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3. The sort routine is as follows:

ARRRRAE RS .
.
Q Sort routine., This routine performs an in-place sort on the buffer,
o using a bubble-sort technique.
v
au *
sort: movem.l d0-d7/a0-a6,-(a7) * Save the registers
move.l lastb,a2 o A2 -> buffer end
sloop: lea buffer,al = AQ -> buffer beginning
cle,w do * Clear exchange flag
sloopl: lea length{a0),al & Al -> Next record
cmpa.l al,a2 = Past end?
blos send o Yes, see if another pass needed
bsr scmp * Compare (a0) : (al)
bne snext o NE => don”t swap
bsr xchang B Swap (a0) and (al)
move.w  #1,d0 * Set flag
snext: lea length(a0),a0 2 Advance A0 to next entry
bra sloopl 0 And compare the next two
send: tst.w d0 2 Did last pass exchange?
bne 5loop - Yes, make another pass
movem.1l (a7)+,d0-d7/a0-a6 1~ Unstack registers
rts * Return
*
i Comparison routine. Compares (A0) to (Al). Returns NE condition code
& if no exchange necessary.
*
scmp:  move.w  #numlentextlen,dl o Dl = DBRA-adjusted count
lea telno(al),ad & Ad -> 1lst telephone #
lea telno(al) ,a5 % A5 -> 2nd telephone #
cloop: cmp.b  (ad)+, (aS)+ L Compare a digit
bgt noswt. G Switch only if 1t
dbne dl,cloop 2 If eq, continue loop
clr,w dl o Set Z bit
noswt: rts O Return
*
* Exchange routine. Exchanges (A0) with (Al)
»
xchang: move.w  #length-1,dl w D1 = DBRA-adjusted count
move.l a0,a4 * A4 => record 1
move.l al,aS I AS -> record 2
xloop: move.b (ad),d2 * Pick up a byte
move,b (as), (ad)+ 9 Swap
mwve.b d2,(a5)+ & byte
dbra d1,xloop o Count down
rts ¥ Return

4. The PDEL program is derived from the PADD program as follows:

1. Alter the code in the main routine to call subroutine
“delete” instead of “insert.”

2. Alter the code in subroutine ”setfield” to accept three
names as arguments. Remove the code for the telephone
number and extension.
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3.

Replace the “insert” subroutine with the following code:

o w

Delete routine. This routine removes the record at

"irec" from the

buffer. The buffer is moved up to remove the deleted entry.

delet:

find:

movei!

CHAPTER

e:

t:

7

movem, 1 d0-d7/a0-a6,-(a7)

lea buffer,al
move.l lastb,a3
lea irec,a0
cmpa.l a3,al
bhis found

jsr ncmp
tst.w 4o

beq found

bmi norec
adda.,l1 lenmgth,al
bra find

Save registers

Al -> Buffer

A3 -> End of buffer

A0 -> Comparison string
Past the end

Yes, insert at end
Compare the two

Record : buffer

Found record to delete
MI => Can’t find it

Al -> Next record in buffer
Loop until done

*
-
*
*
*
*
.
-
.
*
-
*

Now move the buffer up to delete the entry

move,1 a3,ad
lemgth,ad
a4,lastb
length(al) ,a2
(a2)+, (al)+
a3, a2

moveit
movem, 1 (a7)+,d0~d7/a0-aé
rts

Copy end of buffer

A4 -> New end of buffer
Record this

A2 -> next record
Transfer a byte

Just moved last?

No, continue to move
Pop registers

And return

T

This is the block-move handler program.

HRIIEIRIRIRKRRIRERKIRIRKRRIRKRRRKKRRRERRIRARRARR KRR KRR RA AR A RRRRAAR AR

*

'l'ms exception handler simulates the block move instruction.

LineF:

.globl LineF

movem. 1 d0-d7/a0-a6,regs
move.,l 2(a7),a0

add.1 #2,2(a7)
mowve.w (a0),do

move.w do0,dl

andi.w  #7,d1

bne dorte

1sr $3,40

lea regs,al

bsr get3

move.l 0(a0,dl.w),d7
bsr get3

move.,l 32(a0,dl.w),ad
bsr get3

move.l 32(a0,dl.w),aS

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Make glabl
Save the registers
A0 = PC

