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Introduction

This book explains machine-language programming for the 68000

microprocessor family. The material is divided into three parts: an intro-

duction to programming, an explanation of applications programming,

and a discussion of systems programming. These three areas can be stud-

ied in succession or independently.

Chapter 1 provides an introduction to computer operation and pro-

gramming for readers with no programming background. It covers basic

hardware and software concepts. Experienced readers may wish to skim

this material.

Chapters 2 through 6 provide the background necessary to write

assembly-language appplication programs or subroutines, including the

mechanics of generating programs and debugging them. These chapters

also cover high-level languages and interfacing to operating systems. With

this information, you will be able to write applications programs in assem-

bly language. It may also be used for calling assembly-language routines

from a high-level language program for efficiency or for access to low-

level machine resources.

Chapters 7 through 8 are a lower level discussion of programming the

68000. These chapters deal with interrupts and other machine-level primi-

tives. A small multitasking "operating system" is provided as a case study

An important part of learning machine-language programming is pick-

ing up the jargon. Computer scientists have their own language. All terms

in this book are explained as they occur. A glossary has also been pro-

vided as a study aid.

Computer programming is not difficult to learn. It does not require

extreme mathematical proficiency or supernormal intelligence. It does,

however, require diligence and, more importantly practice. There is abso-

lutely no substitute for sitting down at the machine and trying it for yourself.

Type in the examples, try them out, make improvements, and above all,

make mistakes. You will learn more from your errors than anything else.





Basic Concepts



Machine-level computer programming has been called art, engineering,

sorcery, and religion. It is all of these and more. Dealing with a computer

at its own level can be a very rewarding (and frustrating) experience.

This book will introduce you to the joys and woes of this wondrous

craft. We have attempted to minimize the mathematics involved; anyone

who can add, subtract, multiply and divide can make full use of all the

material presented here.

This chapter will introduce you to the concepts on which modern com-

puting is founded: algorithms, elementary hardware operations, and the

binary and hexadecimal number schemes.

As a start toward learning how to program, consider the process of

starting an automobile engine:

1

.

Insert the key into the lock.

2. Turn the key past the ON position to the START position and

hold.

3. If the motor does not crank, stop.

4. If the motor does catch, proceed to step 5. If the motor does not

catch within 30 seconds, turn the key OFF and go to step 2.

5. Release the key back to the ON position, and stop.
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This simple procedure has all of the same elements of a computer program:

• Step 1 is called an initialization. This is an action which is per-

formed once at the start of a program.

• Steps 2 through 4 form a loop—a series of actions which is

repeated until some condition is satisfied. (In this case, either the

car starts or the battery expires.)

• Step 3 is an example of an error condition—some condition

which causes the procedure to terminate in an abnormal fashion.

• Step 5 is the successful completion of the procedure.

Algorithms

The above procedure, in computer terminology, is called an algorithm.

Algorithms are stepwise procedures which can be used to define the steps

in programs. Any step-by-step description is an algorithm. Some examples

from everyday life are kitchen recipes and directions for getting from one

place to another.

You can see from these examples that not all algorithms can be made
into computer programs. Even if an algorithm is suitable for transforming

into a program, it must first be put into a form the computer can recog-

nize. Computers cannot utilize even the simplest English.

Programming Languages

If you want a computer to carry out the steps you define in an algo-

rithm, you must first translate the English description into a language that

the computer can execute. Such a language is called a programming lan-

guage. There are many such languages. The task to be performed gener-

ally dictates which language is to be used. Some examples of

programming languages are:

• BASIC (Beginner's All-purpose Symbolic Instruction Code). BASIC

is a very simple language to learn and to use. It is generally used

for short, simple programs.

• COBOL (COmmon Business Oriented Language). COBOL is

commonly used for business related software, such as payroll and

other accounting applications.
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FORTRAN (FORmula TRANslation). FORTRAN is widely used in

the scientific community for applications involving large numbers

of calculations.

Pascal (Named for the French mathematician Blaise Pascal).

Pascal is often used in universities to teach budding computer

scientists how to program.

Assembly Language. Assembly language is the process of pro-

gramming a computer at the level of individual machine instruc-

tions. This book describes the process of assembly language

programming for the 68000 computer.

Machine Language. Machine language deals with programming a

computer at the instruction level, without assistance from devel-

opment software. Machine language involves using a numeric

language: the binary codes directly usable by the computer. This

type of programming is incredibly tedious, and is only used for

very specialized applications.

Flowcharts

A visual method of representing an algorithm is called flowcharting. A
flowchart is a series of boxes which are connected by lines to show the

possible paths of the algorithm. Flowcharting, like algorithm descriptions,

is not done in a computer language.

Flowcharts consist of three basic symbols:

• a square box which indicates an action to be performed

• a diamond shaped box which indicates a decision

• lines which connect the two.

There is an ANSI (American National Standards Institute) standard for

flowchart symbols and flowchart layout.

A flowchart for our car-starting algorithm is shown in Figure 1.1.

A flowchart segment should fit on a single page. A flowchart for a com-

puter program will require partitioning into several pages, interconnected

by boxes. These boxes typically contain a number, indicating the mating

connector on another page. Partitioning a large program flowchart into

single-page segments is quite an involved process. It could require so

much time that the exercise is not justified.
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Insert Key into Lock

Turn Key to start and Hold

No

Turn Key Off

Stop

(error)

Stop

(Done)

Figure 1.1 - Flowchart for car-starting algorithm
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HOW DOES A COMPUTER WORKf

In order to learn progrannming, one must first understand how com-

puter hardware functions. Figure 1.2 is a block diagram showing the

major portions of a typical computer.

The memory contains the program which the computer follows, as well

as the data on which the computer operates. In this simplified model of a

computer, the box labeled central processing unit (CPU) is the "brains"

behind the computer. The connection between the CPU and the com-

puter's memory is known as the memory bus. Input/output (I/O) devices

are the machines through which the computer interacts with the outside

world. Examples of I/O devices are cathode ray tube (CRT) terminals (the

computer's "TV screen"), floppy disk drives, and printers. The connection

between the CPU and the I/O devices is called the input/ouput bus. Let us

now examine each of these areas in detail.

Memory

Computer memory is a series of numbered slots, called locations, each

of which contains a number. The number of the location is called its

Memory

Memory
Bus

Central Processing

Unit (CPU)

Input /Output

Bus

Input /Output

Devices

Figure 1.2 - Computer block diagram
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address (like a street number). The number contained within the slot is

called the memory data or memory contents. There are two operations

associated with a computer memory:

• Change the contents of a location to a specific value. This opera-

tion is called a memory write or a memory store. The contents of

the location before the write are lost.

• Obtain the present contents of a location. This operation is called

a memory read or a memory fetch. A memory read does not

alter the contents of the location—subsequent reads with no

intervening writes will return the same value.

For example, suppose we have a four location memory with the following

values:

Address Data

21

1 27

2 19

3 100

Note that memory addresses are always numbered sequentially starting

with zero. If we read location 2, we will get the result 19. Writing a 6 into

location 1 gives the following values:

Address Data

21

1 6

2 19

3 100

Note that the memory write did not affect any other location. For

example, reading location 2 again would again yield 19. Reading location

1 will yield 6. The original contents of location 1 (before the write) have

been discarded, and may not be retrieved.
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Input/Output Devices

Input/output devices connect the computer to the outside world. These

devices typically fall into one of two categories:

1. Low-speed, character-oriented devices used to interact directly

with people. Examples of this type of device are: CRT terminals,

printers, and plotters.

2. High-speed, block-oriented devices used for bulk storage of pro-

grams or data. Devices in this category such as disks, tapes, etc.,

are usually magnetic.

Character-oriented devices typically interact with human operators. This

type of device usually transfers one character at a time. Many computer

CRT terminals send and receive characters at 960 characters per second.

Although this seems amazingly fast to a human sitting at a terminal, to a

computer (which can handle millions of operations per second), it is

extremely slow. When interacting with humans, the computer spends a

tremendous amount of time just waiting for characters from the terminal.

Block-oriented devices such as disks and tapes, on the other hand, do

not normally interact with humans. These devices typically handle multi-

character blocks at a time, with a short interval between characters within

a block, but a comparatively long interval between blocks.

Central Processing Unit

The CPU is the heart of the computer. It executes the programs and

manipulates the input/output devices.

CPU Organization

The organization of a typical CPU is shown in Figure 1.3.

The boxes on the top of the diagram are called registers. A register is a

single memory location within the CPU which is used to store a tempo-

rary result. Different CPUs use different numbers and types of registers.

The 68000 register set will be explained in detail in Chapter 2.

The CPU registers, which can be accessed much faster than main mem-
ory are temporary memory locations used to facilitate program execu-

tion. There are usually a limited number of these registers.
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The memory address and memory data registers are used to access

memory For example, to read memory the correct address is placed in the

memory address register, and then the data can be read from the memory

data register. To write to memory the data is placed in the memory data

register, and then the address is placed in the memory address register.

The program counter is a special register that is used to keep track of the

next instruction to be executed. This process is detailed in the next section.

The Arithmetic and Logic Unit (ALU) performs all of the basic arithmetic

operations, such as addition, subtraction, etc. The data on which the ALU
operates can come from any of the registers with a path into the top of

the ALU: the CPU registers, memory data, or the program counter. The

result of the operation can be placed back into any of the registers.

Fortunately programming the machine does not require attention to the

inner operations of the ALU. The control unit supervises the movement of

data through the ALU, and defines certain basic machine funrtions called

instructions.

1
CPU Registers Memory Address

Z
Program Counter

o-o

Arithmetic and Logic

Unit (ALU)

i

Figure 1.3 - CPU block diagram
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Stored Program Execution

The process of executing a program works like this:

1

.

Fetch memory at the address indicated by the program counter,

and increment the program counter to the next instruction in

memory The program counter is said to "point to" (i.e., contain

the address of) the next instruction.

2. Perform the instruction.

3. Go back to step 1

.

To illustrate how all this works together, we will now write a short pro-

gram to add two numbers together. For simplicity, we will define a com-
puter: Our simple computer has one register, named A. The machine can

execute the following instructions:

Instruction Meaning

1 nnn Copy memory location nnn into A
2nnn Add memory location nnn to A
3nnn Copy A into memory location nnn
4000 Stop

Now suppose that the computer memory contains the following:

•cation Contents Instructions

100 1104 Load location 104 into A
101 2105 Add location 105 to A
102 3106 Store A into location 106

103 4000 Stop

104 0300 (Data)

105 0400 (Data)

106 0000 (Data)

If we then set the program counter to 100 and cause the computer to exe-

cute, the program will execute as follows:

1. The contents of memory location 104 (3(X)) will be copied into

register A.
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2. The contents of location 105 (400) will be added to register A.

Register A will then contain 700.

3. Register A will then be copied to memory location 106. This

operation is called "Storing register A."

4. The machine will stop.

Upon completion of the above program, Register A and memory loca-

tion 106 will have been altered to contain the value 700. This example is a

program which adds two memory locations together and stores the result

in a third memory location.

Programming at its most basic level is the process of putting the right

instructions (also called operations or op codes) into the proper memory
locations. The above program is an example of machine language pro-

gramming, where the programmer deals with the actual numeric values of

the instructions, and memory locations are assigned by hand. This is a

tedious process at best, and programs called "assemblers" have been

developed to handle the drudgery involved. Programming using an

assembler is commonly called assembly language programming. The
example program above, might look like this in assembly language:

LOAD A,X

ADD A,Y

STORE A.Z

STOP

X DC 300

Y DC 400

Z DC

The words LOAD, ADD, STORE and STOP are called mnemonics. A
mnemonic is an alphabetical representation of a machine instruction. X, Y,

and Z are called labels. A label is a way to tag a memory location without

knowing what the final memory address will be. The assembler or

another tool called the linker will make the final address assignment.

Finally, the abbreviation "DC" is an assembler directive. DC stands for

"Define Constant." This directive tells the assembler to place a constant in

memory at the location where the DC directive occurs.

Why is assembly language better than machine language? First, it is far

more readable. Second, the task of changing an existing program is much
simpler. Suppose that we wish to change our example program to add a
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third number, W, to X and Y. To add this to the assembly language version,

we need add only two lines: an

ADD W,X

addition instruction, and a declaration for the new constant:

W: DC 50

To change the machine language version of the program, we must alter

all of the instructions that reference memory, since the values to be added

are now in a different place, as illustrated below:

Location Machine Assem biy Language

Language

100 *1105 LOAD A,X

101 2106 ADD A,Y

102 *2107 * ADD A,W
103 *3108 STORE A,Z

104 4000 STOP
105 0300 X: DC 300

106 0400 Y: DC 400

107 0050 *W: DC 50

108 0000 Z: DC

The asterisk character (*) shows lines that have been changed. Note

that no machine language location contains the same value as it did in the

previous example. In large programs, altering machine code is a tremen-

dous chore.

Data Representation

The vast majority of computers represent numbers in a form involving

only two possible values: ON and OFF. This is a property of the hardware

used to implement the CPU, memory and I/O devices. This two-value

representation is called binary, or base 2.

The Binary System

The binary system represents a number as a string of two-valued quanti-

ties. Each such quantity is called a bit, which stands for Binary dig/I The
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ON and OFF values for a bit are 1 and 0, respectively. A bit with a value

of 1 is said to be set; a bit with a value of is said to be clear.

Most computers in use today organize bits in groups of eight to form a

quantity known as a byte. The bits in a byte are numbered from right to

left, starting at zero. Each bit is assigned a value twice the value of its

neighbor on the right. Bit 0, the rightmost bit, has the value 1 . The values

associated with the eight bits in a byte are shown in Table 1.1.

Bit Place

Number Value

7 128

6 64

5 32

4 16

3 8

2

1

4

2

1

Table 1.1 - Binary Bit Values

Using this table of binary values, the binary number 0010 1111 has the

value of 47. This is how the value for our example would be calculated.

The decimal value of a binary number is equal to the bit number value

times the place value, as shown in Figure 1.4.

The largest number that can be represented using eight bits is 1111

1 1 1 1 , which is decimal 255. It is the result of adding 1 28 + 64 + 32 + 1

6

+ 8 + 4 + 2 + 1. For readability we will write binary numbers as groups

of four bits. In computerese, a four bit group, or one half of a byte, is

called a nibble.

To represent numbers bigger than 255, two or more bytes are used.

Common combinations are two bytes (16 bits), and four bytes (32 bits).
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These quantities are called a word and a longword, respectively. Dealing

with 16 and 32 digit numbers can be cumbersonne, however, so an abbre-

viated form of binary representation called hexadecimal (or base 16) is

often used.

Hexadecimal Numbers

In hexadecimal (hex) representation, a nibble is encoded as one hex-

adecimal digit.

These digits have values from to 15. The values for 10 through 15 are

represented by the letters A through F. Each digit in a hex number has a

place value of sixteen times the value of its neighbor to the right. For

instance, the number 22 hex is (2 x 16) -h 2, or 34.

Converting Binary to Hex

A hex number can be derived from a binary number by first grouping

the binary number into groups of four bits (nibbles), and then computing

Bit Number 765432 10

Bit Value 00101 1 1 1

Bit Binary Place Decimal

Number Value X Value = Value

7 X 128 =

6 X 64 =

5 1 X 32 = 32

4 X 16 =

3 1 X 8 = 8

2 1 X 4 = 4

1 1 X 2 = 2

1 X 1 = 1

Converted decimal value 47

Figure 1.4 - Computing the decimal value o( a binary number
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the proper hex digit for each group using the 8-4-2-1 values for the bits

in the group. For example, the number 0010 1111 in binary is 2F in hex:

8421

0010 - (0 X 8) + (0 X 4) + (1 X 2) + (0 X 1) - 2

1111 = (1 X 8) + (1 X 4) + (1 X 2) + (1 X 1) = F (15)

Converting Hex to Binary

Hex numbers can be converted to binary by first taking each hex digit

and then expanding it into four binary bits using the hex, decimal, and

binary values shown in Table 1.2.

Hex Value Decimal Value Binary Value

0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

Table 1.2- Hex, Decimal, and Binary Values
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When you use this table, the hex number 2F converts to the binary

number 0010 1111.

Converting Hex to Decimal

To convert a hex number to a decimal number, first multiply each digit

by its appropriate place value, and then add the resulting numbers. The

place values for hex numbers are shown in Table 1.3.

Digit Place

Value

1

1 16

2 256

3 4,096

4 65,536

5 1,048,576

6 16,777,216

7 268,435,456

Table 1.3 - Hexadecimal Place Values

The digit numbered is the rightmost digit in a hex number. Each place

value is derived by multiplying the previous place value by 16, starting

with a value of 1 for the rightmost digit. The digit number is also known as

a "power of 16."

The hex number 54321 converts to its decimal value as shown in Figure

1.5, the hex number A25 converts to its decimal value as shown in

Figure 1.6, and the hex number 1234 converts to the decimal value of

4660 as shown in Figure 1 .7.
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Digit

Place

X Value =
Decimal

Value

5

4

3

2

1

X 65,536 =

X 4,096 =

X 256 =

X 16 =

X 1 =

327,680

16,384

768

32

+ 1

Converted decimal value = 344,865

Figure 1.5 - Converting (he hex number 54321 to its decimal value

Hex

Digit

X Place =

Value

Decimal

Value

A(10)

2

5

X 256

X 16

X 1

2,560

32

+ 5

Converted decimal value = 2,597

Figure 7.6 - Converting the hex number A25 to its decimal value

Hex Place Decimal

Digit Value Value

1 4096 4096

2 256 512

3 16 48

4 1 + 4

Converted decimal value = 4660

Figure 1.7 -Converting the hex number 1234 to its decimal value
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Converting Decimal to Hex

Decimal numbers can be converted to hex numbers using the inverse

of the above technique. To convert a decimal number to hex, first find the

largest place value in Table 1.3 that divides into the number to be con-

verted, then divide the decimal value by this number. The quotient of this

division is the hex digit. Divide the remainder by the next smallest place

value to obtain the next hex digit (even if it's zero). Divide this remainder

by the next smallest place value, to get the next digit and so on.

To convert the decimal number 123,456 to hex, we start with a hex

place value of 65,536 and divide this hex value into the decimal value of

123,456. The result of 1 is the first hex digit and the remainder (57,920) is

the dividend for the next hex place value.

Hex

Decimal Place Hex
Remainder -r Value = Digit

123,456 + 65,536 = 1

57,920 H- 4,096 = E (14 decimal)

576 + 256 = 2

64 H- 16 = 4

^ 1=0
Read the answer down the Hex Digit column: 1 E240. The next remainder

can be calculated on a decimal calculator as: Present decimal remainder

- (place value x hex digit).

For example, the remainder 576 was calculated above by first dividing

4,096 into 57,920. The answer is 14, or a hex value of E. Then the hex

place value was multiplied by 14, which equals 57,344. Finally, the

remainder of 576 was arrived at by subtracting 57,344 from the previous

remainder, 57,920.

There are several calculators on the market which will do hex and deci-

mal conversions. If you are going to be writing a lot of machine code, a

hex calculator will pay for itself in short order.

What's in a Ki

The hex number 800 translates to 1,024 in decimal. The term K (for

"Kilo") is used in computer terminology to represent multiples of 1,024.

Memory and disk device capacities are expressed in units of kilobytes. For
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instance, a 64 kilobyte (64K) memory contains 64 x 1,024, or 65,536 dec-

imal (or 10000 hex) bytes of memory
Similarly the number 100000 hex (1,048,576 decimal) is the result of mul-

tiplying 1024 X 1024. This number is commonly abbreviated M (for

Mega). Megabyte units are used to describe the capacities of larger mem-
ory and disk devices. A 5-megabyte (commonly written 5Mb) disk there-

fore contains 5 x 1,048,576, or 5,242,880 bytes.

Operations on Binary Numbers

Since decimal, binary and hex are simply alternate ways of representing

numbers, the same operations that can be performed on decimal num-

bers can also be performed on binary or hex numbers. One can apply

techniques similar to those used for decimal numbers for the addition,

subtraction, multiplication, and division of hex and binary numbers. For

programming, however, it is important to understand the operations a

computer is capable of performing.

A computer's ALU is capable of performing a number of very simple

operations on binary numbers. These include: One's complement, AND,
OR, Exclusive OR, addition, two's complement, shifts and rotates. We will

now explore these in greater detail.

One's Complement

One of the simpler operations on binary numbers is to take the one's

complement: Simply invert the values of all the bits. All O's become 1's and

vice versa.

For example, complementing the number 001 1 1 1(X) (3C hex) produces

1 100 001 1 (C3 hex). Complementing 0000 0000 (00 hex) yields 1111 1111

(FF hex). Complementing the complement of a number yields the original

number again.

Binary AND
Performing an AND operation on two binary numbers produces a third

binary number with I's in each bit position where the original numbers

both had a 1. ANDingOOOO 1101 (OD hex) with 1001 1001 (99 hex) yields

0000 1001 (09 hex).

The AND operation is commonly used to obtain a remainder for a divi-

sion by a power of two (2, 4, 8, 16, etc.). To obtain such a remainder.
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AND the number with the power of 2 minus 1. For example, to find the

remainder when 0011 1101 (3D hex) is divided by 8, AND with 0000

0111 (07 hex). The result is 0000 0101 (05 hex). 3D hex is 3 x 16 + 13,

or 61 decimal. Dividing by 8 yields 7, with a remainder of 5.

Binary OR

The OR operation takes two binary numbers and produces a third

binary number that has a 1 where either of the original numbers had a 1.

For example, ORing 1010 1010 (AA hex) with 0101 0101 (55 hex) yields

1111 1111 (FF hex). (ANDing these two numbers gives all zeros.)

Binary XOR

The XOR (exclusive OR) operation takes two binary numbers and pro-

duces a third binary number which has 1's in bit positions where one (not

both) of the original numbers had a 1. For example, XORing 0101 0101

(55 hex) with 1111 1111 (FF hex) yields 1010 1010 (AA hex). XORing a

number with all 1's yields the 1's complement of the number. XORing a

number with itself produces zero.

Binary Addition

Adding two binary numbers is similar to adding decimal numbers. You

add each pair of digits, starting on the right, and carry any result over 1 to

the next column. For example, adding 001 1 1 101 (3D hex) and 0001 0101

(15 hex) is done as follows:

Carry 0011 1010

0011 1101 (3D hex)

+ 0001 0101 (15 hex)

Sum 0101 0010 (52 hex)

This procedure can be used for binary numbers of any length.

2's Complement Arithmetic

Subtraction involves a bit of magic. Negative numbers are stored in a

form known as two's complement. The two's complement of a number is
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obtained by taking the one's complement (as explained above), and add-

ing 1 to it. For instance, the two's complement of 0000 0001 is:

Original Number: 0000 0001 (01 hex)

One's Complement: 1111 1110 (FE hex)

Add One: +0000 0001 (01 hex)

Two's Complement: 1111 1111 (FF hex)

Adding the two's complement of a number is the same as subtracting the

number. As an example, consider adding 1111 1111 (FF hex) to 0000 0010
(02 hex). The leftmost bit of a two's complement number will be a if the

number is positive (zero or greater), and a 1 if the number is negative (less

than 0). For this reason, the leftmost bit is often called the sign bit.

Carry 11111 1100

0000 0010 (02 hex)

+ 1111 1111 (FF hex)

Sum 0000 0001 (01 hex)

Note that the carry out of the high order bit position is discarded. This is

due to the fact that all of the numbers kept in a computer have exactly the

same number of bits (eight in this example). Note that the result of adding

02 hex and FF hex is 01. This is the same as subtrarting 1 from 2. FF hex is

the two's complement of 01 hex, as shown above.

Two's complement changes the range of numbers it is possible to repre-

sent using a given number of bits. For instance, without using the two's

complement, we could represent from to 255 with eight bits. Using

two's complement, however, we can represent from - 128 to + 127.

The first case is called unsigned arithmetic, meaning that only positive

numbers can be represented. The second case is called two's complement
representation, meaning that both positive and negative numbers can be
represented.
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Shifts and Rotates

Two other operations commonly performed on binary numbers are

shifts and rotates. These operations are similar to the old "bucket brigade"

operation used in fighting fires. Bits are moved from one position to the

next position. Shifts and rotates can occur in either direction.

There are two types of shifts: logical and arithmetic. In a logical shift

operation, the bits are moved left or right as in Figure 1 .8.

Zero bits are shifted into the bit vacated by the shift operation. The bit

marked C is a special status bit in one of the CPU internal registers. This

bit is called the Carry bit, and it receives the bit which would otherwise

be lost.

An arithmetic left shift is the same as a logical left shift. An arithmetic

right shift is similar to a logical right shift, except that the most significant

bit is copied into itself. Both of these are shown in Figure 1.9.

There is no difference between an arithmetic left shift and a logical

left shift.

Rotates are similar to logical shifts, except that the Carry bit is shifted

into the vacated bit, instead of a zero, as illustrated in Figure 1.10.

Logical Left Shift

:

Right Shift:Logical Right Shift:

Figure 1.8- Logical left shift and logical right shift
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Arithmetic Left Shift:

Arithmetic Right Shift::ic Right Shift:

Figure 1.9 -Arithmetic left shift and arithmetic right shift

Left Rotate:

rSHD-O-Dn

Right Rotate:

r^ •- -^ •- *. c -

Figure 1.10 - Left rotate and right rotate
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Examples

The following examples assume that the Carry bit is initially zero. The

original number is 1010 1010 (AA hex).

Logical Shifts:

Times Left Right

1010 1010 (AA hex) 1010 1010 (AA hex)

1 0101 0100 (54 hex) 0101 0101 (55 hex)

2 1010 1000 (A8 hex) 0010 1010 (2A hex)

3 0101 0000 (50 hex) 0001 0101 (15 hex)

4 1010 0000 (AO hex) 0000 1010 (OA hex)

5 0100 0000 (40 hex) 0000 0101 (05 hex)

6 1000 0000 (80 hex) 0000 0010 (02 hex)

7 0000 0000 (00 hex) 0000 0001 (01 hex)

8 0000 0000 (00 hex) 0000 0000 (00 hex)

Arithmetic shifts:

Times

1

2

3

4

5

6

7

8

Left Right

1010 1010 (AA hex) 1 010 1010 (AA hex)

0101 0100 (54 hex) 1 101 0101 (D5 hex)

1010 1000 (A8 hex) 1 110 1010 (EA hex)

0101 0000 (50 hex) 1 0101 (F5 hex)

1010 0000 (AO hex) 1 1010 (FA hex)

0100 0000 (40 hex) 1 1101 (FD hex)

1000 0000 (80 hex) 1 1110 (FE hex)

0000 0000 (00 hex) 1 nil (FF hex)

0000 0000 (00 hex) 1 1111 (FF hex)

Rotates:

Times C Left Right C

1010 1010 (AA hex) 1010 1010 (AA hex)

1 1 0101 0100 (54 hex) 0101 0101 (55 hex)

2 1010 1001 (A9 hex) 0010 1010 (2A hex) 1

3 1 0101 0010 (52 hex) 1001 0101 (95 hex)
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Times C Left Right

4 1010 0101 (A5 hex) 0100 1010 (4A hex) 1

5 1 0100 1010 (4A hex) 1010 0101 (A5 hex)

6 1001 0101 (95 hex) 0101 0010 (52 hex) 1

7 1 0010 1010 (2A hex) 1010 1001 (A9 hex)

8 0101 0101 (55 hex) 0101 0100 (54 hex) 1

9 1010 1010 (AA hex) 1010 1010 (AA hex)

Shifts are very useful for multiplying and dividing. A logical shift left is

the same as multiplying a number by 2, and a logical shift right is the same

as dividing a number by 2. This is only true for unsigned numbers.

Arithmetic shifts, on the other hand, represent multiplication and divi-

sion by 2 for two's complement numbers. The one exception is that divid-

ing (shifting right) - 1 yields - 1 and not zero.

Extensions

When copying an 8-bit quantity into a 16-bit quantity or when copying

a 16-bit quantity into a 32-bit quantity there is a possibility of losing the

two's complement properties of the number.

To illustrate the problem, suppose we copy FF hex (-1 as an 8-bit num-

ber) to a 16-bit number. Copying only the lower 8 bits gives us (X)FF hex,

which is not - 1, but 255! The way to fix this situation is to copy the sign

bit (most significant bit) into all the "extra" bits in the larger number. This

is called sign extension. If we sign extend FF hex into 16 bits, we get FFFF

hex, which is - 1 in two's complement form.

Conclusion

In this chapter we have learned basic concepts that are applicable to

most computers on the market today In the next chapters, we shall see

how these concepts are applied to a specific type of computer, the

Motorola 68000.

Exercises

Use the following questions to help solidify your understanding of the

material presented in Chapter 1 . Answers to all exercise question can be

found in Appendix A.
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1. Write an algorithm for converting a decinnal number to hex.

2. Develop a flowchart for the algorithm in question 1.

3. Suppose the computer on page 9 has an additional instruction

5nnn, which subtracts the contents of memory location nnn from

Register A. The assembly form of this instruction is SUB A,y

where y is a label on the memory location to be subtracted from

A. Modify the example of the machine-language program to com-

pute the difference between the contents of location 105 and the

contents of location 104. Store the result in location 106. (Hint:

You will have to load location 105 into Register A first. Why?)

4. Move the machine-language program you wrote in question 3 to

run at address 200.

5. Give the assembly language equivalent of the program for ques-

tion 3.

6. Write a new assembly language program that computes the sum

of the first five integers. Use the labels A through E for the mem-

ory locations that contain the numbers to be added. Store the

result in a separate memory location, labeled F.

7. Convert the following decimal numbers to their hex and binary

equivalents.

273

421

1024

100

8. Convert the following hex numbers to their binary and decimal

equivalents.

ABE
100

64

1024

505
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9. Give the one's and two's complements for each of the numbers in

the previous question.

10. Perform the AND, OR, XOR, and addition operations on the fol-

lowing pairs of hex numbers. Use 16-bit operations. Give the

carry out of the high order bit pairs for the addition operation.

A5A5 5A5A
FFFF 0001

1234 4321

11. Prepare shift and rotate tables similar to those in the text for the

hex quantities FF and 55. Assume that the carry bit is initially

zero.
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INTRODUCTION

In this chapter, we will expand the general programming concepts pre-

sented in Chapter 1 to cover the architecture of the Motorola 68000. The

information specific to the 68000 is necessary in order to understand the

instruction set contained in Chapter 3.

Most computers can be categorized by the following criteria:

• The number and type of registers that may be used by the pro-

grammer in writing software.

• How data is organized in memory, and what data types are sup-

ported with hardware instructions.

• How memory is addressed by an instruction.

• Special hardware features, such as hardware support for stacb.

We will now explore each of these areas as it relates to the 68000.
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REGISTER SET

One of the first questions you should ask when learning a new computer

is "How many registers does it have?" Another important consideration is

whether the registers can be used interchangeably or not. If the computer

has many registers that can be used interchangeably you will have a great

deal of flexibility in handling intermediate values in a computation.

The number of registers in a computer also has an effect on program

speed and size. Computations using a register are usually smaller and faster

than computations involving a memory location. (This is due primarily to

the nature of computer hardware). A machine with a large number of

general-purpose registers is preferred over a machine with a small number

of registers or a machine whose registers are restricted in function.

The 68000 architecture trades off some generality in order to gain a

larger register set. There are two types of registers: address registers and

data registers. Address registers are normally used to contain memory
addresses, while data registers normally contain data. The two register

classes are not used interchangeably

Address Registers

There are eight address registers, numbered A0-A7. Each address regis-

ter is a 32-bit quantity Address registers can also be used as 16-bit quanti-

ties. When a 16-bit quantity is loaded into an address register, it is sign

extended to become a 32-bit quantity as shown in Figure 2.1. The nota-

tion AO.W is used to mean the word part of address register AO. (AO.L

means the entire 32 bits stored in register AO.) The .B suffix is used to

denote an 8-bit quantity. Address registers may not be used as 8-bit quanti-

ties, however.

•16 bits-

Sli/iiSSJi//'

16 bits-

An. W-

An.L-

Figure 2.1 - Address register layout
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Register A7 is a special-purpose register. A7 is the hardware stack

pointer used by 68000 exceptions and subroutine call instructions. This

register is also used by programs for temporary storage of data. The con-

cept of a stack is discussed later in this chapter.

Address registers are used as temporary locations for storing memory

addresses. These registers can be used in instructions that reference mem-

ory in order to specify the address at which data is located. The upper

byte of the register is presently ignored in such usage (by the 68000 and

68010 chips). This limits the amount of memory that you can use to 16

megabytes (16,772,216 bytes). Future processors in the 68000 family will

not ignore this byte, so it should always be set to zero for compatibility

Data Registers

The 68000 also has eight other registers, called data registers, numbered

D0-D7. A data register can be used as an 8-bit, 16-bit, or 32-bit quantity,

as shown in Figure 2.2. Unlike address registers, loading a data register

with less than 32 bits does not cause a sign extension to occur into the

remaining bits in the register. These remaining bits are left unchanged.

Data registers cannot be used to address memory in an instruction.

These registers are used instead as temporary locations where data may

be stored. Many instructions require one or more of the operands to

reside in a data register.

16 bits- Bbits- •Bbits-^

-^Dn.B-

•Dn.W 1

Dn.L^

Figure 2.2 - Data register layout
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Program Counter

A special 32-bit register called the program cour>ter is used to control

execution of the program in memory. The program counter always con-

tains the memory address of the next instruction to be executed. As an

instruction is executed, the program counter is advanced to point to the

next instruction.

Certain instructions can be used to affect the contents of the program

counter. These are:

• Instructions that alter the contents of the program counter uncon-

ditionally These are called unconditional branches or jumps. Such

an instruction is useful for programming loops, or for merging sev-

eral alternative sections of the program into one common section.

• Instructions that alter the contents of the program counter based

on the result of a previous instruction. These are called condi-

tional branches, and enable the computer to make decisions.

Using a conditional branch, either a portion of the program can

be skipped or a previous portion repeated, based on the result of

a previous computation.

• Instructions that cause a given section of code to be repeated a

specific number of times, or until a condition is satisfied. Such

instructions are called looping primitives.

• Instructions that are used to branch to another area of the pro-

gram and then to return to the location follov^ing the original

branch. This technique is known as a subroutine call. A subrou-

tine call can be used to invoke a common function, such as an

I/O routine, at many points in the program, using only a single

copy of the instructions that perform the I/O.

As with address registers, the upper eight bits of the program counter

are ignored by the 68000 and 68010 processors.

Status Register

The 68000 uses a special register, called the status register (SR) to store

information about the status of the machine. This register is used by the

conditional branch instructions to retrieve information about the last

instruction.

The status register is a 16-bit quantity organized as shown in Figure 2.3.
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Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

T / S

1

///

1

1 1

Imask

1 1

1 1

/////

1 1

X N Z V c

- System Byte -* •^ User Byte —

Figure 2.3 - Status register layout

System Byte

Bits 15-8 are called the system byte, because the information contained

here is not normally available to applications programs. The fields in the

system byte are:

1

.

Bit 1 5 is a hardware aid for debuggers. It Is called the trace bit. If

bit 15 is set, an exception will take place at the end of each

instruction. Exceptions are described in Chapter 7, Exception

Processing. This feature is used by debuggers to regain control as

each instruction is executed.

2. Bit 13 is used to regulate access to certain instructions and to the

system byte of the status register. It is called the supervisor bit. If

this bit is set, access is allowed. When the supervisor bit is set, the

68000 is said to be executing in supervisor mode. When the bit is

reset, the 68000 is said to be executing in user mode. User mode

software is prevented by the hardware from executing certain

privileged instructions that might compromise the integrity of the

system software. Access to the status register's system byte is also

prohibited when in user mode, ensuring that the user mode pro-

gram cannot change the supervisor bit.

3. Bits 10-8 are called the interrupt mask. This feature is more fully

explained in Chapter 7, which deals with 68000 exception

conditions.

The system byte of the status register is of concern only to systems

software programmers. We will deal more extensively with this topic in

later chapters.
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User Byte

The lower byte of the status register is called the user byte. The user

byte contains a set of bits known as condition codes, which are bit flags

used to record the outcome of the last arithmetic operation performed.

The user byte can be accessed at any time regardless of machine state.

The bits defined in the user byte are:

• The C (carry) bit carries out the high-order bit position of an

arithmetic operation. For example, when two 8-bit numbers are

added, the C bit is the ninth bit of the result. This bit also receives

bits that are shifted out of a number during shift or rotate operations.

• The V (overflow) bit is set whenever an operation yields a result

that cannot be properly represented. For example, when adding

the bytes 7F hex and 01 hex, the result, 80 hex is not properly

represented in eight bits. (Remember, 80 hex is - 128 decimal in

two's complement notation.) The V bit would be set following

such an operation.

• The Z (Zero) bit is set if the result of an operation is zero.

• The N (Negative) bit is set if the high order bit of a result is set. (In

two's complement, the high order bit of a number is set if the

number is less than zero.)

• The X (extended) bit is a copy of the carry bit, but it is not

affected by every instruction that affects the carry bit. The pur-

pose of this bit is to facilitate multiprecision instructions. The X bit

is affected only by instructions that can be used for multiprecision

operations. This allows you to intermix other instructions

between multiprecision operations without having to preserve

the carry bit.

The descriptions of the instruction set in Chapter 3 describe how the

condition codes are used by each operation. Since the lower half of the

status register contains nothing but the condition codes, it is sometimes

called the condition code register (CCR).

DATA ORGANIZATION IN MEMORY

The 68000 instruction set supports several data formats: binary, BCD,

and floating point.
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Bytes, Words, and Longwords

Binary data items can be 8, 16, or 32 bits long. These data types are

known as bytes, words, and longwords, respectively Most instructions that

operate on binary data support any of these three data lengths. For

example, the MOVE instruction, which transfers a binary data item from

one place to another, has three forms:

• MOVE.B moves a byte of data

• MOVE.W moves a word of data

• MOVE.L moves a longword of data

Note the use of the suffixes .B, .W, and .L to denote data length.

When a word or a longword is stored in memory the bytes are stored

in order of decreasing magnitude. The most significant bits are stored at

the lowest address, and the least significant bits are stored at the highest

address. For example, when a 16-bit word is stored at location 1000, the

most significant byte is at location 1000, and the least significant byte at

1001. When the long word 01234567 (hex) is stored at address 1000,

memory appears as shown in Figure 2.4.

Address

1000

1001

1002

1003

Contents

0000 0001 (01 hex)

0010 0011 (23 hex)

0100 0101 (45 hex)

0110 0111 (67 hex)

Figure 2.4 - Memory with longword stored at address 1000
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We emphasize this point because all computers do not store multibyte

binary quantities in the same way. In particular, the 8080/Z-80, 6502, and

8086/8088 family of microprocessors store words and longwords in

ascending order, so that the low byte is stored at the lowest address and

the high byte at the highest address. Which order is "correct" is largely a

matter of taste, but you should be aware that the difference exists.

BCD

A special form of binary numbers, called binary coded decimal (BCD), is

often used for digital displays and input devices. The familiar displays on
digital clocks and electronic calculators are universally based on BCD.
Most computer-based laboratory and factory instruments also use BCD.
BCD is basically hexadecimal without the codes for 10-15 (i.e., A-F).

Each nibble represents a digit in a decimal number. Thus, two decimal

digits are stored in a byte. The 68000 has instructions for the addition and

subtraction of BCD numbers.

BCD is especially useful in commercial applications, such as accounting.

Many such applications require only addition and subtraction of numbers
in character format. To convert these numbers to binary for calculation

and then convert them back to character format for output requires much
multiplication and division, which are comparatively slow operations for

most computers. Using BCD avoids these expensive operations, and pro-

vides quick conversion to and from character format. In many applica-

tions, BCD is much more efficient than binary

Floating Point

Scientific applications require a large range of possible values. For

example, to represent Avogadro's number (a common quantity in chemi-

cal calculations, roughly 6 followed by 23 zeros) would require ten bytes

of storage. To hold the result of the multiplication of two such numbers
would require twice this much storage. Then there is the problem of rep-

resenting fractional numbers, which none of the data representations thus

far have addressed.

The clean solution to these problems is found in floating point numbers.

Floating point numbers are a computerized form of scientific notation,

which is taught in grade school mathematics. In scientific notation, a num-
ber is written as a quantity between and 9 times 10 to the appropriate

power. For example, the quantity 1,935,000,0(X) is written as 1.935 x
10'^ The quantity 0.000001349 is written as 1.349 x 10"^
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Scientific notation is extremely useful in a computer. Allocating a fixed

number of bits to the exponent and fraction parts of a number yields a

very useful approximation to both very large and very small numbers.

The 68000, like most microprocessors, does not directly support floating

point with instructions. However, there is an additional feature which can

be added to provide hardware support for floating point.

The 68000 add-on is called the 68881 Floating Point Processor. It pro-

vides hardware instructions to manipulate floating-point numbers. The

68881 uses a floating-point format known as The Institute of Electrical and

Electronic Engineers (IEEE) format, named for the organization that pro-

posed the format as a standard. IEEE format provides the following floating

point format:

s Exp Fraction

The field labeled S is the sign bit for the entire number. If this bit is set,

the number is negative. If the bit is not set, the number is positive.

The field labeled EXP is the exponent; it is seven bits long. The exponent

field indicates the exponent of 2 by which the fractional part of the num-

ber is multiplied. To allow for negative exponents, decimal 64 (40 hex) is

subtracted from the exponent field before it is used. The exponent range

is 00 hex (interpreted as -64) to 7F hex (interpreted as 4-63). Thus, the

range of representation is 2" (approximately 9.2234 x 10") to 2~^*

(approximately 5.421 x 10"^°).

The fraction part is 24 bits, or 6-7 decimal digits. This limits the number

of significant digits the floating point number may contain. A limit of 6 dig-

its means that the computer cannot correctly subtract 1 from 10,000,0(X),

for example.

Alternate forms of floating point allow more bits for the fraction and

exponent to avoid this and other problems with the range and precision

of floating-point representation. The remainder of this book deals strictly

with integer arithmetic.

ASCII

The final form of data storage is known as ASCII or character format.

ASCII stands for American Standard Code for Information Interchange.

This code assigns a numeric value for each character. These values are

used to represent characters in memory and during I/O. The current
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ASCII standard for the United States defines 128 characters, with values

from 0-127. The characters are stored one per byte in memory. The
eighth bit is used for additional characters in Europe and Japan. For a

complete list of United States ASCII values, see Appendix B.

Multicharacter sequences, called strings are stored in multiple consecu-

tive bytes in memory The 68000 provides no instructions explicitly for

string manipulation; sequences of byte instructions must be used instead.

There are three common types of string storage you may employ:

• Use a fixed length for each string to be stored. This has the

advantage of being easy to program, but wastes memory if string

length tends to vary This technique is usually used by the FOR-
TRAN and COBOL languages.

• Prefix each string with a character count. This is more difficult to

program, but wastes less memory If the character count is stored

in a byte at the beginning of the string, then strings are limited to

255 characters. Using a word (i.e., two bytes) allows 65,535 char-

acters in a string. This is the technique usually used by the Pascal

and BASIC languages.

• Terminate the string with some flag value, usually zero. This tech-

nique is used by the C language. Problems arise, however, if

strings are processed in a manner other than sequentially from
beginning to end.

ADDRESSING MODES

A computer instruction must specify two things:

1. What operation to perform, such as addition or subtraction.

2. On what data to perform the operation. Data for instructions is

usually found either in registers or memory

A portion of the instruction, called the op code, indicates the operation

to perform. The simple example in Chapter 1 used the first digit of the

instruction as the op code. Data was in the machine's single register and a

memory location. The memory location was identified by the address

contained in the last three digits of the instruction.
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Real computers are seldom so simple. In the 68000, instructions specify

operands by one of three techniques:

1. Some instructions imply the use of certain operands, usually a

register, such as the status register or the Program Counter (PC).

2. Some instructions work only on registers. The register number is

contained in the instruction itself.

3. Most 68000 instructions specify operands with a technique called

an effective address. This is a generalized technique for address-

ing the registers and memory

Effective Address

An effective address is specified by six bits in the instruction (usually the

lowest six bits). The bit values indicate how to find the data for the instruc-

tion. Figure 2.5 shows how these bits are arranged into two groups of

three bits.

The mode bits determine the meaning of the entire field. Three bits give

eight possible combinations. Values 0-6 mean that a register is to be used,

either as the operand, or to determine the address of the operand in

memory If the mode field is 7 (i.e., all Ts), then the entire six bits of the

effective address field is used to specify the mode.

In the following examples, we will illustrate the addressing modes using

the MOVE.L instruction, which moves a longword from one operand to

another. Both operands have the effective address format. We will use the

DO.L data register as the destination operand, and vary the source oper-

and to illustrate the various addressing modes. Figure 2.6 shows the for-

mat of a MOVE.L instruction.

Bit 5 4 3 2 1

1 1

Mode
1 1

1 1

Register

1 1

Figure 2.5 - Format of an effective address
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Bit 15 14 13 12 n 10 9 8 7 6 5 4 3 2 1

1

1 1

Reg

1 1

1 1

Mode
1 1

1 1

Mode
1 1

I 1

Reg

1 1

— Destination - *- Source -

Figure 2.6 - Format of a MOVE.L instruction

The Source and Destination fields are used to select the source and des-

tination operands. Since the register and mode fields are three bits wide, it

is difficult to look at the hex representation of an instruction and deter-

mine the assembly language equivalent. This process is known as disas-

sembly. 68000 instructions in general are difficult to disassemble by hand.

Fortunately, most debuggers perform disassembly, so this problem is not as

severe as it could be.

Data Register Direct Addressing

Addressing Mode Field:

Register Field:

Assembler Syntax:

000

000-111 (Data Register Number)

Dn (n is 0-7)

Description

Data register direct addressing is indicated by an effective address mode
field of 000 (binary). The register field contains a number from 000 to 1 11

(0-7), which indicates a data register. In data register direct addressing,

the data register (indicated by the register field) contains the operand.

Example

The instruction MOVE.L D1,D0 causes the contents of data register D1

to be copied into data register DO. After the instruction executes, the two

registers contain the same information. Figure 2.7 shows the format of this

instruction.

When only a word or byte is transferred, the contents of the upper

bytes of the data register are unchanged. Figure 2.8 shows examples of

the MOVE instruction with a byte, a word, and a longword.
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Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1

-Reg- «-Mode- — Mode— -Reg-
- Destination - - Sou rce -1

Figure 2.7 -Format of MOVE.L DhDO instruction

(2001 Hex)

Instruction Before After

MOVE.B D1,D0 D0= FFFFFFFF

01=01234567
D0=FFFFFF67

01=01234567

MOVE.W D1,D0 D0= FFFFFFFF

01=01234567
D0= FFFF4567

01=01234567

MOVE.L D1,D0 D0= FFFFFFFF

01=01234567
00 = 01234567
01=01234567

Figure 2.8 - Moving a byte, word, or longword

Address Register Direct Addressing

Addressing Mode Field: 001

Register Field: 000-111 (Address Register Number)
Assembler Syntax: An (n is 0-7)

Description

Address register direct addressing is indicated by an effective address

mode field of 001 (binary). The register field contains a number from 000
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to 1 n (0-7), which indicates an address register. In address register direct

addressing, the address register indicated by the register field contains the

operand.

Example

The instruction MOVE.L AT,DO causes the contents of address register

Al to be copied into data register DO. After the instruction executes, the

two registers contain the same information. Figure 2.9 shows the format of

this instruction.

Transfers involving an address register are restricted to word or long

size. Byte operations are not allowed. When transferring a word to an

address register, bit 15 (the sign bit of a word) is extended throughout the

upper word of the address register. Figure 2.10 gives several examples of

address register direct addressing.

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10

1 1 1

-^Reg- ^Mode- -^McxJe- -Reg-
- c estirlation - - Sou rce -1

(2009 Hex)

Figure 2.9 - Format of MOVE.L A1,D0 instruction

Instruction Before After

MOVE.W A1,D0 D0=FFFFFFFF

Al =01234567

D0=FFFF4567

Al =01234567

MOVE.W D0,A1 D0= 01 234567

A1=FFFFFFFF

D0= 01 234567

Al = 00004567

MOVE.W DCAI DO=OOOOFFFF

A1=00000000

D0=0000FFFF

Al = FFFFFFFF

MOVE.L A1,D0 DO=FFFFFFFF

Al =01234567

00=01234567
Al =01234567

Figure 2. 10 - Examples of address register direct addressing
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Address Register Indirect Addressing

Addressing Mode Field:

Register Field:

Assembler Syntax:

010

000-111 (Address Register Number)

(An) (n is 0-7)

Description

Address register indirect addressing is Indicated by an effective address

mode field of 010 (binary). The register field contains a number from 000

to 1 1 1 (0-7), which indicates an address register.

In address register indirect addressing, the address register indicated by

the register field is the address of a memory location that contains the

operand. The register is said to point to (contain the address of) the oper-

and. Address register indirection is denoted by enclosing the address reg-

ister name in parentheses. For example, (AO) denotes indirection on

address register AO. Word or longword references require that the

address contained in the address register must be even.

Example

The instruction MOVE.L (A1),D0 causes the contents of the memory
location pointed to by address register A1 to be copied into data register

DO. After the instruction executes, data register DO and the memory loca-

tion contain the same information. Figure 2.11 shows the format of this

instruction.

The instruction works as shown in Figure 2.12. $1000 indicates the con-

tents of the longword in memory at address 1000 hex.

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10

1 1 1

-Reg- '-Mode- «-Mode- -Reg-
*- c estirlation - - Sou rce -1

(2011 Hex)

Figure 2.11 - Format of MOVE.L (A1),D0 Instructior)
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Instruction Before After

MOVE.L (A1),D0 DO=FFFFFFFF

Al=00001000
$1000=01234567

DO- 01 234567

A1=00001000
$1000 = 01234567

Figure 2. 12 - An example of the MOVE. L (A 1),D0 instruction

Address Register Indirect Addressing with Post-Increment

Addressing Mode Field:

Register Field:

Assembler Syntax:

Oil

000-111 (Address Register Number)

(An)+ (n is 0-7)

Description

Address register indirect addressing is indicated by an effective address

mode field of Oil (binary). The register field contains a number from 000

to 1 1 1 (0-7), which indicates an address register. In address register indi-

rect addressing, the address register indicated by the register field contains

the address of a memory location that contains the operand. The register

is said to point to (contain the address of) the operand.

The address register is incremented after the data has been obtained from

memory The increment is based on the length of the data item referenced

by the instruction. Thus, for a MOVE.B instruction, the address register

would be incremented by one. For a MOVE.W instruction, the address reg-

ister is incremented by two. For a MOVE.L instruction, the address register

is incremented by four.

Address register indirection with post-increment is denoted by enclosing

the address register name in parentheses followed by a plus (-i-) symbol.

For example, (A0)^- denotes post-increment indirection on address regis-

ter AO. Word or longword references require that the address contained

in the address register must be even.

Example

The instruction MOVE.L (A1)+,D0 causes the memory location pointed

to by address register A1 to be copied into the contents of data register



68000 Architeaure 45

EDO. After the instruction is executed, data register DO and the memory
location contain the same information. Address register A1 is incremented

by 4. Figure 2.13 shows the format of this instruction.

The instruction works as shown in Figure 2.14. $1000 indicates the con-

tents of the longword in memory at address 1000 hex.

A special case occurs when the address register specified is A7, which is

the hardware stack pointer. Byte operations on address register A7 cause

an increment by two rather than one. This ensures that the stack pointer

always contains an even address.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1

-Reg- -Mode- -^Mode- -Reg-
- clestlriation -* - Source -1

(2001 Hex)

Figure 2. 13 - Format of the MOVE.L (A1) + ,D0 instruction

Instruction Before After

MOVE.L{A1)+,D0 DO-FFFFFFFF

A1 -00001000

$1000=01234567

D0= 01 234567

A1-00001004
$1000=01234567

Figure 2.14 -An example of the MOVE.L (A1) + ,D0 instruction
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Address Register Indirect Addressing with Pre-decrement

Addressing Mode Field: 100

Register Field: 000-1 1 1 (Address Register Number)

Assembler Syntax: - (An) (n is 0-7)

Description

Address register indirect addressing with pre-decrement is indicated by

an effective address mode field of 100 (binary). The register field contains a

number from 000 to 1 1 1 (0-7), which indicates an address register. In

address register indirect addressing, the address register indicated by the

register field contains the address of a memory location that contains the

operand. The register is said to point to (contain the memory address oO

the operand.

The address register is decremented before the data is obtained from

memory The decrement is based on the length of the data item refer-

enced by the instruction. Thus, for a MOVE.B instruction, the address reg-

ister is decremented by one. For a MOVE.W instruction, the address

register is decremented by two. For a MOVE.L instruction, the address

register is decremented by four.

Address register indirection with pre-decrement is denoted by enclosing

the address register name in parentheses preceded by a minus (-) sym-

bol. For example, -(AO) denotes pre-decrement indirection on address

register AO. Word or longword references require that the address con-

tained in the address register must be even.

Example

The instruction MOVE.L -(A1),D0 causes address register Al to be

decremented by four. The contents of the memory location pointed to by

address register Al are copied into data register DO. After the instruction

executes, data register DO and the memory location would contain the

same information. Figure 2.15 shows the format of this instruction.

The instruction works as shown in Figure 2.16. $1000 indicates the con-

tents of the longword in memory at address 1000 hex.

A special case occurs when the address register specified is A7, which is

the hardware stack pointer. Byte operations on address register A7 cause

a decrement by two rather than one. This ensures that the stack pointer

always contains an even address.
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Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1

1

—

1 1

-Reg- •^Mode- -Mode-* -^Reg-*

*- Destination - - Source -1

(2021 Hex)

Figure 2. 15 - Format of the MOVE. L -(A 1KD0 instruction

Instruction Before After

MOVE.L -{A1),D0 DO=FFFFFFFF

A1=00001004
$1000=01234567

D0= 01 234567

Al =00001000

$1000=01234567

Figure 2. 16 - An example of the MO\/E. L -(A 1),DO instruction

Address Register Indirect Addressing with Displacement

Addressing Mode Field:

Register Field:

Assembler Syntax:

101

000-1 1 1 (Address Register Number)

x(An) (x is 16 bits, n is 0-7)

Oescr/pfion

Address register indirect addressing with displacement is indicated by

an effective address mode field of 101 (binary). The register field contains

a number from 000 to 1 1 1 (0-7), which indicates an address register. In

this type of addressing, the address register indicated by the register field

is added to the sign-extended 16-bit number following the instruction. The

result is the address of a memory location that contains the operand.
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Address register indirect addressing with displacement is denoted by

enclosing the address register name in parentheses preceded by a 16-bit

constant. For example, 8{A0) denotes the memory location whose address

is the contents of AO plus 8. Word or longword references require that the

address generated must be even.

Example

The instruction MOVE.L 4(A1),D0 causes the contents of the memory
location pointed to by address register Al plus 4 to be copied into data

register DO. After the instruction executes, data register DO and the mem-
ory location contain the same information. Figure 2.17 shows the format

of this instruction.

The instruction works as shown in Figure 2.18. $1004 indicates the con-

tents of the longword in memory at address 1004 hex.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1

-Reg- -Mode- -Mode- *-Reg-

- c estirlation - - Sou rce -1

(2029 Hex)

00000000000001 00 (0004 Hex)

Figure 2.17 -Format of the MOVE.L 4(A1),D0 instruction

Instruction Before After

MOVE.L 4(A1),D0 DO- FFFFFFFF

A1=00001000
$1004 = 01234567

D0= 01 234567

A1=00001000
$1004 = 01234567

Figure 2.18 -An example of the MOVE.L 4(A1),[X) instruaion
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Note that displacement values greater than 7FFF (hex) subtract from

rather than add to the value in the address register. This is due to the sign

extension.

Address Register Indirect Addressing with Index

Addressing Mode Field: 1 10

Register Field: 000-111 (Address Register Number)

Assembler Syntax: x(An,Dn.L) (x is 8 bits, n is 0-7)

x(An,Dn.W)

x(An,An.W)

x(An,An.L)

Description

Address register indirect addressing with index is indicated by an effec-

tive address mode field of 101 (binary). The register field contains a num-

ber from 000 to 1 1 1 (0-7), which indicates an address register. In address

register indirect addressing with index, the address register indicated by

the register field is added to the contents of another register, plus a sign-

extended 8-bit displacement. The sum of these three quantities is the

address of a memory location that contains the operand.

The second register is called the index register, and may be either a data

register or an address register. The size of the index register may be either

a word or a longword. Word quantities are sign-extended before use.

Indexed address register indirect addressing is denoted by enclosing the

index and address register names in parentheses preceded by an 8-bit

constant. The desired size of the index register is defined by using the .L

or .W suffixes on the register name. For example, 4(A0,D0.L) denotes the

memory location whose address is the contents of data register DO and

the contents of address register AO plus 4. Word or longword references

require that the address so generated must be even.

The information concerning the index register and 8-bit displacement is

contained in the 16-bit quantity that follows the instruction. This is called

an extension word, and is in the format shown in Figure 2.19.

The bit labeled A is 1 if the index register is an address register, and if

the index register is a data register. Bits 14-12 contain the register number.

The bit labeled L is a 1 if the index register is a long quantity, and if the

index is a word.
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Example

The instruction MOVE.L 4(A2.L,A1),D0 causes the contents of data regis-

ter DO to be copied into the memory location pointed to by the sum of

address registers A2 and A1 plus 4. After the instruction executes, data

register DO and the memory location contain the same information. Fig-

ure 2.20 shows the format of this instruction.

Figure 2.21 shows how the instruction works. $2004 indicates the con-

tents of the longword in memory at address 2004 hex.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2

A

1 1

Reg

1 1

L

1

1

1 1 1 1 1 1 1

Displacement

1 1 1 1 1 1 1

Figure 2.19 - Format of the MOVE.L index register instruction

Bit 15 14 13 12 n 10 9 8 7 6 5 4 3 2 1

1 1 1 1

-Reg- — Mode-* ^Mode- -Reg-
- c>estiflation - - Sou rce -1

(2031 Hex)

1 1 1 1

A - Reg -* L ^ Di splac em«?nt -

(A804 Hex)

Figure 2.20 - Format of the MOVE.L 4(A2.L,AV,CX) instruction
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Instruction Before After

MOVE.L4(A2.L,A1),D0 D0= FFFFFFFF

A1 =00001000

A2-00001000
$2004=01234567

D0= 01 234567

A1 =00001000

A2 = 00001000

$2004-01234567

Figure 2.21 -An example of the MO\/E.L 4(A2.L,AV,D0 instruaion

Absolute Short Addressing

Addressing Mode Field:

Register Field:

Assembler Syntax:

111

000

X (x is a 1 6-bit constant)

Description

Mode 7 with a register field of zero indicates that the word following

the instruction is an absolute 16-bit address. The address is sign-extended

before use, so that address specifications 8000 hex and above refer to

addresses FFFF8000 and above. Remember, however, that the high byte of

the address is presently discarded. The sign extension means that short

addressing is useful only for the first 32,768 (32K) bytes of memory

Example

The instruction MOVE.L $1000,D0 causes the contents of memory loca-

tion 1000 (hex) to be copied into data register DO. (Many 68000 assem-

blers use the $ prefix to indicate hex numbers.)

Figure 2.22 shows the format of this instruction.

Figure 2.23 shows how the instruction works.

$1000 indicates the contents of the longword in memory at address 1000

hex. Many 68000 assemblers use the prefix $ to indicate hex numbers.
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Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1

-Reg- -^Mode- "^Mode- -Reg-
- Destination - - Source -1

(2039 Hex)

0001000000000000 (1000 Hex)

Figure 2.22 - Format of MOVE.L $1000,D0 instruction with 16-bit address

Instruction Before After

MOVE.L $1000,D0 D0= FFFFFFFF

$1000 = 01234567

D0= 01 234567

$1000=01234567

Figure 2.23 -An example of the MCNE.L $1000,D0 instruction with 16-bit address

Absolute Long Addressing

Addressing Mode Field: 1 1

1

Register Field: 001

Assembler Syntax: x (x is a 32-bit constant)

Description

Mode 7 with a register field of one indicates that the longword following

the instruction is an absolute 32-bit address. Remember that the high byte

of the address is presently discarded.
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Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1

-Reg- ^Mode- ^Mode- -Reg-
*- Destination - - Source -1

(2039 Hex)

0000000000000001 (0001 Hex)

(0000 Hex)

Figure 2.24 -Format o( MOVE.L $1000,D0 instruction with 32-bit address

Instruction Before After

MOVE.L $10000,D0 D0= FFFFFFFF

$10000=01234567

D0= 01 234567

$10000 = 01234567

Figure 2.25 -An example of the MOVE.L $1000,D0 instruction with 32-bit address

Example

The instruction MOVE.L $10000,D0 causes the contents of memory
location 10000 (hex) to be copied into data register DO. Figure 2.24 shows

the format of this instruction. Figure 2.25 shows how the instruction

works.

$10000 indicates the contents of the longword in memory at address

10000 hex. Many 68000 assemblers use the prefix $ to indicate hex

numbers.
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Program Counter with Displacement

Register Field:

Assembler Syntax:

010

x(PC) (x is a 16-bit constant)

Description

Mode 7 with a register field of two indicates that the word following the

instruction is a displacement to be added to the program counter in order

to obtain a memory address. The displacement is sign-extended before the

addition takes place. Thus, it is possible to address memory in a range from

-32,768 to +32,767 bytes relative to the present instruction. The value

used for the program counter is the address of the displacement word.

The program counter with displacement is denoted as xxxx(PC), where

xxxx is a constant 16-bit number.

Example

The instruction MOVE.L $100(PC),D0 causes the contents of data register

DO to be copied into the memory location specified by the address of the

instruction plus 102 hex. Figure 2.26 shows the format of this instruction.

Suppose the first word of the instruction is at location 1000 hex. Figure

2.27 shows how the instruction would work.

$1 102 indicates the contents of the longword in memory at address 1 102

hex. Many 68000 assemblers use the prefix $ to indicate hex numbers.

Bit 15 14 13 12 11 10 9 7 6 5 4 3

1 1 1 1 1

-^Reg- <^Mode- -Mode-* -^Reg-

- c estiriation - - Sou rce -1

(25CO Hex)

0001 00000000 (0100 Hex)

Figure 2.26 - Format of the MOVE.L(PC),D0 instruction
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Instruction Before After

MOVE.L$100{PC),D0 D0= FFFFFFFF

$1102 = 01234567

D0= 01 234567

$1102 = 01234567

Figure 2.27 -An example of the MOVE.L $100(PC),D0 instructior)

Program Counter with Index

Addressing Mode Field:

Register Field:

Assembler Syntax:

111

Oil

x(PC,Dn.L) (x is 8 bits, n is 0-7)

x(PC,Dn.W)

x(PC,An.W)

x(PC,An.L)

Description

Mode 7 with a register field of 3 indicates that the memory address is to

be constructed using the value of the program counter, an index register,

and a sign-extended 8-bit displacement. This mode is similar to the

address register with index mode instruction. The same format extension

word is required. Figure 2.28 shows the format of this instruction.

The program counter with index is denoted as xxx(xr.s,PC), where xxx

•s a constant 8-bit number, and xr.s is a register name with size specifica-

tion. For example, indexing with the word contained in DO and a dis-

placement of 10 hex is written $W(PC,DO.W).

Example

The instruction MOVE.L $W(PC,A1 0,00 causes the contents of the

memory location at the address of the instruction plus the contents of A1

plus 12 hex to be copied into data register DO. Figure 2.29 shows the for-

mat of this instruction.
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Suppose the first word of the instruction is at location 1000 hex. Figure

2.30 shows how the instruction would work.

$2012 indicates the contents of the longword in memory at address

2012 hex.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2

A

1 1

Reg

1 1

L

1

1

1 1 1 1 1 1 1

Displacement

1 1 1 1 1 1 1

Figure 2.28 - Format of program counter with index instruction

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1 1

-Reg-* -Mode- -Mode-* -Reg-
- c estirlation - - Sou rce -I

1 1 1 1

A - Reg- L - Di splac em<?nt -

{203B Hex)

(9810 Hex)

Figure 2.29 - Format of MOVE. L$10(A1.L, PCj,IX instruction

Instruction Before After

MOVE.L$10(A1.L,PQ,D0 DO-FFFFFFFF

$2102-01234567

Al =00001000

DO- 01 234567

$2102-01234567

A1-00001000

figure 2.30- An example of the MOVf.t $W(A1.L,PC),D0 instruaion
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Immediate Mode

Addressing Mode Field:

Register Field:

Assembler Syntax:

1 1 1 (Source only)

100

#x (x is 8, 16, or 32 bits)

Description

Mode 7 with a register field of 4 indicates that the source data for an

instruction is contained in the word or longword (depending on the size

of the instruction) that follows the instruction. Byte data for an immediate

mode instruction is contained in the low-order byte of the word following

the instruction.

Immediate mode is denoted by #(constant) where (constant) is a hex or

decimal number. Many assemblers allow symbols to be defined for use as

immediate quantities. (See the section on assemblers in Chapter 3 for

additional information.)

Example

The instruction MOVE.L #$W002000,D0 causes the long constant

10002000 (hex) to be loaded into data register DO. The previous contents

of DO are lost. Figure 2.31 shows the format of this instruction. Figure 2.32

shows how this instruction works.

Bit 15 14 13 12 n 10 9 8 7 6 5 4 3 2 1

(203C Hex)

(1000 Hex)

(2000 Hex)

1 1 1 1 1

-Reg-
•^ Destir

-^Mode-

ration —
-Mode-
*- Sou

-Reg-

rce —

1

1

Figure 2.31 - Format of the MO\/E.L *$10002000,DO instruction
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Instruction Before After

MOVE.L

#$10002000,DO DO- 01 234567 D0= 10002000

Figure 2.32 - An example of the MOVE.L #$10002000,DO instruction

Status Register Addressing

Addressing Mode Field:

Register Field:

Assembler Syntax:

1 1 1 (Destination only)

100

SR

CCR

Description

Mode 7 with a register field of 4, when used as a destination field on
some instructions, indicates that the operation is to be performed on the

status register. The And Immediate (ANDI), Exclusive Or Immediate
(EORI), and Or Immediate (ORI) instructions are the only operations that

can use this addressing mode.

When the instruction specifies a byte length, then only the user byte of

the status register is affected. When a word length instruction is used, then

both the system and user bytes are affected. The System bit in the status

register must be set to 1 in the latter case.

The assembler recognizes the special labels SR (for the whole status regis-

ter) and CCR (for the user byte). CCR is an acronym for Condition Code
Register. Only the condition codes are stored in the status register user byte.

Example

The ORI #5,CCR instruction sets both the carry (C) and zero (Z) flags.

