
Rohert Erskine

‘

< :

7

2

:

Leh

a

\

P

Pa

a

o
t

First Steps in
Assembly Language

for the 68000

Robert Erskine

Glentop Press Ltd

Dedicated to Tom and Margaret

MAY 1987

All programs in this book have been written expressly to illustrate specific

teaching points. They are not warranted as being suitable for any particular

application. Every care has been taken in the writing and presentation of this

book but no responsibility is assumed by the author or publishers for any
errors or omissions contained herein.

COPYRIGHT © Glentop Press Ltd 1987
World rights reserved

No part of this publication may be copied, transmitted or stored in a
retrieval system or reproduced in any way including but not limited
to photography, photocopy, magnetic or other recording means,
without prior permission from the publishers, with the exception of
material entered and executed on a computer system for the reader’s
own use

ISBN 1 85181 081 1

Published by: Glentop Press Ltd
Standfast House
Bath Place
High Street
Barnet

Herts ENS 5XE

Tel: (01) 441 4130

Originated directly from the publisher’s w-p disks by
NWL Editorial Services, Tel (0458) 250834

Motorola 68000 assembly language mnemonics are the copyright of
Motorola Inc.

Printed in Great Britain by Ashford Colour Press
Casnort > Hannshire

PART I

Introduction

Chapter 1

Chapter 2

Chapter 3

ill

Contents

Beginning Assembly Language

Memory, Addresses and Data
Bytes

Words and Long Words
The Memory Map
Program and Data Storage
Assemblers

Registers and Addressing Modes

Sources and destinations
Registers
Data Registers
Address Registers
Additional Registers
Addressing Modes
Implicit Addressing
Register Direct Addressing
Absolute Addressing
Immediate Addressing
Address Register Indirect Addressing
Address Register Indirect

with Postincrement
Address Register Indirect

with Predecrement
Address Register Indirect

with Displacement
Address Register Indirect

with Index and Displacement
Program Counter Relative Addressing

Condition Flags

Zero Flag (Z)
Sign Flag (N)

Carry Flag (C)
Overflow Flag (V)

Chapter 4

Chapter 5

Chapter 6

Chapter 7

iv

Extend Flag (X)
Conditional Suffixes
Bit Rotation
Logical Operations
Specific Flag-altering Instructions
Flag Testing

Branching Operations

Relative Addressing
Jump Operations
Branch Operations
Labelled Branching Operations
Absolute and Indirect Branching
Conditional Branching
Subroutines
Passing Parameters to Subroutines

The Stack

Reverse Stacks
Queues
Altering Return Addresses
Passing Parameters via the Stack
Stack Frames

Data Structures

Indexing Look-up Tables
Block Instructions
Altering Indexed Blocks
Sorting Data
Program Positioning and Labelling

Exceptions, I/O and Arithmetic Operations

Exceptions
Operation of Exceptions
Exception Priority System
Internal Exceptions
External Exceptions
Exception Vector Table
Input and Output Operations
Binary Arithmetic
Binary-coded Decimal Arithmetic

PART II

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Assembling Programs

Data Sizes
Hexadecimal Numbering
Assembler Programs
Assembler Structure
Example Program 1
Linking Program Segments
Tracing a Program
Data Dumps
Executing a Machine-code Program

Addressing Modes

Register Model
Register Descriptions
Addressing Modes
Addressing Mode Classifications
Example Program 2

Status and Condition Flags

The Status Register
Zero Flag
Sign Flag
Overflow Flag
Carry Flag
Extend Flag
Status Flags
Flag Control Instructions

Conditional and Unconditional Branching

Short and Long Branching
Conditional Branches
Unconditional Branches and Jumps
Conditional Branching to Subroutines
Returning from Subroutines
Example Program 3
Passing Parameters to Subroutines
Example Program 4
Subroutine Returns
Linking Programs

Chapter 12

Chapter 13

Chapter 14

Afterword

v1

Stack Operations

Example Program 5

Data Structures and Data Processing

Sorting Data
Example Program 6

Debugging, Instruction Formats and
Supervisor Mode Operation

Program Debugging
Assembly Errors
Trial Run
Debugging Monitor
Instruction Opcpde Formats
Supervisor-mode Operation
Memory Management System