Avance PC to next

= instruction
Copy to D1
Low-order 3 bits=0?
No, quit
Get rid of low 3 bits
A0 -> registers
Get 3 bits in D1
D7 = Data register contents
Get 3 more bits in D1
A4 = An dst contents
Get next field
A5 = An src contents
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loop: move.b ({aS5)+, (ad)+ = Move a byte
subg.1  #1,d7 @ Down
bne loop & count
dorte: movem.l regs,d0-d7/a0-aé * Restore registers
rte
*
b Get 3 bits out of DO.W
*
get3: move.,l do0,dl J Copy
lsr.1 43,40 A Get rid of bits
andi.w 47,41 £ Isolate bits
1sl.w $2,41 * Make long index
Its = Return
.bss
regss .ds.l 15 9 Register storage area
2. This is the trace program.
* The program-trace routine
tracev: .equ $24 o Trace vector
.globl binhex G Hex conversion routine
.globl prtstr 2 String-print routine
.globl trace * Entry point
trace: movem.l d0-d7/a0-a6,regs B Save registers
move.l (a7)+,retpc 1 Save return address
move.l #xtrace,tracev a Load vector
move.w  #62,d0 Q Set
trap 12 a super
movem.1 regs,d0—d7/a0~a6 * Restore registers
move.l retpc,-(sp) Q Push return PC
move.w  #$8000,-(sp) i And status register
rte & Begin trace
»
o Trace Trap Entry
»
xtrace: movem,1 d0-d7/a0-a7,regs * Save all registers at trap time
lea dstr,a0 3 A0 -> "D "
jsr prtstr . Print
lea regs,al & Al -> D registers
jsr pregs o Print D registers
lea astr,a0 o A0 -> "A "
jse prtstr * Print
lea regs+32,al - Al -> A registers
Jjsc pregs a Print A registers

»

Print PC, status register, and USP

lea srstr,a0
jst prtstr
move.w (a7),d0
Jsr pword

{ea postr,a0
jsr prtstr
move.l 2(a7),d0
st plong

lea uspstr,al
jsr prtstr
move.1l usp,a0
move,1 a0,d0

jsr plong

lea newline, a0

Jsr prtstr

P I

DO = PC at fault

Print it

A0-> "USP="

Print

Fetch user stack pointer
Put in DO

Print

Print new line

Print it
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lea newline,a0 ] Print another new line
jse prtstr o Print blank line
movem,1 regs,d0-d7/a0-a7 O Restore registers
rte & Do next instruction

o miscellanecus print routines

pregs: movem.l a0-al/d0o-dl,-(a7) a Save work registers
move.w 7,41 U Loop caunt

rloop: move.l (al)+,d0 G Fetch next long
Jsr plong o Print
dbra dl,rloop o Loop until done
lea newline, a0 . A0 -> Newline sequence
jsr prestr * Print it
movem.1 (a7)+,a0-al/d0~dl J Pop working registers
rts a Return to caller

.

: Print a long in DO

plong: movem.l a0-al,~-(a7) * Save work registers
lea hexbuf,al . Use all of hexbuf

hexprt: lea hexbuf,a0 * A0 -> buffer to convert
jst nhex G Convert DO to hex A0
move.b §° °,8(a0) . Move in space at end
clr.b  9(a0) * Set up null character
move.l al,a0 o A0 -> area to print
Jsr prtstr a Print it
movem.1 (a7)+,a0-=al e Unsave registers
rts L Return

.

* Print a word in d0

pword: movem,l a0~al,-(a?)
lea hexbuf+4,al

»

Save work registers
Al -> low four digits

bra.s  hexprt 0 Go print it
-page

.

* Data Area

.

dstr: .de.b ‘D 7,0
astr: .de.b
srstr: .dc.b
pestr:  .de.b  ° PC=",0
uspstr: .dc.b
newline:.dc.b 10,0
.even
.

Q Uninitialized data section
.
-bss
regs: .ds.1 16
hexbuf: .ds.b 10
retpc: .ds.b 4
.end

CHAPTER 8

Roam for registers
Hex buffer
Return PC

1. Aninterrupt is required because only an external event can make
a task dispatchable in this case. If no tasks are dispatchable, then
“app1” must be waiting on the timer and “app2” must be waiting
for a terminal I/O operation to complete.
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012
015
018
021
024
027
030
033
036
039

The following table gives the ASCIl (American Standard Code for Informa-

tion Interchange) character set.

Hex

S2R83KE8

15

1B
1E
21
24
27

Character

CTL@ NULL
CTL-C ETX
CTL-F ACK
CTL-I HT
CTL-L FF
CTL-O SI
CTL-R DC2
CTL-U NAK
CTL-X CAN
CTL-[ ESC

RS

!

