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Introduction 

You may already have had some experience of programming a 
computer in assembly language. If you have, the likelihood is that at 
some point you have lost the thread of understanding, either because 
the books you have read have been too technical or because the 
unfamiliar concepts of assembly language have not been clearly related 
to concepts which are already familiar to you. 

It is one thing to learn a language like BASIC, in which instructions 
like PRINT and GOTO mean exactly what they appear to mean, and 
another thing altogether to deal with assembly language, in which 
numbers whose significance is often unclear are manipulated by 
strange and abstract instructions to produce further numbers whose 
purpose seems equally vague. Like a traveller without a map in a 
foreign land, you are stuck with a Strange language and a strange 
currency and can find no means of orienting yourself. 

It is important however, not to think of programming purely in terms 
of learning language instructions. Programming is mostly about 
using your imagination to see how a particular process or concept 
might work and how it might best be structured and manipulated in 
memory. The actual program instructions are merely a means to this 
end and you need not worry too much about trying to learn and 
memorize them all as most of them will tend to become familiar 
through experience. It is far more important to understand the key 
concepts of programming and the standard program structures which 
enable you to translate your ideas into easily manageable modules of 
code. For this reason, this book does not try to be a comprehensive 
text book covering every detail of each instruction code, although a 
large number of program instructions will be explained and illustrated 
in the text and a complete list of them, with descriptions of their 
functions, is given in Appendix B. At a later Stage you may wish to 
purchase a more formal book containing comprehensive technical 
reference information, although for ordinary practical purposes you 
will find that this book contains most that the general applications 
programmer needs to know. 
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One thing that would come in very useful would be an assembly 

language reference manual relating specifically to your computer. 
Although 68000 assembly language works the same way for all 68000 
based computers there are always significant differences between one 
machine and another; the major ones being the different operating 
systems which are used and secondly, the structure of the display 
screen. 

The differences between operating systems are significant because 
they provide a means of accessing some of their subroutines directly 
from within your own assembly language programs. Different systems 
will provide different sets of routines and the methods of accessing 
them may vary between one computer and another. Additionally, 
some computer systems may have less ‘transparent’ operating systems 
than others. They may, for example, have a layer of user-interfaces 
such as BASIC or window and icon programs which can sometimes 
make the operating system difficult to get at directly. 

The differences between screen structures are more obvious because 
the height and width of the display, the degree of graphic resolution, 
the number of colours used and the way in which colors and images 
are coded will vary considerably. 

In the technical reference manual available for your computer you 
should find all the information you need for integrating these facilities 
and features in your programs. If this information is not supplied then 
it is worth checking your local bookstore for independently published 
books which relate to your particular machine or operating system. 

Because of this wide variation in design, it is not possible in this 
volume to explain the operation of certain types of functions, such as 
line graphics, for different makes of computer. However, the insights 
into programming methods which you will acquire, together with the 
information contained in your own technical manuals, should enable 

you to construct graphics routines without much difficulty. 

We are going to be taking things gradually, avoiding the technicalities 
of the computer’s circuitry and concentrating on the most important 
aspect of programming: how to translate the ideas and concepts which 
are in your imagination into program structures which will enable 
them to be carried out. 

In the first few chapters we shall be building up the broad outlines of 
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assembly language programming. Chapters | to 7 in Part I will mainly 
be general, illustrating topics common to most assembly language 
programming as well as facts and concepts relating to the 68000 chip 

in particular. 

You will find it helpful to think of assembly language programming 
in terms of a group of key concepts which are common to all assembly 
language programs, such as data storage, data addressing and the use 
of registers, the use of flags, conditional branching, using stacks and 
referencing indexed tables of data. Chapters 1 to 6 are based on each 
of these concepts and in chapter 7 we shall look at some miscellaneous 

aspects of programming and system operation. 

The corresponding chapters in Part II will deal in detail with the 

68000, with much more emphasis on the use of its programming 

instruction set. Chapters 8 to 13 summarize the main concepts 

outlined in Part I and illustrate their applications using a number of 

complete and annotated programs. The multi-user, multi-tasking and 

protection capabilities of the 68000 will be outlined in Chapter 14, 

together with notes on program debugging and object code formats. 

An extensive appendix contains descriptions of the complete 

instruction set. 

The programs in Part II are fairly simple, functional routines which 

are designed to help you learn to use instructions by example, in a 

meaningful context, rather than by the more common method of 

learning the functions of each group of instruction types in a more 

formal way. 

They illustrate some of the more important programming functions 

such as setting up variables and arrays, printing characters and 

sentences to the display screen, arithmetical operations and processing 

stored data. They all follow a fairly similar structure so that they tend 

to reinforce understanding and most of the instructions used will 

appear frequently so that their functions will become familiar as you 

read through the chapters. If you experience any difficulty in 

understanding how a particular process works, don’t worry too much. 

The more complex functions which you come across will be explained 

in the same chapter or later in the book and it is better to read on and 

come back to something than to become stuck over a point of detail. 

Each chapter deals with a particular topic and on a first reading of Part 

II you will find it more useful to concentrate on the topics illustrated 



by the example programs than to try to follow everything contained 

in them. 

To begin with you may prefer to read through Parts I & II in sequence 
and then later, you can read the corresponding chapters in each part 
in conjunction in order to reinforce your understanding. 

User and Supervisor Modes 

The 68000 operates in two modes: user and supervisor mode. In 
practice you will normally only be concerned with user mode which 
is the mode in which ordinary user programs are executed. Supervisor 
mode is used by the computers’s operating system in order to gain 
total supervisory control over the events taking place in the system. 
Supervisor mode is only mentioned in the text of this book in relation 
to special system functions and it is not necessary for you to have any 
detailed knowledge of its operation. 
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Chapter I 

Beginning Assembly Language 

Assembly language, or ‘machine code’, consists of coded instructions 
which instruct the machine — or more accurately the processor — what 
to do. Machine code is a purely numeric form of assembly code, but 
when programs are written it is usual to use a set of non-numeric 
instructions called mnemonics, which are directly equivalent to 
machine code and are a lot easier for mere humans to understand. 

Assembly language is the term used to describe this set of mnemonic 
instructions and the two terms will be used in their appropriate 
contexts throughout the book to distinguish the two forms of code. 
Programming in pure numeric machine code is possible and is very 
often done on old, 8-bit computers. With a complex processor like the 
68000 you would need to be very fond of numbers to want to write 
your programs in this way and the programs in this book are presented 
in their assembly language format. 

Although many of the concepts involved are similar to those used in 
BASIC, many are quite different and it is best to approach the subject 
without too many pre-formed notions. Think of the computer initially 
as a machine consisting of nothing but a keyboard, a processor, a 
screen and so many memory locations, say 256 000. 

Starting from this uncluttered viewpoint, the principles of assembly 
language programming become extremely simple. 

Consider the following facts: 

1 All programs, data, colour and graphics must consist of numeric 

data. 

2 Everything which the computer does, such as arithmetic calcul- 
ations and the printing of letters, numbers and graphics on the 
screen, is performed on data taken either from memory or from 
some peripheral device such as the keyboard or a disc drive. 
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3 The CPU (central processing unit, or microprocessor) performs all 
arithmetic operations and controls and co-ordinates the movement 
of data between itself, memory, the keyboard, the VDU (visual 

display unit) screen and other peripheral devices. 

These three facts represent the basic model of a processing system. 

Unlike a high level language such as BASIC, which is designed to 
coordinate sets of general concepts, grouped under function names 
such as PRINT, LIST, L0G, CLS and so on, the function of assembly 

language is simply to direct the CPU to control the sequence of 
individual data movements around the system. In the next few 
chapters we shall be exploring not only how this is done but also how 
the movement of data relates to recognizable functions such as 
arithmetic calculation and the printing of characters and words to the 
screen. It is important, before you begin to learn these techniques, to 
acquire a general understanding of how data is stored and manipul- 
ated, because it is much easier to develop a program in assembly 
language if you are able to construct in your mind a mental model of 

the processes which are taking place. 

To begin with, we shall be looking at memory and the formats in 

which programs and data are stored. We shall then go on to see how 
data is taken from memory and processed by the CPU during the 
execution of a typical machine code instruction. 

Initially, we shall not be too concerned about the language we use for 
the instruction, nor about the precise way in which data is specified, 
or how we select the method by which it is sent to and received back 
from the CPU. Instead we shall concentrate on the general pattern of 
events; how the different elements of the system relate to each other 
and how the data is used to represent meaningful functions. 

Memory, Addresses and Data 

Firstly, we need to construct for ourselves a mental model of a 
computer’s memory. A clear understanding of memory structure is 
essential to the understanding of how assembly language works and 
you will need to relate much of what you read in the following 
chapters to the events which you visualize taking place within the 

memory space. 
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We shall start by looking at the meanings of the terms addresses and 
bytes, because these are two of the main concepts from which our 
memory model will be constructed. 

Memory consists of a sequence of separate, numbered locations in 
which items of information such as data and programs can be stored. 
There is no need for you to understand the actual physical structure 
of memory, as it exists on a chip. It is more helpful to imagine it 
simply as a series of numbered boxes into which programs and data 
can be placed. These can be pictured as a horizontal or vertical series 
of numbered pigeon holes, or, sometimes, as a two-dimensional 

matrix, whichever is most convenient for understanding a particular 
process. 

: memory locations are sequentially numbered, the ‘number 
rrespond ing to each location is termed an dares’ n the same way 

that houses in a street are given address numbers. Figure 1.1 shows 
a number of possible representations of memory addresses. 

ADDRESS 30000 

ADDRESS 30000 | ADDRESS 30001 | ADDRESS 30002 | ADDRESS 30003 

ADDRESS 30000 

ADDRESS 30001 

a = =—Ss 

ADDRESS 30000 

ADDRESS 30002 

ADDRESS 20004 

FIGURE 1-1. a) Single address 
b) Row of consecutive addresses 

c) Column of consecutive addresses 

d) Two-dimensional array 
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The use of address numbers in assembly language is of vital 

importance because it is only by keeping track of addresses that the 

computers’s CPU can find its way through a program. Just as in 

BASIC, where programs are given line numbers to indicate to the 

computer the order in which commands are executed, the CPU always 

needs to be aware of the address of the next machine code instruction 

which is to be executed. In the case of conditional branching 

operations, where execution is redirected to a subroutine for example, 

the CPU needs to keep a record of the address from which the branch 

was made so that it can return and pick up the sequence from where 

it left off. The programmer also needs to be aware of the address 

numbers of certain memory locations because particular items of data 

may be stored in specific places and there has to be a precise method 

of locating each one. 

In our imaginary model, we shall assume that we are working with a 

computer which has a memory capacity of 256K. Since 1K of memory 

actually equals 1024 memory addresses, 256K therefore represents 

262 144 addresses. We shall assume that address numbers 0 to 1023 

are allocated to various items of data required by the computer’s 

operating system (OS). Addresses 1024 to 66559 are allocated to the 

display memory, in which images which are visible on the VDU 

screen are stored. Addresses 66560 to 196607 are a free user area into 

which our own programs and data are loaded and addresses 196608 to 

262143 are occupied by the computer’s operating system. This model 

is greatly simplified but it illustrates the main areas into which 

memory is typically divided. 

When we speak of ‘addressing’ a memory location, we mean that the 

CPU can have its attention directed to any one of the address locations 

in the system, including those in both RAM and ROM. In the case of 

the 68000, up to 16 million memory locations can be addressed, 

although in practice, many micros have much less memory available 

than this — usually 128 to 512K in total. The CPU can ‘read’ data from 

both RAM and ROM - that is, it can identify the contents of any 

addresses in these areas — and it can ‘write’ to any of the addresses in 

RAM - that is, it can insert fresh data into any of the RAM addresses. 
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Bytes 

is stored in a single memory address is 
representing an integer number between 0 

which case its value depends on its position within the byte. If the bit 
on the extreme right of the byte (the LSB or least significant bit) is set 
to 1 it has the value 1. A set bit in the second position has the value 
2, the next 4, and so on through 8, 16, 32, 64 and finally 128, the value 

of the most significant bit (MSB). 

Bit values: 128 64 32 16 8 a cas | 

ae 1 Sa Bad a Ns | 
Binary bits: La OC EM Fs 
Bit numbers: ¢ 675 ede wake 

zs 

SB 

FIGURE 1-2. 

The total value of a byte is found by adding the individual values of 
its set bits, as follows: 

11001001 = 201 decimal (128+64+8+1) 

The reason why numbers are stored in this integer binary form is that 

in a computer, each set bit in a binary number, that is, each bit which 

is a 1 rather than 0, constitutes a signal which is translated within the 

machine as a voltage. It is only in the form of an electric current that 

binary numbers can physically be transported around the system from 

one component to another; for example between the processor and a 

memory chip. 

The consequence of using integer binary storage is that individual 

memory addresses can never contain data representing ‘real’ (floating 

point) numbers as such. The decimal number 3.76 might be 

represented by the value ‘3’ in one address and the value ‘76’ in the 

following address, although there are a number of other ways in which 

real numbers may be stored. 
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In Part 1 of this book we shall be using the binary representation of 
numbers extensively because in this format it is much easier to follow 
exactly what is happening to data when certain assembly language 
instructions are executed. It is a good idea to get into the habit of 
imagining your data in binary form in the earlier stages because it 
helps considerably in understanding some of the more complex 
concepts involved. In Part 2 we shall go on to use hexadecimal 
numbering, which will allow us to represent numbers in a much 
shorter form without straying too far from the clarity which binary 
numbers allow. 

It is important to remember that a// data contained in memory is in 
binary numeric form, including program instructions and textual 
data. If we were to list the data bytes contained in a block of addresses 
it would be difficult to distinguish between those values which 
represent program instructions and those which represent program 
data. How, then, is the processor able to distinguish between them? 

The answer is that every assembly language instruction has a unique 
numeric code of its own, consisting of between two to ten bytes and, 
providing the processor begins by reading a program from the very 
first instruction byte, it is capable of decoding and distinguishing the 
form and function of every byte thereafter. However, if the program 
begins execution at the wrong address, or if an instruction has been 
coded incorrectly, the processor is no longer able to make sense of any 
of the code and the result is usually a complete system crash. 

The following diagram shows the binary code of a 68000 addition 
command, ADDQ@ #1,D2 which adds the value 1 to another operand 
which is contained in a temporary storage location called a register: in 
this case register ‘D2’. 

ADDRESS 30000 HDDRESS 30001 

FIGURE 1-3. 

This is a two-byte instruction consisting of the byte values 82 and 66; 
a code which uniquely represents the assembly language mnemonic 
ADDQ@ #1,D2. This object code consists of a 4-bit code representing 
‘ADDQ’ (0101), a 3-bit code representing the number to be added (001), 
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a zero, which is an additional part of the ‘ADDQ’ code, a 2-bit code 
specifying the (two-byte) size of the operation (01), a 3-bit code 
indicating the addressing mode of the instruction (000) and a 3-bit 
code indicating register ‘D2’ (010). Together these constitute two 
binary bytes: 01010010 (82) and 01000010 (66). The instruction ADDQ 
#1,D02 is what you would actually write in your program and the 
values 82 and 66 are the object codes which are assembled for 

execution. 

The number of bytes required for each possible variation of a 
particular instruction is fixed and the CPU therefore knows that the 
next byte it comes across will be the beginning of the following 

instruction. 

Code representing data, such as variables and arrays, is stored in 
completely different areas of memory from program code and under 
normal circumstances the processor will never attempt to execute it by 

mistake. 

Words and Long Words 

Although a single byte has a maximum value of 255, you will 

obviously want to work with numbers which are much larger than 

this. In fact, the binary byte is only a basic unit of data; you can store 

binary numbers using several bytes if you wish. For example, a 2-byte 

integer represents a binary sla of 16 binary sige giving a 

which the Pro grAMner can deal with. A ‘32-bit’ or a ‘64-bit’ computer 

would be faster — which would make it more suitable for calculating 

a large prime number, predicting the world’s weather or problems of 

a similar magnitude. 
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a single address. A two-byte (word) value, such as 36829, would be 

expressed in binary as 

1000111111011101 

and would be stored in memory as follows: 

ADDRESS 71712 | ADDRESS 71713 

BOOORBAEABORAao 
Sar ggecimmes lnpermer eave! 

143 221 
HI BYTE LO BYTE 

FIGURE 1-4. 

The decimal value is found by multiplying the hi byte by 256 and 
adding the lo byte (143 * 256) + 221 = 36829 

A 4-byte (long word) value, for example 131097, is expressed in 
binary, as 

00000000 00000010 00000000 00011001 

0 2 0 25 

and would be stored in memory as follows: 

ADDRESS 71712 | ADDRESS 71713 | ADDRESS 71714 | ADDRESS 71715 

HI BYTE OF LO BYTE OF HI BYTE OF LO BYTE OF 
HI WORD HI WORD LO WORD LO WORD 

ae ae pe nr 

131072 25 
HI WORD LO WORD 

= 131097 

FIGURE 1-5. 

In this case the decimal value is found by multiplying the hi word by 
65536 and then adding the lo word: (2 * 65536) + 25 = 131097. 
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Note that although byte and word values consist of 8 and 16 bits 
respectively, there are occasions when they need to be stored in longer 
binary form, such as 32 bits. In these cases the values can simply be 
extended with zero bytes and stored as if they were 32 bit numbers, 
€.g.: 

ADDRESS 71712 | ADDRESS 71713 | ADDRESS 71714 | ADDRESS 71715 

0 0 
HI BYTE OF LO BYTE OF HI BYTE OF LO BYTE OF 

LO WORD LO WORD 

25 
HI WORD LO WORD 

HI BYTE OF LO BYTE OF HI BYTE OF LO BYTE OF 
HI WORD HI WORD LO WORD LO WORD 
en se 

0 2073 
HI WORD LO WORD 

= 2073 

FIGURE.1-6. 

Similarly, single byte values can be stored as words: 

ADDRESS 71714 | ADDRESS 71715 

eee” 

0 25 
HI BYTE LO BYTE 

eS, 

=25 

FIGURE 1-7. 
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Here is a list of some of the different types of data which may be stored 

in memory addresses: 

Before going on to look at how programs are organized in memory, we 

shall first look at how memory is typically arranged, so that we can 

imagine our program data in context. 

The Memory Map 

1024 Interrupt tables 

Screen memory 

66560 

Code and data 

196608 
Operating Systen 

262143 

FIGURE 1-8. Memory map. 

In this simplified map of a computer’s memory, you can see clearly 

how the space allocated to data is divided into different sections. On 

different computers the addresses of these divisions will vary and 

other specialized memory areas will be reserved for special data and 

functions. In this model for example, there is no area reserved for a 

BASIC language interpreter, although many computers may incorp- 

orate this. Most machine manuals will include a memory map diagram 

similar to this to show you how memory space is allocated. 
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The first section, from addresses 0 to 1023 is reserved for special 
tables and other data used by the operating system. The second 
section, from 1024 to 66559 is reserved for the VDU display. Any data 
placed in one of these display memory locations will appear as an 
image on the screen. If a computer has colour capabilities, the data 
specifying the background and foreground colours of an image will 

also occupy this section. 

The display area is best illustrated as a two dimensional array of 
memory addresses, with each row corresponding to the full width of 
the screen and the columns representing the vertical height of the 
screen. In this diagram, only the addresses corresponding to the top 
left hand corner of the screen are illustrated: 

ADDRESS 1024 

ADDRESS 1536 

FIGURE 1-9. Display memory corresponding to top left-hand 

corner of screen. 

In our imaginary computer the ‘display’ section is fixed and so the 

precise location of any point on the display screen can easily be 

calculated. On some computers, although the actual length of the 

display section remains constant, its position within memory may 

change constantly. 

The ‘code and data’ section is the area which is reserved for programs 

and their associated data, whether they be written in BASIC, assembly 

language or any other language. 

In BASIC programs the data area is used to store variables and arrays 

and their formats are organized by the BASIC interpreter. In assembly 

language, variables, arrays and other types of data are stored in 

reserved blocks of memory created by the programmer rather than by 

resident software and therefore it is necessary to be able to identify the 

locations of the addresses in this area in order to store and retrieve this 

information. 



12 First Steps in Assembly Language for the 68000 

The operating system consists of sets of routines designed for 
structuring the way in which the system functions and includes 
control mechanisms for communicating with disc drives, error 
handling, input and output operations, keyboard and VDU com- 
munications and other administrative tasks. Customized extensions to 
the operating system may include complex arithmetic and graphics 
functions and other routines which, like most of the operating system, 

are accessible from user programs. 

Program and Data Storage 

We shall now look at a simple model of how a typical assembly 
language program and its data is stored in memory. We shall assume 
that our program occupies addresses 71680 to 71707. Henceforth the 
term ‘address’ will be used interchangeably to refer both to the 
number of a particular location and the physical location itself. The 
term ‘content’ will be used to refer to the data contained in an address, 

irrespective of whether it is code which forms part of a program 
instruction or whether it is data representing a character or a numeric 

value. 

Thus our program code occupies 27 addresses and the contents of the 
first six of these can be pictured as follows. 

ADDRESS 71680 Instruction 
ADDRESS 71681 0 Data 

“ADDRESS 71682 24 Instruotion 

ADDRESS Instruction 

ise 8=6=60 | Data 
ADDRESS Data 

FIGURE 1-10. Program code. 

The instruction codes each occupy a varying number of addresses and 
in some cases are followed by addresses containing data. These data 
items are treated as being part of an instruction and may represent 
either constant data values or data representing the address of another 

location. 
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The variable data for our program, stored in the ‘data’ section of 

memory, is 5 bytes in length and occupies, say, addresses 71712 to 

71716. 

ADDRESS 

ADDRESS 

ADDRESS 

ADDRESS 

ADDRESS 

FIGURE 1-11. Program data. 

You will notice that the ‘program code’ section also contains data as 

well as instruction codes, and you may be wondering why this data is 

different from the data in the ‘data’ section. The reason is that there 

is a distinction between ‘immediate’ data, which relates to a particular 

instruction, and array and variable data stored in the data area. For 

example, in the BASIC instruction LET A=8*X the value ‘8’ is stored 

along with the BASIC instruction itself, whilst the value of the 

variable ‘X’ is fetched from the ‘data’ section of memory during 

execution. In other words, the ‘8’ is always 8 and is part of the 

program command, whilst X may be one of a number of possible 

values, and would be stored in the variables section of memory. 

Now consider what happens when our program is executed. It may be 

one which has been designed, for example, to add the value 48 to each 

of the contents of the addresses in the ‘data’ section and to print the 

results to the screen. It should be easy to follow the general sequence 

of events which take place. 

Two of the instructions in the program area instruct the computer to 

take the constant 48 (termed the source operand) and add it to the 

contents of the first address in the data area (termed the destination 

operand). The next instruction then places the ASCII character 

corresponding to the sum in some of the addresses in the display 

section. Figure 1.12 illustrates part of the processes involved. 

The ASCII characters in a computer are a standard set of characters 

which include all alphabetic letters, numerals, punctuation marks and 
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essential control codes such as line feed, carriage return and so on. 
The binary codes for all these characters are always positive numbers 
in the range 0 to 127. The remaining ASCII codes, 128 to 255, are 
assigned by different computer manufacturers to various other 
functions and are not standardized. 

ADDRESS. n 

Get an item of data ADDRESS nt] fron the first address 
ata section hae occ (the value 24) 

ADDRESS nt3 

ADDRESS n+4 

ADDRESS n+5 Add 48 to it (48+24=72) 

ADDRESS 

ADDRESS 

ADDRESS 

ADDRESS n+9 

ADDRESS n+#10 

piacl b ti ene ADDRESS 
isplay subroutine gets the Fi 

address of the screen cursor, ADDRESS 
the address of the stor = 
binar ry pattern for ASCit code ADDRESS 
72 (character H) and prints ADDRESS 
the character to the screen 

ADDRESS 

ADDRESS 

ADDRESS 

ADDRESS 

FIGURE 1-12. 

In practice, the operation involves the movement and the processing 
of data in which all the relevant items, including the instruction and 
the data codes, are physically copied into the CPU, processed, and the 
resulting data transported to memory addresses in the display area. 
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The technical aspects of these operations need not necessarily be 
understood in detail by the programmer, since the CPU controls the 

sequence of events automatically. 

When the first numbers have been added together and the cor- 
responding ASCII character printed to the screen, the process can be 
repeated with the second item of data by looping back and repeating 

the first instruction. This process may then be repeated until all five 

additions have been completed and the characters printed to the 

screen. 

The following example shows how the same operation might be 

performed in BASIC: 

NOerORscount = 5:to’ STEP. -1 

20 READ V 

30 PRINT CHR$(48 + V) 
40 NEXT count 

50 DATA 24,21,28,28,31 

This produces the values 72, 69, 76, 76 and 79, for which the 

corresponding printed ASCII characters are ‘HELLO’. 

The assembly language and BASIC processes have a number of 

similarities: 

1 The instructions in both programs are executed sequentially, 

except for the loop sequence, which allows a section of the program 

- to be repeated. 

2 Both store their variable data separately and call up each item of 

data when it is needed. 

3 Both require their instruction codes and program data to be sent to 

the CPU for processing during execution. 

If we look at a flowchart for each version we shall also see some very 

important differences in the way in which the operations are carried 

out: 
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FIGURE 1-13. Flow chart for BASIC version. 
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Set variable S to 
address of data 

Transfer data from 
address S into Al 

fidd 48 to variable A 

Call character Print 
subroutine using data 

in variable A 

Add 1 to variable § 

Subtract 1 from count 

Compare count with value 0 

Print to 
screen 

ASCII character Poa aise [O 

FIGURE 1-14. Flow chart of assembly-language version. 
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The first main difference is that the assembly language version is 

much longer, breaking down the individual steps in the operation to 

smaller, closely defined units. The BASIC program operates in almost 

the same way when it is executed but the individual steps are handled 

entirely by the machine’s BASIC interpreter, leaving the programmer 

to structure the program using easily understood broad concepts such 

as the FOR..NEXT loop and the READ..DATA functions. Hence, the 

BASIC flowchart illustrates the flow of BASIC language mechanisms 

while the assembly language flowchart illustrates the actual flow of 

events between memory and the CPU. 

The second difference is that although the BASIC version implies that 

data should be moved around in memory, the physical movement of 

the data is not specified. Although items of data are added and then 

transferred to the screen, the program itself does not concern itself 

with the precise locations of the data or where it should be moved to. 

The assembly language version on the other hand, is very specific 

about where the different elements of the program are located and 

where they should be moved to. Thus an assembly language program 

consists not only of instructions specifying standard operations, such 

as addition and subtraction, but of instructions designed to locate and 

control the movement of different categories of data throughout the 

system. 

Unfortunately, the range of operations which the CPU can perform is 

very limited and therefore it is not possible, for example, to write an 

instruction which transfers a numeric value into it and requests its 

cosine or logarithmic value as you would use C0$ or L0G in BASIC. 

In fact it deals entirely with integer values and is only capable of 

adding, subtracting and performing logical operations on them such 

as AND and OR. Although the CPU cannot handle multiplication and 

division directly, the 68000 system incorporates instructions which 

can perform these operations and therefore this is not a problem. 

Should you require a more complex computation such as the cosine 

or logarithm of a number, then it is necessary to break down such an 

operation in terms of simple arithmetic and logical steps which the 

CPU can perform. There is no need to be deterred by this because 

with many computers it is possible to take a short cut by using ready 

made mathematical functions which are already programmed into the 

operating system. You can simply regard such functions as assembly 

language subroutines and call them up from within your own 
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program. In some cases a system will incorporate an arithmetic 
co-processor which is designed to handle transcendental functions and 
floating point numbers. These incorporate their own instruction set 
and allow you to specify the operands involved and the mathematical 
function required. 

Assemblers 

Assembly language, like any other computer language, consists of a 
set of instructions, representing specific program operations, and a 
syntax, which specifies the format in which instructions may be 
written. The reason why it is called assembly language is that it is 
designed to be used with an assembler program, which interprets the 
instruction mnemonics written by the programmer (the source code) 
and converts them into a set of numbers which can be interpreted and 
executed by the computer. The resulting numbers are called the 
object code or machine code. 

A program which is written in assembly language cannot be run in the 
way that a BASIC program can; only the object code can be executed, 
and it is this code which is assembled and saved to tape or disc prior 
to being loaded and executed. The resulting machine code program is 
simply a list of numbers which represent particular instructions and 
some which represent data, as described previously. 

When a BASIC program is run the instructions are compiled 
(translated) from BASIC to machine code at the time of execution. If 
we were to use a disassembler (i.e. a program for converting machine 
code back into assembly language) to examine the contents of a 
machine code program we would be given a listing which looked 
something like the following: 

Address Object Code 68000 Instruction 
(hexadecimal) —_ (hexadecimal) Mnemonics 

29CE8 7200 MOVEQ #00, D1 

29CEA 7602 MOVEQ #02, D3 

29CEC 41FA0038 LEA 38(PC)!29D26, AD 

29CF0 7001 MOVE@ #01, DO 

29CF2 4E42 TRAP #2 

29CF4 7400 MOVEQ #00, D2 

29CF6 183A002C MOVE.B 2C(PC)!29D24, D4 
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29CFA 45FA0022 LEAPEE CPE) Se oDTE, Ae 

CICPE 12322000 MOVE.B OO(A2,D2.L), D1 

29D02 D23A001F ADD.B 1F(PC)!29D23, D1 

You will see that we are given three different types of information. In 
the left hand column we have a list of addresses (in hexadecimal 
format) which represent the locations in which the machine code 
program is stored in memory. The right hand column contains the 
assembly language instruction mnemonics for the program and the 
centre column contains the hexadecimal machine code version of the 
assembly listing on the right. The machine code is divided into 
different groups of bytes, with each individual byte (2 hexadecimal 
digits) representing the contents of a single memory address. 

The first instruction, MOVEQ #00,D1 is translated into two bytes of 

object code, occupying addresses 29CE8 and 29CE9,,. The second 

instruction also occupies two bytes while the third instruction, LEA 
38(PC)!29D26, AO consists of 4 bytes, and occupies addresses 29CEC 

to. 29CEF i. 

The machine code program would be executed sequentially, starting 
with the first number of the code of the first instruction and 
continuing through each memory byte until a final instruction is 
reached. In between there may be program loops, subroutine calls and 
conditional jumps, just as there are in BASIC programs. 

The program is initiated either by an auto start mechanism, as soon 
as it has been loaded into memory, or by calling it with a high level 
language instruction, for example from within a BASIC program or 
from the operating system. Alternatively, a program may be a 
subroutine which is called from within some other machine code 
program. 

In Chapter 8 we shall be looking at assembler programs in more detail, 
showing how the translation from assembly language to object code is 

organized. ; 



Chapter 2 

Registers and Addressing Modes 

Sources and Destinations 

When an item of data is accessed and transferred from one location to 
another, for example when data in one location is added to another 

item of data, the the first item is termed the source operand and the 
second item, the destination operand. The terms source and destin- 

ation are used extensively in assembly language to distinguish the 
status of the operands involved in an operation. As we shall see later, 
the possible source and destination locations for operands involved in 
different operations may be subject to entirely different rules. In the 
case of the addition instruction in the previous chapter (ADDQ#1,D2), 

the source operand, 1, is an immediate numeric constant, while the 

destination operand is located in a register. The register itself is the 
destination location, the contents of the register being the actual 
destination operand. When the two operands have been added, the 
result is automatically stored in the location which previously held the 
destination operand. 

Registers 

An operand which is being addressed by an assembly language 
instruction will be in one of two places; either in a memory location 
(in either the code or data sections) or in a register. 

Registers are identified by alphabetical letters, like BASIC variables, 
and are literally temporary memory locations which are situated in the 
CPU rather than in RAM or ROM. A register may be treated in much 
the same way as any other memory location in that data may be loaded 
into one or moved out of one into another location and the contents 
of registers may have arithmetic operations performed on them. Some 

21 
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are also used as temporary variables for holding the codes of memory 
addresses. 

In the 68000 there are two main types of user registers; data registers 
(DO, D1, D2, D3, D4, DS, D6 and D7) and the address registers (A0, 
Al, A2, A3, A4, AS and A6), each of which hold up to four bytes of 
data. The address registers are normally used for holding the 
addresses of memory locations. 

Data Registers 

Data registers are 32 bits in length and are capable of holding data of 
byte, word and long-word lengths. You can imagine them simply as 
labelled boxes divided into four byte-sized partitions which can be 
loaded with binary values. The least significant byte of a value 
occupies the mght hand partition and the most significant byte 
occupies the left, corresponding to the way in which you would 
normally format a binary number. 

As an example of the use of a general data register, suppose that you 
had a program in which repeated calculations were being performed 
on a set of figures and you wish to add up the totals. Just as you might 
use a variable in BASIC to accumulate the total, you could use a data 
register such as D2 in assembly language. As with a BASIC variable, 
the value contained in a data register can be used in subsequent 
program instructions. 

DATA REGISTER D2 

FIGURE 2-1. 
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Address Registers 

An address register is also 32 bits in length and, like a data register, 
is used as a source or destination for operands. However, whereas the 
purpose of a data register is simply to hold data which is being used 
in a program, an address register is used specifically to hold address 
numbers. Although an address register can actually hold a 32-bit 
value, only the least significant 24 bits (bits 0 to 23) of a value are used 
to specify an address, hence the maximum restriction in a 68000 based 
computer to 16 777 216 bytes (16 megabytes) of physical memory. 
Note that a 68008-based computer is restricted to a maximum of 1 
megabyte, since only the lower 20 bits of an address register can be 
used to specify an address. 

ADDRESS REGISTER A3 

a a pl 

HI WORD LO WORD 
pe / 

LOWER 3 BYTES SPECIFY AN ADDRESS 

FIGURE 2-2. 

Additional Registers 

In addition to the address and data registers, the 68000 has a small 
number of other registers which are used for special purposes. 

Program Counter 

The PC (program counter) register is a 32-bit register whose lower 24 
bits always contain the address of the program instruction that is 
currently being executed and is automatically updated by the system 
as each instruction is processed. Whenever a program branches to a 
subroutine or jumps to another point in the code, the new address is 
automatically loaded into the PC register so that the processor knows 
from where in memory to fetch the next instruction. The address 
contained in the PC register can be altered by the programmer to 
redirect execution to a different point in the program, but this is 
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normally only done in special circumstances, for example if there is an 
occasion when you want to return from a specific subroutine to a point 
other than the normal return address. Under normal circumstances, 
you would only need to refer directly to the PC register if you wish to 
refer to an address which is a specified number of bytes relative to the 
current execution address. 

Status Register 

The status register (SR) is a 16-bit register which is used to hold a 
number of bit-sized ‘flags’ which indicate the current status of the 
system. It is used to determine, for example, whether a computed 
value is positive or negative, whether it is less than, equal to or greater 
than some other value or whether it involves an arithmetic ‘carry’ or 
‘borrow’. The main functions of the status register are described in 
detail in the following chapter. 

Stack Pointer 

A special area of memory, termed the stack, is reserved for the storage 
of temporary data and variables. The current location of the ‘top’ of 
the stack; the point at which fresh data may be stored or old data 
removed, is at the address whose value is contained in address register 
A7. This register is therefore referred to as the stack pointer (SP), 
since it ‘points’ to the current stack top. 

Addressing Modes 

The available methods by which data may be accessed and moved 
around between memory locations, registers and the processor itself 
are termed addressing modes and these are clearly defined. It is not 
necessary to think too consciously about which mode to use in a 
particular situation, any more than it is necessary to think about the 
rules of grammar whenever you wish to speak. If you know where 
your data is and what you want to do with it then the appropriate 
addressing mode will come to mind automatically in most cases. 
However, it is useful to be aware of what is possible and what is not 
and the following section describes the formal structure of these 
modes. In this section we shall be starting to use some actual assembly 
language instructions, beginning with the MOVE instruction, which is 
used to copy operands from a source to a destination, and the ADD and 
SUB instructions, which add and subtract operands. 
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There are two main categories of addressing modes: memory 
addressing, in which operands contained in memory are addressed, 
and register addressing, in which operands located in registers are 
addressed. Although registers do not actually have address numbers 
of their own to identify their location, the term ‘addressing’ neverthe- 
less includes register as well as memory references. 

Implicit Addressing 

Certain assembly language instructions involve the use of particular 
registers without explicitly stating which registers are to be used. In 
all cases, these instructions use one or more registers for the same 
reasons as you would choose to use one yourself: to store, retrieve, 
move, process or modify data. In these cases however, the particular 
register used is chosen for a specific purpose and therefore there is no 
need for the programmer to indicate which one is required. For this 
reason, this addressing mode is termed implicit, for the register to be 
used is implicit in the instruction itself. Such instructions include, for 
example, RTS (return from subroutine) which always implies the 
contents of the PC register. Some instructions are not only implicit, 
in that they imply the contents of SP and/or PC, but also involve the 
use of other addressing modes. 

Register Direct Addressing 

This addressing mode is used for operations performed on data 
contained in registers. For example, the contents of two registers may 
be added together or the contents of one may be transferred to 
another. In BASIC, equivalent instructions would include LET A=B or 

LET A=A+B. 

In the first of these examples you will notice that the MOVE 

instruction has a ‘.L’ after it, whilst in the second, it has a ‘.W’. The 

reason for this is that the first example is a ‘long-word’ operation, in 

which all four bytes of one register are copied into the other. In the 

second example, which is a ‘word’ operation, only the least significant 

word of a register is involved, leaving the most significant word of 

each register unchanged. This distinction has nothing to do with the 

fact that one is a MOVE operation and the other an ADD operation — we 
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DATA REGISTER D2 

DATA REGISTER D1 

OPERATION: MOVE.L D2,D1 {copy the entire contents of data 
register D2 into data register D1) 

FIGURE 2-3. 

DATA REGISTER D2 

DATA REGISTER D1 

tel fab ADD.W D2,D1 (add the low order word of register D2 
o register D1) 

FIGURE 2-4. 

could just as easily have specified the instructions MOVE.W D2,D1 and 
ADD.LD2,D1; the ‘.W’ and the ‘.L’ being the parts of the instructions 
which determine the size of the operands involved in the operations. 

In both cases we could alternatively have used the instruction suffix 
‘,B’, signifying that only the least significant byte of the register 
contents be involved. If there is no ‘.B’, ‘.W’ or ‘.L’ suffix after such 
an instruction, it is normally assumed by default that ‘.W’ is intended 
although there are exceptions to this rule. 

The two registers involved can both be data registers or one of them 
can be an address register. In the instruction MOVE A2,D1 for example, 

the source operand is specified by address register direct addressing 
and the destination is specified by data register direct addressing. 

The same type of operation performed using an address register as a 
destination is slightly different. In this case, only two sizes of data may 
be used in an operation — word and long-word. Therefore, the ‘.B’ 
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suffix cannot be used. Some instructions indicate the use of an adress 

register destination by the addition of an ‘A’ to the instruction 
m apemonic, ac a oes and ADDA. The sed a the desnat difference 

regist being use he destination register — 
0 6 , all our bytes are aff ected, unlike a data register 
hie the unused bytes remain unaffected. If we were to transfer a 
word of data, say the value 300 (binary 0000000100101100) from 
register D1 to register Al, the most significant word of Al would 
automatically be sign-extended to a full 32 bits — in other words, the 
highest bit of the least significant word, bit 15, would be copied into 

bits 16 to 31 of Al, as follows: 

DATA REGISTER D1 

TUTTI TTT TT TT TT | folotofofojofo}sfofo}sfo}s}s}o/o 
ae ee Sr 

ADDRESS REGISTER Al 

0} 0{0}0}0]0]0}0{0}o{o/0[o/o{o/o/o/o]o}o}ojojo)s}ojo}}o}:]1{o}o 
OPERATION: MOVEA.W D1,AL (copy et low order word of data 
register Di into the low order word address register Al and 
sign extend the value of bit 15 ae ate 16 to 31) 

FIGURE 2-5. 

The implications of this are very important because it affects the way 
in which a memory address is specified. If we load a 4-byte 
(long-word) address into an address register, then the address which 
it represents will be the one specified by the least significant 24 bits 
of the register, as described above. 

However, if we load a word value into an address register, the 

remaining two bytes of the register, the Hi word, will carry the 
sign-extension of the value and part of this will be incorporated in the 

24-bit address specification. How does this affect the value of the 

address which we wish to specify? 

There are two possible alternatives. If the value loaded into the 

address register is between 0 and 32767 decimal, the binary represent- 

ation in the register will be as follows: 

0111111111111111 binary 

= 32767 decimal 
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which, after being sign-extended in the address register would be the 
same: 

00000000000000000111111111111111 binary 

= 32767 decimal 

So far so good. This address is the highest in the bottom 32K of 
memory and is exactly the address we specified when we loaded it into 
the address register; sign-extension left it unchanged. 

However, the alternative possibility is that we load a word value 
between 32768 and 65535 decimal into the address register. The 
binary representation would be as follows: 

1000000000000000 binary 
= 32768 decimal 

which, after being sign-extended in the address register would become 
(counting only the lower 24 bits): 

11111111111111111000000000000000 binary 
= 16744 448 decimal 

This address happens to be the first address of the top 32K of memory 
— not the address we originally specified. This is not a fault but an 
advantage. If we actually want to access a memory address in the top 
or bottom 32K of memory then we only need to use a word (in the 
range 0 to 32767 or 32768 to 65535) to specify the address, which is 
a saving in both time and space. Hence, a word-sized address is 
termed a short address. 

If we want to access an address anywhere in memory, we use Jong 
addressing; that is, we load a long word address value into the address 
register which, since it will not be sign-extended, will produce exactly 
the address which we specify, up to a maximum of 24 bits. This 
principle applies to any addressing mode which makes use of an 
address register. 

One final point to note about address register direct addressing is that 
in some cases where the destination of an operation is an address 
register, for example in ADDA (add address), SUBA (subtract address) 
and MOVEA (move address), the condition flags in the CCR register are 
not affected by the operation. 
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Absolute Addressing 

An absolute addressing operation is one in which an operand is 
identified by its actual memory address. In BASIC terms it is similar 
to the instructions LET A=PEEK(20000) or POKE 20000,A. In practice, 

the address is normally identified in the instruction by means of a user 
defined label rather than an actual number. 

Direct addressing has Jong and short forms: a ‘long’ address, as 
already indicated, being specified by a 32-bit number and a ‘short’ 
address as a 16-bit number, sign-extended to 32 bits. 

DATA REGISTER DS 

RE ER 

ADDRESS 90000 | ADDRESS 90001 | ADDRESS 90002 | ADDRESS 90003 

OPERATION: ed D5,90000 (copy the entire contents of 
cegister D5 into four memory addresses, beginning with address 

FIGURE 2-6. 

This is the long form of direct addressing. The address value is a 

3-byte number and therefore the system automatically recognizes it as 

a literal address. The ‘.L’ suffix has nothing to do with the address 

size; it performs its usual function of denoting the size of the data 

which is to be transferred. 

DATA REGISTER D5 

yall kaa I 

ADDRESS 20000 . ADDRESS 20001 ADDRESS 20002 ADDRESS 20003 

OPERATION: MOVE.L 05,20000 (copy the entire contents of 
peqaage” D5 into four memory addresses, beginning with address 

FIGURE 2-7. 



30 First Steps in Assembly Language for the 68000 

This is the short form of direct addressing. The address value is a 
2-byte number, which is automatically sign-extended to 32 bits. Since 
the 2-byte number is within the range 0 and 32767, it falls into the 
bottom 32K of memory and, after sign-extension, it therefore remains 

unchanged. As in the previous example, the ‘.L’ suffix indicates that 
four bytes are to be transferred. 

Immediate addressing 

This is used for operations involving an immediate numeric constant. 
For example, a number may be transferred from or loaded into a 
register or, it may be added to or subtracted from a number which is 
already in a register. Equivalent BASIC instructions would be LET 
A=10 or LET A=A+10. 

DATA REGISTER Dt 

OPERATION: MOVE.L #10,D1 (copy the immediate value 10 into the 
er HORA Ts byte of regist and zero the three higher bytes 

FIGURE 2-8. 

Note that here, the ‘.L’ suffix has been used to indicate that D1 
should contain a 32-bit binary representation of 10. This would 
normally be done if we wish to ensure that the unused bytes of a data 
register are zeroed. The ‘#’ sign is used to indicate that the value is an 
immediate constant. 

DATA REGISTER D1 

OPERATION: MOVE.B #10,D1 46 the immediate value 10 into the 
low oreer byte of register leaving the three higher bytes 
unaffected) 

FIGURE 2-9. 
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In this case the ‘.B’ suffix has been used, specifying that the value 10 
is only copied into the least significant byte of D1, leaving the rest 
unaffected. 

Immediate Quick Addressing 

Quick addressing is a form of immediate addressing in which 
operations can be formed faster than usual. Many programs, or certain 
routines within programs, involve a great deal of processing; especial- 
ly those involving program loops or which move a lot of data from one 

location to another. It becomes vital, therefore, for programs to be 

executed in the shortest possible time and the saving of a few 

microseconds (millionths of a second) in the execution time of 

individual instructions can have an appreciable effect on the overall 

running of a program. You only have to consider the speed which is 

required to update the display screen in a fast moving graphics 

program, such as a flight simulator, to realise that every microsecond 

that is saved in a program can be of great significance. 

The ‘quick’ instructions, therefore, are designed to take advantage of 

the fact that when very small values of data are being dealt with, it is 

worth providing a quicker method of processing them rather than rely 

on an operation which is designed to deal with larger and therefore 

more complex items of data. 

There are only three of these instructions: MOVE@ allows you to set the 

entire 32 bits of a register to an 8-bit value, thus avoiding the use of 

a longer and less efficient operation such as MOVE.L. ADDQ is slightly 

different; it is designed for adding values in the range | to 8 to the 

contents of a register. SUBQ subtracts data from a register in the same 

numeric range. 

_ Address Register Indirect addressing 

This is equivalent to a BASIC instruction such as LET A=PEEK(X) or 

POKE X,A. It is used to access values which are stored in locations 

whose addresses are contained in registers. 

Suppose that we have a byte value stored somewhere in memory 

which we wish to copy into data register D2. We may have no idea 

exactly where in memory the data is stored but we do know that its 
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address is currently contained in, say, address register A4. We can 
therefore get at it indirectly, via A4. To indicate indirection we 
enclose the address register in brackets, which tells the system that it 
is not the contents of A4 which we wish to load into D2 but the 
contents of the address pointed to by the contents of A4. 

ADDRESS REGISTER A4 

amen s00ze 

Scr 

42,02. “copy he data bp the address which 
egister 

FIGURE 2-10. 

The operation can, of course, be performed the other way round: 

ADDRESS REGISTER A4 

90028 

ADDRESS 90028 

DATA REGISTER D2 

OPERATION; MOVE,B D2,(A4) (copy the data in the low order byte 
of register D2 into the address specified by the contents of 
register f4) 

FIGURE 2-11. 

This addressing mode indicates some interesting possibilities. Sup- 
pose, for example, you had a list of data somewhere in memory — say 
12 bytes representing the number of gallons of gas you have purchased 
Over a twelve month period, with each byte representing a month’s 
total. You might want to use these figures in a program which is 
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designed to work out the average monthly figure for the year. If the 
address of the first month’s gas consumption is contained in address 
90028 then you could load this address into an address register so that 
it points to the required month. The arrangement would then look 
something like this: 

ADDRESS REGISTER A4 

ADDRESS 90030 | March data | 

DATA REGISTER D2 

OPERATION: NOVE.B (A4),D 
low order byte of Peatater D2) 

{copy the data for January into the 

FIGURE 2-12. 