APPENDICES

Appendix A

Appendix B

Appendix C

INDEX

Instructions by Category

Instruction Glossary

Key to Abbreviations
Instruction Glossary

Conversion Table

Converting from Hexadecimal to Decimal
Converting from Decimal to Hexadecimal
Converting from Decimal to Binary
Converting from Binary to Decimal
Converting from Hex to Binary

and Binary to Hex

189

190

197

219
219

221

221
223
223
223
225
227
229

231

237

241

241
242

269

269
270
270
271

271

273

Vii

Introduction

You may already have had some experience of programming a
computer in assembly language. If you have, the likelihood is that at
some point you have lost the thread of understanding, either because
the books you have read have been too technical or because the
unfamiliar concepts of assembly language have not been clearly related
to concepts which are already familiar to you.

It is one thing to learn a language like BASIC, in which instructions
like PRINT and GOTO mean exactly what they appear to mean, and
another thing altogether to deal with assembly language, in which
numbers whose significance is often unclear are manipulated by
strange and abstract instructions to produce further numbers whose
purpose seems equally vague. Like a traveller without a map in a
foreign land, you are stuck with a Strange language and a strange
currency and can find no means of orienting yourself.

It is important however, not to think of programming purely in terms
of learning language instructions. Programming is mostly about
using your imagination to see how a particular process or concept
might work and how it might best be structured and manipulated in
memory. The actual program instructions are merely a means to this
end and you need not worry too much about trying to learn and
memorize them all as most of them will tend to become familiar
through experience. It is far more important to understand the key
concepts of programming and the standard program structures which
enable you to translate your ideas into easily manageable modules of
code. For this reason, this book does not try to be a comprehensive
text book covering every detail of each instruction code, although a
large number of program instructions will be explained and illustrated
in the text and a complete list of them, with descriptions of their
functions, is given in Appendix B. At a later Stage you may wish to
purchase a more formal book containing comprehensive technical
reference information, although for ordinary practical purposes you
will find that this book contains most that the general applications
programmer needs to know.

Vill

One thing that would come in very useful would be an assembly

language reference manual relating specifically to your computer.
Although 68000 assembly language works the same way for all 68000
based computers there are always significant differences between one
machine and another; the major ones being the different operating
systems which are used and secondly, the structure of the display
screen.

The differences between operating systems are significant because
they provide a means of accessing some of their subroutines directly
from within your own assembly language programs. Different systems
will provide different sets of routines and the methods of accessing
them may vary between one computer and another. Additionally,
some computer systems may have less ‘transparent’ operating systems
than others. They may, for example, have a layer of user-interfaces
such as BASIC or window and icon programs which can sometimes
make the operating system difficult to get at directly.

The differences between screen structures are more obvious because
the height and width of the display, the degree of graphic resolution,
the number of colours used and the way in which colors and images
are coded will vary considerably.

In the technical reference manual available for your computer you
should find all the information you need for integrating these facilities
and features in your programs. If this information is not supplied then
it is worth checking your local bookstore for independently published
books which relate to your particular machine or operating system.

Because of this wide variation in design, it is not possible in this
volume to explain the operation of certain types of functions, such as
line graphics, for different makes of computer. However, the insights
into programming methods which you will acquire, together with the
information contained in your own technical manuals, should enable

you to construct graphics routines without much difficulty.

We are going to be taking things gradually, avoiding the technicalities
of the computer’s circuitry and concentrating on the most important
aspect of programming: how to translate the ideas and concepts which
are in your imagination into program structures which will enable
them to be carried out.

In the first few chapters we shall be building up the broad outlines of

1x

assembly language programming. Chapters | to 7 in Part I will mainly
be general, illustrating topics common to most assembly language
programming as well as facts and concepts relating to the 68000 chip

in particular.

You will find it helpful to think of assembly language programming
in terms of a group of key concepts which are common to all assembly
language programs, such as data storage, data addressing and the use
of registers, the use of flags, conditional branching, using stacks and
referencing indexed tables of data. Chapters 1 to 6 are based on each
of these concepts and in chapter 7 we shall look at some miscellaneous

aspects of programming and system operation.

The corresponding chapters in Part II will deal in detail with the

68000, with much more emphasis on the use of its programming

instruction set. Chapters 8 to 13 summarize the main concepts

outlined in Part I and illustrate their applications using a number of

complete and annotated programs. The multi-user, multi-tasking and

protection capabilities of the 68000 will be outlined in Chapter 14,

together with notes on program debugging and object code formats.