$

‘

Dec  Hex
001 01
004 04
007 07
010 0A
013 0D
016 10
019 13
022 16
025 19
028 1C
031 1F
034 22
037 25
040 28

Character

CTL-A SOH
CTL-D EOT
CTLG BELL
CTL-J LF
CTL-M CR
CTL-P DLE
CTL-S DC3
CTL-V SYN
CTL-Y EM
FS
uUs
%

(

Dec Hex
002 02
005 05
008 08
o1 0B
014 OE
017 1
020 14
023 17
026 1A
029 1D
032 20
035 23
038 26
041 29

Character

CTLB STX
CTLE ENQ
CTL-H BS
CTLK VT
CTLN SO
CTL-Q DC1
CTL-T DC4
CTLW ETB
CTL-Z SUB
GS
SPACE

#
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042
045

051
054
057

063
066
069
072
075
078
081

087

093
096
099
102
105
108
1m
114
17z
120
123
126

Hex

2A
2D
30
33
36
39
3C
3F
42
45
48
4B
4E
51
54
57
5A
5D
60
63
66
69
6C
6F
72
75
78
7B
7E

Character

*

A © o w o

=NE SO Z o e bkl

(2]

Dec

043
046
049
052
055
058
061

067
070
073
076
079
082
085
088
091
094
097

103
106

112
115
118
121
124
127

Hex

28
2E
31
34
37
3A
3D
40
43
46
49
4C
4F
52
55
58
5B
5E
61
64
67
6A
6D
70
73
76
79
7C
7F

Character

+

— x cCc o~ Q r —

— @ o &,

3

«» T

v
Y
|

DEL(ete)

Dec

047
050
053
056
059
062
065
068
071
074
077

083
086
089
092
095
098
101

107
110
13
116
119
122
125

Hex

2C
2F
32
35
38
3B
3E
41
44
47
4A
4D
50
53
56
59
5C
5F
62
65
68
6B
6E
71
74
77
7A
7D

Character

[o- TN, B SR

O 0 > v ™

—

~ < < »v v Z

2 x o o o |

=7 fe)

N

=
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The characters marked “CTL-x” can be generated on most terminals by
holding down the CONTROL key and typing the indicated character. For
example, the hex character value 07 is generated by typing CONTROL-G.
Control characters are used to perform some device-control function.
Some of the common control characters and their functions are:

Control-G is used to sound the terminal buzzer, beeper, or bell.

Control-H (Backspace) causes the terminal cursor to move back
one character space. Some older terminals do not support this
character.

Control-l (Tab) causes the next character to be printed at the next
tab stop to the right. Tab stops are typically placed every eight
characters.

Control-J (Line feed) causes the device to move down one line.

Control-L (Form feed) causes the device to move to the top of the
next page.

Control-M (Carriage return) causes the cursor to move to the
beginning of the present line.

Control-Q (XON) causes suspended output to resume.

Control-S (XOFF) causes output to be suspended until the receipt
of a Control-Q.
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WHAT IS A “GOOD” PROGRAM?

Now that we've written several programs, let’s stop and consider the
program creation process. A few guidelines were developed during the
history of programming that will help you write better programs.

Before we discuss these guidelines, however, we must first define what
is meant by a “good” program. What makes one program better than
another? Is it possible to tell by looking at a program whether it is a
“good” program or a “bad” program?

This is an area in which programming is similar to other kinds of crea-
tive endeavor. A great deal of program “goodness” is in the eye of the
beholder. One programmer might value the use of “meaningful labels,”
another the smallest possible code size, and so on. The old adage about
one man’s trash being another man’s treasure is also true in the software
world.

The one objective measure of how good a program is whether it works
for the problem you are trying to solve. A program may be weli-designed,
well-coded, extensible, modular, but if it fails in only one case, these pro-
gramming virtues are of no value if your case is the one on which the pro-
gram fails. The value of a program is how well the program solves the
problem it is designed to address.

The guidelines outlined in this appendix are generally accepted in the
computer software industry as rules that produce good software. Every
program is different, however, and you should adapt the guidelines to suit
your environment and programming style.
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PROGRAMMING GUIDELINES

Here then, are some guidelines for writing good programs:

il

N OO U A W

Design the program before you code it. Planned programs can
be written faster and with fewer bugs than unplanned programs.

. Design modular programs. Modular programs are easier to debug

and extend than nonmodular (i.e., “spaghetti code”) programs.

. Design the top-level modules first.

. Follow consistent coding conventions throughout the program.
. Integrate program testing into the development process.

. Document the code liberally using comment lines.

. Have someone else review your work.

Let’s look at each of these areas in greater detail.

Top-Down Program Design

Like any other construction project, a program works better if built
from a plan. The time invested in planning a program will more than pay
for itself in time saved during the coding and debugging phases of the
program.

Program planning consists of three activities:

1.

Write a description of how the program will work. For very large
programs, it is a good idea to write user documentation (or exter-
nal specifications) before coding begins. The external specifica-
tion should describe how to operate the program and any data
input and output by the program.

. Design the data structures before writing any code. Data struc-

tures often dictate the design of the code that uses them.

. Partition the program into modules, and design the inter-module

calling sequences. Write a description (called pseudocode) of the
activities performed by each module.