Figure 2.33 shows the format of this instruction. Figure 2.34 shows how
the instruction works.
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Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

(003C Hex)

(0005 Hex)

1 1 1 1

— Mode -I *- Reg -•

•^ Destination -

1 1

Figure 2.33 - Format of ORI #5,CCR instruction

Instruction Before After

ORI #5,CCR CCR=0000 CCR=0005

Figure 2.34 - An example of the ORI tt5,CCR instruction

Stacks and Stack Frames

Many commercial microcomputers today (including the 68000) have a

feature called a stack. A stack is a storage technique similar to the spring-

loaded platforms used for plates in a cafeteria line. The last byte, word, or

longword, placed on the stack is the first data item to be removed. This

storage scheme is called Last-in-First-Out (LIFO). The act of placing a new
data item on the stack is known as a push. Removing a data item is com-

monly called a pop.

How a Stack Works

Stacks are implemented on the 68000 using the pre-decrement and post-

increment addressing modes. An address register (called the stack pointer)
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is used to indicate the top of the stack's position in memory. Data items

are pushed onto the stack using the - (An) addressing mode, and popped

using the (An)+ addressing mode, as illustrated in Figure 2.35.

The stack pointer always contains the address of the element on top of

the stack. Subsequent push operations cause items to be stored at lower

addresses. Pop operations cause the stack pointer to be incremented

toward higher addresses. The stack is said to "grow toward lower

addresses" on the 68000.

68000 Hardware Stack

Register A7 on the 68000 is called the hardware stack pointer This regis-

ter is used by the 68000 hardware for addressing memory that contains

temporary data items. Most 68000 assemblers take the symbol SP (for

Stack Pointer) as an alternative to A7 in register specifications.

There are two stack pointers on the 68000: one for when the processor

is in user mode (called USP) and one for when the processor is in supervi-

sor mode (called SSP).

Address

n-3

Pushes n - 2

- (An) n - 1

(An) n

n+1

Popsp n + 2

(An)+ n+3

Stack TopItem 1

Item 2

Item 3

Item 4

figure 2.35 - 68000 stack operations
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When the processor is in user mode, register A7 corresponds to USR

and in supervisor mode, register A7 corresponds to SSR A special instruc-

tion, MOVE USP, allows the supervisor program to access the USR The

user mode program is not allowed access to the SSR

Typically, the stack is used for information that will be required again

later. For example, there is a common programming technique called a

subroutine.

Subroutines

Subroutines are small programs in themselves that can be used as units

of other, larger programs. Typical subroutines include I/O routines and

common calculations, such as taking the square root of a number.

The 68000 supports instructions known as subroutine calls. These

instructions place the address of the next instruction on the stack and the

address of the subroutine into the program counter (FXI). In this way the

next instruction to be executed becomes the first instruction in the sub-

routine. When the subroutine has completed processing, it executes a

return instruction, which restores the address currently on top of the stack

back into the PC. This causes the program to resume execution at the

instruction that immediately follows the subroutine call.

Subroutines are powerful programming tools. A subroutine is essentially

an extension to the instruction set of the machine. The programmer can

treat subroutine calls as if they were sophisticated machine instructions.

Exceptions

A concept similar to the subroutine call is the 68000 exception mecha-

nism. The 68000 allows the suspension of a program and subsequent

resumption of the same program through a technique known as an excep-

tion. (This same technique is called an interrupt on other machines.)

An exception causes the status register and program counter to be

pushed onto the stack. A special instruction allows restoration of the pro-

gram counter/status register combination at a later point. This mechanism

is described in detail in Chapter 7, Exception Programming.

Stack Implemented in Software

You can implement a stack using any address register. All that is

required is to place the address of the end of the area to be used as a

stack into the address register. The pre-decrement and post-increment

addressing modes can then be used to push and pop data items from

this software stack.
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Stack Frames

Stacks are convenient for allocating temporary memory areas. The
68000 supports a hardware mechanism for allocating scratchpads called a

stack frame.

The 68000 LINK and UNLK (unlink) instructions allocate and free tem-

porary memory at the top of the stack. An additional address register,

called the frame pointer, is used to point to the area allocated on the

stack. References to the stack frame use the address register with displace-

ment addressing mode. The frame pointer rather than the stack pointer is

used to address the frame so that subsequent stack PUSH and POP opera-

tions will not affect the offsets of individual components of the frame.

Summary

The important points that we have covered in this chapter are:

• The 68000 has sixteen registers: eight data registers and eight

address registers. Data registers may be used as bytes, words, or

longwords. Address registers may be used only as words or

longwords. In addition, loading a word into an address register

causes the word to be sign-extended to 32 bits.

• There are two special registers: the program counter (PC) and the

status register (SR). The program counter contains the address of

the next instruction to be executed. The status register contains

machine status bits. The upper eight bits of the status register,

called the system byte, may not be accessed by ordinary pro-

grams. The lower eight bits of the status register, called the condi-

tion code register (CCR), contain status bits (condition codes) that

indicate the result of the last instruction executed.

• The 68000 supports three principle numeric data types: binary,

BCD, and floating-point. Binary data may be used in units of 8 bits

(a byte), 16 bits (a word), and 32 bits (a longword). These lengths

are indicated on register and instruction names by the suffixes .B,

.W, and .L. BCD is a method of storing two decimal digits per byte.

Floating-point is a method of representing very large or very small

numbers without requiring undue amounts of memory

• The 68000 supports fourteen distinct methods of specifying data

in an instruction. These are called addressing modes. They are

listed in Table 2.1.
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Syntax Name

Dn Data register direct

An Address register direct

(An) Address register indirect

{An) + Address register indirect post-increment

-(An) Address register indirect pre-decrement

w(An) Address register with displacement

b(An,Rn) Address register with index

w(.W) Absolute short

K.L) Absolute long

w(PC) PC with displacement

b(PC,Rn) PC with index

#x Immediate

SR Status register (Privileged)

CCR Condition code register

b is a byte constant.

w is a word constant.

I is a long constant.

X can be any of these.

n is a register number, 0-7.

R is a register specifier, either A or D.

Table 2.1 -Addressing Modes of The 68000

• The post-increment and pre-decrement addressing modes are

used to implement data structures called stacks. Stacks are orga-

nized in a last-in first-out (or LIFO) scheme in which the last

data item to be put on is the first one taken off. Register A7 is

used by the 68000 instructions to refer to a special stack called

the hardware stack.
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• Special 68000 instructions exist that allocate and free temporary

scratchpad nnemory areas on the hardware stack. These scratch-

pad areas are known as stack frames.

Chapter 3 will build on this background to present the 68000 instruction

set and the mechanics of writing 68000 assembly language programs.

Exercises

1

.

Given the following conditions:

• DO = 00008000
. AO = 00001000

• A7 = 00010000

What are the results of the following instructions?

MOVE.B DO,AO

MOVE.W DO,AO

MOVE.B DO,(AO) +

MOVE.B D0,-(A7)

Give the new contents of all registers and memory locations that

change. Use the same starting conditions for all the instructions.

2. The ADD binary instruction can add an effective address oper-

and to a data register. The format of this instruction is shown in

Figure 2.36.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

1 1 1

1 1

Register

1 1

I

Size

1

1 1

Mode
1 1

1 1

Register

1 1

^ Dest - •- Source -»

Figure 2.36 - ADD binary instruction format

The Size field is 00 for byte, 01 for word, and 10 for long data.

Modify the examples for the addressing modes (except for the sta-

tus register mode) to use this instruction.
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3. The 68000 pre-decrement and post-increment addressing modes

are normally used for stacks that grow toward lower addresses.

Can these addressing modes be used to implement a stack (in

software) that grows toward higher addresses? If so, how would

such a stack differ from a normal one? How could the 68000

addressing modes be altered to support such stacks?
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INTRODUCTION

This chapter covers the mechanics of program generation and the

details of the 68000 instruction set. It is probably not necessary to study

each instruction in detail, but you should pay attention to the section on

the mechanics of program generation. This information is vital to under-

standing the instruction descriptions.

INSTRUCTION CLASSES

The 68000 instructions fall into eight classifications:

Data movement

Integer arithmetic

Logical

Shift and rotate

Bit manipulation

BCD

Program control

System control

We will now describe each of these classes in detail.
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Data Movement

Data movement instructions transport data from one location in the

68000 to another. Normally, these instructions move from one to four

bytes of data between two registers, a register and memory, or between
two memory locations.

This category of 68000 instructions includes:

• The EXC (EXchanGe) instruction. Exchanges the contents of two
registers.

• The LEA (Load Effective Address) instruction. Calculates a mem-
ory address and places it in an address register.

• The LINK instruction. Allocates a stack frame.

• The MOVE instruction. Transfers one register or memory location

to another.

• The MOVEM (Move Multiple) instruction. Transfers multiple regis-

ters to or from memory

• The MOVER (Move Peripheral) instruction. Transfers data to or

from an 8-bit peripheral.

• The MOVEQ (Move Quick) instruction. Loads a data register with

a constant.

• The PEA (Push Effective Address) instruction. Calculates a mem-
ory address, and pushes it onto the hardware stack.

• The SWAP instruction. Swaps the words in a data register.

• The UNLK (UNLinK) instruction. Deallocates a stack frame.

Integer Arithmetic Operations

Integer arithmetic instructions perform basic two's complement opera-

tions on binary data. This class of instructions includes:

• The ADD, ADDA, ADDI, ADDQ, and ADDX instructions. Used
for two's complement addition.

• The CLR instruction. Moves zero into an operand.

• The CMP CMPA, CMPI, and CMPM instructions. Compares two

quantities.
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• The DIVS and DIVU instructions. Perform signed and unsigned

integer division.

• The EXT instruction. Sign extends a byte to a word quantity or a

word to a long quantity.

• The MULS and MULU instructions. Used for signed and unsigned

multiplication operations.

• The NEC and NEGX operations. Form the two's complement of a

number.

• The SUB, SUBA, SUBI, SUBQ, and SUBX instructions. Used for

two's complement subtraction.

• The TAS (Test and Set) instruction. Used to synchronize multiple

processors.

• The TST instruction. Compares an operand to zero.

Logical Operations

The logical operation instruction group performs bit-wise Boolean oper-

ations on binary numbers. This class of instructions includes:

• The AND and AND! instructions. Perform a Boolean AND opera-

tion on two binary integers.

• The OR and OR! instructions. Perform a Boolean OR operation.

• The EOR and EORI instructions. Perform a Boolean exclusive OR
operation.

• The NOT instruction. Perform a one's complement operation.

Shift and Rotate Operations

The shift and rotate instructions perform arithmetic and logical shifts,

as well as rotates with and without an auxiliary Carry bit. This group

contains:

• The ASL and ASR instructions. Arithmetic left and right shift

operations.

• The LSL and LSR instructions. Logical left and right shift

operations.
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• The ROL and ROR instructions. Left and right rotates without an

auxiliary Carry bit.

• The ROXL and ROXR instructions. Left and right rotates through

an auxiliary Carry bit.

Bit Manipulation Operations

The bit-manipulation instructions operate on single bits within a byte.

This instruction class contains:

• The BTST instruction. Tests a single bit.

• The BSET instruction. Tests a single bit and then sets the bit.

• The BCLR instruction. Tests a single bit and then clears the bit.

• The BCHG instruction. Tests a single bit and then inverts (comple-

ments) the bit.

Binary Coded Decimal Instructions

The binary coded decimal (BCD) instructions manipulate numbers in

BCD format. This group contains:

• The ABCD instruction. Performs BCD add operations.

• The SBCD instruction. Performs BCD subtract operations.

• The NBCD instruction. Performs BCD negation.

Program Control Instructions

The program control instructions alter the instruction flow through a

program segment. This group contains:

• The Bcc instruction group of fifteen conditional-branch instruc-

tions. Conditionally alter the flow of instructions.

• The DBcc instruction group, consisting of sixteen looping-

primitive instructions.

• The Sec instruction group of sixteen conditional-set instructions.

Set a byte depending on the settings of the condition code.
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• The BSR and JSR subroutine call instructions.

• The RTS subroutine return instruction.

• The JMP absolute jump instruction.

• The RTR instruction. Restores the program counter and condition

codes from the stack.

System Control Operations

System control instructions alter the state of the 68000 hardware envi-

ronment.

Many of these instructions are "privileged," meaning that they require

that the 68000 be executing in supervisor mode. This instruction class

contains:

• The MOVE USP instruction. Allows a supervisor mode program

access to the user mode stack pointer.

• The RESET instruction. Resets external devices.

• The RTE instruction. Returns from an exception condition.

(Exceptions are described in Chapter 7.)

• The STOP instruction. Suspends instruction processing until an

external event occurs.

• The CHK and TRAPV instructions. These instructions detect cata-

strophic program errors.

• The TRAP group of sixteen instructions. Provide a method for a

user mode program to call a supervisor mode program.

PROGRAM DEVELOPMENT MECHANICS

The process of writing an assembly language program works something

like this:

1

.

Key in the program using a text editor. The disk file resulting from

this process is known as the assembly source file.

2. Transform the program into machine code using a program

called an assembler. The machine-code file produced by the

assembler is commonly called an object file. Most assemblers also
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produce a file that contains the instructions from the source file

along with the machine code produced (in hexadecimal). Such a

file is known as a listing file.

3. Some systems require that the object output of the assembler be

processed by a program known as a linker or linkage editor

before execution. For other systems, this step is not required.

Many large programs are split into separate source files, assem-

bled separately, and then combined with the linkage editor. The

final output of this process is a file that may be loaded into mem-
ory and executed. This file is commonly called a load file, execut-

able file, or a load module.

4. The load file produced by the assembler and linker is then loaded

into memory and executed.

Usually each of these steps is repeated many times. The file must be

edited many times to get it to assemble without errors. The assembled file

may not link properly necessitating more editing and assembling. Finally

the successfully linked file may not run properly What to do when this

happens?

An error in a program is known as a bug. Finding bugs in object pro-

grams is more of an art than a science. Fortunately there are tools that

make the task easier. The first of these is the age-old standby of printing

out values within the program by inserting a temporary printing code. The

second, and most valuable tool is the interactive debugger. This wonderful

program allows you to stop at certain points in the program and look at

the values that are currently in registers and memory Many debuggers

allow references to labels contained in the program source file.

Most systems that support assembly language development are

equipped with these tools in one form or another. The instructions on

how to use the tools that come with your system are usually contained in

the system manuals. For the remainder of this book, we will give

examples from two systems—UNIX and CP/M-68K.

Editing

Developing programs requires only a simple editor without word pro-

cessing capabilities such as word wrap, justification, and so on. Which
editor is best is a matter of personal preference. A screen-oriented editor

is preferred by most programmers.
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Editing a file on the UNIX and CP/M-68K systems starts with a command
like:

% ed filename.typ

A>ed filename. typ

where the % and A> represent the system prompt characters for UNIX
and CP/M-68K respectively Filename.typ is the name of the file to be

edited or created. Many editors preserve the original contents of the file in

a backup file, often named filename.bak. For UNIX and CP/M-68K, the

.typ field is usually .s.

Backups

Maintaining backup copies of source files is essential because of the possi-

bility of a hardware or software failure. While hardware failures are com-
paratively rare, they still occur from time to time. Software and media

failures are all too common. Power failures can also destroy disk files. There

is a bit of conventional engineering wisdom known as Murphy's Law:

If anything can go wrong, it will.

You will find that this law applies to programming as well. Most pro-

grammers keep two backup copies in case the machine crashes while

making a backup. (If this occurs, it is possible to destroy both the original

and the backup.) Recovery from such a disaster is extremely painful.

Unfortunately most people have to learn this lesson the hard way as Ben

Franklin said:

Experience is a dear school, but fools will learn at no other.

Don't be one of them! Back up your files!

Assembling

Assemblers come in a variety of different styles. Most assemblers take a

source file and produce an object file and a listing file. The command line

for invoking an assembler on UNIX and CP/M-68K is:

% as file.s

A>as68 -I -p file.s >file.lis

The UNIX assembler "as" creates file.o (the object file) from file.s (the

source file). The command given for CP/M-68K does the same, and also
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produces file.lis (the listing file). Some UNIX assemblers use a command
similar to the CP/M-68K command line to produce a listing file.

Source File Format

The source file that you input to the assembler consists of lines of text.

Each line in the source file may be classified as one of three things:

• A comment line. Comments in most 68000 assemblers are denoted

by placing an asterisk (*) as the first character on the line.

• A 68000 instruction. Instruction lines consist of an optional label,

followed by an instruction mnemonic, followed by one or more
operands. Spaces or tabs are required between the label, mne-

monic, and operand fields. A comma is used to separate mult-

iple operands. Most assemblers do not allow spaces between
operands.

• An assembler directive. Directives are a means of telling the

assembler how you want your program treated. For example,

the UNIX and CP/M assemblers have the following directives in

common:

a) .text. This directive specifies that the code that follows is to

be treated as machine instructions.

b) .data. This directive specifies that the code that follows is

to be treated as data.

c) .bss. This directive specifies that the code that follows

reserves uninitialized memory and has no particular initial

value. BSS code is not stored in the executable file. Proper

use of this directive can substantially reduce both disk stor-

age and load time for the final program.

d) .page. This directive causes the assembler to start a new
page on the listing file. Proper use of this directive can sub-

stantially increase program readability

Linking

After obtaining an error-free assembly, you may need to link the output

file in order to make it executable. Some UNIX systems allow you to exe-

cute the object output of the assembler (and some do not). CP/M-68K
requires the use of the linker.

The linker command for UNIX has the following syntax:

% Id -o thisfile flle.o
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The " - o thisfile" construct causes the output file to be named thisfile. The
same command on CP/M-68K has the following syntax:

A>lo68 -r -0 thisfile.68k file.

o

The -r switch causes the relocation information to be preserved.

This flag allows the program to run on any CP/M-68K system. The
"-0 thisfile.68k" construct causes the output file to be named thisfiie.68k.

Debugging

Typing the filename at the system prompt level causes the file to be exe-

cuted. But what if it doesn't work correctly? How do you figure out what
is wrong?

When something goes wrong, use the interactive debugger. Both the

UNIX and CP/M-68K systems have debugging programs that allow you to

interact with an executing program so that you can identify any problem
areas. Debuggers usually have the following features:

• The ability to select a program for debugging.

• The ability to examine and change the contents of a machine reg-

ister or a memory location.

• The ability to start execution at a desired location, and stop exe-

cution at one of several points (commonly called breakpoints).

• The ability to execute a single instruction at a time. This is com-
monly called tracing, because the Trace bit in the status register

provides this capability

In explaining the 68000 instruction set, we will make use of the CP/M-
68K debugger, DDT-68K. The original version of this debugger is called a

hex debugger because it lacks the ability to use labels from the source pro-

gram. A debugger that can use these labels is called a symbolic debugger.

A later version of DDT-68K provides symbolic capability. We will use the

following commands from DDT-68K:

• The Lxxxxx,yyyyy command. This causes memory locations

xxxxx through yyyyy to be displayed as 68000 instruction mne-
monics.

• The Dxxxxx,yyyyy command. This causes memory locations

xxxxx through yyyyy to be displayed in hex.
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The Sxxxxx command. This causes memory location xxxxx to be

displayed for possible modification. Pressing Return causes the

next location to be displayed. Typing a period causes the debug-

ger to prompt for the next command.

The G,xxxxx command. This starts program execution at the

location contained in the program counter and stops program

execution immediately before the instruction at xxxxx.

The T command. The next instruction Is executed, using the

Trace bit hardware mechanism.

The UNIX debugger is called sdb, and can be used in a similar fashion.

Example

Suppose that we wish to execute the source file shown in Listing 3.1

under CP/M-68K.

• text
************************************* 1

* This program adds the first
* five integers and stores the
* result in memory.
************************************* 1

start: move.w a. do Load first number
add.w b,dO
add.w edO
add.w d.dO
add.w e.dO
move.w dO.f Store answer
rts Return to CP/M
.data

a dew 1 Numbers to add
b dew 2

c dew 3

d dew 4
e dew 5

f dew
.end

Answer goes here

Listing 3.1 - The source file
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This program adds the first five integers and stores the result in memory.

Assume that the program has been entered into file test.s using the text

editor. We then assemble the file using the assembler (AS68) as follows:

A>as68 -I -p test.s >test.l

The assembler produces an object file test.o. The file "test.l" is shown in

Listing 3.2.

The first number on each line is the number of the line in the source

file, starting with one. The assembler reports errors by line number.

The second number is the hex offset at which the present line is assem-

bled. When added to the load address of the text, data, or bss segment (as

appropriate) this number yields the absolute memory address of the

instruction or data described by the line.

The third number in each line is the actual hex contents of the memory
location when the program is loaded into memory Addresses may not be

relocated to their final value until load time. The assembly listing reflects

addresses as they are known to the assembler.

The linker relocates all addresses to the values that they will have at

execution time. Later, when the program is loaded into memory it may be

1 00000000 .text
2 ****** ****************
3 * This program adds the first
4 * five integers and stores the
5 * result in memory

|

6 ******
7 00000000 303900000000 start: move.w a,dO Load first number
8 00000006 D07900000002 add .w b,dO
9 OOOOOOOC D07900000004 add.w CdO

10 00000012 D07900000006 add.w d,dO
11 00000018 D07900000008 add.w e,dO
12 OOOOOOIE 33C00000000A move.w dO,f Store answer
13 00000024 4E75 rts Return to CP/M
14 00000000 .data
15 00000000 0001 a dew 1 Numbers to add
16 00000002 0002 b dew 2

17 00000004 0003 c dew 3

18 00000006 0004 d dew 4
19 00000008 0005 e dew 5

20 OOOOOOOA 0000 f dew Answer goes here
21 OOOOOOOC .end

Listing 3.2 - The Listing file
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relocated yet again if the base address of the program does not match the

address to which it was linked. By the time the program begins execution,

however, all addresses are absolute.

The source line as it appears in the file comes next. Source lines that

begin with an asterisk {) are placed in the listing file as is. Such a line is

called a comment line. Comments serve only to help the human reader

understand the program.

Other lines consist of an optional label, an opcode or directive, and one

or more operands. Additional text on the line following the operands is

regarded as comments by the assembler. At least one space is required

between the end of the last operand and the beginning of the comment.

The leading asterisk is not required for a comment at the end of a line.

A label on a line establishes a symbolic name for a memory location. A
label must be the first word on a line, and must be terminated by a colon.

The label may then be referred to by instructions that reference memory
The memory locations a: through f: in Listing 3.2 illustrate this usage.

These labels are tags for the memory locations referenced by the pro-

gram's MOVE and ADD instructions.

We link the program as follows:

A>lo68 -r -o test.68k test.

The linker produces an executable file called test.68k. To run the pro-

gram under the debugger, we type:

A>ddt test. 68k

DDT-68K

Copyright 1982, Digital Research

text t>ase = 00000500 data base = 00000526 bss base = 00000532

text length = 00000026 data length = OOOOOOOC bss length = 00000000

base page address = 00000400 initial stack pointer = 0001 A2B8

This information indicates that the program is loaded into memory start-

ing at 500 hex (text base). The data section of the program begins at

address 526 hex (data base). From the assembly listing, we can see that

the text portion is 26 bytes long. We can now use the debugger to list out

the program in 68000 mnemonics with the I (el) command:

-1500.524

00000500 move $526, DO

00000506 add $528, DO

0000050C add $52A,D0
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00000512 add $52C, DO
00000518 add $52E,D0

0000051 E move DO, $530

00000524 rts

The data area is between addresses 526 and 532. The data base printed

out by DDT (526) and data length (Oc), when added together, produce the

first address beyond the data area (532). We can display the data area

with the Display Words (dw) command:

-dw526,532

00000526 0001 0002 0003 0004 0005 0000

The Trace (t) command is used to execute each instruction. DDT shows

the registers before the instruction is executed, as shown below:

PC -00000500 USP-0001A2B0 SSP- 00002000 ST-0000= >IM -0
D OOOOOODO 000000D1 000000D2 000000D3 000000D4 000000D5 000000D6 000000D7

A OOOOOOAO 000000A1 000000A2 000000A3 000000A4 000000A5 000000A6 0001 A2B0
move $526,DO
-t

PC = 00000506 USP = 0001A2B0 SSP-00002000 ST = 0000 = >IM -0
D 00000001 OOOOOODI 000000D2 000000D3 000000D4 000000D5 000000D6 O0OOOOD7
A OOOOOOAO 000000A1 000000A2 000000A3 000000A4 000000A5 000000A6 0001 A2B0
add $528, DO
-t

PC = 0000050C USP = 0001A2B0 SSP = 00002000 ST = 0000 = >IM =

D 00000003 OOOOOODI 000000D2 000000D3 000000D4 000000D5 000000D6 000000D7
A OOOOOOAO 000000A1 000000A2 000000A3 000000A4 000000A5 000000A6 0001 A2B0
add $52A,D0

-t

PC = 00000512 USP = 0001A2B0 SSP = 00002000 ST = 0000 = >IM =

D 00000006 OOOOOODI 000000D2 000000D3 000000D4 000000D5 000000D6 000000D7
A OOOOOOAO 000000A1 000000A2 000000A3 000000A4 000000A5 000000A6 0001A2B0

add $52C,D0

-t

PC = 00000518 USP = 0001A2BO SSP = 00002000 ST = 0000 = >IM =

D OOOOOOOA OOOOOODI 000000D2 000000D3 000000D4 000000D5 000000D6 000000D7
A OOOOOOAO 000000A1 000000A2 000000A3 000000A4 000000A5 000000A6 0001A2B0

add $52E,D0

-t

PC = 0000051E USP-0001A2B0 SSP = 00002000 ST = 0000 = >IM =

D OOOOOOOF OOOOOODI 000000D2 000000D3 000000D4 000000D5 000000D6 000000D7
A OOOOOOAO OOOOOOAl 000000A2 OOOOO0A3 000000A4 000000A5 000000A6 0001 A2B0
move DO.$530
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-t

PC = 00000524 USP = 0001A2B0 SSP = 00002000 ST = 0000= >IM =

D OOOOOOOF OOOOOODI 000000D2 000000D3 000000D4 000000D5 000000D6 000000D7

AOOOOOOAO 000000A1 000000A2 000000A3 000000A4 000000A5 000000A6 0001 A2B0
rts

Notice how the value of register DO changes as each number is added.

To make the actions of the instructions easier to identify, we will underline

registers that change in presenting examples. Just before returning to

CP/M, look at the answer in memory. (Location 530 hex corresponds to

the label f: in the assembly listing.)

-dw530,532

00000530 OOOF

-g
A>

INSTRUCTIONS

The rest of this chapter is devoted to presenting the details of the

Motorola 68000 instruction set. For ease of reference, the instructions are

listed in alphabetical order. For each instruction, the following items are

provided:

• A verbal description of what the instruction does.

• Which addressing modes are allowed. (Very few of the instruc-

tions allow all addressing modes.)

• What data sizes (byte, word, long) are allowed.

• Condition codes affected by executing the instruction.

• The layout of the machine code.

• Where possible, an example of how this instruction might be

used. We will use the debugger to illustrate the results of execut-

ing the instruction.

Effective Address Operands

Most instructions that reference memory do so by means of an effective

address operand. Effective address operands consist of a 3-bit mode field

and a 3-bit register field. These operands are discussed in detail in Chapter

2. The notation used in the instruction descriptions for an effective

address operand is <ea>. For each effective address operand in an

instruction, the instruction discussion will present a table of addressing

modes that is permitted with the operand.
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ABCD Instruction

The ABCD (Add BCD with extend) instruction adds two bytes in BCD
(Binary Coded Decimal) format. The destination operand is replaced with

the sum of the source and destination bytes.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No No No Yes No No

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

No No No No No No No

There are only two forms of this instruction:

1. Add data register to data register (Dn addressing modes). The

low-order bytes of two data registers are added and the result

stored in the destination register.

2. Add memory to memory This form of the instruction is designed

for adding multiple bytes in memory The only valid addressing

mode is - (An). Since the 68000 stores BCD data with the highest

byte first, one must start at the highest address and work down to

add multibyte quantities. (Hence the use of pre-decrement

addressing.) Each instruction sets the X-bit if there was a carry out

of the most significant BCD digit in the byte. Then the X-bit is

added into the next byte.

Data Sizes: Byte only

Condition Codes Affected:

X Set by carry out of the most significant BCD digit.

N Undefined.

Z Cleared if the result is not zero. Unchanged otherwise.
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V Undefined.

C Set by carry out of the most significant BCD digit.

The Z-bit is cleared if the result was not zero. Not setting the bit when the

result of the present byte is zero allows the Z-bit to be accurate after a

series of ABCD instructions is executed. The Z-bit must be set initially in

such a case. (Comparing a register to itself is an easy way to set the Z-bit.)

The N and V bits are undefined as a result of this instruction.

Assembler Syntax: ABCD Dx,Dy

ABCD - (Ax), - (Ay)

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1

1 1

D.Reg

1 1

1 F

1 1

S. Reg.

1 1

The D. Reg and S. Reg fields specify the destination and source register

numbers. If the F (format) bit is 0, then the registers are data registers. If

the F bit is a 1, then the registers are address registers and the pre-

decrement addressing mode is used.

Example:

This example adds two values in data registers:

PC = 0000050C USP = 00015980 SSP = 0007BF08 ST = 0000= >IM=0
D 00000099 00000001 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
abcd.b D1,D0

-t

PC = 0000050E USP = 00015980 SSP-0007BF08 ST - 0011 = >IM«0 EXT CRY
D 00000000

A 00000000

00000001 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 0001598C

Since we added 1 to 99, the result is zero, with the EXT (extend) bit set

in the status register. The next example adds two two-byte BCD numbers

in memory The addresses in registers AO and Al point to the ends of the

BCD numbers.

PC = 0000051E USP = 0001598C SSP-0007BF08 ST>:0000= >IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A0000082A 0000082C 00000000 00000000 00000000 00000000 00000000 0001 598C
abcd.b -(A0),-(A1)
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Show the operands before the first add:

-dw82e,82c

00000826 0099 0001

-t

PC -00000520 USP = 0001598C SSP = 0007BF08 ST = Oan = >IM = EXTCRY
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000829 0000082B 00000000 00000000 00000000 00000000 00000000 0001 598C

abcd.b -(A0),-(A1)

Now look at the operands:

-dw828,82c

00000828 0099 0000

-t

PC = 00000522 USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000828 0000082A 00000000 00000000 00000000 00000000 00000000 0001 598C

Now look at the results:

-dw828,82c

00000828 0099 0100

This example adds 99 to 1 to become 100. (The second operand is

destroyed.) The memory displays show exactly what happens at each step

of the process. Notice how the Extend bit gives the carry between the two

add operations.
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ADD Instruction

The ADD (Add binary) instruction adds two operands together and
stores the result in the destination operand. There are two forms of this

instruction:

1

.

Add an effective address operand to a data register.

2. Add a data register to an effective address operand.

Addressing Modes Allowed:

All addressing modes except SR and CCR are allowed when the effec-

tive address specifies a source operand:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes Yes Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes Yes No No

When the effective address field is the destination, then the following

addressing modes are allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

No No Yes Yes Yes Yes Yes

x.w X.I x(Pq x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Using a data register as a destination requires the register destination

form of the instruction.
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Data Sizes: byte, word, long

Using an address register as the source is valid only for word and long

data lengths.

Condition Codes Affected:

X Set by the carry-out of the most significant bit.

N Set if high-order bit of result was 1.

Z Set if result was zero.

C Set by the carry-out of the most significant bit.

V Set if operation resulted in overflow condition.

Assembler Syntax: ADD Dx, <ea>
ADD <ea>,Dx

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 Register

1 1

D Size

1

1 1

Effective

1 1

Address

1 1

•*- Mode -*• *- Reg. -

The Register field gives the data register that must be one of the oper-

ands. The D-bit is if the Register field is the destination operand. The D-

bit is 1 if the effective address is the destination.

The Size field is 00 for byte, 01 for word, and 10 for long operands.

Example:

PC = 00000530 USP = 0001598C SSP = 0007BF08 ST = 0000= >IM =

D OOOOFFFF OOOOFFFF 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
add $82C,D0

Examine the Memory Operand:

-dw82c,82e

0000082C 0001

-t

PC = 00000536 USP = 0001598C SSP = 0007BF08 ST = 0015 = >IM = EXT ZER CRY
D 00000000 OOOOFFFF 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
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Notice that the result of adding - 1 and 1 is zero. (This was a word

operation.) The Z-bit was set by this operation. We will now add the same

two numbers with an ADD.L instruction.

add. I $82E,D1

Examine the Memory Operand:

-dl82e.832

0000082E 00000001

-t

PC = 0000053C USP = 00015980 SSP = 0007BF08 ST = 0000= >IM =

D 00000000 00010000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
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ADDA Instruction

The ADDA instruction does a binary ADD operation to an address reg-

ister. In order to allow address computations to be freely intermixed with

data operations, this instruction does not affect the condition codes.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes Yes Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes Yes No No

The effective address must be the source operand.

Data Sizes: word, long

The ADDA operation always affects all 32 bits of the destination address

register.

Condition Codes Affected: None

Assembler Syntax: ADDA <ea>,An

Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1

1 1

Register

1 1

S 1 1

1 1

Effective

1 1

1 1

Address

1 1

*-Mode- *- Reg. -

The Register field gives the address register that is to be used as the destina-

tion operand. The S-bit is 1 for long operands and for word operands.
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Example:

PC = 00000548 USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A OOOOFFFF 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
adda $830,AO

-dw830,832

00000830 0001

-t

PC = 0000054E USP = 00015980 SSP = 0007BF08 ST = 0000= >IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00010000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

Notice that the operation size was a word, but the result was a long.
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ADDI Instruction

The ADDI instruction adds a constant to an effective address operand.

The source operand is always immediate.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

X.W X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long

Condition Codes Affected:

X Set on carry out of high-order bit.

N Set if high bit of result is set.

Z Set if result is zero.

C Set on carry out of high-order bit.

V Set on overflow condition.

Assembler Syntax: ADDI #x,<ea>

Most assemblers automatically choose the ADDI instruction if the

source operand of an ADD instruction is immediate.
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Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 Size

1

1 1

Effective

1 1

Address

1 1

-^Mode- -Reg.-

1 1
1 1—

I

1 r

Word data (16 bits)

J I I I I I L

-|—I—I—I—I—I

—

r

Byte data (8 bits)

J I I I l__l L

T 1 1 1—

I

1 1 1—

I

1
1 1

—

\

1 r

Long data (32 bits, including previous word)

J I 1 I I I I I I I I I I I L

Size is 00 for byte operations, 01 for word operations, and 10 for long

operations.

Example:

PC - 00000560 USP - 0001 598C SSP - 0007BF08 ST . 0000 > > IM -

D00007FFF OOOOFFFF 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
addi.l #$10.D0

-t

PC - 00000566 USP = 0001 598C SSP « 0007BF08 ST - 0000 - > IM -

D 0000800F OOOOFFFF 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This instruction adds 10 hex to the contents of register DO.L.

-t

PC = 0000056A USP = 0001 598C SSP - 0007BF08 ST - OOOF = > IM - NEG ZER OFL CRY
D 0000800F OOOOFFFF 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 S98C
addi #$10. D1

-t

PC - 0000056E USP - 0001 598C SSP - 0007BF08 ST - 0011 - > IM - EXT CRY
D0000800F OOOOOOOF 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This instruction adds 10 hex to register D1.W. (Note that - 1 + 10 - F.)
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ADDQ Instruction

The ADDQ instruction adds a three-bit immediate value to an effective

address operand. This allows adding a small number to a register or mem-

ory address using a small, fast instruction.

Addressing Modes Allowed:

Dn An (An) (An)-H -(An) x(An) x(An,xr.s)

Yes Yes Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long

When an address register is used as the destination, only word and long

sizes are allowed.

Condition Codes Affected:

X Set on carry-out of high-order bit position.

N Set if high-order bit of result is set.

V Set on overflow.

Z Set if result is zero.

C Set on carry-out of high-order bit position.

No condition codes are affected if an address register is used as the des-

tination operand.

Assembler Syntax: ADDQ #<data>,<ea>

#<data> is a constant number between 1 and 8.
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Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 Data Size

1

1 1

Effective

1 1

Address

^Mode — - Reg. -*

Data is a three-bit immediate field, with 000 representing 8, 001-1 1 1 rep-

resenting 1-7. Size is 00 for a byte operation, 01 for a word, and 10 for a

long operation.

Example:

PC = 00000580 USP = 0001598C SSP = 0007BF08 ST = 0000 = >IM =

D 00007FFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
addq.l #$1.D0

-t

PC = 00000582 USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D 00008000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This example adds 1 to register DO.
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ADDX Instruction

The ADDX (ADD eXtended) instruction provides multiple precision

ADD operands. Integers of any length can be added using the ADD and

ADDX instructions. This makes it possible to represent numbers much
larger than the 32-bit longword allows.

There are two forms of this instruction:

1

.

Add a data register to a data register.

2. Add a memory location to a memory location. The -(An)

addressing mode must be used for both the source and destina-

tion in this form of the instruction.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No No No Yes No No

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

No No No No No No No

Data Sizes: byte, word, long

Condition Codes Affected:

X Set on carry-out of high-order bit.

N Set if result was negative.

Z Cleared if result is not zero. Unchanged otherwise.

C Set on carry-out of high-order bit.

V Set on overflow condition.

The Z-bit is not set if the result was zero. It is cleared if the result was

not zero. This property of the instruction allows the Z bit to correctly indi-

cate the result of a muitiprecision addition operation. The Z-bit must be

set before the ADD begins, however. (This can be done with a MOVE to

CCR, or by comparing a register to itself. The latter instruction is two bytes

shorter.)
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Assembler Syntax: ADDX Dy,Dx

ADDX - (Ay), - (Ax)

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 3 2

1 1 1

1 1

Reg. Rx

1 1

1

1

Size

1

T

1 1

Reg. Ry

1
1

The Reg. Rx and Reg. Ry fields contain the destination and source regis-

ter numbers, respectively The size field is 00 for a byte operation, 01 for a

word operation, and 10 for a long operation. The T-bit (type) is for the

data register to data register form of the instruction. The Reg. Rx and Reg.

Ry fields identify data registers in this case. The T-bit is 1 for the memory
to memory form of the instruction. The Rx and Ry fields identify the

address registers used by this form of the instruction.

Example:

This example adds the 64-bit quantity in (D0,D1) to the 64-bit quantity

in (D2,D3). The even numbered registers contain the high order part of

the number.

PC = 00000596 USP = 0001598C SSP
D 00000000 FFFFFFFF 00000000

A 00000000 00000000 00000000

add. I D1,D3

-t

PC = 00000598 USP = 0001598C SSP
D 00000000 FFFFFFFF 00000000

A 00000000 00000000 00000000

addx.l D0,D2

-t

PC = 0000059A USP = 0001598C SSP
D 00000000 FFFFFFFF 00000001

A 00000000 00000000 00000000

= 0007BF08 ST = 0000

FFFFFFFF 00000000

00000000 00000000

= >IM=0
00000000 00000000 00000000

00000000 00000000 0001 598C

= 0007BF08 ST = 0019

FFFFFFFE 00000000

00000000 00000000

= 0007BF08 ST = 0000

FFFFFFFE 00000000

00000000 00000000

= >IIVI = EXT NEG CRY
00000000 00000000 00000000

00000000 00000000 0001 598C

= >IM =

00000000 00000000 00000000

00000000 00000000 0001 598C

The quantity (0,FFFFFFFF) and (0,FFFFFFFF) when added together

become (1, FFFFFFFE). The low-order registers (D1 and D3) were added

first. Although the low-order registers both contained negative numbers,

the final result was positive.



68000 Instruction Set 95

AND Instruction

The AND instruction performs a bit-wise AND operation. There are two
forms of this instruction:

1. AND the contents of an effective address with a data register,

leaving the results in the data register.

2. AND the contents of a data register and an effective address,

leaving the results in the effective address.

Addressing Modes Allowed:

Effective address as Source:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

X.W X.I x(PO x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes Yes No No

Effective address as Destination:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

No No Yes Yes Yes Yes Yes

X.W X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long
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Condition Codes Affected:

X Not affected.

N Set if most significant bit of result is set. Cleared otherwise.

Z Set if result is zero. Cleared otherwise.

C Always cleared.

V Always cleared.

Assembler Syntax: AND <ea>,Dn
AND Dn,<ea>

Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 Register D Size

1

1 1

Effective

1 1

Address

1 1

•^ Mode -» *- Reg. -

The Register field specifies the Data register used by the instruction,

regardless of whether the register is the source or the destination. The D-

bit determines the direction of the instruction. If the D-bit is zero, then the

Data register is the destination. If the D-bit is one, then the effective

address operand is the destination. The Size field specifies the data size:

00 for byte, 01 for word, and 10 for long.

Example:

This example shows the machine operation when two data registers are

ANDed together.

PC = 000005AC USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D AAAAAAAA 01234567 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00015980
and. I 01,00

-t

PC=000005AE USP = 0001598C SSP = 0007BF08 ST = 0000= >IM =

D 00220022 01234567 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

The long quantities AAAAAAAA and 01234567 are ANDed to become
00220022.
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ANDI Instruction

The ANDI instruction performs a bit-wise AND between an immediate

operand (always the source) and an effective address operand (always the

destination).

Addressing Modes Allowed:

Destination only Source is always immediate.

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No Yes Yes

Using the status register (SR) as the destination requires that the 68000

executes in Supervisor state. Attempting to execute this form of the

instruction in User mode causes a privilege violation exception. (See

Chapter 7 on Exception Programming.)

Data Sizes: byte, word, long

Condition Codes Affected:

X Not affected.

N Set if the high-order bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

C Always cleared.

V Always cleared.

The condition codes are cleared according to bits 5-0 of the operand if

either the status register (SR) or the condition code register (CCR) is used

as the destination. The normal condition code settings do not apply for

these addressing modes.

Assembler Syntax: ANDI #<data>,<ea>



98 Programming the 68000

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1

I

Size

1

I 1 1 1 1

Effective Address

1 1 II
— Mode— -^ Reg. —

-|—1—I—I—I—

r

Word data: 1 6 bits

I I I I I I

Byte Data: 8 bits

I I I I L

1 1 1 1—I

1 1 1—I

1 1 1—I

1 r

Long data: 16 bits plus previous word

J I I I I I I I I I I I I I L

The Size field determines the data size used by the instruction. Size is 00

for byte operation, 01 for word, and 10 for long. Byte and word opera-

tions are followed by a word of immediate data. (Byte operations use only

the low eight bits of this word.) Long operations are followed by two

words (32 bits) of immediate data.

Examples:

The first example ANDs an immediate quantity with a data register.

PC = 000005BA USP = 00015980 SSP = 0007BF08 ST = 0000= >IM =

D 55555555 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
and! #$1234, DO
PC = 000005BE USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D 55551014 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

The next example shows the effect of ANDing to the condition code

register (CCR). First, we set all the condition codes using the MOVE to

CCR instruction:

PC = 000005BE USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D 55551014 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

move #$1F,CCR

-t
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PC = 0005C2 USP = 01598C SSP = 07BF08 ST = 001F= >IM = EXT NEG ZER OFL CRY
D 55551014 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

Next, we AND the condition code register with 1 1 hex. This leaves the

X and C bits set, and clears the other condition codes.

andi.b #$11,ccr

-t

PC = 000005C6 USP = 0001598C SSP = 0007BF08 ST = 0011 = >IM = EXT CRY
D 55551014 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
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ASL Instruction

The ASL instruction performs an arithmetic left shift on a data register or

memory operand. There are three forms of this instruction:

1. Shift a data register to the left by a constant contained in the

instruction. Shifts from one to eight bits can be accomplished

using this form of the instruction.

2. Shift a data register to the left by the number of bits contained in

another data register.

3. Shift a memory word left by one bit only

Addressing Modes Allowed: Memory form only

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

No No Yes Yes Yes Yes Yes

x.w X.I x(PC) x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long

Data size is restricted to word for the form of the instruction that is in

memory

Condition Codes Affected:

X Set according to the last bit shifted out of the operand. Unaffected

if the shift count is zero. (This is possible only in the second form

of the instruction.)

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

C Set according to the last bit shifted out of the operand. Unaffected

if the shift count is zero.

V Set if the most significant bit is changed at any time during the shift

operation. Cleared otherwise.
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Assembler Syntax: ASL #<count>,Dy
ASL Dx,Dy

ASL <ea>

Machine Code Format:

Data Register as destination:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1

T—T
Immed.

1 1

1

1 '

Size

1

T

1 1

Register

1 1

Memory location as destination:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1 1

1 1

Effective

1 1

1 1

Address

1 1

•^Mode- - Reg. -*

The T-field determines the form of the register-destination form of the

instruction. If T is 0, then the Immediate field contains the shift count, with

000 binary representing a count of 8. If T is 1, then the register number
that contains the shift count is contained in the Immediate field.

Example:

PC = 000005D2 USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

01234567 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
asl #8,00

-t

PC = 000005D4 USP = 0001 598C SSP = 0007BF08 ST = 0013 = > IM = EXT OFL CRY
01236700 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

Notice that the upper half of the register destination is unchanged when a

word shift is performed. The sign bit of the word is also changed during

the shift, resulting in an overflow condition.
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PC = 000005E0 USP = 0001 598C SSP = 0007BF08 ST - 0000 = > IM =

D 01234567 00000010 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

asl.l 01,00

-t

PC-000005E2 USP- 0001 598C SSP-0007BF08 ST -0013- >IM-0 EXT OFL CRY
45670000 00000010 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This is a long shift with the count specified in a register.
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ASR Instruction

The ASR instruction performs an arithmetic right shift on a data register

or memory operand. There are three forms of this instruction:

1. Shift a data register to the right by a constant contained in the

instruction. Shifts from one to eight bits can be accomplished

using this form of the instruction.

2. Shift a data register to the right by the number of bits contained

in another data register.

3. Shift a memory word right by one bit only

Addressing Modes Allowed: Memory form only

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

No No Yes Yes Yes Yes Yes

x.w X.I x(PC) x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long

Data size is restricted to word for the form of the instruction that is in

memory

Condition Codes Affected:

X Set according to the last bit shifted out of the operand. Unaffected

if the shift count is zero. (That is possible only in the second form

of the instruction.)

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

C Set according to the last bit shifted out of the operand. Cleared if

the shift count is zero.

V Always cleared.
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Assembler Syntax: ASR #<count>,Dy
ASR Dx,Dy

ASR <ea>

Machine Code Format:

Data Register as destination:

Bit 15 14 13 12 11 10 9 7 6 5 1

1 1 1

1 1

Immed.

1 1

1

Size

1

T

1 I

Register

1 1

Memory location as destination:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1

' 1

Effective

1 1

1 1

Address

1 1

-Mode- - Reg. -

The T-field determines the form of the register-destination form of the

instruction. If T is 0, then the Immediate field contains the shift count, with

000 binary representing a count of 8. If T is 1, then the register number
which contains the shift count is contained in the Immediate field.

Example:

PC = 000005EE USP = 0001 598C SSP = 0007BF08 ST = 0000 = >IM =

D 01234567 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
asr #e,D0

-t

PC = 000005F0 USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D 01230045 00000000 00000000 00000000 00000000 00000000 00000000 00000000

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This instruction shifts register DO to the right by 8. The upper half of the

register is unaffected because the operation is a word operation.

PC = 000005FC USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D 81234567 00000010 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00015980
asr.l Dl.DO
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-t

PC = 000005FE USP = 0001598C SSP = 0007BF08 ST = 0008 = >IM = NEG
D FFFF8123 00000010 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

Notice the sign extension due to the upper bit of register DO being propa-

gated by the right shift.
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Bcc (Conditional Branch) Instructions

Branch instructions are a vital part of machine-language programs. They
provide a way of interrogating the condition codes and executing two c
more alternate sets of instructions based on the results of the interroga-

tion. The Bcc group of instructions is the method by which the 68000 per-

forms this function. There are fifteen combinations of the condition codes

that may be tested. Each of these has a two-letter mnemonic that takes the

place of the cc in Bcc.

The permissible branch instructions are:

BCC Branch if the C-bit (carry) is clear.

BCS Branch if the C-bit (carry) is set.

BEQ Branch on EQual. This instruction branches if the Z (Zero) bit

is set.

BGE Branch on Greater than or Equal. This instruction branches if

the N (negative) and V (overflow) bits are either both set or

both clear. BGE is used for two's complement binary

numbers.

BCT Branch on Greater Than. This instruction branches if

• The N and V bits are both set AND the Z-bit is clear, or,

• The N, y and Z bits are all clear.

BHI Branch on Higher than. This instruction branches if the C
and Z bits are both clear. BHI is similar to BGT, except it is

used for unsigned numbers.

BLE Branch on Less than or Equal. This instruction branches if

• The Z-bit is set, or,

• The N-bit is set AND the V-bit is clear, or,

• The N-bit is clear AND the V-bit is set.

The BLE instruction is used for two's complement binary

numbers.

BLS Branch on Lower or Same. This instruction branches if either

the C or Z bits are set. BLS is similar to BLE, except it is used

for unsigned numbers.

BLT Branch on Less Than. This instruction branches if

• The N-bit is set and the V-bit is clear, or,

• The N-bit is clear and the V-bit is set.

BMI This instruction branches if the N-bit is set.
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BNE

BPL

BVC

BVS

BRA

Branch on Not Equal. This instruction branches if the Z-bit is

clear.

Branch on Plus. This instruction branches if the N-bit is clear.

Branch on V Clear. This instruction branches if the V-bit is

clear, indicating no overflow.

Branch on V Set. This instruction branches if the V-bit is set,

indicating overflow.

Branch Always. This instruction always branches, regardless

of the setting of the condition codes.

The Condition Code Summary is shown in Table 3.1.

Condition Codes Branch Instructions That Succeed

N Z V C BRA BHI BLS BCC BCS BNE BEQ BVC BVS BPL BMI BCE BLT BCT BIE

« « X X X X

1 X X X X X X

10 X X X X X X

11 X X X X X

10 X X X X X

10 1 X X X X X

110 » X X X X

111 X X X X X X

10 « X X X X

10 1 « X X X X

10 10 « X X X X X

10 11 « X X X X X

110 « X X X X X

110 1 « X X X X X

1110 X X X X X X

1111 X X X X X X

Table 3.1 - Condition Code Summary
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Addressing Modes Allowed:

There is a special addressing mode for branch instructions. Branches

can either have a byte or word displacement that is sign extended to a

long and added to the PC (Program Counter) to perform the branch. (This

is done only if the condition is satisfied.)

Data Sizes: byte, word

Condition Codes Affected: None

Assembler Syntax: Bcc.S < label > Byte displacement

Bcc.W < label > Word displacement

< label > is a label contained in the instruction area of the program

(.text area on UNIX and CP/M-68K). The .S and .W suffixes are used to

denote the two possible displacement sizes (short and word). Many
assemblers perform this selection automatically

Machine Code Format:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
1

1 1

1 1 1

Condition

1 1 1

1 1 1 1 1 1 1

8-bit displacement

1 1 1 1 1 1 1

"~i—I—I—I—I—I—I—I—I—I—I—I—

r

16-bit displacement if 8-bit displacement -

-J I I I I I I I I I I I L

The Condition is a four-bit encoding of the branch condition. The con-

ditions are shown in Table 3.2.

The combination (XX)1 for condition is used to denote the BSR (Branch

to Subroutine) instruction, rather than a conditional branch.

The 8-bit displacement field is an 8-bit field that gives a two's comple-

ment number to be added to the PC if the branch is successful. The PC
always contains the address of the word that follows the first word of the

branch instruction. If the 8-bit displacement is zero, then the word follow-

ing the branch instruction contains a 16-bit displacement to be added to

the PC.

One-word (8-bit) displacements give a branch range of - 1 28 to + 1 26

bytes away from the branch instruction. With a 16-bit displacement, this

range is expanded to - 32768 to + 32766 bytes. The displacement must

always be even. (Instructions must begin on a word boundary)
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Condition Instruction Condition Instruction

0000 BRA 1000 BVC
0001 (NONE) 1001 BVS

0010 BHI 1010 BPL

0011 BLS 1011 BMI

0100 BCC 1100 BGE
0101 BCS 1101 BLT

0110 BNE 1110 BCT
0111 BEQ 1111 BLE

Table 3.2 - Condition and corresponding instruction

A one-word (8-bit displacement) branch to the next instruction is impos-

sible. The displacement would have to be zero, and the next word (i.e.,

the first word of the next instruction) would be taken as a 16-bit branch

offset. The Bcc instruction cannot be configured to yield a one word no

operation (an instruction that does nothing).

Example:

PC = 00000606 USP = 0001598C SSP = 0007BF08 ST = 0000= >IM =

D 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000
beq $60A

-I606,60e

00000606 beq $60A

00000608 moveq #$FF,D0

0000060A bne $60E

0000060C moveq #$FE,DO

0000060E nop

00000000

00000000

00000000

0001 598C

In this segment of sample code, there are two conditional branches, a

BNE and a BEQ. The BEQ will not be taken, since the Z-bit is not set at the

beginning. Thus, the first MOVEQ instruction will be executed. The Z-bit

will remain clear as a result of this instruction. The BNE will be taken, and

register DO will have a value of FFFFFFFF
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-t

PC = 00000608 USP = 0001 598C SSP
D 00000000 00000000 00000000

A 00000000 00000000 00000000

moveq #$FF,DO

-t

PC = 0000060A USP = 00015980 SSP
D FFFFFFFF 00000000 00000000

A 00000000 00000000 00000000

bne $60E

-t

PC = 0000060E USP = 0001598C SSP
D FFFFFFFF 00000000 00000000

A 00000000 00000000 00000000

= 0007BF08 ST = 0000

00000000 00000000

00000000 00000000

0007BF08 ST = 0008

00000000 00000000

00000000 00000000

0007BF08 ST = 0008

00000000 00000000

00000000 00000000

= >IM =

00000000 00000000

00000000 00000000

= >IM = NEG
00000000 00000000

00000000 00000000

= >IM = NEG
00000000 00000000

00000000 00000000

00000000

0001598C

00000000

0001 598C

00000000

0001 598C

The next example illustrates an anonnaly of the 68000 instruction set.

The CMP instruction is used to set the condition codes as if the two oper-

ands were subtracted. The operands remain unaffected. However, the

comparison CMP D0,D1 followed by a BGT instruction will branch if reg-

ister D1 is greater than register DO (i.e., the operands of the compare

instruction must be read backwards).

PC = 00000616 USP = 0001598C SSP = 0007BF08 ST = 0000= >IM =

D FFFFFFFF 00000001

A 00000000 00000000

cmp.l DO.DI

-1616,620

00000616 cmp.l D0,D1

00000618 bgt $61C
0000061 A addq #$2,D2

0000061 C bhi $620

0000061 E addq #$1,02

00000620 nop

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

0001 598C

In this code segment, DO (-1) and D1 (1) are compared. If D1 is

greater than DO (and it is), the first ADDQ instruction will be skipped. The

BHI instruction is the unsigned version of a BGT. In this case, - 1 (actually

2'^ - 1, or about 4 billion) is greater than 1, so the branch will not be

taken. (Since we skipped the first ADDQ instruction, the condition codes

at the time of executing the BHI are the result of the CMRL instruction.)

Register D2 will have a value of 1

.
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-t

PC-00000618 USP = 0001598C SSP
D FFFFFFFF 00000001 00000000

A 00000000 00000000 00000000

bgt $61C

-t

PC = 00000610 USP = 00015980 SSP
D FFFFFFFF 00000001 00000000

A 00000000 00000000 00000000

bhi $620

-t

P0 = 0000061 E USP = 0001 5980 SSP
D FFFFFFFF 00000001 00000000

A 00000000 00000000 00000000

addq #$1,D2

-t

P0 = 00000620 USP = 00015980 SSP
D FFFFFFFF 00000001 00000001

A 00000000 00000000 00000000

= 0007BF08ST = 0001

00000000 00000000

00000000 00000000

= >IM = 0ORY
00000000 00000000

00000000 00000000

0007BF08 ST = 0001

00000000 00000000

00000000 00000000

= 0007BF08ST = 0001

00000000 00000000

00000000 00000000

= >IM = 0ORY
00000000 00000000

00000000 00000000

= >IM = 0ORY
00000000 00000000

00000000 00000000

= 0007BF08 ST = 0000

00000000 00000000

00000000 00000000

= >IM =

00000000 00000000

00000000 00000000

00000000

00015980

00000000

0001598C

00000000

00015980

00000000

00015980
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BCHG Instruction

The BCHG (test a Bit and CHanGe) instruction inverts a single bit in an

effective address operand. The Z-bit is set according to the state of the bit

before the inversion.

The bit number is contained either in a register or in an immediate field

inside the instruction itself. The operation is restricted to long data for a

data register destination, and to byte data for memory locations. Bits are

numbered from 0, with bit being the least significant bit in a byte (or

long).

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PO x(PC,xr,s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, long

Condition Codes Affected:

X Not affected.

N Not affected.

Z Set if the bit was zero before being inverted. Cleared otherwise.

C Not affected.

V Not affected.

Assembler Syntax: BCHG Dn,<ea>

BCHG #<data>,<ea>
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Machine Code Format:

Bit Number Dynamic:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1

Register

1 1

1 1

1 1

Effective

1 1

1 1

Address

1 1

^Mode-* - Reg. -

Bit Number Static:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1

1 1 1 1 1

Effective Address

1 1 II
•^ Mode -* -^ Reg. -

1 1

llllllll

1 1

1 1 1 1

Bit Number
1 1 1 1

The Register field indicates the data register in which the bit number
resides for the Bit Number Dynamic form of the instruction. In the Bit

Number Static case, bits 5-7 of the extension word are ignored for data

register destinations. For memory locations, bits 4 and 3 are also ignored.

(Bit numbers in a long range from 0-31, and in a byte from 0-7.)

Example:

PC = 00000628 USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
bchg #$0,D0

-t

PC = 0000062C USP = 0001 598C SSP = 0007BF08 ST = 0004= >IM = ZER
D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This example inverts bit of register DO. The Z-bit is set after the

instruction, indicating that the bit was clear before the instruction.
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BCLR Instruction

The BCLR (test a Bit and CLeaR) instruction clears a single bit in an

effective address operand. The Z-bit is set according to the state of the bit

before the instruction.

The bit number is either contained in a register, or in an immediate field

inside the instruction itself. The operation is restricted to long data for a

data register destination, and to byte data for memory locations. Bits are

numbered from 0, with bit being the least significant bit in a byte (or

long).

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, long

Condition Codes Affected:

X Not affected.

N Not affected.

Z Set if the bit was zero before being cleared. Cleared otherwise.

C Not affected.

V Not affected.

Assembler Syntax: BCLR Dn,<ea>

BCLR #<data>,<ea>
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Machine Code Format:

Bit Number Dynamic:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1

Register

1 1

1 1

1 1

Effective

1 1

1 1

Address

1 1

•^Mode-* -Reg.-

Bit Number Static:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1

1 1 1 1 1

Effective Address

1 1 II
— Mode -* — Reg. -*

1 1

////////

1 1

I'll
Bit NumJDer

1 1 1 1

The Register field indicates the data register in which the bit number

resides for the Bit Number Dynamic form of the instruction. In the Bit

Number Static case, bits 5-7 of the extension word are ignored for data

register destinations. For memory locations, bits 4 and 3 are also ignored.

(Bit numbers in a long range from 0-31, and in a byte from 0-7.)

Example:

PC = 00000632 USP = 0001598C SSP = 0007BF08 ST = 0000= >IM =

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
bclr #$0,D0

-t

PC = 00000636 USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This instruction clears bit of register DO. The Z-bit is not set after the

instruction, indicating that the bit was set before the instruction.
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BSET Instruction

The BSET (test a Bit and SET) instruction sets a single bit in an effective

address operand. The Z-bit is set according to the state of the bit before

the instruction.

The bit number is either contained in a register or in an immediate field

inside the instruction itself. The operation is restricted to long data for a

data register destination, and to byte data for memory locations. Bits are

numbered from 0, with bit being the least significant bit in a byte (or

long).

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PO x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, long

Condition Codes Affected:

X Not affected.

N Not affected.

Z Set if the bit was zero before being set. Cleared otherwise.

C Not affected.

V Not affected.

Assembler Syntax: BSET Dn,<ea>

BSET #<data>,<ea>
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Machine Code Format:

Bit Number Dynamic:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Register

1 1

1 1 1

1 1

Effective

1 1

1 1

Address

1 1

^Mode-» -Reg.-

Bit Number Static:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
1 1 1

1 1 1 1 1

Effective Address

1 1 II
- Mode -» *- Reg. -

1 1

////////

1 i

1 1 1 1

Bit Number
1 1 1 1

The Register field indicates the data register in which the bit number

resides for the Bit Number Dynamic form of the instruction. In the Bit

Number Static case, bits 5-7 of the extension word are ignored for data

register destinations. For memory locations, bits 4 and 3 are also ignored.

(Bit numbers in a long range from 0-31, and in a byte from 0-7.)

Example:

PC = 00000644 USP = 0001598C SSP = 0007BF08 ST = 0000= >IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
bset #$0.D0

-t

PC-00000648 USP = 0001598C SSP -0007BF08 ST-0004= >IM = ZER
D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This instruction sets bit of register DO. The Z-bit is set after the instruc-

tion, indicating that the bit was clear before the instruction.
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BSR Instruction

The BSR (Branch to SubRoutine) instruction places the address of the

next instruction to be executed on top of the stack. A displacement is then
added to the PC register (Program Counter), and execution continues at

that address. For the purposes of the addition, the PC points to the word
that follows the first word of the BSR instruction.

Addressing Modes Allowed:

There is a special addressing mode for branch instructions. Branch
instructions can either have a byte or word displacement that is sign

extended to a long and added to the PC (Program Counter) to perform
the branch.

Data Sizes: byte, word

Condition Codes Affected: None

Assembler Syntax: BSR.S < label > Byte displacement

BSR.W < label > Word displacement

< label > is a label contained in the instruction area of the program
(.text area on UNIX and CP/M). The .S and .W suffixes are used to denote
the two possible displacement sizes (short and word). Many assemblers

perform this selection automatically

Machine Code Format:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
1 1 1

1 1 1 1 1 I r

8-bit displacement

1 1 1 1 1 1 1

"~i
I 1 I I

I
—I

1 1 1—

I

1 r

16-bit displacement if 8-bit displacement =

-I 1 1 1 1 1 I \ I
I I I I

The format of a BSR instruction is the same as that of the Bcc instruc-

tions, with a condition field (bits 1 1 -8) of 0001

.

As with the Bcc instructions, it is not possible to have a one-word BSR
to the next instruction, since the 8-bit displacement in that case would be
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zero. The next word (which would be the first word of the next instruc-

tion) would erroneously be used as the 16-bit displacement in this case.

Most assemblers will not allow this error condition to take place.

Example:

PC - 0000064E USP = 0001 5980 SSP = 0007BF08 ST = 0000 = > IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

bsr $652

-t

PC

-

00000652 USP -0001 5988 SSP = 0007BF08 ST = 0000= >IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00015988

rts

-dl15988, 1598c

00015988 00000650

The BSR instruction at location 64E branches to location 652, after plac-

ing 650 (the address of the next instruction) on the stack (at location

15988).

-t

PC = 00000650 USP = 0001598C SSP = 0007BF08 ST = 0000= >1M =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

Following the RTS instruction, execution picks up at location 650, and

the return address has been popped off the stack. (Register A7 now con-

tains 1598C—four bytes have been popped.)
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BTST Instruction

The BTST (Bit TeST) instruction tests a single bit in an effective address

operand. The Z-bit is set according to the state of the bit.

The bit number is either contained in a register or in an immediate field

inside the instruction itself. The operation is restricted to long data for a

data register destination, and to byte data for memory locations. Bits are

numbered from 0, with bit being the least significant bit in a byte (or

long).

Addressing Modes Allowed (Bit Number Static):

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PO x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes No No No

Addressing Modes Allowed (Bit Number Dynamic):

On An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes Yes No NO

Data Sizes: byte, long

Condition Codes Affected:

X Not affected.

N Not affected.
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Z Set if the tested bit is zero. Cleared otherwise.

C Not affected.

V Not affected.

Assembler Syntax: BTST Dn, <ea>
BTST #<data>,<ea>

Machine Code Format:

Bit Number Dynamic:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1

Register

1 1

1

1 1

Effective

1 1

I 1

Address

1 1

•^Mode- -Reg.-

Bit Number Static:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
1

1 1 1 1 1

Effective Address

1 1 II
•^ Mode — -^ Reg. -»

1 1

////////

1 1

1 1 1 1

Bit Number

1 1 1 1

The Register field indicates the data register in which the bit number

resides for the Bit Number Dynamic form of the instruction. In the Bit

Number Static case, bits 5-7 of the extension word are ignored for data

register destinations. For memory locations, bits 4 and 3 are also ignored.

(Bit numbers in a long range from 0-31, and in a byte from 0-7.)

Example:

PC = 00000658 USP = 00015980 SSP = 000FBF08 ST = 0000= >IM =

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

btst #$0,D0
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-t

PC = 00000650 USP = 0001598C SSP-000FBF08 ST = 0000= >IM =

00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This example tests the low-order bit of register DO. The bit is set, so that

the Z-bit is not set by the instruction. A BNE instruction will branch in

this case.
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CHK Instruction

The CHK (CHecK register against bounds) instruction verifies that a data

register contains a number within a certain positive range of values. This

instruction is normally used by high-level language systems for range

checking subscripts.

The low-order word (16 bits) of the data register is compared to an

operand specified by the effective address field of the instruction. If the

register is less than zero (i.e., bit 15 of the register is set) or greater than

the upper bound, then a CHK exception results. (See Chapter 7 on Excep-

tion Processing for details.)

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes Yes No No

Data Sizes: word

Condition Codes Affected:

X Not affected.

N Set if the data register is less than zero. Cleared if the data register

is greater than the effective address operand. Undefined

otherwise.

Z Undefined.

C Undefined.

V Undefined.

Assembler Syntax: CHK <ea>,Dn
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Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1

1 1

Register

1 1

1 1

' 1

Effective

1 1

1 1

Address

1 1

"^Mode- -Reg.-

Register is the number of the data register to be tested.

Example:

PC = 00000660 USP = 0001598C SSP = 000FBF08 ST = 0000= >IM =

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

chk #$1,D0

-t

PC = 00000664 USP = 0001 598C SSP = 000FBF08 ST = 0000 = > IM =

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

chk #$0,D0

-t

Exception $06 at user address 00000668. Aborted.

The first CHK instruction in this example does nothing, as the register is

equal to the limit (both are 1). In the second example, an exception is

generated. The message printed here shows how CP/M-68K treats excep-

tions in a user program. Other operating systems behave in a similar fash-

ion. Exception 6 is the CHK instruction. (See Chapter 7 on Exception

Processing for details.)
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CLR Instruction

The CLR (CLeaR) instruction sets an effective address operand to zero. An
anomaly of the 68000 hardware causes memory operands to he read and

then cleared. This usually makes no difference in program behavior, with

two exceptions of initializing some memory units with parity (which may
give an erroneous parity error), or accessing memory-mapped hardware.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PO x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long

Condition Codes Affected:

X Not affected.