If you want the figure for January for use in your program then you 
could load it into a data register using an instruction such as MOVE.B 
(A4),D2, as described above, and then use the data in the data register 
in your averaging program. It should also be clear that you could copy 
two or four month’s figures in one go from the memory block into a 
data register, simply by using the suffixes ‘.W’ or ‘.L’ instead of ‘.B’ 
in the instruction. 

Having accessed your first item of data, you then need to access data 
for further months, which could easily be done by incrementing the 
value of A4 so that it points to the next required address and then 
using an ADD instruction such as ADD.B (A4),D2 to add its contents 

to the data register. However, there is one type of addressing mode 
which will perform this function for you: the address register indirect 
with postincrement, covered next. 
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Address Register Indirect with Postincrement 

If we were working on the same block of data as before, we could 
substitute the following instruction for the one we used previously: 
MOVE.B (A4)+,D2. In this case we are doing exactly what was 
described before: the data contained at the address indicated by A4 is 
loaded into a data register and the address register is incremented by 
1, 2 or 4 to point to the next required address, depending on whether 
we are transferring byte, word or long-word sized chunks of data. In 
this mode however, the incrementation of the address register is 
carried out automatically after every transfer of data; a function which 
is specified by the ‘+’ sign in the instruction. 

Address Register Indirect with Predecrement 

This addressing mode works exactly like the one above except that it 
operates in reverse. The address register is decremented by 1, 2 or 4 
and then the data is accessed, hence the term ‘predecrement’. We 
might use this addressing mode to access items of data in memory in 
reverse order. In this case A4 would initially be loaded with the 
number of the address immediately after the December data; address 
90040. The instruction MOVE.B -(A4) ,D2 would then decrement A4 

by 1, and then transfer the byte at 90039 into D2. Here, the 
predecrement mode is indicated by the ‘-’ sign next to the brackets. 

Address Register Indirect with Displacement 

Although the regular address register indirect mode allows you to. 
address individual memory locations via an address contained in an 
address register, it is not versatile enough to allow you to address 
locations which are situated relative to a particular address. If you 
have a list or table whose base address is contained in address register 

A3, how can you address a location within the table at, say, offset 3 
from register A3? This kind of indirect memory access is achieved 
using the concept of a displacement, in which a constant value, 
contained in the instruction, is added to the address register used. 
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ADDRESS REGISTER A3 

py the data in the address OPERATION: MOVE.B 3(A3) 
A 3 e low order byte of registe is pointed to by °o ro so *s ——_ 

FIGURE 2-13. 

In this example the displacement, 3, is added to the A3 register to 
enable access to the contents of the address 3 bytes on, relative to the 
address pointed to by register A3. 

In this addressing mode, the 16-bit displacement is always sign- 
extended so that it represents a displacement in the range —32K to 
+32K. The concept of minus numbers will be discussed in the 
following chapter. 

Address Register Indirect with Index and 

Displacement 

Similar to the above mode is ‘address register indirect with index and 
displacement’, in which one register is used to point to the base of a 
block of data and another, either an address or a data register, is used 
to hold an index offset. An additional displacement value is placed 
outside the brackets as in the previous mode. The advantage of this 
over the previous mode is that the index register can be altered under 
program control to point to a number of items within a table, relative 

to the base register. 
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ADDRESS REGISTER A3 

DATA REGISTER D4 

10007 

bt sn) [February data 

TOSEREIOM April data — 

DATA REGISTER D2 

OPERATION: MOVE.B gach, D4),02 (copy the contents of the menor 
address pointed to by AS+D4+24 to the low order byte o 

FIGURE 2-14. 

In the above example the base register is A3, the index register, D4, 
contains the value 10007 and the displacement is 24. The address 
which is being accessed is therefore the sum of the contents of A3 and 
D4 plus the value 24. 

It is also possible to specify the size of the index register. In the above 
example the byte at address A3+_D4+24 is being copied into register 
D2. If we wanted to specify that the entire 32-bit contents of D4 were 
to be used as the index variable we could modify the instruction to 
MOVE.B24(A3,D4.L),D2. In this case the ‘.L’ length specifier defines 
the size of the contents of the index register and the ‘.B’ defines the 
size of the operand which is to be loaded into D2. 

This instruction could, for example, be used to access an operand 
which is in a block of data whose base address is contained in A3. 
Within this block is a sub-block whose base is at offset 24 from A3 
(counting from zero). Within this sub-block is an address whose offset 
is contained in D4. 
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In this mode the immediate displacement is 8 bits in length and is 
sign-extended, giving a displacement in the range —-128 to + 127. If the 
index register is of size ‘W’, it is also sign-extended giving an index 
displacement in the range —32K to +32K, otherwise it is treated as a 
32-bit positive value.. 

Program Counter Relative Addressing 

The above addressing modes work very well if we happen to know the 
address, or at least the base address, of the data which we wish to 
access. However, if our program is one of several which might occupy 
memory at any one time we cannot guarantee that on every occasion 
it will be located into exactly the same region of memory. In this case, 
it does not make much sense for a program to refer to specific address 
numbers. 

This problem is overcome by writing programs which are position 
independent or relocatable, which means that they can be loaded and 
run anywhere in memory. In this case, the location of a particular 
block of memory can be specified as being relative to a known point; 
the only known point being the location of the instruction currently 
being executed and whose address will be contained in the PC 
(program counter) register. 

PC relative addressing instructions are formatted in exactly the same 
way as indirect addressing instructions, except that PC is substituted 

for the base register, as follows: 

MOVE.B4(PC,),D2 PC relative with displacement 

MOVE.W6(PC,),D5 

MOVE.B6(PC,D3.L),D2 PC relative with index and 

MOVE.B4(PC,D3.W),D1 displacement 

The following table gives a summary of the addressing modes 

discussed in this chapter. 
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Addressing Mode 

Implicit 

Absolute (short & long) 

Register Direct 

Immediate 

Address Register Indirect 

Address Register Indirect 
with Postincrement 

Address Register Indirect 
with Predecrement 

Address Register Indirect 
with Displacement 

Address Register Indirect 
with Index and Displacement 

PC Relative with Displacement 

PC Relative with Index 
and Displacement 

Operand Location 

Operands implicit in 
instruction 
Operand at address 
specified in instruction 
Operand contained in a 
register 
Operand contained in 
instruction 
Address of operand is in an 
address register 

As above 

As above 

Address of operand is the 
contents of an address 
register plus a 16-bit signed 
displacement value 

Address of operand is the 
contents of an address 
register plus the contents of 
an index register plus an 8- 
bit signed displacement 
value 
Address of operand is PC 
plus a 16-bit signed 
displacement 

Address of operand is PC 
plus an index register plus 
an 8-bit signed displacement 



Chapter 3 

Condition Flags 

The key to any program, whether written in machine code or in any 
other language, is in the way in which it makes conditional decisions 
based on the status of various variables. In BASIC, typical decisions 
might be expressed as: 

IF A$ = "Y" THEN GOTO 500 

or 

IF X>2 AND Y=3 THEN GOSUB 1000 

or 

IF count=10 THEN STOP 

In the last example the variable ‘count’ is being used as a ‘flag’ in the 
sense that in the event of ‘count’ being equal to 10 then it may be 
regarded as a flag waved at the computer to indicate that a particular 
decision has to be made — the decision to STOP executing. If the flag 
is less than or greater than 10 then the need for an alternative decision 
is being flagged — the decision not to STOP. 

The first two examples also involve the use of flags, although in these 
cases they are not so obviously labelled. The simplest way to look at 
a flag is to regard it as a proposition that is either true or false. Thus, 
during execution, the program flags the condition that it is true that 
A$=”Y” , or that X>2 and Y=3, or it is false, and the program lines 
following these statements indicate the appropriate action to be taken. 

What the program is doing, irrespective of whether it is originally 

written in assembly language or in BASIC, is using a ‘bit flag’ within 

the CPU to indicate either a true or false condition. Thus, when 

executing IF A$=”Y” the computer is not looking at the similarity of 

39 
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shape between one alphabetical letter and another and thinking to 
itself ‘this character in variable A$ looks about as much like the letter 

“Y” as a bullfrog’. It is in fact comparing the binary codes which 
represent the two items of data and then setting a bit flag in a special 
purpose register to either | or 0, indicating either that it is true or false 
that the codes are identical. Once this bit has been set (i.e. it becomes 
a 1) or reset (i.e. it becomes a 0) the program merely needs to make 
a decision about what to do next. 

In assembly language programs these decision flags need to be 
considered individually by the programmer, because there is no 
BASIC interpreter to determine automatically which flag is required 
in a particular situation. Are two items of data being compared to see 
if they are equal, which is greater than or less than the other, or 
whether they are positive or negative? In each case the answer 
obviously depends on the context and a separate bit flag is used in each 
case. 

Let us select a few bit flags to see how they work. Since they only 
occupy | bit each they are all stored in a single register. In the 68000, 
this special register is termed the CCR (Condition Codes Register), 
which forms the lower half of a 16-bit register known as the SR (Status 
Register), which holds various flags indicating the current status of 
the system. 

15 13 10— 9:29 O73 O21 ee 

EE. 

Condition “odes Register 

Status Register 

FIGURE 3-1. 
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Zero Flag (Z) 

Taking the zero flag first, consider a typical decision. Suppose that a 
key has been pressed on the keyboard and that we have transferred its 
ASCII value to register D1. How would we do that? It depends on the 
computer we are using and on the particular method of keyboard 
scanning being used, but suppose for the present that our computer 
has an inbuilt keyboard scanning routine which can be called as a 
subroutine from our main program and which automatically returns 
the ASCII code of the last key to be pressed in the low byte of register 
D1. 

What we need to determine is whether the byte code in the D1 register 
is the same as the ASCII code for Y In other words, is it true or false 
that the Y key has just been pressed? Naturally we need to know the 
ASCII code for Y which is 89 (or binary 01011001). The question takes 
the form: ‘Is the byte contained in D1 equal to 89?’ This question is 
technically a comparison, so we compare the immediate constant 89 
with the contents of D1, using the instruction CMPI (which means 
compare immediate): 

CMPI.B #89,D1 

eee 
CMPI.B #09,01 (oompare the low order byte of register 
imme nnediate’ value 89) 

or: 

FIGURE 3-2. 

How does a computer compare items of data? In this case it must 

subtract 89 from the contents of D1 (taking care not to actually alter 

the original value of D1 which we may sometimes want to preserve) 

and ask itself whether or not the answer is zero, in which case they 

must be equal, or greater or lesser than zero, in which case they are 

not equal. The answer is indicated by the zero flag which is 

automatically ‘set’ to 1 if they are equal or ‘reset’ to 0 if they are not. 
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This is an important point to remember about the zero flag: it does not 
necessarily indicate that the contents of a register or memory address 
equal zero; it indicates whether or not the result of the previous 
operation equals zero. In this case the previous operation was a 
comparison (in effect, a subtraction) and, since the result of the 

comparison was zero, the zero flag is automatically set. 

eee ena eae 

You can see that any decision we may wish to take now, such as a call 
to a subroutine, can be made on the basis of testing the zero flag in 
the CCR register to see whether it contains 0 or 1. 

FIGURE 3-3. 

Let us now look at how we might make such a test. Suppose that our 
program has asked us a question to which the input answer is either 
Y (yes) or N (no). If our answer is Y then perhaps the program might 
transfer execution to a routine labelled, say, ‘FRED’. If the answer is 

N, or in fact anything other than Y, execution should move on to the 
next instruction in the program sequence. j 

In assembly language terms the operation could be described as 
follows: If the ASCII code of the last key pressed is the same as the 
ASCII code for Y then set the “‘Z”’ flag. If the Z flag contains 1 then 
transfer execution to address ‘FRED’, otherwise move to the next 
instruction in the sequence. What would this look like as part of a 
program? 

Pest yo Biri Si: sASCII code for last key pressed is in D1 

CMPI.B #89.D1 2s it» tnecsamemas*Ascal code} tom —Yre 

BEQ FRED ;'Branch if equal’ to address 'FRED' if so. 

;Otherwise continue to next instruction 
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That is all there is to it. The BEQ (branch if equal) instruction ‘tests’ 
the Z flag and transfers execution to the address labelled ‘FRED’ if it 

is set. 

If we wished to restrict our answer to Y or N rather than Y or ‘any 
other’ key, we would simply perform two comparisons: 

<3) Ae sASCII code for last key pressed is in D1 

CMPI.B #89.D1 z;Is it the same as ASCII code for "Y"? 

BEQ FRED s"Branch if equal' to address 'FRED' if so. 

CMPI.B #78,D1 Or is it the same as ASCII code for "N" ? 

BEQ MARY Branch if equal to address 'MARY' if so. 

Otherwise carry on to next instruction 

A separate comparison could, of course, be performed with every 

ASCII code in order to find out exactly which key had been pressed. 

This would be rather cumbersome however, and there are other 

techniques, on specific machines, for reading and cross-referencing 

large areas of the keyboard at once in order to isolate a particular key 

or set of keys. 

Key testing is, of course, only one application but in all cases the 

principle is the same — the Z flag is used to indicate whether the result 

of a comparison or any other arithmetic or logical operation is zero. 

It also works with instructions such as MOVE, indicating whether a 

number moved into a certain location is zero or not. 

Sign Flag (N) 

Now let us look at the sign flag: N. This is used to indicate whether 

an item of data is a positive or a negative number. 

Although in most circumstances a byte of data represents a value 

between 0 and 255, in some circumstances it is useful to regard it as 

representing a signed value in the range —128 to + 127. This is very 

easily achieved by regarding bit 7 of a byte (the Most Significant Bit 
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or MSB) as being the sign bit. If it is set then the number is negative 
and if it is reset then the number is positive. 

However, if we were to use bit 7 as the sign bit we would run into 
problems when performing arithmetic operations using signed values. 
For example, if we add together the signed representations of +10 and 
-5 (00001010 + 10000101), we would end up with 10001111 which is 
-15 as a signed number, and which is obviously incorrect. Binary 
addition is performed in a similar way to decimal addition, with any 
‘carry’ being passed to the next column of the addition. The rules are 
that 0+0=0, 0+1=1, 1+0=1 and 1+1=0 carry 1, hence: 

Binary 2’s Comp 

00001010 (+10) 

+10000101 Cs >)) (DT C7 Wseset, 

a lo Indicating a minus value) 

=10001111 Calo 

For the processor to have to correct this result would take up valuable 
processing time and so the solution is to represent signed numbers in 
2’s complement form, in which all positive signed numbers keep their 
normal binary value and take the sign indicated by their eighth bit (bit 
7), and all negative numbers are obtained by means of the following 
method:“ 

1 All bits in the binary value are complemented (i.e. inverted). 
oe Or ne 

The value 1 is added to the result - 

For example, number 5 is represented by 00000101. When we invert 
this, substituting zeroes for all the ones and vice versa, we get 
11111010, which is the one’s complement. We then add | to this 
number and end up with 11111011, which is the 2’s complement 
signed representation of —5. 

If we now substitute this representation of —5 we get the correct 
answer to our addition: 

Binary 2’s Comp 

00001010 (+10) 

+11111011 C53 

=00000101 (+ 5) 
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Two’s complement arithmetic is recognized implicitly by a number of 
assembly language instructions and in most circumstances the 
conversion to 2’s complement is performed automatically, without the 
programmer needing to specify this form of representation. 

Now consider the following byte: 

01111111 

As a signed number this is, of course, +127: the highest positive 
number which can be represented by a signed byte. The value 
11111111, in 2’s complement, represents —1, which is the same 

number as +127 but with the sign bit set. Again, this is +1 
(00000001) inverted to 11111110, with 1 added, which is 11111111. 

Two’s complement byte values therefore run as follows: 

Binary © 2’s Comp. Unsigned 

00000001 = +1 1 

00000010 = +2 2 

00000011 = +3 3 

and so on up to: 

Binary 2’s Comp. Unsigned 

01111110 = +126 126 

01111111 = +127 127 

and then the next binary numbers in sequence are: 

Binary 2’s Comp. Unsigned 

10000000 = 125 128 

10000001 = = Zi 129 

10000010 = -126 130 

and so on up to: 

Binary 2’s Comp. Unsigned 

tidelsisia Ol, = =) 255 

RA t1140. = Sa 254 

I 255 11111111 
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The same principle applies to two-byte data representation. The 
value: 

0111111111111111 

represents +32767, its MSB being reset and which is the highest 2’s 
complement positive word value. The value: 

1000000000000000 

represents —32768, its sign bit being set, which is the lowest 2’s 
complement negative word value. 16 ones would, of course, represent 
-1 in a similar way to the byte form. 

Suppose that we have performed an operation using byte-sized 
operands and we wish to know whether the resulting value is positive 
or negative in terms of 2’s complement representation? 

We could, of course, subtract 127 from it and see what the remainder 
is. It would be far simpler however, if we could just check a flag, and 

this is precisely how the N flag functions. After certain operations the 
eighth bit (bit 7) of the resulting byte, or the 16th bit (bit 15) of a 
word, is automatically copied into the N flag position in the CCR 
register and we can test this in much the same way that we tested the 
zero flag. 

This would be useful, for example, if we were processing a block of 
data and wished to separate all those bytes of data which represented 
standard ASCII characters from those which do not. 

It would be easy to separate standard from non-standard ASCII codes 
because, in 2’s complement terms, the standard set is represented by 
codes +0 to +127 and the non-standard set, by —1 to -128. In other 
words, the distinction is revealed by the status of the sign bit. 
Therefore, we can load each of our bytes in sequence into a data 
register and test to see whether the N bit in the CCR register has been 
set or not, and then write program instructions to take appropriate 
action — for example to branch to one subroutine if the N bit is set or 
to another if it is reset. 
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Carry Flag (C) 

Because the size of a byte, a word or a long word is limited to a certain 

number of bits, it frequently happens that an arithmetic operation 

produces a result which falls outside the range of the data size being 

used for the operation. Consider the following binary addition: 

Binary Decimal 

00001010 10 

+00000100 4 

=00001110 =14 

In this case there is no problem. The result is perfectly correct because 

it falls within the range 0 to 255. Compare this with the following 

addition: 

Binary Decimal 

10001010 138 

+10000100 +132 

=00001110 = 14 

eanrys 1 

The problem here is that the addition has given the result 14, which 

is incorrect because the true sum of the two values is greater than 255, 

which is the highest value that a binary byte can represent. The binary 

addition has therefore resulted in a ‘carry’ from bit 7 which has 

nowhere to go. If this were a 16-bit addition it would go into bit 8 (the 

9th bit) of the result, giving the correct decimal result of 270. In cases 

where the size limit of an operand has been exceeded in an operation, 

the carry bit is passed into the ‘C’ or carry flag in the CCR register, 

which becomes set, indicating that the operation has resulted in a 

value which is out of range. In our first example, which was within 

range, the carry flag would remain reset. 

The same principle applies to subtraction operations. If we were to 

subtract 10 from 4 then the true result is negative. Since the lowest 

unsigned binary byte value is 0 then the actual result will be incorrect 

and a binary ‘borrow’ will be generated, which is copied into the C flag 

in the same way as a Carry. 
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The C bit of the CCR register can therefore be regarded as the ninth 
bit (bit 8) of a byte value, the 17th bit (bit 16) of a word value or the 
32nd bit (bit 31) of a double word value. 

Wherever you perform an operation in which a carry or borrow is 
likely to occur, you can use an instruction which tests the C flag in 
order to determine whether or not the result is incorrect. Again, your 
program should specify the appropriate action to be taken. 

Overflow Flag (V) 

The ‘V’, or overflow flag is very similar to the carry flag except that 
it is used to detect binary overflow errors resulting from 2’s complem- 
ent arithmetic operations. Consider the following two addition 
operations: 

Binary 2’s Comp. 

10001010 -118 

+10001001 = 14.9 

=00010011 Se te 19 

Binary 2’s Comp. Unsigned 

01111000 +120 

+00111000 +5516 

=10110000 = - 80 

carry 7 

In both these cases, the signs of the numbers have been altered. In the 
first example, the change of sign was caused by the fact that, although 
there was no carry from bit 6 into bit 7, there was a carry from bit 7 
into the carry flag, leaving a zero in bit 7. In the second example, there 
was no external carry into the carry flag but there was an internal carry 
from bit 6 into bit 7 of the byte. In both cases therefore, the value of 
the sign bit was altered causing an incorrect result. Where an 
operation involving 2’s complement values results in the alteration of 
the sign flag the condition is termed an overflow and the V bit of the 
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CCR register is set, otherwise it remains reset. An overflow is usually 
an accidental error and a program can be designed to test for such an 
error and to redirect execution to a corrective subroutine. 

Extend Flag (X) 

The ‘X’ or extend flag performs the same kind of function as the carry 
flag, except that it is used in binary coded decimal and multiple 
precision arithmetic operations. This flag will be described in detail 
when we look at binary coded decimal arithmetic in Chapter 7. 

Conditional Suffixes 

All these flags, both singly and in combination, provide an extremely 
flexible means of making conditional branching decisions. The 
branching instructions of the 68000 can incorporate suffixes which use 
various combinations of these flags to provide every kind of condition- 
al testing operation necessary for programming. These suffixes are 
appended to three types of instruction: Scc (set from condition), Bcc 
(branch on condition) and DBcc (decrement and branch on condition). 

An example of the ‘EQ’ suffix was used earlier in this chapter in the 
form BEQ (branch if equal). 

The table on the next page shows a complete list of the conditional 
suffixes: 
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Suffix 

DBcc and Scc can be used with the additional suffixes T (true) and F 
(false). 

The following examples show how the carry and overflow flags are 

Meaning 

if carry clear 
if carry set 
if equal 
if greater or equal 

if greater 

if high 
if less or equal 

if low or same 

if less than 

if minus 
if not equal 
if plus 
if overflow 
if not overflow 

Conditions 

if GeO 
i =a) 
iiZiul 

if either (N: = land V.=3 

or (N = 0 and V = 0) 
if either (N = l.and. V=1 and 

Z = 0)or(N = 0 and V = 
0 and Z = 0) 

if C= 0iand:Z =o 
if N =) and Vi= 0 

(N = O0and V = 1 

= er 243} 

if either (N.= 1 and-V =a 

or (N = 0 and V = 1) 
if N= 1 

) or 

)or Zak 

if Z = 0 
if N = 0 
if V = 1 
if V = 0 

affected by addition operations on various byte values: 

Binary. Decimal 

* 00001010 10 

+00001010 10 

00010100 20 

Binary 2’s Comp. 

01111000 +120 

+00001010 + 10 

-10000010 “126 =10000010 

V=0 and C=0 

V=1 and C=0 (overflow error) 
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Binary 2’s Comp. 

00001010 +10 

teaer1000 . - 8 

=00000010 +2 V=0 and C=1 (correct 2's Comp. 

carry 1 result. Carry ignored) 

Binary 2’s Comp. 

00001000 + 8 
erad10410 +. -10 

= WhiiO: | - 2 V=0 and C=0 

Binary 2’s Comp. 

11111000 - 8 
Soro -10 

=11101110 =a {te} V=0 and C=1 (Correct 2's comp. 

carry 7 result. Carry ignored) 

Binary 2’s Comp. 

10001000 -120 

#11110110 - 10 

=01111110 +126 V=1 and C=1 (overflow error) 

carry 1 

Bit Rotation 

Arithmetic operations are not the only ones which can alter the status 
of the flags. The rotation instructions for example, allow you to rotate 
the individual bits in a byte, word or double word of data to the right 
or to the left, altering the status of the flags accordingly. Why would 
you want to rotate bits to the left or right? The answer is not 
immediately obvious perhaps, because in normal, everyday program- 
ming we are used to thinking in terms of the ‘face value’ of numbers, 
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rather than thinking of them as a pattern of 0s and Is. This is why we 
are using binary arithmetic a great deal in this part of the book: it is 
only by getting used to the idea of data as a binary number pattern that 
we can really appreciate how assembly language works and how an 
understanding of its structure can allow you to manipulate these 
patterns in creative and imaginative ways. 

Imagine that you have a program which is feeding data out of the 
computer to some peripheral device — say a disc drive. You have 7 
bytes of data to transfer and you need some method of counting off 
these bytes as they are transferred. You could, of course, use a register 
as a counter variable, subtracting one from it after each transfer and 
checking the zero flag until it is set, indicating that the counter has 
reached zero. As an alternative you could load a labelled address with 
the byte value 252 (binary 11111100). This contains a binary pattern 
of 6 ones (i.e. one less than the number you wish to count), followed 

by two zeros. Now see what happens when we ‘rotate’ the binary 
number to the left by 1 bit: 

C 

fea] } a] ]sjofo}s) 

rotate left 

FIGURE 3-4. Bit rotation of a binary byte. 

As the bits are rotated to the left, the 1 from the leftmost bit position 

replaces. the zero which previously occupied the rightmost bit 
position. At the same time the leftmost 1 is also copied into the C flag. 
This is in fact a carry and effectively sets the carry flag. 

We could rotate this byte to the left a total of seven times, each time 

following the transfer of a byte of data from the computer into the disc 
drive, thus using the 6 set bits in the rotating counter byte as counters 
for the amount of data transferred: 



Condition Flags 53 

Carry Operand value Flag 

0 11111100 original number 
] 11111001 after first rotation 
l 11110011 after second rotation 
l 11100111 after third rotation 
l 11001111 after fourth rotation 
1 10011111 after fifth rotation 
1 00111111 after sixth rotation 
0 01111110 after seventh rotation 

On the seventh rotation, the zero in the leftmost bit position is rotated 
into the carry flag which therefore becomes reset. 

If each rotation is followed by an instruction which tests the carry flag, 
the condition of the flag can therefore be used to determine when the 
count has reached 7. This technique is illustrated in PROG6 in Chapter 

13. ; 

There are a number of instructions for rotating and for ‘shifting’ data 
values and all affect some of the flags in various ways. Details of this 
group of instructions can be found in Appendix B and include ROL 
(rotate left with carry), ROR (rotate right with carry), ROXL (rotate left 
with extend), ROXR (rotate right with extend), ASL (shift arithmetic 
left), ASR (shift arithmetic right), LSL (shift logical left) and LSR (shift 

logical right). 

Logical Operations 

The final main group of instructions which affect the flags are the 

logical operators: AND, OR and EOR. AND takes a source and a 

destination operand and returns a result in which each bit is set if both 

the corresponding bits in the source and the destination are set. OR 

returns a result in which each bit is set if either of the corresponding 

bits in the source or the destination are set. EOR returns a result in 

which each bit is set if either of the corresponding bits in the source 

or the destination bur not both are set. The following examples show 

the way in which the flags may be affected accordingly: 
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AND OR XOR 

10101010 10101010 10101010 

01101101 01101101 01101101 

00101000 TRO ta 11000111 

VAN Lake VENSZA Ke VENEZLSX eC 

00000 01000 0-1) 020¥6 

Note that the ‘X’ flag is not affected by these instructions and the ‘C’ 
and ‘V’ flags are always zeroed. 

Specific Flag-altering Instructions 

Most of the instructions on the 68000 affect various flags in one way 
or another as a program is executed and you sometimes need to be sure 
that a particular flag is in the required state before you use it. 

One way of doing this is by performing a logical AND operation on 
the CCR register in order to reset all or some of the flags. The 
instruction for this is ANDI #x,CCR (AND immediate to CCR). The ‘x’ 
is a value whose bit pattern corresponds to the flag bits, X,N,Z,V and 

C of the CCR. Thus, for example, to reset all the flags the ‘x’ would 
be 0. To reset the carry and zero flags only, those two bits should be 
equal to zero and so ‘x’ would be 26 (i.e. binary 11010). The operation 
for setting flags is similar except that a logical OR operation is used: 
ORI #x,CCR (OR immediate to CCR) and instead of using reset bits to 
reset particular flags, we use set bits to set them. To set Z and C 
therefore, ‘x’ would be given the value 5 (i.e. binary 00101) 

Flag Testing 

It is possible to test data without previously having performed an 
operation on it. Suppose that you have an item of data in memory and 
you wish to know whether it is zero or negative. Using the TST (Test) 
instruction you can specify an operand and the ‘Z’ and ‘N” flags will 
be set or reset according to its value. Since the value is not actually 
altered in any way, the ‘V’, ‘C’ and ‘X’ flags will not be altered either. 
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There are a number of other test instructions which specifically 
operate on individual bits within an operand and which affect the zero 
flag. These instructions are summarized as follows and a fuller 
description of their functions can be found in Appendix B. Note that 
these operations are normally used in multiprocessor operations where 
several processors have access to a shared memory resource. Testing 
an operand allows a program to determine whether another processor 
is accessing a particular part of memory and setting an operand bit 
informs other processors that your own processor is accessing it. 

BCHG 

(Test Bit and Change) This instruction tests a specified bit within an 
operand in memory or in a register. If the bit 
is reset then the zero flag is set and if the bit 
is set then the zero flag is reset. The specified 
bit is then complemented — in other words, if 
reset it is set or if set it is reset. 

BCLR 

(Test Bit and Clear) This is similar to BCHG except that instead of 
being complemented, the specified bit is left 
reset. 

BSET 

(Test Bit and Set) This is similar to BCLR except that the specifi- 

ed bit is always left set. 

BIST 

(Test Bit) This is similar to the above three instructions 
except that the specified bit is left unchanged. 

TAS 

(Test and Set) TAS tests a specified operand and the N and Z 
flags are set or reset according to its value, 
after which the high order bit of the operand 
is set. No other processor can access the 
operand while the TAS operation is taking 
place. 
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Chapter 4 

Branching Operations 

Relative Addressing 

In a BASIC program it is frequently necessary to redirect execution 

from the current line number to another line number; either to GOTO 

another section of the program or to GOSUB to a subroutine. 

In assembly language the same applies, except that in this case we 

would be redirecting execution not to another line number but to a 

memory address. 

In BASIC, such an operation would normally involve a direct 

destination. In other words, we would specify something like G0T0 

300 or GOSUB 800. In assembly language we would do something 

similar, specifying that program execution should go to the instruction 

located at, say, address 70000 within the code segment for example, 

or to a subroutine starting at address 80000. The actual address value 

need not necessarily be known beforehand: it could be contained in 

one of the address registers, in which case we could specify it in the 

instruction using the register indirect addressing mode. 

There will be occasions when we wish to redirect execution to an 

address which is relative to the instruction which is specifying the 

redirection. In BASIC this is an unnecessary operation but we would 

express such a command using an instruction such as: 

100 GOTO 100+30 

or 

100 GOSUB 100+30. 

In these cases we would be referring to line 130, which is 30 lines 

further on in the program relative to the GOTO or GOSUB commands. 

57 
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The reason why we do not need to use relative addressing in BASIC 
is that the destination of a branch is explicit in the program. If we 
know that the target routine is at line 130 then we can refer to the 
line number directly. In assembly language there are no line numbers 
and therefore a target routine must be relative to some fixed point. 
If the target routine is positioned relative to the instruction which 
calls it then it is necessary to calculate the relative number of addresses 
between the branching command and the routine or subroutine 
address to which it refers. 

If the fixed point is the address of the current instruction then the 
relative displacement between PC and the target routine must be 
calculated, since at any given time, PC contains the address of the 
instruction which is currently being executed. If PC is altered to point 
to a target routine relative to the branching instruction, the relative 
displacement is added to the current value of the PC register. If the 
address of the target routine is absolute rather than relative, then the 
absolute address must replace the value currently contained in PC. 

In assembly language it is necessary to specify in the instruction itself 
the number of relative addresses between a branching command and 
the program or subroutine address to which it refers, or to specify 
or ‘point’ to the actual address of an absolute location. These two 
types of redirection instructions are distinguished in the 68000 by 
the use of two different types of instructions: jump and branch 
commands: 

JMP (Jump) — jump to a specified address 
JSR (Jump to Subroutine) — jump to a subroutine at a specified address 
BRA (Branch) — branch to an address relative to the branch command 

BSR.(Branch to Subroutine) — branch to a subroutine address relative 
to the branch command. 

Jump Operations 

Taking the first of these, JMP is perfectly straightforward. We can 
jump to an address which is either absolute (i.e. the address number 
is specified in the instruction) or indirect (i.e. the address number 
can be specified using one of the forms of the address register indirect 
addressing mode). If you are unsure of the meanings of these modes 
you should refer back briefly to chapter two to refresh your memory. 
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The JSR command operates in almost exactly the same way except 

that it redirects execution to a subroutine located at a particular 

address. When the command is executed, the address immediately 

following the JSR command is temporarily stored away so that when 

a return is made from the subroutine, the program can recommence 

execution from the point where it left off. 

Branch Operations 

The Branch commands are a little more complex. In these cases we 

are transferring execution to an address a relative distance away from 

the branching command and if we were to look at the code of the 

command in program memory it would appear something like this: 

ADDRESS 70000 Branch instruction code 

ADDRESS 70001 8-bit displacement code 

ADDRESS 70002 1 

ADDRESS 70003 

ADDRESS 70004 

OPERATION: BRA 264 (branch to a location 264 bytes forward from 

the branch comman 

16-bit displacement code 

FIGURE 4-1. 

The first byte of the command, in address 70000, contains the 

branching instruction itself. The following three addresses contain 

the data which specifies the distance of the displacement (i.e. the 

relative distance) between the branch command and the address to 

which execution will be transferred. This can either take the form of 

a single byte of data (in address 70001), giving a two‘s complement 

displacement in the range -128 to +127, or a word of data (in 

addresses 70002 and 70003) giving a two‘s complement displacement 

in the range -32K to +32K. If the byte in address 70001 is other 

than zero then a signed byte displacement will be used and if it is 

zero, then a signed word-sized displacement will be used. 
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Since the address of the program instruction currently being executed 
is always held in the PC register, any relative displacements will 
therefore be relative to the value of the PC register. However, since 
the PC register increments by | after every byte of an instruction has 
been interpreted, by the time it has interpreted the required 
displacement distance it will have moved on to an address two bytes 
further on from the beginning of the branch instruction. The 
displacement value, therefore, does not refer to the relative distance 
from the beginning of the branch instruction itself but from a point 
two bytes further on, as illustrated by the following diagram: 

ADDRESS 70000 Branch instruction code 

ADDRESS 70001 8-bit displacement oode 
ADDRESS 70002 — 
ADDRESS 70002 
ADDRESS 70004 
Tie #8€8=6=|=|—h| 
aooress 7000 
imi | 

Wisi = =—h ee 

rom 70002 

FIGURE 4-2. 

This diagram illustrates the use of the instruction BRA 6, which means 
‘branch relative to the BRA instruction by 6 bytes’. If we wanted to 
branch backwards instead of forwards in memory we might use an 
instruction such as BRA -6. 

Labelled Branching Operations 

It will no doubt have occurred to you that if we had to calculate these 
relative values individually each time, then programming would be 
something of a nightmare. It would be easier if we could simply 
program an instruction such as BRA ADDR1, where ADDR1 is a label or 
variable equivalent to the new execution address. This is precisely 
what an assembler program allows us to do. We can ‘declare’ the 
value of a label name of our own choosing to be the addres of a 
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particular program routine. Thereafter, when the program is com- 
piled into object code, the relative distance between the BRA ADDR1 
command and the actual destination address to which it refers would 
be calculated and coded automatically, as would the relative distances 
for any other instruction which refers to ADDR1. Apart from making 
the job of programming easier, this also means that a program can be 
loaded anywhere in memory since the label does not refer to a fixed 
address. 

The same principle applies to BSR instructions. The command BSR 
ADDR2 would redirect execution to a subroutine whose start address 
is defined as ADDR2 in the source listing. Labels may also be used 
with JMP and JSR instructions. 

Wherever a JSR or BSR instruction has redirected execution to a 
subroutine, a return is made by the inclusion in the subroutine itself 
of a return.command, which serves the same function as the RETURN 

command in BASIC. In assembly language, the command is RTS 
(return from subroutine). There are some other return commands 

which are used in special circumstances and these will be described in 

later chapters. 

As a summary of the principles described above, the following 
diagram shows how a BSR command redirects execution to a 
subroutine located at address 70000, and, after a return is made, how 

a JMP command is used to jump to address 80000. 

FIGURE 4-3. 
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Absolute and Indirect Branching 

JMP and JSR jumps are either absolute or indirect and BRA and BSR 
branches involve an absolute displacement. An absolute branch is 
one which is made to a target location whose address is specified in 
the instruction. An indirect branch is one whose target address is 
contained not in the instruction but in a location pointed to by the 
instruction. 

Absolute 

JMP ROUT3 as an absolute instruction redirects execution to an 
address represented by the label ROUT3. This address is auto- 
matically loaded into the PC register and becomes the new 
execution address. In the case of JSR the target address is obtained 
in the same way. 

Indirect 

JMP (A4) is an indirect instruction which redirects execution to a 
target location whose address is contained in register A4. This 
address is automatically loaded into the PC register and becomes 
the new execution address. In the case of JSR the target address is 
obtained in the same way. 

Relative 
BRA ROUT3 is a PC relative branch because the value of the label is 
an absolute displacement which is added to the PC register. The 
same principle applies to BSR. 

Note that it is easy to become confused about the notion of absolute 
addressing. Technically, an absolute address is a specified address 
number. When a label is used then the absolute address is represented 
by the label and the absolute address to which the label refers may 
differ, depending on what part of memory the program has been 
loaded into. In position dependent programs a label may be defined 
by the program as being equal to a particular address number. In 
position independent programs the label is assigned to the position 
of a particular instruction, whatever address that happens to be when 
the program is loaded. The assembler computer it as a PC relative 
location for most practical purposes you should simply regard the 
term absolute as referring to an operand which is not in a register 
and which is not referred to indirectly. ‘Thuis JMP ROUTS, JMP (A4) and 



Branching Operations 63 

The only difficulty which you are likely to run into in this respect is 
where a label is used which represents an address which has been 
computed as a program counter relative value, which is the case with 
programs which have been assembled as position independent code. 
In this case an operand in a labelled address cannot be altered. 

Conditional Branching 

The JMP, JSR, BRA BRS and RTS commands are termed unconditional 

redirection or ‘program control’ commands, corresponding to the 
BASIC instructions GOSUB, GOTO and RETURN. In most circumstances 
where we require redirection however, we need to use conditional 

instructions, corresponding to BASIC instructions such as IF A=B 

THENGOTO .. or IF A<=BTHENGOSUB ... It 1s in these circumstances 

that we use the condition code flags in the CCR register, as described 

in the previous chapter. If you refer to the table on page 51 in the 

last chapter, you will see that certain condition code flags are affected 

by program operations which, in various combinations, correspond 

to conditions such as less than, equal to, greater than and so on. In 

branching operations we use these in a special form of the branch 

command: Bcc (Branch according to condition code), where ‘cc’ is one 

of the suffixes listed in the table. This was illustrated in our discussion 

of the zero flag, where the instruction BEQ@ (i.e. Bcc with ‘EQ’ 

substituted for the ‘cc’) was used to branch to a new execution address 

conditional upon the zero flag being set. We are now in a position 

to go a stage further and see how a conditional branching command 

and the zero flag can be used to simulate a BASIC FOR. .NEXT loop. 

Imagine that we have a routine which we wish to enclose within a 

program loop, which is to be iterated 10 times. We need to have 

some means of counting up to, or down from, 10 so that we know 

when the iterations have been completed. We can do this by selecting 

one of our data registers, say D4, as a loop control ‘counter’ and load 

it with the immediate value 10: 

MOVEQ #10,D4 
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The low order byte of D4 now contains 10 and the higher three bytes 
are zeroed. 

The routine which is to be iterated starts at address 80000 and ends 
at address 80007. Following this, starting at address 80008, we need 
to write a routine which tests to see whether the iteration has been 
completed. If it has, we want the program execution to carry on with 
the next instruction in sequence. If not, execution must loop back 
to address 80000 to repeat the routine. Here is the process in 
diagrammatic form: 

ADDRESS INSTRUCTION 

79998 MOVEO #10,D4 Load D4 with 10 

the loop routine 
instructions go 

in here 

80000 St 
la 

Subtract 1 from D4 
and set zero flag 
if D4 equals zero 

80008 SUBQ #1,D4 

Branch if zero flag 
is not equal to one 

back to ’LOOPL’ 

80010 BNE LOOP1 

Else continue with next 80012 +s next instruction t 
instruction in sequence 

FIGURE 4-4. 

Immediately before the routine, D4 is loaded with 10; a procedure 
which uses up 2 bytes from addresses 79,998 to 79,999. Then follows 
the loop itself, from addresses 80000 to 80007. Following this is 
a subtraction instruction: SUBQ.B #1,D4 which means ‘subtract quick’ 
the value 1 from the least significant byte of D4’. In addition to 
subtracting 1 from D4, this operation will also set the zero flag if D4 
now contains the value zero, or leave it reset otherwise. We are then 

in a position to test the zero flag and branch back to address 80000 
if it is reset, which is achieved with the command BNE L00P1 (branch 
if ‘not equal’ back to LO0P1). The term ‘not equal’ refers to the status 
of the zero flag; if it is reset then the result of the previous SUBQ 
instruction must be ‘not equal’ to zero and execution is therefore 
redirected back to LOOP1 (address 80000). If D4 has reached zero 
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after the SUBQ instruction then the zero flag is set. The branch is 
therefore not made and execution continues with the next program 
instruction. 

The above example is, in effect, a FOR. .NEXT loop and it is almost as 

simple to understand and as easy to program in assembly language 
as it is in BASIC. This kind of loop is so fundamental to programming 
that the 68000 has been provided with a mechanism for speeding up 
and simplifying the operation even further: DBcc (decrement and 
branch according to condition code). Again, DBcc instructions can 
take the form of branching instructions conditional upon the status 
of a range of flags. 

This time, however, the process is a little more subtle. Suppose we 
have a loop which adds 1 to the contents of data register D2 up to 
10 times until either register D2 is equal to register D3 or the count 
of ten has finished, whichever happens first. We could perform this 
operation by continually adding 1 to D2 and then using the 
comparison instruction, CMP, until the zero flag becomes set, which 
would indicate equality, or until our counter register has finished 
counting. 

If we enclosed this routine within a DBcc loop we would use the form 
DBEQ@ (Decrement and branch until equal), as follows: 

;lLabel Instruction Comment 
7 eweewewee eee ew ee ewe ewe ew ewe ee we ewe ew eww ew wm ew ew eww ew ew ewe errr rerrrrrrerererererererero 

MOVEQ #9,D1 ;Load counter register with 9 

LP1 ADDQ #1,D2 ;Add 1 to register D2 

CMP.L D2,D3 ;Compare D2 with D3 

DBEQ D1,LP1 ;If zero flag is set, go to NEXT 

;Otherwise decrement D1 

sIf 01<>=-1, Loop back to LP1 

;Otherwise goto NEXT 

NEXT 33 . 

Firstly, we load our counter register with the value 9 (i.e. 1 less than 

the value of the required count). Then we add 1 to D2, using the 

ADDQ (add quick) instruction and then compare the contents of D2 
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with the contents of D3, using CMP. Next comes the DBEQ instruction. 
Firstly, it tests the zero flag to see if the previous comparison 
instruction resulted in equality. If D2 1s equal to D3 (i.e. zero flag 
has been set) the loop is finished and execution passes to the next 
instruction. If D2 is not equal to D3, the D1 (counter) register is 

automatically decremented by 1. If D1 is not equal to —1, execution 
loops back to the instruction labelled ‘LP1’ (the ADDQ instruction). If 

D1 is equal to —1 the loop is finished and execution passes to the next 
instruction. 

In BASIC the process could be coded as follows: 

100 D1=9 

200 REPEAT 

300 D2=D2+1 

400 IF D2=D3 THEN GOTO 700 

500 D1=D1-1 

600 UNTIL D1=-1 

700 Next instruction ... 

Using other condition suffixes, other types of loops can easily be 
constructed. For example DBMI can be used for a REPEAT/UNTIL MINUS 
loop and DBT corresponds to REPEAT/UNTIL TRUE. The DBF (Decrement 
and branch until false) form of this instruction, which on some 
assembler programs is expressed as DBRA (Decrement and branch) 
is equivalent to having no condition: an unconditional branch. In 
other words the loop will terminate only when the counter register 
has reached —1. 

Subroutines 

When a subroutine is called the following events take place: 

1 The address of the instruction which follows the JSR or BSR 
instruction is automatically stored in a special reserved area of 
memory termed the ‘stack.’ 

2 The new execution address specified by the branching instruction 
is loaded into the program counter (PC register) (or added to it in 
the case of BSR) and this therefore becomes the new execution 
address. 
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3 On completion of the subroutine, normally signalled by an RTS 
(Return from subroutine) instruction in the subroutine, the 
temporary address which was stored on the stack is transferred 
back into the PC register so that the program will recommence 
execution starting with the instruction which followed the branch- 
ing instruction. 

Where subroutines are nested, i.e. when a subroutine calls itself or 

calls another subroutine, the same sequence of events takes place, 
except that the RTS in every subsequent subroutine returns execution 
to the instruction following the branching instruction in the previous 
subroutine. The execution flow of a nested subroutine sequence is 
shown in the following diagram: 

SUBRT1 SUBRT2 

FIGURE 4-5. 

= 

Passing Parameters to Subroutines 

It is frequently necessary to pass parameters to a subroutine; in other 
words, to transmit specific values to a subroutine which you are 
calling which it needs for performing calculations or for some other 

purpose. 

For example, because of the complex structures of many computer 
systems, it is often difficult to write program sequences which directly 
perform tasks such as printing strings, numbers or graphic figures 
to the screen. On most computers it is possible to overcome these 
problems by using the same subroutines which the operating system 
itself uses, which are permanently located in memory. The exact 
methods of calling these subroutines will vary between machines but 
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the principle is always essentially the same: your program performs 
a branch to one of the system subroutines and passes parameters, 
which would be coded instructions which specify the subroutine 
required plus any data which the subroutine needs for its execution. 
The following diagram illustrates a typical example of this, showing 
how a user program passes parameters to the system specifying that 
a character is to be printed to the display screen. 

ADDRESS 80000 

ADDRESS 80001. 

ADDRESS 80002 
ADDRESS 80003 _ 
ADDRESS 80004 

ADDRESS 80005 

ADDRESS 80006 

ADDRESS 80007 

FIGURE 4-6. 

In this case the ASCII code of the character to be printed is contained 
in register D1, the time allowed for the operation (e.g. delayed, 
infinite or specified) in register D3 a code (5) indicating that a single 
character is to be printed and in register DO. These values are the 
parameters for the operation and the subroutine will expect to find 
suitable values in these particular registers. 

A mechanism such as this will be given different names by various 
manufacturers, such as a ‘function despatch’, ‘operating system call’ 
or ‘trap’ mechanism. You should refer to the specific documentation 
for your machine to establish the method of operating these functions, 
and the parameters and registers required. You will normally find 
that all important system control, device control, graphics and 
arithmetic operations have system calls which can be called by the 
user and they will save a great deal of programming time. 