. Decide how you are going to test the program to verify that it

works.
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Modular Programming

As we saw in Chapter 6, modular programs lend themselves to borrow-
ing code from an existing program to write a new program. Partitioning a
large program into modules makes it easier to write, debug, and modify.
Here are some guidelines to follow in partitioning a program into modules:

Structure the program in a hierarchical fashion. Put detail work
as far down the hierarchy as you can. Ideally, the top level should
do nothing but call the lower levels.

Use the principle of “hiding information.” Wherever possible, iso-
late all uses of each data structure to a single module. This makes
it possible to overhaul the data structure without major surgery
on the entire program.

Avoid “pathological connections.” A pathological connection is
one module relying on the structure of another module. Altering
the second module can cause bugs to appear in the first.

Strive for singularity of function for each module. Don't try to put
unrelated functions into a module to save time or space.

Figure C.1 shows a module chart for the PADD program.

Main

I I l ]

setfield readfile insert wrtfile

I

ncmp

[ —

movestr Valid

Figure C.1 - Diagram of the PADD program



448 Programming the 68000

The PADD program consists of four basic functions:

1. Format the fields on the command line.
. Read the file into memory.

. Insert the record.

2 W

. Write the file from memory to disk.

Each of these functions are fairly independent. Except for the shared
global variables, none of these routines know anything of the workings of
the other modules.

Top-Down Implementation and Testing

Top-down design means that you begin design at the top levels and pro-
gress to the lower levels. You should also follow this philosophy for imple-
mentation and testing. Yourdon, in Managing the Structured Techniques
(New York: Yourdon Press, 1979), describes a system for implementing
software that codes and tests the complete system in a top-down fashion.
This technique requires that you build the top module and dummy out its
subordinate modules. The dummy routines are often called stubroutines.
These are routines which either just return, return a constant value, or
return after some trivial processing.

Once this scaffolding is in place, put it on the machine, and try it out.
Then, one by one, replace the stubroutines with the real implementation.
Test the system as you go. Be prepared to redesign the top modules as the
subordinate modules are implemented. You will avoid a lot of effort
wasted in redesigning the inter-module interfaces at the last minute by fol-
lowing this technique.

Coding Techniques

The primary evaluation criteria of whether a program is a good one is
whether or not it performs its intended function.

The manner in which a program is coded may determine its eventual
success or failure. Programs coded using the “spaghetti code” technique
may, in fact, work perfectly. However, one of the fundamental realities of
programming is that programs require modification. Somewhere between
70 to 80 percent of the money spent on software is spent on fixing old
programs, not on building new ones. So, unless your programs are easy
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to modify, odds are that you are spending more time, energy, and money
than necessary in modifying them. Also, programs that are not easy to
modify tend to be abandoned or rewritten rather than maintained, entail-
ing more needless expense.

Most coding techniques for writing maintainable code are simply com-
mon sense. The programming environment has been improved signifi-
cantly over the past several years, yet still you see software being written
for fourth generation computers using second generation techniques.

Readability is Key

Efficiency used to be the key consideration, especially in older micro-
computer systems. The days when microseconds were precious and bytes
were worth their weight in gold are gone forever. Although it is not pos-
sible to completely ignore efficiency considerations, it is no longer the
primary consideration.

Brooks, in The Mythical Man-Month (Reading, Mass.: Addison-Wesley,
1979), suggests that a program has two audiences—the machine and the
humans that will maintain the program. Computer hardware has pro-
gressed to the point where we can give the human audience higher prior-
ity for most programs.

In writing programs, you should focus on how well the program can be
understood by another programmer. Here are some guidelines in this
area:

1. Don't use instructions as data, or worse, modify instructions as
the program executes. This practice creates programs that are
extremely difficult to understand.

2. Try to make every program module fit on a single page (exclusive
of documentation). If a module won't fit on a page, make part of
it a subroutine and put that on a separate page. An example of
this technique is the “ncmp” subroutine in Listing 6.7.

3. Strive to make branch targets lower on the page than the branch
instruction. This follows the normal reading pattern for most peo-
ple. (This is obviously impossible for branches that form the end
of a loop.)

4. When using conditional branches, try to make branch failure the
“normal” case, particularly where the branch destination is rela-
tively far away. This means that most of the time, the branch will
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not be taken and the first-time reader can ignore the branch and
still understand the program.

5. Create modules that have a single entry and a single exit point.
Try to place the entry at the top of the page and the exit at the
bottom.

6. Avoid branches or jumps that span page boundaries. This is not
always possible, as in the case with the LBOS interrupt routines
(see Listing 8.7), which must jump to the dispatcher on occasion.
Another exception is a disaster bail-out, where you branch to an
error routine with no intention of returning.

7. Always use symbolic names for record fields, absolute addresses,
and constants that are likely to change.

8. Try to use labels and names for data items that suggest their
functions.

Avoiding Bugs

One of the best ways to avoid bugs in your programs is to structure
your coding so that it’s hard to put the bugs into your program in the first
place. This is called defensive programming. Some examples of defensive
programming techniques are:

1. Range check parameters coming into a routine or structure the
code so that nothing harmful is done when one of these para-
meters is out of range. The best solution is to print an error mes-
sage that identifies both the parameter in error and the location
in the program.