An extensive appendix contains descriptions of the complete

instruction set.

The programs in Part II are fairly simple, functional routines which

are designed to help you learn to use instructions by example, in a

meaningful context, rather than by the more common method of

learning the functions of each group of instruction types in a more

formal way.

They illustrate some of the more important programming functions

such as setting up variables and arrays, printing characters and

sentences to the display screen, arithmetical operations and processing

stored data. They all follow a fairly similar structure so that they tend

to reinforce understanding and most of the instructions used will

appear frequently so that their functions will become familiar as you

read through the chapters. If you experience any difficulty in

understanding how a particular process works, don’t worry too much.

The more complex functions which you come across will be explained

in the same chapter or later in the book and it is better to read on and

come back to something than to become stuck over a point of detail.

Each chapter deals with a particular topic and on a first reading of Part

II you will find it more useful to concentrate on the topics illustrated

by the example programs than to try to follow everything contained

in them.

To begin with you may prefer to read through Parts I & II in sequence
and then later, you can read the corresponding chapters in each part
in conjunction in order to reinforce your understanding.

User and Supervisor Modes

The 68000 operates in two modes: user and supervisor mode. In
practice you will normally only be concerned with user mode which
is the mode in which ordinary user programs are executed. Supervisor
mode is used by the computers’s operating system in order to gain
total supervisory control over the events taking place in the system.
Supervisor mode is only mentioned in the text of this book in relation
to special system functions and it is not necessary for you to have any
detailed knowledge of its operation.

a . Chi 2 ‘.

255 ys _ Part I

ae) ay To oe j

tahe
ee

. i wl

all

me arici. i ‘

4A

it +

en

f

to! py : f ‘

he, dala, oni ot gruohos a on
7,

r et

me whch he .civnquiues “ed, wich ey rst: wo

i tty: there: a ba oA nigiaay cr giapi: ;
4

Chapter I

Beginning Assembly Language

Assembly language, or ‘machine code’, consists of coded instructions
which instruct the machine — or more accurately the processor — what
to do. Machine code is a purely numeric form of assembly code, but
when programs are written it is usual to use a set of non-numeric
instructions called mnemonics, which are directly equivalent to
machine code and are a lot easier for mere humans to understand.

Assembly language is the term used to describe this set of mnemonic
instructions and the two terms will be used in their appropriate
contexts throughout the book to distinguish the two forms of code.
Programming in pure numeric machine code is possible and is very
often done on old, 8-bit computers. With a complex processor like the
68000 you would need to be very fond of numbers to want to write
your programs in this way and the programs in this book are presented
in their assembly language format.

Although many of the concepts involved are similar to those used in
BASIC, many are quite different and it is best to approach the subject
without too many pre-formed notions. Think of the computer initially
as a machine consisting of nothing but a keyboard, a processor, a
screen and so many memory locations, say 256 000.

Starting from this uncluttered viewpoint, the principles of assembly
language programming become extremely simple.

Consider the following facts:

1 All programs, data, colour and graphics must consist of numeric

data.

2 Everything which the computer does, such as arithmetic calcul-
ations and the printing of letters, numbers and graphics on the
screen, is performed on data taken either from memory or from
some peripheral device such as the keyboard or a disc drive.

Z First Steps in Assembly Language for the 68000

3 The CPU (central processing unit, or microprocessor) performs all
arithmetic operations and controls and co-ordinates the movement
of data between itself, memory, the keyboard, the VDU (visual

display unit) screen and other peripheral devices.

These three facts represent the basic model of a processing system.

Unlike a high level language such as BASIC, which is designed to
coordinate sets of general concepts, grouped under function names
such as PRINT, LIST, L0G, CLS and so on, the function of assembly

language is simply to direct the CPU to control the sequence of
individual data movements around the system. In the next few
chapters we shall be exploring not only how this is done but also how
the movement of data relates to recognizable functions such as
arithmetic calculation and the printing of characters and words to the
screen. It is important, before you begin to learn these techniques, to
acquire a general understanding of how data is stored and manipul-
ated, because it is much easier to develop a program in assembly
language if you are able to construct in your mind a mental model of

the processes which are taking place.