In the above example we considered the passing of subroutine 
parameters by means of registers, which is normally the case with 
simple subroutines or with system call mechanisms. However, when 
passing parameters to your own subroutines you may find that there 
are not enough free registers available. In this case, you can opt to 
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have your parameters stored elsewhere in a labelled data table and 
call them ‘by name’ when they are required. 

The method used for passing parameters depends entirely on your 
requirements. You may wish to pass a ‘one-off’ series of parameters 
to a subroutine, in which case it makes sense to pass them via 
registers, Or you may wish to pass a frequently used block of 
parameters, in which case it makes sense to keep them in a separate 
‘parameter block’ and call them ‘by name’ whenever they are 
required. 

If you pass parameters by name rather than via registers, it is up to 
you to include instructions within the subroutine which collect the 
parameters from their original locations before they are actually used 
in the subroutine. 

With both methods, you will frequently need to pass parameters back 
from the subroutine to your main program. Again, these may be 
passed via registers or they may be placed in particular labelled areas 
of memory from where they can be retrieved by name after the 
subroutine has been completed. We shall be looking more closely at 
these methods in Chapter 11, where some program examples are 

given. 
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Chapter 5 

The Stack 

Every time you temporarily need to store some information, in 
Memory or in registers, it can be a time consuming and complex 
business. You may, for example, have some data stored in several 
registers which you want to keep, and at the same time you want to 
use those registers for some other purpose. Perhaps you may wish to 
call a subroutine which uses these registers and therefore their current 
contents would be lost. What do you do to preserve this data? There 
may be no spare registers available and you have to think about 
finding some free space in memory where you can store the data away 
for later retrieval. It would be useful if there were a general purpose 
storage area where you could dump your data so that you could pick 

it up again later without too much difficulty. 

Fortunately, all microprocessor systems have such a storage area, 
which is called a stack. You can picture the stack as a vertical series 
of memory locations, arranged in pairs. Its precise location in memory 
need not necessarily be known: all you need to remember is that the 

current address of the first available free space on the stack, the ‘top’ 

of the stack, is always held in a special register which is termed the 

stack pointer (SP) register. 

The SP register is in fact address register A7, which plays a dual 

role. When the 68000 is operating in user mode, A7 is the stack 

pointer for a stack called the user stack and in supervisor mode, it 

points to the supervisor stack. In practice, the system organizes the 

stack status in each mode and you only need to remember that A7 

points to the top of the stack. 

There is no reason why you should not set up separate stacks for 

different purposes within your own user programs and that is simply 

done by moving the address of the top of your alternative stack into 

a free address register and using that register as a stack pointer in 

the same way that you would use A7. 

71 



72 First Steps in Assembly Language for the 68000 

SP reeiey es points to 
the ‘top’ of the stack 

High memory 
Low memory 

FIGURE 5-1. 

A stack normally extends downwards in memory from the stack top. 
Every time some data is stored or ‘pushed’ on the stack, by means 
of a MOVE instruction (which simply means that data is into the free 
memory addresses at the current ‘top’ of the stack), then the SP 
register is decremented by two or four bytes (depending on whether 
you are stacking word or long word data) and the data is copied into 
the address pointed to by SP and SP-1 or SP to SP-3. For example, 
to stack the contents of D4 you would use the following instruction, 
which uses the ‘address register indirect with predecrement’ addres- 
sing mode: MOVE.LD4,-(A7). When the data is subsequently removed 
from the stack, again by means of a MOVE instruction, the word or 
long-word data pointed to by SP is copied into the specified 
destination and then the SP register is automatically incremented by 
two or four. For example, to unstack or ‘pop’ the long word on top 
of the stack into DS you would use the instruction MOVE.L (A7)+,D5. 
Note that the unstacking operation uses the ‘address register indirect 
with postincrement’ addressing mode. 

You will notice that data which has been stored on the stack is 
removed in the opposite order. In other words, the last data to be 
stored on the stack is the first to be retrieved. This is known as a 
LIFO (last in, first out) arrangement and you should always take 
care that any information which you retrieve from the stack is popped 
in the correct order. In the following example we shall see how the 
stack might be used in a typical situation. 
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Suppose that you have a program which contains data in all the data 
registers, all of which you want to keep. Your program branches off 
into a subroutine in which you need to use two of these registers, say 
D1 and D2. 

Your first action is to push onto the stack all four words contained 
in D1 and D2, say, 300, 287, 524 and 1176. The SP register originally 

pointed to address 70000 in the stack. After pushing, using the 
instructions MOVE.LD1,-(A7) and MOVE.L D2,-(A7), the contents of 
D1 and D2 have been copied to addresses 69992 to 69998 and SP now 

points to address 69992. 

SP starts here ADDRESS 70000 

SP points here: 
after values. ace 
stacked. 

in de a stack ADDRESS 69988 

ADDRESS 69986 

ADDRESS 69984 eae aebi coal) 

FIGURE 5-2. 

Next you branch to the subroutine, which uses registers D1 and D2 
for some purpose. After this, you return from the subroutine back to 
the main program and you are now ready to retrieve your four original 
values, which you can ‘pop’ back into D1 and D2 in reverse order 
using the instructions MOVE.L (A7)+,D2 and MOVE.L (A7)+,D1. The 

SP register now points to address 70000, as it did originally. 

During this whole operation the contents of the stack have grown 
downwards in memory by 8 bytes and then shrunk back again. 

Note that although the values are popped off the stack in the reverse 

order to that in which they were pushed, they need not necessarily 

be popped back into the same registers from which they were pushed. 
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SP points here ADDRESS 70000 
after the four 
words isi ADDRESS 69998 

Senn rereed es ADDRESS 69996 
ad Ad 
on the stack ADDRESS 69994 

after they 99) 
have been ADDRESS: 69992 . 
popped an o6 city Bees A ADDRESS 69990 

mitten ® by any ADDRESS 69988 
subsequen z! 
push operations. ADDRESS 69986 

FIGURE 5-3. 

An important point has been omitted from this description which is 
worth noting because it is essential to your understanding of how the 
system operates. Every time you call a subroutine, the program has 
to have some means of knowing where to return to when a return 
from the subroutine is made. The easiest method of doing this is to 
use the stack and in fact in the above example the system would have 
stored the return addresses from your subroutine on the stack in 
addition to the data which you stored there yourself. On returning 
from the subroutine, the return address would automatically be 
popped off the stack and transferred to the instruction pointer (IP) 
register, which indicates the current execution address of your 
program. Therefore, the order of data actually stored on the stack 
would have been as follows: 

ADDRESS 70000 
ADDRESS 69998 
ADDRESS 69996 
ADDRESS 69994 
ADDRESS 69992 
ADDRESS 69990. 

SP points here:—Hii) lacmccre 
after values are Sawer ces 
stacked. This ADDRESS 69986 
if oa new stack & . me 

Return 
Address 

FIGURE 5-4. 
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Obviously the return address data stacked by the system would not 
interfere with your own data at all since it would be retrieved first. 

You will notice that in the above diagrams the stack is depicted as 
columns of pairs of addresses. This is because only word and Jong 

ord data can be pushed onto a stack. Obviously, if we were to push 

byte-sized data on to the stack as well there would be both odd and 

even sized items of information stored there which would cause some 

confusion. If you wish to store a single byte of data on a stack then 

the solution is simply to store it as part of a word, remembering that 

half the word is irrelevant when you come to retrieve it. For example, 

to store the value 6 on the stack it could first be loaded into the lower 

half of a data register and then pushed on to the stack. For example, 

MOVE.W #6,D4 followed by MOVE.WD4,-(A7). 

In the above example we saw how the stack can be used to store 

temporary items of information when we need to free one or more 

registers for some other purpose. What happens when we want to 

free all the registers whilst retaining their data? Rather than having 

to stack the contents of each register separately, the 68000 has a single 

instruction, MOVEM (Move Multiple), which makes it possible to push 

or pop the contents of all or some of the registers at once. This 

essentially works in much the same way as the stacking process for 

the contents of a single register. With the MOVEM instruction the data 

in each of the registers is transferred to the stack in the order in 

which you list them in the instruction and the SP register is 

decremented accordingly. On retrieval, again using MOVEM, the data 

is popped back into the registers. For example, the instruction 

MOVEM.L D1-D4/D6/D7/A3-A6,-(A7) 

pushes all of the contents of D1, D2, D3, D4, D6, D7, A3, A4, A5 and A6é 

onto the stack. The instruction 

MOVEM.L (A7)+,D1-D4/D6/D7/A3-A6 

retrieves them. 
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Reverse Stacks 

A reverse stack works in exactly the same way as a normal stack 
except that it grows upwards in memory rather than downwards. 
Again, data is pushed and popped on a LIFO basis but the SP register 
is of course incremented after every push operation and decremented 
before every pop operation. 

Queues 

The stack principle is used in one other useful kind of data structure 
in the 68000: the queue. In a queue, data is pushed in much the same 
way as it is in a stack except that it is popped on a first in, first out 
(FIFO) basis. You can imagine a queue as looking rather like a stack 
except that it is open at both ends. As fresh data is added to the head 
of the queue, earlier data is left further and further behind. A queue 
needs two stack pointers, which consist of two address registers: one 
to point to address of the first free space at the head of the queue 
(the ‘put’ pointer) and one to point to the back of the queue (the 

‘get’ pointer). The put pointer works in a similar way as the SP pointer 
in a reverse stack: it always points to the current free space and 
increments according to the size of the data which is put on the queue. 
The get pointer always points to the earliest item of data contained in 
the queue and therefore can be used to retrieve it. The get pointer is 
also incremented when data has been retrieved from the queue. 

In the following diagram you can see how this works. The data has 
been put in the queue starting from address 60000 and the last item 
to be entered is at address 60010 The put pointer points to address 
60012, the next free address, while the get pointer points to the 
earliest item of data at address 60000. If we wanted to retrieve the 
first word which was entered in the queue we would take it from the 
address pointed to by the get pointer using, say, MOVE.W (A3)+,01 and 
the pointer would then move up to the next item of data in sequence 
at 60002. If we wanted to add a word to the head of the queue we 
would place it at the address pointed to by the put pointer, which 
would then increment by two bytes to point to the next free space at 
60014. e.g. MOVE D6,(A4) +. 
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‘Put’ pointer ADDRESS 60012 
points to here 

ADDRESS 60010 

ADDRESS 60008 

ADDRESS 60006 

ADDRESS 60004 
ADDRESS 60002 

ADDRESS 60000 ‘Get’ pointer 
points to here 

ADDRESS 59998 

FIGURE 5-5. 

Like stacks, queues can extend upwards or downwards in memory, 
the only difference in operation being that the put and get pointers 
both either auto-increment or auto-decrement, according to the 
direction of the queue. 

Since both pointers either increment or decrement in the same 
direction for both types of queue, the problem arises that as data is 
stored and retrieved, the queue begins to creep through memory from 
the point where it started and if we are not careful it can move through 
memory like a caterpillar and devour any program or data code in 
its path. It is necessary, therefore, to create ‘circular’ queues, in order 
to restrict their movement within predefined limits. This is done by 
checking the put pointer to ensure that it has not moved beyond a 
predetermined address. If it has then the entire queue can be moved 
and the get and put pointers adjusted accordingly. 

Altering Return Addresses 

As we saw earlier in this chapter and in Chapter 4, when a branch 
is made to a subroutine the address of the instruction immediately 
following the branching instruction is automatically saved on the 

stack for subsequent retrieval when the subroutine has been com- 

pleted, so that the original program sequence can be recommenced 

from the point at which the temporary branch was made. 
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It is sometimes necessary in a program to alter return addresses on 
the stack, either to redirect a return to a point other than the address 

following the original calling instruction or because you have used a 
programming method which causes the return address to be incorrect. 

For example, suppose that you branch from your main program to 
a subroutine. Within the subroutine you have a conditional decision 
routine, after which control will return to the main program either 
at the point where you left off or at some other point, depending on 
the outcome of the decision operation. To return to the point where 
you left off you would simply use an RTS instruction and the return 
address would be retrieved from the stack and execution would 
recommence from that point. To return to a different address 
however, the return address would have to be altered so that it 

corresponds to the new location. One method of doing this would be 
to store the new return address on the stack by over-writing the old 
one. For example, if the old return address is currently on top of the 
stack and the new return address is in register A4, you can simply 
load the contents of A4 into the address pointed to by A7 without 
actually altering the value of A7: 

MOVE.L A4,(A7) 

The RTS instruction would then cause a return to be made to the new 

address. 

ADDRESS 70000 

by wheelie Return 

ADDRESS 69988 Address 

ce fa 

pointed to by A7,  iaimiasinaaaane 
Fe, MEL a6, C7) 

dress by loading 
a new address, as 
a song ward, into 

Alter return ad- ( 

the a ress 

FIGURE 5-6. 
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Passing Parameters via the Stack 

In Chapter 4 we looked at how parameters can be passed to 

subroutines ‘by register’, where they are simply passed via registers, 

or ‘by name’, where the address label of the data block in which they 

are stored is passed to the subroutine. It is also possible to pass them 

using the stack. In this case, the parameters are simply pushed on to 

the stack prior to the subroutine call and then retrieved from the stack 

by the subroutine as required. As you will see from the following 

diagram, which uses the same data parameters as in our previous 

example, the four words are placed on the stack before the return 

address, which is always pushed onto the top. The data must therefore 

be retrieved by by-passing the return address using an offset value, 

e.g. MOVE.W 4(A7),D1. The stack pointer stays unchanged and the 

word, above the return address is copied into D1. 

HDDRESS “UUUU 

ADDRESS 69998 

ADDRESS 69996 

ADDRESS 69994 
Retrieve 1176 m 
into D1 using igh Scab aes 
MOVE.W 4(A7),D1 ADDRESS 69990 athen 

A7 points here: Seca ddress 
after values are 
stacked. ADDRESS 69986 

ADDRESS 69984 

FIGURE 5-7. 

When the subroutine has finished, and a return has been made to 

the main program, the four values should be popped back off the 

stack in the normal way. This last operation is performed to tidy up 

the stack so that it does not have any redundant data left in it. 

The reason why the stack should be kept tidy is that when it contains 

a great deal of mixed data such as temporary variables, return 

addresses and parameters, it is very easy to lose track of its contents. 

At best you will end up by popping incorrect data from the stack 

and using it in your programs and at worst you will pop incorrect 

return addresses, rendering your programs inexecutable. Everything 

pushed onto the stack should therefore be removed as soon as it is 

no longer needed. 
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Stack Frames 

You can create a temporary area within a stack for use by a particular 
subroutine. This is done by creating a second stack pointer (any one 
of the address registers), which points to the current top of the stack, 
and then moving the normal stack pointer, register A7, further down 
in memory. The stack space between the two pointers is reserved 
space which can be used exclusively by a particular subroutine and 
then cancelled after the subroutine has been executed, thus restoring 
the stack to its original state. 

ADDRESS 70000 

SP pointing to PTC TENT 
return address on = pees 
stack top ADDRESS 69996 

ADDRESS 69994 

ADDRESS 69984 

FIGURE 5-8. 

The above diagram shows the condition of the stack on entry to a 
subroutine with SP pointing to the return address which is on top of 
the stack at address 69998. If you copy SP into an address register, 
say A4 for example, and then subtract 10 from SP, the stack pointer 
will then point to address 69988 as shown in the following diagram. 
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FIGURE 5-9. 

This creates a free local storage area between addresses 69996 and 
69989 into which 5 temporary word variables created by the 
subroutine can be stored. This area is termed a stack frame and 
individual data items can be accessed within this frame using A4 as 
a base pointer. For example, a word stored in addresses 69996 and 
69997 can be addressed as -2(A4) and a word stored in addresses 
69994 and 69995 can be addressed as -4(A4). Before returning from 
the subroutine, the stack frame can be cancelled and SP returned to 

its original address 69998 simply by copying A4 back into SP with 
MOVEA.L A4,A7 and then a straightforward return can be made. 

In practice, the construction of stack frames can sometimes become 
fairly complicated such as in the implementation of high level 
languages in 68000 machine code, where a series of multiple linked 
stack frames may be needed. To make the job simpler, two special 
instructions are provided which allow you to create and remove stack 
frames: LINK and UNLK. 

When the LINK instruction is used, the following three actions are 
performed automatically. In this example we shall assume that register 
A4 is to be used as the reserved space pointer: 

1 The current contents of register A4 are pushed on to the stack 

2 The SP register (A7) is copied into register A4 

3 The SP register is decremented by an appropriate amount, 
specified by a 16 bit displacement integer. This is a two’s 
complement value and, since a stack normally extends downwards 
in memory, it will usually be a negative value between —2 and 
—32768. 
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For example, to reserve eight bytes on the stack, the following 
instruction might be used: LINK A4,#-8. The effect of this instruction 

is illustrated in the following diagram: 

ADDRESS 70000 

SP pointed here ADDRESS 6999 
before LINK eee 

Contents of 
A4 points here ee, ADDRESS 69994 Register A4 
after LIN —— 

! ADDRESS 69992 

ADDRESS 69990 

ADDRESS 69988 
SP points here ADDRESS 69986 — 
after LIRK Bs Hi 

FIGURE 5-10. 

The original contents of the stack were the return address for the 

subroutine. The current long-word length contents of A4 are then 

pushed on to the stack and the SP register is decremented by four 

bytes in the normal way. SP is then copied into A4 and is then 

decremented by 8 bytes, as specified in the instruction. We now have 

two stack pointers. SP can be used in the normal way, as the user 

stack pointer, and A4 is the pointer for the stack frame of eight 

reserved addresses. 

Data can be entered into the stack relative to A4. The instruction 

MOVE.LD4,-4(A4) for example, will load the long-word contents of D4 
into the stack frame at addresses 69990 to 69993. 

When the subroutine has been completed, the entire stack frame can 

be removed, and the stack returned to its former state, by reversing 

the Link process: The contents of A4 are automatically copied back 
into A7 and the original contents of A4 are popped off the stack into 
A4. By this means, the entire stack frame effectively disappears and 
the stack returns to its original condition. This unlinking process is 
achieved by using the UNLK instruction, which simply specifies the 

name of the stack frame pointer being used, e.g. UNLK A4. 
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Data Handling 

In Chapter 2 we looked at the addressing modes used by the 68000. 
We saw how, by use of the indirect addressing modes, we could use 
address registers to contain addresses pointing to items in blocks of 
data stored in memory. 

In this chapter we shall be looking in more detail at the uses of the 
indirect addressing modes, showing how they can be used to access 
complex arrangements of data. 

In the earlier example we had a set of data, occupying 12 consecutive 
bytes in memory, which represented 12 month’s totals of petrol 
consumption. Suppose we wished to go further and include the 
consumption figures for a three year period. We might want to use 
these, for example, in a program which compared our petrol 
consumption for corresponding months in each of the three years. 
Our data now occupies 36 bytes and the first item of data, our petrol 
consumption for the first month of year 1, is located at address 80000, 
which is labelled ‘DAT_1’. 

Initially, we might want to access the data for January in each of the 
three years, then for February and so on. To do this, we need to 
have some method of pointing to the required months. 

The simplest method is to use direct or ‘absolute’ addressing, in 
which the data is addressed by reference to its actual address number 
or to a label representing the actual address number. The instruction 
MOVE.B DAT_1,D4 for example, copies the first item of data into the 
low order byte of register D4. Other individual items can be addressed 
by using their address value or an equivalent label. 

This addressing method works very well for individual items of data 
but for addressing multiple items in complex structures of data the 
indirect addressing modes provide much more flexibility. 
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If we use address register indirect, loading an address register with 
the value 80000, we can use the address register indirect with 

postincrement mode to move sequentially through memory, accessing 
the data for each month, say, one byte at a time. However, this may 
not be exactly what we want to do: instead of moving sequentially 
we may want to access the data for January of the first year, January 
of the second and third years and then February of the first, second 
and third years and so on. To do this, we need to have some method 
of pointing not only to the required month but to the required month 

in any of the three years. 

The data for January of the first year is located at address 80000 
(DAT_1), so we load this address into an address register, say, A3, 
using an instruction such as MOVEA #80000A3 or LEA DAT_1,A3. LEA 

means ‘load effective address’ and calculates the physical address of 
the labelled operand and loads it into a specific address register. It 
is now easy to access the data for this month, using an instruction 

such as MOVE.B (A3),D1 to move the January data into register D1. 
This is a straightforward application of address register indirect 
addressing. January of the following year is 12 months, and therefore 
12 bytes, further on. We can access this by means of an instruction 
such as ADD.B 12(A3),D1 which adds the value 12 to the value of A3 

(leaving A3 itself unaffected) and then adds the data contained in 
address DAT_1+12 (i.e. the value of A3+12) into Dl. The data for 
January of the third year would, of course, be accessed and added 
to the total by means of an instruction along the lines of ADD.B 
24(A3),D01. Figure 6.1 shows this in diagrammatic form. 

This type of addressing corresponds to the address register indirect 
with displacement addressing mode described in chapter 2. 

The number which is added to the A3 register in this mode is termed 
the displacement and must always be no larger than a word-sized 

value. The displacement is always sign-extended prior to being added 
to an address register and therefore any 16 bit value which has its 
most significant bit set (i.e. numbers in the range 32768 to 65535) 
will become negative. The displacement, therefore, is effectively a 
value in the range —32K to +32K. 

This is not the end of the story. It would be awkward if we always 
had to have a separate instruction for each of the displacement values 
we used in such an operation. It would be a lot easier if we could 
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FIGURE 6-1. 

use a pointer to indicate the start of our data and have another variable 
pointer which could be altered within our program to index each 
subsequent item of data automatically. 

If we were to load an address register such as A3 with the start address 
of the data as before and one of the other registers, say D4, with a 
zero: MOVEQ #0,D4 then register A3 points to the base of the data, as 

before, and D4 can be used as an index register to point to locations 
which are relative to the beginning of DAT_1. If A3=80000 and D4=0 
then January of the first year can be addressed as 0(A3,D4), the zero 
being a zero displacement. So we could retrieve the January data with 
an instruction such as MOVE.B0(A3,D4.L),D5. By altering the value of 
D4 within a program loop we can easily point to any individual item 
of data in the table. 

The above MOVE instruction is given the suffix ‘.B’ because it is 
byte-sized data which we are transferring and the index register is 
given the suffix ‘.L’, indicating that it is the entire 32 bits of Dl 
which forms the index value. 
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A3; Offset DAT_L 

0(A3,D4):/ Jan (when AZ=DAT_1 & D4=12 or AZ=DAT_1+12 & D4=0) 

Dec 
0(A3,D4): (when A3=DAT_1 & D4=24 or AZ=DAT_1+24 & D4=0) 

FIGURE 6-2. 

If we wish to compare different months in each year we can alter 
both the address register and the index register as required. A3 then 
A3+12 followed by A3+12 again will base the address register at the 
first month of each of the three years in succession, whilst D4 can 
be incremented or decremented to point to any month within a year 
as required. 

This is an example of the address register indirect with displacement 
and index addressing described in Chapter 2. 

If we use the displacement as well as the index in this mode, it 
increases addressing flexibility considerably. Again the displacement 
is a sign extended value but when used with an index it represents a 
displacement of only —128 to +127 bytes. The index value is either 
long (32-bit) as in the previous example, or a 16-bit sign extended 
value in the range —32K to +32K. 

Suppose that in addition to petrol consumption data for a three year 
period, you also had blocks of data giving mileage information for 
the three year period as well. The data starts at address DAT_2 and 
extends for 72 bytes. The data is arranged in groups with the 12 
consumption figures for year 1 followed by the 12 mileage figures for 
year 1 and with the same arrangement for the two following years. 
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year 1 
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FIGURE 6-3. 

Your base register (A3) can point to the block of data required, your 
index register (D4) to the year required and your displacement 
constant to the data required. Referring to figure 6.3 you can see that 
you can get the consumption data and the mileage data from the third 
month of the second year by means of the instructions: 

LEA.L DAT_2,A3 ;address of base of data table. 

MOVEQ #24,D4 ;offset of 2nd year (Jan. consumption) 

2=->> MOVE.B 2(A3,D4),D5 ;consumption for year 2, month 3 into D5 

Lol--> MOVE.B 14(A3,D4),D6 ;mileage for year 2, month 3 into D6 

DISPACENEM 
In this case D4 points to the offset of the year and the displacement 
points to the offset of the month (counting from zero). Alternatively 
you could use the displacement to point to the year and the index to 
point to the month, depending on how you want to access the data. 

The same data for month 3 of year 3 can be obtained with the same 
instructions but after adding 24 to D4 to point it to the start of the 
third year’s data. Different months can be addressed by using 
different displacement values and, if sequential data needs to be 
accessed then the value of D4 can be altered within a loop structure 
so that it is incremented to point to each item in turn. 
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There are many different ways in which indexed blocks of data might 
be used in a program. On a simple level they can be used in much 
the same ways as multidimensional arrays in BASIC and the above 
examples illustrate this kind of usage. 

Indexing Lookup Tables 

Another common form of indexed data is the lookup table, in which 
a list of numeric or textual data is stored in a single dimensional array 
for reference by programs. Suppose that you are writing a conversion 
program in which the multiplication factors for converting the source 
data are stored in a separate area of memory. A base address register, 
such as A2, points to the base of the table: LEA MYTABLE,A2. 

You may to convert feet into metres and the necessary 16-bit 
conversion factor is stored at offset 7 in the table (counting from 
zero). The data may be retrieved from the table using an instruction 
such as MOVE.W 7(A2),D3 and then used in your calculation. 

Another use for lookup tables is where you have a series of subroutines 
stored in memory and you need to select any one of these during the 
execution of a program. 

The address of each of these subroutines could be stored in a lookup 
table so that they can be used to redirect execution to any of the 
subroutines required. The advantage of this method is that all the 
required addresses are stored consecutively as 32-bit numbers in the 
table and each one can be accessed using an indexed offset. You can 
then use the table base address with the indexed offset to access any 
of the address numbers listed in the table and then redirect execution 
to the target subroutine. 

For example, a peripheral device such as a joystick might feed a 
particular value into the computer which indicates that a subroutine 
for shooting at a space invader should be called. If this value is 8 
(contained in, say D3) then the address of the subroutine is at offset 
8 in the subroutine table. The base of the table might be contained 
in register A6. The instruction MOVEA.L 0(A6,D3),A2 loads the 

address of the subroutine, located at A6+D3, into A2 and the 

appropriate subroutine can then be called using an instruction such as 
JSR (A2). Alternatively, you could achieve the same objective by 
substituting the single instruction: JSR 0(A6,D3). 
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A6: 
tains b tabl 

ert yld BS Centaies! theconies Bis 
subroutine 

1 

Receess 

soot piss 

0(AG6,D3): A6+D3 points to offeat 8, which contains 
Address the first byte of the address of 

of — subroutine 3, 
subroutine 

3 

FIGURE 6-4. 

Block Instructions 

Another important use for indexing is where you have blocks of data 
which need to be compared, input from an external device, output 
to an external device, processed in sequence, transferred from one 
part of memory to another or stored sequentially in memory as they 
are generated by a program. 

For example, in a games program you might have a block of data 
containing the graphics bit-pattern for an entire screen image which 
periodically will be copied on to the VDU screen. Alternatively, you 
might be writing a printer dump program which copies the bit-pattern 
of the screen image to a printer, one byte or one word at a time. 

Again, you might have a block of data in memory representing the 
ASCII codes of a text which you wish to print to the screen and which 
needs to be loaded one byte at a time into a particular register before 
being passed to a display subroutine. 

In cases where blocks of data need to be addressed in this kind of 
way, the address register indirect with postincrement or address 
register in direct with predecrement addressing modes are used. 

As an example of a block operation, suppose you wished to copy 100 
items of consecutive data from one memory area to another. In order 
to transfer the data it is necessary to use at least three registers: one 

pointing to the first address of the destination of the data (say, a 
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VDU screen address location), one pointing to the first address of 
the source data and one to count the quantity of data transferred. 

The source register, say A2, is loaded with the address of the first 
byte of the source data: MOVEA.L £80000,A2. The destination register, 
say A3, is loaded with the address of the first byte of the area of 
memory into which the data will be moved: MOVEA.L #90000,A3. A 

data register is then loaded with the number of bytes to be moved, less 

he 
MOVE.L #99,D4. 

The entire operation can then be executed in a program loop with a 
DBRA (decrement and branch) instruction being used to decrement 
D4 and branch back to the instruction labelled ‘L00P’ until D4 equals 
-1: 

LOOP MOVE.B (A2)+,(A3)+ 

DBRA D4,L00P 

The MOVE instruction automatically copies the data from the location 
addressed by A2 to the location addressed by A3 and then increments 
both A2 and A3 so that they point to the next locations in sequence. 
The DBRA instruction automatically subtracts 1 from D4 and if it is 
greater than —1, branches execution back to ‘LOOP’ to repeat the 
operation. 

The operation could also be performed backwards with A2 and A3 
initially pointing to the /Jast addresses in the source and destination 
blocks, plus 1. In this case the address register indirect with 
predecrement mode would be used: 

LOOP MOVE.B -(A2),-(A3) 

DBRA D4,LO00P 

Instead of moving.a block of data from one area of memory to another, 
we could equally well compare two separate blocks of data. This is 
frequently done, for example, where text has been input at the 
keyboard and you wish to compare it with text stored in memory. 
In this case we would use a method similar to the above, using 
registers to point to the start addresses of the two blocks of data to 
be compared. Instead of using the MOVE instruction we would use 
CMPM (compare memory): CMPM.B (A2)+,(A3)+ and instead of using 
DBRA as a loop control instruction we could use DBNE (decrement and 



Data Handling 91 

branch until not equal). The CMPM instruction will set the zero flag 
for each data pair of equal value and therefore, as long as each 
compared item is equal, DBNE will decrement D4 and loop back to 
‘LOOP'. If two compared items are not equal the zero flag will be reset 
and execution will then pass to the next instruction in sequence. In 
any case the loop will terminate when the counter register equals —1. 

Altering Indexed Blocks 

There will be occasions when you wish to modify the contents of a 
block of data: to change, add or remove items for example. Again, 
this is done using indexing methods to access the required items in 
the block. How would we do this? Obviously, we need some method 
of defining the size and structure of the list so that a program can 
add, subtract or modify items accurately. Suppose we had a list of 
unstructured items — in other words, the data in the list does not 
correspond to any external structural concept such as years or months. 
You may, for example, be programming a whole series of mathemat- 
ical calculations, the results of which you wish to store in a variable 
length list for later reference. In this case you could structure the list 
as follows: 

ADDRESS 

Offset 6: 

FIGURE 6-5. 

Here the list is of variable length and is comprised of a series of 

word-sized data. You may wish to add or subtract items, either at 

the end of the list or within the body of it. The first word on the list 

is a value corresponding to the offset value of its last item. Therefore, 

to reference the end of the list, all you need to do is to load this value 

into an index register and use it to reference the last entry. The list 

starts at an address offset within the data section labelled ‘LIST_1’ so 

we load this into a base register. 
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Address ‘LIST_1’ contains the offset value of the last item in the list, 
6, so we load this into a data register to use as an index: 

MOVE.W (A2),D4 

Item 3 at offset 6 in the list can now be retrieved by an indirect index 
instruction, e.g.: 

MOVE.W O(A2,D4) ,D6 

and ‘removed’ from the list by decrementing D4 by 2, which implies 
that item 2 is now the last item in the list at offset 4: 

SUBQ #2,D4 

The fact that item 3 still physically exists does not matter since 
nothing is now pointing to it. 

Suppose that we now wish to add a new item 3 to the list, which is 
currently in data register D3. The index needs to be incremented 
again: 

ADDQ #2,D4 

And the new item can be added: 

MOVE.W D3,0(A2,D4) 

Then to add a fourth item, from DS: 

ADDQ #2,D4 (D4 now points to offset 8) 

MOVE.W D5,0(A2,D4) 

Now we have finished with the list for the time being. D4 contains 
the offset value of item 4 which is now the last item in the list. This 
must be copied into the first word location in the list for future 
reference: 

MOVE.W D4,(A2) 
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And so the operation has been completed. This same technique can 
be modified so that items elsewhere in the list can be added, 
subtracted or modified in some way. Suppose that we wished to take 
the second item in the list, add 10 to it and replace it. Assuming that 
A2 is still pointing to address ‘LIST_1’, we must first check that there 
is a second item in the list. So we retrieve the offset value of the last 
item, as before: 

MOVE.W (A2),D4 

The offset of item 2 will be 4 (2 times 2) since we are dealing with 
word length data. We therefore need to compare the contents of D4 
with the value 4 to make sure that we are not looking for an item 
beyond the boundary of the list: 

CMPI.W #4,D4 

The comparison effectively subtracts 4 from D4 without actually 
altering the value of D4. However, certain flags may be affected by 
the operation and can be used to test the result. 

If the result is negative (i.e. D4 < 4) then the carry flag will be set 
because the operation will cause a binary borrow, otherwise 4 will be 
either less than or equal to D4 and the carry flag will be reset. In 
either case we can take some appropriate action. 

If the carry flag is set then there cannot be an item at offset 4 and 
so the operation should be abandoned. At this point there would be 
an instruction such as BCS NEXT (branch if carry set to a point in the 
program labelled ‘NEXT’). 

If the carry flag is not set, there must be an item at offset 4 in the 
list and so we can access it using the instructions: 

MOVE.W 4(A2),D6 j;get item at offset 4 into D6 

ADDI.B #10,D6 ;add 10 to it 

MOVE.W D6,4(A2) ;replace it at offset 4 

Alternatively, the above three instructions could be replaced by the 

single instruction ADDI.B #10,4(A4). 

There is no need to update the end of list offset value because we 
have done nothing to alter it. 
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Now let’s go back to our petrol consumption data and find out 
whether we can see more clearly how this kind of arrangement allows 
us to access the information in whatever way we wish. We shall 
consider just twelve months consumption data as we did originally, 
except that this time our array, labelled DAT_1, is arranged in word 
lengths, with an extra word at the beginning of the table which holds 
the offset of the last item in the table. We know of course that there 
are twelve months in a year but the computer doesn’t know that and 
so addresses DAT_1 and DAT_1+1 must contain the value 24; the offset 
of the month 12 data. By loading the offset of the last item in the 
table into an index register we can point to the address of the data 
for the twelfth month and we can alter this and use it as we wish. 

LEA.L DAT_1,A2 ;Get the address of the start of 

;the table in register A2 

MOVE.W (A2),D4 ;Get the offset value of the 

;last item of the table in D4 

MOVE #0,D1 ;Set D1 to offset value 0 

What might you want to do with this data? If you want to work out 
your average consumption for the year you can run your D1 index 
register through the data, adding the value of each item of data to, 
say, D6 and comparing D4 and D1 after each addition to make sure 
that D1 does not exceed the boundary of your data: 

j;Label Instruction Comment 

MOVEQ #0,D6 ;Clear the D6 register 

LOOP1 ADD.W O(A2,D1),D6 ;Add an item of data to D6 

ADDQ #2,D1 ;Update the index pointer 

CMP D1,D4 ;Compare the index offset 

swith the end of list offset 

BCC LOOP1 ;lf carry clear (end of list 

;not reached), branch back 

sto *LOOP1" 
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When you have the final total you divide the contents of the D6 
register by the number of items in the list and you have your average. 
This division operation is illustrated in example program PRO0G6 in 
Chapter 13. 

You might want to know the highest consumption figure for any one 
month. In that case you need a data register, say D6, to hold the 
highest item value. You run through the data table as before and 
compare each sequential item of data with the highest item value 
found so far. If any item is higher than the current content of D6 
then the value of the item becomes the new D6 value and is MOVEed 
into the D6 register, otherwise you carry on to the next item until 
the Bcc instruction indicates that you have finished. 

If you feel that you cannot work out the exact sequence of instructions 
required then don’t be too concerned. It is only essential at this stage 
to establish a firm mental picture of what it is you are trying to do, 
how your'data might be efficiently arranged and the kinds of 
addressing methods you need to use to access the data. Once you have 
properly understood the structure of your task, you will eventually be 
able to code the instructions standing on your head — and often, with 
complex structures of data, it will feel that way. 

Sorting Data 

It is fairly easy to sort the items in a list so that, for example, its data 
is rearranged in ascending numeric order. The following BASIC 
program illustrates a very simple bubble sort, in which a FOR/NEXT 
loop is used to compare each item in a single dimensional array A(6) 
with the next item. If the value of an item is greater than the next 
item then a flag is set to indicate that the values are out of order and 
the values are then swapped. The process continues until all the items 
are in the correct order, as indicated by the ‘FLAG’ variable becoming 
equal to zero at the end of a reiteration of the loop: 

10 FLAG=0 

20 FOR X=1 TO 5 

30 IF A(X) <= A(X+1) THEN GOTO 80 

40 FLAG=1 

50 TEMP=A(X) 
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60 ACX)=A(X+1) 

70 ACX+1)=TEMP 

80 NEXT X 

90 IF FLAG=1 THEN GOTO 10 ELSE END 

We shall be looking at a full assembly language version of a bubble 
sort in Part IJ. At this point it is only necessary to think about the 
structure of the array of data in assembly language and to see how 
the indirect addressing modes we have been using could be used to 
form an equivalent method of sorting to the BASIC method above. 

If you examine the following diagram of the data list, you should be 
able to work out how the assembly language version of the program 
might be constructed. There is always more than one way of doing 
something so there is no ‘right’ answer — you should think about the 
simplest and most efficient way of doing it. 

ASCII code for A 

ASCII code for B 

ASCII code for D 

ASCII code for F 

ASCII code for C 

ASCII code for E 

ASCII code for 6 

ASCII code for H 

NSH] aH So] olan; a 

FIGURE 6-6. 

Program Positioning and Labelling 

The problem with addressing and branching is that, at the time a 
program comes to be executed, its position within memory may not 

be known. When a program is loaded into a computer it can either 
be loaded into a specific block of memory or, more commonly, it is 
loaded into the first available memory area. The former is called 
position dependent and the latter, position independent code. 
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It is important when planning a program to decide which of these it 
is going to be. Preferably, programs should be position independent 
because you may not know beforehand the circumstances in which 
a program will be used. At some point it may have to share memory 
with other programs or it may be transported and run on an entirely 
different type of 68000 based computer from the one on which it was 
coded. 

If a program is position dependent, the addresses of its various data 
blocks, subroutines and other code sections will always be the same. 
In position independent programs the addresses may differ each time 
the programs are loaded, depending on how many other programs 
are loaded and the amount of space which they occupy. The main 
thing which concerns the programmer however, is that the positions 
of all the elements of a program are constant relative to each other. 
When you wish to access a particular data table amongst several which 
occupy memory, you need to be confident that the address value of 
the table relative to the position of the current instruction is correct. 

This is why the use of labels to identify the locations of code and 
data sections is so useful. By identifying each separate section of a 
program by means of labels in your assembly source program, you 
ensure that the assembled object code contains the correct relative 
offset values for all the key elements of the program which you will 
need to access. If your program is position independent, the assembler 
will automatically calculate all relative branches and the relative 
positions of data items using the PC relative addressing mode. 

Your petrol consumption table might be assigned the label GASTAB1. 
When the program is finally assembled into object code, the assembler 
knows the exact position of your table in memory relative to the start 
of your program. Any instruction in the program which refers to this 
table by means of its label, such as LEA,L GASTAB1,A2 will autom- 

atically be assembled in such a way that the relative displacement 
between the current program instruction (held in the PC register) and 
the required data will be computed automatically. Likewise, a table 
called GASTAB2 will be given a different address value, which again 
will be obtained by reference to the label. 



e ms 

d 

- _ —_ ame - - os ox 

, r 2 , t we 
of} acy si ul ee 7 i eset f) 

: 
j a 3 Tt). teens | 5 DY f ‘4 a ‘ 

A, <i) CRAM eH = v af ni 
- 

ay wd } if fale i ti 

hans fp aii 5. : * . 

“¥ re:?. a fay “i4 “’ - 

* 
P j 
° 

' 
) Ai 4, j j 

, ‘ 
é =v 

t Ue ' : ; 
* w . ¢ 

’ 4 . 
’ q 

N ay eis * n ; 

: ° 

+ 4 | } 
vi ‘bite. ade i ‘ a a! git é ‘ 

' ‘ Si : 

; 

yi * 

tha “ MW 
- 

a 
fA + ‘ a ag 

‘ } j ; 

¢ t 
| a 

4 
i ! 

Prasat titi 4 i 
 s 

7 te wuTy oe & 

i . Ciyri dobld 1 
a 

‘ S 

¥ ) . hipit ' . 

“ yerarirader Veit 25 7a 

« 9fi af svitalos yiomeu ni Wide) wey lo aeindeg oN 2 od 
‘ P 

T'shtiW PtSi RO NM, Bi) Gi Uo’ i wit (ai gous 
aia!) ww : - 

‘Bal 4 *y, Gre lst 22) DL Se ez 

\- 4) Maas SAREE ARS GY & Ui Ae sd 
due 1 aderu bieds aonautiam mrayo1g tse yTh uh os 

iat ees GP. Mico’ ERT Bilaquete-ss i eat 7A 
1 ‘hi aed hies nbs mls yaad Zo 

» Som 5 ctog a ghalekuded weensesotighiten 
nf lene € tpecific. Sigck of utemMery Hr, tae vray 

ihe jac wastasly weary, cet. The bong aa 



Chapter 7 

Exceptions, I/O and Arithmetic 
Operations 

Exceptions 

When a computer is in operation, even if it is not currently executing 
programs, it has a number of routine tasks to perform. The keyboard 
needs to be checked for input and other devices may be sending 
signals or data which require the processor’s attention. 

These kinds of tasks are performed by exception mechanisms, 
whereby the CPU literally interrupts whatever it is doing and services 
any exception task which need to be performed. 

An exception operates in a similar way to a subroutine call. The CPU 
halts execution at whatever point in a program it has reached and 
recommences execution with an exception procedure, after which it 
normally returns and carries on with its original task. An exception 
differs from a subroutine call in that it is designed to cope with a set 
of necessary and sometimes urgent tasks for which it would be 
impractical or impossible to incorporate BSR or JSR instructions in a 
program. Many of these tasks have nothing to do with the program 
currently being executed. 

Exception calls may be initiated by a timer, in the case of the keyboard 
scan for example, by signals from an external device or by program 
errors such as attempts to divide by zero or to address non-existent 
memory locations. Exceptions may also be initiated by certain 
program instructions. 

There are basically two types of exceptions: external exceptions, 
associated with peripheral devices, with bus errors and reset signals, 
and internal exceptions, which are associated with the execution of 
program instructions. 

99 
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Internal exceptions may be initiated by certain ‘privileged’ instruct- 

ions attempted in user mode, by attempts to address word or long 

word data at odd addresses, by attempts to use illegal or unimplement- 

ed instuctions, by using the trace facility and by certain other 

instructions which will be discussed presently. 

Some exceptions may be masked or disabled by setting the three I 

(interrupt) flags in the CCR register. These are termed maskable 

exceptions and may include, for example, the operating system 

exception which checks the keyboard. By disabling exceptions you 

can inhibit keyboard entries until a certain routine is completed and 

then exceptions can be re-enabled by resetting the I flags. Whenever 

an exception takes place then further exceptions are automatically 

disabled until the exception routine has been completed. 

Some exceptions are non-maskable — they will operate no matter what 
the status of the interrupt flags. Obviously if some catastrophic event 

has occurred in the system it is desirable that its associated exception 

mechanism should be able to override other events which are taking 

place. 

Operation of Exceptions 

Whenever an exception takes place, the program which is currently 
being executed is halted, usually temporarily, and execution is then 
diverted to one of a series of procedures which are designed to ‘service’ 
the exception, that is, to do whatever is necessary for the type of 
exception which is taking place and then return execution back to the 
program. Some service procedures will do no more than print an error 
message while others may perform fairly complex tasks — it depends 
on what the system programmers have designed for the particular 

computer which you are using. 

These service procedures are accessed by means of a vector table, 
situated in lower memory, which contains the addresses of all the 
exception routines provided by the system. The vector table is 
indexed by a ‘vector number’, which is either calculated within the 
system or which is supplied by an external device connected to the 
system. The address of the service routine is then read from the vector 
table at an offset derived from the vector number, and execution is 

redirected to it. 
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Since a program may be interrupted at any point by an exception, it 
is vital that the current parameters of the program, such as the 
contents of the status register and the current PC contents, are saved 
for later retrieval. This is performed automatically during an 
exception and other parameters may also be saved, depending on the 
type of exception taking place. 

Return from an exception is effected by the inclusion of an RTE 
(return from exception) instruction at the end of the exception service 
routine. 

Exception Priority System 

Exceptions are not all of equal priority. Clearly an exception resulting 
from an attempt to divide by zero is less important, in terms of 
urgency, than a sudden voltage loss. In order to differentiate different 
levels of priority, the 68000 has an exception priority mechanism 
which determines a priority level for each category of exception. 
Priority group 0 exceptions occur immediately, whatever else the 
processor is doing at the time. Priority group 1 exceptions are delayed 
until the current instruction is completed. Priority group 2 exceptions 
are those which only occur when particular instructions are being 
executed. The exceptions within each group are are as follows: 

Group __ Exception type 

0 Reset 

Bus error 

Address Error 

l Trace 
Interrupt request 
Illegal instruction 
Unimplemented instruction 
Privilege violation 

2 TRAP instruction 
TRAPYV instruction 
CHK instruction 
Division by zero 
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Internal Exceptions 

Internal exceptions may be caused by the following: 

Addressing Errors 

Privilege Violation 

Illegal commands 

Trap exceptions 

Since word and double word operands may only 
be aligned with even numbered addresses, an 
attempt to address a word or long word at an odd 
numbered address will result in an address error 
exception. 

Attempts to use certain ‘privileged’ instructions 
whilst in user mode will result in a privilege 
violation exception. These instructions include: 

AND.W immediate to SR 
OR.W immediate to SR 
EOR.W immediate to SR 
MOVE USP 

MOVE to SR 

Sve U 

RTE 

STOP 

An illegal instruction is one which does not 
belong to the 68000 and therefore has no opcode 
which is intelligible to the processor. All illegal 
opcodes will will cause an exception. Unimplem- 
ented instructions are similar except that they are 
a special case. Any instruction code whose higher 
four bits consist of the binary digits 1010 or 1111 
cause a special type of exception which allows 
system designers to simulate instructions which 
are not implemented on the standard 68000. 

The TRAP instruction is used to divert execution 
to particular system subroutines. Trap exception 
types 0-15 occur only when the TRAP instruction 
is used. The TRAPV instruction causes an excep- 
tion if the overflow flag in the status register is set 
when the instruction is used. 

CHK generates a trap exception if the contents 
of the destination data register to which it 
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refers are less than 0 or greater than the 
contents of the source operand. 

DIVS and DIVU instructions cause trap excep- 
tions if they involve an attempt to divide by 
zero. 

Trace exceptions When the ‘T’ (trace) flag in the status register is 
set, a trace exception is performed after every 
single instruction. The trace exception service 
routine is used in Chapter 8 to obtain a listing of 
the register contents during the execution of an 
instruction. 

External Exceptions 

External exceptions are generated as a result of events outside the 
immediate processor environment and may be caused by the fol- 
lowing: 

Bus Errors 

Reset 

Interrupts 

A bus error exception is caused by an attempt to 
address incorrect destinations such as non-existent 

addresses. 

A reset is an event in which the entire system is 
re-initialized, either when it is first powered up or 
when some event has caused catastrophic system 
failure. 