2. Limit return values from a function to one register. Always make
it the same register. Don't expect this register to come back
unchanged from a subroutine call.

3. Save and restore all the registers (except possibly the return
parameter register) at the beginning and end of each module.
This eliminates the process of figuring out which registers to save
and restore. It also prevents the “Who clobbered register D3?”
crisis.

4. Avoid mixing stack pushes and pops with conditional branches. If
you push something on the stack, try not to have a conditional
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branch before the item is popped off the stack. One of the hard-
est errors to find is the condition where you execute an RTS or
RTE instruction with the stack pointer pointing to the wrong data.
This causes some random address to be loaded into the PC,
resulting in a “wild branch.” Using the LINK and UNLK instruc-
tions at the beginning and end of each subroutine can alleviate
this problem.

5. When using an address register to access fields in a record,
always use the “address register indirect with displacement”
addressing mode. Don't use pre-decrement or post-increment
addressing to step through the fields in a record. This effectively
prohibits adding, deleting, or rearranging record fields.

6. Avoid other “clever” uses of the pre-decrement / post-increment
addressing modes. For instance, the CMPL — (A0),(A1)+ instruc-
tion can be used to subtract 4 from AO while adding 4 to Al.
However, if either of these registers contains a nonexistent or odd
address, an exception will result.

7. Don‘t use immediate fields as variables.

MOVE.L #18,D0
DOYZ .EQU * —4 * Used to reference data

MOVE.L  D2,XYZ

Many computer systems have memory protection devices called
memory management units, which prohibit writing to memory
that contains instructions.

Program Documentation

“Document unto others as you would have them document unto you.”
Program documentation is the most neglected aspect of the program-
ming process. It is often said in professional programming circles that
nothing is later than software—except documentation. The value of good
program documentation is only realized after the program has been in
use for a while and the time comes to fix it. This problem has been
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around for a long time. The quotation above was written in 1971 (Kreitz-
berg et al., The Elements of FORTRAN Style [New York: Harcourt, Brace,
Jovanovich, 1971). Yet today, one of the biggest problems in software
development is inadequately documented code.

There are essentially two types of documentation for a piece of soft-
ware: user documentation, which describes how to operate the program,
and implementor’s documentation, which describes how the program is
constructed internally. User documentation is usually packaged in a sepa-
rate manual. Most users are totally unconcerned with how a program
does what it does. He or she is strictly concerned with what a program
does, and what magic incantations he or she must recite to get the pro-
gram to do what he wants.

The implementor’s documentation should normally be kept in the pro-
gram, for two reasons. First, it is impossible to lose the program’s internal
documentation without also losing the source code. Second, when the
program is changed, it is much more likely that the documentation will be
updated as well. There are few things less useful than program documen-
tation that no longer matches the program.

In documenting a program, try to anticipate the questions that another
programmer might have in modifying your code. Here are some sugges-
tions for documenting assembly-language code:

1. Put a description of what the program is and what it does at the
very beginning. An overview of the operating procedures is often
helpful.

2. Instructions for rebuilding the program should be included near
the beginning. Ideally, you should have an automated procedure
for doing this, such as a UNIX “Makefile,” or a CP/M “SUBMIT”
file, which performs all the steps necessary to reconstruct the
program from its source code.

3. Include descriptions for each of the major data structures, prefer-
ably with block diagrams, before the code begins. See Listing 6.1
for an example.

4. For each subroutine, include a narrative section that describes
the overall function of the subroutine and the input and output
parameters. Any unusual coding techniques or external depen-
dencies should be mentioned in this section.

5. Include a description of each section of code that performs a dif-
ferent function at the beginning of that section of code. Also
explain code that is tricky or hard to understand in any way.
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6. Use blank lines, white space, and page breaks liberally to make
the program listing more readable.

7. Wherever you can, include a comment at the end of each line.
This is especially valuable when a section of code is hard to
understand.

Code Reviews

Arrange to have someone else review your code. You should take
advantage of every opportunity to do this. Weinberg, in The Psychology of
Computer Programming (New York: Van Nostrand Reinhold Company,
1971), first suggested this technique, citing the example of a thirteen-line
program in which twenty errors were found by other people reviewing
the code. Many software organizations formalize this process, called a
code walkthrough. There are several benefits to be reaped from doing
this:

1. The other person can spot bugs that you can’t. Often in program-
ming, you will find yourself so close to a program that you over-
look an error many times. Someone not as familiar with the
problem as you are may spot the problem immediately.

2. You may learn something. Unless the other person’s technical
background is very similar to yours, she or he may see a better
way of doing something in your program.