To begin with, we shall be looking at memory and the formats in

which programs and data are stored. We shall then go on to see how
data is taken from memory and processed by the CPU during the
execution of a typical machine code instruction.

Initially, we shall not be too concerned about the language we use for
the instruction, nor about the precise way in which data is specified,
or how we select the method by which it is sent to and received back
from the CPU. Instead we shall concentrate on the general pattern of
events; how the different elements of the system relate to each other
and how the data is used to represent meaningful functions.

Memory, Addresses and Data

Firstly, we need to construct for ourselves a mental model of a
computer’s memory. A clear understanding of memory structure is
essential to the understanding of how assembly language works and
you will need to relate much of what you read in the following
chapters to the events which you visualize taking place within the

memory space.

Beginning Assembly Language 3

We shall start by looking at the meanings of the terms addresses and
bytes, because these are two of the main concepts from which our
memory model will be constructed.

Memory consists of a sequence of separate, numbered locations in
which items of information such as data and programs can be stored.
There is no need for you to understand the actual physical structure
of memory, as it exists on a chip. It is more helpful to imagine it
simply as a series of numbered boxes into which programs and data
can be placed. These can be pictured as a horizontal or vertical series
of numbered pigeon holes, or, sometimes, as a two-dimensional

matrix, whichever is most convenient for understanding a particular
process.

: memory locations are sequentially numbered, the ‘number
rrespond ing to each location is termed an dares’ n the same way

that houses in a street are given address numbers. Figure 1.1 shows
a number of possible representations of memory addresses.

ADDRESS 30000

ADDRESS 30000 | ADDRESS 30001 | ADDRESS 30002 | ADDRESS 30003

ADDRESS 30000

ADDRESS 30001

a = =—Ss

ADDRESS 30000

ADDRESS 30002

ADDRESS 20004

FIGURE 1-1. a) Single address
b) Row of consecutive addresses

c) Column of consecutive addresses

d) Two-dimensional array

4 First Steps in Assembly Language for the 68000
ee ee ee eee

The use of address numbers in assembly language is of vital

importance because it is only by keeping track of addresses that the

computers’s CPU can find its way through a program. Just as in

BASIC, where programs are given line numbers to indicate to the

computer the order in which commands are executed, the CPU always

needs to be aware of the address of the next machine code instruction

which is to be executed. In the case of conditional branching

operations, where execution is redirected to a subroutine for example,

the CPU needs to keep a record of the address from which the branch

was made so that it can return and pick up the sequence from where

it left off. The programmer also needs to be aware of the address

numbers of certain memory locations because particular items of data

may be stored in specific places and there has to be a precise method

of locating each one.

In our imaginary model, we shall assume that we are working with a

computer which has a memory capacity of 256K. Since 1K of memory

actually equals 1024 memory addresses, 256K therefore represents

262 144 addresses. We shall assume that address numbers 0 to 1023

are allocated to various items of data required by the computer’s

operating system (OS). Addresses 1024 to 66559 are allocated to the

display memory, in which images which are visible on the VDU

screen are stored. Addresses 66560 to 196607 are a free user area into

which our own programs and data are loaded and addresses 196608 to

262143 are occupied by the computer’s operating system. This model

is greatly simplified but it illustrates the main areas into which

memory is typically divided.

When we speak of ‘addressing’ a memory location, we mean that the

CPU can have its attention directed to any one of the address locations

in the system, including those in both RAM and ROM. In the case of

the 68000, up to 16 million memory locations can be addressed,

although in practice, many micros have much less memory available

than this — usually 128 to 512K in total. The CPU can ‘read’ data from

both RAM and ROM - that is, it can identify the contents of any

addresses in these areas — and it can ‘write’ to any of the addresses in

RAM - that is, it can insert fresh data into any of the RAM addresses.

Beginning Assembly Language 5

Bytes

is stored in a single memory address is
representing an integer number between 0

which case its value depends on its position within the byte. If the bit
on the extreme right of the byte (the LSB or least significant bit) is set
to 1 it has the value 1. A set bit in the second position has the value
2, the next 4, and so on through 8, 16, 32, 64 and finally 128, the value

of the most significant bit (MSB).

Bit values: 128 64 32 16 8 a cas |

ae 1 Sa Bad a Ns |
Binary bits: La OC EM Fs
Bit numbers: ¢ 675 ede wake

zs

SB

FIGURE 1-2.