Interrupts are a type of exception resulting from a 
signal: which is input from an external device. The 
exception vector to which execution is diverted is 
obtained as usual from the vector table but the vector 
number for the service routine is supplied by the 
interrupting device itself. 

The external devices may each be assigned a priority level between 0 
and 7 which, when an interrupt request is detected, is automatically 
compared with the processor priority level set by the three interrupt 
mask bits in the system byte of the status register. If the processing 
priority code is greater than or equal to the priority level of the 
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requesting device then the interrupt request is left pending while the 
next instruction is processed. If the requested interrupt is of a higher 
priority level then the interrupt exception is serviced immediately. 

Exception Vector Table 

The exception vector table occupies 1024 bytes, containing 256 
exception vectors, each consisting of 32-bit exception routine address 
pointers. The first 64 vectors are dedicated to certain types of 
exceptions and the remainder are user defined vectors which are used 
by system designers for pointing to customized exception routines for 
particular operating systems. 

Vector Address Exception 
Number Number Type 

0 0 Reset 
1 4 Reset 
Zz 8 Bus error 
3 12 Address error 
4 16 Illegal instruction 
5 20 Division by zero 
6 24 CHK instruction 
y. 28 TRAPV instruction 
8 32 Privilege violation 
9 36 Trace 
10 40 Line 1010 emulator 
1] ae Line 1111 emulator 
12-23 48-95 Reserved 
24 96 Spurious interrupt 
25 100 Level 1 interrupt autovector 
26 104 Level 2 interrupt autovector 
27 108 Level 3 interrupt autovector 
28 112 Level 4 interrupt autovector 
Phe 116 Level 5 interrupt autovector 
30 120 Level 6 interrupt autovector 
31 124 Level 7 interrupt autovector 
32-47 128-192 TRAP vectors 

48-63 192-255 Reserved 
64-255 256-1023 User interrupt vectors 
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Input and Output Operations 

On most processors, data may be input from or output to peripheral 
devices by means of I/O ‘ports’ which are addressed in a similar way 
to memory addresses, using instructions such as ‘IN’ and ‘OUT’. 

The 68000 does not implement these instructions and I/O operations 
must be performed via peripheral hardware devices such as the 6821 
Peripheral Interface Adaptor (PIA) and the 6850 Asynchronous 
Communications Interface Adaptor (ACIA). 

Communication via these devices can be fairly complex and a detailed 
description of their operation is beyond the scope of a book of this 
kind. In practice, many operating systems will provide a simple 
method of communicating through these devices by linking them to 
a trap mechanism so that data may be input or output by loading 
parameters into certain data registers and then initiating an appropr- 
iate trap mechanism, using the TRAP instruction. 

Binary Arithmetic 

Performing binary arithmetic on the 68000 is an easy matter because 
special instructions are provided for binary addition and subtraction 
and for signed and unsigned binary multiplication and division. 

The instructions allow multiple precision arithmetic operations — that 
is, operands several words in length can be operated on, yielding 
multiple word results where necessary. Where there is a binary carry 
or borrow between operands, the ‘X’ (extend) flag is set and certain 
arithmetic instructions automatically pass the carry from one operand 
to the next. For this reason, it is advisable to ensure that the extend 
flag is reset before you start, using MOVE £0,CCR. With some 
arithmetic instructions the Z flag is set by a zero result but unchanged 
by a non-zero result. In this case it is necessary to ensure that the Z 
flag is in the desired condition before the instruction is executed if the 

flag is to be tested afterwards. 

64-bit binary addition and subtraction 

As a first example, let us suppose that we wish to add together two 
64-bit numbers. There are several forms of the ADD instruction: ADD 
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(add binary), where one of the operands has to be in a data register, 
ADDA (add address), where the destination operand has to be in an 
address register; ADDI (Add immediate), where the source operand 
has to be an immediate value; ADDQ@ (Add quick), where the source 
operand has to be an immediate value in the range | to 8; and ADDX 
(Add extended), where the value of the extend flag is incorporated in 

the result. Since this is a multiple precision operation we shall be using 
ADDX. 

The two 64-bit numbers are initially located in binary form in memory 
and will be transferred, one byte at a time into data registers, starting 
with the least significant byte of each number, and added together one 
at a time. If we store the bytes in data register D2 and D3 the addition 
instruction would take the form ADDX.B D2,D3. After each byte 

addition the result would be stored in D3 and may be transferred from 
there to a separate memory location. The program would then loop 
back and add the next bytes in sequence until all 64 bits have been 
added: 

;A2 points to address beyond end of first 64-bit number 

;A3 points to address beyond end of second 64-bit number 

304 holds the number of additions to be performed, less 1 

;D2 & D3 will hold each byte to be added 

MOVE #0,CCR ;Clear flags in CCR 

LOOP MOVE.B -(A2),D2 ;Decrement A2 and move byte 

;from first number into D2. 

MOVE.B -(A3),D3 ;Decrement A3 and move byte 

;from second number into D3. 

ADDX.B D2,D3 ;Add bytes together (including 

j;extend flag value). 

MOVE.B D3,(A2) ;Replace sum in memory space 

,of first number. 

DBRA D4&,LO0P ;Subtract 1 from D4 and loop back 

;to 'LOOP' if D4 greater than -1 

If you imagine the binary operands printed horizontally, you can see 
how this process corresponds to the manual addition process, from 
right to left, with the binary carries being passed automatically from 
a less significant to a more significant byte of the sum at each stage via 
the extend flag. 
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The addition instruction may be performed on both signed and 
unsigned operands and no separate instruction is needed for each case. 

The same operation can be performed without removing the operands 
from memory, as follows: 

MOVE #0,CCR ;Clear flags in CCR 

LOOP ADDX.B -(A3),-(A2) ;Add two bytes 

DBRA D4,LO00P 

Binary subtraction follows exactly the same principles as binary 
addition, the subtraction instructions being SUB (Subtract Binary), 
SUBA (Subtract Address), SUBI (Subtract Immediate), SUBQ (Subtract 
Quick) and SUBX (Subtract with Extend). If the above examples were 
subtraction operations we would, of course, be using SUBX. 

Binary Multiplication 

Multiplication is performed on either signed or unsigned operands 
and a separate instruction is used for each case: MULS (Multiply 
Signed) and MULU (Multiply Unsigned). In both cases the multiplicand 
(the number being multiplied) is held in a data register and the 
multiplier may be immediate, in memory or stored in another data 
register. The following example shows how a 16-bit multiplicand in 
register D2 is multiplied by a 16-bit multiplier in D1, with the 32-bit 
result being stored automatically in D2, using the instructions MULS 
D1,D2 or MULU D1,D2, depending on whether signed or unsigned 
numbers are being used. Note that the original operands may not be 
larger than 16 bits. The multiplication instructions have no size 
specifier after them because operations are always of word-size. 

REGISTER D2 REGISTER D1 

ieemeeey 8) f/8O agg |X parent fe one] Seay 

REGISTER D2 

78000 

FIGURE 7-1. MULU D1,D2. 
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Binary Division 

Division is also performed on signed or unsigned operands and the 
instructions used are DIVS (Divide Signed) and DIVU (Divide 
Unsigned). In this case the dividend (number to be divided) is a 32-bit 
number in a data register and the divisor is a 16-bit number which 
may be immediate, in memory or in another data register. In the 
following example the unsigned dividend in D2 is divided by the 
immediate value 10 and the result is automatically stored in register 
D2, with the quotient occupying the low word and the remainder 
occupying the high word. 

REGISTER D? 

FIGURE 7-2. DIVU #10,D2. 

If you need to swap over the quotient and remainder words in the 

register then the SWAP instruction is used, as demonstrated in PROG6 
in Chapter 13, e.g. SWAP D2. 

Binary Coded Decimal Arithmetic 

In some circumstances, binary representation is an inconvenient way 
or storing and transmitting data. If the computer is exchanging 
floating point numeric data, such as financial information, with some 
peripheral device then the format in which the data is represented by 
the two machines may be incompatible. 

The solution to this problem is to use binary coded decimal (BCD) 
arithmetic, which is a technique whereby binary numbers are used to 
represent the decimal digits 0 to 9, so that numeric values can be 
stored, exchanged and processed in regular decimal form. This is done 
by using four bits of a byte (a nibble) to represent each decimal digit, 
as follows: 
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Binary BCD Binary BCD 

0000 0 1000 8 
0001 ] 1001 2 
0010 2 1010 —_ 
0011 3 1011 — 
0100 4 1100 a 
0101 5 1101 — 
0110 6 1110 — 
0111 7 1111 —~ 

You will notice that, of the fourteen number combinations possible 
using four bits, nine are used to represent decimal digits and the rest 
are unused. This slightly complicates the performance of arithmetic 
operations as we shall see presently. 

From this table you will see that it is possible to represent decimal 
digits directly in memory. The decimal digit 8, for example, could be 
stored in a memory byte as 00001000; exactly the same as it would be 
stored as a binary value. This representation is termed unpacked 
binary coded decimal (BCD). Since the remaining four bits of the byte 
are wasted, they too can be used to hold a BCD digit, so that a single 
byte can hold a decimal value between 0 and 99. The number 48, for 

example, would be represented as 01001000 (BCD 4 followed by BCD 
8). This form of BCD representation is termed packed BCD. 

From this you will be able to see that there is no limit to the type of 
value which can be stored in this way. By using some of the unused 
four-bit codes in the above table, you can devise BCD data structures 
which incorporate signs, decimal points and other mathematical 
symbols. The decimal number —2834.85, for example, might be stored 
as follows: 

jj1o sJoo1 oft oo ojoor toro ojsooojoros 

6 BCD digits 

Indicates position of decimal point 

Sign bit 

FIGURE 7-3. 
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The left hand bit indicates the negative sign of the number and the 
next three digits, 101, indicate that the decimal point comes just 
before the fifth digit of the value. 

The problem with BCD arithmetic, however, is that because some of 
the possible bit combinations in a nibble are unused, this leads to 
inaccuracies when arithmetic operations are performed on them. For 
example, in binary arithmetic the addition of 4 and 8 yield the 
following result: 

00000100 = 4 

+00001000 = 8 

=00001100 =12 

In BCD however, this is an inaccurate result since there is no 
representation of the number ‘12’. In BCD, the result required is ‘1’ 
and ‘2’ (0001 0010) which would be 18 in binary (i.e. a difference of 
six). This is, in fact, how adjustments to binary numbers are carried 
out in BCD arithmetic in order to convert then to correct BCD values. 
The least significant nibble in the binary result is 12 (1100). If we add 
6 to this the result is modified as follows: 

0000 1100 binary 12 

+0000 0110 binary 6 

=0001 0010 

1 2 = '12' in BCD 

Whenever addition or subtraction operations are performed in which 
BCD rather than binary values are involved, a special set of 
instructions are provided which automatically convert the results into 
BCD format. These are ABCD (Add Decimal with Extend) and SBCD 
(Subtract Decimal with Extend). 

These work in much the same way as binary addition and subtraction 
operations and may be performed between BCD values in memory or 
in data registers. 

ABCD, like ADDX, takes the value of the extend flag into account during 
each stage of a calculation and multiple-precision BCD operations can 
be performed in the same way as binary operations, substituting ABCD 
for ADDX and SBCD for SUBX. 
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There are no specific multiplication or division instructions provided 
for BCD values. 
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Chapter 8 

Assembling Programs 

In the first chapter we took a general overview of the system, looking 
at the sizes of data which can be used in programming and the ways 
in which the data is stored in memory. We then looked at part of a 
simple program, seeing how the code and data sections relate to each 
other and how the processor executes a program by moving data from 
one location to another and processing it. Finally, we took a brief 
look at the general principles of assembler programs. 

In this chapter we shall revise some of the key points about program 
and data storage. We shall also be starting to use hexadecimal 
numbering rather than binary representation. Finally, we shall 
examine the use of assembler programs in more detail and produce 
a complete coding of the example program which we looked at in 
Chapter 1. 

Data Sizes 

In Chapter 1 we saw how the basic unit of data is the binary byte 
and how data can also be represented in word and long word lengths. 
By way of revision, the following table lists the primary data lengths 
which are commonly used: 

Length Name Comment 

1 bit Bit The primary unit of binary numbering. 
4 bits Nibble Used in BCD arithmetic to represent 

decimal digits 0 to 9. 
8 bits Byte The primary unit of data storage. 
16 bits Word Two bytes. 
24bits — The number of bits used to represent a 

memory address value. 
32 bits Long word Four bytes. 

115 
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Although these are standard, named data lengths there is no reason 

why you should not store data in any size or format you wish, 

according to the requirements of your application. You might choose, 

for example, to represent floating point numbers in 6 bytes: 2 for the 

mantissa (the whole part) and 4 for the exponent (the fractional part), 

with one or more bits reserved to indicate the number of decimal 

places required when the value is displayed on the screen. In this 

case you would need to write routines which encode and decode the 

data in accordance with the format you have chosen. 

Hexadecimal Numbering 

So far we have been using the decimal and binary numbering systems: 

the decimal system because we are familiar with it and the binary 

system because it constitutes the actual representation of numeric 

values in a computer system. Another numbering system is also often 

used in computing: the hexadecimal, or base-sixteen system. Its 

advantage over the binary system is that it is a convenient way of 

representing binary values without needing to go to all the trouble 

of writing down a large number of 0s and Is. Its advantage over the 

decimal system is that every byte of data can be uniformly represented 

by two hex digits, thus it is easy to arrange data in a regular tabular 

format and to identify byte-sized units of data in a program listing. 

There are 16 hexadecimal digits: 0 to 9, equivalent to the decimal 
values 0 to 9, and A to F, equivalent to the decimal numbers 10 to 15 

as shown in the table on the next page: 
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Decimal Hex Decimal Hex 

0 00 16 10 
1] 01 17 11 
Ps 02 18 12 
3 03 19 13 
4 04 20 14 
5 05 21 j ie 
6 06 22 16 
ve 07 23 17 
8 08 24 18 
9 09 25 19 

10 0A 26 1A 
11 OB 27 1B 
Fs 0C 28 1C 
13 0D 29 1D 
14 OE 30 1E 
15 OF 31 1F 

If we look at a 16-bit binary number you will be able to see easily 
how each hexadecimal digit corresponds to a 4-bit section of it: 

0000 1010 1100 1001 

0 A ¢ r 

= 2761 decimal ((10 * 256) + 201) 

= OAC9neEx 

Each separate 4-bit section is read as if it were the low order four 
digits of a binary number, so that each will represent a value on the 
range 0-15 decimal (0O—F hexadecimal). 

For conversions between binary, hex and decimal values, you may 
find the conversion table in Appendix C useful. All three numbering 
systems can be used in programming and in an assembler listing you 
can usually specify the radix (the numbering system) of the data as 
being hexadecimal simply by appending a ‘$’ to it. To move the 
immediate hexadecimal value 3F into register D4 for example, you 
might use an instruction such as MOVE.B #$3F,D4 — the # indicating 
that it is an immediate value and the $ indicating the radix. To move 
a value contained in an absolute address, such as 2AFBy;:x, into D4, 

then you would use an instruction such as MOVE.B $2AFB,D4. 
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Assembler Programs 

In Chapter 1 we briefly looked at assembler programs, which enable 
the programmer to enter the assembly language source program as a 
listing and from which the object, or machine code version of the 
finished program is compiled. 

In this chapter we shall be going into the operation of assembler 
programs in more detail. Taking the simple program example from 
chapter 1 we shall produce a complete source code listing and then 
examine the object code which is produced from it. 

Assembler Structure 

An assembly language ‘source’ program consists of a listing of a 
number of separately identifiable blocks of commands which define 
the sections of a program in a structured fashion. The general 
structure is not imposed and therefore it is up to the programmer to 
arrange the sections of the program in an orderly and consistent 
sequence so that it is easy to refer to it during the debugging phase. 
Typically, the listing will contain definitions of all labelled constant 
values, the labelled addresses of data items and reserved memory 
blocks and labelled blocks of code, including any subroutines. 

The listing consists of four main elements: 

at Assembler directives, or ‘pseudo-ops’, which are commands which 

are part of the assembler program rather than actual assembly 
language instructions. 

2 Labels — which are user-defined names which the programmer 
gives to the various elements of the program. 

3 Comments — which serve the same function as REM statements in 

BASIC. 

4 Assembly language instructions — which are the actual 68000 
program commands. 

Since different assembler programs vary in their formats and in the 
facilities which they provide, we shall not be going into a full 
examination of the operation of any particular package. Readers 
should therefore refer to the documentation provided with their own 
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assembler, which will normally contain extensive and detailed 
instructions on how they should be used. 

In this book the assembler formats and directives used to illustrate 
the various example programs are typical of those used in most 
assemblers and each feature will be fully explained wherever it is 
introduced. By the end of this chapter the general structure of an 
assembler listing will be reasonably well understood and you should 
have no difficulty in following all the program examples listed in the 
chapters which follow. 

The first program, like all the others in this book, will be relocatable 
(i.e. position independent). It is good practice to make programs 
relocatable as a matter of course because you cannot always anticipate 
the circumstances under which they will be executed. If you are only 
likely to run one program at a time on your computer then it does 
not matter much — your relocatable program will always be loaded 
into the same memory area. If you write a non-relocatable program 
then you are free to refer to absolute addresses. For example, it would 
be permissible to use an instruction such as MOVE.B 80000, D2 (load the 
contents of address 80000 into D2. 

A relocatable program would have to use a label to achieve the same 
ends because the data to which you are referring is not always likely 
to be at address 80000. As you will see in the example program, these 
labels are assigned to code and data sections in the listing and the 
assembler program calculates their relative offset values during 
assembly. In practice, it is common to use labels in non-relocatable 
programs as well so that, for example, at the beginning of your source 
listing you would have a statement such as TABLE_1 EQU £80000. 
Subsequently you can refer to this address using its label. 

A non-relocatable program is defined by using the assembler directive 
ORG at the beginning of the program, followed by the address at which 
you want your program to be loaded. 

Separate ORG statements may be used to define the beginning of your 
code section, the beginning of your data section and also the base 
address of the stack if the default stack is not large enough and you 

wish to assign more space for it. 

A relocatable program may be defined with a RORG directive and the 
system will subsequently work out where the program is to be loaded. 
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In many cases relocatable assembly will be the default condition and 
therefore RORG will be unnecessary. 

A program may be executed in a variety of ways: it may be called as 
a subroutine from another program, from the operating system 
prompt or from a high level language such as BASIC. The precise 
method of calling a program will differ between operating systems 
but in most cases you will find that various parameters have to be 
passed to the operating system at the beginning of a program in order 
to ensure that the correct channels are opened (i.e. to the screen, a 
screen window, keyboard, printer etc) and that the program is 
correctly integrated with any other ‘tasks’ which the computer is 
running. This information may include a priority code, indicating 
the level of priority which the current task has in relation to the other 
tasks. The example programs will incorporate some of these para- 
meters in order to demonstrate the kinds of operations which your 
operating system may require you to perform. Since these are 
operating system specific, they may be coded completely differently 
on your own computer but bear in mind that their inclusion is 
normally necessary. The technical manual for your machine should 
provide you with the information required by your own operating 
system. 

Example Program 1 

Our first example program will be documented in detail and we shall 
go through all the stages of assembly from source code to object code, 
so that you can see how the different elements of the program and 
the assembler relate to each other. 

As a reminder, here is the program once again in BASIC: 

10) FOR? count s="5 (tor 1eSTER==1 

20 READ V 

30 PRINT CHR$(48 + V) 

40 NEXT count 

50 DATA 24,21,28,28,31 

As you will recall, this merely adds 48 to each of the data items and 
prints the ASCII characters corresponding to the results to the screen. 
In the following assembler version, all user-defined labels are printed 
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in italics, assembler directives are printed in normal type and the 
assembly language instructions are printed in bold type. Comments 
are preceded by the ‘;’ symbol. This format will be used throughout 
the remainder of the book. After the listing a full commentary on the 
program will be given. At the end of the chapter, a literal translation 
of each instruction mnemonic is also given. 

Note: On a first reading of this listing the main things you 
should be observing are the assembly format and the 
structure of the program as a whole. Although the workings 
of the actual assembly language program are explained 
there may be much that will appear confusing at this stage 
but the details will become clearer as you read through later 
chapters. 

, lel tite nee ee ee ee ee ee 

; DATA ADDITION PROGRAM ENTITLED PROG1 

; ADDS 48 TO A SET OF VALUES AND PRINTS 

Be THE CORRESPONDING ASCII CHARACTERS 

Samm www wm Re Re RM ee BP ee ee ee ee ee ee ew em em wm wm em em ee em ew ew ew ee ee ee ee ee ee ee eee 

GO MOVEQ #0,01 j;Job ID 

MOVEQ #2,D3 ;Exclusive device 

BEAL DEVICE, AO ;Address of device code 

MOVEQ #1,D0 ;Code for opening channel 

TRAP #2 ;Trap for opening channel 
Sew we em em ee Me Be em BP MP ew ew eee em ew me we ee ee ee em ee ee ee ee ee ee ee em ee ewe ee eK 

MOVEQ #0,D2 3D2 will index data pur Fou nro 
MOVEQ  FOUR,D4 3D4 will count off data Iv DA FOoR= & 
LEA.L MYDATA,A2 ;A2 points to base of 

"MYDATA' 

;THEN THE ADDITION IS PERFORMED 

DCR t. CenwACUE Obl. 82.5... 

LOOP1 MOVE.B 0(ad02) ,01 ;Move an item of data to D1 

ADD.B  ADVAL,D1 ;Add 48 to it 
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sTHEN AN OPERATING SYSTEM TRAP IS CALLED TO PRINT 

sTHE RESULT TO THE SCREEN 

MOVEQ #-1,D3 ;Timeout code in D3 

MOVEQ #5,D0 ;Transfer display 

;function code into D0 

TRAP #3 ;Call operating system 

;display function trap 

ADDQ #1,D2 ;Increment index pointer 

DBRA D4,L00P1 ;Loop back to LOOP? if 

“D4 oii ours 

MOVEQ #2,D0 ;'close channel' code 

TRAP #2 ;Close channel 

MOVEQ #-1,01 ;Job ID 

MOVEQ #0,D3 ;Error code 

MOVEQ #5,D0 ;'remove task' code 

TRAP #1 ;Remove task 

MYDATA DC.B 24,21,28,28,31 ;Defines and names the set 

sof data values in 5 

;reserved bytes 

ADVAL dC.B 48 ;Defines and names the 

OE FUE A saddition value in 1 
oNeth ;reserved byte 

FOUR DAB 14 Defines and names length of 

sMYDATA, less 1, in 1 

;reserved byte 

DEVICE DC.W 4 ;Number of characters in 

;device name in one reserved 

;word 

DCB CONS ;Device name 
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The ‘rem’ statements (;) at the start of the program simply name it 
and define what it is intended to do. 

Following this, the actual program begins and the first 68000 
instruction is given the label ‘G0’. This arbitrary name is merely to 
indicate where the actual program starts and is not obligatory. 

The first instruction, MOVE@ #0,D1, sets the whole of D1 to zero. This 
is a parameter which will instruct the operating system to assign an ID 
code to the program. The next instruction, MOVE@ #2,D3 sets D3 to 
the value 2. This is a parameter which will inform the operating 
system that an exclusive device will be required by the program. The 
instruction LEA.L DEVICE,A0, loads the address containing the length 
(4) of the device specification (CON_) into the AO register. CON_ stands 
for ‘console’ and indicates that communication channels to the screen 
and keyboard should be opened. The label DEVICE is defined in the 
data section at the end of the program. The MOVEQ #1,D0 instruction 
moves the value | into D1. This is a parameter to inform the operating 
system to schedule the current program as a new ‘task’ to be 
performed. 

Then the TRAP #2 instruction calls a specific operating system trap 
routine, passing the above parameters to it. The trap routine 
interprets the parameters and performs the requested operations 
before returning to the program. 

Note that all the above operations relate to an operating system 
specific procedure and are likely to be different on your own 

computer. 

Next the program proper begins. The instruction MOVEQ #0,D2 sets 
the whole 32 bits of the D2 register to zero. This register will be used 
as an index offset to access the data in the data section and initially the 

offset will be zero. 

The D4 register will be used to count off the five bytes of data and 
SO it is initialized with the count value (5) less 1: MOVE@ FOUR, D4. 
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The assembler will recognize the label FOUR’ as being the name of 
the data address in which the actual value 4 has been stored and 
during execution it will be transferred from there into D4. 

Again, FOUR is an arbitrarily chosen label which is defined in the data 
section at the end of the program. It is the value contained 1n address 
FOUR which is loaded into D4 rather than the data address number 

itself. 

The instruction LEA.L MYDATA,A2 then loads the base address of the 
data labelled ‘MYDATA’ into address register A2. MYDATA is the data to 
which we shall be adding 48 and is defined at the end of the program. 

The label LOOP1 marks the address to which program execution will 
loop back after each addition and printing operation has been 
completed. 

The instruction MOVE.B 0(A2,D2),D1 moves the data stored at the 

address named ‘MYDATA’ (pointed to by A2) plus the index offset in D2 

(initially 0) into D1. The instruction ADD.B ADVAL,D1 then adds 48 

(the number contained in address ADVAL) to the data contained in D1 

so that D1 contains the result of the operation. ADVAL is defined at the 

end of the program. 

The following three instructions cause the program to branch to an 
operating system trap procedure which prints the ASCII code of the 
value contained in D1 to the screen. Different computers will have 
different ways of doing this and you should refer to the documentation 
for your own machine for details. In effect, three parameters: the 
contents of D1, the value —-1 and the value 5 are passed to an operating 
system trap procedure which performs the printing operation and 
returns control back to the program. D1 already holds the ASCII 
code for the character to be printed, —] is a timeout parameter, 
indicating how long (if at all) the routine should wait to output its 
information to the screen if the console channel is being used by some 
other program, and 5 is a parameter indicating that a byte of data is 
to be sent to the screen. 

The D2 index register is then incremented by | to point to the next 
data item (ADD@ #1,D2) and the DBRA D4,L00P1 command automati- 

cally decrements the D4 register, containing the loop count, and if 
the operations have not been completed (i.e. if D4 >= 0) then 
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execution is looped back to the address which has been given the 
label ‘LOOP1’. 

Finally, another operating system trap is called which closes the 
console channel. The parameter 2 specifies this function and trap 2 
performs it. Then another trap is called which tells the operating 
system that the current task is finished and may be removed from 
the execution schedule. The parameter —1 refers to the current task 
ID code, 0 refers to an error code and 5 is a task termination code. 
TRAP 1 performs these operations and returns control to the operating 
system, to any program from which the current program was initiated 
or to some other task which is waiting in the schedule queue. 

Following this, the data segment of the program is defined. This 
section will eventually follow the program code when the assembled 
program is loaded and run. The fact that the labels associated with 
the data have already been referred to in the body of the program, 
prior to their definition, does not matter. The assembler will run 
through the source code twice. On the first pass it will take note of 
all labels used and on the second pass it will replace all label references 
with appropriate values. 

MYDATA is an arbitrarily named label which we choose to assign to 
the five bytes of data which will be used in the program. When the 
program is assembled, the label MYDATA becomes a numeric variable 
pointing to the address of the first of the five data items. The directive 
*DC.B’ means ‘define byte constant’; in other words, the assembler is 
told to reserve five byte-sized memory spaces for the following items 
of data and to insert the data in the reserved addresses. 

The same is then done for ADVAL, which is the name we choose to 
give to the constant value 48 which will eventually be added to each 
of the data items. Then we give the name FOUR to the constant value 
4, which will be used to count off each item of data after it has been 
added. 

Finally, the value 4, labelled ‘DEVICE’, is stored as a word using DC.W 
(define word constant). This represents the number of characters in 
the following data item, ‘CON_’. These two items of data are used at 
the beginning of the program to set up a communications channel 
for the console. Note that ‘CON_’ is defined as bytes (DC.B). This 
means that the ASCII code of each individual character in the word 
‘CON’ should be stored as separate bytes in four consecutive 
addresses. 
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The program is then terminated with the statement ‘END’, indicating 

to the assembler that there is no more code or data to assemble. 

If we were to type this listing into our computer, using a word 

processor or screen editor utility, it can then be read and converted 

into object code using an assembler program. The assembler will use 

the various elements of the program and calculate the relative 

positions in memory between all the labelled elements of the program. 

If there are any errors, these will be printed to the screen with 

appropriate error messages so that you can amend the listing if 

necessary and re-assemble it. 

The resulting object code, which is written to disc, is a relocatable 

machine code file with all the assembler directives and labels stripped 

from it. The assembler assembles the code in such a way that when 

the program is loaded, the operating system is free to assign the code, 

stack and data sections to whatever free areas of memory are available 

and in different circumstances, for example where memory space is 

being shared with other programs, the assigned base address of the 

program will vary. However, the relationships between the various 

data blocks and code sequences of a program will remain constant 

because the assembler translates all labelled points in a program into 

relative offsets rather than fixed locations. In some cases these offsets 

are located relative to the assigned base address of the program and 

in some cases, for example in program loops, the offsets are located 

relative to the branch instructions. 

Linking Program Segments 

A program which we have assembled into object code may be just 

one of several modules belonging to a larger program, or may be a 

program which is intended to interact with other programs which 

may share memory space with it at the time it is run. For this reason, 

it may be necessary in some cases to run the assembled program 

through a LINK program, which gathers together all associated 

modules and segments and arranges them in an efficient structure, 

ensuring that all code and data shared by more than one program 

module are properly linked. The final linked code is usually termed 

an ‘executable’ object file: that is, it is finally in a condition in which 

it can be loaded and executed. 
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If we pass our source listing through the assembly and link processes, 
the final machine code file can then be read by a ‘disassembler’, 
‘monitor’ or ‘debug’ program, which gives a complete listing of the 
assembly language mnemonics, a hexadecimal ‘dump’ of the actual 
object code for each instruction and the addresses into which each 
instruction has been loaded, as follows: 

;Address Object Code 68000 Instruction 

(hexadecimal) Mnemonics 

g enn----------------------------- + -- --- ---- 

29CE8 7200 MOVEQ #00, D1 

29CEA 7602 MOVEQ #02, D3 

29CEC 41FA0038 LEA 38(PC)!29D26, AD 

29CF0 7001 MOVEQ #01, DO 

29CF2 4E42 TRAP #2 

29CF4 7400 MOVEQ@ #00, D2 

29CF6 © 183A002C MOVE.B 2C(PC)!29D24, D4 
29CFA 45FA0022 LEA 22(PC)!29D1E, A2 

29CFE 12322000 MOVE.B OO(A2,D2.L), D1 

29002 D23A001F ADD.B 1F(PC)!29D23, D1 

29006 76FF MOVEQ #FF, D3 

29008 7005 MOVEQ #05, DO 

29D0A 4E43 TRAP #3 

29D0C 5242 ADDQ #1, D2 

29D0E S5ICCFFEE DBRA D4,29CFE 

29012 7002 MOVEQ #02, DO 

29014 4E42 TRAP #2 

29016 72FF MOVEQ #FF, D1 

29018 7600 MOVEQ #00, D3 

29D1A 7005 MOVEQ #05, DO 

29D01C 4E41 TRAP #1 

From this you can see that the program code has been loaded into an 
area of memory beginning at address $29CE8 (171240 decimal). You 
will recall from Chapter 1 that code must always be loaded at an even 
address so that it can be ‘word aligned’. The first instruction has 
been located in memory at address $29CE8. The object code is listed 
in hexadecimal and if you examine the listing you will see that each 
pair of hex digits represent 1 memory byte. The second instruction, 
for example, is located at $29CEA (decimal 171242) and its object 
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code occupies 2 bytes; therefore, the third instruction starts two bytes 

further on at $29CEC (decimal 171244). 

If you look at the mnemonics in this listing carefully and compare 

them with those in the original source file, you will notice that there 

are a number of differences. The third instruction for example, LEA.L 

38(PC)!29D26,A0, was originally LEA.L DEVICE,A0. The reason for 

this is that the actual physical address of the data labelled ‘DEVICE’ is 

$38 bytes further on in memory, relative to the value which will be 

held in the PC register at the time this instruction is executed. The 

assembler has noted the fact that this program is relocatable and has 

specified the location of ‘DEVICE’ to be PC relative rather than 

absolute. The monitor program which loaded the program and which 

produced the above assembly listing has introduced a separation 

symbol: ‘!’ following which it has inserted the actual address at which 

‘DEVICE’ has been located: $29D26. Had the entire program been 

loaded at a different address then ‘DEVICE’ would still be located at an 

offset of $38 bytes relative to the third instruction but of course its 

actual physical address would be different. The seventh physical 

instruction, MOVE.B 2C(PC)!29D24,D4 at address $29CF6 was origin- 

ally MOVE.B FOUR,D4 and has been interpreted similarly, as has LEA.L 

22(PC)!29D1E,A2 (originally LEA.L MYDATA,A2) at address $29CFA. 

When the program is executed the data contained in the address 

labelled ‘FOUR’, in this case the data contained in address $29D24, is 

moved into low order byte of register D4. The actual address of 

‘MYDATA’ (in this case $29D1E) is loaded into address register A2. 

Note that the instruction at address $29D06, MOVEQ #FF,D3 was 

originally MOVEQ -1,03. FF is of course the hexadecimal 2’s comple- 

ment representation of —1. 

The DBRA D4,29CFE instruction at address $29DOE was originally DBRA 

D4,L00P1. The monitor program has simply substituted the physical 

address of the instruction labelled L00P1 for the label. 

Often a number of small details will be altered automatically when a 

source program is assembled. One example in this case can be seen 

in the instruction at address $29CFE: the index register D2 has 

acquired an ‘.L’ size specifier, indicating that the entire 32 bits of D2 

are used as the index value. In the source listing no size specification 

was given but its inclusion in the object listing can be useful since it 

can help to identify possible errors resulting from the use of an 

incorrect data size. In this particular case it does not matter whether 
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16 or 32 bits of D2 are used because the index value will never be 
greater than 16 bits and the earlier MOVEQ instruction would have set 
the hi word of D2 to zero. 

In addition to the executable object file, the assembler may also have 
generated a ‘list’ file, containing a copy of the original source code 
with line numbers and error codes added to aid the debugging 
process. It may also have generated a ‘symbol table’ which gives 
information about all the labels contained in your program, indicating 
whether they relate to code or data addresses and, if they are data 
labels, their defined size and the initial values contained in them. 
The table would normally indicate the total size of the program and 
the sizes of the code and data sections. 

Tracing a Program 

Once our program has been assembled and listed we can test it by 
executing it one instruction at a time using a toolkit program which 
‘traces’ the status of the registers as each instruction is executed. A 
trace listing for the second program instruction, MOVE #2, D3, appears 
as follows. This shows the status of the registers immediately before 
the instruction is executed: 

29CEA 7602 MOVEQ #02, D3 
DO=0 D1=0 D2=0 D3=0 D4=0 D5=0 D6=0 
D7=0 AQ=0 A1=0 A2=0 A3=0 A4=0 A5=0 
A6=0 

A7=3DBC6 Status= Z T Imask=0 Program Counter =29CEA 

From this you can see that the top of the stack, whose address is in 
register A7, is located at $3DBC6 and the instruction, MOVEQ £02 a) 
is located at address $29CEA as indicated on the top line of the first 
trace. Since the program counter is pointing to this instruction it also 
contains the same value. The ‘T’ after the word ‘Status’ indicates that 
the trace flag is set in the status register because the program which 
prints out the listing is making use of the processor’s trace facility. 
The Z flag is set because the previous instruction moved an 0 into 
register D1. The IMASK (interrupt mask) in the status register is at 
zero, indicating that interrupts have not been masked. 
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29CEC 41FA0038 LEA 38¢(PC)!29D26, AD 

D0=0 D1=0 D2=0 D3=2 D4=0 D5=0 D6=0 

D7=0 A0=0 A1=0 A2=0 A3=0 A4=0 A5=0 

A6=0 

A7=3DBC6 Status= T Imask=0 Program Counter =29CEC 

The second trace shows what happens when the MOVE instruction 

is executed. Register D3 now contains the value 2 and, since the 

previous instruction occupied two bytes of memory, the program 

counter has been incremented by 2 to point to address $29CEC, ready 

for the LEA instruction to be executed. 

29CFO 7001 MOVEQ@ #01, DO 

DO=0 D1=0 D2=0 D3=2 D4=0 D5=0 D6=0 

D7=0 A0=29D26 A1=0 A2=0 A3=0 A4=0 A5=0 

A6=0 A7=3DBC6 Status= T Imask=0 Program Counter =29CFO 

29CF2 4E42 TRAP #2 

DO=1 D1=0 d2=0 D3=2 D4=0 D5=0 D6=0 

D7=0 A0=29D26 A1=0 A2=0 A3=0 A4=0 A5=0 

A6=0 A7=3DBC6 Status= T Imask=0 Program Counter =29CF2 

The third trace shows what happens after the LEA.L 38(PC)! 29D26,A0 

instruction has been executed. The value of the address $38 bytes 

relative to the PC counter, address $29D26, has been loaded into 

register AO and the program counter has been incremented by 4 bytes 

to $29CFO0. 

Data Dumps 

A further debugging aid is normally provided in a monitor program: 

a hexadecimal ‘dump’ of a program and its data can be obtained, 

together with a listing of the printable ASCII codes which correspond 

to the data contained in the dumped addresses. This gives. a broad 

overview of the space occupied by your program and can be used to 

check the operation of individual instructions against the data 

addresses to which they refer. For example, if your program is 

designed to load a string of calculated values into a certain block of 

memory, you can run your program through once under control of 

the monitor program and then obtain a dump of the data area 

concerned to check that your program is inserting the correct values. 
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The following listing shows a dump for PR0G1: 

“LOOP 1° 

29CE8 72 88 74 @2 41 ra\ee 38 78 81 4E 42 74 88 18 3A r.v.Az.8p.NBt..: 29CF8 @8 2C 45 FA @@ 22 12 32 20 2B D2 3A @8 1F 76 FF .,Ez.".2 .R:..v 29D@8 78 @5 4E 43 52 42 51 CC FF EE 7@ 82 4E 42 72 FF p.NCRBQL np.NBr 29D18 76 @@ 7@ @5 4E 41 18 15 1C 1C 1F 38 @4 @@ @@ O04 v.p.NA..... @.... 29D28 43 4F 4E SF 
CON__ 

“MYDATA’ “ADVAL’ ‘FOUR’ ‘DEVICE’ 
CON_ 

FIGURE 8-1. 

The four digit numbers in the left hand column are memory 
addresses, starting with the first address of the program at $29CE8. 
The centre block shows the hexadecimal contents of the individual 
bytes of the program, arranged in rows of 16 bytes. The block on 
the right shows the printable ASCII codes corresponding to the values 
contained ‘in each of the 16 rows. Where a code has no printable 
ASCII character associated with it, it is represented by a dot. 
Obviously the program code itself results in a meaningless jumble of 
character codes, as does most of the data section except for the codes 
representing the name ‘CON_’. With some programs, where the data 
section contains lines of text, the words of the text will appear in the 
ASCII block and this can be useful for checking and correcting textual 
data. In PROG1 there are no texts in the original data and so the ASCII 
block is largely irrelevant. 

Note that the data section of the program follows on immediately 
from the end of the code, exactly as it was positioned in the original 
source program. Had we chosen to define our data before the code 
in the source program, which is the normal practice with some 
assembly languages, we might have ended up with an odd number 
of data bytes which would cause code alignment problems, with the 
code starting illegally at an uneven address. For this reason, 68000 
program data is conventionally placed after the code. 

Executing a Machine Code Program 

The program may be executed in a number of different ways. It can 
be loaded and run by keying in its disc file name from the operating 
system prompt, from within a monitor program, from within another 
machine code program or from within a high level language program. 
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For example, to execute it from the operating system we would simply 

begin with the operating system screen prompt, type in the name 

under which the program has been filed on disc and then press return. 

The program would automatically load and run, displaying the word 

‘HELLO’ on the screen. 

In comparison with the BASIC version of the program, there seems 

to be a very great deal of code involved for such a modest result. If 

you go back and compare the source listing with the object code 

listing you will see that some of the original material had little to do 

with the actual program at all, consisting mostly of assembly program 

labels and directives rather than actual assembly language. The source 

listing is extensively padded out with short explanatory notes, as all 

programs should be. When programs need to be debugged or altered 

and combined with other programs they can be very difficult to follow 

unless the listing has been carefully documented in this way. 

If you look at the object listing you will see that much of it is 

concerned with setting up and closing channels and so on, which in 

many cases would not be necessary. The heart of the program, starting 

with the instruction MOVE@ #0,D2 and ending with DBRA D4,LO0P1 

consists of only 10 assembly language mnemonic instructions which 

are assembled into 30 bytes of machine code. Obviously in a larger 

program the proportion of ‘real’ program code in relation to all the 

formal definition statements and rem statements would be much 

greater and if you build up a disc library of commonly used assembler 

subroutines, the amount of physical work involved in keying in an 

assembly language program can compare favourably with that 

required for a BASIC or other high level language program. 

The following list is a brief reference key to the meanings and 

functions of the assembly language mnemonics used in the above 

program: 

ES 
9S 800500 

Mnemonic Meaning 
a ci ite MAR li nlaelner dasa RMN ona 

MOVE #0,D1 MOVE Quick the immediate value 0 into 

register D1, resetting the entire 32 bit of 

the register to zero. 

MOVEQ #2,D3 MOVE Quick the immediate value 2 into 

register D3. 
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Mnemonic Meaning 

The low order byte of D3 will contain the 2 and the 
remaining 3 bytes will be zeroed. 

LEA.LDEVICE,A0 Load the Effective Address which is 
labelled ‘DEVICE’ into the whole of 
register AO. 

MOVEQ #1,D0 MOVE Quick the immediate value 1 into 
register DO. 

TRAP #2 Call operating system trap number 2. 

MOVEQ@ #0,D2 MOVE Quick the immediate value 0 into 
register D2. 

MOVE.B FOUR,D4 MOVE the Byte of data contained in the 
address labelled ‘FOUR’ into the low byte 
of register D4, leaving the three higher 
bytes of D4 unchanged. 

LEA.LMYDATA,A2 Load the Effective Address which is 
labelled ‘MYDATA’ into the whole of 
register A2. 

MOVE.BO(A2,D2) ,D1 
MOVE the Byte of data at the address 
which is the sum of (0+reg A2 
contents+reg D2 contents) into the low 
byte of register D1. 

ADD.BADVAL,D1 ADD the Byte contained in the address 
labelled ‘ADVAL’ to the contents of the low 
byte of Dl. 

MOVEQ#-1,D3 . MOVE Quick the immediate value minus 1 
into register D3. 

MOVEQ #5,D0 MOVE Quick the immediate value 5 into 
register DO. 

TRAP #3 Call operating system trap number 3. 

ADDQ #1,D2 ADD Quick the immediate value 1 to 
register D2. 

DBRA D4,L00P1 Decrement register D4 by 1 and BRAnch 
to the address labelled ‘L00P1’ if D4 is 
greater than —1. 
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Mnemonic Meaning 

MOVEQ #2,D0 MOVE Quick the immediate value 2 into 

register DO 

TRAP #2 Call operating system trap number 2. 

MOVEQ #-1,D1 MOVE Quick the immediate value minus 1 

into register D1. 

MOVEQ #0,D3 MOVE Quick the immediate value 0 into 

register D3. 

MOVEQ #5,D0 MOVE Quick the immediate value 5 into 

register DO. 

TRAP #1 Call operating system trap number 1. 



Chapter 9 

Addressing Modes 

In Chapter 2 we looked at some of the different types of registers used 
in the 68000 and examined the addressing modes used for addressing 
data located in both registers and in memory. 

In this chapter we shall be looking at the registers in greater detail and 
then the addressing modes illustrated in Chapter 2 will be sum- 
marized, along with some sample instructions. Finally, we shall look 
at another. complete program which illustrates some of these modes in 
a practical context. 

Register Model 

Figure 9.1 shows all the 68000 registers, arranged in their different 
categories, as follows: 

1 Data Registers 
The eight 32-bit registers which are used for holding program data. 

2 Address Registers 
The seven 32-bit registers which are used to hold memory addresses 
for accessing data which is located in memory. 

3 Stack Pointer 

Used to point to the ‘top’ of the stack. The stack pointer is register 
A7. 

4 Program Counter 
The PC register holds the address of the instruction currently being 
executed. 

Status Register 
The SR register contains bit flags indicating the current status of 
the system. 

wa 
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DATA REGISTERS: 

ADDRESS REGISTERS: 

SPECIAL REGISTERS: 
A? User Stack Pointer (USP) 
A? Supervisor Stack Pointer (SSP) 

[________] PC (Program Counter) 

[___] SR (Status Register) 

FIGURE 9-1. 

Register Descriptions 

Registers: D0 D1 D2 D3 D4 D5 D6 D7 

The eight 32-bit registers in this group are mainly used to hold data 

for transfer, for temporary storage and for arithmetic and logical 

operations. The main features of data registers are as follows: 

1 Data may be copied into or out of data registers in byte, word or 

long word lengths. When byte or word data is copied into a data 

register it is copied into the low order byte or word of the register 

leaving the higher order 24 or 16 bits unaltered. 

2 Data registers may be used as sources or destinations in program 

instructions. 
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3 Data registers may be used as counter registers, containing, for 
example, count values for loop operations. The DBRA (decrement 
and branch) and DBcc (decrement and branch according to 
condition code) instructions decrement the values of nominated 
data registers automatically. 

4 A data register may be used as an index register, containing an 
offset value which is added to the value of an address register to 
obtain the full effective memory address of an operand. 

Address Registers: AO Al A2 A3 A4 AS A6 

Address registers are used to contain the addresses of code or data 
contained in memory. They may also be used to contain data, 
providing that it is held in the form of word or long word sized values. 
Their principal features are as follows: 

1 When a memory address is contained in an address register, only 
the low order 24 bits of the value are used to specify the address. 
The remaining high order byte, if any, is ignored. 

2 Address registers may only contain word or long word sized values. 
When a word sized value is loaded into an address register its most 
significant bit (the sign bit) is copied (sign extended) into the 16 
high order bit positions of the register. Thus 0000000000001010 
(binary) loaded into an address register will automatically become: 

00000000000000000000000000001010 

1000000000001010 (binary) will become: 

11111111111111111000000000001010 

Thus a 16-bit address value with its sign bit zeroed will represent 
an address within the bottom 32K of memory. A 16-bit address 
with its sign bit set will represent an address in the top 32K of 
memory. A 32-bit address value loaded into an address register (of 

which only 24 bits are significant) may represent any address within 
a 16 megabyte range. 

3 Address registers may be used as both sources and destinations in 
program instructions. When an address register is a destination 
operand for certain instructions such as MOVEA, ADDA and SUBA, 

none of the flags are altered by the operation. 

4 An address register may be used as an index register, containing an 
offset value which is added to the value of another address register 
to obtain the full effective memory address of an operand. 
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Special Registers: SP PC SR 

The registers described above are the ones which are most commonly 
used in programming and which are referred to by name in source 
listings. The three special registers described below may also be 
specified in certain instructions but for the most part they are used 
implicitly, which means they are used automatically in some oper- 

ations. 