N Always cleared.

Z Always set.

C Always cleared.

V Always cleared.

Assembler Syntax: CLR <ea>

Machine Code Format:

Bit 15 14 13 12 11 10 9 7 6 5 4 1

Size

—

I

1 1 1 1

—

Effective Address

-J l_^ \ L_
*- Mode-

I

•*- Reg. -

Size is 00 for byte data, 01 for word, and 10 for long.
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Example:

PC = 0000066A USP = 0001598C SSP = 000FBF08 ST = 0008= >IM = NEG
D FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

cir.l DO

-t

PC = 00000660 USP = 00015980 SSP = 000FBF08 ST = 0004 = >IM = ZER
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This example clears data register DO.
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CMP Instruction

The CMP (CoMPare) instruction connpares the contents of a data regis-

ter with an effective address operand. The condition codes are set as if the

effective address were subtracted from the data register. Neither operand

is altered.

When used with conditional branches, this instruction creates a less

than desirable effect. When the combination

CMP
BCT

D0,D1

XI

is used, the branch takes place if register D1 is greater than register DO.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes Yes Yes Yes Yes Yes Yes

X.W X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes Yes No No

Data Sizes: byte, word, long

Byte mode is not allowed when address register direct mode is used as

the effective address.

Condition Codes Affected:

X Not affected.

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. (The operands are equal.) Cleared

otherwise.

C Set if a borrow is generated. Cleared otherwise.

V Set on overflow in the subtract operation. Cleared otherwise.
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Assembler Syntax: CMP <ea>,Dn

The CMPA instruction is used when the destination is an address regis-

ter. CMPI compares an immediate source to an effective address operand.

CMPM compares memory to memory Many assemblers make this distinc-

tion automatically

Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 Register

1 1

Size

1

1 1

Effective

1 1

Address

1 1

•^Mode- *- Reg. -

The Register field is the number of the data register used as the destina-

tion. The size field is 00 for comparing bytes 01 for words, and 10 for longs.

Example:

PC = 00000674 USP = 0001 598C SSP = 000FBF08 ST = 0000 = > IM =

D 00000001 00000002 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
cmp.l $932, DO
-SI932

00000932 00000001 .

-1674,684

00000674 cmp.l $932, DO
0000067A beq $67E

0000067C addq.l #$1,D2

0000067E cmp.l DO.DI

00000680 ble $684

00000682 addq #$2,D2

00000684 nop

This program segment compares register DO to a memory word con-

taining 1. The BEQ instruction will branch, and the first ADCK) instruction

will not be executed. The BLE instruction will not branch. (Remember that

the compare operands must be read backwards.) Register D2 will have a

value of 2.

-t

PC = 0000067A USP = 0001598C SSP = 000FBF08 ST = 0004 = >IM = ZER
D 00000001 00000002 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

beq $67E
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-t

PC = 0000067E USP = 00015980 SSP = 000FBF08 ST = 0004= >IM = ZER
D 00000001 00000002 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
cmp.l 00,01

-t

PC = 00000680 USP = 0001598C SSP = 000FBF08 ST = 0000= >IM =

00000001 00000002 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
ble $684

-t

PC = 00000682 USP = 0001598C SSP = 000FBF08 ST = 0000= >IM =

D 00000001 00000002 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
addq #$2,02

-t

PC = 00000684 USP = 0001 598C SSP = O00FBFO8 ST = 0000 = > IM =

00000001 00000002 00000002 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C



130 Programming the 68000

CMPA Instruction

The CMPA {CoMPare Address) instruction compares the contents of an

address register with an effective address operand. The condition codes

are set as if the effective address w^ere subtracted from the address regis-

ter. Neither operand is altered.

When used with conditional branches, this instruction creates a less

than desirable effect. When the combination

CMPA

BGT

A0,A1

XI

is used, the branch takes place if the value in register A1 is greater than

the value in register AO.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes Yes Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes Yes No No

Data Sizes: word, long

Condition Codes Affected:

X Not affected.

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. (The operands are equal.) Cleared

otherwise.

C Set if a borrow is generated. Cleared otherwise.

V Set on overflow in the subtract operation. Cleared otherwise.

Assembler Syntax: CMPA <ea>,An



68000 Instruction Set 131

The CMP instruction is used when the destination is a data register.

CMP! compares an immediate source to an effective address operand.

CMPM compares memory to memory. Many assemblers make this distinc-

tion automatically

Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1

1 1

Register

1 1

S 1 1

1 1

Effective

1 1

I 1

Address

1 1

^Mode- - Reg. -

The Register field is the number of the data register used as the destina-

tion. The S (Size) bit is for comparing vk'ords, and 1 for longs. Comparing

a word is performed by sign-extending the source and making a 32-bit

compare.

Example:

PC = 00000694 USP = 0001598C SSP = 000FBF08 ST = 0008= >IM = NEG
D FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000936 0000094E 00000000 00000000 00000000 00000000 00000000 0001 598C
cmpa.l AO.AI

-1694,69a

00000694 cmpa.l AO.AI

00000696 bhi $69A

00000698 dr. I DO
0000069A nop

This code segment compares address registers AO to A1. The BHI

instruction will succeed. (Remember that the compare operands must be

read backwards.) Data register DO will remain unchanged.

PC = 00000696 USP = 0001598C SSP = 000FBF08 ST = 0000 = >IM =

D FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000936 0000094E 00000000 00000000 00000000 00000000 00000000 0001598C
bhi $69A

-t

PC = 0000069A USP = 0001598C SSP = 000FBF08 ST = 0000= >IM =

D FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000936 0000094E 00000000 00000000 00000000 00000000 00000000 0001 598C
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CMPI Instruction

The CMPI (CoMPare Immediate) instruction compares an immediate

operand with an effective address operand. The condition codes are set as

if the immediate quantity were subtracted from the effective address. Nei-

ther operand is altered.

When used with conditional branches, this instruction creates a less

than desirable effect. When the combination

CMPI

BCT
#<data>,DO

XI

is used, the branch takes place if the value in data register DO is greater

than the immediate data.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long

Condition Codes Affected:

X Not affected.

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. (The operands are equal.) Cleared

otherwise.

C Set if a borrow is generated. Cleared otherwise.

V Set on overflow in the subtraction operation. Cleared otherwise.

Assembler Syntax: CMPI #<data>,<ea>
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The CMP instruction compares an effective address operand to a data

register. The CMPA instruction compares an effective address operand to

an address register. The CMPM instruction compares memory to memory.

Many assemblers make this distinction automatically

Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 Size

1

1 1

Effective

1 1

Address

1 1

-^Mode- -Reg.-

1—I—I—I—I—

r

Word data: 16 bits

"1—I—I—I—I—

r

Byte data: 8 bits

J I I I I L

"1—I—I—I—I—I—I—I—I—I—I—

r

Long data: 32 bits, including previous word

J I I \ I I I I I I I L

The size field is 00 for byte compares, 01 for words, and 10 for longs.

Example:

PC = 000006A2 USP = 0001 598C SSP = 000FBF08 ST = 0000

D 00000001 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000
cmp.l #$1,D0

-t

PC = 000006A8 USP = 0001 598C SSP = 000FBF08 ST = 0004

D 00000001 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000

beq $6AC
-t

PC = 000006AC USP = 0001598C SSP = 000FBF08 ST = 0004

D 00000001 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000

= >IM =

00000000 00000000 00000000

00000000 00000000 0001 598C

= >IM = OZER
00000000 00000000 00000000

00000000 00000000 0001 598C

= >IM = OZER
00000000 00000000 00000000

00000000 00000000 0001 598C

This example compares the contents of data register DO to the constant

1 . The BEQ succeeds because DO also contains a 1

.
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CMPM Instruction

The CMPM (CoMPare Memory) instruction compares two memory
operands using the post-increment addressing mode. The condition codes

are set as if the source operand were subtracted from the destination.

Neither operand is altered.

When used with conditional branches, this instruction creates a less

than desirable effect. When the combination

CMPM
BGT

(A0) + ,{A1)-(-

XI

is used, the branch takes place if the second operand is greater than the

first.

Addressing Modes Allowed: Only post-increment

Data Sizes: byte, word, long

Condition Codes Affected:

X Not affected.

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. (The operands are equal.) Cleared

otherwise.

C Set if a borrow is generated. Cleared otherwise.

V Set on overflow in the subtract operation. Cleared otherwise.

Assembler Syntax: CMPM (Ay)-h,(Ax)-(-

The CMP instruction compares an effective address operand to a data reg-

ister. The CMPA instruction compares an effective address operand to an

address register. The CMPl instruction compares an immediate quantity to an

effective address. Many assemblers make this distinction automatically

Machine Code Format:

Bit 15 14 13 12 n 10 9 8 7 6 5 4 3 2 1

1 1 1

1 I

Reg Ax

1 1

1

I

Size

1

1

1 !

Reg Ay

1 1
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The size field is 00 for comparing bytes, 01 for words, and 10 for longs.

The Ay and Ax fields specify the source and destination address registers,

respectively.

Example:

PC = 0000050C USP = 000 1 598C SSP = 0007BF08 ST = 0000 = > IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000514 00000524 00000000 00000000 00000000 00000000 00000000 0001598C
cmpm (A0) + ,(A1) +

-150c,510

0000050C cmpm (A0) + ,(A1) +

0000050E beq $50C
00000510 nop

-dw514,534

00000514 0000 0001 0002 0003 0004 0005 0006 0008

00000524 0000 0001 0002 0003 0004 0005 0006 0007

-g,5io

PC = 00000510 USP = 0001598C SSP = 0007BF08 ST = 0009 = >IM = NEG CRY
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000524 00000534 00000000 00000000 00000000 00000000 00000000 0001 598C

The example above compares tvk'o word strings in memory until it finds a

pair that differ. From the dw command, we can see that the first pair of

words that differ is at locations 522 and 532. The address registers are incre-

mented past these locations by the post-decrement addressing modes.
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DBcc Instruction

DBcc is an instruction designed for looping. The condition cc is similar

to the conditions for conditional branches (see the Bcc instructions). DBcc

will commonly be placed at the end of a loop. The condition is the termi-

nation condition, much like the REPEAT/UNTIL condition of the Pascal

language. The loop may also be terminated on a maximum count.

The termination count is contained in the low word of a data register

The data register is decremented until it reaches -1. At this point the

loop is terminated. Note that the comparison is for equal to -1. If the

data register initially contains - 1, then the loop will be repeated 65,536

times (assuming the termination condition is not satisfied).

The permissible instructions are:

DBCC
DBCS
DBEQ

DBGE

DBCT

DBHI

DBLE

DBLS

DBLT

Terminate if the C-bit (carry) is Clear.

Terminate if the C-bit (carry) is Set.

Terminate on EQual. The loop terminates if the Z (Zero) bit

is set.

Terminate on Greater than or Equal. The loop terminates if

the N (negative) and V (overflow) bits are either both set or

both clear. GE is used for two's complement binary

numbers.

Terminate on Greater Than. The loop terminates if

• The N and V bits are both set and the Z-bit is clear, or,

• The N, V and Z bits are all clear.

Terminate on Higher than. The loop terminates if the C and

Z bits are both clear. DBHI is similar to DBGX except that it

works on unsigned numbers.

Terminate Less than or Equal. The loop terminates if

• The Z-bit is set, or,

• The N-bit is set AND the V-bit is clear, or,

• The N-bit is clear AND the V-bit is set.

The DBLE instruction is used for two's complement binary

numbers.

Terminate on Lower or Same. The loop terminates if either

the C or Z bits are set. DBLS is similar to DBLE, except that

it works on unsigned numbers.

Terminate on Less Than. The loop terminates if

• The N-bit is set and the V-bit is clear, or.
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• The N-bit is clear and the V-bit is set.

DBMI Terminate on Minus. The loop terminates if the N-bit is set.

DBNE Terminate on Not Equal. The loop terminates if the Z- bit is

clear.

DBPL Terminate on Plus. The loop terminates if the N-bit is clear.

DBVC Terminate on V Clear. The loop terminates if the V-bit is

clear, indicating no overflow.

DBVS Terminate on V Set. The loop terminates if the V-bit is set,

indicating overflow.

DBF Never terminate. The loop is terminated by count only.

Many assemblers accept DBRA as an alternate to DBF.

DBT Always terminate. This instruction does not loop at all.

The condition is tested before decrementing the data register.

Addressing Modes Allowed:

DBcc instructions use a single addressing mode, where a two's comple-

ment displacement is contained in the second word of the instruction. If

the loop is executed again, this displacement is sign-extended and added

to the PC (Program Counter).

The PC contains the address of the displacement at the time the addi-

tion takes place.

Data Sizes: word

Condition Codes Affected: None

Assembler Syntax: DBcc Dn,< label >

< label > is a label on an instruction in the program.

Machine Code Format:

Bit 15 14 13 12 11 10 9 7 6 5 1

1 1 1

1 1 1

Condition

1 1 1

1 1 1

1 I

Register

1 1

"I
1

1 1—

I

1
1 1—

I

1
1 1—

I

\ r

16-bit displacement to loop beginning

J I I I I I I I I I I I I I L

The Register field specifies the data register number to be used as the

loop counter. The condition is a four-bit encoding of the branch condi-

tion. The conditions are shown in Table 3.3.
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Condition Instruction Condition Instruction

0000 DBT 1000 DBVC
0001 DBRA,DBF 1001 DBVS
0010 DBHI 1010 DBPL

0011 DBLS 1011 DBMI
0100 DBCC 1100 DBGE
0101 DBCS 1101 DBLT

0110 DBNE 1110 DBGT
0111 DBEQ 1111 DBLE

Table 3.3- Conditional corresponding instruction

Example:

PC = 000006CC USP = 0001598C SSP = 000FBF08 ST = 0009 = >IM = NEG CRY
D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000952 0000095A 00000000 00000000 00000000 00000000 00000000 0001598C

moveq #$A,DO

-I6ce,6d4

000006CE move.b(A0)+,(A1) +

000006D0 dbeq D0,6CE
000006D4 nop

This sample code segment moves a null-terminated string whose
address is contained in register AO to an area whose address is in register

A1 . Putting A in DO (10 decimal) means that if a zero byte is not found, up

to eleven bytes will be moved. The areas pointed to by registers AO and

A1 are (conveniently) adjacent. The debugger display command shows:

-Cl952,966

00000952 48 65 6C 6C 6F 20 00 00 00 00 00 00 00 00 00 00

00000962 00 00 00 00 00

Hello

The string Hello should be duplicated starting at address 95A. Notice

the trailing space. Executing the program shows:

-g,6d4

PC = 000006D4 USP = 0001 598C SSP = 000FBF08 ST = 0004 = > IM = ZER
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00000004 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000959 00000961 00000000 00000000 00000000 00000000 00000000 0001598C

The count register (DO) is now 4, indicating that six bytes were moved
out of a possible eleven. Both address registers have been incremented by

seven, and now point to the byte after the first zero byte. (The address

registers were incremented once more than the count register was decre-

mented because the move.b instruction was executed seven times, while

the dbeq instruction was executed only six.) Looking at memory again

shows:

-d952,966

00000952 48 65 6C 6C 6F 20 00 00 48 65 6C 6C 6F 20 00 00 Hello ..Hello ..

00000962 00 00 00 00 00

The source string has been duplicated in the destination, including the

trailing space and the null terminator.
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DIVS Instruction

The DIVS (Divide Signed) instruction divides a 32-bit quantity contained

in a data register by a 16-bit quantity contained in an effective address

operand. The low-order word of the data register is replaced by the quo-

tient, and the high-order word by the remainder. The remainder and quo-

tient will always have the same sign, except when the remainder is 0.

Two error conditions are possible with a DIVS instruction:

1

.

An attempt is made to divide by zero. The 68000 processor gen-

erates an exception condition when this is attempted (see Chap-

ter 7 on Exception Conditions).

2. A large number is divided by a small number, and the quotient

will not fit in 16 bits. This is an Overflow condition. The V-bit in

the status register is set, and the contents of the data register

remain unmodified.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes Yes No No

Data Sizes: word

Condition Codes Affected:

X Not affected.

N Set if the quotient is negative. Cleared otherwise. Undefined on

overflow conditions.

Z Set if the quotient is zero. Cleared otherwise. Undefined on

overflow conditions.
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Always cleared.

Set if overflow detected. Cleared otherwise.

Assembler Syntax: DIVS <ea>,Dn

Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1

I 1

Register

1 1

1 1 1

1 1

Effective

1 1

1 1

Address

1 1

^Mode-* -Reg.-

The Register field specifies the data register to be used as the destination

(dividend). The Effective Address field specifies the source (divisor).

Example:

PC = 000006DC USP = 0001598C SSP = 000FBF08 ST = 0000= >IM =

D 00008887 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
divs #$2,DO

-t

PC = 000006E0 USP = 0001 598C SSP = 000FBF08 ST = 0000 = > IM =

D 00014443 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This example divides 8887 by 2 to yield a quotient of 4443 with a

remainder of 1

.
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DIVU Instruction

The DIVU (Divide Unsigned) instruction divides a 32-bit quantity con-

tained in a data register by a 16-bit quantity contained in an effective

address operand. The low-order word of the data register is replaced by

the quotient, and the high-order word by the remainder. All quantities are

considered to be unsigned positive integers.

Two error conditions are possible with a DIVU instruction:

1

.

An attempt is made to divide by zero. The 68000 processor gen-

erates an exception condition when this is attempted (see Chap-

ter 7 on Exception Conditions).

2. A large number is divided by a small number and the quotient

will not fit in 16 bits. This is an overflow condition. The V-bit in

the status register is set and the contents of the data register

remain unmodified.

Addressing Modes Allowed:

Dn An (An) (An)-^ -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes Yes No No

Data Sizes: word

Condition Codes Affected:

X Not affected.

N Set if the quotient is negative. Cleared otherwise. Undefined on

overflow conditions.

Z Set if the quotient is zero. Cleared otherwise. Undefined on
overflow conditions.
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C Always cleared.

V Set if overflow detected. Cleared Otherwise.

Assembler Syntax: DIVU <ea>,Dn

Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1

1 1

Register

1 1

1 1

1 1

Effective

1 1

1 1

Address

1 1

•^Mode-» -Reg.-

The Register field specifies the data register to be used as the destination

(dividend). The Effective Address field specifies the source (divisor).

Example:

PC = 000006E8 USP = 0001598C SSP = 000FBF08 ST = 0000= >IM =

D 00008887 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
divu #$2, DO

-t

PC = 000006EC USP = 0001 598C SSP = 000FBF08 ST = 0000 = > IM =

00014443 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
nop

This example divides 8887 by 2 to yield a quotient of 4443 with a

remainder of 1

.
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EOR Instruction

The EOR (Exclusive OR) instruction performs an exclusive OR function

between a data register and memory. The data register is restricted to be

the source, and the effective address is the destination.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long

Condition Codes Affected:

X Not affected.

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

C Always cleared.

V Always cleared.

Assembler Syntax: EOR
Dn,<ea>

The EORI instruction is used to exclusive OR immediate data with an

effective address. Many assemblers allow using the EOR mnemonic for

both, and produce the proper instruction based on the source operand.

Machine Code Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1

1 1 1 Register

1 1

1 Size

1

1 1

Effective

1 1

Address

1 1

^Mode-» -Reg.-
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Register is the data register number to be used as the source operand.

Size is 00 for byte, 01 for word, and 10 for long data sizes.

Example:

PC = 000006FA USP = 0001598C SSP = 000FBF08 ST = 0000= >IM =

D 11113333 22222222 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

eor.l DI.DO

-t

PC = 000006FC USP = 00015980 SSP = 000FBF08 ST = 0000= >IM =

D 33331111 22222222 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This example executes an exclusive OR on 1 1 1 13333 with 22222222 to

become 33331 111. The bits with place value two in all the nibbles in the

high-order word of register DO are initially zero, so the exclusive OR
operation sets these bits. The inverse is true for the bits with place value

two in the nibbles of the low-order word. (If you're still not sure about

how this works, convert the numbers to binary do the EOR by hand, and

then convert them back to hex.)
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EORI Instruction

The EORI (Exclusive OR Immediate) instruction performs an exclusive

OR function between an immediate operand and an effective address

operand. The immediate operand must be the source, and the effective

address is the destination.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No Yes Yes

Data Sizes: byte, word, long

Operations specif/ing the status register (SR) and condition code register

(CCR) are restricted to word and byte data lengths, respectively Opera-
tions specifying the status register (SR) are privileged. A 68000 privilege-

violation exception will result if this instruction is attempted with the SR
addressing mode from User mode. Exceptions are covered in Chapter 7,

Exception Processing.

Condition Codes Affected:

X Not affected.

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

C Always cleared.

V Always cleared.

When the status register or the condition code register are used as the

destination, the condition codes are determined by the operation itself. All

bits of the register are affected. Thus, if an EORI instruction to the condi-

tion code register leaves all bits in the CCR cleared, the Z-bit is not set as it

would be with other operands.
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Assembler Syntax: EORI Dn,<ea>

The EOR instruction executes an exclusive OR on a data register with

an effective address. Many assemblers allow using the EOR mnemonic for

both EOR and EORI, and produce the proper instruction based on the

source operand.

Machine Code Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1

1 1

1

Size

1

1 1

Effective

1 1

1 1

Address

1 1

-^Mode-* - Reg. -

-i—I—I—I—I—I—

r

Word data: 16 bits

J I I I I I L

"T 1 1

1
1

Byte data: 8 bits

I I I I I

T—I—I—I—I—I—I—I—I—I—I—I—

r

Long data: 32 bits, including previous word

I I I I
\ I I I I \ I I L

Size is 00 for byte, 01 for word, and 10 for long data sizes.

Example:

PC = 00000704 USP = 0001598C SSP = 000FBF08 ST = 0000 = >IM =

D 11113333 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

eorl.l #$22222222,00

-t

PC = 0000070A USP = 0001 598C SSP = 000FBF08 ST = 0000 = > IM =

D 33331111 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This example executes an exclusive OR on 1111 3333 with 22222222 to

become 33331 111. The bits with place value two in all the nibbles in the

high-order word of register DO are initially zero, so the exclusive OR
operation sets these bits. The inverse is true for the bits with place value

two in the nibbles of the low-order word. (If you're still not sure about

how this works, convert the numbers to binary, do the EOR by hand, and

then convert them back to hex.)
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EXG Instruction

The EXG instruction exchanges the complete contents of any two
address or data registers.

Addressing Modes Allowed:

Only registers may be specified as operands.

Data Sizes: long

Condition Codes Affected: None

Assembler Syntax: EXG Rx,Ry

Machine Code Format:

Exchanging two data registers:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1

1 1

Reg. Dx

1 1

1 1

1 I

Reg. Dy

1 1

Exchanging two address registers:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
1 1

—T
1

Reg. Ax

1 1

1 1 1

1 1

Reg. Ay

1 1

Exchanging an address and a data register:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1

1 1

Reg. Dx

1 1

1 1 1

1 1

Reg. Ay

1 1

In exchanging an address and a data register, the address register must

always be specified in bits 0-3 of the instruction word.
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Example:

PC -00000718 USP»0001598C SSP-000FBF08 ST = 0000= >IM =

D 11111111 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 22222222 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

exg DO.AO

-t

PC -0000071 A USP-0001598C SSP-000FBF08 ST = 0000= >IM =

D 22222222 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 11111111 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This instruction exchanges the contents of registers AO and DO.
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EXT Instruction

The EXT (sign EXTend) instruction extends the sign-bit of a byte into a

word, or of a word into a long. The EXT instruction takes a single oper-

and, which must be a data register.

When extending a byte to a long, bit 7 of the register is replicated into

bits 15-8 of the register. Extension of a word into a long means extending

bit 15 of the register into bits 16-31 of the register.

Addressing Modes Allowed: Only data registers

Data Sizes: word, long

Condition Codes Affected:

X Not affected.

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

C Always cleared.

V Always cleared.

Assembler Syntax: EXT Dn

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1

1

Size

1

1 1

Register

1 1

The size field is 1 to extend a byte to a word, and 1 1 to extend a word

to a long.

Example:

PC-00000722 USP-0001598C SSP-000FBF08 ST-0000- >IM-0
D 00000080 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

ext DO



68000 Instruction Set 151

-t

PC -00000724 USP = 00015980 SSP-000FBF08 ST = 0008= >IM-0 NEG

D 0000FF80 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

ext.l DO

-t

PC -00000726 USP- 0001 598C SSP-000FBF08 ST = 0008- >IM = NEG
D FFFFFF80 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This example extends the byte 80 hex to a word, and then to a long.

Notice that 80 (hex) is a negative number (bit 7 of the byte is set).
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ILLEGAL Instruction

The ILLEGAL instruction is not really an instruction at all. It is an opera-

tion code guaranteed to cause an illegal-instruction exception on all future

68000 family machines. (Illegal instructions are often used for breakpoints

by debugger software.) Exceptions are detailed in Chapter 7, Exception

Processing.

Addressing Modes Allowed: None

Data Sizes; None

Condition Codes Affected: None

Assembler Syntax: None

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0100101011111100 (4AFC)
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IMP Instruction

The JMP OuMP) instruction is used to transfer control to an effective

address. The address to which transfer is made is the address generated

by the effective address computation. For example, if address register AO

contains 1000 hex, a JMP 4(A0) instruction transfers control to the instruc-

tion located at 1004.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

No No Yes No No Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes No No No

Data Sizes: Unsized

Condition Codes Affected: None

Assembler Syntax: JMP <ea>

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

1 1 1 1 1 1 Effective Address

1 1 II
*- Mode - - Reg. -

Example:

PC = 0000072E USP = 0001 598C SSP = 000FBF08 ST = 0008 = > IM = NEG

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000736 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

Imp (AO)
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-t

PC = 00000736 USP = 0001598C SSP = 000FBF08 ST = 0008= >IM = NEG
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000736 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C



68000 Instruction Set 155

ISR Instruction

The JSR (Jump to SubRoutine) instruction calls a subroutine using an

effective address operand. The address of the instruction following the JSR

is pushed onto the stack (as a long word). The next instruction to be exe-

cuted is determined by the effective address computation. For example, if

address register AO contains 1000 hex, a JSR 4(A0) instruction would call a

subroutine located at address 1004.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

No No Yes No No Yes Yes

X.W X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes No No No

Data Sizes: Unsized

Condition Codes Affected: None

Assembler Syntax: JSR <ea>

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1

1 1

Effective

1 1

Address

1 1

-^Mode- -Reg.-

Example:

PC = 0000073A USP = 0001598C SSP = 000FBF08 ST = 0008= >IM = NEG

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

jsr $652
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-t

PC = 00000652 USP = 00015988 SSP = 000FBF08 ST = 0008= >IM = NEG
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00015988

rts

At this point, the subroutine has been called. We can see the return

address at the top of the stack (the address in register AT).

-si 15988

00015988 0000073E .

Executing the RTS yields:

-t

PC = 0000073E USP = 0001598C SSP = 000FBF08 ST = 0008= >IM = NEG
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

The return address has been popped off the stack.
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LEA Instruction

The LEA (Load Effective Address) instruction places an effective address

in an address register. All 32 bits of the register are affected.

The LEA instruction is normally used to write code that must be

position-independent (i.e., can contain no code or data addresses in the

program itself). The PC or Address register with displacement addressing

modes are normally used for this type of coding.

The LEA instruction also adds a constant to an address register without

altering the condition codes. By specifying the address register with dis-

placement or index, either a constant or another register (or both) may be

added to an address register in this manner.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

No No Yes No No Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes No No No

Data Sizes: long

Condition Codes Affected: None

Assembler Syntax: LEA <ea>,An

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Register

1 T

Effective Address

-i I L_J L-
*- Mode - I

*- Reg. -*

The Register field specifies the address register used as the destination.
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The Effective Address field specifies the address to be loaded into the

address register.

Example:

PC -00000740 USP = 0001598C SSP
D 00000000 00000000 00000000

A 00000000 00000000 00000000

lea $736.AO
-t

PC = 00000746 USP = 0001598C SSP
D 00000000 00000000 00000000

A 00000736 00000000 00000000

lea $2(A0),A0

-t

PC = 0000074A USP = 0001598C SSP
D 00000000 00000000 00000000

A 00000738 00000000 00000000

-000FBF08 ST = 0008

00000000 00000000

00000000 00000000

= 000FBF08 ST = 0008

00000000 00000000

00000000 00000000

= >IM = NEG
00000000 00000000 00000000

00000000 00000000 0001 598C

= >IM = NEG
00000000 00000000 00000000

00000000 00000000 0001 598C

= 000FBF08 ST = 0008

00000000 00000000

00000000 00000000

= >IM = NEG
00000000 00000000 00000000

00000000 00000000 0001 598C

This example loads a constant address into address register AO (using

absolute long addressing). The second LEA instruction adds 2 to the

address register.
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LINK Instruction

The LINK instruction allocates a temporary area on the stack. Such an

area is normally called a stack frame. Many block structured high-level

languages, such as C. Pascal, and P\J\ use this instruction for storing vari-

ables that are local to a procedure. The variables are deallocated when
the procedure is deactivated, permitting efficient memory usage.

The LINK instruction takes two operands: an address register and a 16-

bit signed displacement. The address register is pushed onto the stack,

and the resulting stack pointer is copied into the address register. The dis-

placement (which is usually negative) is added to the stack pointer to allo-

cate memory for the local variables. The stack winds up looking like

Rgure 3.1.

The local storage area is addressed using negative displacements from

the address register, sometimes known as the frame pointer. In this way
local variables may be accessed without regard for intervening pushes

and pops on the stack.

A7 —»

An —»-

Increasing Addresses

Local

Storage

Area

Old An

Figure 3,1 - Example of stack fayoi/t
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The UNLX instruction deallocates the stack frame and restores the stack

pointer and address register to their origirul contents.

Addressing Modes Alkjwed: None

Data Sizes: None

Condition Codes Affected: None

Assembler Syntax: UNK An #<displacement

>

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 : 6 5 4 3 2 1

0100111001010 Reaster

1 1

1 1 1

:o ace

1

to \'

1

Register b the number of the address register to be used.

Example:

PC-0000074C USP = 0001598C SSP-OO0FBF08 ST = 0OOa- >IM -0 NEG
000000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
link A6.#$FFF4

-t

PC = 00000750 USP = 0001597C SSP = 0OOFBF08 ST = 0008= >IM-0 NEG
000000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

AOOOOOOOO 00000000 00000000 00000000 00000000 00000000 00015968 0001 597C

This instruction pushes a total of 16 (10 hex) bytes on the stack: four for

tlie address register and twelve due to the displacement fiekj. (FFF4 is

- 12 decimal.) The king word address contained in register A6 shov%-s the

oW contents of A6:

-si 15988

00015988 00000000
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PC = 00000752 USP = 0001597C SSP = 000FBF08 ST = 0008 = >IM = NEG
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00015988

unIK A6

-t

PC-00000754 USP = 0001598C SSP-000FBF08 ST - 0008 = >IM = NEG
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000

0001 597C

00000000

0001 598C

The UNLK instruction reverses the action of the LINK instructions.
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LSL Instruction

The LSL (Logical Shift Left) instruction performs a logical left shift on a

data register or an effective address operand. There are three forms of this

instruction:

1. Shift a data register to the left by a constant contained in the

instruction. Shifts from one to eight bits can be accomplished

using this form of the instruction.

2. Shift a data register to the left by the number of bits contained in

another data register.

3. Shift a memory word (16 bits) left by a single bit.

Addressing Modes Allowed: Memory form only

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

No No Yes Yes Yes Yes Yes

x.w X.I x(PO x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long

Memory operations are restricted to word length.

Condition Codes Affected:

Set according to the last bit shifted out of the high-order bit

position of the operand. Unaffected if the shift count is zero.

Set if the high order bit of the result is set (indicating a negative

result). Cleared otherwise.

Set if the result is zero. Cleared otherwise.

Always cleared.

Set according to the last bit shifted out of the high-order bit

position of the operand. Unaffected if the shift count is zero.
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Assembler Syntax: LSL Dx,Dy

LSL #<data>,Dy
LSL <ea>

Machine Code Format:

Data register as destination

Bit 15 14 13 12 11 10 9 8 7 6 4 3 1

1 1 1

1 1

Immed.

1 1

1

1

Size

1

T 1

1 1

Register

1 1

Memory location as destination

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1 1 1

1 1

Effective

1 1

1 1

Address

1 1

*-Mode- -Reg.-

The Immediate field contains either the shift count or the data register

number that contains the shift count. A 000 in this field represents a shift

count of 8. Values 001 through 111 represent shift counts of 1-7. Size is

either 00 for byte data, 01 for words, and 10 for longs. The T-bit (type) is a

if the shift count is contained in the instruction, and 1 if the shift count is

in a data register. Register is the destination data register number.

Example:

PC = 0000075E USP = 0001598C SSP = 000FBF08 ST = 0000= >IM =

D 00001111 00000002 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

Isl D1,D0

-t

PC = 00000760 USP = 00015980 SSP = 000FBF08 ST = 0000= >IM =

D 00004444 00000002 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This example uses the data register form of the instruction. 1111 is

shifted left by two places to become 4444.
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LSR Instruction

The LSL (Logical Shift Right) instruction performs a logical right shift on a

data register or an effective address operand. There are three forms of this

instruction:

1. Shift a data register to the right by a constant contained in the

instruction. Shifts from one to eight bits can be accomplished

using this form of the instruction.

2. Shift a data register to the right by the number of bits contained

in another data register.

3. Shift a memory word (16 bits) right by a single bit.

Addressing Modes Allowed: Memory form only

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

No No Yes Yes Yes Yes Yes

x.w X.I x(PO x(PC,xr,s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long

Memory operations are restricted to word length.

Condition Codes Affected:

Set according to the last bit shifted out of the low-order bit

position of the operand. Unaffected if the shift count is zero.

Set if the high order bit of the result is set (indicating a negative

result). Cleared otherwise.

Set if the result is zero. Cleared otherwise.

Always cleared.

Set according to the last bit shifted out of the low-order bit

position of the operand. Unaffected if the shift count is zero.
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Assembler Syntax: LSR Dx,Dy

LSR #<data>,Dy
LSR <ea>

Machine Code Fornnat:

Data register as destination

Bit 15 14 13 12 11 10 9 8 7 6 5 4 1

1 1 1

1 1

Immed.

1 1

1

Size

1

T 1

I 1

Register

1 1

Memory location as destination

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1 1

1 1

Effective

1 1

1 1

Address

1 1

--Mode- «- Reg. -

The Immediate field contains either the shift count or the data register

number that contains the shift count. A 000 in this field represents a shift

count of 8. Values 001 through 111 represent shift counts of 1-7. Size is

either 00 for byte data, 01 for words, and 10 for longs. The T-bit (type) is a

if the shift count is contained in the instruction, and 1 if the shift count is

in a data register. Register is the destination data register number.

Example:

PC = 0000076A USP = 00015980 SSP = 000FBF08 ST = 0000= >IM =

D 88888888 00000002 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
Isr 01,DO

-f

PC = 0000076C USP = 0001 598C SSP = 000FBF08 ST = 0000 = >IM =

D 88882222 00000002 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This example shifts data register DO.W (the low word of DO) to the right

by two places. The upper half of DO is unaffected.
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MOVE Instruction

The MOVE instruction copies a byte, word, or longword from one
effective address operand to another The condition codes are set accord-

ing to the data that is moved during the operand.

Addressing Modes Allowed: Source operand

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes Yes Yes Yes Yes Yes Yes

X.W X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes Yes No No

Addressing Modes Allowed: Destination operand

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

X.W X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Use of the An (address register direct) addressing mode is restricted to

instructions with word and long data sizes.

Data Sizes: byte, word, long

Condition Codes Affected:

X Not affected.

N Set if the high order bit of the result is a one. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.
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Always cleared.

Always cleared.

Assembler Syntax: MOVE <ea>,<ea>

MOVEA moves to an address register. Most assemblers automatically

use the right instruction with an address register destination.

Machine Code Format:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 1

Size

1_

Destination

<ea>
.

J \ J I L

*- Reg. -»
I

«- Mode -*

Source
.<ea>
I

I

I L

^ Mode- I

-- Reg. -»

Size is the size of the data to be transferred: 00 for bytes, 01 for words,

and 10 for longs.

Example:

PC = 00000774 USP = 0001598C SSP = 000FBF08 ST = 0000 = >IM =

D 1 1 111 1 11 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
movo.b $920,DO
-S92d

0000092D 99 .

-t

PC-0000077A USP-0001598C SSP = 000FBF08 ST = 0008 = >IM = NEG
D 11111199 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This instruction moves a memory location into a data register. Byte

moves into a data register leave the upper three bytes of the register

unmodified.
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MOVE to CCR Instruction

The MOVE to CCR instruction moves the low-order byte of a word
operand to the condition code register (CCR), the User byte of the status

register. The high-order byte of the source is ignored.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes Yes No No

Data Size: word

Condition Codes Affected:

X Set from bit 4 of the source operand.

N Set from bit 3 of the source operand.

Z Set from bit 2 of the source operand.

V Set from bit 1 of the source operand.

C Set from bit of the source operand.

Assembler Syntax: MOVE <ea>,CCR

Machine Code Format:

Bit

Example:

PC = 00x00770 USP = 0001 598C SSP = 000FBF08 ST = 0000 = > IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1

1 1

Effective

1 1

1 1

Address

1 1

-^Mode- *- Reg. -
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A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
move #$1F,CCR

-t

PC = 000780 USP = 01598C SSP = 0FBF08 ST = q01F= >IM = EXT NEG ZER OFL CRY
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 5980

This instruction sets all condition code bits in the status register.
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MOVE to SR Instruction

The MOVE to SR (Status Register) instruction transfers a word operand

to the CPU status register. All bits of the status register are affected. This

instruction requires that the S-bit of the status register (bit 13) be set at the

beginning of the instruction (i.e., the CPU must be in Supervisor state).

This instruction may be used to alter the Status register Trace bit, Super-

visor bit, interrupt mask, and condition codes. Typical uses include:

• Clearing the Supervisor bit to transfer to User mode.

• Clearing the Interrupt mask to enable CPU interrupts.

• Setting bits in the Interrupt mask to partially or completely disable

CPU interrupts.

Changing the condition codes is normally done with the MOVE to CCR
instruction, which is not privileged, and can be executed from either

superviso: or user mode.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes Yes No No

Data Size: word

Condition Codes Affected:

X Set from bit 4 of the source operand.

N Set from bit 3 of the source operand.

Z Set from bit 2 of the source operand.

V Set from bit 1 of the source operand.

C Set from bit of the source operand.
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Assembler Syntax: MOVE <ea>,SR

Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1

1 1

Effective

1 1

1 1

Address

i 1

-Mode- -Reg.-

Example:

-g.786

PC = 00000786 USP = 0001598C SSP = 0007BF08 ST = 2010=>SUP IM =

EXT
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0007BF0e
move #$200F,SR

-g,78a

PC = 00078A USP = 01598C SSP = 07BF08 ST = 200F= >SUP IM = NEG ZER OFL CRY
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0007BF08

This instruction sets the N, Z, O, C, condition codes, as well as the S-bit.

The S (Supervisor) bit is set before execution. A Privilege-violation excep-

tion results if this instruction is attempted from User mode. Notice that

address register A7 reflects the supervisor stack pointer (SSP) rather than

the user stack pointer (USP).
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MOVE from SR Instruction

The MOVE from SR (Status Register) instruction transfers the entire sta-

tus register to a word operand. Memory operands are read before writ-

ing. This instruction is privileged on the 68010 processor. (A privileged

instruction requires that the S-bit [bit 1 3] in the status register be set prior

to execution.)

Addressing Modes Allowed:

Dn An (An) (An)-H -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Size: word

Condition Codes Affected: None

Assembler Syntax: MOVE SR,<ea>

Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1

1 1

Effective

1 1

1 1

Address

1 1

-Mode- -Reg.-

Bit

Example:

PC = 0000078C USP = 0001598C SSP = 0007BF08 ST = 200F=>SUP IM =

NEGZER OFLCRY
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0007BF08
move SR.DO
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-t

PC = 0000078E USP = 0001598C SSP-0007BF0e ST = 200F=>SUP IM =

NEGZER OFLCRY
D 0000200F 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0007BF08

This instruction transfers the status register to the low-order word of

data register DO. Notice that address register A7 reflects the supervisor

stack pointer (SSP) rather than the user stack pointer (USP).
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MOVE USP Instruction

The MOVE USP instruction transfers the user stack pointer to or from

an address register. This instruction is a privileged instruction. (The S-bit

[bit 13] in the status register must be set.)

A MOVE USP instruction is normally used by a supervisor program to

set up a stack area in a user program. The 68000 has separate user and

supervisor stack pointer registers, so this special instruction is required to

enable the supervisor program to access the user mode stack pointer.

Addressing Modes Allowed: Only An

Data Size: long

Condition Codes Affected: None

Assembler Syntax: MOVE USRAn
MOVE An,USP

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1 1 T

1 1

Register

1 1

To transfer the address register to the USR the T field is 0, and 1 to trans-

fer the USP to the address register. The Register field specifies the number
of the address register to be used.

Example:

PC = 000790 USP = 01558C SSP = 07BF08 ST-200F= >SUP IM = NEG ZER OFL CRY
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0007BF08

move.l USRAO
-t

PC = 000792 USP = 01558C SSP = 07BF08 ST = 200F= >SUP IM = NEG ZER OFL CRY
DOOOOOOOO 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 0001 558C 00000000 00000000 00000000 00000000 00000000 00000000 0007BF08

This example transfers the user stack pointer (USP) to address register

AO. The status register S bit must be set for this privileged instruction.
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MOVEA Instruction

The MOVEA (Move Address) instruction moves an effective address

operand to an address register. Only word and long data sizes are

allowed. All 32 bits of the address register are always affeaed. Word oper-

ations are sign extended to 32 bits before loading the address register.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes Yes Yes Yes Yes Yes Yes

x.w X.I x(PO x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes Yes No No

Data Sizes: word, long

Condition Codes Affected: None

Assembler Syntax: MOVEA <ea>,An
Many assemblers will generate the MOVEA instruction when a MOVE

instruction specifies an address register as the destination.

Machine Code Format:

Bit 15 14 13 12 n 10 9 8 7 6 5 4 3 2 1

1

Size

1

1 1

Register

1 1

1

1 1 1 1 1

Effective Address

1 1 II
- Mode — -^ Reg. -

The Size field is 01 for word transfers, and 10 for long transfers. The Reg-

ister field gives the destination address register. Notice that this instruction is

really a MOVE instruction with a destination addressing mode of 001

.
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Example:

PC = 00000796 USP = 0001558C SSP = 0007BF08 ST = 0000 = >IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 558C
move. I #$1234567,AO

-t

PC = 0000079C USP = 0001 558C SSP = 0007BF08 ST = 0000 = > IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 01234567 00000000 00000000 00000000 00000000 00000000 00000000 0001558C

This example loads address register AO with the constant 01234567.
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MOVEM Instruction

The MOVEM (MOVE Multiple) instruction provides a means for rapidly

transferring a group of registers to or from memory. The size of the opera-

tion is restricted to word or long data. For word operations that transfer

data to the registers, each word is sign-extended to 32 bits before loading

the register. All 32 bits of the register are always affected, regardless of

whether the register is an address or data register.

The order in which the registers are stored in memory is as follows:

Address Register

(effective address)

-f-0

+ 4

DO
D1

-1-28 D7

-h32 AO

-H36 A1

-t-60

+ (A

A7

(Unused)

Any combination of the registers may be loaded or stored using this

instruction. The illustration above assumes that all registers are present

and long data size.

This instruction is used primarily for pushing a group of registers on the

stack so that they may be used temporarily and later reset to their original
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values, also using a MOVEM instruction. This technique is especially valu-

able for subroutines and exception-processing routines, where it is often

not known which registers can be modified.

An anomaly of 68000 architecture causes an extra memory reference

when transferring memory to registers using a MOVEM. In the diagram

above, offsets 64 and 65 from the base of the register area in memory
would be read (again assuming all registers were present). This is usually

not significant, but it can cause problems in certain specialized cases. For

example, trying to transfer registers from the very last locations in mem-
ory will cause an erroneous BUSERR to occur due to the access of the

next word (which is not a valid memory address in this case). The
BUSERR exception is explained in Chapter 7, Exception Processing.

Addressing Modes Allowed: Registers to memory

Dn An (An) (An)-H -(An) x(An) x(An,xr.s)

No No Yes No Yes Yes Yes

X.W X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Memory to Registers:

Dn An (An) (An)-H -(An) x(An) x(An,xr.s)

No No Yes Yes No Yes Yes

X.W X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes No No No

Data Sizes: word, long

Condition Codes Affected: None
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Assembler Syntax: MOVEM <register list>,<ea>

MOVEM <ea >,< register list

>

The register list is composed of a series of register specifications sepa-

rated by a slash (the / character). For example, DO/D2/A5 specifies regis-

ters DO, D2, and A5 as operands. It is also possible to use one or more

ranges in the register list. A range consists of two register specifications

separated by the - character. For instance, D0-D5/A0-A2 specifies regis-

ters DO, D1, D2, D3, D4, D5, AO, A1, and A2.

Machine Code Format:

Registers to Memory:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
1 1 1 Sz

1 1

Effective

1 1

1 1

Address

1 1

^Mode- •>- Reg. -

1 1 1 1—I

1 1 1—I

1 1 1—I

1 r

Register List Bit Mask

J I I I I I I I I I I I I I L

Memory to Registers:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
1 1 1 1 Sz

1 1

Effective

1 1

1 1

Address

1 1

^Mode-* -Reg.-

1 r 1—

r

-|—I—I—I—I—I—I

—

r

Register List Bit Mask

J I I I I I I I I I I I I L

The Sz (size) bit is a for word transfers and a 1 for long transfers. The

register list bit mask contains a single bit for each register that can be

transferred by a MOVEM instruction (16 registers). If the bit is a 1, then

the register is transferred. If the bit is 0, then the register is not transferred.

The register-list word has two possible orientations, one for pre-

decrement mode addressing and one for all other addressing modes. In

all cases, the low-order bit of the mask corresponds to the register that is
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to be transferred first. The two sets of correspondence between registers

and bits are as follows:

Pre-decrement ( - (An)) addressing mode:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
DO D1 D2 D3 D4 D5 D6 D7 « A1 A2 A3 A4 A5 A6 A7

All other addressing modes:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
A7 A6 A5 A4 A3 A2 A1 AO D7 D6 D5 D4 D3 D2 D1 DO

Example:

PC = 0000079E USP = 0001 558C SSP = 0007BF08 ST = 0000 = > IM =

D OOOOOODO 000000D1 00000000 00000000 00000000 00000000 00000000 00000000
AOOOOOOAO 000000A1 00000000 00000000 00000000 00000000 00000000 0001 558C
movem.l DO - D1 /AO - AO, - (A7)

-t

PC - 000007A2 USP - 0001 5580 SSP » 0007BF08 ST - 0000 - > IM -

D OOOOOODO 000000D1 00000000 00000000 00000000 00000000 00000000 00000000

AOOOOOOAO 000000A1 00000000 00000000 00000000 00000000 00000000 00015580

This instruction pushes the contents of registers DO, D1, and AO on the

stack. Using the S command, we can look at the stack and see the saved

registers.

-si 5580

00015580 OOOOOODO
00015584 000000D1

00015588 OOOOOOAO

-t

PC - 000007A4 USP - 0001 5580 SSP - 0007BF08 ST - 0000 - > IM -

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 000000A1 00000000 00000000 00000000 00000000 00000000 00015580

movem.l (A7) + ,D0- D1/A0- AO



68000 Instruction Set 181

-t

PC - 000007A8 USP - 0001 558C SSP = 0007BF08 ST = 0000 - > IM =

D OOOOOODO 000000D1 00000000 00000000 00000000 00000000 00000000 00000000

A OOOOOOAO 000000A1 00000000 00000000 00000000 00000000 00000000 0001 558C

The second half of the example above restores the registers from the

stack. Notice that DO, D1, and AO are valid hexadecimal numbers as well

as names for registers.
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MOVEP Instruction

The MOVEP (MOVE Peripheral) instruction provides a convenient

method for accessing 8-bit peripheral devices connected to a 68000. The

68000 is a 16-bit microprocessor. This means that there are sixteen data

lines connerting the processor to memory, as illustrated in Figure 3.2.

Many I/O devices were designed for 8-bit microprocessors, and thus

have only eight data lines. These devices can be connected to the 68000

using either the Upper byte data lines or the Lower byte data lines.

Addressing a device connected in such a fashion is done by using alter-

nate memory addresses (for example, 1,3,5 for devices connected to the

Lower byte lines, or 0,2,4 for devices connected to the Upper byte lines).

The MOVEP instruction is facilitates this process.

The MOVEP instruction transfers a word or a longword contained in a

data register to or from these alternate memory addresses. The destination

memory address is specified using the address register with displacement

addressing mode— x(An).

Address Lines (23 bits)

Upper 8 Data Lines

c Lower 8 Data Lines

Upper Byte

(8 bits)

Even Addresses Vn

MEMORY

Lower Byte

(8 bits)

Odd Addresses

Figure 3.2 - Sixteen data lines connecting the processor to memory
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The high-order byte of the data register is transferred to or from address

x(An), the next byte to or from x + 2{An), and so forth. If the original

address was odd, then all transfers from the MOVER will use the Lower

byte of the 68000 data bus. Even addresses use the High byte.

Addressing Modes Allowed: x(An) only

Data Sizes: word, long

Condition Codes Affected: None

Assembler Syntax: MOVER Dn,x{An)

MOVER x(An),Dn

Machine Code Format:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 1

-I I

Dn Reg.

1 1

1 Dr Sz 1

1 1

An Reg.

1 1

Displacement

_J I L_

The Dn Register and An Register give the numbers of the data and

address registers to be used, respectively The Dr (direction) bit is for

memory to register transfers and 1 for register to memory transfers. The

Sz (size) bit is 1 for long data and for words. The displacement field is a

16-bit offset that is added to the address register to form the base memory

address at which the transfer begins.

Example:

PC = 000007B6 u3P = 0001558C SSP = 0007BF08 ST = 0000= >IM =

D 01234567 00000000 00000000 00000000 00000000 00000000

A 00000964 00000000 00000000 00000000 00000000 00000000

movep.l DO,0{AO)

-t

PC = 000007BA USP = 0001558C SSP = 0007BF08 ST = 0000= >IM =

D 01234567 00000000 00000000 00000000 00000000 00000000

A 00000964 00000000 00000000 00000000 00000000 00000000

-d964,96c

00000000

00000000

00000000

00000000

00000000

0001 558C

00000000

0001 558C

00000964 01 00 23 00 45 00 67 00 00 ..#.E.g.



184 Programming the 68000

In this example, register DO is stored starting at address 964. Since the

starting address is even, the bytes in DO will go into the high-order bytes

of successive words, as illustrated by the d command. The high-order byte

of DO is stored first.
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MOVEQ Instruction

The MOVEQ instruction provides a method for loading a small immedi-

ate quantity into a data register. The instruction is two bytes in length, and

can load any constant in the range - 128 to +127 (decimal). All 32 bits of

the register are affected. (The corresponding MOVE immediate long

instruction takes six bytes.)

Data Size: long

Condition Codes Affected:

X Not affected.

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Always cleared.

C Always cleared.

Assembler Syntax: MOVEQ #<data>,Dn

Many assemblers automatically convert a move with the appropriate

operands into a MOVEQ.
Machine Code Format:

Bit 15 14 13 12 11 10 9 6 5 1

1 1 1

1 I

Register

1 1

1 1 1 1 1 1 1

Immediate Data

1 1 1 1 1 1 1

The Register field identifies the destination data register. The Immediate

Data is an 8-bit immediate operand that is sign-extended before loading

into the data register.

Example:

PC = 000007BC USP = 0001558C SSP = 0007BF08 ST = 0000= >IM =

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 558C
moveq #$80,DO
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-t

PC = 000007BE USP = 0001 558C SSP = 0007BF08 ST = 0008 = > IM = NEG
D FFFFFF80 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 558C

This example loads register DO with the constant 80 hex (-128 deci-

mal). The data is sign-extended into a long by the operation.
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MULS Instruction

The MULS (MULtiply Signed) instruction multiplies a 16-bit data register

operand by a 16-bit effective address operand, leaving the 32-bit result in

the data register. The operation assumes tvk^o's complement arithmetic.

Addressing Modes Allowed:

Dn An (An) (An)-H -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes Yes No No

Data Size: word

Condition Codes Affected:

X Not affected.

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Always cleared.

C Always cleared.

Assembler Syntax: MULS <ea>,Dn

Machine Code Format:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
Register

—

I

1
1 1

1

—

Effective Address

_J I U-^ L_
^ Mode -*

I

*- Reg. -

The Register field identifies the data register to be used as the destination.
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Example:

PC = 000007C6 USP = 00015980 SSP = 0007BF08 ST = 0000= >IM =

D 00001234 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00015980

muls #$10,DO

-t

PC = 000007CA USP = 00015980 SSP = 0007BF08 ST = 0000= >IM =

D 00012340 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00015980

This example multiplies the contents of register DO by the constant 10

hex (16 decimal).
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MULU Instruction

The MULU (MULtiply Unsigned) instruction multiplies a 16-bit data reg-

ister operand by a 16-bit effective address operand, leaving the 32-bit

result in the data register. The operation assumes unsigned arithmetic.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes Yes No No

Data Size: word

Condition Codes Affected:

X Not affected.

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Always cleared.

C Always cleared.

Assembler Syntax: MULU <ea>,Dn

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Register

_l L_

"I T

Effective Address

I I U-^ L_

• Mode -»
I

•*- Reg. -

The Register field identifies the data register to be used as the destination.
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Example:

PC-000007D2 USP-0001598C SSP -0007BF08 ST = 0000- >IM =

D 00008000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

mulu #$5,DO
-t

PC = 000007D6 USP - 0001 598C SSP - 0007BF08 ST . 0000 - > IM =

D 00028000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This example multiplies hex 8000 (normally a negative number) by 5.

Notice that the result is positive. This is because unsigned arithmetic was

used in the MULU instruction.
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NBCD Instruction

The NBCD (Negate BCD) instruction forms the negative of a BCD
(binary coded decimal) number. The technique used is ten's complement,

analogous to the two's complement used with binary numbers. The ten's

complement of a number is formed by subtracting the number from all 9s

and then adding one. As with binary numbers, the complementing pro-

cess works only if you have a fixed number of digits.

For example, assume you have a 4-digit BCD system. The ten's comple-

ment of 0001 is (9999 - 0001) + 1, or 9999. Adding this number to a

positive decimal number is equivalent to subtracting 1

.

As with the other 68000 BCD instructions, NBCD is intended for multi-

precision BCD arithmetic. The X (eXtend) bit is added to the ten's comple-

ment process. This bit provides the borrow necessary for multiprecision

arithmetic. The Z-bit is only cleared by this instruction. This allows the Z-

bit to accurately reflect a multiprecision result. Normally a series of NBCD
instructions begins with the X-bit clear and the Z-bit set. The size of the

operation is restricted to byte size.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Size: byte

Condition Codes Affected:

X Set if a borrow was generated in the subtraction operation.

Cleared otherwise.

N Undefined.

Z Cleared if the result was not a zero. Unchanged otherwise.
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V Undefined.

C Set if a borrow was generated in the subtraction operation.

Cleared otherwise.

Assembler Syntax: NBCD <ea>

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1

1

1

1 1 1 1 1

Effective Address

1 1 II
— Mode- -^ Reg. —

Example:

PC = 000007DA USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
nbcd DO

-t

PC = 000007DC USP = 0001 598C SSP = 0007BF08 ST = 0019 = > IM = EXT NEG CRY
D 00000099 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This example takes the ten's complement of 01 to produce 99. (Remem-

ber, BCD is the same as hex.)
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NEC Instruction

The NEC (NEGate) instruction forms the two's complement of an effec-

tive address operand.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long

Condition Codes Affected:

X Cleared if the result is zero. Set otherwise.

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Set if an overflow is generated. Cleared otherwise.

C Cleared if the result is zero. Set otherwise.

Assembler Syntax: NEC <ea>

Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 Size

1

1 1

Effective

1 1

Address

1 1

«-Mode-* -Reg.-

The Size field is 00 for byte data, 01 for words, and 10 for longs.
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Example:

PC = 000007E2 USP = 0001598C SSP = 0007BF08 ST = 0010= >IM = EXT
D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
neg DO

-t

PC = 000007E4 USP = 0001 598C SSP = 0007BF08 ST = 0019 = > IM = EXT NEG CRY
D OOOOFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This example takes the two's complement in the low-order word of reg-

ister DO. (1 is complemented to become - 1 .)
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NEGX Instruction

The NEGX (Negate with eXtend) instruction provides a method for tak-

ing the two's complement of a multiprecision binary number.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long

Condition Codes Affected:

X Set if a borrow is generated. Cleared otherwise.

N Set if the result is negative. Cleared otherwise.

Z Cleared if the result is not zero. Unchanged otherwise.

V Set if an overflow is generated. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

As with other 68000 multiprecision instructions, a group of NEGX
instructions should begin with the Z-bit set and the X-bit clear. At the com-
pletion of the multiprecision operation, the Z-bit will then correctly indi-

cate whether the entire operand is zero. The usual storage order for

multiprecision integers on the 68000 is to place the high-order portion at

the lowest address, and the low-order portion at the highest address.

ADDs, SUBtracts, and NEGates begin with the low-order word and nor-

mally use the pre-decrement addressing mode.

Assembler Syntax: NEGX <ea>



196 Programming the 68000

Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 Size

1

1 1

Effective

1 1

Address

1 1

^Mcxle-* *- Reg. -

The Size field is 00 for byte operands, 01 for words, and 10 for longs.

Example:

PC = 000007EA USP = 00015980 SSP = 0007BF08 ST = 0014

D 00000001 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000

neg.l 00
-t

PC = 000007EC USP = 00015980 SSP = 0007BF08 ST = 0019

D FFFFFFFF 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000

negx.l Dl

-t

PC = 000007EE USP = 00015980 SSP = 0007BF08 ST = 0019

D FFFFFFFF FFFFFFFF 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000

= >IM = EXTZER
00000000 00000000 00000000

00000000 00000000 00015980

= >IM = EXT NEG ORY
00000000 00000000 00000000

00000000 00000000 00015980

= >IM = OEXT NEG ORY
00000000 00000000 00000000

00000000 00000000 00015980

This example uses data registers DO and Dl as an 8-byte (64 bit) binary

integer. Register Dl is the high-order part of the integer. The example

complements 1 to become - 1 across 64 bits.
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NOP Instruction

The NOP (No OPeration) instruction provides a way for idling the

68000 for one instruction. Nothing is changed, except that the Program

Counter is advanced to the next instruction. NOP instructions are often

used for inserting small delays, or for providing space in a program for

patching purposes.

Addressing Modes Allowed: None

Data Sizes: None

Condition Codes Affected: None

Assembler Syntax: NOP

Machine Code Format:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
1 111001110001 (4E71 hex)

Example:

PC = 000007F2 USP = 00015980 SSP = 0007BF08 ST = 0019= >IM = EXT NEG CRY
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
nop

-t

PC = 000007F4 USP = 0001598C SSP = 0007BF08 ST = 0019= >IM = EXT NEG CRY
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
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NOT Instruction

The NOT instruction forms the one's complement of an effective

address operand.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long

Condition Codes Affected:

X Not affected.

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Always cleared.

C Always cleared.

Assembler Syntax: NOT <ea>

Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1

1

Size

1

1 1

Effective

1 1

1 1

Address

1 1

•^Mode-* - Reg. -

The Size field is 00 for byte operations, 01 for words, and 10 for longs.
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Example:

PC = 000007F6 USP = 0001598C SSP = 0007BF08 ST = 0010= >IM = EXT
D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
not DO

-t

PC = 000007F8 USP = 00015980 SSP = 0007BF08 ST = 0018= >IM = EXT NEG
D OOOOFFFE 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This example takes the one's complement of the 16-bit quantity 0001

hex to form FFFE hex.
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OR Instruction

The OR instruction performs a bit-wise inclusive binary OR operation

between a data register and an effective address operand. There are two

forms of this instruction:

1

.

OR the contents of the effective address operand with a data reg-

ister, leaving the result in the data register.

2. OR the contents of the effective address operand with a data reg-

ister, leaving the result in the effective address operand.

Addressing Modes Allowed:

Effective address as source:

Dn An (An) (An)-i- -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes Yes No No

Effective address as destination:

Dn An (An) (An)-i- -(An) x(An) x(An,xr.s)

No No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long
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Condition Codes Affected:

X Not affected.

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Always cleared.

C Always cleared.

Assembler Syntax: OR <ea>,Dn
OR Dn,<ea>

The OR! instruction is used when the source is immediate data and the

destination is not a data register. Many assemblers use the ORI instruction

when OR is specified with this combination of operands.

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1

1 1

Register

1 1

Dr

1

Size

1

1 1 1 1 1

Effective Address

1 1 II
- Mode — -^ Reg. —

The Register field indicates which data register is to be used. The Dr

bit is if the data register is the destination, and 1 if the effective address

is the destination. Size is 00 for byte operations, 01 for words, and 10

for longs.

Example:

PC = 00000806 USP = 00015980 SSP = 0007BF08 ST = 0010 = >IM = EXT
D 11 1 1 11 1 1 22222222 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

or.l D0,D1

-t

PC = 00000808 USP = 0001 598C SSP = 0007BF08 ST-0010=>IM = EXT
D 1 1 1 1 1 1 1 1 33333333 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This example ORs the contents of registers DO and D1, leaving the

result in D1. Notice that this is the data register destination form of the

instruction.
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ORI Instruction

The ORI (OR Immediate) performs a bit-wise OR between an immedi-

ate operand (always the source) and an effective address operand (always

the destination).

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No Yes Yes

When the status register is specified as the destination, the S-bit in the

status register must be set (i.e., the 68000 must be executing in Supervisor

state).

Data Sizes: byte, word, long

Condition Codes Affected:

X Not affected.

N Set if the high-order bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Always cleared.

C Always cleared.

If the status register (SR) or condition code register (CCR) is specified as

the destination, the condition code bits are set according to bits 5-0 of the

immediate source.

Assembler Syntax: ORI #<data>,<ea>
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Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Size

1

1 1

Effective

1 1

Address

1 1

•^Mocle-» -Reg.-

Word data: 16 bits

_l I I I I L

Byte data: 8 bits

J I I I L

-|—I—I—I—I—I—I—I—I—I—I—I—I—I—

r

Long data: 32 bits, including previous word

J I \ I I I I I \ I I I I I L

The Size field is 00 for byte data, 01 for word data, and 10 for long data.

Example:

PC = 00000810 USP = 0001598C SSP = 0007BF08 ST = 0010 = >IM = EXT
D 1 11 1 1 111 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
ori.l #$22222222,00

-t

PC = 00000816 USP = 0001598C SSP = 0007BF08 ST = 0010= >IM = EXT
D 33333333 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This example performs an OR operation on the contents of register DO
with a long constant.
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PEA Instruction

The PEA (Push Effective Address) instruction places a computed address

on top of the stack. The size of the instruction is restricted to long data.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.$)

No No Yes No No Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes No No No

Data Size: long

Condition Codes Affected: None

Assembler Syntax: PEA <ea>

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 1 1

1 1 1 1 1

Effective Address

1 1 II
•^ Mode- — Reg. -

Example:

PC = 0000081 6 USP = 0001598C SSP = 0007BF08 ST = 0010= >IM = EXT
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

pea $81

E

-t

PC-0000081C USP-00015988 SSP = 0007BF08 ST = 0010= >IM = EXT

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00015988

-SI15988

00015988 000008 IE .



68000 Instruaion Set 205

This example pushes the absolute long address 81 E. The PUSH is veri-

fied by examining memory at the address contained in address register A7
after the instruction executes.
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RESET Instruction

The RESET instruction is a privileged operation that causes all external

devices to be reset.

Addressing Modes Allowed: None

Data Sizes: unsized

Condition Codes Affected: None

Assembler Syntax: RESET

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

01001 1 1001 1 10000 (4E70 hex)
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ROL Instruction

The ROL (ROtate Left) instruction performs a left rotate on a data regis-

ter or memory operand. There are three forms of this instruction:

1

.

Rotate a data register to the left by a constant contained in the
instruction. Shifts from one to eight bits can be accomplished
using this form of the instruction.

2. Rotate a data register to the left by the number of bits contained
in another data register.

3. Rotate a memory word left by one bit only

The Rotate operation is performed without an auxiliary bit. Bits shifted

out of the high-order bit position go to both the carry bit and the low-
order bit position.

c Operand

'

Addressing Modes Allowed: Memory form only

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

No No Yes Yes Yes Yes Yes

x.w x.i x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long

Data size is restricted to word for the in-memory form of the instruction.
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Condition Codes Affected:

X Not affected.

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

C Set according to the last bit shifted out of the operand. Cleared if

the shift count is zero.

V Always cleared.

Assembler Syntax: ROL #<count>,Dy
ROL Dx,Dy

ROL <ea>

Machine Code Format:

Data Register as destination:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
1 1 1

1 1

Immed.

1 1

1

1

Size

1

T 1 1

1 1

Register

1 1

Memory location as destination:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1 1 1 1

1 1

Effective

1 1

1 1

Address

1 1

•^Mode- -Reg.-

The T-field determines the type of the register-destination form of the

instruction. If T is 0, then the Immediate field contains the shift count, with

000 binary representing a count of 8. If T is 1, then the register number
that contains the shift count is contained in the Immediate field.

Example:

PC = 00000830 USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D 11111111 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

rol #3,DO
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-I

PC = 00000832 USP = 0001 598C SSP = 0007BF08 ST = 0008 = > IM = NEG
11118888 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00015980

This instruction rotates the lower word of register DO left by three bits.

Notice that the high word of DO is unaffected.
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ROR Instruction

The ROR (ROtate Right) instruction performs a right rotate on a data

register or memory operand. There are three forms of this instruction:

1. Rotate a data register to the right by a constant contained in the

instruction. Shifts from one to eight bits can be accomplished

using this form of the instruction.

2. Rotate a data register to the right by the number of bits contained

in another data register

3. Rotate a memory word right by one bit only

The Rotate operation is performed without an auxiliary bit. Bits shifted

out of the low-order bit position go to both the carry bit and the high-

order bit position.

Operand C
1 1

Addressing Modes Allowed: Memory form only

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

No No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long

Data size is restricted to word for the in-memory form of the instruction.
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Condition Codes Affected:

X Not affected.

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.

C Set according to the last bit shifted out of the operand. Cleared if

the shift count is zero.

V Always cleared.

Assembler Syntax: ROR #<count>,Dy

ROR Dx,Dy

ROR <ea>

Machine Code Format:

Data Register as destination:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
1 1 1

1
-1

—

Immed.