The total value of a byte is found by adding the individual values of
its set bits, as follows:

11001001 = 201 decimal (128+64+8+1)

The reason why numbers are stored in this integer binary form is that

in a computer, each set bit in a binary number, that is, each bit which

is a 1 rather than 0, constitutes a signal which is translated within the

machine as a voltage. It is only in the form of an electric current that

binary numbers can physically be transported around the system from

one component to another; for example between the processor and a

memory chip.

The consequence of using integer binary storage is that individual

memory addresses can never contain data representing ‘real’ (floating

point) numbers as such. The decimal number 3.76 might be

represented by the value ‘3’ in one address and the value ‘76’ in the

following address, although there are a number of other ways in which

real numbers may be stored.

6 First Steps in Assembly Language for the 68000

In Part 1 of this book we shall be using the binary representation of
numbers extensively because in this format it is much easier to follow
exactly what is happening to data when certain assembly language
instructions are executed. It is a good idea to get into the habit of
imagining your data in binary form in the earlier stages because it
helps considerably in understanding some of the more complex
concepts involved. In Part 2 we shall go on to use hexadecimal
numbering, which will allow us to represent numbers in a much
shorter form without straying too far from the clarity which binary
numbers allow.

It is important to remember that a// data contained in memory is in
binary numeric form, including program instructions and textual
data. If we were to list the data bytes contained in a block of addresses
it would be difficult to distinguish between those values which
represent program instructions and those which represent program
data. How, then, is the processor able to distinguish between them?

The answer is that every assembly language instruction has a unique
numeric code of its own, consisting of between two to ten bytes and,
providing the processor begins by reading a program from the very
first instruction byte, it is capable of decoding and distinguishing the
form and function of every byte thereafter. However, if the program
begins execution at the wrong address, or if an instruction has been
coded incorrectly, the processor is no longer able to make sense of any
of the code and the result is usually a complete system crash.

The following diagram shows the binary code of a 68000 addition
command, ADDQ@ #1,D2 which adds the value 1 to another operand
which is contained in a temporary storage location called a register: in
this case register ‘D2’.

ADDRESS 30000 HDDRESS 30001

FIGURE 1-3.

This is a two-byte instruction consisting of the byte values 82 and 66;
a code which uniquely represents the assembly language mnemonic
ADDQ@ #1,D2. This object code consists of a 4-bit code representing
‘ADDQ’ (0101), a 3-bit code representing the number to be added (001),

Beginning Assembly Language 7

a zero, which is an additional part of the ‘ADDQ’ code, a 2-bit code
specifying the (two-byte) size of the operation (01), a 3-bit code
indicating the addressing mode of the instruction (000) and a 3-bit
code indicating register ‘D2’ (010). Together these constitute two
binary bytes: 01010010 (82) and 01000010 (66). The instruction ADDQ
#1,D02 is what you would actually write in your program and the
values 82 and 66 are the object codes which are assembled for

execution.

The number of bytes required for each possible variation of a
particular instruction is fixed and the CPU therefore knows that the
next byte it comes across will be the beginning of the following

instruction.

Code representing data, such as variables and arrays, is stored in
completely different areas of memory from program code and under
normal circumstances the processor will never attempt to execute it by

mistake.

Words and Long Words

Although a single byte has a maximum value of 255, you will

obviously want to work with numbers which are much larger than

this. In fact, the binary byte is only a basic unit of data; you can store

binary numbers using several bytes if you wish. For example, a 2-byte

integer represents a binary sla of 16 binary sige giving a

which the Pro grAMner can deal with. A ‘32-bit’ or a ‘64-bit’ computer

would be faster — which would make it more suitable for calculating

a large prime number, predicting the world’s weather or problems of

a similar magnitude.

8 First Steps in Assembly Language for the 68000

a single address. A two-byte (word) value, such as 36829, would be

expressed in binary as

1000111111011101

and would be stored in memory as follows:

ADDRESS 71712 | ADDRESS 71713

BOOORBAEABORAao
Sar ggecimmes lnpermer eave!

143 221
HI BYTE LO BYTE

FIGURE 1-4.