Program Counter: PC Register 

As explained in Chapter 2, the program counter is used by the system 
to point to the address of the instruction which is currently being 
executed. In the last chapter we saw this in action in the trace listing, 
where the PC register was pointing to the address in the code segment 
at which the traced instruction was located. The PC register is 
incremented automatically by the system as each byte of code is 
accessed and executed. The address of the instruction currently being 
executed, or more accurately the address of whichever byte of the 
instruction is currently being executed, is thus always contained in 
PC. The location of an address which is to be referenced by the 
instruction may be addressed as being relative to the value of PC, as 
illustrated in the program in the previous chapter. 

A branch to a different point in the program involves the alteration of 
the PC register to point to the new execution address. In the previous 

program for example, the address of the instruction DBRA D4,29CFE 

was $29DOE. By the time this four byte instruction has been decoded 
by the processor, PC is pointing to $29D12 (the address following the 
end of the instruction). If the branch to $29CFE is made then this 

becomes the new value of the PC register, otherwise execution 

continues from $29D12. 

Status Register: SR 

The status register consists of two bytes: the CCR (condition codes 

register) and the system byte. The CCR contains the bit flags which 

provide information about the result of the operation instruction: X 
(extend), N (negative), Z (zero), V (overflow) and C (carry). The 

system byte contains bit flags indicating the current status of the 

system: T (trace flag), S (supervisor bit) and I (3 maskable interrupt 
bits). These flags will be discussed in detail in the next chapter. 



Addressing Modes 139 

Stack Pointer: SP Register 

The top of the stack; the location at which data can be added to or 
removed from the stack, is contained in the SP register which is 
address register A7. When the system is operating in user mode, A7 
is referred to as the USP (user stack pointer) and in supervisor mode, 
A7 is referred to as the SSP (supervisor stack pointer). In either case 
the register is normally referred to in program instructions simply as 
A7 and no distinction is made. However, there is a privileged 
instruction, MOVE USP, which specifies the stack pointer directly and 
can only be used in supervisor mode to move an address value to or 
from register A7. This is used to set an initial value for the stack 
pointer or to store it temporarily elsewhere when a new stack is being 
set up. 

Addressing Modes 

In Chapter.2 an overview of the addressing modes was given. It was 
explained that an operand may be addressed implicitly, where it is 
contained in a register which is automatically used by a specific 
program instruction; it may be in a register (register addressing); it 
may be an immediate data value (immediate addressing); it may be in 
a specified memory address (absolute addressing); it might be in an 
address pointed to by one or more of the registers (indirect addressing) 
or it might be positioned relative to the program counter (PC relative 
addressing). 

The following summary of each of these modes shows how the 
location of an operand is determined in each case. The actual physical 
location of an operand is called the effective address, and in the 
following examples the elements required for the calculation of an 
effective address are shown where relevant. If the operations are not 
entirely clear, it may help to refer back to Chapter 2 where the 
addressing modes are shown in diagrammatic form. 

Implicit addressing 

The operands are implicit in the instruction. The instruction RTS 
(return from subroutine) for example, implicitly refers to the PC and 
SP registers. The return address is automatically taken from the top 
of the stack, which is pointed to by SP, and loaded into PC. SP is 

automatically incremented. 
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Register Direct Addressing 

This mode involves operands which are contained in data and/or 
address registers. Data registers may have byte, word or long word 
values loaded into or copied from them and address registers are 
confined to word and long word sized values. When an address 
register is the destination of a word operand in a register addressing 
operation then the value contained in the register is sign extended to 
32 bits. Instructions which specify an address register destination 
usually have an ‘A’ suffix: for example MOVEA, ADDA, SUBA etc. These 
are essentially the same as the MOVE, ADD and SUB instructions but in 

their ‘A’ format they serve as a reminder that with some instructions 

none of the flags will be altered by the operation. 

Examples: 

MOVE.BD2,D3 Byte transfer operation 
MOVEA.WD3,A5 Word transfer operation 
MOVEA.LA4,A5 Long word transfer operation 
ADD.WA2,D6 Word addition operation 
ADDA.LD5,A6 Long word addition operation 

Absolute Addressing 

In this mode an actual address value is given for the operand and is 
included in the instruction itself. The number is expressed as a label 
representing the address containing the required operand or as an 
actual address number. The calculation of the effective address, in 

hexadecimal notation, is as follows: 

Operation: 

MOVE DATA,D4 Move the operand contained in the address 
indicated by the label ‘DATA’ into register D4. 

DATA $2294C 

EFFECTIVE 
ADDRESS =$2294C = address of operand 

Examples: 
MOVE.LD5,ANADDR Copy 4 bytes of data from D5 to the 

address labelled ‘ANADDR’ and the three 

following addresses). 



Addressing Modes 141 

MOVE.W ANADDR,D3 Copy 2 bytes of data from the address 
labelled ‘ANADDR’ (and the following 
address) to D3. 

ADDA.L 80000,A2 Add the contents of address 80000 to 
A2. 

If the absolute address is in the top 32 or the bottom 32K of memory 
then it can be addressed using a short instruction. For example MOVE 
$1000,D04. The hexadecimal value $1000 is the low order 16 bits of the 
address which is sign extended to 32 bits to give the full address. The 
instruction MOVE $20000,D4 contains a ‘long’ address; the hexadec- 
imal value $20000 being interpreted as a 32 bit address, of which the 
lower 24 bits are relevant. 

Immediate Addressing 

Immediate addressing involves operands which are numeric constants 
and which are stored as part of the instruction rather than in the data 
section or in a register. Some instruction types have a special form of 
mnemonic for operations involving immediate operands, such as 
ADDI, SUBI and CMPI. 

Examples: 

MOVE £408,D4 Load the word value 408 into D4 

CMPI.L £22,D4 Compare contents of D4 with 22 
MOVEQ £1,D6 Move the value 1 into D6 

Address Register Indirect Addressing 

This is where the effective address is contained in one of the address 

registers. 

Operation: 

MOVE.L (A3),D4 Move the operand in the address pointed to by 
A3 into D4. 

A3 $29DI1E 

EFFECTIVE 
ADDRESS =$29DI1E 

= address of operand (the remaining 3 bytes of 
the long word operand are in $29D1F, $29D20 
and $29D21) 
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Examples: 

ADD.W (A2),D4 Add the contents of the address pointed to by 
A2 (and the following address) to the low word 
of D4. 

MOV.WD4,(A2) Copy contents of low order word of D4 into 

the address pointed to by A2 (plus the fol- 
lowing address). 

CMP.W (A0),D4 Compare word value in address pointed to by 
AO (plus the following address) to the value of 
D4 

Address Register Indirect with Predecrement 

This mode is similar to the address register indirect mode except that 
the value of the address register is decremented by 1, 2 or 4 bytes prior 

to the operation, depending on whether a byte, word or long word 

operand is involved. 

Operation: 

MOVE.WD4,-(A6) Subtract 2 from register A6 and copy the low 
order word of register D4 into the address 
pointed to by the new value of A6 (and the 
following address) 

A6 $29D1E 
iy = $29D1C 
EFFECTIVE 
ADDRESS = $29D1C 

= address of operand. The low order byte 
from D4 will be copied into $29D1D 

Examples: 

MOVE.L DO,-(A5) Subtract 4 from A5 and copy the whole of DO 
into the address pointed to by the new value of 
A5 and the 3 following addresses. 

ADD.B -(A3),D1 Subtract 1 from A3 and add the value contain- 
ed in the address pointed to by A3 into the low 
order byte of D1. 
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Address Register Indirect with Postincrement 

This mode is similar to the address register indirect with predecre- 
ment mode except that the value of the address register is incremented 
by 1, 2 or 4 bytes after the operation, depending on whether a byte, 
word or long word operand is involved. 

Operation: 

MOVE.WD4,(A6)+ Copy the low order word of register D4 into 
the address pointed to by A6 (and the fol- 
lowing address) then add 2 to register A6. 

A6 $29DI1E 

EFFECTIVE 
ADDRESS = $29DIE 

= address of operand. The low order byte 
from D4 will be copied into $29D1F. Then A6 
= A6 + 2 

Examples: 

MOVE.LDO,(A5)+ Copy the whole of D0 into the address pointed 
to by AS and the 3 following addresses. Then 
add 4 to AS. 

ADD.B (A3)+,D1 Copy the value contained in the address 

pointed to by A3 into the low order byte of 
D1. Then add | to A3. 

Address Register Indirect with Displacement 

This is a form of indirect addressing in which an address register, used 

as a base, is combined with a displacement value to give the effective 
address of the operand. 

Operation: 

MOV.B 12(A4) ,D4 Move the byte operand in the address pointed 
to by the sum A4 plus 12 into the low order 
byte of D4. 

A4 $29DI1E 
+ 12 $0C 
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EFFECTIVE 
ADDRESS =$29D2A 

= address of operand 

Examples: 

ADD.W2(A6),D1 Add the word contents of the address pointed 
to by A6+2 (and the following address) to the 
low order word of D1. 

MOV.BD3,6(A4) Copy the low order byte of D3 into the address 
pointed to by the sum of A4+6. 

The displacement is limited to 16 bits and is automatically sign 

extended, giving a displacement offset value in the range plus or 

minus 32K. Displacements greater than or equal to $8000 are 

negative. The displacement constant may be labelled, so that an 

instruction such as MOVE.B OFFSET(A6) ,D4 may be used. (Effective 

address is value of A6 plus the value of ‘OF FSET’). 

Address Register Indirect with Index and Displacement 

In this form of indirect addressing a displacement constant is 

combined with an index register (any of the address or data registers) 

to give the effective address of the operand. 

Operation: 

MOVE.B6(A1,D2.L),D04 Move the word operand in the address 

pointed to by Al plus the constant value 6 
plus the value of D2 into register D4. 

Al $29D1E 
+ 6 $06 
+ D2 $0A 

EFFECTIVE 
ADDRESS =$29D2E 

= address of operand 
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Examples: 

ADD.B 12(A0,A2.W),D5 Add the contents of the address pointed to 
by the sum of AO plus the constant value 12 
plus the value contained in the low order 
word of A2 to DS. 

MOVE.LD4,2(A4,D2.L) Copy the entire contents of D4 into address 

pointed to by the sum of A4 plus constant 
value 2 plus value contained in D2. (Cont- 
ents of the low order 24 bits of D4 go into 
the next three addresses). 

In this addressing mode the displacement constant is always a byte 
value which is automatically sign extended, giving a displacement in 
the range plus or minus 127 bytes. The index register value may be 
of either word or long word size. If the index is a word value then it 
is automatically sign extended giving an index offset in the range plus 
or minus 32K. 

Note that the index register is given a size indicator (.W or .L) of its 
own, in addition to the specification suffix for the operand size. 

PC relative addressing 

Program counter relative addressing is very similar to the address 
register indirect addressing modes except that the PC register is 
substituted for the address register in the instructions. PC relative 
addressing is normally used in the writing of position independent 
code such as the program in the previous chapter. In that program 
there was no need to specify the PC register directly since the 
assembler, being aware that position independent code was required, 
calculated all PC relative offsets automatically. 

The following examples show typical PC relative instructions: 

Program Counter Relative with Displacement 

ADD.W2(PC),D1 Add the word contents of the address pointed 

to by the sum of PC+2 (and the following 
address) to the low order word of D1. 

MOV.BD3,6(PC) Copy the low order byte of D3 into the address 
pointed to by the sum of PC+6. 
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Program Counter Relative with Index and Displacement 

ADD.B 12(PC,A2.W),D5 Add the contents of the address pointed to 
by the sum of PC+12 plus the value 
contained in the low order word of A2 to 
DS. 

MOVE.LD4,2(PC,D2.L) Copy the entire contents of D4 into the 
address pointed to by the sum of 
PC+2+D2. (The contents of the low order 
24 bits of D4 go into the three following 
addresses). 

If PC relative addressing is used with labels, the assembler will 
automatically work out the relative displacement between the PC 
register and the address of the operand, as illustrated in the program 
object code listing in the previous chapter. If PC relative addressing 
is performed using constant values, care must be taken to ensure that 
the operand address is calculated as being relative to the value 
contained in PC at the start of the instruction. This is done by using 
a ‘x’ symbol to force the adjustment. For example, ADD.B *+8,D6 (add 
the byte contained in the address 8 bytes relative to the PC register 
into the low byte of register D6). This type of instruction is seldom 
used because the labelling of addresses is standard practice and saves 
a good deal of displacement calculation when using PC relative 
addressing. 

Addressing Mode Classification 

For each 68000 instruction, the addressing modes which can be used 
vary a great deal, both for the source and the destination operands. To 
simplify matters it is useful to classify the addressing modes according 
to their reference types so that the mode which can be used for any 
given type of instruction can be expressed as a simple code. These 
reference types are as follows: 

Data A data referencing addressing mode is one which 
addresses data contained either in data registers or in 
memory but not in address registers. 

Memory Memory referencing addressing modes are those which 
address operands contained in memory rather than in any 
kind of register. 
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Control A control reference is one which is the destination of a 
jump or branch. 

Alterable Alterable references refer to those operands which are 
capable of being altered by an operation. This therefore 
excludes the immediate addressing mode. It also ex- 
cludes PC relative addressing. 

These classifications overlap so that it is possible, for example, to refer 
to an addressing mode as being ‘control alterable’ or ‘data alterable’. 
The various combinations are codified as follows: 

<ea> Effective Address — any addressing mode can be used. 

<aea) Alterable Effective Address 

<cea> Control Effective Address 

<dea> ' Data Effective Address 

<caea> Control Alterable Effective Address 

<daea) Data Alterable Effective Address 

<maea> Memory Alterable Effective Address 

The addressing modes themselves can be codified by using the 
following symbolic representations: 

An Any address register 

Dn Any data register 

Rn Any register 

Ri Any register being used as an index 

d8 _ 8-bit displacement constant 

dl6 16-bit displacement constant 

<imm> Immediate data 

rl Register list — as used with MOVEM instruction 

From this we can construct a table showing the addressing modes 
along with their permissible reference types: 
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Mode Symbol Data Mem Control Alterable 

Data reg direct Dn X xX 
Addr reg direct An X 
Absolute nnnnn X Xx X 
Immediate <imm> X X 

Addr reg indirect (An) xX X X X 

with predecrement -(An) X X X 
with postincrement (An)+ xX X X 
with displacement d16(An) X X X X 
with index d8(An,Ri) X X X X 

PC relative d16(PC) X X X 
with index d8(PC,Ri) X X X 

From this we can construct a symbolic representation for any given 
instruction. For example, the two possible addressing modes for the 
BTST instruction (bit test) can be represented by BTST Dn,<daea> and 

BTST #<imm>,<dea>, meaning that the source operand can either be 
in a data register or immediate. The destination operand can only be 
a data such as Dn, (An), d16(An), d8(An.Ri), -(An), (An)+ 
reference, or absolute. The BSET (bit test and set) instruction would 

actually alter the destination operand and therefore would be a data 
alterable reference <daea> which would exclude the PC relative 
modes. This form of representation is used in the 68000 instruction 
glossary in Appendix B. 

Example Program 2 

The following program illustrates some of the above addressing 
modes.. The purpose of this program is to illustrate how to implement 
a memory buffer in assembly language and to use it to print a text to 
the screen. A buffer is simply a block of memory locations which is 
of a fixed length and which can be used to store a measured length of 
data before transferring it elsewhere. Buffers are frequently used with 
printers where data is passed, a fixed number of bytes at a time, to a 
print buffer. From there the buffered text is output to the printer and 
the next chunk of data is then loaded into the buffer and so on. The 
reason for such a buffer is that certain peripherals may only be able 
to handle certain quantities of data within a certain length of time and 
the buffer provides a means of measuring and controlling the output. 
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On a more general level the buffer concept is extremely useful in 
programming because there are many occasions on which a set block 
of memory is required. For example, you may wish to add together 
two sets of values and store the results in a separate area of memory 
before dealing with them. Very often you may need to set up a 
keyboard buffer to isolate and identify a fixed number of characters 
input from the keyboard. 

In this example we are going to transfer a text which is 49 bytes long 
onto the screen via a buffer which will be only 26 bytes in length. The 
text will therefore be printed in two separate stages, although it will 
appear on the screen as one continuous sentence. 

Note: On the first reading of this listing you should 
primarily be observing the ways in which the data is 
addressed. Again, do not worry too much if you cannot 
follow all the details of the program. You will be able to 
go over these listings again at a later stage when some of 
the more difficult concepts have been explained. It is a 
good idea to look at the data section at the end of the listing 
first so that the labels referred to in the program will make 
more sense. 

; PROGRAM ENTITLED PROG2 

p LOADS TEXT INTO A BUFFER BEFORE DISPLAYING 

Ome we we we we we we we ww a oe we ww ew ge ee we ee ee ee eee ee ee em em ee ew ee em ee ew ee ee ee ee ee ee 

LEA.L #DEVICE,A0 

MOVEQ #1,D0 
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Initially the length of the buffer (minus 1) is assigned the label BUFLEN 
using the EQU (=) assembler directive. This constant will be used 
several times during the program to count off character codes as they 
are loaded into the buffer and it can therefore be loaded into a count 
register using its label. There is no reason why it should not be an 
unlabelled immediate constant but it is good practice to label as many 
constants as possible so that the finished program is easy to follow 
during the debugging phase. 

Following this the program ID and console channel are initialized as 
explained in the previous chapter. 

Next the main part of the program begins: 

MOVE.B COUNT,D6 306 to count blocks printed 

LEA.L MYDATA,A2 ;A2 points to base of data 

LOOP1 LEA.L BUFF,A3 ;Address of buffer in A3 

MOV.L #BUFLEN,D4 ;Length of buffer in D4 

LOOP2 MOVE.B (A2)+,D5 ;Copy item of data to D5 

;and increment A2 

CMPI.B #42,D5 ;Compare D5 with ASCII code 

stor)? *: 

BEQ NEXT Branch if same to 'NEXT' 

MOVE.B 0D5,(A3)+ sElse copy data to buffer 

;and increment A3 

DBRA D4,LO00P2 ;Loop back to 'LOOP2' if 

s0G>, +1 

NEXT BSR.S PRNT sCall 'PRNT' subroutine 

SUBQ #1,06 ;Subtract 1 from count reg. 

BEQ EXT? ;Branch to 'EXIT' if 06 = 0 
eit 
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The first instruction of the program proper; MOVE.B COUNT,D6, loads 
the value contained in the address labelled COUNT, as defined at the 

end of the program, into the low order byte of register D6. The 
buffer will be filled and emptied twice and D6 will keep track of how 
many times this has been done. 

The instruction LEA.L MYDATA,A2 loads the address of the start of the 
text, defined as MYDATA at the end of the program, into register A2. 

The next instruction; LEA. L BUFF ,A3 loads the address of the first byte 
of the buffer space into A3. This instruction is located at an address 
labelled ‘LOOP1’ because we shall need to loop execution back to this 
point later in the program. 

The instruction MOVE.L #BUFLEN,D4 loads the length of the buffer less 
1 (defined at the beginning of the program as 25) into register D4 so 
that it can be used to count off the number of characters which are 
entered in the buffer. BUFLEN is effectively a constant and therefore 
it appears in the instruction as #BUFLEN, indicating that it represents 
a numeric constant rather than a value contained in an address labelled 
BUFLEN. MOVE.B (A2)+,D5 is labelled ‘LOOP2’ because a subsequent 
instruction will loop execution back to this point. This is an address 
register indirect with postincrement addressing mode instruction 
which copies the data contained in the address pointed to by A2 
(initially address ‘MYDATA’) into register DS. A2 is then automatically 
incremented by 1, ready to point to the next character code within 
YDAT. 

The first section of the text to be copied into the buffer will terminate 
at the end of ‘FF’ in the word ‘BUFFER’. The second part of the text 
is shorter than the buffer and so we need to ensure that the buffer 
filling process terminates as soon as the ‘stop’ symbol, ‘*’, is reached. 
At this point therefore, we compare the contents of DS with the 
ASCII code for ‘*’ (42) using the instruction CMP1.B #42,D5 (immediate 
addressing mode). CMPI stands for ‘compare immediate’. If they match 
the Z flag will be set and the BEQ NEXT instruction will redirect 
execution to the address of the instruction labelled ‘NEXT’. If they 
do not match (i.e. Z=0) then execution carries on as follows. 

The data which is now in D5 is the ASCII code for one of the text 
characters (initially 84, the code for ‘T’), and this needs to be copied 
into the buffer, which is indirectly addressed by register A3. This 
operation is performed by the instruction MOVE.B D5,(A3)+. A3 is 
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afterwards automatically incremented by 1 to point to the next free 

address in the buffer. We have now effectively transferred a character 

from the memory block labelled MYDATA to the memory block labelled 

BUFF via the DS register and the previous two autoincrement mode 

instructions have set A2 and A3 so that they point to the address of 

the next text character and to the address of the next free buffer space 

respectively. 

The DBRA D4,L00P2 instruction automatically decrements the D4 

register by 1 and if the buffer is now full, D4 will hold the value —1. 

If D4 is greater than —] (i.e. the buffer is not yet full) then execution 

loops back to the point labelled ‘L00P2’ so that a further character can 

be copied into DS. 

If D4 equals zero then execution continues with the next instruction 

in sequence: BSR.S PRNT (branch short to subroutine). This is an 

instruction which calls the subroutine located at an address labelled 

PRNT which will handle the printing of the text contained in the 

buffer. The suffix ‘.S’ is optional, specifying that this is a ‘short’ 

branch, the destination address being within plus or minus 127 bytes 

from the branching instruction. This results in a slightly faster 

execution speed. 

On returning from the PRNT procedure, the program must now check 

to see whether the buffer has been filled and emptied twice, in which 

case the main routine has effectively finished. 

The variable which records this was earlier copied into register D6. 
We need to subtract 1 from it: SUBQ #1,D6. 

The BEQ EXIT instruction tests the zero flag to see whether the previous 

subtraction operation resulted in a zero. If it did then the job is 

finished and execution is redirected to a point in the program labelled 

‘EXIT’. 

If the result of the subtraction was not zero then the buffer must be 

refilled and printed again so execution passes on to the next 

instruction. 

We now have a problem whose solution is found in the next five 

instructions. If the first chunk of text has been printed then the buffer 

is still full of its ASCII codes. The second chunk of text will be 
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shorter than the length of the buffer and so some unwanted leftover 
characters will be printed at the end of the text. To avoid this we 
must flush the buffer by filling each of its addresses with the value 
32: the ASCII code for a blank space. 

mmm wm wm em em ee em ee em ee ee em em ew ee em ee em ee ee ew ee ee ee ee ee ee ee ew wwe ee eee ee 

LEA. BUFF,AS ;Base addr. of buffer in A3 

MOVE.L #BUFLEN,D4 ;Length of buffer in D4 

LOOP3 MOVE.B #32,(A3)+ ;Transfer ASCII code for 

;space into buffer and add 

se ORAS 

DBRA D4,LO00P3 ;loop back to 'LOOP3' if 

2DG > ut 

JMP LOOP1 ;Else jump back to LOOP1 

To flush the buffer the A3 register is loaded with the address of the 
beginning of the buffer, BUFF. Then the length of the buffer is moved 
into our counter register: MOVE.L #BUFLEN,D4. The ASCII code for a 
space, 32, is then loaded into the buffer using the instruction MOVE.B 
#32,(A3)+. This is done 26 times, according to the count in D4, using 
DBRA D4,L00P3 and thus every address in the buffer is loaded with the 

space code. It is then necessary to jump back and fill the buffer with 
the next batch of text using the instruction JMP LOOP1. This occurs 
after the first occasion on which the buffer is filled because the 
variable in D6 would not then be equal to zero. On the second pass 
the previous BEQ EXIT instruction diverts execution directly to ‘EXIT’. 

At this point the main part of the program terminates and so we round 
it off with the set of instructions labelled EXIT: 
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EXIT MOVEQ #2,00 

TRAP #2 

MOVEQ #-1,01 

MOVEQ #0,D3 

MOVEQ #5,00 

This is the same set of termination operations which we used in the 
previous program, closing the console channel and informing the 
operating system that the task is completed. 

Following the main program is the subroutine ‘PRNT’, as follows: 

PRNT EEA BUFF ,A3 ;Base addr. of buffer in A3 

MOVE.L #BUFLEN,D4 ;Length of buffer in D4 

LOOP4 MOVE.B (A3)+,D1 ;Copy data to D1 and 

;add 1 to A3 

BSR.S DISP ;Call display subroutine 

DBRA D4,LO00P4 ;Loop back to 'LOOP4' if 

2Dhi art 

RTS ;Otherwise return to PROG2 

The first subroutine in the program, PRNT, is designed to take the 
contents of the buffer and print it to the screen. This is simply done 
by running an address register pointer through the buffer, loading 
each character into D1 and then using our previous character display 
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routine to print each character of the text to the screen. This time, 
the character display routine is defined as a separate subroutine called 
‘DISP’ which is called from within the PRNT subroutine. 

Since the A3 register is currently unused, we can use this to point 
to the start address of the buffer: LEA.L BUFF,A3. 

D4 can again be used as a counter to count off each printed character 
and so it is loaded with the length of the buffer: MOVE.L BUFLEN,D4. 

Next we set up a program loop labelled ‘L00P4’ to transfer data from 
the buffer into D1: (MOVE.B (A3)+,D1) and from there to the DISP 
subroutine (BSR.S DISP). The A3 register is auto-incremented after the 
MOVE instruction to point to the next character in the buffer and so 
the D4 register must be checked to see if it has reached —1 (end of 
printing operation) or is greater than —1, in which case execution 
loops back to L00P4. This is achieved with the instruction DBRA 
D4,LO0P4. 

If D4 has in fact reached —] then a return is made back to the main 
program by means of the RTS instruction. This effectively returns 
execution back to the instruction which follows the BSR.S PRNT 
instruction in the main program. 

The final block of program code is the character display sequence: 

‘ 

DISP MOVEQ #-1,D3 

MOVEG #5,D0 

TRAP = #3 

RTS ;Return to 'PRNT' 

Here, the DISP subroutine is defined, which is simply the character 
print routine from the last chapter, elevated to the status of a 
subroutine in its own right, labelled ‘DISP’. The RTS at the end returns 

execution back to the instruction following the BSR. S$ DISP instruction 

within the PRNT subroutine. 
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MYDATA DC.B "THIS TEXT GOES IN THE BUFFER " 
DC.B "BEFORE BEING PRINTED","*" 

BUFF DSB. 26 326 undefined bytes 

;for the buffer 

COUNT DCEBE x2 ;count variable 

DEVICE DC.W 4 

DC.B "CON_' 

END ;End program 

The data section contains the text which is to be printed, which is 
defined as a series of byte constants (DC.B). The start address of the 
text will be at a location in memory labelled ‘MYDATA’ and therefore 
the first letter of the text, ‘T’, will actually be located at ‘MYDATA’ 
itself. The ‘*’ symbol which follows the text is to be used as a ‘stop’ 
code to indicate where the text ends and will be detected during the 
course of the program. 

The actual buffer is labelled ‘BUFF’, which again represents the 
address of the start of the buffer. Initially the buffer is empty and is 
initialized as a set of 26 undefined bytes using the DS (define storage) 
assembler directive. 

The label ‘COUNT’ refers to the address of a single memory byte whose 
value is 2: the number of times the buffer will be filled and printed 
when the program is executed. When we refer to ‘COUNT’ in the 
program we are implying not the address of the byte labelled ‘COUNT’ 
but its contents; the value 2. 

The listing terminates as before with the assembler directive ‘END’. 

The following object code listing shows the program in assembled 
form, which should help you to follow the processes described above. 

; Address Code Mnemonic 

29CE8 7200 MOVE@ #00, D1 

29CEA 7602 MOVEQ #02, D3 

29CEC 41FA00B8 LEA B8(PC)!29DA6, AD 

29CF0 7001 MOVEQ #01, DO 
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4E42 

1C3AQ0AE 

45FA0062 

47FA008C 

28300000019 

1A1A 

0C05002A 

67000008 

16C€5 

SICCFFF2 

6128 

5346 

67000018 

47FAQQ6A 

28300000019 

16F C0020 

—SICCFFFA 
4EFAFFCA 

7002 

4E42 

c2rk 

7600 

7005 

4E41 

47FA0048 

283C00000019 

121B 

6106 

SICCFFFA 

4E75 

157 

TRAP #2 
MOVE.B AE(PC)!29DA4, D6 
LEA 62(PC)!29D5C, A2 
LEA 8C(PC)!29D8A, A3 
MOVE.L #19, D4 
MOVE.B (A2)+, D5 
CMPI.B #2A, DS 
BEQ 29016 
MOVE.B D5, (A3)+ 
DBRA 04,29006 
BSR 29040 
SUBQ #1, D6 
BEQ 29034 
LEA 6A(PC)!29D8A, A3 
MOVE.L #19, D4 
MOVE.B #20, (A3)+ 
DBRA D4,29028 
JMP FFCACPC)!29CFC 
MOVEQ #02, DO 
TRAP #2 
MOVEQ #FF, D1 
MOVEQ #00, D3 
MOVE #05, DO 
TRAP #1 

LEA 48(PC)!29D8A, A3 
MOVE.L #19, D4 
MOVE.B (A3)+, D1 
BSR 29D54 

DBRA D4,29D4A 

RTS 

MOVEQ #FF, D3 

MOVEQ #05, DO 

TRAP #3 

RTS _ 
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The following data dump shows the arrangement of the initial data 
in memory, prior to the program being executed. The reserved buffer 
space occupies the area from the address immediately following ‘*’ 
(hex code $2A) to the address immediately before the ‘02’ on the 

second line from the 

2905C -- -- -- -- 

29068 45 53 20 49 

29078 4F 52 45 20 

29088 44 2A 00 00 

29098 00 00 00 00 

29DA8 43 4F 4E SF 

The following list contains explanations of the functions of those 
assembly language instructions used in PR0OG2 which did not feature 

in PROG1: 

Mnemonic 

CMPI.B #42,D5 

BEQ NEXT 

BSR.S PRNT 

SUBQ #1,D6 

JMP LOOP1 

RTS 

bottom. 

54°48 69°53 «..- THIS 

54 20 47 4F .TEXT GO 

4— 20 42 55 ES IN BU 

20 42 45 46 FFER BEF 

42 45 49 4E ORE BEIN 

49 4— 54 45 G PRINTE 

00 00 00 OO Dx...... 

00 00 00 00 ........ 

00 00 00 00 ........ 

02 00 00 04 ........ 

00 00 00 00 CON.... 

Meaning 

CoMPare Immediate the contents of the low 
order byte of D5 with the byte value 42 and 
set the Z flag if they are the same. 

Branch if EQual (i.e. Z=1) to the program 
instruction labelled ‘NEXT’. 
Branch to the SubRoutine (using a Short 
address) labelled ‘PRNT’. 
SUBtract Quick the value 1 from the value 
contained in register D6. SUBQ is essentially 
the same as SUB.L but is quicker to execute. 
JuMP to the program instruction labelled 
“LOOP1’. 

ReTurn from Subroutine to the program or 
subroutine which called it. 
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In PROG2 we have not used the more complex indirect addressing 
modes and these will be covered in later chapters. In the next chapter 
we shall return to the subject of flags, which are essential to the 
understanding of the programs which follow. 
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Chapter 10 

Status and Condition Flags 

In Chapter 3 we discussed the functions of the various condition flags 
in the CCR (condition codes register) byte of the status register and 
examined how and why various arithmetic and logical operations 
affect them. In this chapter we shall briefly revise the condition flag 
functions and look at some trace listings which will help you to relate 
some of the flag settings to specific operations and to the contents of 
the registers as the instructions are executed. 

We shall then examine the functions of the status flags which occupy 
the ‘system byte’ of the status register. Finally, a number of 
instructions will be listed which can be used specifically to alter the 
values of various flags. 

The Status Register 

The status register in the 68000 is structured as follows: 

13 10 9 

» EE! 

System byte Condition Codes Register 

Status Register 

FIGURE 10-1. 

To begin with, we will only be concerned with the condition flags: 
V (overflow flag), N (negative or sign flag), Z (zero flag), X (extend 
flag) ) and the C (carry flag). 

Overleaf is a summary of the functions of each of these flags: 
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Vs Set when an operand’s sign flag is altered by an operation, 
indicating an overflow condition in terms of 2’s complement 
arithmetic 

N_ Set when a value is negative in terms of 2’s complement 
arithmetic (high order bit = 1) and reset when the value is 
positive (high order bit = 0) 

N Set when the result of an operation is zero, otherwise reset 

X Set when a carry or borrow occurs in ‘extended’ arithmetic 
operations such as ADDX and ABCD. 

C Set if an operation results in a binary carry or borrow 

We shall now go on to look at some of these flags in action, using a 
number of program fragments as illustrations. 

Zero Flag 

Firstly, we shall deal with the zero flag. In the following operation, 
we shall take the example which was used in Chapter 3, where we 
took a keyboard entry and used a routine to discover whether the ‘Y’ 
key had been depressed. The code for this operation is as follows: 
(Code for last key pressed is contained in D1) 

CMPI.B #89,D1 
NOP 

If we execute this operation using a trace utility, the following register 
and flag values will be printed out for the instructions. Note that 
because a trace listing shows the status of the flags and registers 
immediately before the corresponding instruction has been executed, 
we need to have a trace listing for the next instruction in sequence 
so that the effect of the CMPI instruction can be shown. In this example 
the dummy instruction NOP (No Operation) had been added. When 
executed, NOP has no effect although it occupies space in the program 
code and advances the PC register. 

The information in which we are specifically interested is printed in 
italic: 
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29CEE 0€6010059 CHPF GA e593 DI 
DO=0 D1=59 §D2=0 D3=0 D4=0 D5=0 D6=0 
D7=0 A0=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0 
A7=3DBC6 Status= T Imask=0 Program Counter =29CEE 

29CF2 4E71 NOP 

DO=O0 D1=59 #8 D2=0 D3=0 D4=0 D5=0 D6=0 
D7=0 AQ=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0 
A7=3DBC6 Status= Z T Imask=0 Program Counter =29CF2 

In this case the D1 register originally contained $59, which is the 
hexadecimal equivalent of 89 decimal. The comparison operation 
therefore set the Z flag, indicating that D1 is equal to 89. Note that 
after the CMPI operation, the original value of D1 has been left 
unchanged. 

Sign Flag 

The sign flag value is always a copy of the most significant bit of a 
binary number, regardless of its size. In the following example, 
decimal 10 is added to decimal 120 which has the effect of setting 
the sign flag. The result in unsigned arithmetic is 130 decimal ($82) 
whilst the 2’s complement value of the result is -126. The value 20 
is then subtracted from the result, giving an unsigned decimal result 
of 110 ($6E) and a 2’s complement value of +110; the sign flag having 
been reset again. 

MOVEQ #120,D1 
ADDI.B #10,D1 
SUBI.B #20,01 
NOP 

The trace printouts for the above operations are as follows. Note the 
way in which the value of register D1 alters in each case, showing 
the hex values $78, $82 and $6E: 

29CF8 7278 MOVEQ #78, D1 

D0=0 3=d1=0 D2=0 D3=0 D4=0 D5=0 D6=0 

D7=0 §=A0=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0 

A7=3DBC6 Status= T Imask=0 Program Counter =29CF8 
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29CFA 0601000A ADDI.B #A, D1 

D0=0 Dd1=78 ~§=d2=0 D3=0 D4=0 D5=0 D6=0 

D7=0 A0=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0 

A7=3DBC6 Status= T Imask=0 Program Counter =29CFA 

29CFE 04010014 SUBI.B #14, D1 

DO=0 D1=82 8 Dd2=0 D3=0 D4=0 D5=0 D6=0 D7=0 

AO=0 8 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0 

A7=3DBC6 Status= V N T Imask=0 Program Counter =29CFE 

29002 4E71 NOP 

DO=0 D1=6E D2=0 D3=0 D4=0 D5=0 D6=0 

D7=0 AQ=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0 

A7=3DBC6 Status= V T Imask=0 Program Counter =29D02 

Overflow Flag 

In the previous example, the overflow flag became set after the ADDI.B 

£$0A,D1 instruction was executed. This is because the sign of the value 

was altered by the addition. The sign is changed again by the SUBI 

instruction so that V is set again. In 2’s complement terms the above 

operations correspond to the following: 

see WAY 
plus + 10 

= — 126 (incorrect because the sign flag was altered, 

causing an overflow error) 

minus + 20 

= . + 110 (final result correct) 

Carry Flag 

In the next example, the 2’s complement value +10 is added to -1, 

which is contained in the D1 register. The result of this addition is 

+9 which is correct. In this case however the carry flag is set because 
there has been a binary carry from the most significant bit of D1 into 
the carry flag and therefore in decimal terms the result is incorrect. 
-] as a 32-bit unsigned value is 4 294 967 295 ($F FFFFFFF) and 
therefore in decimal terms the calculation is 4 294 967 295 + 10 = 9: 
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MOVEQ #-1,D1 (-1 = FFFFFFFF 

ADD.L #10,D1 (+10 =Q000000A 

NOP 

4294967295 decimal) 

10 decimal) 

Result is 00000009,,,:x = +9 in 2’s complement and 9 in decimal. 

29008 72FF MOVEQ #FF D1 

DO=0 D1=0 D2=0 D3=0 D4=0 D5=0 D6=0 

D7=0 AOQ=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0 

A7=3DBC6 Status= T Imask=0 Program Counter =29D08 

29D0A D2BCOO0D0000A ADD.L #A, D1 

DO=O0 D1=FFFFFFFF D2=0 D3=0 D4=0 D5=0 D6=0 

D7=0 AO0=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0 

A7=3DBC6 Status= N T Imask=0 Program Counter =29D0A 

29010 4E71 NOP 

DO=0 D1=9 D2=0 D3=0 D4=0 D5=0 D6=0 D7=0 

AQ=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0 

A7=3DBC6 Status= C X T Imask=0 Program Counter =29D10 

Extend Flag 

In the next example, the decimal value 8 is added to the decimal 
value 255. If you look at this operation in binary first of all, you will 
see that a carry is generated from the operation: 

00001001 (9) 

Pewevritt © (255) 

=00001000 (8) 

carry 1 

The result of this is that the extend and carry flags are set, as follows: 

MOVEQ #9,D1 

ADDI #255,D1 

NOP 

29016 7209 MOVER #09, D1 

DO=0 D1=0 D2=0 D3=0 D4=0 D5=0 D6=0 d7=0 

AO=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0 

A7=3DBC6 Status= T Imask=0 Program Counter =29D16 



166 First Steps in Assembly Language for the 68000 

29018 060100FF ADDI.B #FF, D1 

DO=0 D1=9 D2=0 D3=0 D4=0 D5=0 D6=0 D7=0 

AQ=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0 

A7=3DBC6 Status= T Imask=0 Program Counter =29D18 

29D1C 4E71 NOP 

DO=0 D1=8 D2=0 D3=0 D4=0 D5=0 D6=0 D7=0 

AQ=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0 

A7=3DBC6 Status= C X T Imask=0 Program Counter =29D1C 

The extend flag signifies the same condition as the carry flag and is 
used in multiple precision operations to ensure that each carry from 
an operation is carried automatically over to the next byte, as 
explained in Chapter 7. 

Status Flags 

The status flags, T, S and I, are contained in the system byte of the 
status register and are used to indicate the following conditions: 

Trace Flag (T) 

In this chapter we have been using a ‘trace’ facility to ‘single-step’ 
through individual instructions, providing a print-out of the status 
of all the registers and flags. The assembler toolkit program which 
provides this facility is using one of the exception functions incorpor- 
ated in the 68000 to achieve this. When the T flag is set, execution 
is redirected to a special exception routine which in this case is 
programmed to print out the status of the flags and registers for each 
individual instruction and then return execution to the main program. 
When the T flag is reset, program execution functions normally. 

Interrupt Flag (I) 

Interrupt exceptions are described in Chapter 7 and if you are not 
clear about their function you may wish to refer to this section of the 
book. The interrupt flag , consisting of three bits, is used selectively 
to disable (mask) external maskable interrupts or to enable them. 

When interrupts have been disabled, maskable interrupts from 
external devices cannot interrupt the flow of execution. Interrupts 
are given a priority code from 0 (lowest) to 7 (highest), hence the 
allocation of three interrupt flag bits in the status register. Any device 
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whose interrupt priority code is less than or equal to the priority level 
set by the interrupt flags will be unable to interrupt the processor. 

Supervisor Flag 

The S flag determines whether the system is operating in user mode 
(S = 0) or supervisor mode (S = 1). Note that when an exception 
takes place, the processor enters supervisor mode automatically for 
the duration of the exception, regardless of the current setting of the 
S flag. 

Flag Control Instructions 

For the purpose of familiarizing yourself with the ways in which the 
flags can be altered during program operation, it is useful to divide 
the flag altering instructions into four main groups: 

1 The first group of flag altering instructions are the routine 
instructions such as MOVE, ADD, SUB, CMP etc. which alter the flags 
according to the results of the operations being performed. This 
group includes the logical instructions, AND, OR and XOR, all 
arithmetic instructions, shift and rotate instructions and a number 
of miscellaneous instructions such as CHK, CLR, EXT and SWAP. 
Notable instructions which do not alter any flags are jump and 
branch instructions and some of the instructions which specifically 
use an address register as a destination, such as ADDA, MOVEA etc. 
In the instruction glossary in Appendix B the flags which are 
affected by any specific instruction are listed under each instruction 
heading. 

2 The second group of instructions which affect the flags are those 
which are specifically designed to set, reset or copy one or more of 
the condition flags. These include ANDI to CCR, EORI to CCR, MOVE 

to CCR, MOVE from CCR and ORI to CCR. For example, MOVE to CCR 

can be used to move a source operand into the CCR register. The 
flags will be set according to the binary pattern in the source 
operand. MOVE #0,CCR would reset all the flags for example. 
Individual flags may be specifically set or reset by using the logical 
instructions. ORI #1,CCR for example will set the carry flag without 
affecting any of the other flags. 

3 The third group of flag altering instructions are privileged 
instructions which can only be used from within supervisor mod> 
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These are normally used by an operating system to set initial values 
for the status and condition flags or to alter them for some specific 
task and include ANDI to SR, EORI to SR MOVE to SR and ORI to SR. 

4 The fourth group of flag altering instructions are those which are 
designed to test an individual bit in an operand, set the condition 
flags accordingly, and in some cases to alter the value of the original 
bit. This group includes BCHG, BCLR, BSET, BTST and TST and TAS. 
The TST instruction tests an entire operand in memory or in a 
register and alters the status flags without altering the operand. 
TAS is intended for use in a resource sharing system where one 
program can temporarily test and set a bit in the destination 
operand in order to exclude access by other processors whilst it 
accesses data. This group of flags is described in more detail in 
chapter 3 and under the individual instruction headings in 
Appendix B. 

One further instruction which is used in relation to the condition 
codes is Scc (set according to condition) which uses the same 
conditions as the Bcc and DBcc instructions. The effect of using Scc 
is that if the condition tested is true, a specified data alterable 
destination byte is set to the value 255, otherwise it is set to zero. 

For example, suppose that you reserve a special address for use with 
the Scc instruction and give it the label TESTBYTE. At some point in 
the program you may wish to test a flag, such as the zero flag, after 
a certain operation has been performed but you may not wish to make 
a conditional decision at that point. In order to keep a record of the 
status of the Z flag for later use you can use the instruction SEQ 
TESTBYTE. If the zero flag is set then the byte in address TESTBYTE 
will be set to 255, otherwise it will be zeroed. Later on you can refer 
to the TESTBYTE operand to determine the result of the earlier 
operation and make a conditional decision accordingly. Note that in 
programs which have been assembled relative to PC, you cannot alter 
the contents of a labelled address and it will be necessary to use the 
low byte data register as a destination for Scc instead. From there it 
can be pushed onto the stack until you need it. 



Chapter 11 

Conditional and Unconditional 

Branching Operations 

In Chapter 4 we examined the conditional branch instructions, Bcc 
and DBcc and the unconditional jump and branch instructions, BRA, 
BSR, JMP and JSR. In this chapter we shall review these instructions 
and then look at a program illustrating how these branching functions 
are used. 

Short and Long Branching 

An absolute address within a 16 megabyte memory space needs to be 
specified using a 24-bit address value. An absolute address specified 

within an instruction in the source listing, such as JMP $29CE8, is 

interpreted by the system as being a 24-bit number: $029CE8. If the 

address is contained in an address register then it is held as a 32-bit 

number: $00029CE8, even though only the lower 24 bits are relevant. 

This is termed a Jong address because it contains all the bits necessary 

for specifying an address anywhere in memory. 

A short absolute address can be represented by only 16 bits which, as 

a signed value in an address register, can represent any address within 

the top 32K or bottom 32K of memory, for reasons which were 

explained in Chapter 2. 

A relative address, as used with BRA, DBRA, DBcc, Bcc and BSR 

instructions, may also be short, being expressed as a signed 8-bit 

displacement relative to the instruction which specifies it and giving 

a branch in the range +127 bytes. A 16-bit or ‘long’ relative branch 

displacement gives a branch in the range +32K. 

For most practical purposes the time and space gained by the use of 

short addressing will be negligible and it is not something which you 
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need normally be concerned about unless your program is time- 
critical. 

Conditional Branches 

The conditional branching instructions are Bcc (branch according to 
condition code) and DBcc (decrement and branch according to 
condition code ). A conditional branch is made to a location indicated 

by a positive or negative displacement relative to the PC register. A 
branch specified by an 8-bit displacement value gives a branch in the 
range +127 bytes and a 16-bit displacement value gives a branch in 
the range +32K. In practice, the address to which a conditional 
branch is made is normally designated by a user-defined label and the 
actual relative displacements are calculated automatically by the 
assembler program. 

Obviously if your program is unusually long or if one program 
branches to another and you wish to branch conditionally to an 
address in another part of memory then it may not be possible since 
the destination cannot be more than 32K bytes away from the branch 
instruction. In this case a JMP or JSR command would be needed. 

The DBcc instruction is similar to Bcc except that it automatically 
decrements a nominated data register after the condition flags are 
tested. If the specific condition is met or if the nominated register 
equals —1 after decrementation then the branch is not made. 

The conditional branch instructions are as follows. Note that the same 
conditions apply both to Bcc and DBcc so that for DBEQ (decrement 
and branch if equal) for example, the same flag conditions apply as 
those for BEQ (branch if equal). The Bcc conditions should be 

interpreted as ‘if’ conditions — e.g. BCC means ‘branch if carry flag 
reset’. The DBcc conditions should be interpreted as ‘until’ cond- 
itions. For example, DBCC means ‘branch until carry flag reset (or data 
register = —1)’. 

Note that the DBcc instructions can be used with the additional 

conditions T(true) and F(false). 