3. The other person may learn something. The best way to learn
programming is by example. Something in your program may
help the reviewer solve one of his or her programming problems.

4. You will learn which areas of your program are difficult to under-
stand.

5. In the process of explaining your program, you may uncover
bugs yourself.

CONCLUSION

“If carpenters built houses the same way programmers write programs,
then the first woodpecker would destroy civilization” (Weinberg, op. cit.).
Writing good programs is hard work. Fixing bad programs is even
harder. The effort spent in writing maintainable programs will more than












INTRODUCTION

The 68010 processor chip is the second generation of 68000 processors.
This appendix outlines the differences between the 68010 and its older
brothers, the 68008 and 68000. These differences lie in four major areas:

1. Extra registers in the 68010.

2. Extra instructions in the 68010.

3. Differences in the 68010 exception mechanism.
4

. The addition of a Loop Mode for repeated instructions.

The 68010 is also appreciably faster than the 68000, as the basic processor
clock is faster (12.5 Mhz as opposed to 8 Mhz). Some of the instructions
also require fewer clock cycles to execute.

EXTRA REGISTERS IN THE 68010

The 68010 has three more registers than the 68000 or 68008—the vector
base register (VBR), source function code (SFC) register, and destination func-
tion code (DFC) register. These registers are accessed through a special
instruction, the move to/fram control register (MOVEC) instruction.
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Vector Base Register (VBR)

The vector base register (VBR) specifies a base for the vector area of
memory. On the 68000, this area is constrained to memory addresses 0 to
3FF. The 68010 adds the contents of the vector base register to any vector
address. The register is 32 bits long, and should always be loaded with an
even address. If we place the quantity 1000 hex in the VBR and execute a
TRAP #0 instruction, the vector will be loaded from address 1080 hex
rather than 80 hex as on the 68000. If the VBR is loaded with a number
that places a vector on an odd boundary or in non-existent memory, the
68010 will halt upon attempting to access the vector.

The vector base register is initialized to zero during the RESET excep-
tion, which is required for the processor to begin execution. If the VBR is
not modified, the 68010 will use the same vector area as the 68000.

SFC and DFC Registers

One of the additional instructions on the 68010 is the Move Address
Space (MOVES) instruction. This instruction allows the programmer to
specify the function code that appears on the 68010 FCO to FC2 pins,
while moving data between memory and a register. This is a useful feature
when the function-code pins are decoded by external hardware. For
instance, a hardware designer might elect to put data memory in different
physical memory than program memory. Without the MOVES instruction,
there would be no way to load a program into memory on such a system.

The source function code and destination function code registers are 3-
bit registers that contain the function code to appear on the FCO to FC2
pins when the MOVES instruction specifies memory as a source and a
destination, respectively.

The bits are numbered from the right, so pin FCO is loaded from the
low-order bit of the SFC or DFC registers.

ADDITIONAL INSTRUCTIONS IN THE 68010
The 68010 has four extra instructions:

1. The Move from Condition Code Register (MOVE CCR) instruc-
tion. Allows nonprivileged access to the Condition Codes.

2. The Move Control Register (MOVEC) instruction. Allows loading
and storing the contents of one of the three extra registers
described above.
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MOVE From CCR Instruction

The Move From CCR instruction allows a user or supervisor mode pro-
gram to copy the condition code register to an effective address operand.
The operation is constrained to word size, with the low-order byte of the
destination receiving the User byte of the Status Register, and the high-
order byte of the destination receiving all zeros.

Addressing Modes:
Dn An (An) (An) + —(An) | x(An) x(An,xr.s)
Yes | No Yes Yes Yes Yes Yes
xw [ xJ | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Size: Word

Condition Codes Affected: None

Assembler Syntax: MOVE CCR,<ea>

Machine Code Format:

Bit 15 14 13 12 11

109 8 7 6 5 4 3 2 10

o(1(0(0}o0

of1jol1]1

L |
Effective
L1

T T T
Address
[

+ Mode —=| + Reg.—~*




Appendix D 68010 461

MOVE Control Register Instruction

The Move Control Register (MOVEC) instruction allows a supervisor
mode program to copy the contents of any of the 68010 control registers
to or from an address or data register. All transfers are 32 bits, regardless
of the length of the control register. When copying DFC or SFC to a regis-
ter, bits 4 to 31 are zeroed in the destination.

Data Size: Long
Condition Codes Affected: None

Assembler Syntax: MOVEC  Rc,Rn
MOVEC Rn,Rc

Rc is the control register, either VBR, DFC, USP. or SFC. Rn specifes an
address or data register.

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

i =]

oj1jojofi|1|1|ofol1|1{1|1]o0]1

T T T T T | T T T I T T T
A | Register Control Register
[ 1y T R | S B W)

Dr is the direction: 0 for control register as the source, 1 for control reg-
ister as the destination. “Register” is the number of the general register. A
is 1 if this register is an address register, 0 if a data register. The Control
Register field specifies the control register to be used, as shown below.