1 1

1

Size

1

T 1 1

1 1

Register

1 1

Memory location as destination:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
Effective Address

-J r i ll
•*- Mode -

I

«- Reg. -»

The T-field determines the type of the register-destination form of the
instruction. If T is 0, then the Immediate field contains the shift count, with
000 binary representing a count of 8. If T is 1, the register number that

contains the shift count is contained in the Immediate field.

Example:

PC = 00000836 USP = 0001598C SSP = 0007BF08 ST = 0000= >IM =
D 1 11 1 11 11 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
ror #3,D0
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-t

PC = 00000840 USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D 11112222 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This instruction rotates the low-order word of register DO right by three

bits. The upper word of register DO is unaffected.
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ROXL Instruction

The ROXL (ROtate Left with eXtend) instruction performs a left rotate

on a data register or mennory operand. There are three forms of this

instruction:

1. Rotate a data register to the left by a constant contained in the

instruction. Shifts from one to eight bits can be accomplished
using this form of the instruction.

2. Rotate a data register to the left by the number of bits contained
in another data register.

3. Rotate a memory word left by one bit only

The Rotate operation is performed using the X-bit as an auxiliary bit. Bits

shifted out of the high-order bit position go to both the carry bit and the
X-bit. The X-bit is rotated into the low-order bit position.

c Operand'

J
1

Addressing Modes Allowed: Memory form only

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

No No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long
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Data size is restricted to word for the in-memory form of the instruction.

Condition Codes Affected:

X Set according to the last bit shifted out of the operand. Unaffected

if the shift count is zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

C Set according to the last bit shifted out of the operand. Set to the

value of the X-bit if the shift count is zero.

V Always cleared.

Assembler Syntax: ROXL #<count>,Dy
ROXL Dx,Dy

ROXL <ea>

Machine Code Format:

Data Register as destination:

Bit 15 14 13 12 11 10 9 7 6 5 1

1 1 1

1 1

Immed.

1 1

1

1

Size

1

T 1

I 1

Register

1 1

Memory location as destination:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1 1 1

1 1

Effective

1 1

1 1

Address

1 1

-^Mode- *- Reg. -

The T-fieid determines the type of the register-destination form of the

instruction. If T is 0, then the Immediate field contains the shift count, with

000 binary representing a count of 8. If T is 1, then the register number

that contains the shift count is contained in the Immediate field.

Example:

PC = 0000084C USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D 1 1 1 1 1 1 1 1 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

roxl #4, DO
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-t

PC - 0000084E USP = 0001 598C SSP - 0007BF08 ST - 0011 - > IM - EXT CRY
D 11111110 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This example rotates the low-order word of register DO to the left by

four bits. The high-order word of register DO is unaffected. The X-bit is set

following the instruction.
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ROXR Instruction

The ROXR (ROtate Right with eXtend) instruction performs a right rotate

on a data register or memory operand. There are three forms of this

instruction:

1. Rotate a data register to the right by a constant contained in the

instruction. Shifts from one to eight bits can be accomplished

using this form of the instruction.

2. Rotate a data register to the right by the number of bits contained

in another data register.

3 Rotate a memory word right by one bit only

The Rotate operation is performed using the X bit as an auxiliary bit. Bits

shifted out of the low-order bit position go to both the carry-bit and the X

bit. The X bit is rotated into the high-order bit position.

Operand

Addressing Modes Allowed: Memory form only

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

No No Yes Yes Yes Yes Yes

x.w x.l x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word long

Data size is restricted to word for the in-memory form of the instruction.
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Condition Codes Affected:

X Set according to the last bit shifted out of the operand. Unaffected

if the shift count is zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

C Set according to the last bit shifted out of the operand. Set to the

value of the X-bit if the shift count is zero.

V Always cleared.

Assembler Syntax: ROXR #<count>,Dy

ROXR Dx,Dy

ROXR <ea>

Machine Code Format:

Data Register as destination:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 1

1 1 1

1 I

Immed.

1 1

1

Size

1

T 1

1 1

Register

1 1

Memory location as destination:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1 1

1 1

Effective

1 1

1 1

Address

1 1

•^Mode-* - Reg. -

The T-field determines the type of the register-destination form of the

instruction. If T is 0, then the Immediate field contains the shift count, with

000 binary representing a count of 8. If T is 1, then the register number

that contains the shift count is contained in the Immediate field.

Example:

PC = 0000085A USP = 000 1 598C SSP = 0007BF08 ST = 0000 = > IM =

D 11111111 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C
roxr #4, DO
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-t

PC = 0000085C USP = 0001598C SSP = 0007BF08 ST = 0000= >IM =

D 11112111 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This example rotates the low-order word of register DO to the right by

four places. The upper word of register DO is not affected.
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RTE Instruction

The RTE (ReTurn from Exception) is used to load the status register and

the program counter (PC) with a single instruction. This type of operation

is required when an operating system in supervisor mode passes control

to a user program in user mode. The new contents of the status register

and PC are popped off the stack. The status register is taken from the first

16-bit word on the stack, and the PC from the next 32-bit long word. The

stack pointer is incremented by six bytes.

This is a privileged instruction. The processor must be in supervisor

state (i.e., bit 13 of the status register must be set) at the beginning of the

RTE instruction. The RTE instruction changes all the bits of the status regis-

ter, so the processor might be in user mode at the completion of the

instruction.

Condition Codes Affected:

The condition codes are all loaded from the word at the top of the

stack.

Assembler Syntax: RTE

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0100111001110011 (4E73 hex)

Example:

PC = 00000868 USP = 0001 598C SSP = 0007BF08 ST = 2004 =>SUPIM = OZER
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0007BF08

pea $876

The following code pushes a new status register contents (with all the

condition code bits set), and a new PC. Since the PC is lower on the stack

than the status register, it must be pushed first.

Here is a disassembly of the program:

-1868,876

00000868 pea $876
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0000086E move #$1F, -(A7)

00000872 rte

00000874 moveq #$FF,DO

00000876 nop

Executing this program yields the following results

-g.876

PC = 00000876 USP = 0001598C SSP = 0007BF08 ST = 001F= >IM = EXT NEG ZER OFL CRY
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

Notice that the breakpoint was set on the address that the RTE instruc-

tion loads into the PC. (The debugger will not trace RTE instructions.)

This example shows how a supervisor mode program can transfer con-

trol to a user mode program. Note how register A7 reflects the supervisor

stack pointer (SSP) before the RTE and the user stack pointer (USP)

afterward.
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RTR Instruction

The RTR (ReTurn and Restore) instruction loads the condition codes and

the program counter (PC) from the stack. The condition codes are loaded

from the low byte from the word at the top of the stack. The high byte of

this word is discarded. The PC is loaded from the long word immediately

after the word containing the condition codes. The stack pointer is incre-

mented by six by an RTR instruction.

Condition Codes Affected:

The condition codes are loaded from the first word popped from the

stack.

Assembler Syntax: RTR

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

10 111 (4E77 hex)

Example:

PC = 00000888 USP = 00015986 SSP = 0007BF08 ST = 0000= >IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00015986

rtr

At this point, we are about to execute an RTR instruction. Using the s

command, we will examine the information on the stack.

(Contents of A7)

(New condition codes)

(High word of PC)

(Low word of PC)

-SW15986
00015986 001

F

00015988 0000

0001 598A 088C
-t

PC = 0000088C USP = 0001598C SSP = 0007BF08 ST = 001F= >IM = EXT NEG ZER OFL CRY
DOOOOOOOO

AOOOOOOOO

00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 0001598C

The stack pointer was incremented by six bytes and the PC and status

register now have different contents.
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RTS Instruction

The RTS (ReTurn from Subroutine) instruction reverses the action of a

BSR (Branch to SubRoutine) or JSR (lump to SubRoutine) instruction. The

PC is loaded from the long word at the top of the stack. This causes exe-

cution to resume at the instruction that follows the JSR or BSR instruction.

Condition Codes Affected: None

Assembler Syntax: RTS

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

(4E75 hex)1 1 1 1 1 1 1 1 1

Example:

PC = 0000089A USP = 00015988 SSP = 0007BF08 ST = 0000= >IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00015988

rts

-SI15988

00015988 0000089E .

-t

PC = 0000089E USP = 0001598C SSP = 0007BF08 ST = 0000= >IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This RTS instruction causes a transfer to address 89E. The stack pointer

is incremented by four bytes (which is the size of the address that was

popped off the stack).
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SBCD Instruction

The SBCD (Subtract BCD with extend) instruction subtracts two bytes in

BCD format. The destination operand is replaced with the difference (Des-

tination - Source - Extend bit).

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No No No Yes No No

x.w X.I x(PO x(PC,xr.s) #x SR CCR

No No No No No No No

There are two forms of this instruction:

1. Subtract data register from a data register (Dn addressing modes).

The low-order bytes of two data registers are subtracted and the

result stored in the destination register.

2. Subtract memory to memory This form of the instruction allows

multiple bytes to be subtracted. The only valid addressing mode
is -(An). Since the 68(XX) stores BCD data with the highest byte

first, to subtract multibyte quantities, one must start at the highest

address and work down. (Hence the use of pre-decrement

addressing.) If there is a carry out of the most significant BCD
digit in the byte, each instruction sets the X bit. The X bit is then

subtracted from the next pair of bytes.

Data Sizes: byte only

Condition Codes Affected:

X Set by a borrow-out of the most significant BCD digit.

N Undefined.

Z Cleared if result is not zero. Unchanged otherwise.
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V Undefined.

C Set by a borrow-out of the most significant BCD digit.

The Z bit is cleared if the result is not zero. Not setting the bit when the

result of the present byte is zero allows the Z bit to be accurate after a

series of SBCD instructions is executed. The Z bit must be set before

beginning such a series. (Comparing a register to itself is an easy way to

set the Z bit.) The N and V bits are undefined as a result of this instruction.

Assembler Syntax: SBCD
SBCD

Machine Code Format:

Dx,Dy

-(Ax), -(Ay)

Bit 15 14 13 12 11 10 9 7 6 5 4 1

1

1 1

D. Reg

1 1

1 F

1 I

S. Reg.

1 1

The D. Reg and S. Reg fields specify the destination and source register

numbers, respectively If the F (format) bit is 0, then the registers are data

registers. If the F bit is a 1 , then the registers are address registers, and the

pre-decrement addressing mode is used.

Example:

PC = 0000051

D 00000000

A 00000518

Sbcd -(AO),-

-d516.519

00000516 00

-t

PC =0000051

D 00000000

A 00000517

USP = 0001598C SSP
00000000 00000000

0000051 A 00000000

(Al)

01 01 00

2 USP = 0001 5980 SSP
00000000 00000000

00000519 00000000

= 0007BF08ST = 0000

00000000 00000000

00000000 00000000

= >IM =

00000000 00000000 00000000

00000000 00000000 0001 598C

= 0007BF08 ST = 0019=>IM = 0EXT NEG CRY
00000000 00000000

00000000 00000000

00000000 00000000 00000000

00000000 00000000 0001 598C

sbcd -(A0),-(A1)

-d516,519

00000516 00 01 01 99

-t

PC = 0000051

D 00000000

A 00000516

4 USP = 0001598C SSP
00000000 00000000

00000518 00000000

= 0007BF08 ST = 0000

00000000 00000000

00000000 00000000

= >IM =

00000000 00000000 00000000

00000000 00000000 0001 598C

-d516,519

00000516 00 01 00 99
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This example illustrates how to do a multiprecision BCD subtraction

operation. A two-byte subtraction operation is executed, subtracting 1

from 100 to obtain 99. The operands are displayed using the d command
after each step of the process. Notice the action of the borrow.
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Sec Instruction

The Sec instruction sets a byte specified by an effective address operand

to all ones if a specified condition is true. The byte is cleared if the condi-

tion is false. The permissible instructions are:

sec Set <ea> if the C-bit (carry) is clear.

SCS Set <ea> if the C-bit is set.

SEQ Set<ea> on EQual. The byte is set if the Z- bit is set.

SGE Set <ea> on Greater than or Equal. The byte is set if the N
(negative) and V (overflow) bits are either both set or both clear.

SGE is used for two's complement binary numbers.

SGT Set <ea> on Greater Than. The byte is set if:

• The N and V bits are both set and the Z-bit is clear, or,

• The N, V, and Z-bits are all clear.

SHI Set <ea> on Higher than. The byte is set if the C and Z bits are

both clear. SHI is similar to SGT, except it works on unsigned

numbers.

SLE Set <ea> on Less than or Equal. The byte is set if:

• The Z-bit is set, or,

• The N-bit is set and the V-bit is clear, or,

• The N-bit is clear and the V-bit is set.

The SLE instruction is used for two's complement binary

numbers.

SLS Set <ea> on Lower or Same.

The byte is set if either the C or Z bits are set. SLS is similar to

the SLE instruction, except it works on unsigned numbers.
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SLT Set <ea> on Less Than. The byte is set if:

• The N-bit is set and the V-bit is clear, or,

• The N-bit is clear and the V-bit is set.

SMI Set <ea> on Minus. The byte is set if the N-bit is set.

SNE Set <ea> on Not Equal. The byte is set if the Z-bit is clear.

SPL Set <ea> on Plus. The byte is set if the N-bit is clear.

SVC Set <ea> on V Clear. The byte is set if the V-bit is clear,

indicating no overflow.

SVS Set <ea> on V Set. The byte is set if the V-bit is set, indicating

overflow.

SF Never set <ea>.

ST Always set <ea>.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Size: byte

Condition Codes Affected: None

Assembler Syntax: Sec <ea>

Machine Code Format:

14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1

1 1 1

Condition

1 1 1

1 1

1 1

Effective

1 1

I 1

Address

1 1

*-Mode- •^ Reg. -
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The Condition is a four-bit encoding of the condition code combination.

The conditions are as follows:

Condition Instruction Condition Instruction

0000 ST 1000 SVC
0001 SF 1001 svs

0010 SHI 1010 SPL

0011 SLS ion SMI

0100 sec 1100 SGE

0101 scs 1101 SLT

0110 SNE 1110 SGT
0111 SEQ 1111 SLE

Example:

PC = 000008BC USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D 00000001 00000002 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000
cmp.l DO.DI

-t

PC = 000008BE USP = 0001 598C SSP = 0007BF08 ST = 0000= >IM =

D 00000001 00000002 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000
sit D2
-t

PC = 000008C0 USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D 00000001 00000002 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000
sgt D2
-t

PC = 000008C2 USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D 00000001 00000002 OOOOOOFF 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000

00000000 0001 598C

00000000 00000000

00000000 0001 59eC

00000000 00000000

00000000 0001 598C

00000000 00000000

00000000 0001 598C

This example illustrates the use of the Sec instruction with a compare

instruction. Since the value in register Dl is greater than the value in regis-

ter DO, the SLT instruction did not set D2, and the SGT instruction did set

D2. With the Sec instruction, as with the Bcc and DBcc instructions, the

operands of a compare instruction must be read in reverse order.
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STOP Instruction

The STOP instruction provides a way to simultaneously enable inter-

rupts and to wait for an interrupt to occur. Other processors, notably the

PDP-11, had separate instructions for enabling interrupts and for waiting

for interrupts. An interrupt between the enabling instruction and the wait-

ing instruction could result in waiting for an interrupt that has already

occurred.

The STOP instruction is a privileged instruction and is used only by

code that must service interrupts. The Supervisor bit in the status register

must be set at the beginning of the instruction. The contents of a 16-bit

immediate data field are loaded into the Status Register. Bit 13 (which cor-

responds to the S-bit in the status register) of the immediate data must be

set or a privilege violation exception will occur. See Chapter 7 on Excep-

tion Processing for additional information.

Addressing Modes Allowed: None

Data Size: unsized

Condition Codes Affected:

The condition codes are set from bits 5-0 of the immediate operand.

Assembler Syntax: STOP #<data>

Machine Code Format:

Bit 15 14 13 12 n 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Immediate Data (16 bits)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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SUB Instruction

The SUB (SUBtract binary) instruction subtracts a source operand from

a destination operand and stores the result in the destination operand.

There are two forms of this instruction:

1

.

Subtract an effective address operand from a data register.

2. Subtract a data register from an effective address operand.

Addressing Modes Allowed:

All Addressing modes (except SR and CCR) are allowed when the effec-

tive address specifies a source operand. When the effective address field is

the destination, then the following addressing modes are allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

No No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Using a data register as a destination must be accomplished using the

register destination form of the instruction.

Data Sizes: byte, word, long

Using an address register as the source is valid only for word and long

data lengths.

Condition Codes Affected:

X Set by borrow out of most significant bit.

N Set if high-order bit of result was 1

.

Z Set if result is zero.

C Set by borrow-out of most significant bit.

V Set if operation resulted in overflow condition.
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Assembler Syntax: SUB Dx, <ea>
SUB <ea>,Dx

The SUBA instruction is used when the destination is an address regis-

ter. The SUBI and SUBQ instructions are used when the source is imnnedi-

ate data. Many assemblers will accept the SUB mnemonic for these

instructions, and choose the correct instruction based on the operands.

Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1

1 1

Register

1 1

D

1

Size

1

1 1

Effective

1 1

1 1

Address

1 1

•^Mode- -Reg.-

The Register field gives the data register that must be one of the oper-

ands. The D bit is if the Register field is the destination operand, and 1 if

the effective address is the destination.

The Size field is 00 for byte, 01 for word, and 10 for long operands.

Example:

PC = 000008CE USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D 00000002 00000001 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

sub. I DI.DO

-t

PC - 000008DO USP - 0001 598C SSP - 0007BF08 ST - 0000 = >IM =

D 00000001 00000001 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This instruction subtracts 1 from 2 to form 1. When both operands are

data registers, the data register destination form of the instruction is used.
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SUBA Instruction

The SUBA instruction does a binary subtraction operation with an

address register destination. In order to allow address computations to be

freely intermixed with data operations, this instruction does not affect the

condition codes.

The source operand is subtracted from the address register. The result is

placed in the address register.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes Yes Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes Yes Yes Yes No No

All addressing modes are allowed, except SR and CCR. The effective

address must be the source operand.

Data Sizes: word, long

The SUBA operation always afferts all 32 bits of the destination address

register.

Condition Codes Affected: None

Assembler Syntax: SUBA <ea>,An
Many assemblers will generate a SUBA instruction if a SUB instruction is

specified with an address register as the destination operand.

Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 Register

1 1

S 1 1

1 1

Effective

1 1

Address

1 1

^Mode- *- Reg. -
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The Register field gives the address register to be used as the destination

operand. The S-bit is 1 for long operands and for word operands.

Example:

PC = 000008D8 USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A000008DC 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

suba #$22,AO
-t

PC = 000008DC USP = 0001 598C SSP = 0007BF08 ST = 0000= >IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 000008BA 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This example subtracts a constant 22 hex from the address contained in

address register AO.



234 Programming the 68000

SUBI Instruction

The SUBI instruction subtracts an immediate quantity from an effective

address operand. The result is left in the effective address operand.

Addressing Modes Allov^ed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long

Condition Codes Affected:

X Set on borrow out of high-order bit. Cleared otherwise.

N Set if high-order bit of result is set. Cleared otherwise.

Z Set if result is zero. Cleared otherwise.

C Set on borrow out of high-order bit. Cleared otherwise.

V Set on overflow condition. Cleared otherwise.

Assembler Syntax: SUBI #x,<ea>

Most assemblers automatically choose the SUBI instruction if the source

operand of a SUB instruction is immediate.
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Machine Code Format:

Bit 15 14 13 12 n 10 9 8 7 6 5 4 3 2 1

1

I

Size

1

1 1 1 1 1

Effective Address

1 1 II
- Mode - -^ Reg. -

T—I—I—I—I—I—

r

Word data: 16 bits

J I I I I I L

Byte data: 8 bits

J I I I I L

1 1
1 1—

I

1
1 1—

I

1
1 1—

I

1 r

Long data: 32 bits, including previous word

J I I I I I I I I I I I I I L

The Size field is 00 for byte operands, 01 for words, and 10 for longs.

Example:

PC = 000008E4 USP = 0001598C SSP = 0007BF08 ST = 0000= >IM =

D 00000100 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
subi.l #$10,DO
-t

PC = 000008EA USP = 0001 598C SSP = 0007BF08 ST = 0000 = > IM =

D OOOOOOFO 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001598C

This instruction subtracts the constant 10 hex (16 decimal) from data

register DO.
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SUBQ Instruction

The SUBQ instruction subtracts a three-bit immediate value from an

effective address operand. This allows you to subtract a small number
from a register or memory address using a small, fast instruction.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes Yes Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long

When an address register is used as the destination, only word and long

sizes are allowed.

Condition Codes Affected:

X Set on borrow out of high-order bit position. Cleared otherwise.

N Set if high-order bit of result is set. Cleared otherwise.

V Set on overflow. Cleared otherwise.

Z Set if result is zero. Cleared otherwise.

C Set on borrow out of high-order bit position. Cleared otherwise.

No condition codes are affected if an address register is used as the des-

tination operand.

Assem bier Syntax : SUBQ #< data > , < ea >
#<data> is a constant number in the range

to 7.
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Machine Code Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1

1 1

Data

1 1

1

1

Size

1

1 1

Effective

1 1

1 1

Address

1 1

'-Mode-* •-Reg.-*

Data is a three-bit immediate field, with 000 representing 8, 001-111

representing 1-7. Size is 00 for byte operations, 01 for word, and 10 for

long operations.

Example:

PC-000008EE USP-0001598C SSP-0007BF0e ST-0000> >IM>0
D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C
subq.l #$2,DO
-t

PC-000008F0 USP-0001598C SSP-0007BF08 ST. 0019 . >IM .0 EXT NEG CRY
DFFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 598C

This example subtracts 2 from 1 (in data register DO) to form - 1

.
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SUBX Instruction

The SUBX (SUBtract extended) instruction executes multiple precision

subtraction operations. Integers of any length can be subtracted using the

SUB and SUBX instructions. This makes it possible to represent numbers
much larger than the 32-bit longword allows.

There are two forms of this instruction:

1

.

Subtract a data register from a data register.

2. Subtract a memory location from a memory location. The -(An)

addressing mode is used for both the source and destination in

this form.

In both cases, the difference (Destination - Source - X-bit) is placed in

the destination operand.

Addressing Modes Allowed:

Dn An (An) (An)-H -(An) x(An) x(An,xr.s)

Yes No No No Yes No No

x.w X.I x(PO x(PC,xr,s) #x SR CCR

No No No No No No No

Data Sizes: byte, word, long

Condition Codes Affected:

X Set on borrow out of high-order bit. Cleared otherwise.

N Set if result is negative. Cleared otherwise.

Z Cleared if result is not zero. Unchanged otherwise.

C Set on carry out of high-order bit. Cleared otherwise.

V Set on overflow condition. Cleared otherwise.
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The Z bit is not set if the result is zero, but it is cleared if the result is not

zero. This property of the instruction allows the Z bit to correctly indicate

the result of a multiprecision subtraction operation. The Z bit must be set

before subtraction begins, however. (This can be done with a MOVE to

CCR, or by comparing a register to itself. The latter instruction is two bytes

shorter.)

Assembler Syntax: SUBX DyDx
SUBX -(Ay), -(Ax)

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1

1 1

Reg. Rx

1 1

1

I

Size

1

T

1 I

Reg. Ry

1 1

The Reg. Rx and Reg. Ry fields contain the destination and source regis-

ter numbers, respectively The size field is 00 for byte operations, 01 for

word, and 10 for long operations. The T (type) bit is for the data register

to data register form of the instruction. The Reg. Rx and Reg. Ry fields

identify data registers in this case. The T-bit is 1 for the memory to mem-
ory form of the instruction. The Rx and Ry fields identify the address regis-

ters used by the pre-decrement addressing mode for this form.

Example:

PC-000008FE USP-0001558C SSP
D 00000001 00000000 00000000

A 00000000 00000000 00000000

subx.l D3,D1

-t

PC - 00000900 USP « 0001 558C SSP
D 00000001 FFFFFFFF 00000000

A 00000000 00000000 00000000

subx.l D2,D0

-t

PC - 00000902 USP - 0001 558C SSP
D 00000000 FFFFFFFF 00000000

A 00000000 00000000 00000000

-0007BF08ST-0004
00000001 00000000

00000000 00000000

-0007BF08ST- 0019

00000001 00000000

00000000 00000000

-0007BF08ST- 0000

00000001 00000000

00000000 00000000

->IM-OZER
00000000 00000000 00000000

00000000 00000000 0001 558C

. >IM-O EXTNEGCRY
00000000 00000000 00000000

00000000 00000000 0001 558C

'>IM-0
00000000 00000000 00000000

00000000 00000000 0001558C

This operation subtracts the register pair (D2,D3) from the register pair

(D0,D1). The high-order longword of each pair is contained in the even

numbered register. The example shows that (1,0) - (0,1) is (0,FFFFFFFF).
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SWAP Instruction

The SWAP instruction exchanges the 16-bit words in a data register. Bits

31-16 are exchanged with bits 15-0.

Addressing Modes Allowed: Dn only

Data Size: word

Condition Codes Affected:

X Not affected.

N Set if bit 31 of the result is set. Cleared otherwise.

Z Set if all 32 bits of the register are zero. Cleared otherwise.

V Always cleared.

C Always cleared.

Assembler Syntax: SWAP Dn

Machine Code Format:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
1 1 1

1 I

Register

1 1

The Register field specifies which data register is to be swapped.

Example:

PC = 0000090A USP = 0001558C SSP = 0007BF08 ST = 0000= >IM =

D 11112222 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 558C
swap DO
-t

PC = 00000900 USP = 0001558C SSP = 0007BF08 ST = 0000= >IM =

D 22221111 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 558C

This example swaps the words in data register DO.
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TAS Instruction

The TAS (Test And Set) instruction tests a byte specified by an effective

address operand. The high-order bit of the byte is set to 1. The N- and Z-

bits are set according to the value of the byte before the operation. The
operation is indivisible, using a read-modify-write memory operation.

The TAS operation provides synchronization when two or more CPU
chips have access to the same area of memory Since TAS is indivisible, a

processor can claim a resource and mark it as claimed before another

processor can test the memory location. If the operation were not indivi-

sible, two processors could test the flag and set it in such a way that they

both assess the resource as free and claim it erroneously The TAS instruc-

tion guarantees that one processor will win and all others lose.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

x.w X.I x(PO x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

A TAS operation on a data register (which is allowed) is of no value for

synchronization purposes.

Data Size: byte

Condition Codes Affected:

Not affected.

Set if the high-order bit of the operand is set prior to the

operation. Cleared otherwise.

Set if all bits of the operand are zero prior to the operation.

Cleared otherwise.

Always cleared.

Always cleared.
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Assembler Syntax: TAS <ea>

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1

I 1 IT 1

Effective Address

1 1 II
^ Mode— — Reg. —

Example:

PC - 0000090C USP = 0001 558C SSP = 0007BF08 ST - 0000 = > IM =

D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 558C
tas $97C

-S97c

0000097C 00 .

-t

PC -0000091 2 USP- 0001 558C SSP-0007BF08 ST - 0004 - >IM-OZER
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 558C
-897c

0000097C 80

.

This example executes a TAS operation on memory location 97C. The

memory location contained zero before the operation and 80 hex after-

ward. The Z-bit is set, indicating that the operand was zero initially
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TRAP Instruction

The TRAP instruction stacks the PC and the status register on the super-

visor mode stack. The Processor is switched to supervisor state, and the

PC is taken from one of sixteen trap vectors specified by a four-bit quan-

tity in the TRAP instruction.

This instruction is normally used by user mode programs to call supervi-

sor mode programs (such as operating systems). The TRAP instruction

provides a method for the user mode program to request an operating

system function, such as I/O, without having to know where the operating

system is located in memory.

Condition Codes Affected: None

Assembler Syntax: TRAP #< vector >

Machine Code Format:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
1 1 1 1 1

1 1 1

Vector

1 1 1

(4E4x hex)

Vectors used by the trap instruction are located at the following abso-

lute memory locations:

Vector Address Vector Address

80 8 AO
1 84 9 A4
2 88 10 A8
3 8C 11 AC
4 90 12 BO

5 94 13 B4

6 98 14 B8

7 9C 15 BC
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TRAPV Instruction

The TRAPV instruction tests for overflow. The TRAFV instruction does

nothing if the V-bit is clear. If the V-bit is set, the PC and the status register

are pushed onto the stack, and a new PC is loaded from absolute location

1C hex. The CPU is switched into Supervisor state. This artion is called a

TRAPV exception.

The TRAPV instruction is used after computations in which an overflow

condition would result in meaningless data. Many high-level languages

use this instruction to detect overflow.

Data Size: unsized

Condition Codes Affected: None

Assembler Syntax: TRAPV

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1110 110 (4E76)
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TST Instruction

The TST instruction tests an effective address operand for negative or
zero. The results are not saved, except that the condition codes are set

appropriately.

Addressing Modes Allowed:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

X.W X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Sizes: byte, word, long

Condition Codes Affected:

X Not affected.

N Set if the high-order bit of the operand is set. Cleared otherwise.

Z Set if the operand is zero. Cleared otherwise.

V Always cleared.

C Always cleared.

Assembler Syntax: TST <ea>

Machine Code Format:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
Size

\

—I

1 1 1 1

—

Effective Address

_J Lj I I

•^ Mode-
I
— Reg. -

Size is (X) to test a byte, 01 for a word, and 10 for a long.



246 Programming the 68000

Example:

PC - 00000918 USP - 0001 558C SSP - 0007BF08 ST = 0004 = >IM - ZER
D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 558C
tst.l DO
-t

PC =0000091 A USP- 0001 558C SSP-0007BF08 ST- 0000 - >IM -0
D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 558C
tst.l D1

-t

PC- 0000091 C USP- 0001 558C SSP-0007BF08 ST - 0004 - >IM = ZER
D 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001 558C

This example shows two TST instructions: one on a register that is non-

zero and one on a register that is zero.
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UNLK Instruction

The UNLK (UNLinK) instruction frees a stack frame that was allocated

previously by a LINK instruction. (See the description of the LINK instruc-

tion.) The instruction works like this:

The specified address register (normally the frame pointer) is placed in

the stack pointer. A long word is then popped off the stack into the

address register. This is exactly the opposite of the action of the LINK

operation. The UNLK instruction functions properly regardless of stack

PUSHes and POPs between the LINK and UNLK instructions.

Data Size: unsized

Condition Codes Affected: None

Assembler Syntax: UNLK An

Machine Code Format:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
1 1 1 1 1 1 1

I I

Register

1 1

The Register field is the address register specified as the frame pointer.

Example:

PC = 0000091 E USP = 0001 558C SSP = 0007BF08 ST = 0004

D 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000

link A0,#$FFF4

-t

PC - 00000922 USP = 0001 557C SSP = 0007BF08 ST = 0004

D 00000000 00000000 00000000 00000000 00000000

A 00015588 00000000 00000000 00000000 00000000

-3115588

00015588 00000000 . (Old AO contents)

PC - 00000924 USP - 0001 557C SSP - 0007BF08 ST > 0004

D 00000000 00000000 00000000 00000000 00000000

A 00015588 00000000 00000000 00000000 00000000

unik AO

= >IM = OZER
00000000 00000000

00000000 00000000

= >IM»0ZER
00000000 00000000

00000000 00000000

->IM-OZER
00000000 00000000

00000000 00000000

00000000

0001 558C

00000000

0001 557C

00000000

0001 557C
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-t

PC = 00000926 USP = 00015580 SSP = 0007BF08 ST = 0004 = >IM = OZER
D 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0001558C

This example shows a typical pair of LINK and UNLK instructions. The

LINK instruction pushes sixteen bytes (four for the address register and

twelve specified by the link instruction), which are in turned popped by

the UNLK instruction.

SUMMARY

In this chapter we have covered:

1

.

The 68000 instruction classes

2. Program development mechanics

3. The 68000 instruction set

This material is primarily for reference in later chapters. It is important

that you at least know how to generate a program on your system before

continuing, however.

EXERCISES

1

.

Use your own computer to run the program shown in Listing 3.1

.

2. Learn how to make backup copies of your files on your system.

3. Why do the ADDX and SUBX instructions use the pre-decrement

(-(An)) addressing mode while CMPM uses the post-increment

((An) + ) addressing mode?

4. Why won't the debugger trace RTE instructions? What other

instructions will the debugger fail to trace?
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INTRODUCTION

Now that we've been over the necessary background material, we can

start to write programs for the 68000 in earnest. Computer programming

is the art of combining a small number of simple concepts to produce

something both innovative and functional, much as an artist combines oils

and canvas to produce a painting. The materials of computer program-

ming are relatively commonplace and simple. What you can create with

them is limited only by your own ability and imagination.

DISPLAYING A LINE ON THE TERMINAL

Lefs begin by writing a routine that displays a line of text on the CRT

terminal (or screen). There are two basic techniques we can use to per-

form this task. We could read the computer's hardware manual, see how

the terminal interface is programmed, and then write a program that deals

with the terminal at a hardware level. This is not a terribly difficult task,

but it has the disadvantage of working on only one brand of computer (or

worse, a particular model of one brand of computer).
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An alternate technique is to write a program that uses the computer's

operating system to display a line of text for us. This method has the

advantage that it will work on any machine that runs the operating system

for which we write our program. This is, in fact, the reason operating sys-

tems exist: programs can be written that can run on widely disparate

hardware, and the programmer need not be concerned with most hard-

ware details.

We will return to the topic of hardware-level programming in Chapters

7 and 8. system. But for now, we will use the operating system for the

service it is intended to provide.

The operation of our program to print a string works something like this:

1

.

If any characters remain in the string to be printed, print the next

one. Otherwise, quit.

2. Go back to step 1

.

One implementation of this program is shown in Listing 4.1.

1 ******************************************

2
3 * This program prints "Hello Wbrld" on

4
5

6

* a CP/M-68K system.
*

******************************************

7 start:

8 00000000 41F900000000 lea string, aO * aO -> string

9 00000006 1218 loop; mcwe.b (aO)+,dl * dl = next character

10 00000008 6708 beq done * If eq, then quit

U OOOOOOOA 303C0002 mcwe.w #2,d0 * Print char code

12 OOOOOOOE 4E42 trap #2 * Call CP/M

13 00000010 60F4 bra Innp * Repeat until done

14 00000012 4E75 done: rts * Exit to CP/M

15 00000000 .data

16 00000000 48656C6C6F20 string: .dc.b 'Hello Wbrld', 13,10,0

Listing 4.1 - CP/M-68K string-print routine
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The program generally works like this:

• line 8. Address register AO is initialized to the address of the string

to be printed.

• lines 9-10. Data register Dl is loaded with the next character to

be printed. If this character has the binary value zero, then the

progrann returns to CP/M-68K (line 14).

• lines 11-12. The character in Dl is printed on the terminal.

• line 13. The program branches back to line 9 to print the next

character.

To print a character on the terminal under CP/M-68K, you first load the

character to be printed into register Dl and the constant 2 into register

DO, and then execute a trap #2 instruction.

This program uses a zero byte to indicate the end of a string. The loop

that prints one character at a time terminates when the move.b instruction

into Dl loads the register with a zero byte, causing the Z flag to be set.

The subsequent beq instruction causes a branch to the label done,

thereby terminating the program.

Bytes 13 and 10 at the end of the Hello World text string (line 16) are

used to move the terminal cursor to the beginning of the next line. A
character with the decimal value of 13 is defined as a carriage return, and
causes the terminal cursor to move to the leftmost character position on
the current line. A character with decimal value of 10 is defined as a line

feed and causes the cursor to move to the next line. Most terminals

require both a carriage return and a line feed to position the cursor at the

beginning of the next line.

The same program under UNIX is shown in Listing 4.2.

Lines 6-12 instruct the UNIX system to print the string to standard out-

put (file descriptor 1), which in UNIX is the terminal. Lines 13-15 cause

the program to exit to the operating system.

The sequence for calling the system shown here is for a system by
Motorola called UNIDOS. This is a UNIX-like operating system that has

UNIX<ompatible system calls. Each 68000 UNIX or UNIX-like system uses

slightly different conventions for calling the operating system. These con-

ventions can usually be found in their system manuals.

For each line that is to be printed, UNIX requires a single line-feed char-

acter at the end of the line. This accounts for the value 10 in line 17.

Sending a line feed (called a newline in UNIX documentation) to the ter-

minal under UNIX causes both a carriage return and a line feed to be sent

to the output device.
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PROGRAM PORTABILITY

One of the major concerns facing an applications programmer today

is the number of machines on which his program will run, particularly

for programs to be made available to the public. A program that runs

on a large number of machines and operating systems is said to be a

portable program.

Achieving Program Portability Across Operating Systems

It is possible to write a program that runs on any machine that supports

the chosen operating system when you use a machine language program

in conjunction with that operating system. Listings 4.1 and 4.2 fall into this

category In most instances, you may take the load file from one machine

and directly execute that file on another machine that uses the same oper-

ating system. This is called ob/ecf<ode portability

1 **************************************

2 * This Program prints "Hello, Wbrld"
3 * on a UNIDOS System.
4 ************************************** 1

5 00000000 • text

6 00000000 3F3C000E start: mcwe.w #length,-(a7) * Push length

7 00000004 487900000000 pea string * Push address
8 OOOOOOOA 3F3C0001 move.w #1, -(a7) * Push file description

9 OOOOOOOE 204F nDve.l a7,a0 * Copy stack

10 00000010 7004 ncwe.l «4,d0 * write

11 00000012 4E40 trap #0 * Do the call

12 00000014 508F add.l »8,a7 * Pop arguments
13 00000016 41F90000000E lea status, aO * Now
14 OOOOOOIC 7001 mcwe.l il,dO * Exit

15 OOOOOOIE 4E40 trap #0 *

16 00000000 .data *

17 00000000 48656C6C6F2C string .dc.b 'Hello, world ',10,0

17 00000008 6r726C64QA00
18 length .equ *-str ing

19 OOOOOOOE 00000000 status .del * Exit status

Listing 4.2 - UNIX string-print routine
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To achieve portability between machines that use the same CPU but dif-

ferent operating systems, you first define a set of subroutines that handles

the operating-system interface, and then write the bulk of the program

using calls to these subroutines.

To make a program that is designed for one operating system run on a

different operating system, you need only rewrite the operating-system

interface subroutines. This concept is called modularity. A modular pro-

gram isolates a given function, such as printing a string on the terminal,

into a single subroutine. Then the required subroutine is used whenever

the program performs a particular function.

Making a modular program run under a different operating system usu-

ally involves reassembling the source code for the main body of the pro-

gram as well as rewriting the operating-system interface subroutines. The

reassembly process may call for making changes to the source program in

order to accommodate any differences in assembler syntax between the

two operating systems. The ability to move programs between different

operating systems in this fashion is called source<ode portability.

A PORTABLE STRING-PRINT PROGRAM

To illustrate this concept, we are going to rewrite the previous string-print

program (see Listing 4.2) to run under both CP/M-68K and UNIX. The pro-

gram, common to both CP/M-68K and UNIX, is shown in Listing 4.3.

1

2

3

******************************************

* This program prints "Hello World" on
4
5

* a CP/^68K or UNIX system.
*

6 ******************************************

7 00000000 • text
8 •globl prtstr * String print
9 00000000 207C00000000 start: mcwea.l #string,aO * aO -> string

10 00000006 4EB900000000 jsr prtstr * Call print routine
u oooooooc 4E75 rts * Exit
12 00000000 .data
13 00000000 48656C6C6F20 string: .dc.b 'Hello Wbria',10,0

Listing 4.3 -A portable "Hello World" program
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We have defined a routine called prtstr that takes a string address in

address register AO and prints it on the terminal. The .globi directive (line

8) specifies that prtstr is a label defined in a separate source file. The linker

program combines the two assembler-output files into one executable file

and corrects the instructions that reference external labels.

Note that we have adopted the UNIX convention—a single line-feed

character—to indicate the end of a line. On CP/M-68K, the prtstr routine

(or a subsequent routine called by prtstr) must output issue both a car-

riage return and a line feed whenever a line feed is encountered in the

string to be printed.

When designing subroutines, put as much of the work in the subroutine

as possible. Following this rule means that work is done once (i.e., in the

subroutine), rather than many times in each program that calls the sub-

routine.

The prtstr routine can also be written in a way that makes it indepen-

dent of the operating system. By calling a routine to output individual

characters (a function that is is dependent on the operating system), we
can write a single version of prtstr as well, shown in Listing 4.4.

1

2

3

*********************************************

* String-print routine .

4 * Qiter with address of string in AO. |

5

6

7

* String terminates wi
*

th zero byte.

********************************************* 1

8 .globl prtchar * External reference

9 •globl prtstr * Defined here
10 00000000 48E74080 prtstr: mavem.l dl/aO,-(sp) * Save dl and aO

11 00000004 1218 loop: move.b (aO)+,dl * Fetch next character

12 00000006 6708 beq done * If zero byte, quit

13 00000008 4EB900000000 jsr prtchar * Print this character
14 OOOOOOOE 60F4 bra IrxTp * And repeat until done

15 00000010 4CDF0102 done: movem. 1 (sp)+,dl/aO * Restore dl and aO

16 00000014 4E75 rts * And return

Listing 4.4 - Prtstr routine
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There are two things to note about prtstr. First, the .globi statement is used

two ways:

1. To define labels that are referenced but not defined in the present

assembly. Such labels are called external symbols.

2. To define labels defined in the present source file and which are

referenced as external symbols by other assembly source files.

The second item of note about the prtstr routine concerns registers used

by subroutines. Registers AO and Dl are modified by this routine and are

saved and restored so that the contents (as seen by the calling program)

do not change.

This is another example of good subroutine design. Register contents

altered by a subroutine should be saved and restored.

The prtchar routine for CP/M-68K is coded as shown in Listing 4.5.

This subroutine prints a single character that is passed in the low byte of

register Dl. Lines 12 through 17 issue a carriage return/ line feed for each

1

2

3

************************ **********************

* Print a single character on the |

4
5

6
7

* terminal. Qiter with
*

character in Dl.

* CP/M-68K Version

8 ********************************************** 1

9 •globl prtchar * Defined here
10 prtchar

:

U 00000000 2F0O move.l dO,-(sp) * Save DO
12 00000002 OCOIOOOA cmpi.b #10,dl * Line feed?
13 00000006 660C bne notlf * No, just print
14 00000008 123C000D nove.b #13,dl * Print C/R first

15 OOOOOOOC 7002 mcwe.l #2,d0 * CP/M print code
16 OOOOOOOE 4E42 trap #2 * Call CP/M
17 00000010 123C000A ncwe.b #10,dl * Now print LF
18 00000014 7002 notlf: move.l #2,d0 * CP/M Print code
19 00000016 4E42 trap #2 * Call CP/M
20 00000018 201^ move.l (sp) + ,d0 * Restore DO
21 OOOOOOIA 4E75 rts * And return

Listing 4.5 - CP/M-68K prtchar routine
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line feed character passed by the caller. Lines 18-19 output the character

passed by the caller in register Dl. Note that register DO is preserved in

the same fashion as was register Dl by the putstr subroutine.

The UNIX version of this routine is shown in Listing 4.6.

This routine writes a single character using the same sequence we used

to write several characters in Listing 4.2.

CONVERSION ROUTINES

Our print-string program is useful in that we can now print strings on

the terminal. To perform useful computational functions as well, we need

to be able to print numeric quantities. This process involves conversion

routines, which transform raw binary numbers into printable strings.

Binary to Hexadecimal Conversion

The easiest conversion is to write a program that converts binary to hex-

adecimal as shown in Listing 4.7.

1 ********************************************

2 * Prtchar Routine for UNIX
3 * Eliter with character in Dl
4 ******************************************** 1

5 .globl prtchar
6 00000000 48E78080 prtchar :itovem.l dO/aO,-(a7) * Save registers
7 00000004 13C100000000 nove.b dl,char * Set character
8 OOOOOOOA 3F3C0001 move.w #l,-{a7) * Push count
9 OOOOOOOE 487900000000 pea char * Push address

10 00000014 3F3C0001 move.w #l,-(a7) * Push file description
11 00000018 204F move.l a7,aO * Transfer to AO
12 OOOOOOIA 7004 move.l #4,d0 * Function Code
13 OOOOOOIC 4E40 trap #0 * Do the call
14 OOOOOOIE DFTCOOOOOOOS adda.1 #8,a7 * Pop arguments
15 00000024 4CDF0101 movem.l (a7)+,d0/a0 * Restore registers
16 00000028 4E75 rts * Return
17 00000000 •data
18 00000000 00 char: .dc.b * Buffer

Listing 4.6 - UNIX prtchar routirie
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The basic technique employed by this subroutine is to take a nibble and

index into the hex character table hextab. Characters are processed from

right to left since we need the nibble in the low four bits of the index reg-

ister to select the appropriate character. In line 11, we initialize a tempo-

rary pointer (A1) to the address of the character table. Data register D1 is

initialized to the character count minus 1 (as required by the dbra instruc-

tion). Address register AO is incremented by 8 to point one byte beyond

the rightmost digit (as required by the pre-decrement addressing mode).

Lines 14-18 implement the actual conversion process. The current

rightmost digit is isolated in data register D2 using the andi instruction.

(This instruction guarantees that D2 will be in the range 0-15.) The

indexed-addressing mode selects the proper hex character and places it in

the next byte in the output area. We then shift data register DO right one

nibble to prepare for converting the next character.

Following the completion of the process, the contents of register AO will

have been decremented eight times, so that it then contains its original

value, i.e., the address of the output area. It is therefore unnecessary to

preserve this register explicitly

1 ***********************************************

2
3

4

* This routine converts binary to ASCII hex
*

* Biter with:

5 * DO = binary value (long)

6 * AO -> Output area (8 bytes)

7 ************************************************

8 00000000 .text
9 .globl binhex

10 00000000 4aE7E040 binhex: movem.1 d0-d2/al,-(sp) *Save input registers

11 00000004 43F90000002A lea hextab,al *al -> character table

12 OOOOOOOA D1PC00000008 adda.l #8,a0 *aO -> end of area

13 00000010 7207 itDve.l #7,dl *IiOc:^ counter
14 00000012 2400 loop: move.l d0,d2 *Copi' present number

15 00000014 02820000000F andi.l #15,d2 *Get low 4 bits
16 OOOOOOIA 11312000 nwve.b 0(al,d2) ,-(a0) *Store character
17 OOOOOOIE E888 Isr.l #4,d0 *Shift 1 hex place

18 00000020 51C9FFF0 dbra dl,loop *Loop until done

19 00000024 4CDF0207 rrDvem.l (sp) + ,d0-d2/al *Restore registers

20 00000028 4E75 rts *R=turn to caller

21 0000002A 303132333437 hextab: .dc.b "0123456789ABCDEF'

Listing 4.7 - Routine to convert binary to hexadecimal
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Binary to Decimal Conversion

A more generally useful function is a routine that converts numbers

from binary to decimal ASCII. This function is harder to implement,

because you must use division to determine each new digit. This process

is further complicated by the lack of a 32-bit division instruction in the

68000. Our program to convert binary to decimal only works on 16-bit

numbers. Fortunately, this is usually adequate.

Listing 4.8 shows the decimal conversion routine.

Lines 11-15 put either a space or a minus sign in front of the converted

number. The main body of the routine (lines 18-24) work as follows:

1. Divide whatever is left of the number by 10.

2. Place the remainder (which is the high word in the data register

following the divs instruction) in the buffer. Add the ASCII code

for (hex 30) to this byte, making it a character between and 9.

1 ***************

2

3

4

* Binary to decimal ascii
*

conversion routine.

* Enter with:

5 * DO.W = number to convert
6 * AO -> Output area (6 bytes)

7 ************************************************* 1

8 •globl bindec
9 00000000 48E7C080 bindec: movem.l dO-dl/aO, -(sp) * Save registers

10 00000004 123C0020 tnove.b *' ',dl * Assume positive
11 00000008 4A40 tst.w do * Negative?
12 OOOOOOOA 6A06 bpl notneg * No, use

13 OOOOOOOC 123C002D nove.b #'-',dl * Negative, use '-'

14 00000010 4440 neg.w dO * Convert to positive
15 00000012 lOCl notneg: nove.b dl,(aO)+ * Move in sign
16 00000014 D1PC00000005 adda.l #5,a0 * AO -> end of area
17 OOOOOOIA 323C0004 nove.w #4,dl * Count register

18 OOOOOOIE 48C0 loop: ext.l dO * Extend to long

19 00000020 81PC000A divs #10,dO * Divide by 10

20 00000024 4840 swap dO * Remainder -> low word

21 00000026 1100 move.b dO,-(aO) * Move to area
22 00000028 06100030 add.b #'0',(aO) * Mjust to ascii

23 0000002C 4840 swap do * CJuotient -> low word

24 0000002E 51C9FFEE dbra dl.loop * Loop until done

25 00000032 4CDF0103 mDvem. (sp)+,dO-dl/aO * Restore registers

26 00000036 4E75 rts

Listing 4.8 - Routine to convert binary to decimal
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3. Use the quotient from Step 1 as the new number and repeat

Steps 1 through 3 until five digits have been processed.

The output of this routine is a little crude. Possible improvements

include a floating minus sign and suppression of leading zeros. Although

this routine is not sophisticated, it is adequate for the programs in the

remaining part of this chapter.

SUMMING THE FIRST FIVE INTEGERS

Now that we have built a set of tools with which we can write pro-

grams, let's begin by looking at the program that sums the first five inte-

gers. We can now write a version of this program that prints its output on

the terminal, so that we no longer have to use the debugger to look at the

output. We can also use the dbra instruction to make the program consid-

erably shorter, as shown in Listing 4.9.

Lines 10-16 form the sum of the first five numbers in data register DO.

Lines 20-23 convert this sum to hex and decimal at the data areas labeled

"hex" and "dec" respectively Finally, lines 24-25 print the message on the

screen as follows:

Sum is: OOOOOOOF (hex) or 00015 (decimal)

It is important to notice how much easier it is to write this program

given the output and conversion tools we developed earlier. This is the

essence of modular programming—build the right routines to help you do
the job in an expedient manner. We are able to treat the conversion or

output process as if it were three instructions instead of the twenty to

thirty instructions these routines actually require. Indeed, we don't even

have to know how the routines work, only how to call them.

READING TERMINAL INPUT

Many programs require user interaction or input to function properly.

Examples of this type of software include editor programs, calculator

programs, game programs, spreadsheets, and data-base management
software.

Let's look at the design of a subroutine that performs terminal input in a

manner independent of the operating system. Our subroutine will
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perform the following actions:

1. Read a line of input from the terminal up to 80 characters in

length.

2. Place the characters in a buffer supplied by the user. The address

of this buffer will be passed in register AO.

3. Place a terminating null character at the end of the line. No line-

termination character will be placed in the user's buffer.

1 ****** ***************************************

2 * Ttiis program sums the first five numbers and

3 * prints the result on the terminal.
4 *********************************************

5 .globl prtstr * String-print routine

6 .globl binhex * Hex-conversion routine

7

8

9

10
11 00000000

*
.globl bindec * Decimal-conversion routine

* Compute the sum first.
*

4280 clr.l dO * Initialize sum

12 00000002 7201 move.l #l,dl * Initialize counter

13 00000004 7404 move. 1 #4,d2 * Toop counter
14 00000006 D081 loop: add.l dl,dO * Md to sura

15 00000008 5281 add.l #l,dl * Incremsnt integer
16 OOOOOOOA 51CAFFFA dbra d2,loop * Loop until done
17 *

18

19

20 OOOOOOOE

* Now print, both in hex and decinal

41F900000009 lea hex,aO * AO -> output area

21 00000014 4EB900000000 jsr binhex * Convert to hex

22 0000001ft 41F90000001B lea dec.aO * AO -> decimal area
23 00000020 4EB900000000 jsr bindec * Convert to decimal

24 00000026 41F900000000 lea raess,aO * AO -> string to print
25 0000002C 4EB900000000 jsr prtstr * Print entire string

26 00000032 4E75 rts * Return to CP/M
27 00000000 .data *

28 *

29 * Output message area
30 *

31 00000000 2053756D2069 mess: .dc.b ' Sum is:

32 00000009 787878787878 hex: .dc.b 'xxxxxxxx (hex) or

33 OOOOOOIB 787878787878 dec: .dc.b 'xxxxxx (decimal) ',10,0

Listing 4.9 - Sum of the first five integers
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The routine should be constructed so that the user can use the normal

line editing keys (e.g., Backspace and Delete) during keyboard input. This

is typically a function of the operating system.

Listing 4.10 shows the keyboard-input function for CP/M-68K.

CP/M-68K function code 10 reads a line from the console into a buffer

consisting of two prefix bytes and an area for input. The first prefix byte (at

label "buffer") contains the number of bytes in the input area. The second

byte is set by CP/M-68K, and contains the number of characters actually

read. CP/M-68K does not place a line-termination character in the buffer.

1 ************************************************

2 * Tliis routine reads a line frcm the terminal
3

4

5

6

7

8

9

* using
*

CP/M-68K I/O.

* Ehter
*

with:

AO
It

-> area to store the line

************************************************* 1

10 .globl getlin
U •globl prtchar
12 00000000 4aE7C0C0 getlin: movem. 1 dO-^l/aO-al, -(sp)
13 00000004 43F900000000 lea buffer, al * Al -> Buffer
14 OOOOOOQA 2209 mcwe.l al,dl * Copy to Dl
15 OOOOOOOC 700A mDve.l #10,do * DO = Function Code
16 OOOOOOOE 4E42 trap #2 * Call CP/M
17 00000010 12290001 inove.b l(al),dl * Load character count
18 00000014 4881 ext.w dl * Extend to word
19 00000016 5341 sub.w #l,dl * Decrement for dbra
20 00000018 6D0C bit blank * Blank line entered
21 OOOOOOIA D3rc00000002 adda.1 #2,al * Al -> First character
22 00000020 10D9 loop: incve.b (al) + ,(aO) + * Move a character
23 00000022 51C9FFPC dbra dl,loop * Repeat until done
24 00000026 4218 blank: clr.b (aO) + * Null at end
25 00000020 720A raove.l #10,dl * Dl = Line feed char

26 0000002A 4EB900000000 jsr prtchar * Go to next line

27 00000030 4CEF0303 movem.

1

(sp)+,dO-dl/aO-al |

28 00000034 4E75 rts * Return
29 00000000 .data
30 00000000 50 buffer: .dc.b 80 * 80 bytes in buffer

31 00000001 00 ,dc.b * Characters actually read
32 00000002 .ds.b 80 * Reserve space

Listing 4.10-CP/M-68K keyboard line input routine
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Lines 13-16 perform a CP/M-68K function 10, reading characters into

the local buffer defined by lines 30-32. Lines 17-21 are code to set up the

loop that moves the characters read into the user-supplied buffer.

The byte value returned by CP/M-68K must be extended to word size

for proper operation of the dbra loop. The characters are moved by the

code in lines 22 and 23. The dr.b Instruction at line 24 provides a null ter-

minator at the end of the input in the user buffer.

CP/M-68K does not echo a line feed at the end of a read-buffer func-

tion. (It can be argued that this is not a feature.) Lines 25-26 output a line-

feed character so that subsequent prtstr calls will not overwrite the

keyboard input. The equivalent LJNIX routine is shown in Listing 4.11.

Lines 7-12 perform a LJNIX read system call, which reads data from the

keyboard into the local buffer. Lines 13-18 move this data into the user's

buffer in a manner compatible with the CP/M-68K routine. A null charac-

ter is added at the end.

1 ********************************************

2 * Ttiis program reads a line from the |

3 * console using the UNIX read call.
4 ********************************************

5 .globl getlin
6 00000000 48E780C0 getlin: movem.l d0/a0-al,-(a7) * Save registers
7 00000004 3F3C0050 nove.w length,- (a7) * Max length
8 00000008 487900000000 pea buffer * Buffer address
9 OOOOOOOE 4267 clr.w -(a7) * File

10 00000010 7003 nove.l i3,d0 * Read code
11 00000012 4E40 trap #0 * Do the trap
12 00000014 DFPC00000008 adda.l #8,a7 * Pc^ argunents
13 OOOOOOIA 206F0004 move.1 4(sp),a0 * Reload AO
14 OOOOOOlE 5540 sub.w #2,d0 * Take two less
15 00000020 6F0C ble nobytes * LE => No data bytes
16 00000022 43F900000000 lea buffer, al * Al -> Teii{)orary buffer
17 00000028 10D9 loop: nove.b (al) + ,(aO) + * Move buffer
18 0000002A 51C8FFPC dbra do, loop * Util done
19 0000002E 4218 nobytes:clr.b (aO) + * Drop in null
20 00000030 4CDF0301 movem.1 (a7)+,d0/a0-al * Restore registers
21 00000034 4E75 rts * Return
22 00000000 .bss * Data area
23 00000000 buffer: ,ds.b 80 * 80 bytes
24 length: .equ -buffer * Length

Listing 4.11 - UNIX getlin routine
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INPUT CONVERSION

In order to use numeric keyboard input, one must first convert it from

ASCII characters to binary. This is the reverse of output conversion and is

perhaps the most difficult input routine to write.

The routine called decbin, shown in Listing 4.12, converts decimal

input. Register AO contains the address of the ASCII input and the binary

equivalent is returned in DO.

The routine works using a technique called an accumulator variable

(which is register DO in this case). The input is processed from left to right,

starting with the most significant digit. For each digit processed, the accu-

mulator is multiplied by 10 and the digit added. (This obviates the need to

assign a place value to the first digit encountered.) Processing stops when a

1

2

3

t**********************************************

* Ihis subroutine converts decimal ASCII to 1

4

5

* longword binary.
*

6 * Bitei with:
7 * AO -> Decimal string
8 * Exit with:
9

10
U

*

*
DO = Converted nuniaer 1

* Conversion terminates on first non-decimal
12
13
14

* character. No overflow detection. 1

*************************** ********************

15 .globl decbin
16 00000000 48E74080 decbin • movem.l dl/aO,-(sp) * Save starting registers
17 00000004 4280 clr.l dO * Zero out accunulator
18 00000006 OC100039 loc^: cnpi.b #'9',(a0) * Upper bound
19 OOOOOOOA 621A bhi notdec * Not a decimal digit
20 OOOOOOOC 0C100030 cnpi.b #'0',(aO) * Lower bound
21 00000010 6514 bio notdec * Not a decimal digit
22 00000012 E388 Isl.l #l,dO * Multiply by 2

23 00000014 2200 rawe.l dO,dl * Save this
24 00000016 E588 Isl.l #2,d0 * Now multiplied by 8

25 00000018 D081 add.l ai,dO * Now by 10

26 OOOOOOIA 1218 move.b (aO)+,dl * Fetch digit
27 OOOOOOIC 02810000000F andi.l #$Of,dl * Isolate binary digit
28 00000022 D081 add.l dl.dO * Md into accumulator
29 00000024 60E0 bra loop * Try another digit
30 00000026 4CDF0102 notdec movon.l (sp) + ,aO/dl * Unsave registers
31 0000002A 4E75 rts * Return to caller

Lisdng 4. 12 - Routine to convert decimal ASCII to binary
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non-decimal digit is encountered. There is no provision for overflow detec-

tion or for the calling program to learn how many digits were processed.

Lines 18-21 perform a range check to ensure that the next byte in the

buffer does, in fact, contain a decimal digit. Lines 22-25 multiply register

DO by 10. This technique is a holdover from machines that had no hard-

ware multiplication feature. You use shift operations to calculate 2n and
8n. Adding these two quantities yields lOn. We used this trick because i^e

68000 hardware multiply instruction does not work on 32-bit quantities.

Lines 26-28 convert the digit to binary and add it to the accumulator.

DECIMAL TO HEX CONVERSION

Now that we have both input and output routines, let's use them to

write a program that receives a decimal number as input and gives its

hexadecimal equivalent. The program should prompt for input, read the

number from the keyboard, and produce both the original number and

its hex equivalent.

Listing 4.13 shows the finished conversion program.

Lines 13-19 print a prompt on the screen and read a line from the ter-

minal. If the line is null (i.e., the user only presses Return), the program

goes back to the operating system. Lines 20-24 convert the number to

binary and then to ASCII hex and finally to ASCII decimal. Line 25 prints

the answer on the screen.

Consider how long this program would have been if all the subroutines

that we developed earlier had destroyed register contents or had taken

their inputs in different registers. The program to convert decimal to hex

is very short because the subroutines all expect parameters in the same
registers. This allows you to code many move instructions, which set up
parameters, only once.

Running the program with a few sample inputs shows:

A>dechex
Enter decimal number: 100 <Return>
00100 decimal is 00000064 hex

Enter decimal number: 16 <Return>
00016 decimal is 00000010 hex

Enter decimal number: 9999 <Return>
09999 decimal is 0000270F hex

Enter decimal number: 99999 <Return>
-31073 decimal is 0001869F hex

Enter decimal number:

A>
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1

2

3

****************************************************

* This program converts decima] numbers to hex.

4 * Numbers are i npat from the keyboard and out^JUt to |

5

6

7

* the screen.
*

**************************************************** 1

8 .globl prtstr * Line print routine
9 .globl binhex * Output converter

10 .globl bindec * Output converter
11 .globl decbin * Input converter

12 .globl getlin * Keyboard iiput

13 00000000 41F900000000 loop: lea prorpt,a0 * AO -> output area
14 00000006 4EB900000000 jsr prtstr * Print prompt
15 OOOOOOOC 41F900000000 lea inbuf, aO * AO -> input area
16 00000012 4EB900000000 jsr getlin * Get keyboard inpat

17 00000018 4A10 tst.b (aO) * Null line?
18 OOOOOOIA 6602 bne gotnum * No, continue
19 000000 IC 4E75 rts * Yes, exit to CP/M
20 OOOOOOIE 4EB900000000 gotnum jsr decbin * Convert to binary
21 00000024 41F900000029 lea hexbuf, aO * AO -> conversion area
22 000000 2A 4EB900000000 jsr binhex * Convert to hex
23 00000030 41F900000017 lea decbuf, aO * Reconvert to decimal
24 00000036 4EB900000000 jsr bindec *

25 0000003C 4EB900000000 jsr prtstr * Print answer
26 00000042 60BC bra loop * Repeat until done
27 00000000 .data
28 00000000 456E74657220 pronpt: .dc.b 'Eiiter decimal number: ',0

29 00000017 585858585858 decbuf .dc.b 'XXXXXX decimal is
'

30 00000029 585858585858 hexbuf: .dc.b 'XXXXXXXX hex', 10 fO

31 00000038 .bss

32 00000000 inbuf

:

.ds.b 80 * Ir^wt buffer

Listing 4.13 - Routine to convert decimal to hex

Notice that the value 99999 caused an incorrect decimal value. Recall

that, due to the limitation of the 68000 d/Vs instruction, the binary to deci-

mal routine (see Listing 4.8) works only for 16-bit quantities. (See the exer-

cises at the end of the chapter for the solution to this bug.)

SUMMARY

In this chapter, we have developed the background material for writing

sophisticated programs: terminal input, terminal output, and numeric con-

version. This basic tool kit provides us with the building blocks necessary

to construct larger programs.
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EXERCISES

1

.

A division instruction may be simulated as a loop that subtracts

until the dividend is reduced to a number less than the divisor.

Write a subroutine called "Idiv" that divides a 32-bit number. Use

the following calling convention:

Enter with:

DO = dividend

D1 = divisor

Exit with:

DO = quotient

D1 = remainder

What is the major disadvantage of this scheme?

2. Use the "Idiv" subroutine developed in question 1 to create a

new routine that successfully converts 32-bit decimal numbers to

decimal ASCII. Use a 10-byte output area.

3. Modify the decimal to hex conversion program (Listing 4.13) to

use the "Idiv" conversion routine developed for question 2.

4. Write a routine that converts hexadecimal ASCII to binary in a

manner similar to Listing 4.12. Allow both upper and lower case

letters for the hex digits A through F.

5. Write a program that converts hex numbers to decimal.
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INTRODUCTION

In this chapter, we will explore the various methods of I/O available to

assembly language programmers. As with the previous chapters, we will

confine ourselves to using an operating system to perform the I/O. In Chap-

ter 7, we will explore performing I/O directly to the hardware interface.

Another topic we will explore in this chapter is mixing assembly language

with a high-level language. Writing assembly language subroutines for

high-level language programs is a common practice and a powerful tool.

Programming in this fashion allows you to retain the speed of assembly-

language routines, while taking advantage of the large library of subroutines

available with most high-level languages. Our discussion will center around

accessing the language I/O routines from assembly language.

TYPES OF I/O

Most I/O performed by applications programs falls into one of four

categories:

1. Terminal I/O. This is used for interaction with the operator.

2. File I/O. This type of I/O generally involves the retrieval or stor-

age of large amounts of data.
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3. Character I/O. Output to printers and plotters, I/O over com-
munications links, and other I/O performed a byte at a time falls

into this class.

4. Special I/O. Devices that do not meet the standard model of an

I/O device belong to this category. This includes things like real-

time devices, computer control devices, and instrumentation.

The remainder of this chapter will deal with the first three types of I/O

listed above.

Terminal I/O

I/O to the terminal is normally done either one character at a time or a

block of characters at a time. In addition, many operating systems per-

form line editing on the incoming characters. Line editing means that the

operating system attaches special meaning to certain characters. The per-

son using the computer can use these keys to correct simple typing mis-

takes. Here is a sample of line editing characters and their functions.

• The BACKSPACE key causes the last character typed to be
deleted. On video terminals, the character is erased and the cur-

sor moves left one position.

• The Control-R key advances the terminal to the next line and

echoes any characters typed on the current line. This is particu-

larly useful on terminals that do not support the erasing of char-

acters on the screen (such as hardcopy terminals, which produce

output on paper rather than on the screen).

• The Control-U key cancels all input on a partially typed line (i.e.,

before the operator presses Return).

• The Control-C key interrupts the program that is currently exe-

cuting and returns control to the operating system. This provides

the user with a way to stop a program that is out of control.

• The Control-Z key is used to indicate the end of terminal input,

or to a program reading the terminal. Control Z indicates an end-

of-file condition.

• The carriage return (Control-M) and line feed (Control-J) keys

indicate the end of a line.
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Each operating system interprets terminal input in its own peculiar fash-

ion. The control keys listed above are common to CP/M-68K and most

68000 implementations of UNIX.

You can also perform terminal input without line editing. In this case,

your program receives each character, including control characters,

exactly as typed. This is called raw mode in many operating systems. (Line

editing is also occasionally referred to as cooked mode.)

Raw mode is extremely useful for programs that are highly interactive

or visual in nature. Such programs often perform some action on every

keystroke. This type of program includes word processors, spreadsheets,

and many data-base management systems.

A significant side effect of raw mode is that you lose the ability to termi-

nate the program via Control-C. For this reason, some operating systems,

including UNIX, define yet a third way of reading the terminal, called rare

mode, in which all characters except Control-C are given to the program

as they are typed.

For the remainder of this chapter, we will use cooked mode, or line

editing, for console input.