Conditional and Unconditional Branching Operations 171 

Instruction Condition Flag Status 

BCC if carry reset C=0 
BCS if carry set C= 1 
BEQ if equal Z=1 
BNE if not equal Z=0 
BPL if plus N =0 
BMI if minus N = 1 
BVC if overflow clear V=0 
BVS if overflow set V=1 
BHI if high C=0&Z=0 
BLS if low or same C.=1 or. Z = 1 
BHS if high or same C=0 
BLO if low C=1 
BGT if greater than (N=1&V=1&Z=0)or 

(N=0&V=0&Z=0) 
BGE if greater or equal (N= 1&V = l)or 

(N =0& V = 0) 
BLE if less or equal Ac OE N astra. Me OVE 

(N=0&V=1) 
BLT if less than (N=1&V=0)or 

(N=0&V=1)) 

Unconditional Branches and Jumps 

The unconditional branch operations, BRA (branch always), BSR 
(branch to subroutine) and DBRA (decrement and branch) work 
similarly to Bcc and DBcc except of course that there are no conditions 
attached. Again the branches are PC relative and the signed displace- 
ment values may be of 8 or 16 bits. The unconditional jumps, JMP 
(jump) and JSR (jump to subroutine) use absolute or indirect 
addresses as their destinations — in other words the destination address 
replaces the current value of the PC register rather than being a 
displacement value which is added to it. It is important, however, that 
you should try as far as possible to avoid using absolute address 
numbers with JMP and JSR instructions. If you jump to a numbered 

absolute address and then subsequently alter the source code then the 

destination address may have to be changed. By labelling jump 

destinations you can ensure that if the program is altered and then 

re-assembled, the destination address will automatically be adjusted if 

necessary by the assembler. 
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If your assembled program is position-dependent then a JMP instruct- 
ion which refers to a specific numbered address will not work if the 
program has to be loaded into some other part of memory. In this case 
you would be quite free to jump out of your program to some other 
program at a known address but any attempt to jump into another part 
of your own program will fail because the destination address will have 
changed. In order to avoid this kind of problem it is best to make your 
programs position independent and to use PC relative branches 
wherever possible. 

Care should be taken when using JMP and JSR instructions because 
some assemblers are less sophisticated than others and may not code 
the necessary relocation information. 

The BRA and JMP instructions never retain the old value of the PC 
register after the jump is made. The BSR and JSR instructions, 
equivalent to the BASIC GOSUB instruction, automatically store the 
current value of the PC register on the stack so that when a return 
from the subroutine is made, the old value of the PC register can be 
retrieved from the stack and the program can re-commence from 
where it left off. 

The advantage of the JMP over the BRA instruction is that whereas BRA 
is confined to the PC relative addressing mode, the destination of a 
JMP instruction can be specified using any memory addressing mode 
except indirect with predecrement and indirect with postincrement. 
The same advantage applies to the JSR instruction over BSR. 
Additionally, JMP and JSR permit a longer jump range then BRA and 
BSR. 

Conditional Branching to Subroutines 

The BSR and JSR instructions are always unconditional, although a 
conditional BSR or JSR instruction can easily be simulated by 
preceding it with a conditional branch or jump instruction which 
by-passes the branch if the condition is not met. This is most easily 
illustrated in BASIC, as follows: 

30 A=10 

40 B=C 

50 IF A=B THEN GOTO 70: REM conditional test 
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60 GOSUB 210: REM unconditional GOSUB 

70 next instruction 

In assembly language these operations might be expressed as: 

;Label Mnemonic Comment 
,---------------------------------------------------------- 

MOVEQ #10,D2 ;Load D2 register with 10 

MOVE D4,D3 ;Load D3 register from D4 

CMP.L D2,D3 ;Compare D2 with D3 

BEQ NEXTINS ;Branch if equal (Z=1) to NEXTINS 

BSR SUBRT1 ;Else call subroutine 1 

NEXTINS next instruction ;Continue program 

Returning from Subroutines 

A return from a subroutine is normally made using an RTS (return 
from subroutine) instruction. RTS automatically retrieves the old PC 
value from the stack and uses it as the return address. 

A variation on this is provided by the RTR (return and restore 
condition codes) instruction. This is used when you wish to call a 

subroutine and return not only to the point where you left off but with 

the condition flags restored exactly as they were before the subroutine 

was called. As soon as the subroutine is entered, the current contents 

of the SR register are saved on the stack using: MOVE SR,-(A7). 

When the subroutine has been completed the RTR instruction 

automatically retrieves the stored flag values from the stack and places 

the lower 5 bits in the CCR register before retrieving the return 

address from the stack and loading it into PC. 

A similar instruction, RTE (return from exception) is used for 

returning from an exception service routine, although this is a 

privileged instruction which cannot be used in user mode. Like RTR, 

it automatically retrieves the old flag values and loads them back into 

CCR. Unlike RTR however, it also loads the old status flag values back 

into the system byte of the status register. 
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Example Program 3 

In the next example program, PR0G3, four types of branching 
operations are illustrated: a call to a subroutine, a conditional branch, 
a loop and an RTS. 

The purpose of this program is to sort through a list of byte values and 
identify those which are valid standard ASCII codes; in other words, 
those which have a value between 0 and 127. The characters which 
correspond to the valid ASCII codes will be printed to the screen and 
the non-valid codes, of which there are two, will be ignored. 

In this program, the character display interrupt routine has been 
defined as a separate subroutine in its own right, as it was in the 
previous program. 

Note: on a first reading of this program you should be 
looking particularly at the ways in which the branching 
operations transfer execution from one point in the program 
to another. 

As before, the data section is at the end of the listing and it will be 
helpful to have a brief look at it before you begin the code listing. The 
7 single byte ASCII codes have been defined in the data section at an 
address labelled ASCDATA and, as you will see, two of them are invalid 
codes having a value greater than 127. The COUNT variable contains 
the number of items contained in the ASCDATA array, less 1. 

Ho ASCII SORTER PROGRAM CALLED PROG3 

; SORTS & PRINTS VALID ASCII CODES 

MOVEQ #2,D3 

LEA.L #DEVICE,A0 

MOVEQ #1,D0 

TRAP #2 



Conditional and Unconditional Branching Operations 175 

MOVE.B 

EEA, L 

COUNT ,D4 

ASCDATA,A2 

LOOP1 CR {. D1 

MOVE.B (A2)+,D1 

EXT.W D1 

BX Task D1 

BMI NEXTDATA 

BSR DISP 

NEXTDATA DBRA D4,L00P1 

7D4 will count data 

;A2 points to data 

;Clear register D1 

;Copy an item of data to D1 

;Byte in D1 is sign-extended 

;into a word 

;Word in D1 is sign-extended 

;into a long word 

;Branch if sign negative 

eNe= 1) .to tNEXLDATA” 

;Otherwise call 'DISP 

;subroutine 

ite D4 el OO Dike Ow ol40,0 Palin 

The main routine initially copies the count value into D4 and loads the 
address of the first item of data into A2. 

In the main loop the first step is to clear the whole of the D1 register, 
ready to hold a data item. Then we load a data byte from ASCDATA 
using MOVE.B (A2)+,D1. This also increments A2 by 1 byte to point 
to the next data item. We then need to test the D1 register to see 
whether it contains a value less than 128. The easiest way to do this 
is to test the sign of the value, since, if it is greater than 127 it will have 

its sign bit set, which in turn will cause the sign flag to be set. 

Firstly the low order byte of D1 is sign extended into a word using 

EXT.WD1. Then the low order word of D1 is sign extended to a long 
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word using EXT.L D1. The byte in D1 is now fully sign extended so 
that we can test the whole of D1. If the original byte in D1 was less 
than 128 then it will be positive and the three high order bytes of D1 
will have been extended with zeroes, otherwise it will be negative and 
D1 will have been extended with Is. We could of course have simply 
planned to test the low order byte of D1 but it is useful to see how a 
vaJue in a register can be modified in this way. 

D1 can now be tested by a conditional branching instruction, in this 
case BMI (branch if minus). If the sign (N) flag was set by the EXT 
operations then BMI will force execution to branch to the address of 
the NEXTDATA routine, thus ignoring the code in D1 and continuing 
with the rest of the program. If the sign flag is not set, the code in D1 
must be a valid ASCII code and so a branch is made to the DISP 
subroutine, which prints the character to the screen and then returns 
execution to the instruction following BSR at NEXTDATA. The DBRA 
instruction decrements the counter register, D4, and branches back 
to LOOP1 if D4 is not yet equal to —1. The loop is executed 7 times, 
after which the main program terminates. 

Following this we have our display subroutine: 

DISP MOVEQ #-1,D3 

MOVEQ #5,D0 

TRAP #3 

RTS ;Return to main program 

ASCDATA  ODC.B 65,85,200,617,13,,129 15 ;Data 

COUNT DC.B 6 ;Defines and names length of 

;ASCDATA (less 1) in 1 

j;reserved byte 

DEVICE DC.W 4 

When the program is executed the valid ASCII codes, 65, 83, 67, 73 
and 73 are printed consecutively to spell out the word ‘ASCID’. 
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The following object code listing derived from PROG3 should help 
you to follow the above description. 

29CE8 7200 
29CEA 7602 
29CEC 41FAOO3E 
29CF0 7001 
29CF2 4E42 
29CF4 183A0035 
29CF8 45FAOO2A 
29CFC 4281 
29CFE 121A 
29000 4881 
29002 48C1 
29004 ~ 68000006 
29008 61000012 
29D0C SICCFFEE 
29010 7002 
29012 4E42 
29014 T2FF 

29016 7600 
29018 7005 
29D1A 4E41 
DISP:- 
29D1C 76FF 
29D1E 7005 
29020 4E43 
29022 4E75 

MOVEQ #00, D1 

MOVEQ #02, D3 

BEANS ECPC) "2902077 AO 

MOVEQ #01, DO 

TRAP #2 

MOVE.B 35(PC)!29D2B, D4 

LEA 2A(PC)!29D24, A2 

CUR.C’ OT 

MOVE.B (A2)+, D1 

EXT.W D1 

Ere Lae Dit 

BMI 29D0C 

BSR 29D1C 

DBRA D4,29CFC 

MOVEQ #02, DO 

TRAP #2 

MOVEQ #FF, D1 

MOVEQ #00, D3 

MOVEQ #05, DO 

TRAP #1 

MOVEQ #FF, D3 

MOVEQ #05, DO 

TRAP #3 

RTS 

The conditional branch instruction, BMI 29D0C, was BMI NEXTDATA in 

the source listing. This has therefore been besembled to incorporate 

the ADDRESS value of NEXTDATA so that execution branches to 29D0C, 

which is the address of the DBRA instruction. 

Similarly, the BSR to the DISP subroutine has been interpreted as BSR 

29D1C. This causes execution to branch to 29D1C which is the start 

address of the display subroutine. The RTS instruction automatically 

returns execution from 29D23, the end of the DISP subroutine, back 

to 29D0C which is the instruction immediately following the BSR 

instruction. 
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The DBRA instruction automatically decrements D4 by 1 and if it is 
greater than —1, transfers execution back to 29CFC which was labelled 
LOOP1 in the original source listing. If D4 = —1, execution would 
continue from 29D 10 instead. 

Could this program have been coded more efficiently using a single 
DBM1 instruction rather than a combination of BMI and DBRA? You 
might find it useful to work out an alternative coding along these lines. 

Passing Parameters to Subroutines 

In Chapter 4 we saw how parameters can be passed to subroutines. 
The two methods described were passing ‘by register’, where the 
parameters are moved into registers before the branch to the 
subroutine is made, and passing ‘by name’, where the parameters are 
stored in a data table starting at a named base address. Parameters 
may also be returned from a subroutine, either by value or by name. 

The following program, PROG4, illustrates the use of both the ‘by 
register’ and ‘by name’ methods. 

This program is considerably more complex than the preceding ones 
and will need careful study. The main program is a short routine 
which passes a message number to a subroutine labelled PRNT, which 
organizes the printing of both the output message and a message 
header, which is incorporated in the subroutine. PRNT calls a second 
subroutine called CHAR which prepares the characters which are to be 
printed and which in turn calls a third subroutine, DISP, which is our 
old.character print trap routine. 

The execution flow is thus as follows: 
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PROG4 

eseg ASCIT 
code for 

‘1’ into D3 

CALL PRNT 

RETURN 

FIGURE 11 

PRHT 

Store contents of 
in ggereit 

A2 points to 
start of header 

message 

CALL CHAR 

A2 points to 
start of main 

message 

[CALL CHAR i eat 
| RETURN 

CHAR 

Get character in 
: register 1 

: <is it > 
H 

CALL ISP XC) 

-1. Structure of PROG4. 

The screen display output of the program consists of the words: 

MESSAGE NUMBER 1. (this is the message header) 
BUGS ARE LETHAL (this is the message) 

The source listing for the main program, PROG4, is as follows: 

PROG4: PARAMETER PASSING PROGRAM 

DISPLAYS A MESSAGE 

DEVICE,A0 

#1,D0 

#2 
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;DEFINE CONSTANTS 

CR EQU 13 ;Define carriage return code 

ae EQU 10 ;Define line feed code 

MOVE.B FADS AASCiiecodeestom '1' in DS 

BSR PRNT ;Call subroutine PRNT 

The D3 register is loaded with the ASCII code of the character ‘1’, 
which is the number of the message and which will be a parameter 
passed ‘by register’ to a subroutine. Note that the ‘1’ in the MOVE.B 
#'1',D3 instruction refers neither to the absolute address number 1 

(in which case it would be expressed as MOVE.B 1,D3) or to the value 
1 (in which case it would be MOVE.B #1,D3). The quote marks indicate 

that it is the ASCII code for the physical character 1 which 1s required. 

Then a branch is made to the subroutine ‘PRNT’ which functions as 

follows: 

PRNT PEAGiE NO,A2 ;Address of NO in A2 

MOVE.B D3,(A2) ;Get passed code from 

;PROG4 in address 'NO' 

LEAR INTRO,A2 ;Address of INTRO in A2 

BSR CHAR ;Branch to CHAR 

LEAwL SMESS AZ ;Address of MESS in A2 

BSR CHAR ;Branch to CHAR 

RTS ;Return to main 

,program 
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CHAR MOVE.B (A2)+,D1 ;Get character code 

;from array 

CMPI.B #0,D1 ;Is it zero? (stop code) 

BEQ EXIT PBranch=tovex tte at (sO 

BSR DISP ;Else call subroutine 

sDISP 

BRA CHAR ;Loop back to CHAR 

EXais RTS ;Return to PRNT 
iid 

In the PRNT subroutine the address labelled ‘NO’ is moved into the A2 
register. This address is the one in which the ASCII code for ‘1’ will 
be loaded. This code, which is currently in the low byte of register 
D3, is then loaded into NO using the instruction MOVE.B D3,(A2) so 

that it becomes an extension to the header message. 

The A2 register is then loaded with the address of the data block 
headed INTRO, which marks the start of the header message (LEA.L 
INTRO,A2) and a call is made to the subroutine CHAR which will 

organize the printing of the header (BSR CHAR). 

On returning from CHAR, the A2 register is loaded with the address of 
the message: LEA.L MESS,A2. Again, CHAR is called which prints the 
message and then the PRNT subroutine concludes with RTS, returning 

execution to the main routine. 

The CHAR subroutine will call the subroutine DISP and so each 

character in turn must be loaded into the low byte of the D1 register. 
On each occasion when CHAR is called the A2 register will be pointing 
to the base address of the text which is to be printed: firstly INTRO and 
secondly MESS. The characters are therefore copied to D1 using 
MOVE.B (A2)+,D1 which automatically postincrements A2 to point to 
the next character in sequence. The character code in D1 must then 

be compared with the immediate value 0 to check whether it is the 

‘stop’ code placed at the end of each message. If it is equal to zero the 

Z flag will be set and the BEQ (branch if equal) instruction diverts 

execution to the location labelled EXIT. If it is not equal (Z = 0) then 

D1 must contain one of the message characters and a call is made to 

the subroutine DISP which will display the character on the screen. 

On returning from DISP an unconditional branch is made back to the 
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location labelled CHAR (BRA CHAR) so that the next character code can 
be processed. 

The EXIT location contains an RTS instruction which returns 

execution back to the previous subroutine, PRNT. 

Finally, the DISP subroutine is coded as follows. This is the operating 
system character display trap exception which was used in the 
previous programs. 

DISP MOVEQ #-1,D3 

MOVEQ #5,D0 

TRAP #3 

RTS ;Return to main program 

On completion, the RTS in this subroutine returns control back to the 
CHAR subroutine. 

The data for the program is defined as follows: 

J 

MESS DC.B "BUGS ARE LETHAL',CR,LF,0O 

DEVICE DC.W 4 

DC.B "CON_' 

INTRO DC.B "MESSAGE NUMBER ' 

NO DS.B 1 

DC.B 13,10 

DC.B 0 

END 

The message which is to be sent is defined as a character string and 
the base address of this is passed, as a ‘by name’ parameter, to the 
subroutine CHAR. By name, in this case, means that the message will 
be addressed by the name ‘MESS’. The two strings immediately 
following the message, CR and LF stand for ‘carriage return’ and ‘line 
feed’ and their ASCII values were defined at the beginning of the 



Conditional and Unconditional Branching Operations 183 

program, using the EQU (equal to) directive. The ‘0’ is a stop code, 
indicating the end of the message, and is used in the same way as the 

stop code ‘*’ in PROG1. Note that the address NO is defined as a single 
reserved byte storage area (DS.B 1) which is initially empty. 

The following object code print outs show the four assembled modules 
of the program: 

Main program: 

29CE8 7200 MOVEQ #00, D1 

29CEA 7602 MOVEQ #02, D3 

29CEC 41FA0062 LEA 62(PC)!29D50, AO 

29CFO 7001 MOVEQ #01, DO 

29CF2 4E42 TRAP #2 

29CF4 163C€0031 MOVE.B #31, D3 

29CF8 6100000E BSR 29008 

29CFC 7002 MOVEQ #02, DO 
29CFE 4E42 TRAP #2 

29000 72FF MOVEQ #FF, D1 

29002 7600 MOVEQ #00, D3 

29004 7005 MOVEQ #05, DO 

29006 4641 TRAP #1 

PRNT program: 

29008 45FA005B LEA 5B(PC)!29D65, A2 

29D0C 1483 MOVE.B D3, (A2) 

29D0E 45FA0046 LEA 46¢PC)!29D56, A2 

29012 6100000C BSR 29D20 

29016 45FA0024 LEA 240PC)'29D035C, A2 

29D1A 61000004 BSR 29020 

29D1E 4E75 RTS 

CHAR program 

29D20 121A MOVE.B (A2)+, D1 

29D22 0¢010000 CMPI.B #0, D1 

29026 6700000A BEQ 29D32 

29D2A 61000008 BSR 29034 

29D2E 6000FFFO BRA 29020 

29032 4E75 RTS 



184 First Steps in Assembly Language for the 68000 

DISP program: 

29034 76FF MOVEQ #FF, D3 

29036 7005 MOVEQ #05, DO 

29038 4£43 TRAP #3 

29D3A 4E75 RTS 

The data for these modules has been grouped under the base address 
$29DC3, with the the main routine message running from $29DC3 
and the header message in PRNT running from $29D56, as shown in 
the following hexadecimal data ‘dump’: 

29D3C 42 55 47 53 20 41 52 45 BUGS ARE 

20 4C 45 54 48 41 4C 20 LETHAL 

29D4C OD OA O00 00 O00 04 43 4F...... co 

4E SF 4D 45 53 53 41 47 N_MESSAG 

2905C 45 20 4E 55 4D 42 45 52 E NUMBER 

20 31 06 OA*O0 00 00°00". 1... 5. 

Note that $31, the code for ‘1’, has been inserted by the PRNT 
subroutine into the correct memory location at $29D65. This was not, 
of course, done during assembly but during a test run of the program. 

Subroutine Returns 

As an example of what happens when a call is made to a subroutine, 
it will be useful to examine the contents of the stack at the point just 
after the CHAR subroutine has been called from PRNT. The ten 
addresses at the top of the stack contain the following data: 

5 STACK TOP DATA COMMENT 

3DBC6 00 00 ;Original top of stack 

3DBC4 9C FC ;Return address from PRNT 

3DBC2 00 02 

3DBC0 9D 16 ;Return address from CHAR 



Conditional and Unconditional Branching Operations 185 

As execution passes from the main routine to PRNT, the return address 
to the main program ($29CFC) is automatically placed on the stack: 
A7 first decrements by two bytes and $9CFC is stacked. A7 
decrements by another two bytes and $0002 is stacked so that the 
complete return address is stacked in four bytes as $00029CFC. At 
that point the stack pointer, A7, is pointing to stack address $3DBC2. 
The ‘stacked return address is the address of the instruction in the 
main routine which immediately follows the branch to PRNT. When a 
return (RTS) is made to the main routine from PRNT, the return 
address is automatically popped from the stack and loaded into the PC 
register so that the main routine will continue executing from address 

$29CFC. 

Before that however, PRNT in its turn calls the CHAR subroutine and 

so the return address from CHAR to PRNT, $29D16, is added to the 

stack and the stack pointer is altered to point to $3DBBE. CHAR in its 

turn will call DISP and so the return address from DISP to CHAR will 

be stacked below the above data. 

The return addresses are unstacked in reverse order and by the time 

execution has finally returned to the main program, the stack pointer 

is again pointing to the original top of stack at $3DBC6. Note that 

values removed from the stack are not physically removed. It is the 

position of the stack pointer which determines the top of the stack and 

when it has returned to $3DBC6 the return addresses, although still 

there, are effectively redundant because as far as the system is 

concerned the stack extends no further than the current ‘top of stack’ 

address. When further values are stacked they will overwrite any 

redundant data already stored there. 

Linking Programs 

This program is a particularly difficult one to follow on a first reading 

and could, of course, have been programmed much more simply. Its 

function however, is to show the relationships between separate 

program modules, demonstrating how parameters can be passed by 

register and by value from one subroutine to another. 

When you have been able to follow the flow of execution you will 

appreciate how a multi-program system based on the 68000 can be 

implemented. Separate programs, subroutines, and sets of data 
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belonging to one or more different users can be loaded into memory 
and shared, so that the code for individual programs can be simplified. 
If commonly used sets of data, or utility subroutines such as text 
printing routines are stored as commonly accessible library items on 
disc, then any new program which needs to use them can access them 
without having to duplicate them in its own listing. If a particular 
program needs to make use of its own local parameters, these may be 
passed to a common library routine by one of the methods illustrated 
above. 

Suppose for example that the above program had been assembled not 
as one complete program but as four, separately assembled modules. 
The main program contains the message and the message number in 
its data section and PRNT contains the message header in its own data 
section. To make code and data in separate programs and subroutines 
accessible to each other the assembler directives XDEF and XREF are 
used. The main program would contain the assembler directives: 
XREF, PRNT and XDEF MESS. XREF PRNT means that any reference to the 
subroutine labelled PRNT refers to a separately assembled external 
program module. XDEF MESS means that the message data defined in 
the main program may be accessed by other, external programs. 

Likewise, PRNT would contain the directive XREF MESS meaning that 
any reference to MESS in the PRNT program refers to an address in a 
program module external to PRNT. It would also contain the directive 
XREF CHAR, meaning that the subroutine CHAR is an external reference. 
The CHAR routine would contain the directive XREF DISP. 

These cross references will be be resolved by a linker program so that, 
when the main program is loaded from disc, any other modules cross 
referenced with the main program will also be loaded so that all the 
separate modules can function together as if they are all part of a single 
block of code and data, even if they are loaded into completely 
separate areas of memory. 

Instead of the main program used above, suppose that you have 
written some other program which contains a list of numbered error 
messages, any one of which might need to be displayed on screen at 
some point. If PRNT, CHAR and DISP already exist as standard library 
programs then all you would need to do is to link them to your main 
program with a linker program, rather than incorporating their code 
in your main program. PRNT might contain the header message ‘ERROR 
MESSAGE’ rather than ‘MESSAGE NUMBER’. When your program needs 
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to print one of its error messages then all you need to do is to call 
PRNT, passing the number and location of the appropriate message as 
parameters. You would then get a display message on the screen such 
as ‘ERROR MESSAGE 23 FILE NOT FOUND’. 

A major advantage of this is that PRNT, CHAR and DISP may also be 
available to other users or to other programs running in the system 
simultaneously. Any one of them can pass their own parameters to 
PRNT and obtain an appropriate message display. 
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Chapter 12 

Stack Operations 

In Chapter 5 it was explained that a stack is an area of memory in 
which items of data can temporarily be stored and which is also used 
to contain return addresses from subroutines. We looked at a number 
of stack operations including the stacking of registers, the passing of 
parameters by means of stacks and the setting up of stack frames. It 
was explained that the SP (stack pointer) register, which is register 
A7, points to the current ‘top’ of the stack and that other address 

registers may be used to point to data within the body of the stack. It 

was also explained that a stack normally extends downwards in 

memory from the stack top, although upward extending stacks can 

also be created if required, as can circular stacks (queues). 

In the following program, one of the most common uses of the stack 

is demonstrated, in which the values contained in several of the data 

registers are pushed on to the stack prior to a call to a subroutine, so 

that they can later be retrieved and loaded back into the registers. 

Registers D3, D4, DS and D6 are first loaded with arbitrary byte 

values. These values are then preserved on the stack by the MOVEM 

(move multiple) instruction. 

Following this the text of a message is stored on the stack which will 

then be passed to a subroutine called READ which will unstack it and 

print it to the screen. 

Finally, a return is made to the main program and the values originally 

stacked from D3, D4, D5 and D6 are retrieved, in reverse order, by 

the MOVEM instruction. 

189 
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F PROGRAM PROG5 

PASSES A MESSAGE VIA THE STACK 

MOVEQ #0,01 

MOVEQ #2,D3 

BER. DEVICE,A0 

MOVEQ #1,00 

TRAP #2 

Initially, the ASCII codes for for carriage return and line feed (13 and 

10) are assigned to the labels ‘CR’ and ‘LF’ by means of an EQU (=) 
directive. 

Following this, the usual task ID and console channel operations are 
performed and then the main program starts: 

;STACK SOME INITIAL DATA VALUES, TRANSFER THE MESSAGE ONTO 

;THE STACK AND CALL THE UNSTACKING PROCEDURE 

MOVEQ #1,03 ;lLoad D3 with 1 

MOVEQ #2,04 ;Load D4 with 2 

MOVEQ #3,05 ;Load D5 with 3 

MOVEQ #4,D06 ;Load D6 with 4 

MOVEM D3-D6,-(A7) ;Store registers 

;D3 to D6 on stack 

MOVEA.L A7,A3 ;Copy stack pointer into 

;register A3 

MOVEA.L  A7,A4 ;Copy stack pointer into 

;register A4 as well 

LEAD Le MESS,A2 ;A2 points to address of 

;the message 

LOOP MOV.B (A2)+,D1 ;load a message character 

;code into D1 
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CMPI.B #0,01 jis it zero (stop code)? 

BEQ NEXT ;Jump to NEXT if so (Z=1) 

MOVE Dil CAD ;Else store character 

;code on stack as a 

;word value 

BRA LOOP ;Jump back to 'LOOP' 

NEXT MOVEQ #0,01 ;Clear the D1 register 

MOVE Di CA e Piisingar t-Onmess tack 

BSR READ ;Call the unstacking 

;subroutine 

MOVEA.L A4,A7 ;Restore original SP 

;value 

MOVEM (A7)+,D3-D6 ;Then retrieve 

;initial data 

MOVEQ #2,00 

TRAP #2 

MOVEQ #-1,01 

MOVEQ #0,03 

MOVEQ #5,00 

TRAP #1 

Firstly, the D3 ,D4, D5 and D6 registers are loaded with some 

arbitrary initial values, representing data which you might wish to 

store for retrieval when the main operation is completed. These are 

pushed onto the stack as four words from the low order words of the 

four registers using the MOVEM D3-D6,-(A7) instruction. This in- 

struction stacks each of the four registers in turn (from D6 to D3), 

automatically adjusting the stack pointer before each word is stacked 

by default, MOVEM without a size specifier implies MOVEM.W and if all 

four bytes of each register need to be stacked, MOVEM.L should be 

used. If necessary, all the contents of all the registers may be stacked 

using the MOVEM instruction, for example when you wish to call a 

subroutine and return with all the registers containing the same values 

as they did before the call. Again, if you begin to run out of spare 

registers, the MOVEM command can be used to stack the contents of 

some of them, freeing them for other purposes. 

When we come to retrieve the message from the stack, instead of using 

the normal method of popping the stacked ASCII codes, using register 
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A7, we shall be retrieving them using another address register, A3. A3 
therefore needs to be loaded with the current top of stack value from 
A7: MOVEA.LA7,A3. Note the use of the ‘A’ in MOVEA, indicating that 

the destination of the MOVE is an address register. A3 now points to the 
address in the stack which will eventually contain the first message 
character data. This will become clearer later on when we look at the 
destacking subroutine. 

When the message has been printed, the stack pointer will no longer 
be anywhere near the data which we stacked from registers D3 to D6. 
If we plan to retrieve this data then we need to make a further copy 
of the current A7 value so that we can restore the stack pointer later 
on: MOVEA.L A7,A4. 

Following this the A2 register is loaded with the address of the start 
of the message data and the following instruction, labelled ‘LOOP’, 
transfers a message character into the low byte of D1 and increments 
A2 to point to the next message character: MOVE.B (A2)+,D1. 

D1 is then checked to see if it contains the stop code, 0. If it does (i.e. 
Z=1) then execution moves on to the instruction labelled ‘NEXT’ 
because of the BE@ NEXT instruction. If D1 does not contain 0 then it 
must contain a message code and can therefore be stacked. 

The MOVE D1,-(A7) instruction stacks the code as a word value and 

adjusts the stack pointer. The BRA LOOP instruction then returns 
execution back to the instruction labelled ‘LOOP’. 

When all the message characters have been pushed onto the stack in 
this way, execution moves on to the instruction labelled ‘NEXT’, which 
moves the value 0 into the whole of D1. D1 is then stacked so that its 
contents can be used as a stop code when the stack contents are 
retrieved. 

Following this the unstacking subroutine ‘READ’ is called and on 
return from this subroutine the original contents of D3, D4, DS and 
D6, which were stacked at the beginning of the program, are retrieved 
back into those registers using the MOVEM (A7)+,D3-D6 instruction in 
the order D3 to D6. However, since the stacking of the message text 
the A7 register no longer points to this data. We therefore need to 
restore A7 to its original value by loading it with the original SP value 
of which a copy is held in A4: MOVEA.L A4,A7. 
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Finally, the usual termination routine rounds off the main section of 
the program. 

At the point where the READ subroutine has just been called from the 
main program the stack contains the following values: 

Stack address Codes ASCII 

Original values 3DBC4: 00 04 
from registers 3DBC2: 00 03 
D3, D4, DS and D6 3DBCO: 00 02 
A3 and A4 point here: 3DBBE: 00 01 
Message starts here: 3DBBC: 004D M 

3DBBA: 0045 E 
3DBB8: 0053 S 
3DBB6: 0053 S 
3DBB4: 0041 A 
3DBB2: 0047 G 

and so on down to: 
3DB80: 0054 T 
3DB7E: 0041 A 
3DB7C: 0043 C 
3DB7A: 004B K 
3DB78: 00 0D [cr] 
3DB76: 000A [If] 
3DB74: 0000 [stopcode] 

Return address to 
main program: 2DB/2:0.9D 20 
A7 points here: 3DB70: 00 02 

The first four words on the stack contain the values 1, 2, 3 and 4 

which we stacked at the beginning of the program. They were stacked 

in predecrement mode in the order D6 to D3 and are unstacked in 

post increment mode in the order D3 to D6. The next word in the 

stack at address $3DBBC contains the ASCII code of the first 

character in the message and is pointed to by the A3 register which 

was set up in the main program above. Next come the ASCII codes 

for the next characters in the message, finishing with the carriage 
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return, line feed and stop codes. Lastly, the return address back from 
‘READ’ to the main program is at stack addresses $3DB70 to $3DB73. 
A7 points to $3DB70 since this was the address of the last word 
stacked. 

It should be clear from this that if we were to unstack the data pointed 
to by A3 (effectively A3-2) into D1, print the character in D1 to the 
screen, subtract 2 from A3, load D1 again from the address pointed 
to by A3 and so on all the way down the stack, we can retrieve and 
print the whole message without altering the value of A7. In other 
words, the message is effectively in a stack frame within the stack and 
can be referenced via its base pointer, A3. 

The individual operations of the READ subroutine are as follows: 

;UNSTACK THE MESSAGE, TRANSFER EACH CHARACTER TO THE DISPLAY 

;PROCEDURE & RETURN TO PROGS WITH MESSAGE REMOVED FROM STACK 

READ MOVE -(A3),D1 ;Retrieve a character from 

j;the stack 

CMPI.B #0,01 ;Compare it with the value 

50 Ciwesats: nt: <theasitiop 

;code?) 

BEQ EXIT ;Jump ifesoy (Z=1)«tog' EXiie 

BSR DISP ;Else call display 

; subroutine 

BRA READ ;Branch back to 'READ' 

EXIT RTS ;Return to the main program 

DISP MOVEQ #-1,D03 

MOVEQ #5,00 

TRAP #3 

RTS ;Return to main program 

The first instruction in the READ subroutine, MOVE -(A3),D1, copies 
a character code into D1 from the word location in the stack which is 
indexed by A3. A3 is first autodecremented by two bytes. In other 
words, just as A7 was used in predecrement mode to stack the message 
characters, the A3 register, starting at exactly the same position, is 
being used in predecrement mode to retrieve them in the same order 
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The next instruction, CMP1.B #0,D1, compares the contents of D1 

with zero and if the result is zero (Z=1) then D1 contains the stop 
code, otherwise it contains a character code. The next instruction 
therefore, BEQ EXIT, determines whether execution jumps to the end 
of the routine or carries on with the following instruction. 

Then a call to the subroutine ‘DISP’ is made, which will display the 
character in D1 on the screen. 

On returning from this call a jump is made back to the instruction 
labelled ‘READ’. 

Finally, when all the characters have been printed, the RTS instruction 
will return execution back to the main program. 

At this point the program data is defined: 

MESS DC.B "MESSAGE NUMBER 2',CR,LF 

DC.B "PASSED VIA STACK',CR,LF,0 

DEVICE DC.W 4 

DC.B "CON_' 

The message is defined as a series of bytes representing the ASCII 
codes for the individual characters of the message, terminating with 
a carriage return, line feed and stop code: ‘0’. The base address of the 
message is labelled ‘MESS’. 

The object code listing for PR0G5 is as follows: 

;ADDRESS CODE MNEMONICS 

, 

29CE8 7200 MOVEQ #00, 01 

29CEA 7602 MOVEQ #02, D3 

29CEC 41FA0086 LEA 86(PC)!29D74, AD 

29CFO 7001 MOVEQ #01, DO 

29CF2 4E42 TRAP #2 

29CF4 7601 MOVEQ #01, D3 

29CF6 7802 MOVEQ #02, D4 
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29CF8 7A03 MOVEQ #03, D5 

29CFA 7C04 MOVEQ #04, D6 

29CFC 48A71E00 MOVEM.W /D3 /D4 /D5 /D6 ,-(A7) 

29000 264F MOVE.L 1 Cael NE 

29002 284F MOVE.L A7, A4 

29004 45FA0048 LEA 48(PC)!29D4E, A2 

29008 121A MOVE.B (A2)+, D1 

29D0A 0€010000 CMPI.B #0, D1 

29D0E 67000008 BEQ 29D18 

29012 3F01 MOVE.W Die CAND 

29014 6000FFF2 BRA 29D08 

29018 7200 MOVEQ #00, D1 

29D1A 3F01 MOVE.W ip SG We: 

29D1C 61000014 BSR 29D32 

29020 2E4C MOVE.L A4, AZ 

MOVEM.W (A7)+,/D3 /D4 /D5 /D6 

29026 7002 

MOVEQ #02, DO 

29028 4E42 TRAP #2 

29D2A 72FF MOVEQ #FF, D1 

29D2C 7600 MOVEQ #00, D3 

29D2E 7005 MOVEQ #05, DO 

29030 4641 TRAP #1 

READ: - 

29032 3223 MOVE.W -(A3), D1 

29034 00010000 CAPi ie Fer 0 

29038 6700000A BEQ 29D44 

29D3C 61000008 BSR 29D46 

29040 6000FFFO BRA 29D32 

29044 4E75 RTS 

HOS ER 

29046 76FF MOVEQ #FF, D3 

29048 7005 MOVEQ #05, DO 

29D4A 4E43 TRAP #3 

29D4C 4E75 RTS 

Again, READ could be a separately assembled library subroutine which 
can unstack and print any message passed to it. The only parameter 
required by READ is the base of the stacked message (in A3). 



Chapter 13 

Data Structures and 

Data Processing 

In Chapter 6 we looked at some of the ways in which blocks of data 

such as arrays can be accessed by means of the indirect addressing 

modes. This is a crucial aspect of programming and in this chapter we 

are going to work through a complex example in close detail. 

This is a fairly long program which shows how data stored in an array 

can be accessed and processed in a number of different ways. We shall 

be using our earlier petrol consumption model, since you will already 

be familiar with the nature of the data we shall be dealing with, and 

in the process we shall be covering a number of new topics including 

multiplication, division and bit shifting and rotation. 

In this program the fuel consumption and mileage figures for a two 

year period are stored in the data section in the following order: 

Fuel consumption for year 1 (12 separate months) 

Mileage for year 1 (12 separate months) 

Fuel consumption for year 2 (12 separate months) 

Mileage for year 2 (12 separate months) 

The program will add up the fuel and mileage figures for both years 

and print the totals to the screen. The average monthly consumption 

and mileage will also be worked out, together with the overall miles 

per gallon calculation. The consumption and mileage for May in each 

year will then be added and printed out and finally, there will be a 

procedure which allows you to key in the first three letters of any 

month in order to obtain the total mileage for the month over the two 

year period. The format of the final, printed output is as follows: 

197 
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TOTAL CONSUMPTION: 524.0 

TOTAL MILEAGE: 10327.0 

AVERAGE CONSUMPTION: 21.83 

AVERAGE MILEAGE: 430.29 

MILES PER GALLON: 19.70 

MAY CONSUMPTION: 40.0 

MAY MILEAGE: 853.0 

JAN 780 

FEB 807 

JUN 762 

JUL 944 

AUG 898 

The general structure of the program is as follows: 

1 A pointer register will be used to access each of the values in the 
four data arrays. The added totals will be placed in a separate array 
labelled TOTALS. 

2 The consumption and mileage totals will be used to work out the 
monthly averages and the miles per gallon figure. These will also 
be placed in the array TOTALS. The totals for May will then be 
added and placed in TOTALS. 

3 The totals contained in TOTALS will then be converted from binary 
values to floating point decimal values and pushed on to the stack. 

4 The text messages will be transferred from the data area to the 
screen, each followed by the calculated results which are popped 
from the stack, converted to ASCII characters and displayed on the 
screen along with the messages. 

5 The month by month mileage totals will be calculated and 
transferred to an array labelled SUBMIL. 

6 The data in SUBMIL will be accessed and printed in response to 
month names input from the keyboard. 
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: PROGRAM ENTITLED PROG6 

i ANALYSIS OF CONSUMPTION AND MILEAGE DATA 

MAY EQU 8 ;Offset for may figures 

CR EQU 13 ;Carriage return code 

LF EQU 10 ;Line feed code 

POINT EQU ie ;Decimal point code 

MOVEQ #0,01 
MOVEQ #2,D3 
LEA.L DEVICE,A0 
MOVEQ #1,00 
TRAP #2 

Initially, the ASCII codes for carriage return and line feed are defined 
as labelled constants, along with the decimal point code and an index 
offset for the May data. 

May is the fourth month, counting from zero, and since the data is 
stored in word lengths its offset will therefore be 8. CR, LF and POINT 
are the labels given to the ASCII character codes for carriage return, 
line feed and the decimal point. Note that the decimal point is entered 
in character form and the assembler will work out its ASCII code 
automatically. 

The usual initialization instructions come after this and then the main 

program begins as follows: 

LEA.L GALLS1,A2 ;Base of consumption data 

;(address of GALLS1) 

MOVEQ #11,D04 ;Month count (less 1) 

LR ak: D5 ;Clear D5 (set it to zero) 

LOOP1 ADD (A2)+,D5 ;Add data item from GALLS1 

soe DS 
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DBRA D4,L00P1 ;Repeat LOOP1 while D4>-1 

LEAL GALLS2,A2 ;A2 Points to next year 

(GALLS2) 

MOVEQ #11,D4 ;Month count (less 1) 

LOOP2 ADD (A2)+,D5 ;Add data item from array 

et0- Do's 

DBRA D4,L00P2 ;Repeat LOOP2 while D4>-1 

LEA.L TOTALS ,A4 ;A4 points to 'TOTALS' 

jarray 

MOVE.W D5,(A4) ;Store consumption total 

;in TOTALS array 

MOVE.W D5,-(A7) ;Stack consumption total 

LEA.L MILES1,A2 ;Base of mileage data 

;(address of MILES1) 

MOVEQ #11,D4 ;Month count (less 1) 

€LR.L D5 ;Clear D5 (set it to zero) 

LOOP3 ADD (A2)+,D5 ;Add data item from array 

;to D5 

DBRA D4,L00P3 ;Repeat LOOPS while D4>-1 

LEA.L MILES2,A2 j;A2 Points to next year 

(MILES2) 

MOVEQ #11,D4 ;Month count (less 1) 

LOOP4 ADD (A2)+,D5 j;Add data item from array 

“tose. 

DBRA D4,LO00P4 ;Repeat LOOP4 while D4>-1 

ADDQ #4,A4 j;A4 points to 'TOTALS+4' 

MOVE.W D5,(A4) ;Store mileage total 

;in TOTALS array 

In this section the consumption and mileage figures for the two years 
are added together and stored in the TOTALS array. A2 is loaded with 
the first address of the data and is used as an indirection register to 
retrieve each item of data and add it to the DS register. D4 is loaded 
with 11, to count off each month (11 to -1), and A2 is auto- 
incremented by two after each addition because each item of data is 
stored as a word and the operations are of length ‘.W’. 

After the first 12 items, A2 is repositioned to point to the next year 
and the data continues to be added to DS as before. Finally, the 24 
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month total is loaded into the first two addresses of the array TOTALS. 
Since the low order word of D5 contain the total its contents are 
automatically loaded by MOVE.W D5,(A4) into both the address 

pointed to by A4 plus the one following. The total consumption is also 
stored temporarily on the stack by the MOVE.W D5,-(A7) instruction. 
The above steps are then repeated for the mileage figures, which are 
stored in the fifth and sixth addresses of the TOTALS array (TOTALS +4 
and TOTALS+5), for reasons which will be made clear later on. 

In the next section the average consumption and mileage figures will 
be calculated: 

ADDQ #4,A4 ;Point A4 to next TOTALS 

;location (TOTALS+8) 

MOVE.W (A7),D6 ;Retrieve consumption total 

;from stack into Dé 

MOVE.W D6,-(A7) ;Store a copy back on stack 

MOVE.W D5,-(A7) »Stack mileage total, which 

2) Sees Cie aD 

DIVU DNUM1,D6 ;Divide D6 by 24 

MOVE.W D6,(A4) ;Store quotient from lo word 

;of D6 in TOTALS 

MOVEQ #16,D2 ;D2 holds shift count 

LSR.L D2,D6 sShift D6 right according to 

;count in D2 

; 

;Now convert the remainder to a decimal fraction 
. 
/ 

MULU CENT ,D6 sMultiply D6 by 100 

DIVU DNUM1,D6 ;Divide by 24 again 

MOV.W D6,2(A4) ;Store in TOTALS array 

ADDQ #4,A4 ;Point A4 to next free 

TOTALS (TOTALS+12) 

DIVU DNUM1,D5 ;Divide D5 by 24 

MOVE.W D5,(A4) ;Store quotient from lo word 

;of D5 in TOTALS 

MOVEQ #16,D2 7D2 holds shift count 
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LSR.L D2,D5 ;Shift D5 right according to 

;count in D2 

, 

;Now convert the remainder to a decimal fraction 
. 
Ye 

MULU CENT,DS ;Multiply D5 by 100 

DIVU DNUM1,D5 ;Divide by 24 again 

MOV.W D5,2(A4) ;Store in TOTALS array 

Firstly, A4 is incremented to point to the offset of the next free space 
in the TOTALS array (TOTALS+8) to store the average consumption 
figure. At this point we have the total mileage in TOTALS+4 and in 
D5. The total consumption is both in TOTALS +0 and on the top of the 
stack. The consumption figure is popped from the stack into D6. It 
does not matter that it was originally pushed from D5 because stacked 
data can be popped into any of the general registers. We still need a 
copy of the consumption figure in the stack, so it is popped using the 
address register indirect mode without postincrement. Now the 
consumption figure is in TOTALS, in D6 and on top of the stack. 

Next the mileage total is pushed onto the stack from D5. We now have 
the mileage and consumption figures in the TOTALS array, on the stack 
and in the D5 and D6 registers. To calculate the average consumption 
we need to divide the consumption total in D6 by the constant located 
at the address labelled DNUM1, which is defined in the data section as 
24. This is performed by DIVU DNUM1,D6. The quotient of the division 
operation ends up in the low order word of D6 and this is transferred 
directly to address TOTALS +8 and TOTALS+9 by the MOVE.WD6,(A4) 

instruction. The remainder of the division ends up in the high order 
word of D6, but, since we normally prefer our remainders to be 
expressed as decimal fractions we need to convert it before storing it 
away. This is done by multiplying D6 by 100 and dividing by 24. 
However it is first necessary to shift the division remainder from the 
high to the low order word of D6 and to ensure that the high order 
word is zeroed. The bits in D6 need to be shifted to the right 16 times 
with zeroes being passed into the high order word during each shift. 
The shift count is loaded into D2: MOVE@ £16,D2 and the shift is 

performed by the logical shift right instruction LSR: LSR.L D2,D6. 
The multiplication by 100 is then performed by MULU CENT,D6 and the 
division by 24 by DIVU DNUM1,D6. CENT is defined in the data section 
as 100. 
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Ignoring the remainder from this second division, we load the 
contents of the low order word of D6 (the quotient from the second 
division) into the TOTALS array at TOTALS+10 and TOTALS+11, 
pointed to by A4+2. This is in fact the remainder of the average 
consumption calculation. 

If this process is not clear, the following calculation example shows 
what has just been performed. We shall assume that the actual 
consumption total is 205: 

Instruction Register Register Function 
Mnemonic D6 High D6 Low 

0 205 
DIVU DNUM1,D6 13 8 D6/24=8 rem’dr 13 

MOVE.WD6,(A4) 13 8 store 8 in TOTALS 

MOVEQ #16,D2 13 8 Shift count in D2 
LSR.LD2,D6 0 13 Shifts remainder over 
MULU CENT,D6 0 1300 100 times D6 = 1300 

DIV DNUM1 4 54 D6/24=54 remainder 4 
MOVE.W D6,2(A4) store 54 in TOTALS 

Therefore 205/24=8.54 

The figure we end up with in TOTALS in this example is 8.54: the ‘8’ 
occupying 2 addresses and the ‘54’ occupying the next two addresses. 

The A4 register is now incremented by 4 to point to the next free space 
in the TOTALS array (TOTALS+12), which will be used for storing the 

average mileage. 

The next stage is to convert the mileage total, currently in D5, into 

an average in the same way as the consumption total above. The result 

is again deposited in the TOTALS array at TOTALS+12, TOTALS +13, 

TOTALS+14 and TOTALS+15. 