Control Register Field Register

0000 0000 0000 (000 hex)  Source Function Code (SFC)
0000 0000 0001 (001 hex)  Destination Function Code  (DFC)
1000 0000 0000 (800 hex)  User Stack Pointer (USP)

1000 0000 0001 (801 hex)  Vector Base Register (VBR)
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MOVE to/from Address Space

The Move to/from Address Space (MOVES) instruction allows a supervi-
sor mode program to move a byte, word, or longword to or from mem-
ory with an arbitrary function code on the 68010 function code pins
(FCO-FC2). When memory is used as a source, the function code is
obtained from the Source Function Code (SFC) register. When memory is
used as a destination, the function code is obtained from the Destination
Function Code (DFC) register.

The transfer must occur between memory and an address or data regis-
ter. When moving to an address register, the source is sign-extended to 32
bits. All 32 bits of the address register are affected by the transfer.

Addressing Modes Allowed (memory operand):

Dn | An (An) (An) + —(An) | x(An) x(An,xr.s)
No | No Yes Yes Yes Yes Yes
xw | xI | x(PC) x(PC,xr.s) #x SR CCR
Yes | Yes No No No No No

Data Size: (Byte, Word, Long)
Condition Codes Affected: None

Assembler Syntax: MOVES Rn,<ea>

MOVES <ea>,Rn

Rn specifies an address or data register.
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RTD Instruction

The ReTurn and Deallocate parameters (RTD) instruction allows a sub-
routine to return to its caller and simultaneously pop a parameter list from
the stack. The instruction first pops the longword at the top of the stack
into the PC, as with the RTS instruction. Next, a 16-bit displacement is
sign-extended and added to the stack pointer. The final value of the stack
pointer is the old stack pointer plus the displacement plus four.

Data Size: Unsized
Condition Codes Affected: None
Assembler Syntax: RTD #<displacement>

Machine Code Format:

Bt 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ofirjofjofrfrjrjiofoftrjri1jof1rjo

o

(4E74 hex)

T T T [ T T T [ T+ T T T T T 1
Displacement
[ I U Y Y S N T T T N T B |

The Displacement field specifies the displacement to be added to the
stack pointer. Due to the sign extension process, the displacement must
be less than 32K (32768 decimal) to deallocate space from the stack.
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DIFFERENCES IN THE 68010 EXCEPTION MECHANISM

The 68010 is quite different from the 68000 and 68008 in the area of
exception-processing. It is, however, possible to write exception process-
ing code that functions on any 68000 processor. The 68010 exception
mechanism differs from the 68000 and 68008 in the following areas:

o The 68010 programmer can move the address of the vector area
to any even location in memory, using the vector base register
(VBR).

The format of information pushed on the stack by an exception is
different on the 68010. The 68010 pushes an extra word for all
exceptions, and pushes more information on the stack for the
BUSERR and addressing error exceptions.

@

o When an invalid stack format is encountered by an RTE instruc-
tion, an extra vector is reserved for use by the 68010.

Vector Base Register

To change the vector area on the 68010, set up a new vector area
somewhere in addressable memory, and load the address into the vector
base register. Listing D.1 shows a sample sequence for performing this
function.

This code copies the contents of the old vector area (at absolute loca-
tion 0) into a new vector area (at “newvec”). It is safe to load the address
of the new vector area into VBR only after the copy is made.

lea newvec,al * A0 -> New vector area

move.l a0,al * Copy

suba.l a2,a2 * A2 -> 014 vector area

move.l #255,d40 * DO = Vector count
mloop: move.l (a2)+,(a0)+ * Copy

dbra d0,mloop o vectors

movec al,vbr * Load VBR

Listing D.1 - Changing the vector area on the 68000
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Stack Format Differences

The 68010 has a different format for the information pushed on the
stack by an exception. There are two different formats: one pushed by a
BUSERR or addressing error (called fong format), and one pushed by all
other types of exceptions (called short format). Both of these formats are
different from those on the 68000 and 68008.

Short Format

The short format for exceptions on the 68010 stack frame is shown in
Figure D.1.

The fourth word on the stack is the difference between this format and
the 68000 short-format exception stack frame. The zeroes in the upper
nibble of this word indicate that it is a short-format exception. A long-
format exception is indicated by a value of 1000 in these four bits.

The RTE instruction looks at these four bits to determine how many
words to remove from the stack. If you attempt an RTE instruction with a
format code that is neither 0000 nor 1000, a format exception takes place.
This exception uses vector 14 (offset 3C hex).

Long Format

The long-stack frame format is pushed by a BUSERR or addressing error
exception. Figure D.2 shows how the long-stack frame format appears.