File I/O

Devices such as floppy or hard disks are generally accessed through a

part of the operating system known as the "file system." A file is simply a

way of associating a name with a group of bytes. Files may contain exe-

cutable programs, text, data, and operating system commands.
The operating system provides the programmer with ways of creating,

deleting, modifying, and retrieving the information contained in a file. Pro-

viding a user with access to files is the single most important function that

the computer system provides. Typical file access operations provided by

an operating system are:

• Open an existing file or Create a new file. This causes the operat-

ing system to logically connect program I/O to a file on the disk.

• Read data from the file. A Read operation transfers data from the

file into the program's memory The CP/M-68K type command or

the UNIX cat command Reads a file and displays the contents on
the screen.

• Write data to the file. A Write operation transfers part of the pro-

gram's memory to a file. When you instruct a text editor to save a

file on disk, the editor performs Write operations to accomplish

your request.
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• Close a file. The Close operation tells the operating system that

you are through with a file. Many systems impose a limit on the

number of files you can have open at any one time. Thus, it is

good programming practice to use Opens and Closes in pairs.

File access techniques vary widely from system to system. UNIX files are

simply considered as streams of bytes. You can read or write any number
of bytes starting at any arbitrary location in the file.

CP/M-68K, on the other hand, does file I/O in 128 byte units. You can

transfer only 128 bytes at a time and data transfers must start on 128-byte

boundaries within the file.

Other operating systems use different schemes. To write portable pro-

grams that access files, you must define a set of subroutines that hide the

differences in the way operating systems perform file operations.

For CP/M-68K and UNIX, this work has already been done. A high-level

language called C contains a set of file access routines that can be used to

write programs that are portable between CP/M-68K and UNIX.

Character I/O

Other devices commonly found on microcomputers include printers,

modems (a device that connects a computer to a telephone line), and

plotters. I/O to these devices is typically done one character at a time.

Operating-system support for such devices usually consists of single-

character or block (multicharacter) I/O.

Special I/O

Instrumentation and control devices are typically not accessed in a

manner similar to the other, more standard devices. Many operating sys-

tems have separate facilities for accessing these devices. The facilities for

special I/O often perform special functions on devices normally accessed

by other means. Examples of such functions include formatting disks, for-

warding and rewinding magnetic tape drives, and controlling modem sig-

nals such as "answer the phone" and "dial this number."

DEVICE INDEPENDENCE

Many operating systems have a feature known as device independence.

This means that most of the devices on the system can be accessed as if

they were files. UNIX is an example of such a system. On UNIX, you use
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the same I/O functions to access the terminal, disk files, and the printer.

CP/M-68K is an example of a system that is not device independent.
CP/M-68K uses different function calls for each of these device types.

The advantage of device-independent I/O is that you do not have to be
concerned with what type of device your program uses for I/O. For most
programs, this is a tremendous advantage. Device independence makes it

possible to enter input to a program that normally receives input from a
disk file or to output information to a printer that normally goes to a disk

file. It is device independence that makes the highly-touted UNIX pipes,

filters, and I/O redirection possible.

Fortunately for users of CP/M-68K and other operating systems that do
not provide device independence, it is possible to use calls to a high-level

language to obtain this feature. Most high-level languages incorporate the

necessary code for device independence in the language run-time library.

A run-time library is a set of routines that are called by the machine code
(which is generated by the language compiler). These routines are nor-

mally added to the program by the linker program.

INTERFACING TO HIGH-LEVEL LANGUAGES
One of the most common uses for assembly language is to add func-

tionality or speed to a program written in a high-level language. Since this

is a such a common technique, there are very few high-level language
compilers that do not allow it. You can take advantage of this capability in

your assembly-language programs by using features from the language
run-time library

The technique for interfacing assembly language to a high-level lan-

guage is different for each compiler. Some compilers insist on having a

main program written in a high-level language. Others allow a main pro-

gram to be in assembly language, but require certain initialization proce-

dures in the main program. Still others have no such restrictions. The
proper techniques are usually documented (although not always well) in

one of the manuals associated with the high-level language you are using.

In interfacing to a high-level language, you need to answer the following

questions:

1. Does the language require a high-level main program? Certain

compilers, such as the UCSD P-system require this.

2. If the language allows the main program to be in assembly lan-

guage, does the main program have to do anything to make the

run-time library work?
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3. How does one call a high-level procedure from assembly lan-

guage? Is the sequence any different for calling the run-time mod-
ules directly?

4. What registers are preserved by the run-time modules and the

routines written in the high-level language? What registers are

destroyed?

5. Do you have to do anything special to exit to the operating sys-

tem? Many languages automatically close all open files upon exit-

ing. If you are coding a main program in assembly language, you
may have to code a call to the language exit or stop routine.

6. What techniques are available for accessing global data areas

from assembly language? Do you have to pass all data as parame-

ters to the assembly language procedure?

For the rest of the chapter, we will explore techniques for interfacing to

the CP/M-68K run-time library for the C language. The same techniques

can also be used to access C routines under most UNIX systems.

INTERFACING TO C

The C language used by CP/M-68K allows a main program to be written

in assembly language. The program begins execution at the label

"_main," which must be declared in a ".globi" statement. No run-time ini-

tialization is required. Any run-time library routine that may be called

from C may be called from assembly language. There are no special con-

siderations for calling run-time routines.

Calling Sequences

Names of functions and global data areas are the same as the C identi-

fier with an underscore character as the first character of the name. Thus,

the C function "main" becomes "_main," and so on. The C language does

distinguish between upper- and lower<ase, so the label "_main" is differ-

ent from "_MAIN."

You call a C-language library routine by pushing its arguments in

reverse order onto the stack and then executing a JSR instruction (Jump to

SubRoutine) to the desired routine. Following the return from the C rou-

tine, you normally pop the arguments off the stack. (The routine called by

the JSR instructions does not do this for you.) This prevents running out of
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Stack space, and allows you to easily find the return address of the run-

time initializer routine. Table 5.1 shows the data sizes of arguments on the

stack.

Notice that although the character data type (char) is 8 bits, it is passed

on the stack as a 16-bit word. All addresses in C are 32 bits. A character in

single quotes is treated as an argument of type "char." A string in double

quotes is treated as a "char *", i.e., the address of the string is passed to

the subroutine.

This C call

int x,a,c;

char *b;

X = xyz(a,b,c);

generates assembly code that appears as shown in Listing 5.1.

This code which is generated by the compiler, puts the local variables a,

b, c, and x on the stack. The variables are accessed as negative offsets

from address register A6, which is used as the frame pointer. You can look

at the assembly language generated by many compilers to see what

instructions are used for subroutine calls.

C Argument Size in

Type Bytes (Bits)

char 2 (16)

char * 4 (32)

int 2 (16)

int * 4 (32)

long 4 (32)

long * 4 (32)

double quoted string 4 (32)

single quoted character 2 (16)

Table 5.1 -Sizes of argument types in C
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Many other C compilers use four bytes on the stack for each argument,

regardless of argument type. On the 68000, many compilers also use 32

bits for the "int" data type instead of the 16 bits used by the CP/M-68K
compiler.

C functions that return values place the return value in register DO just

before the rts (Return from Subroutine) instruction. (Some compilers use

data register D7 for this purpose.) Byte (char) values are placed in the

low-order 8 bits of DO. Word (int or short) values are returned in the low-

order 16 bits of DO. Longs and addresses occupy the entire 32 bits of reg-

ister DO.

The CP/M-68K C compiler treats registers DO, D1, D2, AO, A1, and A2
as "scratch" registers; they are not preserved across C function calls.

When you call routines from the C library, the contents of these registers

may be altered upon return.

Two Arguments: Argc and Argv

The C function "main" is called with two arguments: argc and argv. The

argument called argc is a 16-bit quantity that gives the number of argu-

ments typed on the command line. The argument called argv is the

address of an array of pointers to each of the argument strings. Each argu-

ment string is terminated with a null character. Figure 5.1 shows

the arrangement of the stack and argc and argv arguments for a sample

command.
Some systems do not correctly fill in the argv[0] pointer with the pro-

gram name. It is recommended, therefore, that you not use this argument

for anything critical to the program's results.

itDve.w c(a6),-(sp) * Push arguments
mowe.l b(a6),-(sp) * In reverse
move.w a(a6),-(sp) * Order
]sr xyz * Call function
add.l #8,sp * Pops arguments off stack
ncwe.w d0,x(a6) * Store return value

Listing 5.1 - Code generated by the C compiler
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Using Printf from Assembly Language

By far, the most commonly used C-language routine is printf—a formatted

print routine. A famous C program is the "Hello, world" program, which

uses printf to print the string "Hello, world" on the screen. Listing 5.2 shows

how assembly language can be used to code the same program.

The "\n" character in C is a line feed (decimal 10) byte. Double-quoted

strings in C also end with a null character (hence the zero byte in line 16).

C PROGRAM I/O

C programs can perform I/O in two ways:

• I/O can use the operating system primitives open, creat, read,

write, Iseek, and close. These routines are known collectively as

unbuffered I/O routines.

Command: A> program argi arg1 arg2 arg3

0(A7) Return address

4(A7) 4 (16 bits)

6(A7) Argv address argv [0] address

+ 4

+ 8

+ 12

argv [1] address

argv|21 address

argv|31 address

"program"

"argi"

"arg2"

"arg3"

Figure 5.1 -Arrangement of argc and argv arguments
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• I/O can use routines from the C-language run-time library that

perform local buffering in the application. These routines are

fopen, fclose, fread, fwrite, gets, fgets, fgetc, getw, fputc, putw,

puts, fputs, feof, and fseek. This type of I/O is called buffered I/O,

or stream I/O.

Which of these two sets of routines to use depends on the amount of

I/O performed at any one time. Unbuffered I/O yields very high through-

put when large amounts of data are transferred in a single read or write

call. Transferring small amounts of data at a time is very slow using unbuf-

fered I/O, however.

Stream I/O, on the other hand, performs well when only a few bytes

are transferred at a time and poorly when large numbers of bytes are

transferred at once.

Unbuffered I/O

The unbuffered I/O routines are used in the following fashion:

1. First, the file or device is "connected" to the program via the

open (for existing files) or the creat (for new files) calls. These

1 *************** *****************************

2 * Ttiis prcjgram is the sams as the C "hello

3
4

5

* world" prcjgram: 1

* mainO {

6
7
8

*
* 1

printf ("Hello, world\n"),

•

********************************************* 1

9 .globl main
10 .globl _printf

U 00000000 487900000000 main pea hello * Push string address

12 00000006 4EB900000000 jsr _printf * Call printf routine

13 OOOOOOOC 588F addq.l #4,sp * Pop argunent

14 OOOOOOOE 4E75 rts * Return to library

15 00000000 .data *

16 00000000 48656C6C6F2C2077 hello .dc.b "Hello, world", 10,0

Listing 5.2 - The "Hello world" program
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routines return a 16-bit quantity called a file descriptor which

identifies the file on subsequent read or write calls. A value of - 1

(FFFF hex) is returned if the file cannot be accessed.

2. The read and write routines are called to transfer data to and

from the file. Use the Iseek call to select the position within the

file for starting the transfer.

3. Terminate file access with the close call.

Unbuffered Calling Sequences

Unbuffered I/O routines are relatively simple to call and use. Here is a

brief summary of the routines and how they are called.

Open Routine

The open routine is called with two parameters:

1. The name of the file to be opened as a string terminated with a

null character, and

2. A 16 bit integer that determines how the file is to be accessed.

The integers are for read only 1 for write only and 2 for read

and write.

The file descriptor is returned in data register DO.W. The filename string

can contain a disk drive specification. Listing 5.3 shows the code that the

file foo.bar for reading on drive A:.

The file descriptor of the open file is contained in register DO. If the file

cannot be opened, register DO.W will have the value FFFF (-1).

Creat Routine

The creat function is called in the following manner. Push the file's pro-

tection mask (16 bits) followed by a pointer to the null-terminated

filename.

The protection mask is the access permission mechanism under UNIX.

This word contains three 3-bit fields for read, write, and execute permis-

sion by the owner, group, and world. The value 511 (decimal) allows all

access by all users. CP/M-68K ignores this field. Listing 5.4 shows the

sequence of code that creates a new foo.bar file:

The file descriptor of the open file is contained in register DO. If the file

cannot be created, DO.W will have the value FFFF (-1).
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Read and Write Routines

Data transfer is accomplished by the read and write routines, which

transfer data from and to the file. Call these routines as follows:

1. Push the number of bytes you wish transferred (16 bits).

2. Push the address of the memory area where the file data is to be

transferred. This address is a buffer which receives data on a read

call and is a data source on a write call.

3. Push the file descriptor (16 bits).

4. Call _read or _write.

5. Register DO.W contains the number of bytes actually transferred.

For a read request, this may be less than the number of bytes

requested. For a write request, if DO.W is different from the num-

ber of bytes requested, an error occurred.

move.w #0,-(sp) * Push "open type" word

pea tcx * Push filenaite address

Dsr open * Call open routine

add.l »6,sp * Pop argumaits
tst.w do * Is file open?

bit badopen * If LE, no, branch

fcx>: .dc.b 'aifoo.bar'fO * File name

Listing 5.3- Calling the open routine

move.w
pea

#511,-(sp)
foo

* Push protection word
* Push filename address

jsr creat * Call creat routine
add.l
tst.w

bit

#6,sp
do
badcreat

* Pop arguments
* Is file open?
* If LE, no, branch

foo: .dc.b 'foo. bar', * File name

Listing 5.4 - Calling the creat routine
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Listing 5.5 shows code that reads 42 bytes from the file whose file descrip-

tor is in D3.W:

The write routine is called in the same fashion, except the error check

should compare DO.W to the number of bytes requested, and branch if

not equal to an error-handling routine.

Close Routine

The close routine is called by pushing the file descriptor and calling

_close via a jsr instruction. Listing 5.6 shows the code that closes the file

whose file descriptor is contained in D3.W.

Lseek Routine

The lseek routine alters the position within the file at which the next

read or write begins. Normally, each read or write begins where the last

one left off. Thus, the file is normally processed sequentially from begin-

ning to end.

irove.w l42,-(sp) * Push byte count

pea buffer * Push buffer address

move.w d3,-(sp) * Push file descriptor

]sr read * Call read routine

add.l #8,sp * Pop arguments
tst.w dO * Any bytes read?

beq eof * If no bytes, end of file

bit reader

r

* If LE, error on read

buffer: .ds.b 42 * Iteceives file data

Listing 5.5 - Calling the read routine

move.w d3,-(sp)
jsr _close
add.l «2,sp

* Push file descriptor
* Call close routine
* Pop argument

Listing 5.6 - Calling the close routine
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Lseek allows the file to be accessed in a random fashion. You call Iseek

by pushing a word which determines the interpretation of the file offset. A
value of means an offset from the beginning of the file, a value of 1 indi-

cates an offset from the current file position, and a value of 2 indicates an

offset from the end of the file. You then push the file offset (32 bits). This

can be a negative quantity (making it possible to back up from your cur-

rent position, or from the end of the file). Next, push the file descriptor

and call Iseek. DO.L returns with the resulting absolute offset from the

beginning of the file. Listing 5.7 shows the code that sets the file pointer to

lOOOH from the beginning of the file.

If the seek could not be performed, DO.L is set to a value of - 1.

A File-Copy program

Now that we've learned how to call I/O routines from the C library, let's

write a program that copies one file to another. The program should be

invoked as follows:

A>copy file1 file2

The program should duplicate the contents of filel in file2. (File! should

be left unchanged.) Our program should be a professional quality pro-

gram. It should report errors on open, creat, read, and write, identifying

the file by name.

Stop for a moment and consider the value of device-independent I/O in a

program like this. In addition to copying files, we can use the CP/M-68K

con: (terminal) and 1st: (printer) devices to perform other functions as well.

• copy f;7e/ con: transfers a disk file to the console. This is the

equivalent of the CP/M-68K TYPE command.

• copy filel 1st: transfers a disk file to the printer. This is a function

which normally must be performed with the CP/M-68K PIP

program.

move.w #0,-(sp) * Push sense word
move.l #$1000,- (sp) * Push file offset
nove.w d3,-(sp) * Push file descriptor
Dsr lseek * Call lseek routine
add.l #8,sp * Pop arguments

Listing S.7-Callir)g the Iseek routine
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• copy cor): file! allows you to create a disk file by typing it at the

terminal. This is useful for short files.

The completed program is shown in Listing 5.8. Lines 18 to 21 load val-

ues for argc and argv into registers DO and A5. Lines 28 to 33 open the

input file, and lines 35 to 40 create the output file.

Lines 46 to 62 execute the file copy operations. Notice the use of the

equated label "buffsiz," which controls the number of bytes copied by each

iteration of the loop. You can control how many bytes are read and the size

of the buffer by changing the .equ (equates) directive on line 16. Equates

are used extensively in large programs to facilitate program changes, imag-

ine having to change the constant 1024 to 2048 everywhere in a 300 page

program. Clearly equates can save enormous amounts of time.

The _read routine returns the number of bytes actually read in CX).W.

This number does not always equal the number of bytes requested. When
reading from the terminal, input is processed one line at a time. When
copying files, it is very important to ensure that the number of bytes writ-

ten is the same as the number of bytes read.

A value of zero bytes read indicates the end of the input file. Upon

sensing this condition, the program branches to the label done:. In lines

64 to 70, the program closes the input and output files and returns to the

operating system.

Lines 76 to 110 are error routines that print out error messages when-

ever anything goes wrong. In this program, the error routines print out a

message and cause the program to exit to the operating system.

Buffered I/O

Buffered I/O run-time routines in the C language are designed to pro-

cess I/O a few characters at a time. These functions are used in the follow-

ing fashion:

1

.

The file or device is connected to the program via the fopen call,

fopen returns the address of a memory structure. This address is

known as the stream pointer. If the open fails, fopen returns a

value of zero.

2. I/O operations use a variety of routines. These routines are listed

in Table 5.2. Each of these routines operate on the stream pointer

returned by fopen. In addition, a modified version of printf,

called fprintf, produces formatted output to a stream file.
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3. Random access to the file can be performed using the fseek rou-

tine, which is analogous to the unbuffered Iseek routine.

4. The stream buffer may be emptied using the fflush routine. This

procedure guarantees that all data output to the stream is actually

transferred to the output device.

5. The fclose routine closes the file.

Buffered Calling Sequences

The buffered I/O routines have calling sequences that are relatively easy

to use. We will examine each of them.

Fopen Routine

You must supply two arguments to the fopen routine: the address of the

filename string, and the address of a string that describes how the file is to

be accessed:

First Character Access Type

r or R Read only

w or W Write only

a or A Append

Opening a file for write access causes any existing data in the file to be

destroyed. Requesting access to Read or append requires that the file

already exist. Write access will create a new file if necessary

Data Size Input Output

byte fgetc fputc

word getw putw

long getl puti

string fgets fputs

Table 5.2 - List of I/O routines
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Listing 5.9 shows how fopen is called to create a new file, foo.bar.

A non-zero value in data register DO (the stream pointer) indicates a

successful open operation. Notice that it is necessary to save the entire 32-

bit quantity returned in DO.L for subsequent I/O calls.

Input Routines

The routines fgetc, getw, getl, and fgets produce input from the stream.

The fgetc, getw, and getl routines share a common calling sequence, as

shown in Listing 5.10.

Register DO contains the data read from the input stream. Fgetc, getw,

and getl return, respectively a byte in DO.B, a word in DO.W and a

longword in DO.L. If an attempt is made to read past the end of the file,

the return value is - 1. Since this value is also a legitimate data value

within the file, a function called feof is available to determine if the stream

is at end-of-file. feof is a routine implemented via macros. You can call this

routine by building a brief C program, as shown in Listing 5.11.

•globl fopen
pea wstring * Push access string
pea fname * Push filename string
]sr fopen * CSll open routine
add.l #8,sp * Pop argument
tst.l do * Open succeed?
beq badopen * If EQ, error
move.l dO,d3 * Save stream pointer
.data

wstring:.dc.b "w",0 * String for write
fname: .dc.b "foo.bar",0 * Filename

Listing 5.9 - Calling the fopen routine

.globl fgetc

itove.l d3,-{sp) * Push stream pointer

Dsr fgetc * Call routine
add.l #4,sp * Pop argument

Listing 5.10 -A common calling sequence for input routines
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Then use Listing 5.12 to call the C routine from assembly language.

Feof is not necessary when using fgetc, as the value of - 1 returned as

an error is placed in register DO.W, and thus cannot be a value obtained

from the file.

The fgets routine obtains a line terminated by a line-feed character (dec-

imal 10) from the stream. Fgets adds a null (zero) byte to the end of the

line (follow/ing the line-feed character). The calling sequence for fgets is

shown in Listing 5.13.

The value returned from fgets is for the end of file; otherwise, the

value returned is the address of the string buffer.

Output Routines

The input routines described above have corresponding counterparts

for output. Fputc, putw, puti, and fputs, output a byte, word, long, and

string, respectively Fputc and putw share a common calling sequence, as

shown is Listing 5.14.

PutI has a slightly different calling sequence, as shown in Listing 5.15.

# include <stdio.h>

int xeof(p)
FILE *p;

{

return ( feof (p))

;

1

Listing 5.11 - Calling the feof routine

.globl xeof
move.l d3,-(sp)
jsr xeof

* Push stream pointer
* Call routine

add.l #4,sp
tst.w dO

* Pop argument
* At end of file?

beq ateof * E3 => Yes

Listing 5. 12 - Calling the C feof routine
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.globl fgets
linelen:.equ 81 * Input line length

move.l d3,-(sp) * Push stream address
move.w ilinelen. -(sp) * Push length
^a buffer * Push buffer address
Dsr fgets * Call rcxitine

add.l #10, sp * Pop arguments
tst.l do * Test return
beq ateof * BQ => Ehd of file

.data

buffer: .ds.b linelen * Input area

Listing 5.13 - Calling sequence for fgets

.globl fputc
move.l d3,-(sp) * Push stream address
rocve.w d4,-(sp) * Push character/word
3sr fputc * Call output routine
add.l #6,sp * Pop arguments

.globl _putl
move.l d3,-(sp) * Push stream address
racwe.l d4,-(sp) * Push long word
jsr fputc * Call output routine
add.l #8,sp * Pop arguments

Listing 5. 15 - Calling sequence for puti
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In both of these examples, register D3 contains the stream pointer

returned by fopen, and register D4 contains the data to be output.

The fputs routine is used to output a null-terminated string to a stream

file. The trailing null is not output. Listing 5.16 shows the calling sequence

for fputs.

This listing outputs the string "Hello, World" to the stream whose

address is contained in register D3.

Fprintf Routine

Fprintf, a formatted-print routine, produces formatted output, including

numeric conversion. The output can be directed to a stream. Listing 5.17

shows the calling sequence for this routine.

The fprintf routine takes a format string and a series of arguments. The

arguments are converted and output as defined by the format string. You

specify the conversion of the arguments in the format string by using a

percent sign (%) followed by a conversion operator.

Conversion operators take the form:

-ddd.dddlc

where ddd represents a string of decimal digits and c represents the con-

version specifier.

All of the fields are optional, except for c, the conversion specification.

The minus sign indicates that the field is to be left-justified instead of right-

justified.

.globl fputs
move.l d3,-(sp) * Push stream address
pea string * Push string address
]sr fputs * Call routine
add.l #8,sp * Pop arguments

.data

string: .dc.b "Hello, Wbrld",10,0

Listing 5.16 - Calling sequence for fputs
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The first decimal field (i.e., before the period) specifies the width of the

field for the converted output. The next set of digits (i.e., after the period)

specifies the number of decimal places to the right of the decimal point.

This specification is only valid for floating-point numbers.

The I specifies that the argument is a 32-bit quantity instead of a 16-bit

quantity This is meaningful only for numeric conversion. Capitalizing the

conversion character also causes the argument to be taken as a 32-bit

rather than a 16-bit quantity.

Table 5.3 shows the conversion characters accepted by fprintf.

.globl fprintf
nove.w d4,-(sp) * Arg 1

pea fornat * format string
nove.l d3,-(sp) * Stream address
:sr fprintf * Call routine

add.l #10, sp * Pop cirguments

format: .dc.b "D4 = %d",10,0 * Format string

Listing 5.17 -Calling sequence for fprintf

Character Argument is

c

d

X

o

s

A single character

A 16-bit number output as decimal

A 16-bit number output as hex

A 16-bit number output as octal

Address of a string terminated by

a null character

Table 5.3 - Conversion characters accepted by fprintf
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Fseek Routine

The fseek routine in the C library positions a stream file just as the Iseek

positions an unbuffered file. The calling sequence for the fseek routine is

described below.

1

.

Push a word that describes how you want the offset to be inter-

preted. This quantity is known as the "sense word." You have

three options, as shown below.

Word Offset

From the beginning of the file

1 From the current position

2 From the end of the file

2. Push the offset (32 bits).

3. Push the stream pointer (32 bits) and call the routine.

You should pop the arguments following the call (10 bytes). Fseek

returns the absolute offset from the beginning of the file, or - 1 if the seek

could not be performed, fseek returns a value of -1. Thus, you can

determine the current position by specifying an offset of and a sense

word of 1

.

Listing 5.18 positions the stream whose stream pointer is contained in

register D3 to offset 1(X)0 (decimal).

Fclose Routine

The fclose routine is used to deactivate a stream that has been opened

with an fopen call. Listing 5.19 shows the calling sequence for this routine.

This code assumes the stream pointer is in register D3.L.

.globl fseek
move.w #0,-(sp) * Seek "sense" word
move.l #1000, -(sp) * Offset
move.l d3,-(sp) * Stream pointer
jsr fseek * Call routine
add.l #10,sp * Pop arguments

Listing 5. 18 - The fseek routine
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BUFFERED FILE COPY PROGRAM

Listing 5.20 is a revised version of Listing 5.8, the unbuffered file copy

utility. The routine has been rewritten to use stream I/O instead of unbuf-

fered I/O.

The principal advantages of using buffered I/O are:

1. The copy loop (see lines 44 to 54) is shorter.

2. There is no need for the 1024 byte buffer.

These advantages are offset by the difficulty in checking for I/O errors

and increased execution time.

STANDARD I/O

Most implementations of the C language define a set of three files that

are open when the program starts. Table 5.4 shows how these files are

accessed.

In most implementations, the standard input and standard output may
be redirected from the command line. The default is to attach these files

to the terminal. The standard error file provides a mechanism for printing

error messages on a file (usually the terminal) that is different from the

standard output. These standard files are used in UNIX to implement the

UNIX concept oi pipes and filters.

Accessing the standard I/O files from assembly language is difficult

because the symbols stdin, stdout, and stderr are defined by the C prepro-

cessor. To circumvent this problem, use a C program to define external

variables that contain the stream addresses, as shown in Listing 5.21.

.globl fclose
move.l d3,-(sp) * Push stream pointer
]sr fclose * call routine
add.l #4,sp * Pop arguments

Listing 5.19 -The (close routine
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You can then reference the symbols _xstdin, _xstdout, and _xstderr as

external In your assembly-language program.

CALLING AN ASSEMBLY LANGUAGE ROUTINE FROM C

To call an assembly-language routine from C, you need only follow

these three conventions:

• register usage

• argument passing

• global routine naming

Listing 5.22 shows a function that initializes an area of memory when
called from C.

This function may be used in C to initialize large arrays or structures

more efficiently than the compiler-generated code would.

File

Function

Stream

Pointer

File

Descriptor

Standard input

Standard output

Standard error

stdin

stdout

stderr

STDIN (0)

STDOUT (1)

STDERR (2)

Table 5.4 - Standard input, output, and error

include <stdio.h>

FILE xstdin = stdin;
FILE *xstdciut = stdout;
FILE *xstderr = stderr;

Listing 5.21 - Defining external variables
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SUMMARY

In this chapter, we have covered the following material:

• The various types of I'O performed by applications programs,

including Terminal I/O, File I/O, Character I/O, and Special I/O.

• The concept of device-independent I/O and why this concept is

important.

• The requirements for interfacing to a high-level language in gen-

eral, and to CP/M-68K C in particular.

• C run-time library routines for unbuffered and stream I/O, includ-

ing the calling sequences and samples of how to use these

routines.

• How to write assembly-language subroutines to be called from C.

Now that we have a good understanding of I/O techniques, we will

apply these techniques in Chapter 6 to write more complicated applica-

tions programs.

EXERCISES

1. Write Listing 4.9 (Sum of the first five integers) using the "7od"

feature of printf. (see Listing 5.17).

2. Write a program that produces a table of the powers of two from

1 hex to lOCXXX) hex. Print the answers in both decimal and hex.

Use the fprintf function, and print the answers to the filename

contained in argv[1]. Hint: You can derive the powers of two

starting with 1 and shifting left one bit at a time.

3. Write a function to be called from C that copies one area of

memory to another. Use the calling sequence:

char *src;

char *dst;

int count;

mcpy(src,dst,count);

where

• src is the source address

• dst is the destination address

• count is the number of bytes to copy
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INTRODUCTION

In this chapter we will introduce topics essential to writing advanced

applications. These include data storage techniques, sorting, and searching.

We will develop a computerized telephone directory as a sample appli-

cation. This sample application will use many of the advanced concepts

presented here and will have many of the characteristics of a large com-

mercial application system.

DATA ORGANIZATION

One of the most important considerations in writing a large program is

how to organize the data both inside and outside the program. You can

organize data in the form of records, arrays, linked lists, trees, queues,

and dequeues. We will now look at each of these types in detail.

Records

One of the simplest forms of data structure is called a record. A record

is a set of contiguous memory locations that contains related data.

Records are also called structures, especially in the C language. For
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instance, a program that organizes data into a telephone directory would
probably have a record with fields for name, address, and telephone number.

Records may exist both in primary memory or on disk. There is an

almost infinite variety of record formats. Two of the most popular ones are

fixed length records and variable length records.

Fixed Length Records

Fixed-length records (abbreviated FLR) have the same number of bytes in

each record. This has distinct advantages when accessing records randomly
When the records in a file contain differing amounts of information,

however, the FLR technique wastes storage space.

Fixed-length records are a natural outgrowth of the days when punched
cards were used to run programs and enter data into a computer. Cards

had a fixed number of columns, usually 80 or 96. Each column held one
byte of information. A common practice in programming machines that

used punched-cards was to place each field of the record in a particular

card column. When the card was read into memory, the fields would
always be offset the same distance from the beginning of the card image

in memory
The FORTRAN language is an example of a holdover from this tech-

nique. FORTRAN statements begin in column 7 of the card, which is very

difficult on a terminal! If a FORTRAN statement overflows from one line to

the next, you have to put a nonblank character in column 6. Fortunately

most systems no longer use cards.

Many present-day storage techniques rely on fixed-length techniques.

This is especially true for records contained in primary memory The sim-

plicity and speed of the FLR technique often outweigh considerations of

storage inefficiency

Variable Length Records

Variable-length records (abbreviated VLR) allow for having a different

number of bytes in each record. This technique avoids the problem of

wasted space inherent in fixed-length records, but it makes random
access slower and more difficult. ASCII text files often use one of the VLR
techniques. Here are some of the more popular methods.

1 . Records are prefixed with a count field that gives the number of

bytes in the record. Minor variations on this technique are the

number of bytes dedicated to the count field, whether the count
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field includes the number of bytes in the count field, and count-
ing units other than bytes. Most implementations of BASIC on
microcomputers use the count technique for string variables. This

technique is also used to store text files on many operating sys-

tems for mainframes and minicomputers.

2. Records are terminated with some special character or character

sequence that cannot occur within the record itself. For example,
UNIX text files terminate lines of text with a newline character

(decimal 10). CP/M text files terminate each line with a carriage

return (decimal 13) / newline sequence. The C language uses a
null byte (decimal 0) to terminate strings.

3. The beginning of a record is marked with a unique sequence.
This technique is often used in work involving communications,
where faulty transmission may distort, add, or delete bytes within

a record. A unique sequence of bytes helps resynchronize the

receiver and transmitter.

Hybrid Techniques

A number of techniques have been devised that combine the desirable

features of fixed and variable length techniques. These "hybrid" tech-
niques usually allow reasonable random access with reasonable storage
efficiency

For records that are processed sequentially a common technique is to

use a fixed portion of the record in combination with a variable portion of

the record. The fixed portion of the record contains an indication of how
big the variable portion is. This technique is useful for applications that

must represent variable-length tables.

Another common technique is to split the fixed and variable portions of

the records and store the fixed portions together and the variable portions

separately The fixed portion contains the address of the variable portion.

In this way the capability of fixed-length records to enhance random
access is combined with the storage efficiency of variable-length records.

Describing Records in Assembly Language

There are some common techniques for manipulating records in assem-
bly language that are advantageous on the 68000 chip. If a record is less

than 32K (as most are), then the "address register indirect with displace-

ment" addressing mode can be used to access the individual fields. This is
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particularly advantageous when more than one record must be handled

at one time.

In coding references to records, it is good practice to use equated

names for the different fields in the record. This allows you to go back

later and change the size and order of the fields in the record without

changing all the references to those fields.

Listing 6.1 gives the definition of the records used in our sample applica-

tions program—a computerized telephone directory For simplicity, we
store only the person's name and telephone number, not the address or

any other information. The record stores the last name, first name, and

middle name, each as ASCII strings terminated with a null character. Each

name field can have up to twenty characters. The telephone number (14

characters) and its extension (6 characters) are also stored as null-

terminated ASCII strings.

Note how the fields in the record are defined with symbolic expressions

(lines 48 to 53). Using the previous field name in defining the next field

allows you to change the size of a single field without changing the rest of

the description. It is usually helpful to have an equate that gives the total

size of the record, such as found in line 53.

STORAGE ALLOCATION

The way in which records are arranged in memory is often critical to a

program's performance. There are two techniques commonly used to

allocate memory:

1. Allocating the records contiguously i.e., one following the other.

A collection of records arranged this way is called an array.

2. Allocating the records non<ontiguously, with each record con-

taining the address of the next record in logical order This is

called a linked list.

Arrays

An array is composed of records arranged contiguously in memory
When used with fixed-length records, the array technique makes random

access extremely easy To access the record n, you calculate the address as:

address = (n - 1) x (record size) + the starting address of the array

This technique is used in many programs for matrix calculations, tables,

and other data that must be accessed randomly The same technique can
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be used for accessing fixed length records in a disk file. This is sometimes
called direct access.

The disadvantage of arrays comes in adding or deleting items. The rapid

retrieval of information often depends on the information occurring in

some particular order. Adding items to or deleting items to an ordered
array requires moving all items below the insertion or deletion point. For

example, consider the array of numbers displayed in Figure 6.1.

Let's say that we need to insert the number 101 into this array In order

to make room for a new entry between 100 and 103, we must move the

lower three elements down. When manipulating large tables, this process

can require a lot of time.

Another example of array storage is the argv array of pointers passed to

the main routine of a C program (as illustrated in Chapter 5).

Linked Lists

Another technique for allocating storage to a group of records is a

linked list. With a linked list, each element of the list contains a way of

finding the next entry This is usually accomplished by inserting the

address of the next element in each item of the list. There are several vari-

ations of the linked list technique.

Linked lists may be either linear or circular. Examples of both types are

shown in Figure 6.2. Both types of linked lists start at some known point

called the list head. This is usually a memory location that contains the

address of the first element in the list. The linear list terminates with some

100

103

105

107

Figure 6.1 -An array of numbers
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special value in the link portion of the record (usually zero). This value

indicates that there are no more records in the list. The circular list is

linked in a circle, with the last element pointing either to the first element

in the list or the list head.

Linked lists are extremely flexible for inserting and deleting items. To

insert an item, you modify two links: the link in the item before the item

to be inserted and the link in the item to be inserted. To delete an item,

you only need to modify the link that points to the item to be deleted. The

cost of this flexibility is the additional processing time it requires to access

a random element of a linked list. To access element number k in a linked

list, it is necessary to access the previous k - 1 elements.

One advantage of a circular list is that you can tell whether one of the

links in the list is corrupt. If you cannot reach the list head within a rea-

sonable number of tries, something is amiss. This reliability is purchased at

the cost of extra processing time.

A second variation of a linked-list is to use two pointers in each record

in the list; one to the next record and one to the previous record. This

Linear Linked List

Record

1

Record

2

—*• Record

3

List

Head

Record

Circular Linl<ed List

Record

2

—»• Record

3

-* Record

n1

List

Head

.

Figure 6.2 - Linear and circular linked lists
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technique is called a doubly-linked list. To insert or delete items from a

linked list, you need to know the address of the previous element in the

list. The advantage of a having a pointer to the previous element is that it

speeds insertion and deletion of random elements in the list.

Yet another variation of the linked list technique is to maintain a pointer

to the last element in the list. Such a pointer is known as a (a/7 pointer.

This is useful when elements are added to the end of a list. To facilitate

removal from the end of a list, you would need to use a doubly-linked list

with a tail pointer or alternatively, a circular doubly-linked list.

It is poor programming practice to use a linked list on a disk or other

form of external memory The reason for this is that in order to add or

delete items from a list, you need to modify two items in the list. If the

machine crashes between these updates (and this does happen), the

linked-list structure is no longer consistent. This can lead to situations

where a disk block appears in two files or cannot be used at all. This was

a problem in many early versions of UNIX.

DATA STRUCTURES

There are several logical data structures that can be superimposed on

top of arrays or linked lists such as stacks, queues, and trees. We will now

explore these structures in more detail.

Stacks

You are already familiar with the concept of a stack (the 68000 has a

stack implemented in hardware). A stack is a data structure in which the

last item added is the first item removed. This is also called a Last In First

Out (LIFO) arrangement.

Stacks may be implemented either as arrays or linked lists. Implementa-

tion of a stack as an array requires a separate variable that defines the top

of the stack. The 68000 hardware stack pointer (register AT) is an example

of such a variable. Implementation of a stack as a linked list requires add-

ing and removing elements of the list only at the beginning of the list.

Two types of error conditions that you will probably encounter when

using stacks are:

1. Running out of room for new stack entries. This condition is

known as a stack overflow. This can happen, for example, when

a program gets caught in an infinite loop that pushes items on the

stack.
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2. Popping more entries off the stack than were pushed on the

stack. This condition is known as a stack underflow.

Queues

A queue is a list of items in which the first item added is the first item

removed. This is also known as a First In First Out (FIFO) or a First Come
First Served (FCFS) arrangement. FIFO arrangements can be observed in

any environment where people wait in lines for service. The first person

to arrive is the first person served.

You can implement a queue either as an array or as a linked list. Effi-

cient implementation as an array often uses a circular (or ring) buffer, as

shown in Figure 6.3. This data structure consists of two pointers: an inser-

tion pointer and a removal pointer.

Insertion

Pointer

'

3 4 5 6 /// /// /// /// 1 2 Ring Buffer

; L

Removal Pointer -

Figure 6.3 - A circular buffer
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Items are added using an insertion pointer and removed using a

removal pointer. When the pointers are equal, the buffer is empty. If add-

ing an element causes the pointers to become equal, the buffer is full.

Notice that this means you can't use one of the locations in the buffer

(i.e., if the pointers are equal, you can't tell if the buffer is empty or full).

You can eliminate this problem by keeping a counter of the number of

items in the buffer.

Figure 6.3 shows an example of a circular buffer. Items are added and

removed from left to right. Whenever a pointer runs off the right end of

the buffer, it is moved back to the left end. Thus, the pointers move in a

circular fashion. The shaded areas represent unused elements in the

buffer.

Implementing a queue with a linked list is best done using a tail pointer.

This makes both insertion and deletion operations quite simple.

Several modifications to the basic queue technique are also useful in

many applications. For example, a queue may be based on some order

other than chronological. The most common example of this technique is

the notion of a priority order list of jobs in a larger computer system. A
linked list organized according to priorities is often used in an operating

system to determine who gets what resources. For additional information,

see the discussion of priority-driven scheduling in Chapter 8.

A special form of queue, called a double-ended queue, or dequeue

(pronounced "deck"), allows insertion and removal of elements at both

ends. Altered forms of this technique provide for insertion at both ends

but removal at only one, or removal at both ends and insertion at only

one. These are called output-restricted and input-restricted dequeues

respectively

Trees

A tree is a data structure in which each item can point to more than

one item. A tree begins with a single element, called the root. The root

points to other nodes, which in turn point to still other nodes, and so on.

(An element in a tree is often called a node.) Figure 6.4 shows an example

of a tree structure. The elements of the tree are shown as numbered

boxes.

Borrowing terminology from genealogy element two is termed a ch/7d

of the root, as are elements three and four. The root is said to be the par-

ent of these elements. Elements that are children of the same node are

termed siblings. Nodes five and six in Figure 6.4 are siblings. A node

which has no children is called a leaf of the tree. Any given node and all
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its descendants is called a subtree. For example, nodes two, five, and six

form a subtree of the root.

A tree is useful for describing something that may be defined in terms of

itself. This is called recursion. For example, on the UNIX operating system,

disk devices have a directory of files on the disk. It is also possible for one

of these files to be another directory This directory can contain other

directories, which can contain other directories, and so on.

A tree is an ideal representation for this concept. There is a single direc-

tory called the root directory, which corresponds to the root of the tree.

Nodes in the tree are either directories or ordinary files. Ordinary files are

always leaves of the tree, as are empty directories.

Modifying the definition of a tree so that each node has at most two

children gives us a special kind of tree called a binary tree. The children of

1 (Root)

2 3 4

7 (Leaf)

5 (Leaf) 6 (Leaf)

Figure 6.4 - Example of a tree structure
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a binary tree are called the left and right descendants, and the distinction

between the two is meaningful. A node with a single right descendant is

different from the same node with a single left descendant. Binary trees

are used extensively in many areas of computer science. One of the best

examples is an expression tree, which is found in many high-level lan-

guage compilers and interpreters.

An excellent example of an expression tree is the handling of arithmetic

expressions in assignment statements. For example, the statement

X = (a+b)/2

would cause the compiler to generate instructions to first add a and b,

divide this sum by 2, and then place the result in x. A compiler would
represent this expression in a tree as shown in Figure 6.5.

Figure 6.5 - An expression tree
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Note how the assignment for the equal sign operator (=) is treated as if

it were an arithmetic operation. Since most arithmetic operations involve

an operator and two operands, the binary tree is a convenient way of reF>-

resenting expressions.

In evaluating this expression, you evaluate the subtree on the left first,

and then the subtree on the right. In order to evaluate the equal sign

operator, you must first evaluate the division operator (/). To evaluate the

division operator you must evaluate the plus sign operator (+). This is

called traversing the tree. Notice that traversing the binary tree produces

the same evaluation order that you would use in evaluating the expression

by hand.

There is a great deal more to the area of data structures than we have

presented in the brief overview. See the Recommended Reading List for

reference on this and other topics.

ADVANCED PROGRAMMING CONCEPTS

There are three areas of programming which deserve more in-depth

study:

1. Sorting. The process of taking randomly ordered data and placing

it into a specified order.

2. Searching. The process of retrieving a specified piece of informa-

tion from a large set of data.

3. Recursion. The ability to define a particular function or set of

functions in terms of itself.

Sorting

Sorting is the process of ordering a randomly ordered set of records.

Sorting has received considerable attention in programming literature

because it is so easy to do poorly We will discuss some of the simple tech-

niques used to sort records. Our discussion assumes that the data to be

sorted is in memory rather than on disk.

Insertion Sort

An insertion sort is generally performed as data is being input to a

program. To perform such a sort, take the items one at a time and put

each item that is in the memory array in sorted order. When you have

placed all the records in the array you have sorted data. Due to the large
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number of insertions required, this technique is particularly suited to a

linked-list structure in memory.

Interchange Sort

An interchange sort is usually performed on data that is arranged con-

tinguously in memory The simplest form of interchange sort involves tak-

ing the top element and comparing it to each element in turn, exchanging

where items are out of order. When all the elements have been com-

pared, the top element is certain to be correct. Each element is then

compared to all the elements below it. This type of sort requires n - 1

passes through the data, where "n" is the number of records.

Bubble Sort

A more efficient type of sort is the bubble sort, which compares succes-

sive pairs of elements throughout an array and then swaps elements that

are out of order. When a pass is made through the data without exchang-

ing any items, the sort is complete. This method takes advantage of data

that may already be in a partially correct order.

Listing 6.2 shows a simple bubble sort program that sorts an array of

memory words at the label "list." Lines 5 through 1 7 constitute a single

1 ******* ******************* *******

2 * Sample bibble sort. Sorts
3 * words at "list."
4 *********** *******
5 000000 41F900000000 bubble: lea list.aO * AO -> Data
6 000006 4240 clr.w dO * DO is flag
7 000008 3210 bloop: move.w (aO) ,dl * Load for cmp
8 OOOOOA B2680002 cmp.w 2(a0) ,dl * Compare 2 elts
9 OOOOOE 6F0C ble noswap * LE => Don't swap

10 000010 30A80002 move.w 2(a0),(a0) * Swap pair of words
11 000014 31410002 move.

w

dl,2(a0) *

12 000018 303C0001 move.

w

tl.dO * Set flag
13 OOOOIC 5488 noswap: add.l t2,a0 * AO -> Next word
14 OOOOIE BIFCOOOOOOOC cmp.l iendbuf.aO * Past end?
15 000024 6 5E2 bio bloop * No, continue
16 000026 4A40 tst.w dO * Flag set?
17 000028 6606 bne bubble * Yes, another pass
18 00002A 4E7 5 rts * Return
19 000000 .data
20 000000 0006000500030004 list: .dew 6,5,3,4,1, 2,0
21 endbuf

:

.equ *_2

Listing 6.2 - Bubble sort routine
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pass through the data. Register DO.W is used as a flag to indicate whether

any exchanges have taken place on the current pass. Lines 7 through 15

perform one pass on the data, with the comparison taking place at lines 7

through 9 and the exchange at lines 10 through 12.

Searching

Searching is the process of finding an arbitrary record in a large collec-

tion. For large amounts of data or frequent searches, the search algorithm

can be extremely important.

Sequential Searciies

The simplest technique for finding an entry in the table is to start at the

beginning of the table and look at each entry in the table until you find

the desired one. If you run off the end of the table, then the item you

want is not in the table. The average number of comparisons using this

technique is one-half the number of entries in the table (assuming that all

the entries in the table are accessed an equal number of times). Significant

improvements in search times can be made if the data is not accessed in

an evenly distributed manner. Simply placing the most commonly
accessed data at the beginning of the table can make an amazing differ-

ence in performance.

The advantage of the sequential technique is that it does not require the

data to be in any particular order. Most of the faster search techniques

impose some ordering criteria on the data. A linear search may well be

the best method to use, especially if the effort to sort the data outweighs

the effort expended in the search. The decision is based on the relative

frequency of sorts to searches. For rapidly changing data that is searched

infrequently a linear search is probably the best technique.

Binary Search

For data that is in sorted order, a binary search technique can be used

to substantially reduce search time. A binary search works like this:

1

.

Given a table of n elements in sorted order, establish two pointers

to the first and last entries in the table.

2. Compute the element that is halfway between the two pointers.

(We'll call this element H.) Compare this element to the desired

element. If the elements are equal, then you have found the
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desired data. If the element is less than the desired value, move
the bottom pointer to element H. If element H is greater than the

desired element, move the top pointer Reverse these conditions

if the table is in descending order instead of ascending order.

3. If the two pointers are equal or adjacent, then the item is not in

the table. Otherwise, repeat step 2.

Figure 6.6 shows a sample search sequence. T is the Top pointer, B is

the Bottom pointer, and H is the Halfway pointer. In this example, the
desired entry is found in three tries, as opposed to five for a sequential
search. The desired entry is 135.

The size of the table being considered is reduced by a factor of two for

each iteration of the search. For large tables, this is a substantial savings

over sequential-search techniques. This is true only if the effort to main-
tain a sorted table is less than the effort saved by the binary search tech-

nique. Effort is measured in terms of program execution time and
programming time. The number of times a program is used determines
the wisdom of spending a lot of time putting in features which save execu-
tion time.

Hashing

Another technique for reducing search times is called hashing. Hashing
imposes a different kind of structure on the table to be searched. A

100 110 123 134 135 137 145 155 180 200 207 256 298 Step

f

Figure 6.6 - Example of a binary search
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transformation is performed on the data to be looked up in the table. This

transformation is called a hash function. The hash function yields a num-

ber indicating a position in the table. This number is called a hash code.

Entries are placed in the table at the locations dictated by their hash

codes. A simple way to generate a hash code for alphanumeric (i.e.,

string) data is to add each of the characters in the string and take the

resulting sum as the hash code.

When two or more different table entries have the same hash code, a

situation known as a hash collision results. The number of hash collisions

is an indication of the quality of the hash function. A good hash function

will produce few collisions. A hash collision is normally detected when
you need to add an entry to the table and you find that an old entry has

the same hash code as the new entry One solution to this problem is to

place the new entry in the next free slot in the table. Then do a sequential

search starting at the position indicated by the hash code.

Another technique for dealing with hash collisions is to use a large num-

ber of linked-list heads. The hash code determines the list in which a

given element belongs. Then the lists are searched sequentially If the hash

function yields a reasonably even distribution of elements across the lists,

the savings over a sequential search is the number of list heads divided by

two. Thus if you used fifty list heads, you would expect to see an improve-

ment of 25 to 1 over a sequential search.

Recursion

Recursion is the ability to define a function in terms of itself. For

example, the factorial function can be defined recursively A factorial mul-

tiplies a number by all the integers less than the desired number. Thus,

five factorial (written 5!) is 5 x 4 x 3 x 2 x 1, or 120. Zero factorial is

defined to be 1. The factorial function for a number n may be defined

recursively as:

1. If n is or 1, then n factorial is 1.

2. Otherwise, n factorial is n times n - 1 factorial.

Listing 6.3 shows a factorial routine that uses this definition to compute

factorials.

Lines 8 through 1 1 handle the case where n is or 1 . Lines 12 through

16 handle the case where n is greater than 1. The fact function is called

with n - 1 as the argument. Note that when n reaches 1, the recursion

will stop.
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In general, recursive routines may not modify registers or static vari-

ables without saving and restoring them on the stack. Languages such as

C and Pascal, which support recursion, put all variables local to a proce-

dure on the stack. You can do the same in assembly language using the

LINK and UNLK instructions to allocate the stack space and the Address

register indirect with displacement addressing mode to access the data.

SAMPLE APPLICATION SYSTEM

Our sample telephone directory system performs three functions:

• Adding a new telephone number to the file.

• Recalling a number for a given person.

• Listing the entire file.

In designing this system, we are faced with a fundamental choice: one

program or three? We could write three separate programs, each of

which would perform one of these three functions. Or we could write a

single program that performs all three. To make this decision, consider

1 ****** ************************************

2

3

4

*
*

Recursive factor lal routine

* Enter with number in DO.W
5 * Exit with answer in DO.W
6 *************** *************************** 1

7 .globl fact
8 00000000 B07C0001 fact: cmp. w #l,dO * Easy?
9 00000004 6E06 bgt dofact * No, do recursion

10 00000006 303C0001 move.

w

#l,dO * 1! or 0! is 1

11 OOOOOOOA 4E75 rts * Done
12 OOOOOOOC 3F00 dofact : raove.w d0,-(a7) * Save present value
13 OOOOOOOE 5340 sub. w #l,dO * Decrement
14 00000010 61EE jsr fact * Take (n-1)

!

15 00000012 CIDF muls (a7)+,d0 * n! = n * (n-1)

!

16 00000014 4E75 rts Quit

Listing 6.3 - Recursive factorial routine
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how the program will be used. Recall operations are very frequent, addi-

tion operations are relatively infrequent, and listing the file even more
infrequent. Addition volume is also quite low. A typical user will add only

one or two numbers at a time.

These facts argue for three separate programs. Two of the programs will

be used infrequently Thus, the user can find and add phone numbers

from the operating system command level with a minimum of interfer-

ence with his other activities. The command set we will use is:

PADD first middle last (aaa)eee-nnnn xxxxxx

PFIND name

PLIST

PADD is the command to add a phone number to the existing phone

number file. (If no file exists, the PADD program should create it, thereby

sparing the user additional inconvenience.) The "first," "middle," and

"last" arguments comprise the name of the person. The next two argu-

ments are the phone number. "Aaa" is the area code, "eee" is the

exchange, and "nnnn" is the rest of the number. "Xxxxxx" is an optional

extension.

PFIND is used to locate a phone number. PFIND prints a list of phone

numbers whose first or last names match the given name. This helps

locate a person whose full name you can't remember.

PLIST prints the entire phone list on the terminal, sorted by name. By

typing PLIST Xilename, you can also put the listing in a file. The com-

mand PLIST >lst: sends the listing to the printer.

The record layout for the telephone number file was shown in Listing

6.1 . The file on disk consists of an array of these records, sorted by name.

All three programs use the length of the file to determine the number of

records present.

The PADD Program

Listing 6.4 shows the main entry point for the PADD program. This pro-

gram is designed in a "top-down" fashion. This means that the program is

partitioned into modules, each of which perform a single function. The

PADD program has the following modules:

1. The setfield routine, which moves the arguments from the com-

mand line into a local storage area called irec. The command line

data is also checked for errors at this point.
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2. The readfile routine, which reads the entire file into memory at a

location called buffer. If the file does not exist, readfile creates it.

If the file will not fit in memory, an error message is generated

and the program exits to the operating system.

3. The insert routine, which takes the data in the command line

record irec and inserts it into the buffer read from disk. This is a

type of insertion sort.

4. The wrtfile routine, which writes the modified buffer back out

to disk.

Writing programs in this fashion allows you to partition a large task into

several smaller and more manageable ones. The main routine in such

programs often consists of only subroutine calls.

The Setfield Function

Listing 6.5 shows the code for the setfield function, which moves the

fields from the command line (argv) into a temporary area called irec. Set-

field mainly checks for the proper number of arguments on the command
line and moves the arguments into the proper fields. Two subsidiary func-

tions are used:

• A function called movestr, which moves a variable length string

into a fixed-length area. Nulls are added to fill out unused space

in the destination area.

• A function called valid, which checks a telephone number for the

proper syntax.

The Readfile Function

The function called readfile is shown in Listing 6.6. This function uses

read calls in the C run-time library file to open the file, read it, and close

it. Lines 223 through 235 open the file PHONE.DAT If the file does not

exist (see lines 228 through 235), it is created. Failure to create the file ter-

minates the program with an error message.

Lines 239 through 253 read the file. Each call to the C _read routine

attempts to read 4K into the buffer. (4K is a purely arbitrary size.) When
the read operation returns zero bytes read, the program has reached the

end of the file.
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Lines 254 through 256 perform the file close operation. The first free

byte in the buffer is recorded at line 257. This address is used by later por-

tions of the program to determine the number of records to process.

The Insert Routine

Listing 6.7 shows the insertion routine called insert and its subsidiary func-

tion ncmp. Inserting a new record in the buffer requires three actions:

1. Finding the place to insert the new record (lines 271-278). The
function ncmp (lines 297-328) compares the name fields in two

records. This function is called repeatedly until either the end of

the buffer is encountered or the record in the buffer is greater

than the record in irec. When either case becomes true, control

is transferred to line 282.

2. Moving the entire buffer down to make a space in the middle of

the buffer in order to insert the new record (lines 282-286).

3. Moving the new record into the newly vacated space in the

buffer (lines 290-294). Notice that the buffer size was adjusted at

line 283 to reflect the insertion of the new record.

The ncmp function takes advantage of the fact that the fields in the

record are arranged in the proper order for comparison. Ncmp compares

the three name fields as if they were one very large string. The null-

padding of these fields ensures that this technique will work.

The Wrtfile Routine

Listing 6.8 contains the code for the wrtfile routine, which copies the

modified file from memory back out to disk. Lines 341 through 346 create

a new copy of the file. (The old file is deleted by _creat.) Lines 350

through 367 write the file out in segments 4K bytes long. (Again, 4K was
chosen quite arbitrarily)

The only tricky code comes when less than 4K remains to be written to

disk. Register A5 is set to point to the first byte not to be written at lines

352 through 356. This byte is either at the top of the buffer or 4K beyond

the first byte to be written.
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The Data Area

Listing 6.9 shows the remainder of the program—error routines, error

messages, and data areas. The program handles error conditions by print-

ing a message to the terminal screen and exiting. This type of error Is

sometimes called a fatal error, in that the program cannot recover and
continue processing.

Notice that the majority of data is in the bss segment. This is not acci-

dental. The buffer area is quite large, and placing it in the bss segment

means that it is not stored on the disk. This reduces both disk storage

requirements and the time it takes to load the program.

The PFIND Program

Listing 6.10 shows the main program for the PFIND command. This

program calls the readfile routine to load the data file into memory (For

this program, we removed the code that created an empty data file.) The
print routine then prints out all entries in the table that match the name
specified in the single argument on the program's command line.

Reusing the readfile routine illustrates one of the great truths in pro-

gramming: There ain't nothing new under the sun. Most programming
efforts involve modifying existing code rather than writing new code. Writ-

ing modular code ensures that pieces from one program can readily be

used in another program.

The Print Routine

The only new code in the PFIND program is the print routine. This is

shown in Listing 6.11 . The code at lines 147 through 159 forms a loop that

checks each entry in the buffer using a local subroutine called match. The
return parameter of match is the Z condition<ode bit. The Z-bit is set

when the record pointed to by A3 matches the string pointed to by A5.

Using condition-code bits in this way saves a few instructions and is a use-

ful technique for improving the performance of routines that are called

frequently

The match routine at lines 169 through 186 attempts to match the string

(whose address is in A5) with the first and last name fields pointed to by

A3. This routine checks only the command argument for termination so

that a match occurs when the argument name is a prefix of the record

name. For example, "White" will match "White," but it will also match
"Whitehead." This is a useful feature if you can't remember the exact

spelling of a name.
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Data Area

Listing 6.12 shows the data area and error routines for the PFIND pro-

gram. This data area is largely a subset of the PADD program.

The PLIST Program

The PLIST program is a trivial modification to the PFIND program, and

is left as an exercise for the reader.

SUMMARY

In this chapter, we have touched briefly on a number of important top-

ics. Among them are:

• The concept of records and the various types of records: fixed-

length, variable-length and hybrid records.

• How records are arranged in memory: arrays and linked lists.

• Data structures: stacks, queues, and trees.

• Simple methods of sorting data: insertion sorts and interchange

sorts.

• Sequential, binary and hash techniques of searching a table.

• The concept of recursive programming.

• Sample application of a phone directory

In the next two chapters, we will progress from writing applications to

writing low-level operating system software. This type of software makes

extensive use of the stack and queue data structures.

EXERCISES

1. Derive the PLIST program from the PFIND program.

2. The Fibonacci series of numbers, denoted as F(n), is recursively

defined as follows:

a. F(0) = 0, and F(1) = 1.

b. For all other numbers, F(n) = F(n - 1) -i- F( n - 2).
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(For example, F(2) = F(1) + F(0) = 1; F(3) = F(2) + F(1) = 2, and

so forth.) Write a recursive function called fib that returns in

DO.W the Fibonacci number that corresponds to the number

originally contained in DO.W.

3. Write a program called PNLIST that is similar to the PLIST pro-

gram, but which prints the data sorted by phone number. (Hint:

Use a bubble sort technique to sort the data before calling the

print routine.)

4. Write a program called PDEL that deletes an entry from the tele-

phone directory
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INTRODUCTION

This chapter will introduce you to the concept of a machine "excep-

tion," and to programming techniques used in processing exceptions. We
will develop two sample programs that handle exceptions and discuss the

types of exceptions possible on the 68000 chip.

WHAT IS AN EXCEPTION?

An exception is the machine's ability to interrupt what it is doing, do
something else, and if necessary return to the interrupted task. Exceptions

caused by external events are called interrupts. Exceptions are also used by

the 68000 for certain types of programming errors, such as division by zero.

A common use of the exception mechanism is to overlap I/O processing

with computation. Since I/O devices are typically much slower than the

CPU, sophisticated programs can perform both I/O and computations

simultaneously This technique reduces the time required to perform a task.

The exception mechanism is used as follows: the program starts an I/O

operation and begins doing computations. When the I/O is complete, an

exception occurs, causing the computational work to be suspended. If

there is more I/O to be done, the program starts another I/O operation.

Computation can then resume until another exception occurs. This type

of I/O is commonly called interrupt-driven I/O.
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General Exception Processing

Exceptions on the 68000 fall into one of two categories: exceptions

caused by I/O devices and exceptions caused by internal operations, such

as program errors or the trap instructions. Each possible exception is asso-

ciated with a unique longword in memory called a vector.

Vectors

There are 256 possible vectors, numbered from to 255. Each vector is

a longword in memory that contains the address of the routine that pro-

cesses the exception. Vectors are organized contiguously in memory start-

ing at absolute address 0. The address of a vector is the vector number
times 4. Internally generated exceptions use dedicated vector numbers.

There are seven dedicated vector numbers for I/O, called the auto-vector

interrupt vectors. In addition, a mechanism exists for I/O devices to spec-

ify vectors to be used for I/O interrupts.

Table 7.1 lists the vector numbers that are preassigned by the 68000.

Locations and 4 are used for the initial stack and Program counter

when the processor is first powered up or when the RESET signal is

applied. {Most microcomputer systems have a button for this purpose.)

A BUSERR (Bus Error) indicates a program reference to a memory loca-

tion that does not exist. (This is colloquially known as "missing the bus.")

References to a word or longword at an odd address cause an addressing-

error exception. An illegal instruction (e.g., an op code of 4AFC) causes

an exception through vector number 4. Two exceptions are op codes

Axxx and Fxxx, which trap through the Line 1010 and Line 1111 vectors

(10 and 11 respectively).

Division by zero causes an exception through vector 5. The CHK and

TRAPV exceptions are caused by the CHK and TRAPV instructions (see

Chapter 3). These instructions trap through vectors 6 and 7. A privilege

violation exception results when a priviliged instruction is attempted while

the processor is in user mode.

Many debugger programs use exception vector 9 (TRACE) for executing

single instructions in a program to be debugged. The normal procedure

for single-stepping is to (1) push the PC of the instruction to be debugged

on the stack, (2) push the SR with the TRACE bit set (bit 15), and (3) exe-

cute an RTE instruction.

The processor will execute one instruction with the TRACE bit set, and

then trap through the trace vector. Any instruction that affects all bits of

the status register may set the trace bit.
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Whenever a memory violation (BUSERR) occurs during an external

interrupt, the spurious exception (vector 24) is taken. This is normally an

error condition, but may possibly be used in an obscure manner by a

hardware designer.

Vector Address Function

RESET initial SSP (supervisor stack pointer)

1 4 RESET initial PC (program counter)

2 8 BUSERR (nonexistent memory)

3 C Address (boundary) error

4 10 Illegal instruction

5 14 Zero divide

6 18 CHK instruction

7 1C TRAPV instruction

8 20 Privilege violation

9 24 TRACE

10 8 Line 1010 emulator

11 2C Line 1111 emulator

12-14 30-38 Unassigned (reserved)

15 3C Uninitialized interrupt vector

16-23 40-5C Unassigned (reserved)

24 60 Spurious interrupt

25-31 64-7C Level 0-7 autovector interrupts

32-47 80-BF TRAP 0-15 instruction vectors

48-63 CO-FC Unassigned (reserved)

64-255 100-3FF User interrupt vectors

Table 7.1 - Preassigned vectors
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WHAT HAPPENS DURING AN EXCEPTION?

When the 68000 recognizes an exception condition, several things

occur:

1. The current values of the PC (which normally points to the next

instruction to be executed) and status register are pushed onto

the supervisor-mode stack.

2. The T bit in the status register is turned off and the S bit is turned

on. This prevents a TRACE exception, and forces the 68000 into

supervisor state. For external exceptions, the Interrupt Mask in

the status register is also updated.

3. For a BUSERR or addressing error exception, extra information is

pushed onto the stack.

4. The PC is loaded from the appropriate vector, and execution

begins at this address.

The routine whose address is contained in the vector is called an excep-

tion handler. This routine normally saves the registers on the stack, per-

forms some action, restores the registers, and executes an RTE instruction.

Thus, the 68000 provides the ability to interrupt a program and later

resume executing the program with no noticeable effect, other than

increased processing time. This ability is normally used with interrupt-

driven I/O.

RESET

A special pin on the 68000 chip called RESET causes a special exception

to take place. A signal asserted on the RESET pin causes the processor to

load the Supervisor stack pointer from location and the Program

counter from location 4. This provides a mechanism for starting the 68000

in a known state. RESET is normally used for the bootstrap button on

68000 microcomputers. This exception provides a mechanism for starting

the 68000 when power is applied, as well as the ability to recover from

catastrophic software failures.

BUSERR and Addressing Error Exceptions

Vectors 2 and 3 are used for errors detected in references to memory
The BUSERR exception (vector 2) indicates that the program has refer-

enced memory that does not exist.
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An addressing-error exception means that the program has referenced a
memory word or longword at an odd address. If a program references a
memory word or longword at an odd address that is also nonexistent (i.e.,

both bus and addressing error conditions), the processor will detect the
addressing error first, and only the addressing error exception will take
place.

These two exceptions differ from all other exceptions in that the pro-
cessor puts extra information on the stack. On entry to the exception han-
dler, the stack appears as shown in Figure 7.1.

The first word on the stack contains information about the type of mem-
ory access that caused the fault. Bits 5 through 1 5 of this word are unde-
fined. If the access error occurred during a memory read, the R/W bit is

1
.

If the access error occurred during a memory write, the R/W bit is 0.

The l/N bit is if the processor was processing an instruction, and 1 if

the error was detected by an external device. (Most of these errors are the
result of instruction processing.) The Access code contained in the lower

Bits

A7

+ 2

+ 4

+ 6

+ 8

+ 10

+ 12

15
1

lllllllllllllllllllllll R/W l/N

I r
Access

High word of erroneous address

Low word of erroneous address

First word of instruction

Status register

Program counter high word

Program counter low word

Figure 7.1 - Stack after bus or addressing error
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three bits describes the type of memory access being performed. Table

7.2 shows the type of memory access indicated by each access code.

Thus, these bits tell you two things: whether the processor was refer-

encing data or program instructions and whether the processor was in

supervisor mode or user mode. Data references include all accesses to

memory that use all addressing modes except the two PC-relative modes.
Program references include the PC-relative addressing modes as well as

fetching instruction words from memory.

The next two words on the stack give the address where the fault

occurred. The processor saves a copy of the op code of the instruction

that caused the fault in the next word on the stack. As with all other

exceptions, the status register and Program counter are present. The value

stored as the Program counter is advanced from the beginning of the

instruction by two to ten bytes.

In the event that the error occurred when the instruction was being

fetched, the stored Program counter will be in the vicinity of the previous

instruction. Normally, this error is caused by taking a wild branch. In this

case, the PC and op code word on the stack will indicate the branch

instruction, rather than the erroneous address where transfer was
attempted. The erroneous address words on the stack will contain the

erroneous address (see Figure 7.1).