We are now ready to calculate the miles per gallon figure. 
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cme www mw tw wm wm mm me wm Mm em wm em wm wm mm mm mm wm em me wm wm em mm mm em ee eee ee ewe ee mee ee 

CLR.L D6 ;Clear register D6 

ADDQ #4,A4 ;Point A4 to next free 

; TOTALS (TOTALS+16) 

MOVE.W (A7)+,D6 ;Retrieve total mileage from 

;stack to D6 

MOVE.W (A7)+,D5 ;Retrieve total consumption 

;from stack to D5 

DIVU D5,D6 ;Divide miles by consumption 

7(D6 by D5) 

MOVE.W D6,(A4) ;Store quotient in TOTALS 

US Ree D2,D6 ;Shift D6 right according to 

;count in D2 

remainder to a decimal fraction 

MULU CENT,D6 ;Multiply by 100 

DIVU D5,D6 ;Divide by consumption 

7(D6 by D5) 

MOVE.W D6,2(A4) ;Store in TOTALS array 

In the above section D6 is zeroed to ensure that it contains no 
superfluous data and the A4 register is again incremented by 4 to point 
to the next free TOTALS space (TOTALS+16). The mileage total is 
popped from the stack into D6 and the consumption total is popped 
into D5. This time we need to divide the mileage total by the 
consumption total to give the miles per gallon figure. The same 
division operations as before are performed except that this time, DS 
is used as the divisor. Finally, the result is placed in the TOTALS array 
at TOTALS+16, TOTALS+17, TOTALS+18 and TOTALS+19. 

Next, the consumption figures for May in each year are retrieved, 
added together and stored in the TOTALS array: 

Cm mem mm tm mm ee mee ee ee em em mw mm em em mm mm mm mm wm eww ew eee ew eee wee eee eee eee 

LEAL L GALLS1,A2 sStamt! Of ida ta 

MOVE.W MAY(A2),D5 7Get GALLS1 May in D5 

ADDA #48,A2 ;Point A2 to GALLS2 May 
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ADD MAY(A2),D5 ;Add GALLS2 May to D5 

ADDQ #4,A4 ;Point A4 to next free 

sTOTALS (TOTALS+20) 

MOVE.W D5,(A4) ;Store May galls in TOTALS 

LEA.L MILES1,A2 ;Start of data 

MOVE.W MAY (A2) ,D5 Get MILES1 May in D5 

ADDA #48,A2 sPoint A2 to MILES2 May 

ADD MAY(A2) ,D5 ;Add MILES2 May to D5 

ADDQ #4,A4 Point A4 to next free 

s TOTALS (TOTALS+24) 

MOVE.W D5,(A4) ;Store May miles in TOTALS 

A2 is loaded with the GALLS1 address and the first year May figure is 

copied into DS from the address pointed to by A2+MAY. MAY, you will 

recall, is a labelled constant equal to the value 8, since the May data 

is at offset 8 in GALLS1, counting from zero. A2 is then incremented 

to point to the second year May figure. Note that because the original 

data is stored as word values, A2 is incremented by 48 rather than 24. 

Both years’ May totals are added and stored as a word value in the 

TOTALS array at TOTALS +20 and TOTALS+21. 

The May mileage figures are added and stored in the same way as the 

consumption figures, except that A2 is initially given the offset value 

of MILES1 and the results are stored in TOTALS +24 and TOTALS +25. 

We are now nearly ready to take the stored totals and print them to 

the screen with the appropriate text messages. Firstly, the figures are 

transferred from TOTALS onto the stack: 

sMOVE CONTENTS OF 'TOTALS' ARRAY ON TO THE STACK 

LEA.L TOTALS,A2 Point to base of TOTALS 

RES CLR.L D5 Clear register D5 

MOVE.W 2(A2) ,D6 ;Get a decimal fraction 

;from TOTALS 

; 
;First convert binary data from TOTALS into individual 

sdigits so that they can be converted to ASCII and printed: 
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LOOPS DIVU DNUM2,D6 ;Divide by 10 

SWAP D6 ;Swap halves of D6 

MOVE.W D6,-(A7) ;Stack remainder 

ADDQ #1,05 ;Increment digit count 
CLR.W D6 ;Clear lo word of Dé 
SWAP D6 ;Swap halves of Dé 

CMPI #0,06 jis D6=0? 

BNE LOOPS ;Repeat LOOPS if not (ZF=0) 

MOVE.W POINT,D6 ;Get ASCII code for decimal 

;point 

SUBI.W 48,D6 ;Subtract 48 from it 

MOVE.W D6,-(A7) ;Stack it after remainder 

MOVE.W (A2) ,06 ;Get a quotient from TOTALS 

SWAP D6 ;Swap halves of D5 

LOOP6 DIVU DNUM2,D6 ;Divide D6 by 10 

SWAP D6 ;Swap halves of Dé 

MOVE.W D6,-(A7) ;Stack the remainder 

ADDQ £15 ;increment digit count 

CLR.W D6 ;Clear lo word of D6 

SWAP D6 ;Swap halves of D6 

CMPI £0,D6 ;Is D6=0? 

BNE LOOP6 ;Repeat LOOP6 if not (ZF=0) 

MOVE.W D5,D6 ;Copy digit count into D6 

SWAP D5 ;Swap halves of D5 

ADD.W D5,D6 ;Rest of digit count added 

MOVE.W D6,-(A7) ;Stack total digit count 

DE ARE RESPNT,A6 ;Address of RESPNT in A6é 

~ MOVE.L A2,(A6) ;Store current TOTALS offset 

jin reserved address RESPNT 

Firstly, A2 is loaded with the first address of the TOTALS array. At this 
point the totals are stored in the TOTALS array in 4-byte chunks: the 
first 2 bytes being the quotient of each result and the second 2 bytes 
being the decimal remainder (if any) of each result. Our objective is 
to break down each number into separate values so that, for example, 
quotient 32 remainder 85 (i.e. 32.85) would become 5 separate values: 
‘3’, °2”, *.’, °8’ and ‘5’. These values will be pushed separately on to 
the stack (in reverse order) and a count will be kept of the total 
number of values stacked. 
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DS is cleared so that it can be used to count the individual values and 
the first total first is loaded into D6 from TOTALS. Firstly, we load the 
remainder value of the total because the result will be pushed onto the 
stack in reverse order so that it can be popped off and printed in the 
correct order. 

The problem we now have is that the first result, the consumption 
total remainder in D6, is a 16-bit binary integer, whereas we actually 
want to print it as a floating point decimal number. The conversion 
is easily achieved by repeatedly dividing the number in D6 by 10 
(stored at address DNUM2) and pushing the remainders on to the stack. 

This process continues, in program L00P5, until Do=0. The BNE 
(branch if not equal) instruction detects this and continuously loops 
back to LOOP5 until D6=0. 

Every time D6 is divided by 10 the remainder goes into its high word 

and the quotient into its low word. The SWAP D6 instruction swaps 

over these two words so that the MOVE.W D6,--(A7) instruction can 

be used to stack the remainder. The DS (counter register) is 

incremented by 1 after each division and swap and the low order 

(remainder) word of D6 is cleared. Another SWAP then transfers the 

quotient back into the low order word so that another division can 

take place. The following example shows how this process works, with 

D6 initially containing the remainder value ‘85’: 

Instruction Register Register Function 

Mnemonic D6 High D6 Low 

0 85 

DIVU DNUM2 ,D6 5 8 D6/10=8 remainder 5 

SWAP D6 8 5 Words swapped over 

MOVE.WD6,-(A7) 8 5 Stack the value 5 

CLR.W D6 8 0 Clear low byte 

ADDQ #1,D5 8 0 Increment counter 

SWAP D6 0 8 Words swapped over 

CMPI #0,D6 0 8 Does D6=0? (no) 

BNE LOOPS (this causes a repeat if D6>0, as follows): 

DIVU DNUM2,D6 8 0 D6/10=0 remainder 8 

SWAP D6 0 8 Words swapped over 

MOVE.WD6,-(A7) O 8 Stack the value 8 

0 Clear low byte CLR.W D6 0 
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ADDQ #1,D5 0 0 Increment counter 

SWAP D6 0 0 Words swapped over 
CMPI #0,D6 0 0 Does D6=0? 

Yes 

Therefore the stack 

holds ‘5’ and ‘8’ which 
will be printed out in 
reverse as ‘85’. 

The decimal point needs to be stacked now and this is currently stored 
as an ASCII value at the address pointed to by the label POINT. This 
is moved into D6 and 48 is subtracted from it before it is pushed onto 
the stack. The 48 will be added to it again later when all the converted 
digits are translated to ASCII codes before printing them. 

The total number of digits stacked is now in the low order word of the 
counter register DS and this is temporarily transferred to the high 
order word: SWAP D5. 

After this the quotient of the consumption total is moved into D6 and 
the above conversion process is repeated in L00P6, dividing D6 by 10 
until it equals 0 and pushing each remainder on to the stack. 

After L00P6, the total count of quotient digits is in the low order word 
of DS and the total number of remainder digits is in the high order 
word. The low order word of D5 is transferred to D6 and the high 
order word of D5 is swapped with its low order word: SWAP D5. Then 
the low order word is added to D6 so that D6 now holds the count of 
the total number of stacked digits in the decimal number. This digit 
count is pushed onto the stack for later use. 

After printing these newly stacked digits we will need to come back 
and repeat the above process with the next result in the TOTALS array. 
We therefore need to store the offset of the current result (contained 
in A2), so the contents of A2 are copied into a reserved memory 
address labelled ‘RESPNT’ for later retrieval. First the address of 
RESPNT is loaded into A6 and the instruction MOVE.L A2,(A6) stores 

the contents of A2 in the RESPNT address. 

At this point in the program the contents of the stack are as follows: 
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Hi bytes superfluous 

The value 780.0 will 
be popped off the 
stack and printed, 
a pee ie he decinal 
point. fhe digit 4 is 
popped oH indicat- 
ing the it count 
(4 to ot siloved by 
fahegeu, stand. 0; 

Digit count from D6 

FIGURE 13-1. First result on stack, prior to printing. 

The next task is to print the first message to the screen, which is 
“TOTAL CONSUMPTION: “ stored at address MES1: 

LEA.L MES1,A2 
MOVE.L § _MESSOFF,D2 

MOVEQ #20,04 

LOOP? MOVE.B O(A2,D2),D1 

BSR DISP 

ADDQ #1,D2 

DBRA D4,L00P7 

BEAL MESSOFF,A6 

MOVE.L D2,(A6) 

;A2 points to base of text 

;Offset of current message 

;into D2 from 'MESSOFF' 

;Text length count (less 1) 

;in register D4 

;Get text character in D1 

;Display character on screen 

;Point to next character 

;Repeat LOOP? while D4>-1 

;Get address of MESSOFF 

;Store offset of next 

;message in reserved 

;address 'MESSOFF' 

The address offset of ‘MES1’ is copied into A2 and D2 is loaded with 
the index offset contained in the address pointed to by the label 
MESSOFF (initially zero). D4 is then loaded with the message length 

(less 1), which is 20. Each message will be defined in the data section 

as 21 bytes, including spaces. 

LOOP7 copies each of the ASCII codes of the message into D1 using 

MOVE.BO(A2,D2) ,D1 and calls the DISP subroutine to print them one 
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by one to the screen. After they have all been printed, the index offset 
currently contained in D2 is stored back in address MESSOFF for use 
with the next message. Having printed the message heading we are 
now ready to transfer the actual consumption total to the screen. 

MOVE.W (A7)+,D04 ;Retrieve result digit total 

;from stack into D4 

LOOPS. CER SU D1 ;Clear register D1 

MOVE.W (A7)+,D1 ;Get a digit from stack 

ADDI.B #48 ,01 ;Convert it to ASCII 

BSR DISP ;Display it 

DBRA D4,LO0P8 ;Repeat while D4>-1 

MOVE.B CR,D1 ;Carriage return code goes 

aan Di 

BSR DISP SPR unit. cit 

MOVE.B LF,D1 ;Line feed code goes in D1 

BSR DISP SPR Nite it 

LEASE MESCNT,A6 ;Address of MESCNT in A6 

ROL (A6) ;Rotate header message count 

jwhich is stored in 'MESCNT' 

BCC MONTHS ;Branch to MONTHS routine if 

jall results printed 

ays RESPNT,A2 ;Else retrieve TOTALS offset 

;into A2 from RESPNT 

ADDQ #4,A2 ;Point to offset of next 

;result in TOTALS array 

BRA RES ;Branch back to 'RES' 

The first step is to retrieve the count of the number of digits in the 
consumption total, which is popped off the stack into D4. This will 
be used as a loop count value. 

Next, the first result digit is popped off the stack into D1, after which 
48 is added to it to convert it into its ASCII form. Note that the 
decimal point code, which is stacked among the digits, will also have 
48 added to restore it to its original ASCII value when its turn comes 
to be popped. The ASCII digit is now held in D1 and a call is made 
to the DISP subroutine to print it to the screen. This process is 
repeated until D4=-1, after which the carriage return and line feed 
codes are also passed to DISP for printing. 
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At this point we need to check to see whether all the results and 
messages have been printed and this is done by rotating the bits in the 
address pointed to by the label MESCNT to the left, using the 
instructions LEA.L MESCNT,A6 to obtain the address of MESCNT and 
ROL (A6) to perform the rotation. This rotates the binary number in 
MESCNT once to the left, depositing the high order bit into the carry 
flag and also transferring it to the low order bit position. If a zero bit 
is thus rotated into the carry flag, then all the results have been 
printed and the BCC instruction (branch if carry clear) transfers 
execution to MONTHS; the start of the next routine. If a set bit is rotated 
into the carry flag then there are further results to print and the BRA 
instruction loops execution back to RES, where the next message and 
result will be processed. Before branching to RES, the value contained 
in the address pointed to by the label RESPNT is copied into A2. This 
contains the index offset within the TOTALS array of the result which 
has just been printed. This offset was stored in RESPNT earlier in the 
program. 

A2 is then incremented by 4 to point to the next result within the 
TOTALS array. 

Finally, when all the results have been printed, the program moves on 
to the next routine, MONTHS, which will allow the monthly totals to be 
printed in response to key inputs. 

In this section we first need to add the month by month mileage 
figures from year 2 to those from year | and stores them in a separate 
array called SUBMIL, as follows: 

¥ 

MONTHS LEA.L MILES1,A2 ;Point A2 to MILES1 data 

LEA.L MILES2,A5 ;Point A5 to MILES2 data 

LEA.L SUBMIL,A4 ;Point A& to SUBMIL array 

MOVEQ #11,D04 ;D4 to count off months 

EOOP9) CLR.L D5 ;Clear D5 register 

ADD.W (A2)+,D5 ;Add word pointed to by A2 

;to D5 and add 2 to A2 

ADD.W (A5)+,D5 ;Add word pointed to by A5 

j;to D5 and add 2 to A5 

MOVE.W D5,(A4)+ ;Transfer total to SUBMIL 

DBRA D4,LO00P9 ;Repeat LOOP9 while D4>-1 
Seeeeeeee em eee eee eee ee ee ee eee ew ew eB ee ee wee eee Tee eee eee wee wwe 
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This operation is very simple. The addresses of MILES1 and MILES2 
are loaded into A2 and AS respectively, while the destination address, 
SUBMIL, is loaded into A4. D4 will count off each of the 12 monthly 
subtotals and so it is loaded with the value 11 to count from 11 to -1. 

DS is cleared and then the word data at the address pointed to by A2 
is added to it, after which A2 is automatically incremented by 2. The 
word data pointed to by AS is then added to DS so that D5 now 
contains the sum of the mileage figures for a particular month for each 
of the two years. AS is also autoincremented by 2. 

The contents of D5 are then copied into SUBMIL by MOVE.WD5,(A4)+ 
and A4 is also autoincremented by two. A2 and AS now point to the 
next month’s figures for each of the two years and A4 points to the 

next free space in SUBMIL. 

The DBRA instruction decrements and checks the D4 counter and 
loops back to LOOP9 until all the data has been added and transferred. 

Now that the mileage subtotals are stored in the SUBMIL array, we can 
consider what method we might use for accessing any one of these 
subtotals by inputting the name of a particular month from the 
keyboard and outputting the corresponding subtotal to the screen. 

Like the DISP procedure used in the previous programs, the particular 
method of inputting text from the keyboard will depend on which 
operating system your computer uses. In this case we shall assume 
that it is done by using an operating system TRAP routine which 
transfers characters from the keyboard into a buffer whose base 
address is contained in register Al, as follows: 

KEY CLR.L D5 ;Clear register D5 

LE Avil KEYBUF,A1 ;Address of buffer in At 

MOVEA.L A1,A3 ;Copy into A3 

MOVEQ #4,D02 ;Character count in D2 

MOVEQ #2,00 30/S function code in DO 

TRAP #3 20/S Arapicalt 

MOVEQ #2,D04 ;Count of required 

;characters in D4 (less 1) 

KEYTOT ADD.B (A3)+,D5 ;Add character code to D5 



Data Structures and Data Processing 213 

DBRA D4,KEYTOT ;Repeat loop KEYTOT while 

7D4>-1 

CMPI.B #215,D5 ;Has 'END' been entered? 

BEQ EXIT ;Branch to finish if so 

MOVEQ #32,01 ;ASCII code for space 

BSR DISP ;Display it 

In this routine the number of characters we want from the keyboard 
is 3, since this will suffice to identify the name of any particular 
month. The fourth character will be the carriage return code following 
the input of the three characters. 

DS is first cleared because we shall need to use its lower byte for an 
addition operation. Al is then loaded with the address of the four byte 
keyboard buffer which is labelled KEYBUF in the data section. A copy 
of this base address is loaded into A3 so that we can later retrieve the 
buffered characters. 

Next, the operating system TRAP is invoked by loading the number of 
characters to be fetched, 4, into register D2 and a function parameter, 
2, into DO and then initiating a TRAP #3 exception which causes the 
program to wait until four characters have been typed in at the 
keyboard. 

At this point there would be three characters printed on the current 
screen line: the ones which would have just been input on the 
keyboard. The carriage return used to enter the characters would have 
placed the screen cursor on the line below. The ASCII codes for these 

would also be stored in the KEYBUF array with A3 pointing to the 
address of the first character. 

Then the accumulated totals of the ASCII values of the three 
characters keyed in need to be obtained. This is done by the loop 
starting at the instruction labelled KEYTOT which adds the ASCII 
values of the three characters into DS. 

The next two instructions, CMPI.B #215,D5 and BEQ EXIT, test the 
input to see if the program is to be terminated and this procedure will 
be explained later. 

Before we print the corresponding mileage total for the required 
month we might wish to insert a space so that the result will be 
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indented from the left margin of the screen by one character. This is 

done by loading D1 with 32, the ASCII code for a space, and calling 

the DISP routine to print it. 

Next, we are ready to retrieve the mileage totals from SUBMIL and 

print them: 

tec eee eee eae wen anes coe ea ew ee oe eee ee eae ee ee ee ee ee eee ess te 
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sUSE TOTALLED ASCII CODES OF 3 INPUT CHARACTERS TO INDEX A 

;LOOKUP TABLE POINTING TO MILEAGE TOTALS 
Seema ees e ses oc weawoes ees ecees ewes enews esas eeeseeeseaeeeee2e=s=""—~~— 

MATCH MOVE.B 

CMP.B 

DBEQ 

LOOP10 DIVU 

LOOP11 MOVE.W 

D6 

DATES, A4 
#23,D4 

(A4)+,D06 

D5,06 

D4,MATCH 

SUBMIL,A2 

(A4) ,D6 

0(A2,06) ,D5 

#-1,4 

DNUM2,D5 

D5 

D5,-CA7) 

#1,04 

#16,D2 

D2,D5 

#0,D5 
LOOP10 
(A7)+,D1 
#48,01 
DISP 
D4,LO0P11 
CR,D1 
DISP 
LF,D1 
DISP 

;Clear register D6 

Point to DATES table 

s;Length of DATES table 

;less 1 

;Copy data fron DATES 

into D6 and add 1 to A4 

;Compare with input code 

;1f codes match or D4=-1 

;then go to next instruction 

zelse loop back to MATCH 

;Address of SUBMIL in A2 

;Get index value from DATES 

;Copy total from SUBMIL 

into D5 

;Set counter to -1 

sDivide D5 by 10 

;Swap halves of D5 

;Stack remainder 

;Update counter 

Shift count in D2 

;Shift D5 according to 

scount in D2 

;ls 05=0? 

;Repeat LOOP10 if not 

;Else retrieve a digit 

MEONVETCL MENLO ANGLE 

sDisplay it 

;Repeat while D4>-1 

;Carriage return code 

“Print aut 

;Line feed code 

SPiriintlt 
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Seem wm mem mem ee ee ew ew ee eee eee 

EXIT  MOVEQ #2,00 

TRAP #2 

MOVEQ #-1,01 

MOVEQ #0,03 

MOVEQ #5,00 

TRAP #1 

DISP MOVEQ #-1,03 

MOVEQ #5,00 

TRAP #3 

RTS ;Return to main program 
Sm mmm em em am we we ee aw we ee ee em ee ee em ee em ee em em ee em ew ee ee eee ee ee eee ee ee ee 

Firstly, register D6 is cleared, after which the address of the array 
labelled ‘DATES’ is loaded into A4. The length of the DATES array, less 

1, is loaded into D4 as a count variable. 

The DATES array has a strange structure, as you can see if you refer 
to the data section. Its first value, 217, is the sum of the ASCII codes 
for capital ‘J’, ‘A’ and ‘N’, representing January. The number which 
follows, 0, is the offset of the January mileage totals in the SUBMIL 

array. Similarly, the third value, 205, is the sum of the ASCII 
character codes for ‘F’, ‘E’ and ‘B’, representing February. The fourth 

value, 2, is the offset within the SUBMIL array of the mileage totals for 
February, and so on through the year. It so happens that the total 
value of the ASCII codes for the first three capital letters of each 
month in the year is a unique number in each case so that we can use 
these totals to identify every individual month. 

It follows that if we were to take the total of the ASCII values for the 
three letters which have just been keyed in at the keyboard and 
compare it with each byte in the DATES array then eventually there will 
be a match. The value immediately following the matched number 
will be the value of the corresponding mileage result offset within the 
SUBMIL array. For example, if we input ‘APR’ at the keyboard then we 
shall get the code 227 from the ‘KEY’ loop. Comparing this with each 
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byte in DATES we find a match at the 7th byte. The value following 
this in DATES is 6, so the mileage total for April is at offset 6 within 

the SUBMIL array. 

In practice it works like this: The ASCII total of the entered 
characters is currently in register D5 and the DATES array is pointed 
to by A4. The instruction MOVE.B (A4)+,D6 copies a byte from DATES 
into D6 and autoincrements A4 by 1. The CMP.B D5,D6 instruction 
compares this byte with the ASCII total in D5 and the DBE@ D4,MATCH 

instruction loops back to the start of the MATCH loop if there is no 
match between the contents of D5 and D6 and D4 is greater than -1. 
This continues until either D4=-1 (no match found) or a match is 
found, in which case the Z flag will become set and the DBEQ 
instruction terminates the loop, with the A4 register pointing to the 
data immediately following the matched values, which will represent 

the index offset into SUBMIL. In the case of April this would be 6. 

A2 is then loaded with the address of the SUBMIL array and the index 
offset from DATES is loaded into D6. The next instruction, MOVE.W 
0(A2,D6),D5 copies the value contained in SUBMIL at the address 

represented by A2+D6 into D5. 

The value now in DS is the required mileage total and we are ready 
to convert it into individual character codes before displaying it on the 
screen. LOOP10 performs a similar function to L00P6, dividing the 
total in D5 by 10 until DS=0 and pushing the remainder values onto 
the stack after each division. At the end of L00P10 the result has been 
divided into separate digits which have been pushed onto the stack, 
the total digit count being held in the D4 register. 

LOOP11 pops one digit at a time from the stack into D1, adds 48 to it 
to obtain its ASCII code and calls the DISP routine. After all the digits 
have been displayed (D4=-1) it then prints the carriage return and 
line feed codes. At this point the result has been displayed on the 
screen, indented below the month name, and the program can then 
loop back to KEY, using the BRA KEY instruction, so that a further 
keyboard entry can be intercepted. 

In practice, the program keeps looping back from the BRA KEY 
instruction to ‘KEY’, printing the mileage total for every month which 
is entered at the keyboard. The only way to break this loop is to input 
the characters ‘END’ from the keyboard, whose ASCII codes add up to 
215. If you go back and look at the instructions which immediately 
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follow the ‘KEYTOT’ label, you will see that the three characters 
entered at the keyboard each have their ASCII codes added to the D5 
register. If the total of these codes becomes 215, as would be the case 
if ‘END’ were keyed in, the BEQ EXIT instruction would direct 
execution to the end of the program. 

; 
GALLS1 

MILES1 

GALLS2 

MILES2 

TOTALS 

MES1 

SUBMIL 

DATES 

MESSOFF 

MESCNT 

RESPNT 

DNUM1 DC. 

Sr iia ee ee a cee ie 

zeezezetezrztiztzeiz = 

ia. 6 Ck ee Sououwvoiwao wow ww 

ave ae ane oe F (Sw oo ww 

22,23,18,20,16,15 
25,22,20,23,20,19 
400,450,350,425,375,280 
479 ,423,398,416,423,368 
18,18,26,27,24,25 
2A? Spmlbes 424628 
380,357,496,501,478,482 
465,475,423 ,489,470,524 
14 

"TOTAL CONSUMPTION: fF. 

"TOTAL MILEAGE: , 

"AVERAGE CONSUMPTION: " 

"AVERAGE MILEAGE: ? 

"MILES PER GALLON: . 

"MAY CONSUMPTION: 5 

"MAY MILEAGE: - 

12 

217,0,205,2,224,4,227 

6,251,8,237,10,255,12 

221,14,232,16,230,18 

243,20,204,22 

0 

%41111110000000000 

24 

;Gallons year 1 

;Mileage year 1 

;Gallons year 2 

j;Mileage year 2 

;Reserve memory space 

;for calculated data 

;Headings for the 

;output of the 

;calculated data 

;Reserve memory space 

;for mileage totals 

j;Date codes and 

j;offsets for each 

;month 

;Reserve memory for 

ycurrent header 

;message address 

;Define counter for 

;counting off each 

;printed heading 

;Reserve memory 

;for storing index 

;offset of data in 

; TOTALS array 

;Store divisor no.1 
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DNUM2 DC.W 10 ;Store divisor no.2 

CENT DC.W 100 ;Store multiplier 

KEYBUF DS.B 4 ;Buffer for inputs 

DEVICE ODC.W 4 

DC.B "CON 

END ;End of program 

The first four lines of the data section contain the original data figures, 

with the gallons and mileage for year 1 followed by those for year 2. 

Each set of data is separately labelled. 

Following this is TOTALS, a reserved array of 14 words which is used 
for storing the results as they are calculated. All calculated results will 
occupy two words, irrespective of their values, because it is normally 
helpful to store data in a uniform size format. A minimum of two 
words are needed because some results are floating point decimal 
values and therefore require an appropriate amount of memory space. 

The seven text messages, with their base offset labelled ‘MES1’, form 

part of the output of the results at the end of the program and these 
have all been made the same length by padding them out with spaces 
so that it is easier to format the output neatly on the screen later on. 

SUBMIL is the label of another array reserved for results: this one being 
for the total mileage figures for each corresponding month of the two 
years. The data which goes in here is used to print out results in 
response to the keyed in month names. 

DATES is an array containing coded data representing the names of 
months of the year, together with the offsets of the mileage totals, 
which are used for indexing the results contained in SUBMIL. 

The label MESSOFF refers to the address of a message offset value 
which is initially zero. It is used to keep a record of the offset address 

of the current message text as each result is printed out. 

MESCNT is the address of a word which is used to count off each result 

as it is displayed and this has been entered directly as a binary value, 
as specified by the ‘%’ at the beginning. 

RESPNT is the label of the address containing the offset of the current 

data being referenced in the TOTALS array and which is initially zero. 
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DNUM1, DNUM2 and CENT are the addresses of the numeric constants 24, 

10 and 100 which are used in the division and multiplication 
operations. 

KEYBUF consists of 4 bytes as a buffer for keyboard inputs. 

Sorting Data 

In Chapter 6 a simple BASIC bubble sort was shown. The following 
assembly language program is an adaptation of this, in which several 
characters are sorted into alphabetic order and displayed on the 

screen. 

This listing, which is presented with only brief rem statements, 
should help you to test your understanding of the programs in this 
book. It consists of instructions which have all been previously 
demonstrated and follows the principles applied in the BASIC version 
fairly closely. Once you have worked out how this program operates, 

you will no doubt be able to expand it and adapt it for your own 

purposes. Note that it has been coded as a subroutine so that it can 

be called from other programs, therefore it terminates with an RTS 

instruction. 

A SORT PROGRAM DESIGNED TO SORT A SET OF 

ASCII CHARACTERS INTO ALPHABETIC ORDER 

w 

LOOP 1 CERI S D6 306 will count swaps 

LEA.L CHARS,A2 Offset of data in A2 

MOVEQ #6,D4 sLength of data (less 2) 

,in D4 

LOOP2 MOVE.B (A2),D1 sMove an item of data to D1 

MOVE.B 1(A2),D2 sMove the next one into D2 

CMP.B D1,D2 ;Compare the two items 

BCC NEXT ;Branch if C=0 to NEXT 

EXG D1,D2 ;Otherwise exchange the 
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;contents of D1 and De 

MOVE.B 01,(A2) ;Replace in memory 

MOVE.B D2,1(A2) ;Replace in memory 

ADDQ #1,D06 ;Increment exchange counter 
, wwe eee ew ewe ew ew ew ew ew ww ew ew ew ew ew ew ew ew ew ew ew ew ew ew ew ee ww eww ww ww ww ww wwe werner nw 

;POINT TO NEXT ITEM AND REPEAT THE LOOP 

NEXT ADDQ #1,A2 ;Point to next data item 

DBRA D4,LO00P2 ;Loop back to LOOP2 while 

704>-1 
, ween ee we ew ee ew ew ew eww ew ew ew eww eww ew ew ew ew ee ew ew ew ew ew ww eww ww ew ew www ew ew ww wr rw errr eS 

LOOP3 

CMPI #0,D6 ;Any swaps in this loop? 

BNE LOOP 1 ;1f so, go back to LOOP1 

MOVEQ #7,D4 ;Otherwise get character 

;count (less 1) in D4 

LEA.L CHARS,A2 ;Point A2 to start of 

;sorted data 

MOVE.B (A2)+,D1 ;Transfer data item to D1 

BSR DISP ;Call display subroutine 

DBRA D4,L00P3 ;Go back to LOOP3 while 

7D4>-1 

RTS ;Return from sort subroutine 

MOVEQ #-1,D3 

MOVEQ #5,D0 

TRAP #3 

RTS 

THE DATA 

DC.B "ABDFCEGH' ;Define the data to be 

sorted 

END 



Chapter 14 

Debugging, 
Instruction Formats & 

Supervisor Mode Operation 

Program Debugging 

The process of debugging a machine code program can sometimes be 
difficult and time consuming. 

With a BASIC program only two things can happen if a program is 
faulty: either the program stops and an identifying error message 
appears, or the program runs but produces erroneous results. Either 
way it is usually a simple matter to go through the listing to identify 
and correct the faults. 

A machine code program is much more difficult to debug because 
minor errors can be very difficult to detect and an examination of the 
original source listing, however well it might be annotated, will not 
necessarily reveal the problem. 

There is no universal law, other than Murphy’s Law, which 
determines that a machine code program will fail at the first attempt. 
Murphy’s Law is nevertheless powerful enough to ensure that most 
programs of any degree of complexity will surely fail, not only on the 
first attempt but probably on the second, third and fourth as well. In 
machine code bugs appear to propagate: a successful attempt to 
eliminate one type of bug seems to cause some kind of genetic 
mutation process which spawns more virulent strains of bug which are 
inured to most kinds of systematic treatment. Nevertheless, tried and 
tested methods are available which will enable you eventually to coax 

your programs into a stable condition, or even into a complete state 

of perfect health. 

Ninety percent of errors are easily traceable, since they are of a 

common and almost inevitable kind. These include: 

221 



222 First Steps in Assembly Language for the 68000 

[> Confusing absolute addresses with immediate data — the former 

require only an address value or label name such as 80000, $29D1C 

or YLABEL. The latter must be preceded by a ‘#’ sign such as 

#80000, #$29D1C or #MYLABEL. 

(> Destination errors — such as forgetting to use ADDA, MOVEA etc. 

when the destination is an address register. An assembler may 

insist that you use an ‘A’ suffix although some disassemblers may 

remove the ‘A’ when they produce a listing. Check the source 

code, not the object code for such errors. 

f> Size errors — such as forgetting whether the data in a data register 

is to be regarded as a byte, word or long word operand. 

(> Address register errors — such as forgetting that a 16-bit operand 

in an address register is automatically sign extended or that 

address registers cannot accept byte operands. 

(> Alignment errors — aligning word and long word operands at odd 

numbered addresses. 

[> Flag errors — forgetting that some operations do not affect any and 

some do not affect all of the flags; and that some operations, such 

as ABCD, do not change the zero flag if the result is zero. 

[> Conditional branching errors — a loop count variable may be 

incorrect, the loop may branch to the wrong location, or the 

wrong conditions may be specified. DBcc instructions are particu- 

larly problematic in this respect until you are used to them. 

[> Loop register errors — some loops require a register to be cleared 

before the beginning of the loop, for example when the loop is 

being used to add separate items of data to the register on each 

iteration. Always clear a register before use if you are unsure that 

it is already clear since it may contain redundant data which will 

affect your calculations. 

(> Positioning — if specific addresses are referred to in a program, 

destinations may have changed during editing or a non-relocatable 

program may have been loaded from the wrong address. 

These are only a few examples but they will serve to demonstrate some 

of the simple errors which can render an otherwise perfectly designed 

program unexecutable. 

To identify and correct these and other errors, there are a number of 

diagnostic procedures which can be performed. The following 

paragraphs describe the most elementary of these. 
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Assembly Errors 

The first line of defence is the assembly process itself. Any program 
instructions which are formally incorrect will be identified by the 
assembler as it converts the assembly language mnemonics into object 
code. A good assembler will produce an annotated source listing of its 
own, numbering all the program lines and identifying any incorrect 
instructions with an error message such as ‘Line 8: second operand 
cannot be an address register’. Only when all such errors have been 
eliminated will the assembler produce an executable object file and 
issue a message such as ‘Minor errors 0, Major errors 0’. This 

reassuring message merely means that there are no formal errors left 
in the program. Any structural or functional errors will be revealed 
later. 

Trial Run 

The second step is to load and run your program, at which point your 
program may work perfectly, you may simply get an error message 
such as ‘Error 23: division by zero’, the system may go into limbo, 

leaving you with nothing on the screen and no response from the 
keyboard, or the entire system may crash. This trial run will give you 
some idea of the scale of the problem and in some cases certain errors 
will be identified immediately. If your program was supposed to print 
a message for example, and gets no further than the first character, 
then the problem probably lies in a program loop mechanism. 

Debugging Monitor 

The next stage is to reload the program under the control of a monitor 

program. A typical monitor provides a number of useful debugging 

tools which can be used in a systematic way to test a program 

thoroughly. The most important of these are as follows: 

> Disassembly listing — this produces an output similar to the object 

code listings used in earlier chapters and is useful among other 

things for checking that jumps and branches transfer execution to 

the correct locations and that data accesses refer to the correct 

locations. 
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[> Breakpoints — very often it is not obvious where a fault is located 

in a program. A breakpoint feature allows you to assign ‘break- 

points’ to a number of key locations such as the final instructions 

of important routines. The program may then be run under 

monitor control (not necessarily from the beginning) and will 

automatically stop and return to the monitor when it encounters a 

breakpoint. At this stage you can obtain a listing of the current 

register contents and flag settings to check whether they contain the 

correct values. 

[> Trace —a single step trace mechanism, which allows you to execute 

a program one instruction at a time, will give a listing of all register 

and flag contents after the execution of every instruction. This is 

not much use for extensive tracing because the trace will follow 

every twist and turn your program takes. If you have a lot of 

branches to common subroutines, TRAP instructions or loops which 

iterate hundreds or even thousands of times then you will produce 

several miles of printer paper containing information which you can 

never hope to analyze. A trace is very useful however in cases where 

you have identified a possible error source and need to run through 

a short sequence of code to determine exactly what occurs during 

execution. 

[> Dump —a hexadecimal ‘dump’ of the contents of a specified block 

of memory can be useful to check that data is being entered or 

modified correctly. A dump will normally show the byte contents 

of about sixteen memory addresses per line and will normally 

include a listing of the corresponding printable ASCII characters. 

Systematic use of these facilities will normally be sufficient to track 

down most types of error, although you must be prepared to exercise 

a lot of patience in some cases. The important thing is to adopt a clear 

and logical approach. If object code listings, breakpoint runs, traces 

and dumps reveal no obvious errors but a particular routine will still 

not run correctly, remember the obvious fact that an error must exist 

somewhere. It may be that the error is due to faulty programming 

rather than a lack of accuracy or else you are subconsciously looking 

for one kind of error and therefore overlooking another. 

PROG6 in Chapter 13 took two days to debug, despite all evidence that 

the code was operating correctly. The fault lay not in the program but 

in a reference table in the assembler documentation, which contained 

a misprinted ASCII value! It is advisable to adopt the maxim of Sir 

Arthur Conan Doyle’s Sherlock Holmes: “When you have eliminated 
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the impossible, whatever remains, however improbable, must be the 
truth.” 

Instruction Opcode Formats 

Although it is usual to program using the 68000 instruction mnemon- 
ics, it is useful to be aware of the way in which these mnemonics are 
translated by an assembler into a machine language opcode. It is 
unlikely that you would ever want to program directly using opcodes, 
but frequently you may need to alter the opcodes in an assembled 
program. For example, if you are debugging a program and have 
loaded it into a debugging monitor, you may wish to alter a few of the 
opcodes in order to test or fine tune your object program. 

Suppose, for example, that there is some unidentified minor fault 
somewhere in your program which prevents it from operating 
correctly. On of the most effective ways of tracing faults is to use a 
‘trace’ utility to obtain a listing of all register contents as each 
instruction is executed one at a time. If you have any TRAP 
instructions in the program, the trace utility will divert execution to 
an Operating system trap routine and you will have to trace all the way 

through that before returning to your own code — a time consuming 
and unnecessary procedure. It would be a lot simpler if you could 
temporarily convert every TRAP code into a NOP code so that the trap 
routines are not actually called during debugging. 

You may also wish to insert additional instructions into the program, 
without having to go to all the trouble of altering the source listing and 
re-assembling the entire program. 

A TRAP instruction is coded as a two byte opcode: 

01001110 0100XXXxX ($4E4?) 

The most significant 12 bits of this opcode represent the TRAP 
instruction itself and the four least significant bits (represented by 
*XXXX’ are reserved for the code of the type of trap required (i.e. traps 
0 to 15). The opcode for a NOP instruction is: 

01001110 01110001 ($4E71) 
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From this you can see that whatever the value of the low byte of a 

TRAP instruction might be, the higher byte is exactly the same as the 

higher byte of a NOP instruction. A TRAP instruction can therefore be 

transformed into a NOP instruction simply by changing the lower byte 

of the TRAP to $71. 

Most other instructions are more complicated than this although some 

other instructions which you are likely to want to change to NOP 

during debugging, such as JMP, JSR and TRAPV are also two byte 

instructions with their higher byte set to $4E. 

If you look at the first instruction used in the programs in the 

preceding chapters, MOVE@ #0,D1 you will see from the object code 

listings that this is assembled as $7200. 

In this case the object code follows the pattern: 

0111RRRO DDDDDDDD 

in which 0111 and the single 0 is the unique opcode for any MOVEQ 

instruction, RRR is a three bit code for the register referred to in the 

instruction and the eight Ds represent the single byte binary number 

which is loaded into the register. The three byte code for D1 is 001 

and the immediate value is 00000000, so the complete opcode for this 

instruction 1s: 

01110010 00000000 ($7200) 

More complex instructions are encoded in a similar way but 

incorporating a data size specifier and an effective address field, 

indicating the operands containing the values which collectively 

specify the physical address or addresses of the instruction operands. 

The effective address field incorporates a mode field, indicating the 

addressing mode used by the instruction. For example, the instruction 

MOVE.B2(A2),D4 moves a byte from the effective address specified by 

the sum of the contents of A2 plus 2 into the low order byte of register 

D4. The opcode for this instruction consists of four bytes: 

0001 000 100 101 010 00000000 00000010 ($112A0002) 

The highest four bits, 0001, are the opcode for a byte move operation. 

The next three bits, 000, are a code indicating the addressing mode 

used for the destination operand (data register direct), the next three 
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bits, 100, represent the code number for the destination register, D4. 
The next three bits (101) represent the addressing mode used for the 
source operand (address register indirect with displacement) and the 
next three bits (010) are the code for address register A2. The final 16 
bits are the opcode for the displacement (00000000 00000010). 

It will be clear from this that instruction encoding is a complex 
business and it is unfortunately not possible, because of the way in 
which opcodes are irregularly split up into varying sized bit fields in 
different instructions, to construct a simple one-for-one table showing 
how various opcodes correspond to their assembly language mnemon- 
Ics. 

In the dark ages of computing it was usual to program in assembly 
language by hand, carefully working out the opcodes for each 
instruction and recording them on paper before copying them into the 
computer. 

With the availability of relatively inexpensive assemblers and disas- 
semblers the necessity for all this effort has disappeared so that it is 
possible not only to encode the original source listing using mnemon- 
ics but also to edit the assembled object code in this way. Most 
monitor programs will allow you to create spaces in assembled code 
and to insert or modify existing instructions using standard 68000 
mnemonics as well as hex values. 

Supervisor Mode Operation 

In the preceding chapters, numerous references have been made to 
differences in operation between supervisor and user mode on the 
68000. © 

Supervisor mode is something which you would normally have no 
direct contact with since it always operates automatically at ‘manage- 
ment’ level whenever it is required. Supervisor mode is initiated 
automatically when the system is powered up and allows the operating 
system to use certain ‘privileged’ instructions to allocate memory, to 

establish contact with the console and to set various pointers such as 
the stack pointer, the PC register and the initial contents of the status 
register. Once control is handed over to user mode (by zeroing the ‘S’ 
flag in the status register) it usually remains there, switching 
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temporarily back to supervisor mode whenever certain events take 

place such as TRAP instructions and other exceptions, I/O operations, 

multi-processor communications and access by user programs to 

operating system routines. From user mode it is impossible to select 

supervisor mode directly since the instructions which can do this are 

privileged. When user programs initiate a mode switch, such as with 

a call to a TRAP routine, supervisor mode is automatically selected for 

the duration of the operation and then returns to user mode 

immediately afterwards. 

Where a user program is running in a multi-user environment in 

which a number of different programs are competing for the 

processor’s attention, the system must arbitrate between the claims of 

different programs, ensuring that no program can use, modify or 

destroy the contents of other programs without pre-determined 

authority. This protection extends to the execution of certain key 

operations such as I/O transactions. It could be catastrophic if one 

user were able to mask interrupts or communicate freely with external 

devices if these operations were to interfere with the efficient running 

of other processes. The operating system must therefore control and 

coordinate these operations so that the system as a whole runs 

smoothly and continuously. 

The visible consequence of any attempt by a program to display 

anti-social tendencies is that the operating system, functioning in 

supervisor mode, will intercept and prevent such actions, either 

redirecting execution to some corrective mechanism which smoothly 

maintains law and order or to some customized system exception 

routine which displays an error message and excludes the offending 

program from current system operation. 

Certain 68000 instructions are specifically designed for use by the 

operating system running in supervisor mode. These are mostly 

instructions which are concerned with loading pre-determined values 

into system registers such as the system byte of the supervisor register 

during system initialization and for obvious reasons may not be used 

in applications programs. In user mode, any attempt to use these 

privileged instructions is interrupted by an exception mechanism. 

These special instructions are ANDI to SR, EORI to SR, MOVE to SR, 

MOVE USP, ORI to SR, RESET, RTE and STOP. 

You will notice that most of these privileged instructions are ones 

which can be used directly to modify the contents of the SR register. 
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The lower byte of the SR register, the CCR, can be accessed freely in 
user programs and a separate set of corresponding instructions is 
provided for this purpose. 

Memory Management System 

Under normal circumstances there are very few problems associated 
with addressing memory locations. When you need to execute a 
program, address data or call a subroutine which is external to your 
Own program you simply program the appropriate instruction and the 
system itself works out the correct address for the required destina- 
tion. 

When the system is supporting a multi-user environment however, 
the situation is considerably more complex. You may not be the only 
user of the system and your current program may not be the only one 
active at any one time. 

You can imagine a situation in which your precious program, which 
may not be considered by the system to have the highest priority, may 
be located somewhere amongst millions of bytes of memory, fighting 
for its existence amongst bigger and more important programs which 
might at any moment invade your stored data and wipe out your own 
program. 

Furthermore, there is the danger that your own program may alter 
vital flags or memory pointers and disrupt the functioning of other 
processes in the system. 

With this in mind you may feel that you could lead a far less traumatic 
existence if you could write straightforward programs and expect the 
system to work out for itself exactly where and when your code should 

reside in physical memory and be executed; at the same time making 
sure that no other users have access to your own, private, code and 

data. 

The memory management unit (MMU) of the 68000 is designed to do 
precisely this. The ordinary applications programmer need have no 
detailed understanding or knowledge of the way in which a multi- 
user, multi-tasking system is configured. 
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Essentially the MMU enables the operating system to allocate memory 

into discrete blocks called memory spaces — some only being available 

in supervisor mode, some in user mode, some containing data, some 

containing code and some containing code and data. 

The MMU is selectively able to separate these spaces so that a ‘task’ 

operating within one address space may be unable to access either the 

code or the data belonging to another task. The operating system itself 

can be protected in such a way that although it cannot be hijacked or 

altered by a user program, its code can be accessed by user programs 

under supervisor mode control so that key subroutines such as 

peripheral control and communication routines can be used without 

causing any harm. 

Since the system has more extensive responsibilities than to concern 

itself exclusively with the operation of one single user’s particular 

program, it is designed to be task oriented rather than program 

oriented. In simple terms, a task is simply a complete and coherent set 

of instructions which together perform a particular function. The 

memory management system holds a table containing details of the 

position and status of all the tasks currently resident in the system, 

enabling the operating system to maintain a smooth flow of execution 

throughout the system, switching back and forth between different 

tasks and between user and supervisor mode where required. 



Afterword 

The aim of this book has been to explain and demonstrate the main 
concepts of assembly language programming and to provide you with 
enough knowledge and understanding to be able to write some fairly 
sophisticated programs of your own. 

The subject of assembly language is a large and complex one and there 
is a great deal more to learn. The next step is to go through the 
instruction glossary in Appendix B, which will help to reinforce your 
understanding of the instructions which you have learned and to 
discover some new ones which have not been included in the previous 
chapters. 

After that, you may wish to go a stage further and buy a more 
technical book which covers the subject in a more formal way and 
which will introduce you to some of the finer points of programming. 

It is important that you should be able to relate the material in this 
book to the operation of you own system and therefore it is essential 
to obtain some documentation which explains how to load and execute 
machine code programs and how to access the graphics and other 
service routines provided in your system. 