Bit 1514 13 121110 9 8 7 6 5 4 3 2 1 0
T T T 1 T 7 T T T T T [ T T T
A7 = Status Register Before Exception

T NN SN N T NN NN N N SN TN U G N
[ e o | B L | B I | S |

Program Counter High Word

IR U N [N T N T N T T SO S S |
inmnn e e e T (e [

Program Counter Low Word

AN N N N N TN TN [N N NN SO NS
Y r & T* | &+ +t 1 " 11

00 0 0 Vector Offset
N N [N S T T N Y Y T SO M |

Figure D.1 - Short-format exception stack frame
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Bit 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O
T T T | T T T [ T T T [ T T 71
(/= Status Register Before Exception

T N T I N SN N T B SO SO N N |
—+ & & & 11

Program Counter High Word

O | S S N | A L S S W
LI N A RN S B DN SR SR B S SR S S

Program Counter Low Word

IR N N SO TN NN N S T Y S Y VO R |
LI L L L L L L L L

0 0 0 O Vector Offset
[ N U S N SO (N Y N A SU N S |
L L L S L L L
Special Status Word

R AN SN [N N TR I (SO OO (N SN O SO |
U e e A

Fault Address High Word

T N S Y N (NN (NN YOO SN SR CHNN NN N |
e e o [ [ e | e e s e T

Fault Address Low Word
I T S [ T T T Sy T O (S O |
] T T | T T i ] 1 T I 1 T 1 T
Reserved
IS I N NN N SR SO [N (N N S T B |
| NN R N S S B S N RS RS G B S

Data Output Buffer

[T I N AU N SR S A N N A N O S
L L L S L LA SR

Reserved

U N DO Y S N T SO |
Ty T T

Data Input Buffer

IR I N [ I AN WU [N NN NN N AN TR B |
1 1 I | I T i ] 1 ] 1 | T T T
Reserved
TR WS AN SR DY N OO U WO SR N N DO S|
T T T 1 1 1 I ] T I T 1 T 1 T

Instruction Input Buffer

AN N SR TN N NN NN TN N SN N N N |
LR L L L L L L
Internal Information (16 words)

T N N N N NN T Y S T N

Figure D.2 - Long-format exception stack frame
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This (ormat is also not compatible with the corresponding 68000 format.
It does have the advantage that the status register, program counter, and
vector offset have the same position on the stack relative to register A7 as
the 68010 short format. The purpose of the long format is to enable the
68010 to continue an instruction after a BUSERR exception occurs. This
capability permits the implementation of a virtual-memory machine.

The Special Status Word contains additional information about the fault
and it can be used to correct the fault with software. Here is the format of
the Special Status Word:

Bt 1514 131211 10 9 8 7 6 5 4 3 2 1 0
Tl

RR [ *| IF [DF [RM{HB |BY [RWpk %% % %% *pk *| Function
! |

The RR (ReRun) bit is cleared by the exception. if this bit is not set,
when an RTE instruction executes, the processor will rerun the memory
access that failed. Setting this bit prior to an RTE instruction causes the
processor to skip the failing access.

The Function field is the function code present on the 68010 pins FCO-
FC2 during the fault. The possible values and their interpretation are
shown below.

Code Type of access

000 Unassigned

001 User mode data reference

010 User mode program reference

0o Unassigned

100 Unassigned

101 Supervisor mode data reference
110 Supervisor mode program reference
1M Interrupt acknowledge

The access codes are only important when the memory hardware
makes use of them. If this is the case and you desire to simulate the failed
access in software, you must use these bits in combination with a MOVES
instruction.

The RW (Read / Write) bit indicates whether the failed access was a
memory read (RW = 1) or a memory write (RW = 0). Simulating a mem-
ory write requires copying the data from the data output buffer word on
the stack to the address indicated by the fault address words on the stack.
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The IF (Instruction Fetch) bit indicates that the processor was trying to
read data from memory into the instruction input buffer. If you are simu-
lating the failed access in software, you must write the data from the fault
address into the instruction input buffer word on the stack.

The DF (Data Fetch) bit indicates that the processor was trying to read
data from memory into the data input buffer. Simulating the failed access
requires writing the data from the fault address to the data input buffer
word on the stack. The DF bits and IF bits may both be set. If this is the
case, the data from the faulted address must be written to both the
instruction input buffer and the data input buffer.

The RM bit indicates that the interrupted memory access occurred dur-
ing a read-modify-write cycle, as from a Test And Set (TAS) instruction.
Allowing the processor to rerun the cycle (by leaving the RR bit clear) will
cause both the read and write memory cycles to be repeated. Simulating
a TAS read-modify-write cycle with software requires that you:

1. Write the original contents of the memory location to the data
input buffer word on the stack.

2. Set the most significant bit of the memory location at the faulted
address.

3. Set t