Code Type of Access

000 (unassigned)

001 User mode data reference

010 User mode program reference

oil (unassigned)

100 (unassigned)

101 Supervisor mode data reference

no Supervisor mode program reference

111 Interrupt acknowledge

Table 7.2 - Memory access codes
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If the processor encounters a second BUSERR or addressing error dur-
ing the processing of one of these errors, a situation called a double bus
fault occurs. This can occur if the Supervisor stack pointer is corrupt and
the processor is unable to save any information on the stack. The pro-
cessor halts and can only be restarted using the RESET input on the chip.

Illegal Instruction Exceptions

Whenever the 68000 fetches an op code that cannot be interpreted as a
legal 68000 instruction, an exception through vectors 4, 10, or 11 occurs.
Vectors 10 and 11 are used for op codes that have 1010 or 1111 in the
high order four bits. Vector 4 is used for all other illegal instructions.

These include:

• Illegal op codes other than Axxx or Fxxx.

• illegal addressing modes, such as PC-relative operands specified
as an instruction destination.

• Illegal addressing mode or instruction combinations, such as byte
operations on address registers.

A beneficial use of illegal instructions is software simulation of extended
68000 instructions. Op codes Axxx and Fxxx are normally used for this

purpose. To simulate an extended instruction, first define an illegal op
code pattern for this instruction and then write an exception handler for
the appropriate illegal instruction vector that simulates the action of the
instruction. A program can then make use of the instruction without
knowing that the instruction is simulated. There is, of course, a significant

cost in terms of processing speed.

This technique is often used for optional hardware extensions to a pro-
cessor's instruction set, such as floating point. With simulation, you can
write a program that uses floating-point operations and run that program
on any machine, whether it has the floating-point hardware or not. The
only difference is that the program will run much faster on a machine
with the optional hardware.

TRAP Exceptions

The notion of an operating-system call instruction is similar to software
simulation of illegal instructions. The program first issues an operating-
system call instruction and then the operating system performs some func-
tion and returns an indication of its success or failure to the program.
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The program can treat these operating-system calls as if they were single

instructions. The operating system can provide a set of functions, some-

times called the extended instruction set, which is the same on machines

that have substantially different hardware. This is the appeal of standard

operating systems, which allow the same applications software to run

unchanged on many different machines.

The 68000 has sixteen operating-system call instructions, TRAP
through TRAP 15. Illegal instructions could be used to extend this set

almost infinitely The TRAP instructions use vectors 32 through 47. The

advantage of a large number of such instructions is that the operating sys-

tem can dedicate a TRAP instruction to a frequently used operating sys-

tem service and reduce the number of instructions required to perform

this service. Less frequently called services may be invoked by requiring

the application to load a function code into a register before performing

the TRAP instructions.

The TRAP instruction allows a convenient transition between user mode
and supervisor mode. Applications are normally run in user mode while

the operating system normally runs in supervisor mode. To enter the oper-

ating system, the TRAP instruction automatically places the processor into

supervisor mode.

When the RTE instruction is used to return to the user program, the

user program's status register is loaded from the stack, causing the pro-

cessor to go back to user mode. This mechanism also makes it possible for

both supervisor mode and user mode programs to call the operating sys-

tem, or even for the operating system to call itself.

Another advantage of the TRAP instruction is that the user program

need not know the location of the operating system. Many systems

require that the application program jump to some fixed address to call

the operating system. The TRAP instruction allows the location of the

operating system to change without affecting the application program.

Exceptions Used for Debuggers

The DDT-68K debugger explained in Chapter 3 provides two mecha-

nisms for controlling program execution: breakpoints and single-

instruction execution. These mechanisms make use of two 68000

exceptions: the illegal instruction and trace exceptions.

To set a breakpoint in a program being debugged, the most common
technique is to save the instruction at the breakpoint location and place

an illegal instruction at that location. The debugger then allows the pro-

gram to execute until an illegal-instruction exception occurs. This
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technique will fail if a breakpoint is set in the middle of a multiword
instruction or if the program uses the instruction as data. Also, continuing
from a breakpoint requires that the instruction at the breakpoint be single-
stepped before program execution resumes.

Single-stepping an instruction involves setting the Trace bit in the status

register. The most common method is to stack the Program counter and
status register, set the Trace bit in the stacked status register, and execute
an RTE instruction. A trace exception will occur immediately following the
execution of the target instruction. Some side effects of this technique are:

• Since an exception clears the trace bit, an exception caused by
the instruction being traced causes the debugger to lose control,

unless the debugger receives control when exceptions occur.

• TRAP instructions that call an operating-system function appear
as a single instruction.

• Tracing an RTE instruction causes the debugger to lose control
because the RTE instruction reloads the status register. Tracing an
instruction which reloads SR has the same effect. These instruc-

tions include MOVE to SR, ANDI to SR, and EORI to SR.

• Tracing a MOVE from SR instruction can cause the program to
malfunction because the trace bit will be set in the copy of the
status register that the program receives. If the program com-
pares this copy without masking the trace bit, it could execute
incorrectly

The real problems with this technique appear when the debugger is

used on supervisor-mode programs (which are relatively rare). You can
still debug a supervisor-mode program with this type of debugger if you
exercise care in tracing the instructions which reload SR.

Other Error Exceptions

The TRAPV, CHK, and Zero divide exceptions are also mechanisms that
detect malfunction. These exceptions are used to assist the application in

detecting problems with overflow, array subscript range, and division
by zero.

The application program may need to regain control after one of these
exceptions in order to print out a message that identifies the error and its

cause. High-level language programs may have a way of identifying the
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routine and its line number in the source program. Operating systems

usually have some mechanism that allows the application program to

regain control following an error exception.

Privilege Violation Exception

A user-mode program that attempts to execute a privileged instruction

causes a privilege-violation exception through vector 8. This is normally

an error condition. With some computer systems, however, you can use

the privilege-violation exception to execute multiple supervisor-mode pro-

grams. The multiple supervisor-mode programs run in user state and a

supervisor-mode monitor simulates the action of all the privileged-mode

instructions. This technique is sometimes known as the virtual machine

technique.

Virtual machines are used to run multiple operating systems on a single

computer. A hardware device called a Memory Management Unit, or

MMU, simulates different memory spaces for each operating system. This

allows each system to have its own vector area as well as other dedicated

memory locations. Since the operating systems are run in user mode, they

do not interfere with each other.

The 68000 chip is capable of running a virtual machine system with a

single exception—the MOVE from SR instruction is not privileged. If soft-

ware that needs to run in supervisor state uses the MOVE from SR instruc-

tion and looks at the S bit, it may malfunction. On the 68010 chip, MOVE
from SR is privileged.

An Exception-Processing Program

Listing 7.1 shows a sample program that handles exceptions. The pro-

gram runs under CP/M-68K and handles the type of exceptions that are

common program errors. When an exception occurs, the program prints

out a message that identifies the type of exception, the contents of all regis-

ters, and the extra information on a BUSERR or addressing error exception.

Lines 11 through 19 are the program-initialization routine. Routine

v_init is designed to be called by the applications program in order to set

up the exception vectors. The technique used most frequently is to use

the CP/M-68K service that allows applications to intercept exceptions.

However, the purpose of Listing 7.1 is to illustrate how to deal directly

with the 68000 hardware. Thus, the initialization routine stores the

address of the exception handlers into the vector locations directly

Lines 23 through 37 are the entry points for the exception handler. This

table of BSR instructions (branch to subroutine) allows us, in a minimal
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amount of space, to both handle all exceptions with a single routine and

determine which exception occurred.

By taking the return address pushed by the BSR instruction, and sub-

tracting the beginning of the table (in lines 41 through 44), we get the off-

set of the BSR instruction in the table. Multiplying this number by 2 gives

us a zero-relative index into a table of long pointers. (That is, the value for

BUSERR would be 0, for addressing error, 4, for illegal instruction, 8, and

so on.)

Lines 45 through 48 compute the address of the string that corresponds

to the exception. These lines of code also print this string, using the prtstr

routine from Chapter 4. Lines 51 through 58 print the content of the regis-

ters using a subroutine called pregs, which we will look at later

Lines 64 through 79 determine if the exception is a BUSERR or an

addressing error If the exception is either of these, the extra information is

popped from the stack and printed. Hex numbers are printed with the

routines called pword (which prints a 16-bit number) and plong (which

prints a 32-bit number). If the exception was not a BUSERR or an address-

ing error, the branch at line 65 causes this code to be skipped.

Lines 83 through 95 print the status register, program counter, and user

stack pointer (The system stack pointer was previously printed as register

A7.) Lines 96 through 97 return control to CP/M-68K.

It is not necessary to restore the interrupt vectors since CP/M-68K does

this when each program exits. With another system, it might be necessary

to save the old contents in the routine v_init, and then restore them
before returning to the operating system.

Lines 104 through 112 form a routine called pregs, which on entry

prints eight longwords pointed to by register A1. The routine called plong

produces the actual output. Following the eight longwords, a line-feed

character is printed, causing the terminal to advance to the beginning of

the next line.

Lines 116 through 131 contain the routines plong and pword, which

print 32-bit and 16-bit hex numbers. The pword routine prints the last four

characters of the number, which is always converted to ASCII as a 32-bit

quantity The routine called binhex from Chapter 4 (see Listing 4.1) per-

forms the conversion.

Interrupts

Exceptions that come from external sources are often called interrupts.

The 68000 provides two techniques for external devices to interrupt the

CPU: vectored interrupts and autovectored interrupts.
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There are three pins on the 68000 chip that an external device may use

to cause an interrupt. These pins are called IPLO, IPL1, and IPL2. IPL

stands for interrupt priority level. These three inputs to the 68000 form a

3-bit code used to request interrupts. The special code 000 means no
interrupt. Combinations 1 through 7 request an interrupt with priority 1-

7. The 68000 chip recognizes an interrupt if the interrupt mask (contained

in status register bits 8-10) is less than the priority presented on the IPLO-2

pins. Thus, an interrupt mask of allows all interrupts and an interrupt

mask of 7 allows no interrupts (except level 7).

When an interrupt occurs, the interrupt mask in the status register is set

to the priority level of the interrupt. This prevents the interrupt, or any

interrupt with the same priority from recurring until it is activated under

software control.

Interrupt level 7 is a special case. Level-7 interrupts cannot be masked

off. This interrupt level is normally reserved for extremely high-priority

devices or for a "panic button" that can be used to recover from a run-

away program. A level-7 interrupt is sometimes called a Nonmaskable
Interrupt or NMI.

An interrupt requested at a lower level than the current processor prior-

ity remains pending until the processor priority is lowered. The maximum
amount of time that an interrupt may remain pending is called interrupt

latency. This time is determined by the maximum number of instructions a

program can execute with interrupts masked off. Several applications,

including instrumentation, industrial automation, and communications,

require rapid interrupt response. In programming interrupt-driven soft-

ware, there are usually restrictions on the amount of time interrupts can

be disabled.

When the 68000 recognizes an interrupt, an additional control pin may
be used to request an autovectored interrupt. Autovectored interrupts use

vectors 25 through 31 for interrupt levels 1-7. If an autovectored interrupt

is not requested, the 68000 reads a vector number from the device request-

ing the interrupt. Deciding which type of interrupt to use is the prerogative

of the engineer who designs the 680(X) computer system. Autovectored

interrupts have the advantage of requiring less hardware, but are slower

and may require more sophisticated software. Vectored interrupts provide

better interrupt response time at the cost of extra hardware.

The association of a device with a particular vector and an interrupt

priority-level is dependent on the physical connection between the 68000

and the hardware device. This relationship differs for each type (and pos-

sibly model) of computer. Interrupt programming usually requires differ-

ent coding for each machine on which the program runs. (It is possible to

write a fixed program that processes software exceptions, such as
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BUSERR, addressing error, and so on, because these are a characteristic of

the 68000 chip and do not change from machine to machine.)

INTERRUPT-DRIVEN SERIAL OUTPUT

Many devices communicate with a computer one bit at a time. To com-

municate a byte of information, the eight bits are sent one after another.

The computer usually communicates through a device called a "serial

port" that controls the conversion of data to and from serialized binary

format. The amount of time required to send a single byte of information

is quite large compared with the speed at which the computer executes

instructions. For this reason, serial ports often interrupt the computer

once per character transferred.

Sage IV Serial Output

The 68000 addresses external devices as if they were memory locations.

This technique is called Memory Mapped I/O, and has the advantage that

normal memory-reference instructions can be used to perform I/O. Listing

7.2 shows a program that uses I/O interrupts to print the string "Hello,

world" on the (serial) terminal of a Sage IV microcomputer.

The terminal output port on the Sage IV responds to two addresses:

FFC071 and FFC073. The first port is used to output data to the terminal.

A byte placed in this location is transmitted to the terminal. The second

port gives commands to the interface. A value of 25 hex causes the port to

interrupt after each character has been transmitted. A value of 24 hex dis-

ables these interrupts.

The Sage IV microcomputer has a number of different devices con-

nected to the autovector 1 interrupt. Upon receipt of an interrupt, it is

necessary to poll an interrupt-controller device to determine which device

actually requested the interrupt. The interrupt controller is located at loca-

tion FFC041 . A value of OC written to this location requests a poll.

To find out which device interrupted, read location FFC041. Then, to

prevent the interrupt from occurring again, write a value of 20 hex back

to this location. The value read contains a device identifier in the low-

order three bits. On the Sage IV, a value of 2 indicates the terminal.

Lines 28 and 29 of Listing 7.2 issue the CP/M-68K request to put the

program in supervisor state. This is necessary to allow the program to

use privileged instructions. Lines 31 and 32 save the old contents of the

level-! autovector location and set this location to the address of the inter-

rupt-service routine. Lines 33 through 37 set up the transfer,
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including (1) enabling the terminal-output interrupt, (2) transferring the

first character, and (3) enabling interrupts to allow the transfer to take

place. The program loops at line 38 until the transfer is complete.

Level-1 autovector interrupts are handled starting at line 56. Lines 57

through 64 verify that an interrupt was a terminal-output interrupt. Lines

65 and 66 test for the presence of another character to output. If no char-

acters remain, lines 67 through 72 (1) restore the vector, (2) disable termi-

nal interrupts, and (3) alter the return address to point to the exit routine

at lines 40 and 41 . When the RTE instruction at line 72 is executed, con-

trol is returned to CP/M-68K.

If more characters remain to be output, the code at lines 77 through 82

output the next character, decrement the count, and return to the inter-

rupted code.

This example glosses over a lot of the details of programming serial-

output devices, but the purpose of the example is to illustrate 68000 inter-

rupt coding. The programming for a serial device is largely dependent on

the device, particularly how the device is addressed from the 68000 and

how the device interrupts the 68000. This is different for each type of

computer. How to program a particular device on a particular computer

is usually documented by the computer manufacturer.

SUMMARY

in this chapter we have presented the exception conditions on the

68000, both internal and external, and how to write programs that use

this feature. We have also explored some of the uses for exceptions that

are not immediately obvious. The examples of coding contained in this

chapter illustrate techniques for dealing with both program-error excep-

tions and I/O exceptions.

In the next chapter, we will combine exception processing with operat-

ing system concepts to produce a very small multitasking operating sys-

tem. This will provide you with a better understanding of how I/O

exceptions are generally used in larger systems.

EXERCISES

The 68000 lacks a block move instruction, i.e., a single instruc-

tion that transfers a block of memory from one place to another.

Suppose we define such an instruction as in Figure 7.2, where An
Src and An Dest are source and destination address register
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specifications. Dn Cnt is a data register specification that gives

byte count of the number of bytes to be transferred. Write an

exception handler that simulates the action of such an instruction.

Bit 15 14 13 12 n 10 9 8 7 6 5 4 3 2 1

1 1 1 1

1 1

AnSrc

1 1

1 1

AnDest

1 1

1 1

DnCnt

1 1

Figure 7.2 - Instruction for transferring a block of memory from one place to

another

2. Write a privileged program that prints a trace of another pro-

gram. The program to be traced should begin with jsr trace,

where "trace" is your tracing routine. The output of the trace

should include the PC, status register, and contents of all the CPU
registers. You may assume that the program to be traced is a user

mode program and you need not worry about RTE and MOVE
SR instructions.
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INTRODUCTION

In this chapter, we will look at writing operating systems for the 68000.

We will first cover important concepts common to most operating systems

and will then look at a simple operating system. This sample system is by

no means complete— it lacks capabilities found in even the most rudimen-

tary commercial systems. However, it is small enough so that you can

understand the entire system in relatively short order. The sample system

contains many of the design concepts found in large operating systems.

OPERATING SYSTEM CONCEPTS

An operating system is often likened to a traffic cop for a computer. The

operating system controls the computing resources and allocates them to

competing programs. The operating system also implements standard pro-

cedures for functions such as I/O, so that the underlying hardware may

change, and still allow programs written for the operating system to con-

tinue to run. The relationship between an applications program, the oper-

ating system, and the hardware is shown in Figure 8.1.
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Since an application program goes through the operating system to

access the computer hardware, the hardware can change without affect-

ing the application. It is important to preserve the applications programs

because the cost of producing software is so high.

Multitasking

An important concept on the 68000 and other 16-bit microprocessors is

the ability of the operating system to run more than one application pro-

gram at a time. This is called multitask'mg. To perform multitasking, the

operating system keeps a copy of each of the machine resources that are

shared by the programs, such as the machine registers. Each program is

Hardware (disks, terminals, etc.

7\

\Z
Operating Systems

7\

\Z
Application Program

Figure 8.1 -An application program and operating system relationship
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called a task. When it is time to switch from one program to another, the

operating system saves the current copy of the resources and loads the

next copy This process is known as context switching.

A minimal context switch involves saving the current register set and

the operating system's indicator of the current task. The registers for the

new task are loaded and the operating system's global variables are set to

indicate the new task. More complex context switching preserves the con-

tents of various memory locations and I/O device registers for each task.

The real benefit of multitasking is the ability to keep more of a

machine's resources busy at the same time. For instance, printing a docu-

ment or a program listing is usually limited by the speed of the printer.

The computer's disk drives and CPU are largely idle during this process.

By overlapping printing with another computing task, such as running the

assembler or linker, you can keep the CPU, disk, and printer busy Adding

another task, such as editing a file, keeps the computer operator busy as

well. You don't have to wait for one task to finish before starting another.

Resource Management

The major problem posed by multitasking is that of resource manage-

ment. Obviously, if you have one program using the printer, you shouldn't

allow a second program to use the printer as well. To do so would result

in the output of the first program mixed in with the output of the second.

There are a number of things which the operating system must manage in

a multitasking environment:

1. Memory The operating system must control which tasks get

which portions of memory so that two tasks do not try to use the

same memory area.

2. Nonshareable devices. A printer is an example of a device that is

not shareable. Other examples are tape drives and terminals.

Some devices that are normally shareable may have nonshare-

able uses. For instance, formatting a disk normally requires exclu-

sive control of the disk drive. Thus, the operating system must

provide some means for a task to gain and relinquish exclusive

control of a device.

3. The CPU. Since there are now many tasks desiring to use the

CPU, the operating system must have a policy for distributing

CPU time.

4. A mechanism for tasks to cooperate and communicate with

another. Many applications require the use of cooperating tasks.
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Scheduling

The process of deciding which task may use the CPU's resources is

called scheduling. The portion of the operating system that contains the

code that makes this decision is called the scheduler or the dispatcher.

There are a number of techniques used for allocating CPU time:

1. Priority-driven. In a priority-driven scheme, there is a priority

associated with each task in the system. A priority-driven sched-

uler allocates the CPU to the highest priority task that is ready to

run. The task keeps the CPU until it either terminates or requests

some activity which prevents it from running, such as I/O. At this

point, the dispatcher assigns the CPU to the highest priority task

that is ready to run.

2. Preemptive priority-driven. The preemptive priority-driven tech-

nique forces a lower priority task to give up the CPU whenever a

high-priority task becomes ready to use it. This prevents a high-

priority task from being shut out by a low-priority task that uses a

lot of CPU time.

3. Pure time-slicing, or round robin. This technique requires an

external piece of hardware called a clock or a tick that interrupts

the CPU at frequent intervals (normally 10 to 100 times a sec-

ond). The time-slicing technique gives the CPU for some small

fixed quantity of time to each task in turn.

4. Preemptive priority-driven with time-slicing. This technique modi-

fies the preemptive priority-driven method so that tasks with

equal priority are time-sliced.

Which Technique Is Besti

The preemptive priority-driven technique is preferred for systems that

are strictly real-time in nature. This includes multitasking systems used for

industrial control, instrumentation, and communications. The ability to

guarantee a maximum response time is required for these applications.

Preemptive priority-driven scheduling is the only way to achieve this goal.

Typical multiuser time-sharing systems try to guarantee each user an

equal share of the computer. These systems tend to use some form of

time-slicing technique. Simpler systems tend to use pure time-slicing,

while more complicated systems require the preemptive priority-driven

with time-slicing technique. These systems typically have both real-time

requirements and time-sharing requirements. Fortunately, typical real-time
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tasks use very little of the CPU. However, a real-time task requires almost

immediate response when it needs the CPU. It is possible to "steal" a little

time from the time-sharing users to meet real-time requirements.

A further modification of the preemptive/time-sharing technique pro-

vides pure preemptive priority-driven scheduling above a certain priority

level. This enhances real-time response without noticeably affecting the

other tasks.

Who Gets Priorityi

Assigning the priority for each task is sometimes a difficult task. Some

systems dynamically vary the priority of a task as task behavior changes.

In general, tasks that do a lot of I/O, especially I/O to slow devices, should

be preferred over tasks that use large amounts of CPU time. This tends to

keep the I/O devices, as well as the CPU active. Many large operating sys-

tems reevaluate task priority periodically and give more priority to tasks

that have performed a large number of I/O operations since the last prior-

ity evaluations. Tasks that used most of the CPU time they had available

are given less priority. Simple absence of I/O is not sufficient. A low-

priority task may not have had a chance to do much since the last priority

evaluation.

A task that performs a great deal of I/O is often called I/O bound. A task

that requires a lot of CPU time is called Compute bound or CPU bound.

Reentrant Coding

A section of code is said to be reentrant if more than one task can be

executing the same code simultaneously Code is normally reentrant if it

does not use global variables. Most multitasking systems have a data area

for each task in the system. Using only these specific data areas and the

stack allows most of the operating system to be reentrant.

The most commonly used technique is to have a global location in

memory that contains the address of the task's data area for the task that is

currently executing. Reentrant code in the operating system commonly

loads this address into an address register and uses the "address register

indirect with displacement" addressing mode to access fields in the speci-

fied task data area.

Mutual Exclusion

Obviously, all of the coding in an operating system cannot be reentrant.

There must be global variables and be code that modifies these global
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variables. A section of code that modifies these shared variables is often

called a critical region. The operating system must have some mechanism
for making sure that only one task at a time can gain access to critical-

region code. The same problem exists for variables that must be shared

between task code and an interrupt routine.

Disabling Interrupts

Protecting critical-region code is often called mutual exclusion. The sim-

plest form of mutual exclusion is simply to turn off interrupts while code

in the critical region is executing. This works because an interrupt is

required for a task swap to occur. This technique also protects variables

that are shared between a task and interrupt code. The disadvantage to

this form of mutual exclusion is that each instruction executed with inter-

rupts that are turned off adds to the maximum response time for a real-

time process. In order to protect critical-region code that is longer than a

few instructions, other techniques are required.

A problem unique to microcomputers is that it may not be possible to

disable interrupts completely All microprocessor chips have at least one

interrupt that may not be masked out. If the hardware designer connects

this interrupt to something that interrupts frequently, it can pose a very dif-

ficult software-design problem. For example, one major computer manu-

facturer of Z-80 equipment used this interrupt for the clock! The
computer receives an interrupt from this device thirty times a second.

Designing an operating system to accommodate this design flaw required

a lot of effort.

Practically all of the other techniques that have been developed to pro-

tect critical-region code employ some sort of queueing mechanism. These

techniques include:

• Disabling dispatching

• Semaphores

• Monitor procedures

• Message switching

Disabling the Dispatcher

The simplest way to protect critical-region code that does not require an

interrupt routine is to have a flag variable that the dispatcher interprets as

prohibiting task swaps. This flag is set before entering a critical region and

reset after leaving the critical region.
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The disadvantage of this technique is that all critical-region code shares

the same protection flag. This means that a high-priority task must wait for

a low-priority task to exit a critical region, even though the high-priority

task does not require access to the same critical-region code. This makes

the maximum response time to a real-time event equal to the time

required to execute the longest section of critical-region code in the oper-

ating system.

Semaphores

A better technique than disabling the dispatcher is the use of sema-

phores. A semaphore is a data structure consisting of a count and a

pointer. The count is usually initialized to the value 1. There are two oper-

ations associated with a semaphore: wait and signal. These operations are

defined as follows:

• A wait operation decrements the counter. If the result is not less

than zero, the task is allowed to proceed. If the result is negative,

the task is added to a list of tasks whose list head is the pointer

variable of the semaphore.

• A signal operation increments the value of the counter. Then the

first task in the list is allowed to run.

The semaphore data structure keeps track of the number of tasks wait-

ing for a resource. The semaphore count is initialized to the number of

these resources present in the system. For a situation requiring mutual

exclusion, the count is set to one. Before entering a critical region, a pro-

cess performs a wait on a semaphore associated with the critical region.

Upon exiting the critical region, the process performs a signal operation

on the semaphore. Each task in a semaphore operation waits only for

other tasks that need access to the same protected resource. The real-time

response using this method is a tremendous improvement over disabling

the dispatcher.

Monitor Procedures

Monitor procedures are an extension of the semaphore technique. A
monitor procedure is a subroutine that is protected by a semaphore or

other mutual exclusion mechanism. Only one task at a time may execute

a monitor procedure.

When programming a system with monitor procedures, the usual tech-

nique is to place all critical-region code that uses a set of shared variables
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inside a single monitor procedure. This technique is especially useful

when the monitor construction is integrated into a programming lan-

guage. An integration of this concept into the Pascal programming lan-

guage is described in The Architecture of Concurrent Programs (New
Jersey: Prentice-Hall, 1977).

Message Switching

Another technique for synchronizing processes is niessage switching. An
operating system built on this architecture provides three functions for a

task to communicate with another task. These functions are:

1

.

SEND data from one task to another.

2. RECEIVE data from another task.

3. REPLY to a message previously RECEIVED.

This technique uses the scheduling mechanism of the operating system

itself to provide mutual exclusion.

A task that is similar in nature to a monitor procedure is set up to handle

functions that would normally require critical-region code. This task, called

a server task, receives messages from other tasks, performs the desired func-

tions, and replies to each message as it completes each function. Messages

not yet received are queued up in a "mailbox" associated with the task.

This queue corresponds to the waiting queue for a semaphore.

Fork Queues

Providing synchronization between task-level code and interrupt code is

a major concern in designing operating systems. One of the most clever

schemes employed in many commercial systems is providing a way for an

interrupt routine to schedule a high-priority task to execute as soon as an

interrupt is finished. This normally involves setting up both some special

code in the dispatcher and a queue of these "tasks," which are waiting

to run.

This queue is usually known as the fork queue. The dispatcher checks

the fork queue before it checks the normal list of tasks. Thus, a task in the

fork queue has a higher priority than normal tasks. By allowing tasks in

the fork queue to use some subset of the system calls that are normally

available to ordinary tasks, you can use any of the previous techniques to

synchronize task-level code with interrupt routines as well.
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Deadlocks

When incorrectly applied, mutual exclusion can produce an unpleasant

result. The area in which this problem is most often encountered is

resource management. Suppose the system has two printers PI and P2,

and two tasks T1 and T2, that require both printers. If task T1 acquires

printer PI and asks for P2 and task T2 acquires P2 and asks for PI at the

same time, neither task will be able to finish. Since each task requires both

printers and each task has one and is waiting for the other, they will both

wait forever.

This situation is called a deadlock or a deadly embrace. There are many
techniques to prevent this situation. One of the simplest is to require that

all tasks acquire resources in the same order. In the example above, if

both tasks acquired printer PI and then printer P2, one of the tasks would
wait until the other had finished, and no deadlock would occur.

Sample Operating System

The rest of this chapter is devoted to the sample operating system. This

system, called LBOS (for "Little-Bitty Operating System"), is a message-

switched system that allows user tasks to perform the following functions

through the operating system:

• Delay for a period of time.

• Print a line on the terminal.

• Send a message to another task.

• Receive a message from another task.

• Reply to a message previously received.

• Enter dispatcher.

These functions are called SVCs (Supervisor Calls). The delay and print

SVCs are implemented as tasks accessed through message-switching.

LBOS uses a preemptive priority-driven scheduler without time-slicing.

Tasks have fixed priorities. The system runs on the same SAGE IV micro-

computer used in Chapter 7.

System Services

The system SVCs are accessed by executing a TRAP #0 instruction.

Parameters are passed in registers. The application loads a code into
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register DO that indicates the SVC desired. These codes are listed in Table 8.1

.

In the event that a request could not be satisfied, register DO.L contains

an error code following return from the TRAP #0 instruction. These codes

are all less than zero, to allow a simple TST.L DO / BLT sequence to test for

errors.

Newtask SVC

The Newtask SVC provides a convenient means for a task to suspend

itself This SVC is used internally by the operating system to suspend a task

that requests a service requiring that the task wait until the service is com-

plete. The server tasks that provide the terminal output and delay capabil-

ity also use this SVC to "put themselves to sleep" until an interrupt occurs.

Printline SVC

The Printline SVC writes a series of bytes on the SAGE IV terminal. The

name Printline is actually a misnomer; the SVC just puts out a stream of

bytes. This stream could contain many separate lines. The application

requesting terminal output loads the address of the first byte to be output

in register AO and the number of bytes to be output in register DLL. The

task is suspended until the printing is complete.

Code SVC

New task (enter dispatcher)

1 Print line on terminal

2 Delay

3 Send message

4 Receive message

5 Reply to message

Table 8. 1 - LBOS SVC codes



Case Study: A Sample Operating System 385

Delay SVC

The Delay SVC allows a task to delay for an amount of time expressed
in units of 1/100 second. The application puts the number of 1/100-
second units desired into register DLL. The task is suspended until the
delay is complete.

Send Message SVC

The Send Message SVC sends a message to another task. The task that

needs to send a message puts a byte count into register DLL and an
address into register AO. The task number to which the message is to be
sent is contained in register D2.W. The task number is determined by a
table inside the send code. The sending task is suspended until the task to
which the message was sent has received the message and issues a REPLY
SVC for that message.

Receive Message SVC

The Receive Message SVC suspends the issuing task until a message is

available. Upon return from the TRAP #0 instruction, register DO.L contains
the address of a data strurture called a Message Control Block (MCB). This

data structure contains all the parameters relevant to the message.

Reply to Message SVC

The Reply to Message SVC causes the task that originally sent the mes-
sage to be marked dispatchable. The task issuing the Reply to Message SVC
places the address of the Message Control Block (MCB) in register AO. The
same address is returned by the Receive Message SVC in register DO.L.

Listing 8.1 contains the definitions for the SAGE IV hardware used, error

codes returned, and equates for the SVC numbers. (The terminal hard-
ware for this machine was explained in Chapter 7.) The clock is a single-

interrupt count-down device. To use the clock, load a count into the
clock-count register and get an interrupt some time later. To get another
interrupt, you must reload the clock. LBOS uses the clock to interrupt at

1/100-second intervals.

Data Structures

LBOS uses two major data structures: a structure that represents each
task, called a Task Control Block (TCB), and a structure for messages,
called a Message Control Block (MCB). Both of these structures are ele-

ments on different linked lists. Listing 8.2 gives the definitions of both of

these data areas.
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Task Control Block

Task control blocks (TCB) are kept In a singly-linked linear list. The first

longword of the TCB is used for linkage. There are some portions of the

LBOS code that depend on this fact. There are two list heads on the task

control block that deal with messages. LBOS keeps a list of messages not

yet received, as well as a list of messages that have been received, but for

which no reply has been issued.

The TCB contains a stack to be used by the system when the task makes
an SVC request or for an interrupt that occurs when the task is running.

The contents of all the registers except the two stack pointers are saved on
the stack when the task is not running. There are two separate longwords

in the task control block that are used to save the two stack pointers.

The one remaining word in the TCB, the flag word, keeps track of

whether or not the task may run. A task may be marked "not dispatch-

able" for three reasons:

1. The task is waiting for an interrupt. This flag is used by the server

tasks to prevent dispatching while the tasks are waiting for some
external event.

2. The task is waiting for a reply to a message.

3. The task is waiting to receive a message.

Message Control Block

Messages in the system are represented by a data structure known as a

Message Control Block (MCB). The Message Control Block contains a link

word that the operating system uses to link MCBs on the two lists of mes-

sages on the task control block. The contents of registers AO and DLL are

stored in the MCB at the time the Send Message SVC was issued. Interpre-

tation of these quantities is left up to the receiving task.

In order to provide the operating system with a way to associate the

MCB with the task that originally sent the message, the address of the

sending tasks task control block is maintained in the message control

block. A longword is provided in the message control block for the receiv-

ing task. Anything stored in this word by the receiver will be placed in

register DO.L when the sending task resumes execution. This allows an

SVC to be implemented as a task rather than as a part of the operating

system proper.
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Initialization Code

LBOS is designed to be loaded under CP/M-68K, and to take over con-

trol of the machine. There is no way back to CP/M-68K from LBOS. To

return to CP/M, the machine must be rebooted. Listing 8.3 contains the

code that takes over from CP/M-68K and sets up LBOS.

Lines 180 and 181 issue the Set Supervisor request to CP/M so that

LBOS can use privileged instructions. Lines 183 to 185 set up the SAGE IV

hardw/are: loading the interrupt vectors and disabling the clock interrupt.

Notice that instructions executed with interrupts off are tagged with three

asterisks (* * ) in the comment field.

Lines 186 to 202 initialize the task control block fields for the four tasks

in LBOS. A table in the initialized data area gives the TCB address and the

initial PC and status register contents for each task in the system. The tasks

are entered in this initialization table in order of priority. LBOS supports

tasks that run in both supervisor and user modes.

Lines 206 to 213 link together an area of memory to become a linked

list of message control blocks. When a Send Message SVC is issued, a free

MCB is obtained from this area in memory When the corresponding

Reply SVC is issued, the MCB is placed back into this list.

The last two lines of initialization code start LBOS by entering the dis-

patcher. The longword at the label "current" always contains the address

of the TCB of the currently executing task. When "current" is zero, no

task is executing.

TRAP #0 Exception Handler

Listing 8.4 contains the code that is executed when a task executes a

TRAP #0 instruction, indicating a request for an LBOS function. The appli-

cation loads the code corresponding to the desired service into register

DO.L. The code at lines 241 to 247 computes the address of the LBOS rou-

tine that performs the indicated function and jumps to this routine. Notice

the use of a single unsigned branch to perform the range check on func-

tion numbers.

Lines 251 to 253 execute if the application requests an illegal function.

The application's registers are restored, and - 1 is loaded into register

DO.L. The RTE instruction at line 253 returns control to the application.

The data at lines 258 to 264 forms a table of SVC routine addresses. The

addresses are ordered by SVC number, so that the function number
shifted left twice (times four) is the index into the table. Notice the use of

an equate to define a symbol for the first illegal SVC number.
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Newtask SVC and Dispatcher

Listing 8.5 shows the Newtask SVC and the LBOS dispatcher. The New-
task SVC provides a convenient method for a task to call the dispatcher.

Lines 285 to 291 save the state of the user task. All exception-handling

routines within LBOS are required to save all registers on the stack except

A7. Notice that the contents of register DO are in the first longword on
the stack.

The dispatcher is located at lines 297 to 315. The dispatcher requires

that the task registers (including both stack pointers) be saved, as is done
in the Newtask SVC code. The dispatcher should, therefore, only be
entered if there is no "current task." The dispatch algorithm is quite

simple: scan down the list of TCBs until you find one that is not blocked.

(Blocked tasks have at least one bit set in the TCB flag word.) Upon find-

ing a dispatchable task, load location "current" with the TCB address (line

304), load up the task's registers (lines 305 to 308), and begin executing

the task code (line 309).

The code at lines 313 to 314 executes if no task is dispatchable. The
STOP instruction reduces the processor priority to zero and waits for an

interrupt. The dispatch code is executed again to see if any tasks have

been made dispatchable by the interrupt.

Data Area

Listing 8.6 contains the LBOS data area. Lines 329 to 335 contain initial

data for four TCBs: a task to handle the clock (timer), a task to handle ter-

minal output, and two applications tasks. The tasks are linked in priority

order from the "tcblist" memory location. The storage for each of the

TCBs is reserved in lines 342 to 345.

A linked list of free Message Control blocks is created by the initializa-

tion code using the memory reserved by lines 349 to 351. Location

"mcblist" contains the address of the first free MCB.

Interrupt Polling Routine

Both the clock and terminal-output interrupt are tied to the 68000 level

1 autovector interrupt. This is a modification of the routine used in Chap-

ter 7 for the interrupt-driven serial output program.

On each interrupt, the registers are saved on the stack of the current

task. If there is no current task, the last task to execute provides the stack
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space. If a decision is made to switch context as a result of the interrupt,

only the two stack pointers need be saved.

The code shown in Listing 8.7 handles Level 1 interrupts. The interrupt-

controller device is polled and the interrupt is cleared in lines 365 to 367.

Lines 368 to 376 determine which device interrupted and jump to the

appropriate interrupt-service code. LBOS uses only two of the devices on

the interrupt controller, as indicated by the table at lines 378 to 386. All

other interrupts are ignored by transferring to the label "noint," which

returns to the interrupted task.

Send Message SVC

Listing 8.8 contains the code that performs the Send Message SVC. This

code is entered from the TRAP #0 exception handler. Lines 401 to 406

allocate an MCB for the message. Notice that this is critical-region code. If

the task were to get suspended between lines 402 and 406, another task

could also issue a Send Message SVC, and the two tasks would try to use

the same MCB. (The shared variable which must be protected is

"mcblist".)

Lines 407 to 413 prepare the fields in the message control block. Line

414 marks the current task for suspension until the target task issues a

Reply Lines 415 to 418 compute the address of the receiving task task

conrol block from the index passed by the sender in register D2. The task

index is determined by the list of TCB addresses at line 436.

Lines 419 to 426 place the MCB in the receiving task's mailbox. To pre-

serve the order in which the messages were sent, the message list

("m_link" in the TCB) is kept in strict FIFO order. This segment of code is

also a critical region, protecting the task's entire list of MCBs.

Line 427 clears the bit in the receiving task's TCB that corresponds to

"waiting to Receive a Message." If the receiving task is waiting for a mes-

sage, it will now "wake up" and complete the Receive Message SVC. Line

428 branches to the Newtask SVC to cause another task to run. Notice

that the current task is blocked, so a task swap is guaranteed.

The Send Message SVC can return two errors. The first, "e_badtask,"

occurs when the requesting task passes an invalid task index in register

D2. The second, "e_nomcbs," occurs when no MCB is available to send

the message.

Receive Message SVC

Listing 8.9 contains the code for the Receive Message SVC. Because it

must protect the integrity of the receiving task's message lists, this entire
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routine is critical-region code. Lines 456 to 457 test for the presence of

messages in the task's mailbox. If there are no messages, lines 464 to 467

cause the task to be suspended until another task sends a message to the

current task. Lines 458 to 461 move the MCB from the "waiting for

receive" list (t_msg) to the "waiting for reply" list (t_rpiy). Line 462 puts

the address of the MCB into the receiving task's register DO.

Reply to Message SVC

Listing 8.10 contains the code for the Reply to Message SVC. Lines 480

to 488 attempt to find the MCB specified by the requesting task in register

AO. If the specified MCB is not in the "waiting for reply" list, lines 498 and

499 return an error to the task that invoked the SVC. Line 489 removes

the MCB from the "t_rply" list.

Lines 490 to 492 put the return code (which is placed by the receiving

task in the MCB at the label "m_stat") in the sender's register DO.L. Line

493 makes the sending task dispatchable again. Lines 494 and 495 return

the MCB to the free pool of MCBs. Line 497 exits to the dispatcher, since

the sending task might have a higher priority than the receiving task.

Printline and Delay SVCs

Listing 8.1 1 gives the code for the Printline and Delay SVCs. This code is

trivial due to the fact that these SVCs are handled by separate tasks. Since

the registers used by the Printline and Delay SVCs correspond to the reg-

isters for the Send Message SVC, all that is necessary is to load the proper

task index into register D2 and branch to the send code.

Timer Task Code

Listing 8.12 shows the code for processing the Delay SVC. Lines 534 to

535 perform a Receive SVC. Lines 536 to 544 load two global variables

that communicate with the interrupt routine, mark the timer task nondis-

patchabie, and call the dispatcher using the Newtask SVC. When the task

becomes dispatchable again (after the delay), the task issues a Reply SVC.

Only one delay can be active at a time.

The interrupt routine (lines 552 to 564) decrements the global counter

("tcount") until it reaches zero. When the count reaches zero, lines 560 to

564 cause the timer task to resume execution. The flag "tstatus" is used to

prevent unnecessary timer interrupts when no delays are taking place.
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The subroutine called trset (lines 568 to 576) causes a timer interrupt

after 1/100 second. The timer is a two-stage counter, which counts at a

basic clock rate of 64,000 times per second. Lines 571 to 574 load the

four bytes of the count register with appropriate constants to make the

count register 640. The clock will then interrupt 1/100 second later. This

subroutine must be called each time an interrupt is desired.

Terminal Output Task

Listing 8.13 contains the code for the task that handles the LBOS
Printline SVC. Lines 590 and 591 execute a Receive Message SVC to get

information on the output desired. Lines 592 to 603 set up the terminal

output, mark the task as not dispatchable, and exit to the dispatcher via

the New task SVC. This code actually puts out the first character, so the

interrupt routine is always started by the completion of the character out-

put. When the interrupt routine finishes outputting the buffer, the terminal

task resumes execution. Lines 604 to 606 issue a Reply to Message SVC to

wake up the task that originally requested the terminal output.

The terminal-output interrupt handler begins at line 612. If no more

characters remain to be output, the task disables the serial port, and

wakes up the terminal task (lines 612 to 617). If the count of characters is

greater than 0, there is another character to be output. Lines 619 to 623

output the next character and decrement the character count.

Application Tasks

Listings 8.14 and 8.15 show two "applications" programs. The first

application issues a Delay SVC for 2.5 seconds, and then prints a message

on the terminal. The second application executes a CPU-intensive loop

and outputs a similar message on the terminal. Since the first task has a

higher priority than the second, both the clock and the CPU tend to

remain busy

SUMMARY

In this chapter, we have covered most of the basic concepts involved in

writing multitasking operating systems. These topics are:

• Multitasking.

• Resource management.
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The various types of CPU scheduling: (1) priority-driven, (2) pre-

emptive priority-driven, (3) pure time-slicing, and (4) preemptive
priority-driven w/ith time-slicing.

Reentrant coding.

The various forms of mutual exclusion techniques: (1) disabling

interrupts, (2) disabling dispatching, (3) semaphores, (4) monitor
procedures, (5) message switching, and (6) fork queues.

A sample multitasking system.

EXERCISES

1

.

In a situation in which no task is dispatchable, why is an interrupt

necessary for a task to become dispatchable?

2. What areas in LBOS have a potentially high interrupt latency?

Can any of these be improved? How?



Answers to Exercises



CHAPTER 1

This appendix gives the answers to the exercise questions found at the

end of each chapter.

1

.

There are nnany correct solutions to this question. Here is one:

1. Select the highest place value from the table that will

divide into the number to be converted. Let the converted

number be the initial remainder.

2. Calculate the new quotient and remainder when the cur-

rent remainder is divided by the present table entry

3. If place value table entries remain, repeat step 2 with the

next table entry and the remainder just calculated.

4. Read the answer as the successive quotients.

2. The flowchart for the above would look like Figure A.I.
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Select first table entry.

Number to convert is

the first remainder.

Calculate new
quotient and remainder

Yes

No

Read answer from quotients

Figure A.I - Flowchart for exercise 2
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The machine language program would look like Table A.I.

Location Contents Instruction

100 1105 Load A from location 105

101 5104 Subtract location 104

102 3106 Store into location 106

104 0300 <Data>
105 0400 <Data>
106 0000 <Data>

Table A.I - Machine language program at location 100

You must load the contents of location 105 first because the dif-

ference to be computed is (Location 105 - location 104). The
subtraction instruction works by subtracting memory from the
register. Therefore, you must have the contents of location 105 in

the register to perform the subtraction operaton.

4. Moving to location 200 yields the results in Table A.2.

Location Contents Instruction

200 1205 Load A from location 205

201 5204 Subtract location 204

202 3206 Store into location 206

204 0300 <Data>
205 0400 <Data>
206 0000 <Data>

Table A.2 - Machine language program at location 200
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5. The assembly language version is:

LOAD A.Y

SUB A,X

STORE A.Z

STOP
X: DC 300

Y: DC 400

Z: DC

6. To add the first five integers, a modified version of the previous

program will work:

LOAD A,A

ADD A,B

ADD A,C

ADD A,D

ADD A,E

STORE A,F

STOP
A DC 1

B DC 2

C DC 3

D DC 4

E DC 5

F: DC

7. Conversion to hex and binary is shown in Table A.3.

Decimal Hex Binary

273

421

1024

100

111

1A5

400

64

0001 0001 0001

0001 10100101

0100 0000 0000

000001100100

TaUe A.3 - Conversion to hex and binary
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8. Conversion to binary and decimal is shown in Table A.4.

Hex Binary Decimal

ABE 0000 1010 1011 1110 2750

100 0000 0001 0000 0000 256

64 0000 0000 0110 0100 100

1024 0001 0000 0010 0100 4132

505 0000 0101 0000 0101 1285

Table A.4 - Conversion to binary and decimal

9. Complements are shown in Table A. 5.

Number One's Complement Two's Complement

OABE F541 F542

0100 FEFF FFOO

0064 FF9B FF9C

1024 EFDB EFDC
0505 FAFA FAFB

Table A.5 - Complements

10. Binary operations are shown in Table A.6.

Number Pair AND OR XOR ADD C

A5A5 5A5A 0000 FFFF FFFF FFFF

FFFF 0001 0001 FFFF FFFE 0000 1

1234 4321 0220 5335 5115 5555

Table A.6- Binary operations
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1 1 . Shift and Rotate Tables:

Logical Shifts

Times

1

2

3

4

5

6

7

8

Left

1 1 1 1 1111 (FF hex)

nil 1110 (FE hex)

1111 1100(FC hex)

1111 1000 (F8 hex)

1 1 1 1 0000 (FO hex)

1110 0000 (EO hex)

1100 0000 (CO hex)

1000 0000(80 hex)

0000 0000 (00 hex)

Right

1111 1111

0111 1111

0011 1111

0001 1111

0000 1111

0000 0111

0000 0011

0000 0001

0000 0000

(FF hex)

(7F hex)

(3F hex)

(IF hex)

(OF hex)

(07 hex)

(03 hex)

(01 hex)

(00 hex)

Times

1

2

3

4

5

6

7

8

Left

0101 0101 (55 hex)

1010 1010 (AA hex)

0101 0100 (54 hex)

1010 1000 (A8 hex)

0101 0000 (50 hex)

1010 0000 (AO hex)

0100 0000(40 hex)

1000 0000 (80 hex)

0000 0000 (00 hex)

Right

0101 0101

0010 1010

0001 0101

0000 1010

0000 0101

0000 0010

0000 0001

0000 0000

0000 0000

(55 hex)

(2A hex)

(15 hex)

(OA hex)

(05 hex)

(02 hex)

(01 hex)

(00 hex)

(00 hex)

Arithmetic Shifts

Times

1

2

3

4

5

6

7

8

Left

1111 1111 (FF hex)

1111 1110(FE hex)

1111 1100 (FC hex)

1111 1000 (F8 hex)

1111 0000 (FO hex)

1110 0000 (EO hex)

11 00 0000 (CO hex)

1000 0000 (80 hex)

0000 0000 (00 hex)

Right

(FF hex)

(FF hex)

(FF hex)

(FF hex)

(FF hex)

(FF hex)

(FF hex)

(FF hex)

(FF hex)
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Times Left Right

0101 0101 (55 hex) 0101 0101 (55 hex)

1 1010 1010 (AA hex) 0010 1010 (2A hex)

2 0101 0100 (54 hex) 0001 0101 (15 hex)

3 1010 1000 (A8 hex) 0000 1010 (OA hex)

4 0101 0000 (50 hex) 0000 0101 (05 hex)

5 1010 0000 (AO hex) 0000 0010 (02 hex)

6 0100 0000 (40 hex) 0000 0001 (01 hex)

7 1000 0000 (80 hex) 0000 0000 (00 hex)

8 0000 0000 (00 hex) 0000 0000 (00 hex)

Rotates

Times CLeft Right

1 n 1 1 1 1 1 (FF hex) 11 1 1 11 1 1 (FF hex)

1 1 nil 1110 (FE hex) on 1 11 1 1 1 (7F hex)

2 1 nil 1101 (FD hex) 1011 nil 1 (BF hex)

3 1 1111 1011 (FB hex) 1101 1111 1 (DF hex)

4 1 1 11 1 on 1 (F7 hex) 1110 1111 1 (EF hex)

5 1 1110 nil (EFhex) 1 11 1 on 1 1 (F7 hex)

6 1 1101 nil (DFhex) nil 1011 1 (FB hex)

7 1 1011 nil (BFhex) nil 1101 1 (FDhex)

8 1 on 1 11 1 1 (7F hex) nil 1110 1 (FEhex)

9 1111 11 1 1 (FF hex) 11 1 1 11 1 1 (FF hex)

Times CLeft Right C

0101 0101 (55 hex) 0101 0101 (55 hex)

1 1010 1010 (AA hex) 0010 1010 1 (2A hex)

2 1 0101 0100 (54 hex) 1001 0101 (95 hex)

3 1010 1001 (A9 hex) 0100 1010 1 (4A hex)

4 1 0101 0010 (52 hex) 1010 0101 0(A5 hex)

5 1010 0101 (A5hex) 0101 0010 1 (52 hex)

6 1 0100 1010 (4A hex) 1010 1001 0(A9hex)

7 1001 0101 (95 hex) 0101 0100 1 (54 hex)

8 1 0010 1010 (2A hex) 1010 1010 0(AA hex)

9 0101 0101 (55 hex) 0101 0101 (55 hex)
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CHAPTER 2

1. The instructions would result in:

MOVE.B DO.AO

This instruction is illegal because address registers can only be

accessed as words or longs. Give yourself extra points if you

knew that an Illegal Instruction exception would occur.

MOVE.W DO.AO

This instruction causes the contents of register AO to become
FFFF8000. Remember that word moves to an address register

cause sign extension.

MOVE.B DO,(AO) +

The byte at location 1000 becomes 0. Register AO becomes 1001

.

MOVE.B D0,-(A7)

The byte at memory location 10000 becomes 0. The contents of

register A7 becomes FFFE. Remember that A7 is the hardware

stack pointer, and is incremented or decremented by 2 in byte

operations.

2. The instructions as modified are:

Instruction Hex Changes

ADD.L D1,D0 D081 D0= 01 234566

ADD.LA1,D0 D089 D0= 01 234566

ADD.L {A1),D0 D091 D0=01234566

ADD.L (A1) + ,DO D099 D0=01234566

ADD.L -(A1),D0 D0A1 D0= 01 234566

ADD.L 4(A1),D0 D0A9 0004 D0=01234566

ADD.L 4(A1,A2.L),D0 DOBl A804 D0=01234566

ADD.L $1000,D0 D0B8 1000 D0=01234566

ADD.L $10000,00 D0B9 0001 0000 D0=01234566

ADD.L $100{PC),D0 DOBA 0100 DO=01234566

ADD.L $10(PC,A1.L) DOBB 9810 D0=01234566

ADD.L #$10002000,D0 DOBC 1000 2000 00=11234566
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3. The pre-decrement and post-increment modes may be used to

implement a stack as follows:

PUSH operation is MOVE.s xxx,(An) +

POP operation is MOVE.s - (An),xxx

The difference between this technique and a stack that grows

toward lower addresses is that the address register no longer con-

tains the address of the top item of the stack. Instead, the register

points to the next stack location to be used. By changing the

addressing modes to pre-increment and post-decrement (-i-(An)

and (An)-), the stacking would be equivalent to the present

technique.

CHAPTER 3

-2. There aren't any answers back here. Either you can use your sys-

tem or you can't. If you can't, you should first learn how. The

basic mechanical steps are essential, and you will learn to pro-

gram faster if you can do the mechanics well.

3. The ADDX and SUBX instructions perform arithmetic on multiple

memory locations. You must start with the least significant digit in

doing arithmetic. Comparisons, however, must be done starting

with the most significant digit.

4. The RTE instruction reloads the status register (SR). This changes

the Trace bit in the status register. Normally the Trace bit is

cleared by an RTE instruction. This prevents the instruction from

being traced, and causes the debugger to lose control. Other

instructions that can clear the Trace bit will have the same effect:

MOVE to SR, AND! to SR, and EORI to SR.

CHAPTER 4

1. The long division routine.
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*******4
* 32-b
* Ente
* DO
* Dl
* Exit
* DO
* Dl
******

Idiv:

it division routir
r with:
= dividend
= divisor
with:
= quotient
= remainder
*****************<

.globl Idiv

loop:

movera.

1

clr.l
clr.l
tst.l
bge
addq.

1

neg. 1

tst.l
bge
addq.l
neg. 1

cmp. 1

bgt
sub. 1

addq.

1

bra
btst
beq
neg. 1

neg. 1

move.

1

mov e .

1

movera.

1

rts

d2-d3,-
d2
d3
dO
xl
»l,d3

do
dl
loop
#l,d3

dl
dO.dl
done
dl,d0
#l,d2

loop
_#0,d3
x2
d2
dO
dO,dl
d2,d0
(sp) + ,d

(sp) Temporary registers.
* Quotient
* Sign flag
* Dividend < 0?
* If gt, no
* Increment flag
* Make positive
* Divisor < 0?
* If ge, no
* Increment flag
* Make positive
* Dividend : divisor
* If gt, don't subtract
* Subtract divisor
* Increment quotient
* Loop again
* Like signs?
* Yes, skip negate
* Make negative

* This is remainder
* This is quotient
* Restore registers
* Return

Handling negative numbers is not required for the next question.

The real disadvantage to doing division in this manner is the

excessive amount of time required to divide a very large number

by a very small one. It can take several minutes for a single divi-

sion operation.

2. This is the modified binary to decimal ASCII<onversion routine.

* Binary to decimal ASCII conversion routine.

* Enter with:
* DO.L = number to convert
* AO -> Output area (10 bytes)

.globl bindec

.globl Idiv
bindec: movem.l dO-d2/aO ,- ( sp)

move.b #' ',dl
tst.l dO
bpl notneg
move.b #'-',dl

* Save registers
* Assume positive
* Negative?
* No, use
* Negative, use '-
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notneg

:

loop:

neg. 1 dO
raove.b dl, (aO) +
adda.l #9,aO
move.

w

#8,d2
move.

1

110, dl
jsr Idiv
move.b dl,-(aO)
add.b »'0', (aO)
dbra d2, loop
movem.

1

(sp)+,d0-d2/a0
rts

Convert to positive
Move in sign
AO -> end of area
Count register
Set divisor
Divide by 10
Remainder to area
Adjust to ASCII
Loop until done
Restore registers

3. The finished conversion program looks like this:

********************************** lt******4

This program converts decimal numbers to hex.
Numbers are input from the keyboard and output to
the screen.

************************

loop:

gotnumi

prompt s

decbuf :

hexbuf

i

inbuf

:

.globl
•globl
.globl
•globl
.globl
lea
jsr
lea
jsr
tst.b
bne
rts
jsr
lea
jsr
lea
jsr
jsr
bra
.data
.dc.b
,dc.b
.dc.b
.bss
.ds.b
.end

prtstr
binhex
bindec
decbln
getlin
prompt, aO
prtstr
Inbuf ,aO
getlin
(aO)
gotnum

decbin
hexbuf ,aO
binhex
decbuf ,aO
bindec
prtstr
loop

^**************************
* Line-print routine
* Output converter
* Output converter
* Input converter
* Keyboard input
* AO -> output area
* Print prompt
* AO -> input area
* Get keyboard input
* Null line?
* No, continue to process
* Yes, exit to CP/M
* Convert to binary
* AO -> conversion area
* Convert to hex
* Reconvert to decimal

* Print answer
* Repeat until '^C

'Enter decimal number: ',0
'XXXXXXXXXX decimal is

'

'XXXXXXXX hex', 10,0

80 * Input buffer

Notice that the only change required was to expand the size of

the decimal output conversion area.
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4. The hex conversion routine looks like this:

*»»»************»*» t**********************

* This subroutine converts hex ASCII to
* longword binary.
*

* Enter with;
* AO -> Hex string
* Exit with:
* DO = Converted number

Conversion terminates on firs
character. No overflow detect

t nonhexadecimal
ion.

k****************

.globl hexbin
! movem.l dl-d2/a0 ,- (sp)

loop:

gotdig :

clr.l dO *

clr.l dl *

cmpi.b #'9',(a0) *

bhi notdec *

cmpi. b I'0',(a0) *

bio nothex *

move.b #'0',dl *

bra gotdig *

cmpi.b #'A',(aO) *

bio nothex *

cmpi.b #'F',(aO) *

bhi notuc *

move.b i'A'-10,dl *

bra gotdig *

cmpi.b »'a',(aO) *

bio nothex *

cmpi.b #'f',(aO) *

bhi nothex *

move.b #'a'-10,dl *

clr.l d2 *

move.b (a0)+,d2 *

sub.l dl,d2 *

Isl.l «4,d0 *

add.l d2,d0 *

bra loop *

movera.

1

{sp)+,a0/dl-d2 *

rts *

*****************

Save starting registers
Zero out accumulator
Zero out Dl
Upper bound
Not a decimal digit
Lower bound
Not a hex digit
Correction factor
Accumulate
Check letters
Not a hex digit
Upper case hex?
No, try lower
Correction factor
Got digit
Lower case?
No
Test upper bound
Not hex
Correction factor
Zero high byte
Get next digit
Convert to binary
Multiply by 16
Add in digit
Try another digit
Unsave registers
Return to caller

A slightly tricky piece of code to yield the proper binary nibble

uses register Dl as the factor to be subtracted from the ASCII

byte.

The program for converting hex to decimal can be derived from

the earlier solution to converting the longword decimal to hex.
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it********************

This program converts hex numbers to decimal.
Numbers are input from the keyboard and output to
the screen.

*************** ****^********************************
.globl prtstr * Line-print routine
•globl binhex * Output converter
•globl bindec * Output converter
.globl hexbin * Input converter
.globl getlin * Keyboard input

loop: lea prompt, aO * AO -> output area
jsr prtstr * Print prompt
lea inbuf ,aO * AO -> input area
jsr getlin * Get keyboard input
tst.b (aO) * Null line?
bne gotnum * No, continue to process
rts * Yes, exit to CP/M

gotnum: jsr hexbin * Convert to binary
lea hexbuf ,aO * AO -> conversion area
jsr binhex * Convert to hex
lea decbuf ,aO * Reconvert to decimal
jsr bindec *

lea hexbuf ,aO * AO -> Answer
jsr prtstr * Print answer
bra loop * Repeat until *C
.data

prompt; .dc.b 'Enter hex number: ',0
hexbuf

:

.dc.b 'XXXXXXXX hex is
'

decbuf

:

.dc.b 'xxxxxxxxxx decimal', 10,0

.bss
inbuf: .ds.b

.end
80 * Input buffer

CHAPTER 5

^. The summation program is:

**************
' Sum of first
*************

.globl

.globl
_ma in: mov e .

w

move.

w

clr.l
add. w
add.w
dbra
move.

w

pea
jsr
add.l
rts
.data
.dc.b

loop:

***********
five integ

_main
_printf
#l,dO
#4,dl

d2
d0,d2
II, dO

dl , loop
d2,-(sp)
format
_pr intf
#6,sp

b*********

ers using printf
******************

First integer
Counter
Accumulator
Add next integer
increment
Loop until done
Push answer
Push format string
Call printf
Pop arguments
Exit

"The sum is %d",10,0
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The program to generate the powers of two is:

************************* *** ** ***************
* Table of powers of two usi ng fprintf
******* ********** ***** ***************

• globl fopen
.globl _printf
.globl _fprintf
•globl _fclose
.globl main

_main

:

raove.

w

4(sp) ,dO * argc
move.

1

6(sp) ,a5 * -> argv
cmp. w #2, do * One argument?
bne argerr * No, quit now
pea wstr * -> "w"
move.

1

4(a5) ,-(sp) * -> filename
jsr fopen * Try to open file
add.l #8,sp * Pop arguments
move.

1

d0,d3 * Save stream pointer
beq openerr * Couldn't open
move.

1

#l,d4 * First power of two
clr.w dS * Power counter

loop: move.

1

d4,-(sp) * Push
raove.

1

d4,-(sp) * Twice
move,

w

d5,-(sp) * Push power number
pea format * -> Format string
move.

1

d3,-(sp) * Push Stream pointer
jsr fprintf * Do the print
add.l #18, sp * Pop arguments
add.w #l,d5 * Bump counter
cmp. 1 #$100000 ,d4 * Compare against limit
beq done * EQ => just printed last
Isl.l #l,d4 * Shift right one place
bra loop * Do another one

done

;

move.

1

d3,-(sp) * Prepare to close
jsr fclose * Do the close
add.l #4,sp * Pop arguments
rts * Exit

argerr

;

pea errl * Push error message
bra errcom * Merge

openerr :pea err2 * Push error message
errcora: jsr _pr intf * Call printf

add.l #4,sp * Pop arguments
rts * Exit
.data

format: .dc.b "2**%2d = %91d (decimal) %81x (hex)", 11

wstr

:

.dc.b "w",0
errl: .dc.b "Invalid arg ument count", 10,0
err2: .dc.b "tJnable to 0|pen output", 10,0

3. The copy function is:

t*********** fr****************
* Memory copy function for C. Calling sequence:

* mcpy(src,dst, length)

;

*

* Where "src" is the source address
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"dst" is the destination address.
"length" is the number of bytes to copy.

* No return parameter.
********** *********************************

.globl mcpy
_mcpy : move.l 4(sp) ,aO * Source address

move.

1

8(sp) ,al * Destination address
move.

w

12(sp) ,dO * Length
sub. w #l,dO * Decrement for dbra

loop: move.b (aO)+,(al)+ * Copy a byte
dbra do , loop * Loop until done
rts * Return

CHAPTER 6

1. The PLIST program can be derived from the PFIND program as

follows:

1

.

Change line 84 to compare "argc" to 1 instead of 2.

2. Delete lines 87-88 and 148.

You can also delete lines 147 and 169-186, and put the

"ploop:" label on line 149. Notice that the program will

still work with the useless code in place.

2. The Fibonacci program is:

***********************************************
* Recursive Fibonacci routine

* Enter with number in DO.W
* Exit with answer in DO.W
***********************************************

.globl fib
fib: cmp.w #l,dO * Easy?

bgt dofib * No, do recursion
rts * Done

dofib: move.w d0,-(a7) * Save present value
sub.w #l,dO * Decrement
jsr fib * Take F(n-l)
move.w d0,-(a7) * Save result
raove.w 2(a7),d0 * Restore n
sub.w #2,d0 * Decrement
jsr fib * Take F(n-2)
add.w (a7)+,d0 * Compute sum
add.l #2,a7 * Pop saved word
rts * Quit
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3. The sort routine is as follows:

Sort routine. This routine performs an in-place sort
using a bubble-sort technique.

Save the registers
A2 -> buffer end
AO -> buffer beginning
Clear exchcinge flag

Al -> Next record
Past end?
Yes, see if another pass i

Compare (aO) : (al)

ME => don't swap
Swap (aO) and (al)

Set flag

Mvance AO to next entry
And ccsrpare the next two
Did last pass exchange?
Yes, make another pass
Unstack registers
Return

Corrparison routine. Ooiipares (AO) to (Al) . Returns NE condition code
if no exchange necessary.

sort: dO-d7/aO-a6,-(a7)
iTOve.l lastb,a2

slocp: lea buffer, aO
clr.w do

sloopl lea length (aO),al
cnpa.l al,a2
bios send
bsr scnp
bne snext
bsr xchang
move.w «l,dO

snext: lea length (aO),aO
bra sloopl

send: tst.w dO
bne sloop
movera.l (a7)+,d0-d7/a0-a6
rts

scnp: move.w #numlen+extlen dl • Dl = DBRA-adjusted count
lea telno{a0),a4 * A4 -> 1st telephone 1

lea telno(al),a5 • A5 -> 2nd telephone 1

cloqp: cmp.b {a4)+,(a5)+ * Carpare a digit
bgt noswt * Switch only if It
dbne dl^cloop * If eq, continue loop
clr.w dl * Set Z bit

noswt: rts * Return

;;

Exchange routine. Exchanges (AO) w ith (Al)

xchang move.w »length-l,dl Dl = DBRA-adjusted count
move.l a0,a4 A4 -> record 1
move.

1

al,a5 A5 -> record 2

xlopp: mcwe.b (a4),d2 Pick up a byte
iDDve.b (a5),(a4)+ Swap
move.b d2,(a5)+ byte
dbra dl,xloop Count dom
rts Return

4. The PDEL program is derived from the PADD program as follows:

Alter the code in the main routine to call subroutine

"delete" instead of "insert."

Alter the code in subroutine "setfield" to accept three

names as arguments. Remove the code for the telephone
number and extension.
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3. Replace the "insert" subroutine with the following code:

Delete routine. This routine removes the record at "irec" frcm the
buffer. The buffer is mewed up to remcwe the deleted entry.

delete:; ncwem.l d0-d7/a0-aei,-(ii7) Save registers
lea buffer, al Al -:• Buffer
mOTe.l lastb,a3 A3 -• Eiid of buffer

find: lea irec.aO AO -:• Comparison string
cmpa.l a3,al Past the end
bhis found Yes, insert at end
jsr ncnp Compare the two
tst.w dO Record : buffer
beq found Found record to delete
bmi norec MI =:> Can't find it
adda.l length, al Al -> Next record in buffer

,
bra find Loop until done

* Now move the buffei up to delete the entry

found: move.l a3,a4 Copy end of buffer
sub.l lerqth,a4 A4 -:> New end of buffer
TOve.l a4,lastb Record this

lea length(al), a2 A2 -: next record
noveit:; nove.b (a2)+,(al)< Transfer a byte

CTtpa.l a3,a2 Just mcved last?
bio noveit No, continue to rTDVe

movem.l (a7)+,d0-d7/a0-a6 Pop .registers
rts And return

CHAPTER 7

1 . This is the block-move handler program.