231 
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There are other topics which have not been covered here and which 

may be of special interest to you. These include interfacing with high 

level languages such as Pascal, programming associated processors 

such as the 68008, 68010 and 68020 and using devices such as the 6820 

PIA and the 6850 ACIA. You may also wish to go much more deeply 

into the subject of system architecture than we have here and if you 

ultimately wish to become involved in system design then you will 

need much more precise and extensive technical details of system 

operation. 

For complete, detailed technical information on most aspects of 68000 

processor operation then the essential reference book is Motorola’s 

own 16-bit Microprocessor User’s Manual, available from book- 

shops. 

You will by now appreciate that aside from the technical aspects of 
assembly language programming, there is scope for a lot of ‘creative’ 
development. Any potter will tell you that no matter how academically 
expert you are on the molecular behaviour of clay, the shape in which 
it finally ends up depends on the skill and creativity of the craftsman. 

The kinds of programs which you fashion with a computer language 
depend a great deal on the way in which a language is structured. 
Artificial intelligence programmers mostly use programs like LISP 
and Prolog because those languages are structured in such a way that 
they suit that particular kind of application. The languages themselves 
virtually suggest the way in which you set about a problem. Assembly 
language on the other hand is about as structured as the potter’s lump 
of clay, and there is plenty of scope for twisting your programs into 
such weird and ugly shapes that even your computer will refuse to 
have anything to do with them. The worst thing you can do is to sit 
down and start a program without the slightest idea of how it is 
supposed to end up. Assembly language is not like that. 

Ultimately, any kind of program is an expression of what is going on 
in your imagination. The careful definition of the problem which you 
are working on usually suggests to you the kinds of data structures 
which you need for its solution. If you can get into the habit of 
thinking in structures, of imagining a real-world problem as sets of 
efficiently interrelated sets of data, then you can virtually formulate 
your programs before you even sit in front of the keyboard. Assembly 
language itself is simply a means of manipulating and expressing those 
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res and with practice and familiarity you should have no 
ilty in achieving a high level of proficiency in a relatively short 
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Appendix A 

Instructions by Category 

Data Movement 

EXG Exchange registers 
LEA Load Effective Address 
LINK Link and Allocate 
MOVE Move data 
MOVEA Move address 
MOVEM Move multiple 
MOVEP Move data to peripheral 
MOVEQ Move quick 
PEA Push effective address 
SWAP Swap register halves 
UNLK Unlink 

Integer Arithmetic 

ADD Add binary 
ADDA Add address 
ADDI Add immediate 
ADDQ Add quick 
ADDX Add extended 
CLR Clear operand 
CMP Compare 
CMPA Compare address 
CMPI Compare immediate 
CMPM Compare memory 
DIVS Signed division 
DIVU Unsigned division 
EXT Sign extend 
MULS Signed multiplication 
MULU Unsigned multiplication 
NEG Negate 
NEGX Negate with extend 
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SUB 
SUBA 

SUBI 

SUBQ 

SUBX 

TAS 

TST 

ASL 

ASR 

LSL 

LSR 

ROL 

ROR 

ROXL 

ROXR 

BIST 

BSET 

BCLR 

BCHG 

First Steps in Assembly Language for the 68000 

Subtract binary 
Subtract address 

Subtract immediate 

Subtract quick 
Subtract with extend 
Test and set 

Test 

Logical 

Logical and 
And immediate 
Logical or 
Or immediate 
Logical exclusive or 
Eor immediate 
Logical complement 

Shift & Rotate 

Arithmetic shift left 
Arithmetic shift right 
Logical shift left 
Logical shift right 
Rotate left 
Rotate right 
Rotate left with extend 
Rotate right with extend 

Bit Manipulation 

Bit test 
Bit test and set 

Bit test and clear 

Bit test and change 



ABCD 

SBCD 

NBCD 

Appendix A - Instructions by Category 

BCD Operations 

Add decimal 

Subtract decimal 

Negate decimal 

Program Control 

Bcc 

DBcc 

DBRA 

$cc 

BRA 

BSR 

JMP 

JSR 

RTR 

RTS 

ANDI to SR 

EORI to SR 

MOVE to SR 

MOVE USP 

ORI to SR 

RESET 

RTE 

STOP 

CHK 

TRAP 

TRAPV 

ANDI to CCR 

EORI to CCR 

MOVE to CCR 

MOVE from SR 

ORI to CCR 

Branch on condition 

Decrement, test and branch 
Decrement and branch 

Set from condition 
Unconditional branch 

Branch to subroutine 

Unconditional jump 
Jump to subroutine 
Return & restore CCR 

Return from subroutine 

System Control 

AND immediate to SR 

EOR immediate to SR 

Move to SR 

Move user stack pointer 
OR immediate to SR 

Reset 
Return from exception 
Load SR and stop 
Check register 

Trap 
Trap on overflow 

AND immediate to CCR 

EOR immediate to CCR 

Move to CCR 

Move from SR 

OR immediate to CCR 

239 
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Appendix B 

Instruction Glossary 

Key to Abbreviations 

Instruction Mnemonics 

The following abbreviations are used in the glossary to represent 
registers operands: 

An Any address register 
Dn Any data register 
Rn Any register 
Ri Any register being used as an index 

Addressing Modes 
The following table indicates how the various addressing modes are 
classified under the effective address categories: Data, Memory 
(shown as Mem in the table), Contro/ and Alterable (shown as Alt). 

Mode Symbol Data) Mem Control Alterable 

Data reg direct Dn Xx Xx 
Addr reg direct An X 
Absolute nnnnn xX x xX 
Immediate <imm> xX X 
Addr reg indirect (An) xX xX X X 
with predecrement -(An) Xx Xx xX 
with postincrement (An)+ X X xX 
with displacement d16(An) D4 X xX X 
with index d8(An,Ri) X X X X 

PC relative d16(PC) X X X 
with index d8(PC,Ri) X xX X 

The following codes, based on these classifications, are used in the 
glossary to specify the effective address of certain operands: 

241 
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<ea> Effective Address — any addressing mode can be used 

<aea) Alterable Effective Address 

<cea> Control Effective Address 

<dea> Data Effective Address 

<caea> Control Alterable Effective Address 

<daea) Data Alterable Effective Address 

<maea> Memory Alterable Effective Address 

Operand Sizes 

The operand sizes applicable to the instructions are coded as B. 

(byte), W. (word) and L. (long word). 

Flags 
The N, Z, V, C and X flags are listed in the glossary under each 

instruction heading. The codes used to indicate the effect of individual 

instructions on the flags are as follows: 

0 flag reset 
1 flag set 
A flag affected by instruction. 

> flag affected but setting undefined 

Blank spaces under the flags indicate that they are not altered by the 

instruction. 

ABCD (decimal addition) 

Addressing Modes: 

ABCD Dn,Dn 

ABCD -(An),-(An) 

Mnemonic Operation Size Flags: NZ VCX 

ABCD Decimal addition B. > AP AA 

Description: 

ABCD is a BCD addition operation which adds a binary coded decimal 
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source operand and the value of the extend flag to a destination 
operand with the result being stored in the destination. Note that the 
zero flag is zeroed if the result is greater than zero, Otherwise it is 
unchanged. 

ADD, ADDA, ADDI, ADDQ 

and ADDX (binary addition) 

Addressing Modes: 

ADD <ea>,Dn 

ADD Dn,<maea> 

ADDA <ea>,An 

ADDI #<imm>,<daea> 

ADDQ ¥<imm>,<aea> 

ADDX Dn,Dn 

ADDX -(An) ,-(An) 

Mnemonic Operation Size Flags: NZ VCX 

ADD Add binary B.W.L. AAAAA 
ADDA Add address W.L. 
ADDI Add immediate Bi Wirihe AAAAA 
ADDQ Add quick oe AAAAA 
ADDX Add extended B.W.L. AAAAA 

Description: ADD adds a source to a destination operand and stores 
the result in the destination. 

The ADDA form of ADD specifies that the destination operand must be 
an address register and that the data size must be either word or long. 
Word sized results are sign extended. No flags are affected. 

The ADDI form of ADD specifies that the source operand must be an 
immediate value. 

The ADDQ form of ADD specifies that the source operand must be an 
immediate value in the range | to 8. 

The ADDX form of ADD specifies that the extend bit is added to the 
source operand before it is added to the destination. 
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Note that with ADD@ the flags are not affected if the destination is an 

address register. With ADDX the zero flag is reset if the result is greater 

than zero, otherwise it is unchanged. 

AND, ANDI, ANDI to CCR 

and ANDI to SR (Logical AND) 

Addressing Modes: 

AND <dea>,Dn 

AND Dn,<maea> 

ANDI #<imm>,<daea> 

ANDI #<imm>,CCR 

ANDI #<imm>,SR 

Mnemonic Operation Size Flags: NZVCX 

AND Logical AND B.W.L. AAO 0 

ANDI AND immediate B Wa Ls AAO 0 

ANDI to CCR AND immediate to CCRB. AAAAA 

ANDI to SR AND immediate to SR W. AAAAA 

Description: AND performs a logical AND operation between a source 

and a destination operand with the result being stored in the 

destination. 

ANDI performs the same function but the source operand must be an 

immediate value. 

ANDI to CCR ANDs an immediate operand with the low order byte of 

the status register. 

ANDI to SR is a privileged instruction which ANDs an immediate 

operand with the entire 16 bits of the status register. 

Note that with ANDI to CCR and ANDI to SR the flags are affected 

according to the bit values of the immediate value. 
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ASL & ASR (arithmetic bit shifts) 

Addressing Modes: 

SLDn,Dn 

ASL #<imm>,Dn 

ASL <maea> 

ASR Dn,Dn 

ASR #<imm>,Dn 

ASR <maea> 

Mnemonic Operation Sie ides NZ Vi 

ASL Arithmetic shift left B.W.L. AAAAA 
ASR Arithmetic shift right B.W.L. AAAAA 

Description: ASL shifts the bits in an operand to the left, moving the 
most significant bit of the operand into both the carry and extend flags 
and moving a zero into the least significant bit position. 

ASR shifts the bits in an operand to the right, moving the least 
significant bit of the operand into the carry and extend flags. The high 
order (sign) bit is replicated into its original position. 

FIGURE B-1. ASL. 

FIGURE B-2. ASR. 
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Bcc, BRA & BSR (branch instructions) 

Addressing Modes: 

BCC <label> 

BRA <label> 

BSR <label> 

gt
 Ee Be he tt 2 ee 

Mnemonic Operation Size Flags: NZVCX 

Bcc Branch conditionally B.W. 

BRA Branch always B.W. 

BSR Branch to subroutine B.W. 

Description: BRA is a relative branch instruction which redirects 

execution to a location relative to its own position, indicated by a label 

representing a signed 8- or 16-bit displacement value. 

BSR is similar to BRA except that it redirects execution to a subroutine. 

The return address is automatically stacked so that a return can be 

made to the instruction immediately following the BSR instruction. 

Bcc is a conditional relative branching instruction which branches to 

a destination location only if the specified conditions are true. 

The conditions are incorporated in the instruction name: e.g. BEQ, 

BNE etc. and are as follows: 

EF 

Condition Meaning Flags 

cc Carry clear C=0 
CS Carry set C=1 
EQ Equal Z=1 
F False 0 
GE Greater or equal (N=1 & V=1) or (N=0 & V=0) 

GT Greater than (N=1 & V=1 & Z=0) 

or (N=0 & V=0 & Z=0) 

HI High C=0 & Z=0 
LE Less or equal Z=1 or (N=1 & V=0) or (N=0 & V=1) 

LS Low or same C=1 or Z=1 
LT Less than (N=1 & V=0) or (N=0 & V=1) 
MI Minus N=1 
NE Not equal Z=0 
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PI Plus N=0 
T True ] 
vc Overflow clear V=0 
vs Overflow set V>J 

BCHG, BCLR, BSET 

and BTST (bit testing instructions) 

Addressing Modes: 

BCHG Dn,<daea> 

BCHG #<imm>,<daea> 

BCLR Dn,<daea> 

BCLR #<imm>,<daea> 

BSET.Dn,<daea> 

BSET #<imm>,<daea> 

BTST Dn,<dea> 

BIST #<imm>,<dea> 

Mnemonic Operation Size Flags: NZ VC X 

BCHG Bit test and change _B.L A 
BCLR Bit test and clear B.L A 
BSET Bit test and set B.L A 
BTST Bit test B.L A 

Description: BCHG tests a specified bit in a destination operand and 
sets or resets the zero flag accordingly. The bit number is specified in 
the source operand (modulo 32 for Dn source and modulo 8 for 
#<imm> source). Following this the state of the specified bit is 
changed (0 becomes | or 1 becomes 0). 

BCLR works similarly except that after the test the specified bit is 
always left reset. 

BSET works similarly except that after the test the specified bit is 
always left set. 

BTST works similarly except that after the test the specified bit is 
always left unchanged. 
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CHK (check register against bounds) 

Addressing Modes: 

CHK <dea>,Dn 

Se ee ae ee ee 

Mnemonic Operation Size Flags: NZVCX 

CHK Check register W. Av? 7a 

against bounds 

Description: CHK is intended to allow you to check that a specified 

boundary allocated to a section of memory, such as an array, has not 

been exceeded. The source operand is the boundary value (e.g. the 

length of the array) as a signed integer and the destination register 

holds the value to be checked. If the destination value is less than zero 

or if it is greater than the source operand then a CHK trap exception 

is initiated. The N flag is set if the destination is less than zero and 

reset if it is greater than the source operand, otherwise it remains as 

it was. The Z, V & C flags may also be affected but their values have 

no significance. 

CLR (set to zero) 

Addressing Modes: 

CLR <daea> 

Mnemonic Operation Size . Flags: NZ VC X 

CLR Reset destination B.W.L 0100 

Description: The destination operand is zeroed. To zero a whole 

register then the operation must be of long size. 

CMP, CMPA, CMPI & CMPM (compare) 

Addressing Modes: 

CMP <ea>,Dn 

CMPA <ea>,An 
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CMPI #<imm>,<daea> 

CMPM (An)+,(An)+ 

a a 
Mnemonic Operation oie series: N ZV CX, 
CMP Compare source and 

destination B.W.L AAAA 
CMPA Compare address a AAAA 
CMPI Compare immediate B.W.L. AAAA 
CMPM Compare memory Bs Wai AAAA 

Description: (MP Compares a source with a destination operand 
without altering either and alters the condition flags accordingly. The 
destination must be a data register. 

CMPA is the same as CMP but the destination operand must be an 
address register. 

CMPI is the same as CMP but the source operand must be an immediate 
value. 

CMPM is the same as CMP but the source and destination operands are 
addressed in postincrement mode, allowing two separate sequential 
blocks of data in memory to be compared under the control of a 
program loop. 

DBcc & DBRA 

(decrement and branch instructions) 

Addressing Modes: 

DBcc Dn,<label> 

DBRA Dn,<label> 

Mnemonic Operation Size” Flags: (N2ZVC X 

DBcc Decrement and W. 
branch conditionally 

DBRA Decrement and W. 
branch unconditionally 
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Description: DBRA decrements the source register by 1. If the source 

register is then greater than —1 then execution is branched to a relative 

destination specified by the label, otherwise execution continues with 

the next instruction. The label represents a 8- or 16-bit signed 

displacement. 

DBcc is similar to DBRA except that before the register is decremented, 

a specified condition is tested. If the condition is nor true then the 

decrementation and register test is performed as for DBRA. If the 

condition is true then no operation is performed and execution 

continues with the following instruction. 

The instruction DBE@ D4,L00P for example will branch execution to 

a destination labelled ‘L00P’ until either D4 equals —1 or the Z flag is 

set. 

The conditions are incorporated in the instruction name: e.g. DBEQ, 

DBNE etc. and are as follows: 

SIDS Ay 2 eS ee 

Condition Meaning Flags 

CC Carry clear C=0 

CS Carry set C=1 

EQ Equal Z=1 

F False 0 

GE Greater or equal (N=1 & V=1) or (N=0 & V=0) 

GT Greater than (N=1 & V=1 & Z=0) 

. or (N=0 & V=0 & Z=0) 

HI High C=0 & Z=0 

LE Less or equal Z=1 or (N=1 & V=0) or (N=0 & V=1) 

LS Low or same C=1 or Z= 

LT Less than (N=1 & V=0) or (N=0 & V=1) 

MI Minus N=] 

NE Not equal Z=0 

PI Plus N=0 

T True ] 

vc Overflow clear V=0 

VS Overflow set V=1 
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DIVS & DIVU (binary division) 

Addressing Modes: 

DIVS <dea>,Dn 

DIVU <dea>,Dn 

Mnemonic Operation Sizem Plage ON ZV CX 

DIVS Signed division W. AAAO 
DIVU Unsigned division W. AAAO 

Description: DIVS divides a 32-bit destination operand (the dividend) 
by a 16-bit source operand (the divisor) and stores the 32-bit result in 
the destination. The quotient of the result is in the lower word of the 
destination location and the remainder is in the higher word. The sign 
of the remainder is the same as that of the original dividend unless the 
remainder is zero (Z=1). 

The sign of the quotient is indicated by the status of the N flag. 

DIVU performs the same operation but using unsigned operands. 

EOR, EORI, EORI to CCR 

and EORI to SR (exclusive OR operations) 

Addressing Modes: 

EOR Dn,<daea> 

EORI #<imm>,<daea> 

EORI #<imm>,CCR 
EORI #<imm>,SR 

Mnemonic Operation Size Flags; NZVCX 

EGR Logical exclusive OR B.W.L. AAO 0 
EORI EOR imm. B.W.L. AAO 0 
EORI to CCR EOR imm. to CCR B AAAAA 
EORI to SR EOR immediate toSR_ W AAAAA 



252 First Steps in Assembly Language for the 68000 

Description: EOR performs a logical EOR operation between a source 

and a destination operand with the result being stored in the 

destination. 

EORI performs the same function but the source operand must be an 

immediate value. 

EQRI to CCR EORs an immediate operand with the low order byte of 

the status register. 

EORI to SR is a privileged instruction which EORs an immediate 

operand with the entire 16 bits of the status register. 

Note that with EORI to CCR and EORI to SR the flags are affected 

according to the bit values of the immediate value. 

EXG (exchange registers) 

Addressing Modes: 

EXCH Rn,Rn 

Mnemonic Operation Size Flags; NZ VCX 

EXG Exchange registers ie 

Description: Exchanges the entire 32-bit contents of the source and 

destination registers. 

EXT (sign extend) 

Addressing Modes: 

EXT Dn 

Mnemonic Operation Size. .Flags: NZ ViGae 

EXT Sign extend W.L. AAO 0 

Description: copies bit 7 of a data register into bit positions 8 to 15 or 

bit 15 into bit positions 16 to 31, depending on the operation size 

specified. 
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JMP & JSR (jump operations) 

Addressing Modes: 

JMP <cea> 

JSR <cea> 

Mnemonic Operation Size’ Flags: NZ'V CX 

JMP Jump 
JSR Jump to subroutine 

Description: JMP transfers execution to a specified address. 

JSR transfers execution to a subroutine at a specified address. The 
return address is automatically stacked so that on return, execution 
can continue with the instruction following the JSR instruction. 

LEA (load effective address) 

Addressing Modes: 

LEA <cea>,An 

Mnemonic Operation Sewers: NZ VCs 

LEA Load effective 
address 

Description: Loads a specified address into an address register. 

LINK (link and allocate) 

Addressing Modes: 

LINK An,#<imm> 

Mnemonic Operation Size Flags: NZVCX 

LINK Link and allocate 
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Description: LINK is used to allocate a stack frame area within the 

stack. 

The contents of the address register specified in the instruction are 

pushed on to the stack. The stack pointer value is then copied into the 

address register and an immediate 16-bit negative displacement value 

is added to the stack pointer, thus creating a reserved area within the 

stack whose base is held in the address register. 

See also ‘UNLK’. 

LSL & LSR (logical bit shifts) 

Addressing Modes: 

LSL Dn,Dn 

LSL #<imm>,Dn 

LSL <maea> 

LSR Dn,Dn 

LSR #<imm>,Dn 

LSR <maea> 

te tw as oo ee a ae ee 

Mnemonic Operation Size Flags: NZVCX 

LSL Logical shift left B.W.L. AAOAA 

LSR Logical shift right B.W.L. AAOAA 

Description: LSL shifts the bits in an operand to the left, moving the 

original contents of the most significant bit into the carry and extend 

flags and moving a zero into the least significant bit position. 

LSR operates similarly except that the bits are shifted to the right, the 

original least significant bit being copied into the carry and extend 

flags and a zero being shifted in to the most significant bit position. 

Multiple shifts are performed by using a count value in the source 

operand. 
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FIGURE B-3. LSL. 

FIGURE B-4. LSR. 

MOVE (move data) 

Addressing Modes: 

MOVE <ea>,<daea> 

MOVEA <ea>,An 
MOVEM <register list>,-(An) 

MOVEM <register list>,<caea> 

MOVEM (An)+,<register list> 

MOVEM <cea>,<register list> 

MOVEP Dn,d(An) 
MOVEP d(An),Dn 
MOVEQ £<imm>,Dn 

MOVE <dea>,CCR 
MOVE <dea>,SR 

MOVE SR,<daea> 

MOVE USP,An 
MOVE An,USP 

Mnemonic Operation Size Flags: NZ VC X 

MOVE Move data von AAO 0 

MOVEA Move address 
MOVEM Move multiple 
MOVEP Move to peripheral 
MOVEQ Move quick aa 2. a i os (so 

| al ie oc. 8 

AAO 0 
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MOVE to CCR Move to CCR W AAAAA 

MOVE to SR Move to SR W. AAAAA 

MOVE from SR Move from SR W. 

MOVE USP Move user stack ptr L 

Description: MOVE copies the contents of a source location into a 

destination location. 

MOVEA is the same as MOVE except that the destination must be an 

address register. The flags are not affected. 

MOVEM copies the contents of a specified list of registers on to the stack 

or into an area of memory. MOVEM is also used to retrieve data which 

has been stored previously by a MOVEM command. If the addressing 

mode used with MOVEM is a control mode or (An)+ then the registers 

are copied in the order DO to D7 then AO to A7. If the -(An) mode 

is used then the registers are loaded in the order A7 to AO then D7 to 

DO. 

MOVEP copies two or four bytes of data from a data register into 

alternate destination locations, or from alternate source locations into 

a data register. MOVEP is used with peripheral interface units to 

exchange data with peripheral devices. The interface units are 

configured in such a way that data must be passed in alternate rather 

than sequential byte units. 

MOVE@ copies an 8-bit immediate value into a register. The higher 

three bytes of the register are sign extended by the operation. If the 

destination is an address register then the flags are not affected. 

MOVE to CCR moves the low order byte of a 16-bit operand into the 

CCR byte of the status register. 

MOVE to SR is a privileged instruction which moves a 16-bit operand 

into the entire status register. 

MOVE from SR moves the entire contents of the status register into a 

destination location. 

MOVE USP is a privileged instruction which copies the user stack 

pointer (A7) contents into an address register or vice versa. 
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MULS and MULU (multiply) 

Addressing Modes: 

MULS <dea>,Dn 

MULU <dea>,Dn 

Mnemonic Operation bizese’ Flags: N Z«eG.X 

MULS Signed multiply W. AAO 0 
MULU Unsigned multiply W. AAO 0 

Description: MULS multiplies a signed 16-bit source operand and a 
signed 16-bit destination operand with the 32-bit signed result being 
stored in the destination register. 

MULU operates similarly but with unsigned operands and yields an 
unsigned result. 

NBCD (negate decimal witu extend) 

Addressing Modes: 

NBCD <daea> 

Mnemonic Operation Size ,urlags: INZ V Cars 

NBCD Negate decimal B.. Renae AN 

Description: NBCD subtracts the binary coded decimal destination 
operand and the extend flag from zero and stores the result in the 

destination. Note that the Z flag is zeroed by a NBCD result greater 
than zero, otherwise it is unchanged. 
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NEG and NEGX (negate and negate with extend) 

Addressing modes: 

NEG <daea> 

NEGX <daea> 

Se Re repr ete cia hace atl ane 

Mnemonic Operation Size Flags: NZ VCX 

NEG Negate binary B.W.L. AAAAA 

NEGX Negate with extend 8B.W.L. AAAAA 

Description: NEG subtracts the destination operand from zero and 

stores the result in the destination. 

NEGX subtracts the destination operand and the extend flag from zero 

and stores the result in the destination. NEGX is similar to NBCD except 

that it is a binary rather than a decimal operation. Note that the Z flag 

is zeroed by a NEGX result greater than zero, otherwise it is 

unchanged. 

NOP (no operation) 

Addressing Modes: 
NOP (implicit) 

eee
 

Mnemonic Operation Size Flags;s NZ VC X 

NOP No operation 

Description: NOP occupies two bytes of memory space in the code but 

has no effect, other than to advance the program counter by two. 

NOT (logical not) 

Addressing Modes: 
NOT <daea> 

a a ae a bape oe ere arenas ea are ee 

Mnemonic Operation Size Flags: NZ VCX 

NOT Logical complement B.W.L. AAO 0 
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Description: NOT produces the 1’s complement of the destination 
operand, storing the result in the destination. 

OR, ORI, ORI to CCR 

and ORI to SR (logical OR operations) 

Addressing Modes: 

OR <dea>,Dn 

OR Dn,<maea> 

ORI #<imm>,<daea> 

ORI #<imm>,CCR 

ORI #<imm>,SR 

Mnemonic Operation Size Flags: NZ VCX 

OR Logical OR B.Wals AAO 0 
ORI OR immediate Bu Wels AAO 0 
ORI to CCR OR immediate to CCRB. AAAA 
ORI to SR OR immediate to SR W. AAAA 

Description: 0R performs a logical OR operation between a source and 
a destination operand with the result being stored in the destination. 

ORI performs the same function but the source operand must be an 
immediate value. 

ORI to CCR ORs an immediate operand with the low order byte of the 
Status register. 

ORI to SR is a privileged instruction which ORs an immediate operand 
with the entire 16 bits of the status register. 

Note that with ORI to CCR and ORI to SR the flags are affected 
according to the bit values of the immediate value. For every set bit 
in the immediate value the corresponding flag is set, otherwise it is 
unchanged. 
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PEA (push effective address) 

Addressing Modes: 
PEA <cea> 

Mnemonic Operation Size Flags: NZ VCX 

PEA Push effective addr. L. 

Description: PEA calculates the effective address of the operand and 

pushes it, as a long word, on to the stack. 

RESET (reset external devices) 

Addressing Modes: 
RESET (implicit) 

Mnemonic Operation Size Flags: NZ VCX 

RESET Reset 

Description: RESET is a privileged instruction which resets the reset 

lines, resetting all external devices. 

ROL, ROXL, ROR 

and ROXR (bit rotation instructions) 

Addressing Modes: 

ROL Dn,Dn 

ROL #<imm>,Dn 

ROL <maea> 

ROXL Dn,Dn 

ROXL #<imm>,Dn 

ROXL <maea> 

ROR Dn,Dn 

ROR #<imm>,Dn 

ROR <maea> 

ROXR Dn,Dn 

ROXR #<imm>,Dn 

ROXR <maea> 
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Mnemonic Operation nize ae Plagss NZ VC X 

ROL Rotate left B.W.L. AAOA 
ROXL Rotate left with extend B.W.L. AAOAA 
ROR Rotate right BeWetss AAOA 
ROXR Rotate right with extend B.W.L. AA Oca A 

Description: ROL rotates the bits in the destination operand to the left, 
copying the original high order bit into the carry flag and also copying 
it into the least significant bit position. The source operand specifies 
the number of times the destination operand is rotated; if the source 
is immediate it must be in the range 1 to 8. A memory operand (maea) 
can only be rotated once and the operand must be word sized. 

ROXL works the same way except that the high order bit is copied into 
the extend flag as well as the carry flag. The previous value of the 
extend flag is copied into the low order bit position. 

ROR rotates an operand to the right, copying the low order bit of the 
operand into the carry flag and also copying it into the high order bit 
position. 

ROXR is similar to ROR except that the low order bit is copied into both 
the carry and extend flags and the previous extend flag value is copied 
into the high order bit. 

FIGURE. B-5. ROL. 

FIGURE B-6. ROXL. 
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fiero = 
FIGURE B-7. ROR. 

FIGURE B-8. ROXR. 

RTE, RTR and RTS (return instructions) 

Addressing Modes: 
RTE (implicit) 

RTR (implicit) 

RTS (implicit) 

Mnemonic Operation Flags;) NZ VC X 

RTE Return from exception AAAAA 

RTR Return & restore CCR flags AAAAA 

RTS Return from subroutine 

Description: RTE is a privileged instruction which is used to return 

from exception subroutines to the program which was being executed 

before the exception was initiated. 

RTR is used to return from a subroutine to the program which was 

being executed before the subroutine was called. The instruction pops 

the return address from the stack and copies it into the PC register and 

also pops the previous value of the CCR register from the stack and 

replaces it in the CCR. (The previous contents of the CCR must first 

have been saved at the beginning of the subroutine). 

RTS is used as a straightforward return from a subroutine to the 

program which was being executed before the subroutine was called. 

It pops the return address from the stack and copies it into the PC 

register. 
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SBCD (subtract decimal with extend) 

Addressing Modes: 
SBCD Dn,Dn 

SBCD -(An) ,- (An) 

Mnemonic Operation size’, Flags; NZVC X 

SBCD Sub dec with extend B. PAS ALE. 

Description: SBCD subtracts a source operand, together with the value 
of the extend flag, from a destination operand and stores the result in 
the destination. The operation is performed using binary coded 
decimal arithmetic. 

Note that the zero flag is zeroed by a non-zero result, otherwise it is 
unchanged. 

Scc (set from condition) 

Addressing Modes: 
Scc <daea> 

Mnemonic Operation Size Flags: NZ VC X 

Bcc Set from condition B. 

Description: Scc tests a destination byte operand for a specified 
condition. If the condition is true then the destination byte is set to 
the value 255, otherwise it is set to zero. 

The conditions are incorporated in the instruction name: e.g. SEQ, 

SNE etc. and are as follows: 

Condition Meaning Flags 

CC Carry clear C=0 
CS Carry set C= 
EQ Equal Z=1 
F False 0 

GE Greater or equal (N=1 & V=1) or (N=0 & V=0) 

GT Greater than (N=1 & V=1 & Z=0) 

or (N=0 & V=0 & Z=0) 
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HI High C=0 & Z=0 

LE Less or equal Z=1 or (N=1 & V=0) or (N=0 & V=)) 

LS Low or same C=1 or Z=1 

LT Less than (N=1 & V=0) or (N=0 & V=1) 

MI Minus N=1 
NE Not equal Z=0 
PI Plus N=0 

T True 1 

vc Overflow clear V=0 
vs Overflow set V=1 

STOP (load status register and stop) 

Addressing Modes: 
STOP #<imm> 

Mnemonic Operation Size Flags: NZVCX 

STOP Stop execution AAAAA 

Description: STOP is a privileged instruction which loads an im- 

mediate value into the status register increments PC and then stops all 

execution until a trace or external reset exception is initiated or untl 

an external interrupt of sufficient priority occurs. 

SUB, SUBA, SUBI, SUBQ 

and SUBX (binary subtraction) 

Addressing Modes: 

SUB <ea>,Dn 

SUB Dn,<maea> 

SUBA <ea>,An 

SUBI #<imm>,<daea> 

SUBQ #<imm>,<aea> 

SUBX Dn,Dn 

SUBX -(An) ,-(An) 
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a ee 

Mnemonic Operation Size Flags: NZVCX 

SUB Subtract binary B.-L. AAAAA 
SUBA Subtract address W.L. 
SUBI Subtract immediate .B.W.L. AAAAA 
SUBQ Subtract quick B.W.L. AAAAA 
SUBX Subtract with extend B.W.L. AAAAA 

Description: SUB subtracts a source from a destination operand and 
stores the result in the destination. 

The SUBA form of SUB specifies that the destination operand must be 
an address register and that the data size must be either word or long. 
Word sized results are sign extended. The flags are not affected. 

The SUBI form of SUB specifies that the source operand must be an 
immediate value. 

The SUBQ form of SUB specifies that the source operand must be an 
immediate value in the range 1 to 8. The flags are not affected if the 
destination is an address register. 

The SUBX form of SUB specifies that the extend bit is added to the 
source operand before it is subtracted from the destination. Note that 
with SUBX the zero flag is set if the result is zero, otherwise it is 
unchanged. 

SWAP (swap register words) 

Addressing Modes: 
SWAP Dn 

Mnemonic Operation _ Size Flags: NZ VC X 

SWAP Swap register words W. AAO 0 

Description: SWAP exchanges the values of the hi and lo words of the 

specified data register. 
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TAS (test and set) 

Addressing Modes: 
TAS <daea> 

Mnemonic Operation Size Flags: NZ VC X 

TAS Test bit and set B. AAO 0 

Description: TAS tests the byte contained in the effective address 

specified in the instruction and sets or resets the N and Z flags 

according to its value. The high order bit of the operand is then set. 

No other processor may access the operand while the instruction is 

being executed. 

TRAP & TRAPYV (trap exceptions) 

Addressing Modes: 
TRAP £<imm> 

TRAPV (implied) 

Mnemonic Operation Size Flags: NZVCX 

TRAP Trap exception 

TRAPV Trap if overflow 

Description: A TRAP instruction forces a trap exception, diverting 

execution to one of 16 trap handling subroutines as specified by the 

immediate operand in the instruction (in the range 0 to 15). 

TRAPV forces a TRAPV exception if the overflow flag is set at the time 

the instruction is executed. 

TST (test) 

Addressing Modes: 
TST <daea> 
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Mnemonic Operation Size Plaga: NN 2V.C X 

TST west A AAO 0 

Description: TST compares the specified operand with zero, altering 
the condition flags according to the result. 

UNLK (unlink) 

Addressing Modes: 
UNLK An 

Mnemonic Operation nize  FlapoN ZV CX 

UNLK Unlink 

Description: UNLK reverses the operation of the LINK instruction, 
relinquishing a stack frame. The contents of the specified address 
register are loaded into A7 and the long word on top of the stack is 
then loaded into the address register. See also ‘LINK’. 
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Conversion Table 

ion Se | 
Get ee i es BYTE 1 

Luex brent 5 oxerr 41 pxerr 3 pretr af pert 1 
0 

| BINARY 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
O111 
1000 
1001 
1010 
1011 
1100 
1104 
1110 
1111 

Won racine wre! & 

AMO ODBDDwo WSs wre 983040 

FIGURE C-1. Conversion Table. 

The above table is designed for rapid conversion between decimal, 
hexadecimal and binary numbers. The columns headed Digit 1, HEX 
and BINARY contain the decimal, hexadecimal and binary values 0 
to 15. Columns ‘Digit 1’ and ‘Digit 2’ together represent the lo and 
hi order nibbles of a single byte. Columns ‘Digit 3’ and ‘Digit 4 
together represent the hi byte of a 16-bit number. Column 5 
represents the decimal value of the high order nibble of a 20-bit 

number. 

Converting from hexadecimal to decimal 

Look up the least significant hexadecimal digit in the HEX column 

and read across to the corresponding decimal value in Column ‘Digit 

1’. Look up the second least significant hexadecimal digit in the HEX 

269 
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column and read across to the corresponding decimal value in Column 

‘Digit 2’. Repeat this process for each hex digit and then add the 

decimal values obtained. For example, to convert hex A24B3: 

ee 

Hex Decimal 

3 
176 

1024 
8192 

655360 >N Ey w ae th 

a —————— 

664755 

a 

ee 

Converting from decimal to hex 

Locate the nearest number in the table which is less than or equal to 

the decimal number and read off the corresponding hex digit in the 

HEX column. Subtract the decimal number in the table and repeat 

the above procedure until the result equals zero. For example, to 

convert decimal 754368 to hex: 

eee 

Decimal Table Hex 

754368 -— 720896 B 
= 33499 - 32768 8 

= i py Aatede 2 
= 219 - 208 D 

= L1> 2 re 

= 0 
754368 = B82DB 

Converting from decimal to binary 

Follow the same procedure as for decimal to hex but substitute the 

numbers from the BINARY column for those in the HEX column. 

For example, to convert decimal 75436 to binary: 
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Decimal Table Binary 

754368 — 720896 1011 
= 33499 — 32768 1000 
= 731 — 512 0010 
= 219 — 208 =1101 
= ll — Ie? 1004 
= 0 
754368 = 1011 1000 0010 1101 1011 

Converting from binary to decimal 

Divide the binary numbers into 4-bit sections and add the cor- 
responding decimal values, starting with the low order nibble. For 
example, to convert 1001 1101 1010 0011 to decimal: 

Nibble Col No. Decimal 

0011 ] 3 
1010 "4 160 
1101 3 3328 
1001 4 36864 

= 40355 

Converting from hex to binary and binary to hex 

Each hex digit corresponds to a 4-bit binary value. Use the HEX and 

BINARY columns for direct conversion. 

For example, hex 2AD46 is 

0010 1010 1101 0100 0110. 
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Index 

ACIA (and PIA) 105, 231 Base register 87 

AsbWandylSk, LSR( 53 Binary Coded Decimal 108, 115 
ASR 245 Binary arithmetic 52, 105 
Absolute addressing 29, 140 —numbers 6 
—branch 62 —to decimal conversion 271 
—displacement 62 — to hexadecimal conversion 271 
Addition 105 Bits 115 
Address (Program counter relative) 36 Bit flags 40 
—return 77 —rotation 5] 
— registers 22-3, 135, 137, 141 —testing 148 
— register indirect 34 Blocks (indexed) 91 
Addresses 2 Branch (absolute) 57, 59, 62, 169 

—memory 4 —conditional 63, 170 
— long and short 28 —errors 222 
Addressing (PC relative) 145 — indirect 62 
— register indirect 31 —relative 60, 62 
—absolute 29, 140 — short and long 169 

—immediate 30, 141 — unconditional 171 
— immediate quick 31 Breakpoints 224 
—implicit 139 Buffer flushing 153 
— register direct 140 Bullfrogs 40 
—relative 57 Bus errors 103 
-errors 102, 222 Bytes 3,5, 10, 115 

— mode classification 146 
— modes Zi, 24, 135, 139, 241 CHK 102, 167 

—indirect 83 CURS l67. 17> 

Alignment errors 222 CMP 65, 167 
Alphabetising (sorting) 219 CMPI 41, 162 
Alterable referencing 147 CMPM 90 
Arithmetic (binary) 105 Calenianons 18 

— operations 99 Calling subroutines 67 
— co-processor 19 Carriage return 14 
Assembler mnemonics 132 Carry flag 164 

- programs 118 Classification of addressing modes 146 

~ structure 118 Co-processor (arithmetic) 19 
Assembling 115 Communication 12 

Assembly language | Comparisons 41 
-errors 223 Compiling 19 

Condition code flags 28, 39-40, 63, 138,161 

Bcc 63, 168, 169, 170, 246 Conditional branching 63, 170 

BCHG,BCLR 55, 168, 247 - suffixes 49 

BEQ 43, 49, 63, 152 Console initialisation 150 

BMI 1767 Control codes 14 

BRA 58, 169, 171, 246 - referencing 147 
BSET 55148, 168, 247 Conversions (numeric) 269 

BSR 58, 99, 152, 169, 171, 176, 177, 246 Counting 52 

BIST 55, 148, 168, 247 CPU (Central Processing Unit) 2 

273 
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DBEQ 65 
DBF 66 
DBRA 90, 152, 169, 171, 249 
DBcc 168, 169, 170, 249 

DIVS 251 
DIVU 251 
Data 2 
-~dumps_ 130 

—handling 83 
—immediate 147 
— processing 197 
—referencing 146 

—registers 22, 135 
—sizes 115 
=storage 7,12 

— structures 197 
Debugging 127, 221, 223 
Decimal to binary 270 

—to hexadecimal 270 

Destinations 21 
Destination register 26 

—errors 222 
Disabling exceptions 100 
Disassembling 19, 127, 223 

Displacement 62 
Display memory 11 

Division 108 
Dumps (data) 130, 224 

END 126 
EOR 53102, 251 
EORI 228, 251 
EQU 150 
EXG 252 
EXT 167, 175-6, 252 
Errors (address registers) 222 

-—addressing 102, 222 

—alignment 222 
—assembly 223 

~branching 222 

—bus 103 
— destination 222 

— flag 222 
—loop register 222 

— size 222 

Exceptions 99 
— disabling 100 
—external 99, 103 

—internal 102 

— masking 100 
—priorities 101 
—trace 103 

—trap 102 
— vector table 104 

Extend flag 49, 165 
External devices 103 
—exceptions 99, 103 

FOR..NEXT 18, 65 
FIFO (First In First Out) 76 

Flags 24, 28, 39-40, 51, 53, 95, 138, 161 

Flag errors 222 
— alterations (testing) 54 

—carrv 164 

— condition codes 63 
— control instructions 167 

—extend 165 

—interrupt 166 
— masking 166 
— overflow 164 

-—sign 163 
— status 166 
— supervisor 167 

—trace 166 

— zero 162 
Floating point numbers 5 

Flushing buffer 153 
Format of instructions 221, 225 

Frames (stack) 80 

GOSUB, GOTO 57, 63 

Hexadecimal to binary 271 
—to decimal 269 

Hiand Lo bytes 8 

FRSTHEND “63 
IN 105 
ID initialisation 150 

Illegal commands 102 
IMASK (Interrupt mask) 129 

Immediate addressing 30-1, 
Implicit addressing 25, 139 

Index register 35 
Indexed blocks 91 

Indexes 34 
Indexing 88 

141 

Indirect addressing modes 83 

—branch 62 
Initialisation (ID and CON) 

— of registers 175 
Input operations 105 
—and output 105, 99 
Instruction codes 10, 12 

-formats 221, 225 
—~mnemonics 241 
Internal exceptions 99, 102 

Interrupt flag 166 
Interrupts 103 

JMP 58, 162, 253 
JSR 99, 58, 62, 88, 171, 253 
Jumps 58 

150 



Index 

LER. 253 
LINK 81, 253 
LSL 254 
LSR 254 
Labels 96 
—branch to 60 
Linefeed 14 
Linking programs 185 
—sections 126 

Locations (memory) 3 
Logical operations 53 
Long addressing 28 
-— branching 169 
-word 7, 115 

— storage 10 

Lookup tables 88 
Loop register errors 222 

MOVE 25, 36-7, 102, 167 
MOVEA 28, 137, 167, 256 
MOVEM 75, 147, 256 
MOVEP 256 ° 
MOVEQ 256 
MOVE to 256 
MOVE USP 228 
MULS 107, 257 
MULU 107, 257 
Machine code 1, 131 
Masking (exceptions) 100 

—flags 166 
Memory 2 
—management 229 

—-map 10 

—referencing 146 

MMU (Memory Management Unit) 229 
Mnemonics 132, 241 
Modes (addressing) 135 
Monitor program 127, 223 
Multi-user environment 229 
Multiplication 107 
Murphy (Law of) 221 

NBCD 257 

NEG 258 
NEGX 258 
NOP 162, 258 

NOT 258 

Negative numbers 44 
Number representation 5, 44 

Numeric conversions 8, 269 

OR 53, 259 
ORG 119 
ORI 228, 259 
OUT 105 
One’s complement 44 

Opcode formats 225 

Output operations 105 
Overflow flag 164 

PEA 260 
PEEK and POKE 31 
Parameter passing 67, 178 

— via stack 79 

PC relative addressing 145 
PIA (and ACIA) 105, 231 
Pointers 135 

Position dependence 96 

Priorities (exception) 101 
— interrupts 166 
Privilege violation 102 
Processing data 197 

Program counter 23, 36, 135, 138 
— addressing 36 

—execution 20, 131 
— branching 59 

— positioning 96 
— storage 12 

— termination 154 
Programs (assembler) 118 
— linking 185 

—relocatable 36-7 

READ. .DATA function 18 

REM 118 
RESET 102, 228, 260 
ROL 260 
ROR, ROXL,R 53, 260 
RORG 119 
RTE 101, 102, 172, 228, 262 
RTR 172, 262 
RUS 2172. 77262 
RAM addresses 4 
Register (index) 35 

— addressing 25, 31, 140-1 
— base 87 

— condition codes 40, 138 

— indirect addressing 31 
—model 135 
-—stack 7] 

— status 40, 135, 138 
Registers 6, 21 

-—address 23, 22, 135, 137 
—data 22, 135 

-— other 138 
—status 16] 

Relative addressing 57, 169 
—branch 60, 62 

— stack operations 82 
Relocatable program 36-7 
Reset 103 

Return address (changing) 77 
— from subroutine 77, 172, 184 
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Reverse stacks 76 

ROM addresses 4 

Rotating bits 51 

SBCD 110, 263 
STOP 102, 264 
SUB 167, 264 
SUBA 28, 107, 137, 264 
SUBI,Q,X 107, 264 
Scie 263 
Screen memory 11 

Short absolute addressing 28, 169 
—branching 169 

Sign bit 44-4, 163 
Signed values 43 
Size errors 222 

Size of data 115 
Sorting 95, 173, 219 

Source listing 127 
Sources 21 

Stack 66, 71 
—frames 80 
- pointer 24, 71, 135, 139 

— register 228 

— relative operations 82 

— reverse 76 

Status flags 161, 166 
—register 24, 40, 135, 138, 161 

Subroutines 20, 66, 154, 172, 184 

— calling 67 

—example 176 

— returning from 77, 172, 184 
Subtraction 105 

Suffixes (conditional) 49 
Supervisor flag 167 
—~mode 221] 

TAS 55, 168, 266 
TRAP. 102, 225, 228, 266 

TRAPV 266 
TST 54, 168, 266 
Tables (lookup) 88 

Terminating a program = 154 

Testing flags 54 

Trace exceptions 103 
—flag 166 
Tracing a program 129, 221, 224 
Trap exceptions 102 
Trial runs 223 
Two’s complement 44 

UNLK 81 
Unconditional branching 171 

Vector tables 100 
Violation (privilege) 102 

Word 7, 115 
— and long word (stacks) 75 

— storage 10 

Zero flag 41, 162 





First Steps in 68000 Assembly Language 

Owners of Motorola 68000-based micros, such as the Apple Macintosh, 

Commodore Amiga and Atari 520 & 1040 STs, enjoy some of the best user 

interfaces available. All of these computers have been designed to shield the 

user from the technical side of machine operation. However, some working 

knowledge of assembly language is needed in order to fully understand the 

way data is processed inside the machine. These computers, which utilise an 

extremely sophisticated machine architecture, can appear to be difficult to 

master. First Steps in 68000 Assembly Language, however, describes the 

ins and outs of assembly language and shows that it can be easily learned. 

This book clearly explains the meaning of all the basic assembly language 

details, including data storage and data addressing; the use of registers, flags 

and stacks; conditional branching and referencing indexed tables of data. 

These concepts are presented in a clear and concise manner with many 

illustrations to guide the reader. 

Topics covered include: 

- Mnemonics and machine code — converting instructions to numbers 

~ Memory, Registers and Stacks — storing data for all occasions 

- Flags — making conditional decisions 

- Branching - redirecting program execution 

_ JIndexing — addressing data 

Robert Erskine, the founder of the software house Microgame Simula- 

tions, is the author of a number of books on computer programming and 

two best-selling computer games. He has broadcast regularly about 

computing and written many articles for the computer press. 
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