****************************

This except iai handler simu
*******************************

.globl LineF
movem.l d0-d7/a0-a6,regs
mcwe.l 2Ca7),aO
add.l #2,2 (a7)

move.w (aO),dO
move.w dO,dl
andi.w 7,dl
bne dorte
Isr #3,d0
lea regs,aO
bsr get3
move.l 0(a0,dl.w),d7
bsr get3
itove.l 32(a0,dl.w),a4
bsr get3
nove.l 32(aO,dl.w),a5

********************************

lates the block mcwe instruction.

Make globl
Save the registers
AO = PC
Advance PC to next
DO = instruction
Copy to Dl
Low-order 3 bits=0?
No, quit
Get rid of low 3 bits
AO -> registers
Get 3 bits in Dl
D7 = Data register contents
Get 3 more bits in Dl

A4 = An dst contents
Get next field
A5 = An src contents
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locp: move.b (a5)+,(a4)+ *

subq.l #l,d7 *

bne loop *

dorte: movera.

1

regs,d0-d7/a0-a6 *

rte

Mcwe a byte
Down

count
Restore registers

* Get 3 bits out of DO.W

get3: move.l dO,dl
Isr.l #3,d0
andi.w #7,dl
Isl.w #2,dl
rts

Copy
Get rid of bits
Isolate bits
Make lorq index
Return

.ds.l 15 Register storage area

2. This is the trace program.

* Itie program-trace routine

tracev: .equ S24
.globl binhex
.globl prtstr
.globl trace

trace: movem.l dO-d7/aO-a6,regs
move.l (a7)+,retpc
mcwe.l fxtrace, tracev
move.w #62,d0
trap #2
movan. 1 regs,d0-d7/a0-a6
ncve.l retpc,-(sp)
move.w #$8000, -(sp)
rte

Trace vector
Hex oooversion routine
String-print routine
Ehtry point
Save registers
Save return address
Load vector
Set

super
Restore registers
Push return PC

And status register
Begin trace

* Trace Trap Entry
*

xtrace: movem.l d0-d7/a0-a7,regs
lea dstr,aO
jsr prtstr
lea regs,al
jsr pregs
lea astr.aO
jsr prtstr
lea regs+32,al
jsr pregs

Print PC, status r

lea srstr,aO
jsr prtstr
move.w (a7) ,dO
jsr pword
lea pcstr,aO

^e 1

prtstr
2(a7),d0

jsr plong
lea uspstr,a0
jsr prtstr
move.l usp.aO
move.l aO.dO
jsr plong

lea newllne.aO
jsr prtstr

Save all registers at trap tine
AO -> "D "

Print
Al -> D registers
Print D registers
AO -> "A "

Print
Al -> A registers
Print A registers

A0-> "SR="
Print
DO = old SR
Print it

A0-> "PC="
Print it
DO = PC at fault

Print it

A0-> "USP="
Print
Fetch user stack pointer
Put in DO
Print
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lea newllne,aO
jsr prtstr
movem.l regs,d0-d7/a0-a7
rte

miscellaneous print routines

Print another new line
Print blank line
Bestore registers
Do next Instruction

pregs: novem.l aO-aV<30-dl,-(a7)

rloop:

* Print a long in DO

plong: novem.l a0-al,-(a7)

mcve.w »7,dl
move.l (al)+,dO
jsr plong
dbra dl.rlopp
lea newline.aO
jsr prtstr
mcvem. 1 (a7) + ,aO-al/dO-dl

lea hexbuf.al
hexprt lea hexbuf.aO

jsr blnhex
nove.b 1' ',8(a0)
clr.b 9(a0)
move.l al,aO
:sr prtstr
movem.l (a7)+,aO-al

Print a word in dO

pword: movem. 1 a0-al,-(a7)
lea hexbuf+4,al
bra.s hexprt
• page

Data Area

*******

dstr: .dc.b 'D ',0

astr: .dc.b 'A ',0

srstr: .dc.b 'SR=',0
pcstr: .dc.b ' PC=',0
uspetr: .dc.b ' USP=',0
newline :.dc.b

.even
10,0

*

*
Uninit

-bss

allzed data £

regs: .ds.l 16
hexbut: .ds.b 10
retpc: .ds.b

.end
4

Save work registers
Loop count
Petch next long

Print
Loop until done
AO -> Newline sequence
Print it

Pep working registers
Return to caller

Save work registers
Use all of hexbuf
AO -> buffer to convert
Convert DO to hex AO
Move in space at end
Set up null character
AO -> area to print
Print it

unsave registers
Return

Save work registers
Al -> low four digits
Go print it

Room for registers
Hex buffer
Return PC

CHAPTER 8

1
. An interrupt is required because only an external event can make

a task dispatchable in this case. If no tasks are dispatchable, then

"appi" nnust be waiting on the timer and "app2" must be waiting

for a terminal I/O operation to complete.
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There are two primary areas: the dispatcher and the Send Mes-

sage SVC. The dispatcher cannot really be improved. The Send

SVC can be improved by using a tail pointer on the message con-

trol block list on the task's task control block. This would elimi-

nate the loop to find the end of the message control block list.
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The following table gives the ASCII (American Standard Code for Informa-

tion Interchange) character set.

Dec Hex Character Dec Hex Character Dec Hex Character

000 00 CTL-@ NULL 001 01 CTL-A SOH 002 02 CTL-B STX

003 03 CTL-CETX 004 04 CTL-D EOT 005 05 CTL-E ENQ

006 06 CTL-F ACK 007 07 CTL-C BELL 008 08 CTL-H BS

009 09 CTL-I HT 010 OA CTL-J LF Oil OB CTL-KVT

012 OC CTL-L FF 013 OD CTL-M CR 014 OE CTL-N SO

015 OF CTL-O SI 016 10 CTL-P DLE 017 11 CTL-QDC1

018 12 CTL-R DC2 019 13 CTL-S DC3 020 14 CTL-T DC4

021 15 CTL-U NAK 022 16 CTL-V SYN 023 17 CTL-W ETB

024 18 CTL-X CAN 025 19 CTL-Y EM 026 1A CTL-Z SUB

027 IB CTL-[ ESC 028 1C FS 029 ID CS

030 IE RS 031 IF US 032 20 SPACE

033 21 ! 034 22
" 035 23 #

036 24 $ 037 25 7o 038 26 &

039 27
' 040 28 ( 041 29 )
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Dec Hex Character Dec Hex Character Dec Hex Character

042 2A * 043 2B + 044 2C

045 2D - 046 2E 047 2F /

048 30 049 31 1 050 32 2

051 33 3 052 34 4 053 35 5

054 36 6 055 37 7 056 38 8

057 39 9 058 3A : 059 3B ;

060 3C < 061 3D = 062 3E >

063 3F ? 064 40 @ 065 41 A

066 42 B 067 43 C 068 44 D

069 45 E 070 46 F 071 47 G

072 48 H 073 49 I 074 4A J

075 4B K 076 4C L 077 4D M
078 4E N 079 4F O 080 50 P

081 51 Q 082 52 R 083 53 S

084 54 T 085 55 U 086 56 V

087 57 W 088 58 X 089 59 Y

090 5A Z 091 5B [ 092 5C \

093 50 ] 094 5E
-^ 095 5F

096 60 097 61 a 098 62 b

099 63 c 100 64 d 101 65 e

102 66 f 103 67 g 104 68 h

105 69 i 106 6A
j

107 6B k

108 6C I 109 6D m 110 6E n

111 6F o 112 70 p 113 71 q

114 72 r 115 73 s 116 74 t

117 75 u 118 76 V 119 77 w

120 78 X 121 79 y 122 7A z

123 7B [ 124 7C
|

125 7D ]

126 7E
-

127 7F DEL(ete)
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The characters marked "CTL-x" can be generated on most terminals by

holding down the CONTROL key and typing the indicated character. For

example, the hex character value 07 is generated by typing CONTROL-G.
Control characters are used to perform some device-control function.

Some of the common control characters and their functions are:

• Control-G is used to sound the terminal buzzer, beeper, or bell.

• Control-H (Backspace) causes the terminal cursor to move back

one character space. Some older terminals do not support this

character.

• Control-! (Tab) causes the next character to be printed at the next

tab stop to the right. Tab stops are typically placed every eight

characters.

• Control-J (Line feed) causes the device to move down one line.

• Control-L (Form feed) causes the device to move to the top of the

next page.

• Control-M (Carriage return) causes the cursor to move to the

beginning of the present line.

• Control-Q (XON) causes suspended output to resume.

• Control-S (XOFF) causes output to be suspended until the receipt

of a Control-Q.
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WHAT IS A ''GOOD" PROGRAMl

Now that we've written several programs, let's stop and consider the

program creation process. A few guidelines were developed during the

history of programming that will help you write better programs.

Before we discuss these guidelines, however, we must first define what

is meant by a "good" program. What makes one program better than

another? Is it possible to tell by looking at a program whether it is a

"good" program or a "bad" program?

This is an area in which programming is similar to other kinds of crea-

tive endeavor. A great deal of program "goodness" is in the eye of the

beholder. One programmer might value the use of "meaningful labels,"

another the smallest possible code size, and so on. The old adage about

one man's trash being another man's treasure is also true in the software

world.

The one objective measure of how good a program is whether it works

for the problem you are trying to solve. A program may be well-designed,

well<oded, extensible, modular, but if it fails in only one case, these pro-

gramming virtues are of no value if your case is the one on which the pro-

gram fails. The value of a program is how well the program solves the

problem it is designed to address.

The guidelines outlined in this appendix are generally accepted in the

computer software industry as rules that produce good software. Every

program is different, however, and you should adapt the guidelines to suit

your environment and programming style.
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PROGRAMMING GUIDELINES

Here then, are some guidelines for writing good programs:

1. Design the program before you code it. Planned programs can

be written faster and with fewer bugs than unplanned programs.

2. Design modular programs. Modular programs are easier to debug

and extend than nonmodular (i.e., "spaghetti code") programs.

3. Design the top-level modules first.

4. Follow consistent coding conventions throughout the program.

5. Integrate program testing into the development process.

6. Document the code liberally using comment lines.

7. Have someone else review your work.

Let's look at each of these areas in greater detail.

Top-Down Program Design

Like any other construction project, a program works better if built

from a plan. The time invested in planning a program will more than pay

for itself in time saved during the coding and debugging phases of the

program.

Program planning consists of three activities:

1

.

Write a description of how the program will work. For very large

programs, it is a good idea to write user documentation (or exter-

nal specifications) before coding begins. The external specifica-

tion should describe how to operate the program and any data

input and output by the program.

2. Design the data structures before writing any code. Data struc-

tures often dictate the design of the code that uses them.

3. Partition the program into modules, and design the inter-module

calling sequences. Write a description (called pseudocode) of the

activities performed by each module.

4. Decide how you are going to test the program to verify that it

works.
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Modular Programming

As we saw in Chapter 6, modular programs lend themselves to borrow-

ing code from an existing program to write a new program. Partitioning a

large program into modules makes it easier to write, debug, and modify.

Here are some guidelines to follow in partitioning a program into modules:

• Structure the program in a hierarchical fashion. Put detail work
as far down the hierarchy as you can. Ideally, the top level should

do nothing but call the lower levels.

• Use the principle of "hiding information." Wherever possible, iso-

late all uses of each data structure to a single module. This makes
it possible to overhaul the data structure without major surgery

on the entire program.

• Avoid "pathological connections." A pathological connection is

one module relying on the structure of another module. Altering

the second module can cause bugs to appear in the first.

• Strive for singularity of function for each module. Don't try to put

unrelated functions into a module to save time or space.

Figure C.I shows a module chart for the PADD program.

Mam

1

1 1 1

setfield readfile insert wrtfile

ncmp

1 1

movestr Valid

Figure C. 7 - Diagram of the PADD program
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The PADD program consists of four basic functions:

1. Format the fields on the command line.

2. Read the file into memory.

3. Insert the record.

4. Write the file from memory to disk.

Each of these functions are fairly independent. Except for the shared

global variables, none of these routines know anything of the workings of

the other modules.

Top-Down Implementation and Testing

Top-down design means that you begin design at the top levels and pro-

gress to the lower levels. You should also follow this philosophy for imple-

mentation and testing. Yourdon, in Managing the Structured Techniques

(New York: Yourdon Press, 1979), describes a system for implementing

software that codes and tests the complete system in a top-down fashion.

This technique requires that you build the top module and dummy out its

subordinate modules. The dummy routines are often called stubroutines.

These are routines which either just return, return a constant value, or

return after some trivial processing.

Once this scaffolding is in place, put it on the machine, and try it out.

Then, one by one, replace the stubroutines with the real implementation.

Test the system as you go. Be prepared to redesign the top modules as the

subordinate modules are implemented. You will avoid a lot of effort

wasted in redesigning the inter-module interfaces at the last minute by fol-

lowing this technique.

Coding Techniques

The primary evaluation criteria of whether a program is a good one is

whether or not it performs its intended function.

The manner in which a program is coded may determine its eventual

success or failure. Programs coded using the "spaghetti code" technique

may in fact, work perfectly However, one of the fundamental realities of

programming is that programs require modification. Somewhere between

70 to 80 percent of the money spent on software is spent on fixing old

programs, not on building new ones. So, unless your programs are easy
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to modify, odds are that you are spending more time, energy, and money
than necessary in modifying them. Also, programs that are not easy to

modify tend to be abandoned or rewritten rather than maintained, entail-

ing more needless expense.

Most coding techniques for writing maintainable code are simply com-

mon sense. The programming environment has been improved signifi-

cantly over the past several years, yet still you see software being written

for fourth generation computers using second generation techniques.

Readability is Key

Efficiency used to be the key consideration, especially in older micro-

computer systems. The days when microseconds were precious and bytes

were worth their weight in gold are gone forever. Although it is not pos-

sible to completely ignore efficiency considerations, it is no longer the

primary consideration.

Brooks, in The Mythical Man-Month (Reading, Mass.: Addison-Wesley,

1979), suggests that a program has two audiences—the machine and the

humans that will maintain the program. Computer hardware has pro-

gressed to the point where we can give the human audience higher prior-

ity for most programs.

In writing programs, you should focus on how well the program can be

understood by another programmer. Here are some guidelines in this

1. Don't use instructions as data, or worse, modify instructions as

the program executes. This practice creates programs that are

extremely difficult to understand.

2. Try to make every program module fit on a single page (exclusive

of documentation). If a module won't fit on a page, make part of

it a subroutine and put that on a separate page. An example of

this technique is the "ncmp" subroutine in Listing 6.7.

3. Strive to make branch targets lower on the page than the branch

instruction. This follows the normal reading pattern for most peo-

ple. (This is obviously impossible for branches that form the end

of a loop.)

4. When using conditional branches, try to make branch failure the

"normal" case, particularly where the branch destination is rela-

tively far away This means that most of the time, the branch will
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not be taken and the first-time reader can ignore the branch and

still understand the program.

5. Create modules that have a single entry and a single exit point.

Try to place the entry at the top of the page and the exit at the

bottom.

6. Avoid branches or jumps that span page boundaries. This is not

always possible, as in the case with the LBOS interrupt routines

(see Listing 8.7), which must jump to the dispatcher on occasion.

Another exception is a disaster bail-out, where you branch to an

error routine with no intention of returning.

7. Always use symbolic names for record fields, absolute addresses,

and constants that are likely to change.

8. Try to use labels and names for data items that suggest their

functions.

Avoiding Bugs

One of the best ways to avoid bugs in your programs is to structure

your coding so that it's hard to put the bugs into your program in the first

place. This is called defensive programming. Some examples of defensive

programming techniques are:

1. Range check parameters coming into a routine or structure the

code so that nothing harmful is done when one of these para-

meters is out of range. The best solution is to print an error mes-

sage that identifies both the parameter in error and the location

in the program.

2. Limit return values from a function to one register. Always make
it the same register. Don't expect this register to come back

unchanged from a subroutine call.

3. Save and restore all the registers (except possibly the return

parameter register) at the beginning and end of each module.

This eliminates the process of figuring out which registers to save

and restore. It also prevents the "Who clobbered register D3?"

crisis.

4. Avoid mixing stack pushes and pops with conditional branches. If

you push something on the stack, try not to have a conditional
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branch before the item is popped off the stack. One of the hard-

est errors to find is the condition where you execute an RTS or

RTE instruction with the stack pointer pointing to the wrong data.

This causes some random address to be loaded into the PC,

resulting in a "wild branch." Using the LINK and UNLK instruc-

tions at the beginning and end of each subroutine can alleviate

this problem.

5. When using an address register to access fields in a record,

always use the "address register indirect with displacement"

addressing mode. Don't use pre-decrement or post-increment

addressing to step through the fields in a record. This effectively

prohibits adding, deleting, or rearranging record fields.

6. Avoid other "clever" uses of the pre-decrement / post-increment

addressing modes. For instance, the CMRL -(A0),(A1)h- instruc-

tion can be used to subtract 4 from AO while adding 4 to Al.

However, if either of these registers contains a nonexistent or odd

address, an exception will result.

7. Don't use immediate fields as variables.

MOVE.L #18,DO

XYZ: .EQU *-4 * Used to reference data

MOVE.L D2,XYZ

Many computer systems have memory protection devices called

memory management units, which prohibit writing to memory
that contains instructions.

Program Documentation

"Document unto others as you would have them document unto you."

Program documentation is the most neglected aspect of the program-

ming process. It is often said in professional programming circles that

nothing is later than software—except documentation. The value of good

program documentation is only realized after the program has been in

use for a while and the time comes to fix it. This problem has been
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around for a long time. The quotation above was written in 1971 (Kreitz-

berg et al., The Elements of FORTRAN Style [New York: Harcourt, Brace,

Jovanovich, 1971). Yet today, one of the biggest problems in software

development is inadequately documented code.

There are essentially two types of documentation for a piece of soft-

ware: user documentation, which describes how to operate the program,

and implementor's documentation, which describes how the program is

constructed internally User documentation is usually packaged in a sepa-

rate manual. Most users are totally unconcerned with how a program

does what it does. He or she is strictly concerned with what a program

does, and what magic incantations he or she must recite to get the pro-

gram to do what he wants.

The implementor's documentation should normally be kept in the pro-

gram, for two reasons. First, it is impossible to lose the program's internal

documentation without also losing the source code. Second, when the

program is changed, it is much more likely that the documentation will be

updated as well. There are few things less useful than program documen-

tation that no longer matches the program.

In documenting a program, try to anticipate the questions that another

programmer might have in modifying your code. Here are some sugges-

tions for documenting assembly-language code:

1. Put a description of what the program is and what it does at the

very beginning. An overview of the operating procedures is often

helpful.

2. Instructions for rebuilding the program should be included near

the beginning. Ideally you should have an automated procedure

for doing this, such as a UNIX "Makefile," or a CP/M "SUBMIT"

file, which performs all the steps necessary to reconstruct the

program from its source code.

3. Include descriptions for each of the major data structures, prefer-

ably with block diagrams, before the code begins. See Listing 6.1

for an example.

4. For each subroutine, include a narrative section that describes

the overall function of the subroutine and the input and output

parameters. Any unusual coding techniques or external depen-

dencies should be mentioned in this section.

5. Include a description of each section of code that performs a dif-

ferent function at the beginning of that section of code. Also

explain code that is tricky or hard to understand in any way
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6. Use blank lines, white space, and page breaks liberally to make
the program listing more readable.

Wherever you can, include a comment at the end of each line.

This is especially valuable when a section of code is hard to

understand.

Code Reviews

Arrange to have someone else review your code. You should take

advantage of every opportunity to do this. Weinberg, in The Psychology of

Computer Programming (New York: Van Nostrand Reinhold Company,

1971), first suggested this technique, citing the example of a thirteen-line

program in which twenty errors were found by other people reviewing

the code. Many software organizations formalize this process, called a

code walkthrough. There are several benefits to be reaped from doing

this:

1. The other person can spot bugs that you can't. Often in program-

ming, you will find yourself so close to a program that you over-

look an error many times. Someone not as familiar with the

problem as you are may spot the problem immediately

2. You may learn something. Unless the other person's technical

background is very similar to yours, she or he may see a better

way of doing something in your program.

3. The other person may learn something. The best way to learn

programming is by example. Something in your program may
help the reviewer solve one of his or her programming problems.

4. You will learn which areas of your program are difficult to under-

stand.

5. In the process of explaining your program, you may uncover

bugs yourself.

CONCLUSION

"If carpenters built houses the same way programmers write programs,

then the first woodpecker would destroy civilization" (Weinberg, op. cit.).

Writing good programs is hard work. Fixing bad programs is even

harder. The effort spent in writing maintainable programs will more than
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INTRODUCTION

The 68010 processor chip is the second generation of 68000 processors.

This appendix outlines the differences between the 68010 and its older

brothers, the 68008 and 68000. These differences lie in four major areas:

1. Extra registers in the 68010.

2. Extra instructions in the 68010.

3. Differences in the 68010 exception nnechanism.

4. The addition of a Loop Mode for repeated instructions.

The 68010 is also appreciably faster than the 68000, as the basic processor

clock is faster (12.5 Mhz as opposed to 8 Mhz). Some of the instructions

also require fewer clock cycles to execute.

EXTRA REGISTERS IN THE 68010

The 68010 has three more registers than the 68000 or 68008—the vector

base register (VBR), source function code (SFQ register, and destination func-

tion code (DFC) register. These registers are accessed through a special

instruction, the move to/from control register (MOVEQ instruction.



458 Programming the 68000

y/ector Base Register (VBR)

The vector base register (VBR) specifies a base for the vector area of

memory. On the 68000, this area is constrained to memory addresses to

3FF. The 68010 adds the contents of the vector base register to any vector

address. The register is 32 bits long, and should always be loaded with an

even address. If we place the quantity 1000 hex in the VBR and execute a

TRAP #0 instruction, the vector will be loaded from address 1080 hex

rather than 80 hex as on the 68000. If the VBR is loaded with a number
that places a vector on an odd boundary or in non-existent memory, the

68010 will halt upon attempting to access the vector.

The vector base register is initialized to zero during the RESET excep-

tion, which is required for the processor to begin execution. If the VBR is

not modified, the 68010 will use the same vector area as the 68000.

SFC and DFC Registers

One of the additional instructions on the 68010 is the Move Address

Space (MOVES) instruction. This instruction allows the programmer to

specify the function code that appears on the 68010 FCO to FC2 pins,

while moving data between memory and a register. This is a useful feature

when the function-code pins are decoded by external hardware. For

instance, a hardware designer might elect to put data memory in different

physical memory than program memory Without the MOVES instruction,

there would be no way to load a program into memory on such a system.

The source function code and destination function code registers are 3-

bit registers that contain the function code to appear on the FCO to FC2

pins when the MOVES instruction specifies memory as a source and a

destination, respectively.

The bits are numbered from the right, so pin FCO is loaded from the

low-order bit of the SFC or DFC registers.

ADDITIONAL INSTRUCTIONS IN THE 68010

The 68010 has four extra instructions:

1. The Move from Condition Code Register (MOVE CCR) instruc-

tion. Allows nonprivileged access to the Condition Codes.

2. The Move Control Register (MOVEC) instrurtion. Allows loading

and storing the contents of one of the three extra registers

described above.
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3. The Move Address Space (MOVES) instruction. Allows a supervi-

sor mode program to access memory with an arbitrary function

code on the 68000 function code pins (FCO to FC2).

4. The Return and Deallocate (RTD) parameters. Allows a subrou-

tine to remove arguments from the stack while returning to a

procedure that has invoked the subroutine.

In addition, the MOVE from Status Register (MOVE from SR) instruction

has privileged status, so that any access to the System byte of the Status

Register is now privileged.
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MOVE From CCR Instruction

The Move From CCR instruction allows a user or supervisor mode pro-

gram to copy the condition code register to an effective address operand.

The operation is constrained to word size, with the low-order byte of the

destination receiving the User byte of the Status Register, and the high-

order byte of the destination receiving all zeros.

Addressing Modes:

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

Yes No Yes Yes Yes Yes Yes

X.W X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Size: Word

Condition Codes Affected: None

Assembler Syntax: MOVE CCR,<ea>

Machine Code Format:

Bit 15 14 13 12 11 10 9 8 7 6 5 1

1 1 1 1

1 1

Effective

1 1

1 1

Address

1 1

<^Mode- - Reg. -
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MOVE Control Register Instruction

The Move Control Register (MOVEC) instruction allows a supervisor
mode program to copy the contents of any of the 68010 control registers

to or from an address or data register. All transfers are 32 bits, regardless
of the length of the control register. When copying DFC or SFC to a regis-

ter, bits 4 to 31 are zeroed in the destination.

Data Size: Long

Condition Codes Affected: None

Assembler Syntax: MOVEC Rc,Rn

MOVEC Rn,Rc

Re is the control register, either VBR, DFC, USR or SFC. Rn specifes an
address or data register.

Machine Code Format:

Bit 15 14 13 12 n 10 9876543210

Register

I I

Control Register

J I
I I I

Dr is the direction: for control register as the source, 1 for control reg-
ister as the destination. "Register" is the number of the general register. A
is 1 if this register is an address register, if a data register. The Control
Register field specifies the control register to be used, as shown below.

Control Register Field

0000 0000 0000 (000 hex)

0000 0000 0001 (001 hex)

1000 0000 0000 (800 hex)

1000 0000 0001 (801 hex)

Register

Source Function Code (SFC)

Destination Function Code (DFC)

User Stack Pointer (USP)

Vector Base Register (VBR)
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MOVE to/from Address Space

The Move to/from Address Space (MOVES) instruction allows a supervi-

sor mode progrann to move a byte, word, or longword to or from mem-
ory with an arbitrary function code on the 68010 function code pins

(FC0-FC2). When memory is used as a source, the function code is

obtained from the Source Function Code (SFC) register. When memory is

used as a destination, the function code is obtained from the Destination

Function Code (DFC) register.

The transfer must occur between memory and an address or data regis-

ter. When moving to an address register, the source is sign-extended to 32

bits. All 32 bits of the address register are affected by the transfer.

Addressing Modes Allowed (memory operand):

Dn An (An) (An) + -(An) x(An) x(An,xr.s)

No No Yes Yes Yes Yes Yes

x.w X.I x(PQ x(PC,xr.s) #x SR CCR

Yes Yes No No No No No

Data Size: (Byte, Word, Long)

Condition Codes Affected: None

Assembler Syntax: MOVES Rn,<ea>

MOVES <ea>,Rn

Rn specifies an address or data register.
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Machine Code Format:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
1 1 1

1

Size

1

1 1

Effective

1 1

1 1

1

Address

•^Mode-* -Reg -*

A Register

1
1

d

r

Size specifies the data size: 00 for bytes, 01 for words, and 10 for longs.

Register specifies the general register to be used for the transfer. A is a 1 if

this register is an address register, if a data register, dr specifies the direc-
tion of the transfer: for <ea> to register, and 1 for register to <ea>.
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RTD Instruction

The ReTurn and Deallocate parameters (RTD) instruction allows a sub-

routine to return to its caller and simultaneously pop a parameter list from

the stack. The instruction first pops the longword at the top of the stack

into the PC, as with the RTS instruction. Next, a 16-bit displacement is

sign-extended and added to the stack pointer. The final value of the stack

pointer is the old stack pointer plus the displacement plus four.

Data Size: Unsized

Condition Codes Affected: None

Assembler Syntax: RTD #< displacement

>

Machine Code Format:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Displacement

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(4E74 hex)

The Displacement field specifies the displacement to be added to the

stack pointer. Due to the sign extension process, the displacement must

be less than 32K (32768 decimal) to deallocate space from the stack.
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DIFFERENCES IN THE 68010 EXCEPTION MECHANISM

The 68010 is quite different from the 68000 and 68008 in the area of

exception-processing. It is, however, possible to write exception process-

ing code that functions on any 68000 processor. The 68010 exception

mechanism differs from the 68000 and 68008 in the following areas:

• The 68010 programmer can move the address of the vector area

to any even location in memory, using the vector base register

(VBR).

e The format of information pushed on the stack by an exception is

different on the 68010. The 68010 pushes an extra word for all

exceptions, and pushes more information on the stack for the

BUSERR and addressing error exceptions.

• When an invalid stack format is encountered by an RTE instruc-

tion, an extra vector is reserved for use by the 68010.

Vector Base Register

To change the vector area on the 68010, set up a new vector area

somewhere in addressable memory and load the address into the vector

base register. Listing D.I shows a sample sequence for performing this

function.

This code copies the contents of the old vector area (at absolute loca-

tion 0) into a new vector area (at "newvec"). It is safe to load the address

of the new vector area into VBR only after the copy is made.

mloop:

lea newvec, aO * AO -> New vector area
move . 1 aO,al * Copy
suba.I a2,a2 * A2 -> Old vector area
move.l #255, dO « DO = Vector count
move .

1

(a2)+, (aO)+ * Copy
dbra do, mloop * vectors
movec al,vbr * Load VBR

Listing D.I - Changing the vector area on the 68000
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Stack Format Differences

The 68010 has a different format for the information pushed on the

stack by an exception. There are two different formats: one pushed by a

BUSERR or addressing error (called long format), and one pushed by all

other types of exceptions (called short format). Both of these formats are

different from those on the 68000 and 68008.

Short Format

The short format for exceptions on the 68010 stack frame is shown in

Figure D.I.

The fourth word on the stack is the difference between this format and

the 68000 short-format exception stack frame. The zeroes in the upper

nibble of this word indicate that it is a short-format exception. A long-

format exception is indicated by a value of 1000 in these four bits.

The RTE instruction looks at these four bits to determine how many
words to remove from the stack. If you attempt an RTE instruction with a

format code that is neither 0000 nor 1000, a format exception takes place.

This exception uses vector 14 (offset 3C hex).

Lortg Format

The long-stack frame format is pushed by a BUSERR or addressing error

exception. Figure D.2 shows how the long-stack frame format appears.

Bit

A7-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Status Register Before Exception

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Program Counter High Word

1
1 1 1 1 1 1 1 1 1 1 1 1

Program Counter Low Word

1
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Vector Offset

1 1 1 1 1 1 1 1 1 1 1 1 1

Figure D.I - Short-format exception stack frame
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Bit

A7-

15 14 13 12 11 10 9 8 7 6 5 4 3 :! 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Status Register Before Exception

1
1 1 1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Program Counter High Word

1
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Program Counter Low Word

1
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Vector Offset

1 1 1 1 1 1 1 1 1 1 1 1 1

Special Status Word

1
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Fault Address High Word

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Fault Address Low Word

1
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Reserved

1
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Data Output Buffer

1 1 1 1 1 1 1 1 1 1 1 1 1

Reserved

1
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Data Input Buffer

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Reserved

1
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Instruction Input Buffer

Internal Information (16 words)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure D.2 - Long-format exception stack frame
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This Tormat is also not compatible with the corresponding 68000 format.

It does have the advantage that the status register, program counter, and

vector offset have the same position on the stack relative to register A7 as

the 68010 short format. The purpose of the long format is to enable the

68010 to continue an instruction after a BUSERR exception occurs. This

capability permits the implementation of a virtual-memory machine.

The Special Status Word contains additional information about the fault

and it can be used to correct the fault with software. He^e is the format of

the Special Status Word:

Bit 15 14 13 12 11 10 9 7 6 5 4 3 2 10
RR * * IF DF RM HB BY RW|* *******}** Function

J I

The RR (ReRun) bit is cleared by the exception. If this bit is not set,

when an RTE instruction executes, the processor will rerun the memory
access that failed. Setting this bit prior to an RTE instruction causes the

processor to skip the failing access.

The Function field is the function code present on the 68010 pins FCO-

FC2 during the fault. The possible values and their interpretation are

shown below.

Code Type of access

000 Unassigned

001 User mode data reference

010 User mode program reference

oil Unassigned

100 Unassigned

101 Supervisor mode data reference

110 Supervisor mode program reference

111 Interrupt acknowledge

The access codes are only important when the memory hardware

makes use of them. If this is the case and you desire to simulate the failed

access in software, you must use these bits in combination with a MOVES
instruction.

The RW (Read / Write) bit indicates whether the failed access was a

memory read (RW = 1) or a memory write (RW = 0). Simulating a mem-
ory write requires copying the data from the data output buffer word on

the stack to the address indicated by the fault address words on the stack.
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The IF (Instruction Fetch) bit indicates that the processor was trying to

read data from memory into the instruction input buffer. If you are simu-

lating the failed access in software, you must write the data from the fault

address into the instruction input buffer word on the stack.

The DF (Data Fetch) bit indicates that the processor was trying to read

data from memory into the data input buffer. Simulating the failed access

requires writing the data from the fault address to the data input buffer

word on the stack. The DF bits and IF bits may both be set. If this is the

case, the data from the faulted address must be written to both the

instruction input buffer and the data input buffer.

The RM bit indicates that the interrupted memory access occurred dur-

ing a read-modify-write cycle, as from a Test And Set (TAS) instruction.

Allowing the processor to rerun the cycle (by leaving the RR bit clear) will

cause both the read and write memory cycles to be repeated. Simulating

a TAS read-modify-write cycle with software requires that you:

1. Write the original contents of the memory location to the data

input buffer word on the stack.

2. Set the most significant bit of the memory location at the faulted

address.

3. Set the condition codes in the status-register image on the stack

according to the state of the byte before it was written.

The BY and HB bits are used in byte transfers. The BY bit has a value of

1 if the failed access was to a byte. If this is the case, the HB bit specifies

whether the high byte (HB = 1) or the low byte (HB = 0) was being

transferred.

Virtual Memory

A virtual memory system is one in which only a part of the program is

in physical memory This part of the program is called the program's work-

ing set. When the program makes a reference to an address that is not in

memory, the memory n'anagement unit causes a BUSERR exception. The

operating system loads the memory page containing the fault address and

continues the failed instruction. The 68010 allows you to rerun the failing

access or to simulate the access in software.

It is possible to have more than one access failure on a single instruc-

tion. For example, the instruction MOVE.B $10000,$40000 could cause

three separate faults—one when the instruction is fetched from memory
and separate faults on both the source and destination operands.
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LOOP MODE

A final change in the 68010 is the hardware loop mode capability. The

68010 has a special optimization for the DBcc instruction. If a program

executes a two-instruction loop consisting of a one-word instruction and a

DBcc instruction with a displacement of -4, the 68010 completes the

loop without refetching the instructions. This doubles the speed of a copy

operation from memory to memory
Listing D.2 shows a sequence of code optimized on the 68010.

lea src.aO * AO -> Source
lea dst.al * Al -> Destination
move .w #length,dO * DO = Byte count

loop: move.b (aO)+, (al)+ * Loop
dbra dO, loop * mode

Listing D.2 - Optimized code on the 68010

The move.b and dbra instructions are optimized by the 68010 loop

mode. Once the instructions have been fetched, the 68010 accesses only

data until the loop is completed. On the 68000, by comparison, six bytes

of instructions are fetched to move one byte of data.





Glossary



68000. A 16-bit microprocessor chip that forms the basis of this book.

68008. A version of the 68000 that has an 8-bit data bus. This chip is usu-

ally employed in low-cost computer systems.

68010. A version of the 68000 that has improved performance, virtual

memory capability, and additional instructions. The 68010 is described in

Appendix D.

680/0 destination function code register (DFC). A 3-bit register used with

the 68010 MOVES (Move Address Space) instruction. This register con-

tains the memory access code (FCO-2), which is used when memory is

the destination operand in the MOVES instruction.

680/0 format exception. An exception through vector 14 (offset 38 hex)

that indicates that an RTE instruction was attempted with an improper for-

mat code in the top four bits of the fourth word on the stack. Valid format

code words are Oxxx hex and 8xxx hex. Any other combination of these

four bits causes the 68010 format exception.
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68010 loop mode. The ability of the 68010 to execute a one-word instruc-

tion followed by a DBcc instruction without refetching the operands. For

example, the following code would execute in loop mode until the DBRA
condition failed (i.e., when DO becomes - 1):

LOOP. MOVE.B {A0) + ,(A1) +

DBRA DO,LOOP

680/0 source function code register (SFC). A 3-bit register used with the

68010 MOVES (Move Address Space) instruction. This register contains

the memory access code (FCO-2) that is used when memory is the source

operand in the MOVES instruction.

68010 vector base register (VBR). A 32-bit register that is added to the vec-

tor address generated during exception processing. This allows the vector

area to start at any even address in memory on the 68010. The 68(XX) vec-

tor address always starts at absolute address zero.

8-bit peripheral devices. I/O devices designed to be connected to an 8-bit

data bus, rather than the 1 6-bit data bus on the 68000. The 68000 MOVER
instruction is designed to work with these devices.

Absolute long. A 68000 addressing mode in which the 32-bit longword fol-

lowing the instruction contains the address of the data to be used by the

instruction.

Absolute short. A 68000 addressing mode in which the 16-bit word follow-

ing the instruction contains the address of the data to be used by the

instruction. This form of addressing is limited to the first 32K (32,768) bytes

of memory

Accumulator variable. A variable used as a total. The variable usually starts

with an initial value of zero and is then augmented on each pass of a

loop.

Addressing error exception. An exception through vector 3 (offset OC hex)

that occurs when a program references a memory word or longword

using an odd address.

Addressing mode. Also known as an "Effective Address." On the 68000,

this addressing mode is one of several techniques for obtaining data for an

instruction. Data may be in a register, in memory or in the status register.

The 68000 has fourteen addressing modes (refer to Chapter 2 for a com-

prehensive description of the addressing modes).

Address register. One of eight 32-bit registers used to contain memory
addresses. These registers may be accessed as either 16- or 32-bit quantities.
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Address register direct. A 68000 addressing mode in which an address reg-
ister contains the data for the instruction.

Address register iridirect. A 68000 addressing mode in which an address
register contains the memory address of the data for the instruction.

Address register indirect with displacement. A 68000 addressing mode in
which an address register plus the word following the instruction is the
memory address of the data for the instruction.

Address register indirect with index. A 68000 addressing mode in which
an address register plus an 8-bit displacement plus an index register is the
memory address of the data for the instruction.

Address register indirect with post-increment. A 68000 addressing mode in
which an address register contains the memory address of the data for the
instruction. The address register is incremented by the data size (1, 2, or
4) after execution of the instruction.

Address register indirect with pre-decrement. A 68000 addressing mode in
which an address register is decremented by the data size (1, 2, or 4). The
address register then contains the memory address of the data for the
instruction.

Algorithm. A step-by-step procedure for performing some action. Algo-
rithms often form the basis for programs.

ALU. Arithmetic and Logical Unit. Performs arithmetic and logical opera-
tions on the data passing through it. The ALU is a major component of the
Central Processing Unit (CPU).

AND. A logical operation that takes two binary numbers and produces a
third binary number. This binary number has a 1 in every bit position
where both of the operands have a 1, and in all other bit positions.

Arithmetic and logical unit (ALU). The central part of the CPU. The ALU
performs all the basic data operations, i.e., addition, subtraction, and so on.

Arithmetic shift left. An operation on a single binary number in which each
bit is transferred to the left one or more positions. Bits shifted out of the
high-order bit position are transferred into a Carry bit. Zero bits are added
on the right.

Arithmetic shift right. An operation on a single binary number in which
each bit is transferred to the right one or more positions. Bits shifted out of
the low-order position are transferred into a Carry bit. The high-order bit is

preserved.

Array. A method of allocating memory to a group of data items (records) by
placing them one after another in contiguous locations.
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ASCII. American Standard Code For Information Interchange. ASCII is a sys-

tem by which each character (letters, digits, punctuation, and so on) is

assigned a unique 7-bit binary code. These codes are given in Appendix 8.

Assembler A program that transforms assembly language into machine

code.

Assembler directive. An assembly language statement that does no'

directly generate a machine operation, but which directs the assembler to

perform some action. An example is the ".page" directive, which instructs

the assembler to advance the listing to the top of the next page.

Assembly language. A programming language that allows a programmer to

specify individual machine instructions, but which does not require

assigning addresses for each instruction or data item. A program called an

assembler performs this task. The assembler also converts the instruction

mnemonics into their corresponding binary codes.

Autovector interrupt. An interrupt that uses the automatic vector assign-

ment mechanism for the 68000. Automatic vectoring assigns all interrupts

of a given priority level to a single vector. This feature can be used on sys-

tems that do not have many interrupting devices in order to save hard-

ware co:ts.

Backspace. An ASCII character that causes a terminal or printer to move
left one space.

BASIC. Beginner's All-Purpose Symbolic Instruction Code. BASIC is a pro-

gramming language designed for the novice programmer. It is easy to

learn and use. BASIC does not work well on large programs.

BCD. Binary Coded Decimal. BCD numbers store one decimal digit in

every four bits. BCD is widely used in hardware devices and commercial

applications.

Binary. A number system in which each digit (called a Bit) can have one of

two values, zero or one. The binary number scheme is used by most digi-

tal computers.

Binary search. A high-speed algorithm for finding an item in an ordered

table. The binary search consists of taking two pointers, which initially point

to the beginning and end of the table, and examining the item halfway

between the two pointers. The appropriate pointer is moved to the halfway

point and the process is repeated until the desired data item is found.

Binary tree. A tree structure in which each node may have at most two

children. See also Child node.
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Bit. Binary digil A bit is a single digit of a binary number, and may have

one of two values, zero or one.

Boolean operations. Logical operations on binary numbers that are

"bitwise" in nature. The most common Boolean operations are AND, OR,
and Exclusive OR.

Bootstrap. The process by which a computer starts up. The 680CX) RESET

operation is used to start most bootstrap operations. The term comes from

pulling oneself up by one's bootstraps. In the early days of computing, a

bootstrap operation often required reading in part of a program that

could read in some more of the program which could read in more of the

program, and so on.

Branch condition. A combination of the condition codes that is interro-

gated by a conditional branch instruction. If the branch condition is met

(i.e., the condition codes are set appropriately), the branch operation

takes place. Otherwise, the next instruction is executed.

Branch instruction. An instruction that alters the normal flow of instruc-

tions. A branch instruction can be conditional (branching only when cer-

tain conditions are met) or unconditional (branching whenever the

instruction is encountered).

Breakpoint. A location at which a debugger stops a program so that inter-

mediate results may be examined.

Bubble sort. A sorting technique that examines consecutive data elements,

swapping if necessary

Buffer. An area of memory usually used to hold data for I/O operations.

Buffered I/O. An I/O technique used by the C run-time library for per-

forming I/O a few bytes at a time. The library routines buffer the transfer

in a stream buffer to minimize the I/O overhead.

Bug. Any instruction (or set of instructions) in a program that causes an

error or unexpected result.

BUSERR exception. A 68000 exception through vector 2 (location 8),

which results from an attempt to access nonexistent memory

Byte. An 8-bit binary number. Most computers are constructed to work

on one or more bytes at a time.

C A high-level language suitable for use as a systems language.

Cards. An antique storage device that placed 80 or 96 characters on a

piece of paper. The characters were encoded as a combination of

punched holes that generated binary codes.
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Carriage return. An ASCII character (decimal value 13) that causes a terminal

or printer to go to the beginning (i.e., left-hand side) of the current line.

Carry bit. A bit used as an extension bit to the ALU. For example, during

an ADD operation, the carry bit receives the binary carry value that

results from the addition of the two high-order bits.

CCR. See Condition code register.

Central Processing Unit. See CPU.

Child node. In a binary tree structure, a node that is belovk' another node,

which is called the node's "parent."

Circular buffer. A queue structure that is implemented as an array A circu-

lar buffer contains a linear array of elements and insertion and deletion

pointers. When a pointer advances beyond the end of an array, it is

"wrapped around" to the beginning of the buffer.

Circular linked lists. A linked list in which the last element points either to

the list head or to the first element in the list.

COBOL, common Business Oriented Language. COBOL is one of the

first high-level programming languages, and is especially suited for busi-

ness software. Over 70 percent of existing software is in COBOL.

Comment line. In a program listing, a line inserted next to a line or lines of

coding which aids the human reader of the program to understand the

purpose or function of the coding.

Compute-bound task. See CPU-bound task

Computerese. The often obscure terminology that has developed In

response to computer technology

Conditional branch. An instruction that either branches to another loca-

tion in the program or continues to the next instruction, depending on the

setting of the condition codes in the status register.

Condition code register (CCR). The low-order byte of the 68000 status reg-

ister. The CCR contains the eXtend (X), Negative (N), oVerflow (V), Zero

(Z), and Carry (C) status bits. This register is also called the User byte of

the Status register.

Context switching. The process of saving volatile machine resources (such

as registers and dedicated memory locations) for one task and resetting

them for another task. This is also called a task swap.

Conversion routines. Code that converts data from one representation to

another. These routines are often used to convert binary data to ASCII for-

mat and vice versa.
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CP/M-68K. A rather simple operating system for the 68000. CP/M-68K
developed from CP/M-80 for 8080 and Z-80 machines.

CP/M SUBMIT file. A file of CP/M commands that can be executed with-

out operator intervention.

CPU. Central Processing Unit. The CPU is a combination of the Control

Unit (CU) and the Arithmetic-Logical Unit (ALU) and is the heart of every

computer. The CPU controls a computer's memory and I/O devices. The

68000 chip is an example of a CPU.

CPU-bound task. A program or routine that performs substantially more

computation than I/O.

Critical region. In a multitasking system, a critical region is an area of code

that cannot be executed by more than one task at once. Critical-region

code is the opposite of reentrant code.

CRT. Cathode Ray Tube. A computer's terminal is often referred to as a

CRT, even though the term refers strictly to the televison tube containing

the display screen.

C Run-time library. A collection of subroutines used by C programs for I/O

and other common functions.

Data register. One of eight 32-bit registers in the 68000 used for temporary

data storage. Many 68000 operations require a data register as one of the

operands.

Data register direct. A 68000 addressing mode in which the data for the

instruction is contained in a data register.

Data structures. Logical data structures that are superimposed on top of

data stored as linked lists or arrays. Common examples of such data struc-

tures are stacks, queues, and trees.

DDT-68K. The debugger that comes with CP/M-68K. It is used in this book

to illustrate the 68000 instruction set.

Deadlock. A situation that can arise in a multitasking environment in

which a number of tasks are waiting on resources held by other tasks.

Since the tasks which hold the resources are also waiting, all the tasks wait

forever.

Deadly eivbrace. See Deadlock.

Debugger. A program that allows interactive control of the execution of

another program. Examples are DDT-68K under CP/M-68K and SDB
under UNIX.
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Decimal. A number scheme in which each digit has one of ten values,

Oto 9.

Defensive progrannming. A programming style that attempts to minimize

the probability of bugs in a program.

Dequeues. A "double-ended queue." Data items in a dequeue can be

inserted or removed at either end.

Device-independent I/O. An operating system technique that attempts to

remove device considerations from I/O programming. The usual tech-

nique to achieve this is to treat all devices as if they v^ere files. UNIX I/O is

device-independent.

Direct file access. Also called random access. File I/O in which the records

are not processed in sequential order.

Disabling dispatching. A technique for providing mutual exclusion in an

operating system by disallowing context swaps while executing critical-

region code.

Disabling interrupts. A technique for providing mutual exclusion in an

operating system by masking off interrupts while executing critical-region

code.

Disassembly. The process of going from binary machine code to assembly

language.

Disk. A device that can be accessed in a random fashion and on which
data can be modified on a block-by-block fashion. Blocks (also called

"sectors") are typically 128-2048 bytes in length. Disks are usually round

platters of magnetic media.

Dispatcher. Operating system code that decides which program should

run next.

Documentation. Written information that describes some aspect of a com-
puter system. Documentation is usually written for one of two
audiences—the users of the computer, who require functional descrip-

tions of how the software and hardware operates, or computer program-

mers and technicians, who require detailed technical descriptions of the

computer system.

Double-bus fault. A situation in which the 68000 references illegal mem-
ory during the processing of an exception. The processor halts as a result.

A double-bus fault can be caused by a corrupted system stack pointer

(SSP) or an incorrect vector base register (only on the 68010).

Doubly-linked list. A linked list in which each item points to both the pre-

vious item and the next item.
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Effective address operand. An operand of an instruction which may use
one of the fourteen 68000 addressing modes.

Efficiency. Software efficiency is measured in terms of size and speed. A
size-efficient program packs a lot of functionality into a small area of mem-
ory A speed-efficient program performs its function rapidly The two types
of efficiency are often mutually exclusive.

End of file. A condition that occurs during a read operation when there is

no more data to be read. The operating system normally returns an error
to the program in this case.

Error condition. A condition that is not the normal case. A program may
or may not recover from an error. Errors that a program cannot recover
from are often called "fatal" errors.

Exception. The capability of the 68000 to interrupt the processing of the
current program and do something else. Exceptions can be caused by
program errors or external events.

Exception handler. Code that processes an exception condition.

Exclusive OR. An operation on two binary numbers that produces a third

binary number. The result has a 1 in every position where one of the two
operands has a 1. The result has a in every position where both oper-
ands have a zero or both operands have a 1

.

Executable file. A file that contains a machine-language program that can
be loaded into memory and executed by the operating system.

Extend bit. The X bit in the condition code register. The extend bit is used
to provide a carry for multiprecision operations on the 68000.

External symbols. Labels used in an assembly-language program that are
defined in another program that assembled separately The linker program
resolves the references between programs.

File. A collection of bytes, normally stored on a disk device, that has a
name and is handled as a unit by the computer system.

File close. A file operation provided by the operating system which termi-
nates a program's access to a file.

File create. A file operation provided by the operating system which
allows a program to create a new file.

File descriptor. A 16-bit quantity returned by the unbuffered C run-time
routines that identifies an open file.

File open. A file operation provided by the operating system which allows
a program to access an existing file.
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File read. A file operation provided by the operating system which trans-

fers data from a file into memory.

F//e system. That part of the operating system that performs file operations.

File write. A file operation provided by the operating system that transfers

data from memory to a file.

First In First Out (FIFO). A scheduling discipline for organizing data on a

stack. The first data item to arrive is the first to get service. FIFO schedul-

ing is used by the QUEUE data structure.

Fixed length records (FLR). A technique of organizing information such

that each piece of information takes up the same amount of memory

Flowchart. A technique for representing an algorithm in a visual form.

Fork queues. A scheduling technique used by operating systems, that

allows interrupt code to use the operating system resources normally

available only to tasks in the operating system.

Form feed. An ASCII character (decimal value 12) that causes a printer to

advance to the top of the next page.

FORTRAN. FORmula TRANslation. FORTRAN was the first high-level lan-

guage and is still widely used in scientific work.

Frame pointer. An address register used to address data allocated on the

stack via the LINK instruction.

hiardware stack pointer. Register A7, which is used by the 68000 instruc-

tion set to point to the top of a stack.

hiash code. The result of a hash function. Hash codes are used to deter-

mine an item's position in a table used by the hashing technique.

Hash collision. The situation which arises when using hashing in which

two different elements have the same hash code.

Hash function. The algorithm for determining a hash code for a given data

item. A good hash function is one that results in few hash collisions for

ordinary data.

Hashing. A technique for searching tables in which a desired data item is

placed in a table according to a hash code. Hash codes for the data items

are determined by a hash function.

Hexadecimal. A number system in which each digit can have one of six-

teen values, 0-9 or A-F (values zero-15). Hexadecimal numbers can be

easily converted to or from binary

Hex debugger. A debugger with which the user must specify addresses in

hex. See also Symbolic debugger.
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High-level language. A programming language that communicates with
the computer at a higher level than machine instructions. Examples
include BASIC, C, COBOL, FORTRAN, and Pascal.

Hybrid records. A technique of organizing information such that each
piece of information occupies a fixed length and a variable-length area of
memory.

Illegal instruction exception. An exception through vector 4 (address 10
hex) which results from the 68000 trying to execute a memory word that

did not contain a valid 68000 machine instruction.

Immediate mode. A 68000 addressing mode in which the data for the
instruction immediately follows the instruction.

Implementor's documentation. Documentation that describes in technical
terms how a program does what it does. This documentation is typically

used by a programmer to modifying a program.

Index register. An address or data register used by the address register

indirect with index addressing mode or program counter relative with
index addressing mode. The index register is added to the address register

or the program counter and the displacement to obtain the memory
address of the data.

Information hiding. A technique of decomposing a program into modules
such that the organization of major data structures is hidden from all mod-
ules except one.

Insertion sort. A sorting technique in which the data items are placed In

an ordered list one at a time.

Instruction. An operation which the computer can perform in hardware.

Interchange sort. A group of sorting techniques that rearranges the data in

place. A bubble sort is an example of an interchange sort.

Interrupt. An exception caused by an external device.

Interrupt-driven I/O. The process of starting an I/O operation and waiting

for the device to interrupt upon completion of the I/O operation. Computa-
tions may be overlapped with the I/O using the interrupt-driven technique.

Interrupt latency The maximum time between an external device request-

ing an interrupt and the beginning of the interrupt service code. This

interval is determined by the largest number of instructions executed with

interrupts masked off.

Interrupt mask. Bits 8-10 of the status register. The 68000 will not recog-
nize an interrupt that is less than or equal to the value in the interrupt

mask. (Level 7 interrupts may not be masked off in this fashion.)
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I/O. Input / Output. The process by which a computer exchanges infor-

mation with the outside world.

l/O-bound task. A program whose execution speed is limited by I/O

rather than computations.

I/O devices. One of several devices, such as a terminal or printer, that can

be connected to a computer for purposes of giving information to or

receiving information from the computer.

K. An abbreviation for "Kilo" (1,000), which has been adapted to mean
1,024 in computer terminology.

Kb. See Kilobyte.

Kilobyte. 1,024 bytes. Kilobyte is often abbreviated Kb.

Label. In assembly language, a label is a symbolic tag associated with an

instruction or a data area. Instructions may refer to the label, and the

assembler will assign the correct address in memory.

Last In First Out (LIFO). A storage discipline in which the last item added

to a data structure is the first one removed. Stacks are an example of LIFO

data structures.

Leaf node. A leaf node of a tree structure is one with no descendant

nodes. See also Binary tree.

Level 7 interrupt. A level 7 interrupt is an external interrupt that may not

be masked off.

Linear linked lists. A linked list in which the last element contains a value

that indicates there are no more elements in the list.

Line 1010 exception. An exception executed through vector 10 (address

28 hex) which results whenever the 68000 encounters an instruction

word with values between AOOO-AFFF hex.

Line 1111 exception. An exception executed through vector 1 1 (address

2C hex) which results whenever the 68000 encounters an instruction

word with values between FOOO-FFFF hex.

Line feed. An ASCII character (decimal value 10) which causes a terminal

to advance to the next line.

Linked list. A storage discipline in which each item in a set of records con-

tains the address of the next item in logical order.

Linked list tail pointer. A variant on the linked list technique in which the

address of the last element in the list is maintained in a separate pointer.

Linker. A program that combines multiple assembly object files into a
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single executable file. The linker resolves the use of external symbols
among the different program segments.

List head. A memory location that contains the address of the first item in

a linked list.

Listing file. A file produced by the assembler that shows the source pro-
gram and the machine code produced by the assembler.

Load file. See Executable file.

Load module. See Executable file.

Logical left shift. An operation on a single binary number in which each
bit is moved to the left one or more positions. Zeroes are added on the
right. The last bit shifted out of the high-order bit position is preserved in

the Carry bit.

Logical right shift. An operation on a single binary number in which each
bit is moved to the right one or more positions. Zeroes are added on the
left. The last bit shifted out of the low-order bit position is preserved in the
Carry bit.

Longword. A 32-bit quantity (4 bytes).

Loop. A series of instructions that are executed repetitively

Looping primitive. An instruction designed to facilitate programming
loops. The 68000 looping primitive is the DBcc instruction.

M. An abbreviation for "Mega" (1,000,000), which has been adapted to

mean 1,048,576 (1042 x 1024) in computer terminology

Machine language. The binary code which is executed by the computer.

Mailbox. In a message-switched operating system, a mailbox is a storage
area for messages that a task has not yet received.

Mb. See Megabyte.

Megabyte. 1,048,576 bytes (abbreviated Mb).

Memory. A device capable of storing and retrieving information. Com-
puter memories usually store and retrieve 8, 16, or 32 bits at a time.

Memory access codes (FC0-FC2). Three output signals on the 68000 that

indicate to external devices what kind of memory access is being
performed.

Memory address. A mechanism for specifying which memory location is

to be affected in a memory operation.

Memory bus. The physical connection between the CPU and memory
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Memory data. Contents of a memory location.

Memory management unit. An external device which translates the

addresses output by the CPU (called "logical addresses") to real memory
addresses. The MMU is used to provide memory protection, i.e., to pre-

vent a program from destroying another program or the operating system.

Memory mapped hardware. External devices connected to the 68000 that

appear to be memory locations.

Memory read. A memory operation that retrieves the contents of a mem-
ory location.

Memory write. A memory operation that sets the contents of a memory
location.

Message switching. A technique for achieving mutual exclusion in an oper-

ating system. Critical regions in the system are contained in tasks, which
process messages one at a time. See also Critical region.

Mnemonic. A symbol recognized by the assembler to represent a particu-

lar machine language instruction.

Modem. MOdulator DEModulator. A device for connecting two com-
puters over a telephone line.

Modularity The degree to which a program is constructed of discrete

building blocks.

Monitor procedures. A technique for achieving mutual exclusion in an

operating system. A monitor procedure is a section of code which can be

executed by only one task at a time.

Multitasking. The ability to run multiple programs simultaneously

Mutual exclusion. Allowing only one task at a time to execute a given

piece of code.

Negative bit. A bit in the condition code register that is set when the high-

order bit of the result of an operation is set, which in turn indicates a

result less than zero.

Nibble. A group of four bits; one half of a byte.

Nonmaskable interrupt (NMI). An interrupt that cannot be disabled by

software.

Nonshareable devices. I/O devices, such as printers, that cannot be used

by more than one program at a time.

No operation instruction. An instruction which does nothing (except take

time).
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Object code portability. The ability to take an executable file from one sys-

tem and run it on another system.

Object file. The binary code file created by the assembler.

One's complemerit. An operation on a single binary number that inverts

the state of all bits in the number. All zero bits become one and all one
bits become zero.

Op code. A binary pattern that instructs the computer to perform some
action.

Operand. Data on which an instruction operates.

Operating system. A program that controls the execution of other pro-

grams and coordinates the functions of a computer system.

Overflow bit. A bit in the 68000 status register that is set when the result

of an operation is too large to represent.

Parent node. In a binary tree, a parent node is a node that has descendant

nodes.

Pascal. A high-level language widely used to teach budding computer
scientists.

Pathological connection. A case where one area of a program makes
some assumption about the inner workings of another area. Changing the

second area often introduces bugs in the first.

PUi. Programming Language I. A high-level language that contains all of

the features in FORTRAN and COBOL. PL/I is commonly used on main-

frame computers.

Pop. An operation that removes the top item of a stack.

Portability The ability to move a program from machine to machine.

Preemptive priority-driven scheduling. A scheduling technique in which a

high-priority task can usurp the CPU from a lower-priority task that is cur-

rently using the CPU.

Preemptive scheduling with time-slicing. A modified preemptive schedul-

ing technique which provides time-slicing among tasks that have equal

priority. See also Time-slicing.

Printer. A device that outputs data on "hardcopy" (paper).

Priority-driven scheduling. A technique in which a task receives CPU time

on a priority basis.

Priority order queue. A queue arranged in some order other than time of

arrival.
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Privileged instruction. An instruction that potentially compromises the

integrity of a computer system. These instructions, such as RESET, can only

be executed when the 68000 is in Supervisor mode.

Privilege violation exception. An exception that occurs through vector 8

(address 20 hex) when a user mode program attempts to execute a privi-

leged instruction.

Program. A group of instructions and data that performs a particular

function.

Program counter. A 32-bit register that contains the address of the next

instruction to be executed.

Program counter with displacement. A 68000 addressing mode in which

the program counter is added to the word following the instruction to

obtain the memory address of the data for the instruction.

Program counter with index. A 68000 addressing mode in which the pro-

gram counter is added to an index register and an 8-bit displacement to

obtain the memory address of the data for the instruction.

Programming language. A method of communicating with a computer in

order to perform some task. Computers may be programmed in machine,

assembly, or high-level languages.

Push. An operation that adds an element to the top of a stack.

Queue. A data structure in which items are added and removed on a First

in First Out (FIFO) basis.

Read-modify-write operation. An operation that guarantees that a memory
flag has been read and modified with no other device allowed to access

the flag.

Records. An area of memory that constitutes some organization of

information.

Recursion. The process of defining a structure or algorithm in terms of

itself.

Reentrant code. Code that can be executed by more than one task at a

time.

Register. A temporary memory location within the CPU that is used for

temporary data storage.

Resource management. The regulation, usually by an operating system, of the

various aspects of a computer system by other programs. This includes CPU
scheduling, I/O device management, and memory allocation.
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Ring buffer. See Circular buffer.

ROM. Read only memory.

Root. The topmost element of a tree.

Rotate left. An operation on a single binary number in which each bit is

moved to the left a number of positions. Bits shifted out the high-order

end of the number are shifted back in the low-order end, possibly

through an external Carry bit.

Rotate right. An operation on a single binary number in which each bit is

moved to the right a number of positions. Bits shifted out the low-order

end of the number are shifted back in the high-order end, possibly

through an external Carry bit.

Round robin scheduling. See time-slicing.

Scheduling. The process of allocating CPU time to a number of competing

tasks.

Screen. The output (visual) side of a computer's CRT Terminal.

Searching. The process of finding a specific data item in a group of data

items.

Semaphore. A mutual exclusion technique by which tasks are queued up
on a data item called a semaphore.

Sequential search. The process of finding an item in a table by starting at

the front of the table and looking at each item until the data item is

located.

Sibling nodes. In a tree data structure, nodes that are children of the same
parent node.

Sign bit. The high-order bit of a binary number. This bit is set when the

number is less than zero in two's complement arithmetic.

Sign extension. The process of moving a binary number to another binary

number with more bits by replicating the top bit of the source in all of the

extra bits in the destination.

Sorting. The act of taking unordered data and arranging them to meet

some ordering criteria.

Source code. Text which the user enters into an assembler in order to pro-

duce an object file. See also Object file.

Source code portability. The ability to move a program in source form

from one system to another.

Source file. A text file containing program source code.
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Spaghetti code. A derogatory term for a poorly organized program.

Stack. A data structure in which the last item added is the first item

removed. Also a Last In First Out (LIFO) data structure.

Stack frame. Data allocated on the stack using the LINK instruction.

Stack overflow. Trying to push an item on a stack that has no more avail-

able space.

Stack pointer. A register or memory location that gives the location of the

top item on a stack.

Stack underflow. Trying to remove an item from an empty stack.

Status register. The 16-bit CPU register in the 68000 containing the trace,

supervisor, interrupt mask, and condition code bits.

Status register addressing. A 68000 addressing mode in which the status

register is the destination of an instruction.

Status register system byte. The upper byte of the status register. This byte

contains the trace, supervisor, and interrupt mask bits.

Status register user byte. The lower byte of the status register, which con-

tains the condition codes.

Stream I/O. See Buffered I/O.

String. A set of ASCII characters arranged in contiguous memory locations.

Structures. Data structures.

Subroutine. A group of instructions that may be used at several different

points in a program through subroutine call and return instructions.

Subroutine call. An instruction that places the address of the next instruc-

tion on the stack and then branches to an address specified in the

instruction.

Subroutine return. An instruction that pops an address off the stack and

branches to it.

Subtree. Any node of a tree and all its descendants.

Supervisor bit. Bit 1 3 in the status register, which governs the execution of

privileged instructions.

Supervisor mode. The condition when bit 13 of the status register is set,

indicating that the 68000 will execute privileged instructions.

Supervisor stack pointer (SSP). The stack pointer used when the 68000 is in

supervisor mode.

Symbolic debugger. A debugger that allows you to specify memory
addresses using the symbols in the program.
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System bit. Bit 1 3 of the status register, which governs execution of privi-

leged instructions.

Tape. A device that records data on a long strip of magnetic material. Tape

devices usually require that the data be processed sequentially.

Task. A program that executes independently

Terminal. A device that allow^s a computer user to display and input ASCII

data.

Text editor A program that allows you to create and modify (i.e., edit)

ASCII files.

Time-slicing. A CPU scheduling technique that gives the CPU to each task

for a brief period, on a rotating basis. Task swaps occur 10 to 100 times a

second to give the illusion of simultaneous execution.

Top-down implementation. Implementing the top level of a program first,

testing it, then implementing the lower levels, one at a time, testing as

you go.

Top-down program design. A discipline of program design that involves

designing the top levels of a program first, followed by the lower levels.

Trace bit. Bit 1 5 of the status register. When this bit is set, a trace excep-

tion will occur at the end of the next instruction.

Trace exception. An exception that occurs through vector 9 (address 24

hex) as a result of executing an instruction with the trace bit on.

TRAP exception. An exception that occurs through vectors 32-47

(addresses 80-BC hex) when a TRAP 0-15 instruction is executed.

Trees. A data structure in which each item may point to more than one

next item.

Two's complement. A system of binary arithmetic that represents negative

numbers as the two's complement of the corresponding positive number.

UCSD P-system. An operating system based on the Pascal programming

language that is available for the 68000.

Unbuffered I/O. A method of doing I/O through the C run-time library

that does not require intermediate buffering.

Unconditional branch. A branch instruction that is not dependent on the

condition codes. An unconditional branch is always executed.

UNIX. An operating system written in the C language that runs on the

68000.
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Unsigned arithmetic. Considering a binary number to be always positive.

This changes the range of a 16-bit number, for instance, from -32768 -
32767 to - 65535.

User documentation. Program documentation that describes how to use a

program.

User mode. The condition that results when the Supervisor bit in the sta-

tus register is not set.

User mode stack pointer (USP). The stack pointer used by the 68000 when
the processor is in user mode.

Variable length records (VLR). A technique of organizing information such

that each piece of information is not constrained to occupy the same size

memory area. This requires a method for determining the length of each

record.

Vector A memory location associated with an exception that gives the

address of the code which handles the exception.

Vectored interrupts. A 68000 interrupt technique in which the interrupting

device specifies which vector is to be used in processing the interrupt.

Virtual memory. A technique by which a program may execute with only

a portion of its code in memory. This reduces the amount of physical

memory required to run a given program. The 68010 can support a vir-

tual memory system, but the 68008 and 68000 cannot.

Wild branch. An error condition in which a branch is made to an errone-

ous address. This condition can also result from an erroneous RTS or RTE

instruction.

Word. A 16-bit binary number.

Zero bit. A bit in the status register that is set when the result of an opera-

tion is zero.
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EFFECTIVE ADDRESS SUMMARY

Bit 15 14 13 12 11 10 9

Instruction

1

Format:

1 1 r

Op Code

J I L

1
\

1
1 r

lllllllllllllllll

J I I I L

—I

1 1 1
\

—
Effective Address

_j L

-Mode-* *- Reg. -

Addressing Mode Name Syntax Mode Register

Data Register Direct Dn 000 Data Register

Address Register Direct An 001 Address Register

Address Register Indirect (An) 010 Address Register

Address Register Indirect Postincrement (An) + oil Address Register

Address Register Indirect Predecrement -(An) 100 Address Register

Address Register Indirect with Displacement w(An) 101 Address Register

Address Register Indirect with Index b(An,Rx) 110 Address Register

Absolute Short w 111 000

Absolute Long 1 111 001

Program Counter with Displacement w(PC) 111 010

Program Counter with Index b(PC,Rx) 111 Oil

Immediate #x 111 100

Status Register SR 111 100

Condition Code Register CCR 111 100
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Legend:

Dn Data Register (n is 0-7)

An Address Register (n is 0-7)

b 08-bit constant

w 16-bit constant

I 32-bit constant

X 8-, 16-, or 32-bit constant

Rx index Register Specification, one of:

Dn.W Low 16 bits of Data Register

Dn.L All 32 bits of Data Register

An.W Low 16 bits of Address Register

An.L All 32 bits of Address Register

15 14 13 12 11 10 9Bit

Index

Extension Word:

"A" is the type of index register: 1 for an address register, for a data reg-

ister. "Sz" is 1 for a long index, for word.

1

A

r
—1

Register

1 1

Sz

1 1 I T
1 1 1

8-bit Displacement

1 1 1 1 1 1 1

Operation Code Summary

Bits

12 through 15
Operation

0000 Bit Manipulation/MOVEP/lmmediate

0001 Move Byte

0010 Move Word
0011 Move Long

0100 Miscellaneous

0101 ADDQ/SUBQ/Scc/DBcc
0110 Bcc / BSR

0111 MOVEQ
1000 OR / DIV / SBCD
1001 SUB / SUBX
1010 (unassigned)

1011 CMP / EOR
1100 AND / MUL / ABCD / EXC
1101 ADD / ADDX
1110 ASL/ASR/ROL/ROR/ROXL/ROXR
1111 (unassigned)
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NUMERICAL INSTRUCTION SUMMARY

Instruction Machine Code Format Condition Codes

ORI 15-12 11 10 9 8 7 6 5 4 3 2 1

0000 Size

1

1 1

Effective

1 1

1 1

Address

1 1

BTSr 15-12 11 10 9 8 7 6 5 4 3 2 1

([dynamic)
0000

1 1

DReg.

1 1

1

1 1

Effective

1 1

1 1

Address

1 1

BCHC 15-12 11 10 9 8 7 6 5 4 3 2 1

(Dynamic)
0000

1 1

DReg.

1 1

1 1

1 1

Effective

1 1

Address

1 1

BCLR 15-12 11 10 9 8 7 6 5 4 3 2 1

(Dynamic)
0000

1 1

DReg.

1 1

1 1

1 1

Effective

1 1

1 1

Address

1 1

BSET 15-12 11 10 9 8 7 6 5 4 3 2 1

(Dynamic)
0000

I 1

DReg.

1
1

1 1 1

1 1

Effective

1 1

1 1

Address

1 1

X N Z V C-00

X N Z V C

X N Z V C

X N Z V C

X N Z V C

MOVEP 15-12 11 10 9
1

1

—

0000 DReg.

_J l_

7 6 5 4 3 2 10
T—

r

Dr Sz
Address

Register
I I

X N Z V C
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Instruction Machine Code Format Condition Codes

ANDI 15-12 n 10 9 8 7 6 5 4 3 2 10

0000 1

1

Size

1

1 1 1 1 1

Effective Address

1 1 1 1 1

X N Z V C
- * *

SUBI 15-12 11 10 9 7 6 5 4 3 2 10
0000 1

1

Size

1

1 1

Effective

1 1

1 1

Address

1 1

X N Z V C

ADDI 15-12 11 10 9 8 7 6 5 4 3 2 10
0000 1 1 Size

1

1 1 1 1 1

Effective Address

1 1 1 1 1

X N Z V C

BTST

(Static)

15-12 11 10 98765432 10 XNZVC
0000 1

I 1 1 1 1

Effective Address

1 1 1 1 1

BCHC
(Static)

15-12 11 10 9 8 7 6 5 4 3 2 1

0000 1 1

1 1

Effective

1 1

1 1

Address

1 1

XNZVC

BCLR
(Static)

15-12 11 10 9 8 7 6 5 4 3 2 1

0000 1 1

1 1

Effective

1 1

Address

1 1

XNZVC

BSET

(Static)

15-12 11 10 9 8 7 6 5 4 3 2 1

0000 1 1 1

1 1

Effective

1 1

1 I

Address

1 1

XNZVC
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Instruction Machine Code Format Condition Codes

EORI 15-12 11 10 9 8 7 6 5 4 3 2 10
0000 1 1 Size

1

Effective Address

1 1 1 1 1

X N Z V C
. * *

0000 1 1

1

Size

1

1 1 1 1 1

Effective Address

1 1 1 1 1

X N Z V C
3fc ifc :tc 3(C ]((

(68010)
0000 1 1 1

1

Size

1

-1
J- I 'I I

Effective Address

1 1 1 1 1

X N Z V C

MOVE B 15-12 11 10 98765432 1

1 T

0001 Register

_l l_

Mode

J L_

*- Destination -•

-I—

r

Mode

_i L

—I—I

—

Register

*- Source -

X N Z V C

0010

—1—1

—

Register

1 1

1

1 1

Mode
1 1

I 1

Register

1 1

^ Destirlation - ^ Sou rce -»

X N Z V C

0010 Register

1 1

1 1

Mode
1 1

Mode
1 1

1 1

Register

1 1

— Destirlation — •^ Sou rce -*

00
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Instruction Machine Code Format Condition Codes

MOVEA.W 15-12 11 10 98765432 1 X N Z V C

0011

1 1

Register

1 1

1

1 1

Mode
1 1

1 1

Register

1 1

^ Destination - — Source -

MOVE.W 15-12 11 10 9
-1 1

—

0011 Register

I I

765432 10 XNZVC
- *~l T

Mode

J L

*- Destination -*

-^—

r

Mode Register

_J l_

Source

NECX 15-12 11 10 9 8 7 6 5 4 3 2 10
0100 Size

1

1 1 1 1 1

Effective Address

1 1 1 1 1

XNZVC
* *

MOVE
From SR

15-12 11 10 9 8 7 6 5 4 3 2 1

0100 1 1

1 1

Effective

1 1

1 I

Address

1 1

XNZVC

CHK 15-12 n 10 9
n 1

—

0100 DReg.

_J L_

7 6 5 4 3 2 10
I

I
I I I

Effective Address

I I I I I

XNZVC
- * U U U

LEA 15-12 11 10 9876543210
T—

r

0100 A Reg.

_J L_

—I

1 1 1 1

—

Effective Address

I I I I I

XNZVC
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Instruction Machine Code Format Condition Codes

CLR 15-12 11 10 9 7 6 5

0100

3 2 10
Size

—I

1 1 1 1

—

Effective Address

X N Z V C
- 1

MOVE 15-12 11 10 9

From CCR
(68010)

0100

7 6 5 4 3 2 10 X N Z V C
"1 1 ^ T

Effective Address

—I I I I I

NEC 15-12 11 10 9

0100

7 6 5 4 3 2 10
Size

—I

1 1 1 1—

Effective Address

—I 1 I
I I

X N Z V C
*****

MOVE
to CCR

15-1 2 11 10 98765432 10 XNZVC
"1 1—I—I r

0100 Effective Address

—I 1 I
I I

I I I I I

NOT 15-12 11 10 9 8 7 6 5 4 3 2 10
0100 1 1

1

Size

1

1 1 1 1 1

Effective Address

1 1 1 1 1

XNZVC
- * *

MOVE 15-12 11 10 9 8 7 6 5 4 3 2 1 XNZVC
toSR

0100 1 1 1 1

1 1

Effective

1 1

T 1

'

Address

1 1

I I I I I
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Instruction Machine Code Format Condition Codes

NBCD 15-12 n 10 9 8 7 6 5 4 3 2 1

0100 1

1 1

Effective

1 1

1 1

Address

1 1

SWAP 15-12 11 10 9876543 2 1

0100 1 1 DReg.

1 1

PEA 15-12 11 10 9876543 2 1

0100 1 1

1 1

Effective

1 1

1 1

Address

1 1

EXT.W 15-12 11 10 9876543 2 1

0100 1 1

1 1

DReg.

1 1

MOVEM 15-12 11 10 9876543 2 1

(Regs to EA)
0100 1 1 Sz

1 1

Effective

1 1

1 1

Address

1 1

EXT.L 15-12 11 10 9876543 2 1

0100 1 1 1

1 1

DReg.

1 1

TST 15-12 11 10 9876543 2 1

0100 1 1

1

Size

1

1 1

Effective

1 1

1 1

Address

1 1

X N Z V C
* U U

X N Z V C
- *

X N Z V C

X N Z V C
- * *

X N Z V C

X N Z V C
- * *

X N Z V C
- * *
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Instruction Machine Code Format Condition C€>des

US 15-12 11 10 9 8 7 6 5 4 3 2 1

0100 1 1 1 1

1 1

Effective

1 1

Address

1 1

X N Z V C.00

ILLEGAL 15-12 11 10 98765432 10 XNZVC
0100 1 1 1 1 1 1 1 1

(EA to Regs)
0100 1 1 1 Sz

-1
r I I 1

Effective Address

1 1 1 1 1

XNZVC

0100 1 1 1 1

—-T— ' 1 1

Vector

1 1 1

XNZVC

LINK 15-12 11 10 98765432 10 XNZVC
0100 1 1 1 1 1

...
J ,

A Reg.

1 1

UNLK 15-12 11 10 9 8 7 6 5 4 3 2 1

0100 1 1 1 1 1 1

1 1

A Reg.

1 1

XNZVC

MOVE
toUSP

15-12 11 10 98765432 10 XNZVC
0100 1 1 1 1 1

1 1

A Reg.

1 1



508 Programming the 68000

Instruction Machine Code Format Condition Codes

MOVE
from USP

15-12 11 10 9 8 7 6 5 4 3 2 1

0100 1 1 1 1 1 1

1 1

A Reg.

1 1

X N Z V C

RESET 15-12 11 10 98765432 10 XNZVC
0100 1 1 1 1 1 1

NOP 15-12 11 10 98765432 10 XNZVC
0100 1 1 1 1 1 1 1

STOP 15-12 11 10 98765432 10 XNZVC
I I I I I

0100 1 1 1 1 1 1 1

JITf 15-12 11 10 98765432 10 XNZVC
I I I I I

0100

RTD
(68010)

15-12 11 10 98765432 10 XNZVC
0100 1 1 1 1 1 1 1

J175 15-12 11 10 98765432 10 XNZVC
0100 1 1 1 1 1 1 1 1
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Instruction Machine Code Format Condition Codes

TRAPV 15-12 11 10 9 765432 10 XNZVC
0100 1 1 1 1 1 1 1 1

RTR 15-12 11 10 98765432 10 XNZVC
I I I I I

0100 1 1 1 1 1 1 1 1 1

MOVEC 15-12 11 10 98765432 10 XNZVC
(6801 0)

0100 1 1 1 1 1 1 1 1 Rd

ISR 15-12 11 10 9 8 7 6 5 4 3 2 1

0100 1 1 1 1

...... J

1 1

Effective

1 1

Address

1 1

XNZVC

IMP 15-12 11 10 9 8 7 6 5 4 3 2 1

0100 1 1 1 1 1

1 1

Effective

1 1

1 1

Address

1 1

XNZVC

ADDQ 15-12 11 10 98765432 10
0101

I I"'

IData

1 1

1

Size

1

1 1

Effective

1 1

1 1

Address

1 1

XNZVC

Sec 15-12 11 10 98765432 10 XNZVC
T—I—

r

0101 Condition

_l I 1_

—

I

1
1 1

1

—

Effective Address

\ I I
I I
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Instruction Machine Code Format Condition Codes

0101

1 1 1

Condition

1 1 1

1 1 1

1 1

DReg.

1 1

X N Z V C

SUBQ 15-12 11 10 9 876543210
0101 Data

J L

Size

—I

1 1 1 1

—

Effective Address

I I I I I

X N Z V C

Bcc 15-12 11 10 9876543210
T—I—

r

0110 Condition

_l I L.

T—I—I—I—I—I—

r

8-bit Displacement

I I I I I I I

X N Z V C

BSR 15-12 11 10 9 8 7 6 5 4 3 2 1

0110 1

1 1 1 1 1 1 1

8-bit Displacement

1 1 1 1 1 1 1

X N Z V C

0111

I 1

DReg.

1 1

1 1 1 1 1 1 1

8-bit Data Value

1 1 1 1 1 1 1

X N Z V C-00

OR

1000

I I

DReg.

1 1

Dr

I

Size

1

1 1

Effective

1 1

1 1

Address

1 1

X N Z V C-00

DIVU 15-12 11 10 9
T 1

1000 DReg.

_l 1_

765432 10 XNZVC
1—I—I

1—

r

Effective Address

I I I I I
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1

Instruction Machine Code Format Condition Codes

SBCD 15-12 11 10 9 8 7 6 5 4 3 2 1

1000 Dest Reg

1 1

1 DA Src Reg

1 1

DIVS 15-12 11 10 9 8 7 6 5 4 3 2 1

1000

1 1

DReg.

1 1

1 1 1

1 1

Effective

1 1

Address

1 1

SUB 15-12 11 10 9 8 7 6 5 4 3 2 1

1001

1 i

DReg.

1 1

Dr

1

Size

1

1 1

Effective

1 1

1 1

Address

1 1

SUBA 15-12 11 10 9 8 7 6 5 4 3 2 1

1001

1 1

A Reg.

1 1

Sz 1 1

1 1

Effective

1 1

1 1 1

Address

1 1 1

SUBX 15-12 11 10 9 8 7 6 5 4 3 2 1

1001

1 1

Dest Reg

1 1

1

1

Size

1

DA

1 1

Src Reg

1 1

CMP 15-12 11 10 9 8 7 6 5 4 3 2 1

1001

1 1

DReg.

1 1

1

Size

1 1

Effective

1 1

1 1

Address

1 1

CMPA 15-12 11 10 9 8 7 6 5 4 3 2 1

1011

1 1

A Reg.

1 1

Sz 1 1

1 1

Effective

1 1

1 1

Address

1 1

X N Z V C
* U U *

X N Z V C
* * *

X N Z V C

X N Z V C

X N Z V C

X N Z V C

X N Z V C
- * * * *
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Instruction Machine Code Format Condition Codes

EOR 15-12 11 10 9 6 5 4 3 2 10
1011

1 1

DReg.

1 1

1

1

Size

1

1 1

Effective

1 1

r—1

—

Address

1 1

X N Z V C
- * *

CMPM 15-12 11 10 9 8 7 6 5 4 3 2 1

1011

1 1

Dest Reg

1 1

1

1

Size

1

1

1 1

Src Reg

1 1

X N Z V C
* * * *

AND 15-12 11 10 9876543210
T—

r

1100 DReg.

_l l_

Dr Size

i

I
I I I

Effective Address

I I I I l_

X N Z V C

- *

MULU

1100

1 I

DReg.

1 1

1 1

1 1

Effective

1 1

1 1

Address

1 i

X N Z V C

- * *

ABCD 15-12 11 10 9 8 7 6 5 4 3 2 1

1100 Dest Reg

1 1

1 DA

1 1

Src Reg

1 1

X N Z V C
* u u *

EXG J5-12 11 10 9

(2 D regs)

7 6 5 4 3 2 10
1100

1 1

DReg.

1 1

1 1

1 1

DReg.

1 1

X N Z V C

fXG
(2 A regs)

15-12 11 10 9 8 7 6 5 4 3 2 1

1100 A Reg.

1 1

1 1 1

1 1

A Reg.

1 1

X N Z V C
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Instruction Machine Code Format Condition Codes

(A and

Dreg)

7 6 5 4 3 2 10
noo

1 1

DReg.

1 1

1 1 1

1 1

A Reg.

1 1

X N Z V C

MULS 15-12 11 10 98765432 10
1—

r

1100 DReg.

_j |_

I

I
I I I

Effective Address

I I I I I

X N Z V C
- *

ADD 15-12 11 10 9
—

I

\

—
1101 DReg.

7 6 5 4 3 2 10
Dr Size

I

I

I
I I I

Effective Address

I I I I I

X N Z V C
3tc 3(c 3)c :(c :tc

ADDA 15-12 11 10 98765432 10 XNZVC
1101

1 1

A Reg.

1 1

Sz 1 1

1 1

Effective

1 1

1 1

Address

1 1

ADDX 15-12 11 10 9 8 7 6 5 4 3 2 1

1101 Dest Reg

1 1

1

1

Size

1

RM Src Reg

1 1

XNZVC

ASR
(Memory

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

1110 1 1

1 1

Effective

1 1

Address

1 1

XNZVC

ASL

(l^emory

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

1110 1 1 1

1 1

Effective

1 1

1 1

Address

1 1

XNZVC
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Instruction Machine Code Format Condition Codes

LSR

(Memory

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

1110 1 1 1

1 1

Effective

i 1

1 1

Address

1 1

X N Z V C
* *

LSL

(Memory

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

1110 1 1 1 1

' 1

Effective

1 1

1 1

Address

1 1

X N Z V C
* * *

ROXR
(Memory

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

1110 1 1 1

1 1

Effective

1 1

Address

1 1

X N Z V C
* * * *

(Memory

form)
1110 1 1 1 1

1 1 1 1 1

Effective Address

1 1 1 1 1

X N Z V C
* * *

ROR
(Memory

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

1110 1 1 1 1

1 1

Effective

1 1

1 1

Address

1 1

X N Z V C
* *

ROL
(Memory

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

1110 1 1 1 1 1

1 1

Effective

1 1

1 1

Address

1 1

X N Z V C
* *
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Instruction Machine Code Format Condition Codes

ASR
(Register

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

1110

1 1

Cnt/Reg

1 1

1

Size

1

IR

1 1

DReg.

1 1

X N Z V C
* *

ASL 15-12 11 10 9876 5 4 3 2 1 X N Z V C
(Register \ \

'""'
| |

'
|

| | |
' ' | *****

form)
1110

1 -l

—

Cnt/Reg

1 1

1

1

Size

1

IR

1 1

DReg.

1 1

ISR 15-12 11 10 9

(Register

form)

7 6 5 4 3 2 10
1110

I 1

Cnt/Reg

1 1

1
-

Size

1

IR 1

1 I

DReg.

1 1

X N Z V C
* * * *

LSL

(Register

form)

15-12 11 10 98765432 10 XNZVC
* * * *

1110

1 1

Cnt/Reg

1 1

1

1

Size

1

IR 1

I 1

DReg.

1 1

ROXR 15-12 n 10 9

(Register

form)

7 6 5 4 3 2 10
1110

1 1

Cnt/Reg

1 1

1

Size

1

IR 1

I
1

DReg.

1 1

XNZVC
* * *

ROXL 15-12 11 10 9876543 2 1 XNZVC
(Register \

|
_' ._'

| |
'

|
| | |

' ' | * * * o *

form)
1110

I 1

—

Cnt/Reg

1 1

1

1

Size

1

IR 1

1 1
-

DReg.

1 1
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Instruction Machine Code Format Condition Codes

ROR
(Register

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

1110

1 1

Cnt/Reg

1 1

1

Size

1

IR 1 1

1 1

DReg.

1 1

X N Z V C
* *

ROL
(Register

form)

15-12 11 10 9 7 6 5 3 2 10

1110

1 1

Cnt/Reg

1 1

1

1

Size

1

IR 1 1

1 1

DReg.

1 1

X N Z V C
* *

Legend:

Size

Dr

Sz

Rd

I Data

Specifies instruction data size:

00 Byte

01 Word
10 Long

Specifies instruction direction:

EA or Memory to Dn
1 Dn to EA or Memory

Specifies instruction data size:

Word
1 Long

Specifies instruction direction:

Control register to General Register

1 General register to Control Register

3 bits of immediate data:

000 Specifies the value "8".

001-111 Specify values 1-7.
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Condition Specifies a branch condition:

Condition Instruction Condition instruction

0000 BRA 1000 BVC
0001 (NONE) 1001 BVS

0010 BHI 1010 BPL

0011 BLS 1011 BMI

0100 BCC 1100 BCE
0101 BCS 1101 BLT

0110 BNE 1110 BGT
0111 BEQ nil BLE

DA Specifies the type of registers used:

Data Registers

1 Address Registers

Cnt Reg Specifies a count or a register value:

If the IR field is 0, then 3-bit IData format

If the IR field is 1, then Data Register Number

ALPHABETICAL INSTRUCTION SUMMARY

Instruction Machine Code Format Condition Codes

X N Z V C

ADD

1100

1 1

Dest Reg

1 1

1 DA

1 1

Src Reg

1 1

* U * U *

15-12 11 10 9 8 7 6 5 4 3 2 10 X N Z V C

1101

1 1

DReg.

1 1

Dr

1

Size

1

Effective Address

1 1 1 1 1

* * * * *
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Instruction Machine Code Format Condition Codes

ADDA 15-12 11 10 9

1101

I I

A Reg.

_J l_

Sz

7 6 5 4 3 2 1—

I

1
\ 1 \

—
Effective Address

—I I I I I

X N Z V C

ADDI 15-12 11 10 9 7 6 5 4 3 2 10
0000 1 1

1

Size

1

1

I 1 ~i 1

Effective Address

1 1 1 1 1

X N Z V C
*****

ADDQ 15-12 11 10 9 7 6 5 4 3 2 10
0101

1 r

IData

1 1

1

Size

1

1 1 1 1 1

Effective Address

1 1 1 1 1

X N Z V C
*****

ADDX

1101

I T

Dest Reg

1 1

1

1

Size

1

RM

I -1

Src Reg

1 1

AND 15-12 11 10 9876543210
1100 DReg.

_J l_

Dr Size

I

I
I I I

Effective Address

I I I I I

X N Z V C
- * *

ANDI

0000 1

1

Size

1

1 1 I 1 I

Effective Address

1 1 1 1 1

* *

ASL

(Register

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

1110

I 1

Cnt/Reg

1 1

1

1

Size

1

IR

1 1

DReg.

1 1

X N Z V C
:|e :tc 3te % ^te
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Instruction Machine Code Format Condition Codes

ASL

(Memory

form)

15-12 n 10 9 8 7 6 5 4 3 2 1

1110 1 1 1

1 1

Effective

1 1

Address

1 1

X N Z V C

ASR
(Register

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

1110

1 1

Cnt/Reg

1 1

1

Size

1

IR

1 1

DReg.

1 1

X N Z V C
:|e % sfc % :tc

ASR
(Memory

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

1110 1 1

1 1

Effective

1 1

1 1

Address

1 1

X N Z V C

Bcc 15-12 11 10 98765432 10
T 1 \

0110

-1 1 r
Condition

_l I L.

1—I—I—

r

8-bit Displacement

J I I J I I L

X N Z V C

BCHC
(Dynamic

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

0000

1 1

DReg.

1 1

1 1

1 I

Effective

1 1

1 1

Address

1 1

X N Z V C

(Static

form)
0000 1 1

1 1

Effective

1 1

I I

Address

1 1

X N Z V C

BCLR
(Dynamic

form)

15-12 11 10 9 8 7 6 5 4 3 2 10
0000

1 1

DReg.

1 1

1 1 Effective Address

1 1 1 1 1

X N Z V C
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Instruction Machine Code Format Condition Codes

BCLR
(Static

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

0000 1 1

1 1

Effective

1 1

1 1

Address

1 1

X N Z V C

BSET

(Dynamic

form)
0000

1 I

DReg.

1 1

1 1 1

1 1

Effective

1 1

1 1

Address

1 1

X N Z V C

BSET

(Static

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

0000 1 1 1

1 1

Effective

1 1

Address

1 1

X N Z V C

05ft 15-12 11 10 9 8 7 6 5 4 3 2 1

0110 1

1 1 1 1 1 1 1

8-bit Displacement

1 1 1 1 1 1 1

X N Z V C

BTST

(Oynamic

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

0000 DReg.

1 1

1

1 1

Effective

1 1

Address

1 1

X N Z V C

BTST

(Static

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

0000 1

' 1

Effective

1 1

1 1

Address

1 1

X N Z V C

CHK 15-12 11 10 9 8 7 6 5 4 3 2 1

0100 DReg.

1 1

1 1

1 1

Effective

1 1

Address

1 1

X N Z V C
- * U U U
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Instruction

CLR

Machine Code Format

15-12 11 10 9876543

Condition Codes

2 10 X N Z V C

0100 1

1

Size

1

1 1 1

Effective

1 1 1

Address

1 1

- 1

CMP 15-12 11 10 9 8 7 6 5 4 3 2 1 X N Z V C

1011

1 1

DReg.

1 1

1

Size

1

1 1

Effective

1 1

1 1

Address

1 1

- *

CMPA 15-12 11 10 9 8 7 6 5 4 3 2 1 X N Z V C

1011

1 1

A Reg.

1 1

. 1 1

1 1

Effective

1 1

1 1

Address

- * * *

CMPI 15-12 11 10 9 8 7 6 5 4 3 2 1 X N Z V C

0000 1 1

1

Size

1

1 1

Effective

1 1

1 1

Address

1 1

- * * *

CMPM 15-12 11 10 9 8 7 6 5 4 3 2 1 X N Z V C

1011

1 1

Dest Reg

1 1

1

I

Size

1

1 Src Reg

1 1

- * * * *

DBcc 15-12 n 10 98765432 10 XNZVC
0101

1 I 1

Condition

1 1 1

1 1

1 1

DReg.

1 1

DIVS

1000

1

T

DReg.

1 1

1 1 1

1 1

Effective

1 1

1 1

Address

1 1

XNZVC
- * *
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Instruction Machine Code Format Condition Codes

DIVU 15-12 11 10 9 8 7 6 5 4 3 2 1

1000 DReg.

1 1

1 1

1 1

Effective

1 1

Address

1 1

X N Z V C
- *

EOR

1011

I I

DReg.

1 1

1

1

Size

1

1 1

Effective

1 1

1 1

Address

1 1

X N Z V C
- * *

0000 1 1

1

Size

1

1 1 1 1 1

Effective Address

1 1 1 1 1

X N Z V C-00

fXC 15-12 11 10 9
1

1

—

(2 D regs)
1100 DReg.

_l l_

7 6 5 4 3 2 10
—I

1

—

DReg.

_l I

X N Z V C

£XC
(2 A regs)

15-12 11 10 9 8 7 6 5 4 3 2 1

1100

1 1

A Reg.

1 1

1 1 1

1 1

A Reg.

1 1

X N Z V C

D reg)

fXC 15-12 11 10 9

(A and
1100

I I

D Reg.

_l l_

7 6 5 4 3 2 10—

!

1

A Reg.

_l I

X N Z V C

EXT.L 15-12 11 10 9 8 7 6 5 4 3 2 1 X N Z V C

0100 1 1 1 DReg.

1 1

-00
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Instruction Machine Code Format Condition Codes

EXT.W 15-12 11 10 9 8 7 6 5 4 3 2 1

0100 1 1 DReg.

1 1

X N Z V C
- *

ILLEGAL 15-12 11 10 9 76543210 XNZVC
0100 1 1 1 1 1 1 1 1

IMP

JSR

LEA

15-12 11 10 9 8 7 6 5 4 3 2 1

0100 1 1 1 1 1

1 1

Effective

1 1

1 1

Address

1 1

15-12 11 10 9 8 7 6 5 4 3 2 1

0100 1 1 1 1

1 1

Effective

1 1

Address

1 1

15-12 11 10 9 8 7 6 5 4 3 2 1

0100

1 1

A Reg.

1 1

1 1 1

1 1

Effective

1 1

1 1

Address

1 1

XNZVC

XNZVC

XNZVC

LINK 15-12 11 10 98765432 10 XNZVC
0100 1 1 1 1 1

I 1

A Reg.

1 1

LSL

(Register

form)

15-12 11 10 9876543210
1110

I 1

Cnt/Reg

1 1

1

I

Size

1

IR 1

1 1

DReg.

1 1

XNZVC
* * *
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Instruction Machine Code Format Condition Codes

LSL 15-12 11 10 9 8 7 6 5 4 3 2 1 X N Z V C

(Memory

form)
1110 1 1 1 1

1 1

Effective

. L 1

Address

1 1

* * *

LSR 15-12 11 10 9876543 2 1 X N Z V C

(Register

form)
1110

1 1

Cnt/Reg

1 1

1

Size

1

IR 1

1 1

DReg.

1 1

* * * *

LSR 15-12 11 10 9876543 2 1 X N Z V C

(Memory

form)
1110 1 1 1

' 1

Effective

1 1

1 1 1

Address

1 1 1

* * * *

MOVE 15-12 11 10 9876543 2 1 X N Z V C

from CCR
(68010)

0100 1 1 1

1 1

Effective

1 1

1 1

Address

1 1

MOVE 15-12 11 10 9876543 2 1 X N Z V C

from SR
0100 1 1

1 1

Effective

1 1

Address

1 1

MOVE 15-12 11 10 9876543 2 1 X N Z V C

fromUSP
0100 1 1 1 1 1 1

1 1

A Reg.

1 1

MOVE
to CCR

15-12 11 10 9 8 7 6 5 4 3 2 1

0100 1 1 1

1 1

Effective

1 1

Address

1 1

X N Z V C

I I I I I



Appendix C 68000 Quick Reference 525

Instruction Machine Code Format Condition Codes

MOVE
toSR

15-12 11 10 9 8 7 6 5 4 3 2 1

0100 1 1 1 1

1 1

Effective

1 1

Address

1 1

X N Z V C

I I I I I

MOVE
toUSP

15-12 11 10 9 8 7 6 5 4 3 2 1

0100 1 1 1 1 1 A Reg.

1 1

X N Z V C

MOVE B 15-12 11 10 9876543210
1—

r

0001 Register

I I

Mode

J L.

^ Destination -

-1—

r

Mode

.J L

—I—I

—

Register

_J L_

*- Source —

X N Z V C
- * *

0010

1 1

Register

1 1

1 1

Mode
1 1

1 1

Mode
1 1

1 1

Register

1 1

* Destirlation - - Sou rce -

X N Z V C

- * *

MOVf.VV 15-12 11 10 9 8 7 6 5 4 3 2 1

0011

1 1

Register

1 1

1 '

Mode
1 1

1 1

Mode
1 1

1 1

Register

1 1

*- Destiflation — — Sou rce -

X N Z V C
- * *

15-12 11 10 9 8 7 6 5 4 3 2 1

0010

1 1

Register

1 1

1

1 1

Mode
1 1

1 1

Register

1 1

— Destirlation - - Sou rce -

X N Z V C
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Instruction Machine Code Format Condition Codes

MOVEA.W 15-12 n 10 98765432 10 XNZVC
0011

T 1

Register

1 1

1

1 1

Mode
1 1

I "1

Register

A 1

^ Destination - *- Source -

(68010)
0100 1 1 1 1 1 1 1 1 Rd

MOVEM 15-12 11 10 9876543 2 1

(Regs to EA)
0100 1 1 Sz

1 1

Effective

1 1

T 1

Address

i 1

MOVEM 15-12 11 10 9876543 2 1

(EA to Regs)
0100 1 1 1 Sz

1 1

Effective

1 1

1 I

Address

1 1

MOVEP 15-12 11 10 9876543 2 1

0000

1 !

DReg.

1 1

1 Dr Sz 1

1 1

Address

Register

1 1

MOVEQ 15-12 11 10 9876543 2 1

0111

I 1

DReg.

1 1

1 1 1 1 1

8-bit Data Va

1 1 1 1 1

1 1

lue

1 1

MOVES 15-12 11 10 9876543 2 1

(68010)
0000 1 1 1

1

Size

1

1 1 1

Effective

1 1 1

1 1

Address

1 1

XNZVC

XNZVC

XNZVC

XNZVC
- *

XNZVC
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Instruction Machine Code Format Condition Codes

7 6 5 4 3 2 10

MULU

NBCD

NEC

NECX

1100

1 I

DReg.

1 1

1 1 1

1 1

Effective

1 1

r—["!'

Address

1 1

15-12 11 10 9 8 7 6 5 4 3 2 1

1100

1 1

DReg.

1 1

1 1

1 1

Effective

1 1

1 1

Address

1 1

15-12 11 10 9 8 7 6 5 4 3 2 1

0100 1

1 1

Effective

1 1

1 1

Address

1 1

15-12 11 10 9 8 7 6 5 4 3 2 1

0100 1 Size

1

1 1

Effective

1 1

1 1

Address

1 1

15-12 11 10 9 8 7 6 5 4 3 2 1

0100 Size

1

1 1

Effective

1 1

1 1

Address

1 1

X N Z V C
- *

X N Z V C
- * *

X N Z V C
* u u *

X N Z V C

X N Z V C

NOP 15-12 11 10 98765432 10 XNZVC
0100 1 1

1

1 u 1 1 1 1

NOT 15-12 11 10 9 8 7 6 5 4 3 2 10
0100 1 1 Size

1

Effective Address

1 1 1 1 1

XNZVC
- *
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Instruction Machine Code Format Condition Codes

OR

ORI

PEA

RESET

ROL
(Register

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

1000

1

DReg.

1 1

Dr Size

1

1 1

Effective

1 1

1 1

Address

1 1

15-12 11 10 9 8 7 6 5 4 3 2 1

0000

1

Size

1

1 1

Effective

1 1

1 1 1

Address

1 1 1

15-12 11 10 9 8 7 6 5 4 3 2 1

0100 1 1

1 1

Effective

1 1

1 1

Address

1 1

15-12 n 10 9 8 7 6 5 4 3 2 1

0100 1 1 1 1 1 1

15-12 11 10 9 8 7 6 5 4 3 2 1

1110

1 1

Cnt/Reg

1 1

1

I

Size

1

IR 1 1

1 1

DReg.

1 1

X N Z V C-00

X N Z V C
- *

X N Z V C

X N Z V C

X N Z V C
- * * *

ROL
(Memory

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

1110 1 1 1 1 1

1 1

Effective

1 1

1 1

Address

1 1

X N Z V C

* * *

ROR
(Register

form)

15-12 11 10 9

1110

1 1

Cnt/Reg

1 1

1

Size

1

IR 1 1

1 1

DReg.

1 1

X N Z V C
* * *
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Instruction Machine Code Format Condition Codes

ROR
(Memory

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

ino 1 1 1 1

' 1

Effective

1 1

1 1

Address

1 1

X N Z V C
* * *

ROXL 15-12 n 10 9
1—I

—

(Register

form)
1110 Cnt/Reg

I \

7 6 5 4 3 2 10
1 1

—

Size D Reg.

_l 1_

X N Z V C
* *

ROXL
(Memory

form)

15-12 11 10 9 8 7 6 5 4 3 2 1

1110 1 1 1 1

1 1

Effective

1 1

1 1

Address

1 i

X N Z V C

* * * *

(Register

form)

7 6 5 4 3 2 10
1110

1 1

Cnt/Reg

1
1

I

Size

1

IR 1

1 1

DReg.

1 1

X N Z V C
* * * *

(Memory

form)
1110 1 1 1

1 1 1 1 1

Effective Address

1 1 1 1 1

X N Z V C

* * * *

RTD 15-12 11 10 9876543 2 10 X N Z V C

(68010)
0100 1 1 1 1 1 1 1

RTE 15-12 11 10 98765432 10 XNZVC
I I I I I

0100 1 1 1 1 1 1 1 1
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Instruction Machine Code Format Condition Codes

RTR 15-12 n 10 9 7 6 5 4 3 2 10
0100 1 1 1 1 1 1 1 1 1

X N Z V C
I I I I I

RTS 15-12 11 10 98765432 10 XNZVC
0100 1 1 1 1

1

1 1 1 1

SBCD 15-12 11 10 9 8 7 6 5 4 3 2 1

1000

1 1

Dest Reg

1 1

1 DA

1 1

Src Reg

1 1

XNZVC
* u * u *

Sec 15-12 11 10 98765432 10 XNZVC
0101

1 I
-1—

Condition

1 1 1

1 1

1 1

Effective

1 1

1 1

Address

1 1

STOP 15-12 11 10 9876543210 XNZVC
I I I 1 I

0100 1 1 1 1 1 1 1

SUB 15-12 11 10 9 7 6 5 4 3 2 10
1001

1 1

D Reg.

1 1

Dr

1

Size

1

1 1

Effective

1 1

1 1

Address

1 1

XNZVC
^ 3(c :(( :|c itc

SUBA 15-12 11 10 9 8 7 6 5 4 3 2 1

1001 A Reg.

1 1

Sz 1 1

1 1

Effective

1 1

1 1

Address

1 1

XNZVC
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Instruction

SUBI

Machine Code Format

15-12 11 10 9876543

Condition Codes

2 10 X N Z V C

0000 1

1

Size

1

1 1

Effective

1 1

1 1

Address

1 1

*****

SUBQ 15-12 11 10 9876543 2 1 X N Z V C

0101 Data

1 1

1

1

Size

1

1 1

Effective

1 1

1 1

Address

1 1

*****

SUBX 15-12 11 10 9876543 2 1 X N Z V C

1001

1 1

Dest Reg

1 1

1

1

Size

1

DA

1 I

Src Reg

1 1

*****

SWAP 15-12 11 10 98765432 10 XNZVC
* *

0100 1 1

I 1

—

DReg.

1 1

TAS 15-12 11 10 9 8765432 10 XNZVC
* *

0100 1 1 1 1

1 1 1 1 1

Effective Address

1 1 1 1 <

TRAP 15-12 11 10 9 765432 10 XNZVC
0100 1 1 1 1

1 1 r

Vector

1 1 1

TRAPV 15-12 11 10 9 765432 10 XNZVC
0100 1 1 1 1 1 1 1 1
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Instruction Machine Code Format

TST 15-12 11 10 98765432

UNLK

0100 1 1

1

Size

1

1 1

Effective

1 1

I I

Address

1 1

15-12 11 10 9 8 7 6 5 4 3 2 1

0100 1 1 1 1 1 1 A Reg.

1 1

Condition Codes

X N Z V C
- * *

X N Z V C

ALPHABETICAL INSTRUCTION SUMMARY

EXCEPTION VECTORS

Vector Address Use

RESET Initial SSP

1 4 RESET Initial PC

2 8 BUSERR (Non-existent Memory)

3 C Address (Boundary) Error

4 10 Illegal Instruction

5 14 Zero Divide

6 18 CHK Instruction

7 1C TRAPV Instruction

8 20 Privilege Violation

9 24 TRACE
10 28 Line 1010 Emulator

11 2C Line 1111 Emulator

12-13 30-34 Unassigned (Reserved)

14 38 68010 Stack Format Error

15 3C Uninitialized Interrupt Vector

16-23 40-5C Unassigned (Reserved)

24 60 Spurious Interrupt

25-31 64-7C Level 0-7 Autovector Interrupts

32-47 80-BF TRAP 0-15 Instruction Vectors

48-63 CO-FC Unassigned (Reserved)

64-255 100-3FF User Interrupt Vectors
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BUSERR / ADDRESSING ERROR STACK FRAME
(68000/68008)

Bits 15 5 4 3 2 1

A7 iiinniiiiiniiiiiiiii R/W l/N

1 1

Access
J J

+ 2 High word of erroneous address

+ 4 Low word of erroneous address

+ 6 First word of instruction

+ 8 Status register

+ 10 Program counter high word

+ 12 Program counter low word

BUSERR /ADDRESSING ERROR STACK FRAME (68010)

15 14 13 12 11 to 9 8 7 6 5 4 3 2 1

Stilus Register Before Exception

Program Counter High VWord

Program Counter Low V\tord

\tectof Offset

Special Siarus Word

Fauh Address High VMsrd

Fault Address Low VWxd

Reserved

Data Output Buffer

Reserved

OaU Input Buffer

Reserved

InstructKan Input Buffer

Internal Information (16 words)
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Bit 15 14 13 12 11 10 9 1

RR ** IF DF RM HB BY RW ** ** * *

1 1

Function

1 1

SPECIAL STATUS WORD FORMAT

RR ReRun Bit Set by software for no hardware rerun

IF Instruction fetch

DF Data fetch

RM Read-modify-write cycle

HB Processor accessing high byte

BY Byte access

RW Read / Write bit

Function Function codes FC0-FC2



Index

32-bit Division, 260, 266, 268, 428

6502, 36

68000, 7, 29, 457, 473

68008, 457, 473

68010, 172,457

68010 Destination Function Code
Register (DFC), 457, 458, 461, 462,

473

68010 Exception Long Stack Frame,

466

68010 Exception Short Stack Format,

466

68010 Format Exception, 466, 473

68010 Loop Mode, 457, 470, 474

68010 Source Function Code Register

(SFC), 457, 458, 461, 462, 474

68010 Vector Base Register (VBR),

457,458,461,465,474

68881 Floating Point Processor, 37

8-bit Peripheral Devices, 182, 474

8080, 36

8086, 36

8088, 36

ABCD Instruction, 70, 81

Absolute Long Addressing, 52, 474

Absolute Short Addressing, 51, 474

Accumulator Variable, 265, 474

ADD, 423

ADD Instrurtion, 68, 84

ADDA Instruction, 68, 87

ADDI Instruction, 68, 89

Addition, 20

ADDQ Instruction, 68, 91

Address Register, 30, 33, 42, 43, 46,

47, 49, 59, 85, 87, 130, 148, 157,

1 59, 1 74, 1 75, 1 77, 232, 236, 247,

253, 262, 474

Address Register Direct Addressing,

41,475

Address Register Indirect Addressing,

43, 475

Address Register Indirect Addressing

with Displacement, 47, 157, 192,

307,379,451,475

Address Register Indirect Addressing

with Index, 49, 259, 475

Address Register Indirect Addressing

with Postincrement, 44, 59, 134,

427,451,475

Address Register Indirect Addressing

with Predecrement, 46, 59, 81, 93,

179, 223, 238, 259, 427, 451, 475

Addressing Error Exception, 350,

352, 358, 367, 466, 474

Addressing Mode, 38, 474

ADDX Instruction, 68, 93

Algorithm, 1, 2, 3,475

ALU, 475

AND, 19,95,97,423,475

AND Instruction, 69, 95

ANDI Instruction, 58, 69, 97, 259

ANSI Flowchart Standard, 3

argc, 278, 285

Arguments, 276

argv, 278,285, 311,325

Arithmetic and Logic Unit (ALU), 8,

19,475

Arithmetic Shift Left, 21, 100, 424,

475

Arithmetic Shift Right, 21, 103, 424,

475

Array, 308, 475

ASCII, 37, 260, 265, 306, 308, 430,

476
ASL Instruction, 69, 100

ASR Instruction, 69, 103

Assembler, 71, 73,77,476

Assembler Directive, 10, 74, 78, 476

Assembly Language, 3, 10, 71, 271,

323,422,476

Assembly Language Subroutine Called

FromC, 301

Auto-vector Interrupt, 350, 366, 476

Automobile Engine, 1

Backspace, 272, 443, 476

Backup File, 73

BASIC, 2, 38, 307, 476

Bcc Instruction, 70, 106, 127, 130,

132, 134, 136,228

BCD, 36, 81, 191, 223,476

BCD Instructions, 70

BCHC Instruction, 70, 112

BCLR Instruction, 70, 114

Binary, 1, 11, 35, 258, 260, 265, 422,

423, 476

Binary Search, 320, 476

Binary to Decimal Conversion, 260

Binary to Hexadecimal Conversion,

258

Binary Tree, 316, 476

bindec Routine, 260, 428

binhex Routine, 365

Bit, 11,477

Bit Manipulation Instructions, 70

Block Move Handler, 435

Boolean Operations, 477

Bootstrap, 352, 477

Branch Addressing Mode, 108, 118

Branch Condition, 108, 137, 477

Branch Instruction, 106, 449, 477

Breakpoint, 75, 356, 477

Brooks, f. P. 449

BSET Instruction, 70, 116
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BSR Instruction, 71, 108, 118,222,

358

BTST Instruction, 70, 120

Bubble Sort, 319, 434, 477

Buffer, 260, 262, 332, 477

Buffered File Copy Program, 297

Buffered I/O, 280, 285, 477

Bug, 72, 267, 450, 477

BUSERR / Addressing Error Stack

Frame, 353

BUSERR Exception, 178, 350, 352,

358, 367, 466, 469, 477

Byte, 12, 35, 36, 57, 58, 150, 166,

477

C, 38, 1 59, 276, 291 , 305, 307, 311,

323, 477

Argument, 277

Function Return Values, 278

Runtime Library, 276, 325

Scratch Registers, 278

Cards, 306, 477

Carriage Return, 253, 272, 443, 478

Carry, 21

Carry Bit, 34, 58, 207, 210, 213, 216,

423, 425, 478

CCR, 478

Central Processing Unit (CPU), 5, 7,

255, 377, 478

Character I/O, 272, 274

Child Node, 315,478

CHK Exception, 350, 357

CHK Instruction, 71, 123

Circular Buffer, 314, 478

Circular Linked Lists, 311,478

close Routine, 283, 332

CLR Instruction, 68, 125

CMP Instruction, 68, 110, 127, 131,

133,228

CMPA Instruction, 68, 128, 130

CMPI Instruction, 68, 132

CMPM Instruction, 68, 128, 131,

133, 134

COBOL, 2, 38, 478

Code Reviews, 453

Coding Techniques, 448

Comment Line, 74, 78, 478

Communications, 307

Compute Bound Task, 379, 478

Computer Hardware, 1, 5

Computerese, 478

Condition Code Register (CCR), 34,

58, 146, 168,478

Condition Codes, 34, 87, 106, 146,

221,226,232,245

Conditional Branch, 32, 106, 127,

130, 132, 134,449,478

Context Switching, 377, 478

Control-C, 272

Control-C, 443

Control-H, 443

Control-I, 443

Control-I, 443

Control-L, 443

Control-M, 443

Control-Q, 443

Control-R, 272

Controls, 443

Control-U, 272

Control-Z, 272

Conversion Routines, 258, 478

Cooked Mode, 273

CP/M, 307

CP/M SUBMIT File, 452, 479

CP/M-68K "con:" Device, 284

CP/M-68K "1st:" Device, 284

CP/M-68K, 72, 76, 108, 124, 252,

255, 263, 273, 275, 276, 358, 365,

371, 392,479

CP/M-68K PIP Program, 284

CP/M-68K TYPE Command, 273, 284

CPMI Instruction, 128, 131, 133

CPU, 478

CPU Bound Task, 379, 479

creat Routine, 281, 332

Critical Region, 380, 479

CRT, 5, 7, 251,479

Current Task, 392

Data Movement Instructions, 68

Data Register, 30, 31, 40, 49, 81, 84,

93, 100, 103, Vt2, 114, 116, 120,

123, 127, 136, 140, 142, 144, 148,

150, 162, 164, 177, 185, 189, 192,

200, 207, 210, 213, 216, 223, 230,

238, 240, 253, 278, 462, 279

Data Register Direct Addressing, 40,

479

Data Representation, 1

1

Data Structures, 446, 479

DBcc Addressing Mode, 137

DBcc Instruction, 70, 136, 228, 259,

261, 264,470

DDT-68K "D" Command, 75, 79

DDT-68K "C " Command, 76

DDT-68K "L" Command, 75, 78

DDT-68K "S" Command, 76

DDT-68K "T" Command, 76, 79

DDT-68K, 75, 78, 356, 479

Deadlock, 383, 479

Deadly Embrace, 383, 479

Debugger, 40, 72, 75, 356, 479

Debugging, 75

decbin Routine, 265

Decimal, 15, 260, 423, 480

Decimal to Hex Conversion, 266

Defensive Programming, 450, 480

Delay SVC, 385, 406

Dequeues, 315, 480

Device Independent I/O, 274, 284,

480

Direct File Access, 311, 480

Disabling Dispatching, 380, 480

Disabling Interrupts, 380, 480

Disassembly, 40, 480

Disk, 7, 18,275, 377,480

Dispatcher, 378, 480

Division By Zero, 140, 142, 350, 357

DIVS Instruction, 69, 140, 260, 267

DIVU Instruction, 69, 142

Documentation, 451, 480

Double Bus Fault, 355, 480

Doubly-Linked List, 313, 480

Editing, 72

Effective Address Operand, 39, 80,

84,87,89,91,95,97, 100, 103, 112,

114, 116, 120, 123, 125, 127, 130,

132, 140, 142, 144, 146, 153, 155,

157, 162, 164, 166, 168, 170, 172,

175, 187, 189, 193, 195, 198, 200,

202, 207, 210, 213, 216, 226, 230,

232, 234, 236, 241, 245, 460, 462,

481

Efficiency, 449, 481

EndofFile, 272, 285, 291,481

FOR Instruction, 69, 144

FORI Instruction, 58,69, 146

Error Condition, 2, 481

Error Routine, 285

Exception, 31, 33, 61, 123, 140, 142,

146, 152, 178,349,464,481

Exception Handler, 352, 358, 481

Exclusive OR, 19, 144, 146, 423, 481

Executable File, 72, 481

EXC Instruction, 68, 148

Exponent, 37

Expression Tree, 317

EXT Instruction, 69, 150

Extend Bit, 34, 81, 93, 191, 195, 213,

216,223,238

Extension Word, 49

External Devices, 206

External Symbols, 257, 481
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Fatal Error, 336

FC0-FC2 Pins, 462, 468

(close Routine, 296

feof Routine, 291

fgetc Routine, 291

fgets Routine, 291

Fibonacci Numbers, 433

File, 273, 275, 481

FileClose, 274, 481

FileCreate, 273, 481

File Descriptor, 281, 481

File I/O, 271

File Open, 273,481

FileRead, 273, 291,482

File System, 273, 482

FileWrite, 273, 482

Filters, 275, 297

First Come First Served (FCFS), 3 1

4

First In First Out (FIFO), 314, 402,

482

Fixed Length Records (FLR), 306, 482

Floating Point, 36, 355

Floating Point, 36

Floppy Disk, 5

Flowchart, 3, 4, 420, 482

fopen Routine, 290

Fork Queues, 382, 482

Form Feed, 443, 482

FORTRAN, 3, 38, 306, 482

fprintf Conversion Operators, 294

fprintf Routine, 294, 432

fputc Routine, 292

fputs Routine, 292

Fraction, 37

Frame Pointer, 62, 159, 247, 482

Franklin, Ben, 73

fseek Routine, 296

getl Routine, 291

getlin Routine, 263

getw Routine, 291

Global Variables, 377

Hardware Stack Pointer, 31, 45, 46,

60, 169, 173, 205, 219, 221, 222,

247, 313,464,482

Hash Code, 322, 482

Hash Collision, 322, 482

Hash Function, 322, 482

Hashing, 321,482

Hello, World Program, 279

Hex Debugger, 75, 482

Hexadecimal, 1, 13, 15, 36, 72, 258,

422, 482

hexbin Routine, 430

Hiding Information, 447, 483

High Level Language, 271, 275, 483

Hybrid Records, 307, 483

I/O, 271, 349,375,483

I/O Bound Task, 379, 483

I/O Devices, 5, 7, 349, 483

I/O Redirection, 275

IEEE Floating Point, 37

ILLEGAL Instruction, 152

Illegal Instruction Exception, 152,

350, 355, 356, 483

Immediate Mode, 57, 89, 97, 132,

146, 202,234,483

Implementor's Documentation, 452,

483

Index Register, 49, 55, 483

Information Hiding, 447, 483

Initialization, 2

Input / Output Bus, 5

Input Conversion, 265

insert Routine, 332

Insertion Sort, 318, 483

Insertion Sort, 483

Instruction, 8, 9, 10, 29, 32, 38, 67,

74, 79, 483

Integer Arithmetic Instructions, 68

Interchange Sort, 319, 483

Interchange Sort, 483

Interrupt, 61,229, 349,483

Interrupt Latency, 366, 484

Interrupt Latency 484

Interrupt Mask, 33, 352, 366, 484

Interrupt Polling, 398

Interrupt-Driven I/O, 349, 352, 483

IPL0.2 Pins, 366

JMP Instruction, 71, 153

)SR Instruction, 71, 155, 222, 276

K, 18,484

Kilobyte, 18,484

Label, 10, 74, 78, 256, 484

Last In First Out (LIFO), 59, 313, 484

LBOS, 450

LBOS Application Tasks, 410

LBOS Data Area, 398

LBOS Dispatcher, 398

LBOS Initialization Code, 392

LBOS Terminal Output Task, 410

LBOS Timer Task, 406

Idiv Routine, 268

LEA Instruction, 68, 157

Leading Zeros, 261

Leaf Node, 315, 484

Level 7 Interrupt, 366, 484

Line 1010 Exception, 350, 355, 484

Line 1111 Exception, 350, 355, 484

LineEditingKeys, 263, 272

Line Feed, 253, 264, 272, 365, 443,

484

Linear Linked Lists, 311, 484

LINK Instruction, 62, 68, 159, 247,

323, 451

Linked List, 484

Linked List Tail Pointer, 313, 314, 484

Linked Lists, 311

Linker, 72, 74, 77, 256, 484

Linking, 74

List Head, 311,485

Listing File, 72, 77, 485

Load File, 72, 485

Load Module, 72, 485

Logical Left Shift, 21, 162, 424, 485

Logical Operation Instructions, 69

Logical Right Shift, 21, 164, 424, 485

Longword, 13, 35, 43, 44, 46, 48, 49,

57, 150, 166,485

Loop, 2, 32, 1 36, 485

Looping Primitive, 32, 136, 485

Iseek Routine, 283

LSL Instruction, 69, 162

LSR Instruction, 69, 164

M, 18,485

Machine Language, 3, 10, 421, 485

Mailbox, 382, 402, 485

main, 276

Megabyte, 18, 485

Memory, 5, 8, 9, 18, 29, 125, 159,

377, 462, 485

Memory Access Codes (FC0-FC2),

354, 485

Memory Address, 6, 8, 485

Memory Bus, 5, 485

Memory Data, 6, 8, 486

Memory Management Unit, 358,

451,469,486

Memory Mapped Hardware, 125,

367, 486

Memory Read, 6, 125, 486

Memory Write, 6, 486

Message Control Block, 385, 391,

392, 398, 402, 406

Message Switching, 382, 486

Mnemonic, 10, 74, 75, 486



538 Programming the 68000

Modem, 274, 486

Modularity, 255, 261, 446, 486

Monitor Procedures, 381, 486

MOVE from CCR Instruction, 460

MOVE from SR Instruction, 172, 357,

459

MOVE Instruction, 35, 39, 68, 166,

426

MOVE to CCR Instruction, 168

MOVE to SR Instruction, 170

MOVE USP Instruction, 71, 174

MOVEA Instruction, 175

MOVEC Instruction, 457, 461

MOVEM Instruction, 68, 177

MOVER Instruction, 68, 182

MOVEQ Instruction, 68, 185

MOVES Instruction, 462, 468

movestr Function, 325

MULS Instruction, 69, 187

Multi-Tasking, 376, 486

MULU Instruction, 69, 189

Murphy's Law, 73

Mutual Exclusion, 379, 486

NBCD Instruction, 70, 191

ncmp Routine, 332, 449

NEC Instruct on, 69, 193

Negative Bit, 34, 486

NECX Instruction, 69, 195

Newtask SVC, 384, 398

Nibble, 12, 36, 259, -.30, 486

No Operation Instruction, 109, 197,

486

Node, 315

Non-Maskable Interrupt (NMD, 366,

486

Non-Shareable Devices, 377, 486

NOP Instruction, 197

NOT Instruction, 69, 198

Object Code Portability 254, 487

ObjectFile, 71,77, 487

One's Complement, 19, 20, 198, 423,

487

Opcode, 10,38,78,487

open Routine, 281

Operand, 74, 170,487

Operating System, 252, 271, 315,

355, 375, 487

OR, 19,200,423

OR Instruction, 69, 200

ORI Instruction, 58, 69, 202

Overflow Bit, 34, 244, 487

PADD Program, 324, 434, 447

Parent Node, 315

PASCAL, 3, 38, 1 36, 1 59, 323, 487

Pathological Connection, 447, 487

PDEL Program, 434

PDP-11, 229

PEA Instruction, 68, 204

PFIND Program, 336, 433

PHONE.DAT file, -•"25

Pipes, 275, 297

PL/I, 159,487

PLIST Program, 433

plong Routine, 365

Plotter, 7, 274

Pop, 59, 159,427,487

Portability 254, 487

Position Independent Code, 157

Powers of 16, 15

Preemptive Priority-Driven

Scheduling, 378, 383, 487

Preemptive Scheduling with

Timeslicing, 378, 487

pregs Routine, 365

print Routine, 336

Printer, 5, 7, 274, 275, 377, 487

printf Conversion Operators, 294

printf Routine, 279, 431

Printline SVC, 384, 406, 410

Priority Order Queue, 315, 487

Priority-Driven Scheduling, 315, 378,487

Privilege Violation Exception, 97,

146, 171,229,350,358,488

Privileged Instruction, 33, 146, 172,

174,202, 206,219,229,488

Program, 9, 488

Program Control Instructions, 70

Program Counter, 8, 9, 32, 39, 54,

55,61, 108, 118, 137,219,221,222,

243, 244, 350, 352, 354, 365, 451,

464, 488

Program Counter with Displacement,

54, 1 57, 488

Program Counter with Index, 55, 488

Program Testing, 446

Programming, 1

Programming Guidelines, 445

Programming Language, 2, 123, 159,

271,275

Protection Mask, 281

prtchar Routine, 257

prtstr Routine, 256, 365

Push, 59, 1 59, 427, 488

puti Routine, 292

putw Routine, 292

pword Routine, 365

Queue, 314,488

Rare Mode, 273

Raw Mode, 273

read Routine, 282, 285, 325

Read-Modify-Write Operation, 241,

469, 488

Readabi: 'v, 449

readfile Routine, 325, 336

Receive Message SVC, 385, 402, 406,

410

Records, 305, 488

Recursion, 316, 322, 488

Reentrant Code, 379, 488

Register, 7, 8, 9, 29, 177, 257, 488

Register List Bit Mask, 179

Reply to Message SVC, 385, 392,

406,410

RESET Exception, 350, 352

RESET Input, 355

RESET Instruction, 71, 206

Resource Management, 377, 488

Ring Buffer, 314,489

ROL Instruction, 70, 207

ROM, 489

Root, 315,489

Root Directory 316

ROR Instruction, 70, 210

Rotate, 21

Rotate Left, 22, 207, 213, 425, 489

Rotate Right, 22, 210, 216, 425, 489

Round Robin Scheduling, 378, 489

ROXL Instruction, 70, 213

ROXR Instruction, 70, 216

RTD Instruction, 464

RTE Instruction, 71, 219, 350, 352,

356, 357,371,451,466

RTR Instruction, 71, 221

RTS Instruction, 71, 119, 156, 222,

451

Run-time Library, 275

Sage IV 282, 367

SBCD Instruction, 70, 223

Sec Conditions, 228

Sec Instruction, 70, 226

Scheduler, 378

Scheduling, 378, 489

Scientific Notation, 36

Screen, 489

SDB, 76

Searching, 320, 489

Semaphore, 381, 489

Send Message SVC, 385, 392, 402



Index 539

Sequential Search, 320, 489

Serial Output, 367

setfield Function, 325

Shift, 21

Shift and Rotate Instructions, 69

Sibling Nodes, 315,489

Sign Bit, 20, 37, 42, 489

Sign Extension, 24, 30, 47, 49, 51,

54, 55, 108, 137, 150, 175, 177, 185,

426, 464, 489

Simulated Instructions, 355

Software Stack, 61

Sorting, 318, 489

Source Code, 255,489

Source Code Portability, 255, 489

Source File, 71, 74,76,489

Spaghetti Code, 446, 490

Special I/O, 272, 274

Special Status Word, 468

Stack, 29, 45, 46, 1 1 8, 1 55, 1 74, 1 77,

204, 222, 247, 276, 313, 350, 352, 490

Stack Errors, 313

Stack Frame, 62, 159, 247, 490

Stack Overflow, 313, 490

Stack Pointer, 60, 490

Stack Underflow, 314, 490

Standard Error, 297

Standard I/O, 297

Standard Input, 297

Standard Output, 297

Status Register, 32, 39, 58, 61, 97,

146, 170, 172, 202, 219, 229, 243,

244, 350, 352, 356, 357, 365, 366,

490

Status Register Addressing, 58, 490

Status Register System Byte, 33, 58,

490

Status Register User Byte, 34, 58,

1 70, 460, 490

stderr Stream Address, 297

stdin Stream Address, 297

stdout Stream Address, 297

STOP Instruction, 71, 229

Storage Allocation, 308

Stream I/O, 280, 490

Stream Pointer, 285

String, 38, 258, 490

Structures, 305, 490

SUB Instruction, 69, 230

SU8A Instruction, 69, 232

SUBI Instruction, 69, 234

SUBQ Instruction, 69, 236

Subroutine, 61, 178,490

Subroutine Call, 31, 32, 61, 118, 155,

490

Subroutine Return, 61, 119, 156,

222, 464, 490

Subscript Range Checking, 123

Subtree, 316, 490

SUBX Instruction, 69, 238

Supervisor Bit, 33, 172, 174, 202,

219, 229, 352, 490

Supervisor Mode, 22, 60, 71, 97,

172, 174, 202, 219, 243, 356, 392,

490

Supervisor Stack Pointer (SSP), 60,

171, 173, 174,220, 355, 365,490

SWAP Instruction, 68, 240

Symbolic Debugger, 75, 490

System Bit, 58, 491

System Control Instructions, 71

Tab, 443

Tape, 7, 491

Tape Drive, 377

TAS Instruction, 69, 241, 469

Task, 377, 491

Task Control Block, 385, 391, 392

Ten's Complement, 191

Terminal, 261,377, 491

Terminal, I/O 271

Terminal, I/O 285

Terminal Input, 261

TextEditor, 71,72, 491

Timeslicing, 378, 491

Top-Down Implementation, 448, 491

Top-Down Program Design, 446, 491

Top-Down Testing, 448, 491

Trace Bit, 33, 75, 76, 350, 352, 357,

491

Trace Exception, 350, 357, 491

Trace Program, 436

Tracing, 75

TRAP Exception, 355, 392, 402, 491

TRAP Instruction, 71, 243, 253, 350,

355, 357, 384, 392, 458

TRAP Vector, 243, 356

TRAPV Exception, 244, 350, 357

TRAPV Instruction, 71,244

Traversing a Tree, 318

Trees, 315,491

TST Instruction, 69, 245

Two's Complement, 20, 68, 187, 191,

193, 195,423,491

UCSD Psystem, 275, 491

Unbuffered I/O, 278, 281, 491

Unconditional Branch, 32, 106, 153,

491

UNIX, 72, 108, 253, 255, 264, 273,

274, 275,297, 307,316,491

UNIX cat Command, 273

UNIX Makefile, 452

UNLK Instruction, 62, 68, 160, 247,

323,451

Unsigned Arithmetic, 20, 142, 189,

392, 492

User Documentation, 452, 492

User Mode, 33, 60, 97, 219, 243,

350, 356, 492

User Mode Stack Pointer (USP), 60,

171, 173, 174,220, 365,461,492

valid Function, 325

Variable Length Records (VLR), 306,

492

Vector, 350, 352, 492

Vectored Interrupts, 366, 492

Virtual Machine, 358

Virtual Memory, 468, 492

Weinberg, CM., 453

WildBranch, 354, 451,492

Word, 13, 35, 43, 44, 46, 48, 49, 57,

150, 166,492

write Routine, 282

wrtfile Routine, 332

XOFF 443

XON, 443

Yourdon, Edward, 448

Z80, 36

Zero Bit, 34, 58, 82, 1 1 2, 1 1 4, 1 1 6,

120, 191, 195,239,253,492



Selections from
The SYBEX Library

THE MACINTOSH^ TOOLBOX
with Graphics, Sound,
Windows, and Menus
by Thomas Blackadar

300 pp., illustr, Ref. 0-249

This tutorial on the advanced features of

the f\/lacintosh toolbox is an ideal com-

panion to The Macintosh BASIC Hand-

book.

THE IMACINTOSH™ BASiC
HANDBOOK
by Thomas Blackadar/Jonathan
Kamin
800 pp., illustr, Ref. 0-257

This desk-side reference book for the

Macintosh programmer covers the BASIC
statements and toolbox command, orga-

nized like a dictionary.

PROGRAiMMING THE
MACiNTOSH™ iN ASSEMBLY
LANGUAGE
by Steve Williams

400 pp., illustr, Ref. 0-263

Information, examples, and guidelines for

programming the 68000 microprocessor

are given, including details of its entire

instruction set.

SYSTEMS PROGRAMMING IN C
by David Smith

275 pp., illustr., Ref 0-266

Ths intermediate text is written for the per-

son who wants to get beyond the basics

of C and capture its great efficiencies in

space and time.

THE PROGRAMMER'S GUIDE
TO UNIX SYTEM V
by Chuck HIckev/TIm Levin

300 pp., illustr, Ref 0-268

This book is a guide to all steps involved

in setting up a typical programming task

in a UNIX systems environment.

REAL WORLD UNIX^"

by John D. Halamka

209 pp , Ref. 0-093

This book is written for the beginning and
intermediate UNIX user in a practical,

straightforward manner, with specific

instructions given for many business

applications.

For a complete catalog of our publications
please contact:

rSYBEX

U.S.A.

SYBEX, Inc.

2344 Sixth Street

Berkeley,

California 94710

Tel: (415) 848-8233 Tel; 01/203-9595

Telex: 336311 Telex: 211801

FRANCE GERMANY
SYBEX SYBEX-Verlag GmbH
6-8 Innpasse du Cur6 Vogelsanger Weg 1 1

1

75018 Paris 4000 DUsseldorf 30

France West Germany
Tel: (0211) 626441

Telex: 8588163

UNITED KINGDOM
SYBEX, Ltd.

Unit 4-Bourne Industrial Park

Bourne Road. Crayford

Kent DA1 4BZ England

Tel: (0322) 57717

Telex: 896939





Programming
the

6S000
Learn everything about assembly-language programming with the

Motorola 68000.

This self-contained tutorial will take you through all the necessary steps

from understanding what assembly language programming is, through a

mastery of such advanced techniques as exception or interrupt program-

ming, and interfacing with higher level languages and operating systems.

A thorough treatment of the 68000 architecture and instruction set lays

the foundation for industrial or custom applications. Beyond this, a unique

feature of this book is its relevance to such essential topics as:

• The UNIX operating system:

Version 7 System V
System III Xenix

• The C programming language

• The CP/M 68K'''^^ operating system

This book has been designed to cover the 68000, 68008, and 68010
processors.

These processors are used in a wide range of products such as:

• The Altos

• The TRS-80 Model 16 Computer
• The Apple Macintosh line

• The Apple Laser Printer

Steve Williams, recently Research and Development Project Manager at

Digital Research, was the Operating System Manager for Tandy on the

TRS-80 Model 16. He graduated in Electrical Engineering and has a Mas-

ter's degree in Computer Science, txith from the University of Tennessee,

Knoxville.

SYBEX books bring you skills—not just information. As computer experts,

educators, and publishing professionals, we care—and it shows. You can

trust the SYBEX label of excellence.

ISBN 0-fl1Sfl6-133-a