The decimal value is found by multiplying the hi byte by 256 and
adding the lo byte (143 * 256) + 221 = 36829

A 4-byte (long word) value, for example 131097, is expressed in
binary, as

00000000 00000010 00000000 00011001

0 2 0 25

and would be stored in memory as follows:

ADDRESS 71712 | ADDRESS 71713 | ADDRESS 71714 | ADDRESS 71715

HI BYTE OF LO BYTE OF HI BYTE OF LO BYTE OF
HI WORD HI WORD LO WORD LO WORD

ae ae pe nr

131072 25
HI WORD LO WORD

= 131097

FIGURE 1-5.

In this case the decimal value is found by multiplying the hi word by
65536 and then adding the lo word: (2 * 65536) + 25 = 131097.

Beginning Assembly Language 9

Note that although byte and word values consist of 8 and 16 bits
respectively, there are occasions when they need to be stored in longer
binary form, such as 32 bits. In these cases the values can simply be
extended with zero bytes and stored as if they were 32 bit numbers,
€.g.:

ADDRESS 71712 | ADDRESS 71713 | ADDRESS 71714 | ADDRESS 71715

0 0
HI BYTE OF LO BYTE OF HI BYTE OF LO BYTE OF

LO WORD LO WORD

25
HI WORD LO WORD

HI BYTE OF LO BYTE OF HI BYTE OF LO BYTE OF
HI WORD HI WORD LO WORD LO WORD
en se

0 2073
HI WORD LO WORD

= 2073

FIGURE.1-6.

Similarly, single byte values can be stored as words:

ADDRESS 71714 | ADDRESS 71715

eee”

0 25
HI BYTE LO BYTE

eS,

=25

FIGURE 1-7.

10 First Steps in Assembly Language for the 68000

Here is a list of some of the different types of data which may be stored

in memory addresses:

Before going on to look at how programs are organized in memory, we

shall first look at how memory is typically arranged, so that we can

imagine our program data in context.

The Memory Map

1024 Interrupt tables

Screen memory

66560

Code and data

196608
Operating Systen

262143

FIGURE 1-8. Memory map.

In this simplified map of a computer’s memory, you can see clearly

how the space allocated to data is divided into different sections. On

different computers the addresses of these divisions will vary and

other specialized memory areas will be reserved for special data and

functions. In this model for example, there is no area reserved for a

BASIC language interpreter, although many computers may incorp-

orate this. Most machine manuals will include a memory map diagram

similar to this to show you how memory space is allocated.

Beginning Assembly Language 11

The first section, from addresses 0 to 1023 is reserved for special
tables and other data used by the operating system. The second
section, from 1024 to 66559 is reserved for the VDU display. Any data
placed in one of these display memory locations will appear as an
image on the screen. If a computer has colour capabilities, the data
specifying the background and foreground colours of an image will

also occupy this section.

The display area is best illustrated as a two dimensional array of
memory addresses, with each row corresponding to the full width of
the screen and the columns representing the vertical height of the
screen. In this diagram, only the addresses corresponding to the top
left hand corner of the screen are illustrated:

ADDRESS 1024

ADDRESS 1536

FIGURE 1-9. Display memory corresponding to top left-hand

corner of screen.

In our imaginary computer the ‘display’ section is fixed and so the

precise location of any point on the display screen can easily be

calculated. On some computers, although the actual length of the

display section remains constant, its position within memory may

change constantly.

The ‘code and data’ section is the area which is reserved for programs

and their associated data, whether they be written in BASIC, assembly

language or any other language.

In BASIC programs the data area is used to store variables and arrays

and their formats are organized by the BASIC interpreter. In assembly

language, variables, arrays and other types of data are stored in

reserved blocks of memory created by the programmer rather than by

resident software and therefore it is necessary to be able to identify the

locations of the addresses in this area in order to store and retrieve this

information.

12 First Steps in Assembly Language for the 68000

The operating system consists of sets of routines designed for
structuring the way in which the system functions and includes
control mechanisms for communicating with disc drives, error
handling, input and output operations, keyboard and VDU com-
munications and other administrative tasks. Customized extensions to
the operating system may include complex arithmetic and graphics
functions and other routines which, like most of the operating system,

are accessible from user programs.

Program and Data Storage

We shall now look at a simple model of how a typical assembly
language program and its data is stored in memory. We shall assume
that our program occupies addresses 71680 to 71707. Henceforth the
term ‘address’ will be used interchangeably to refer both to the
number of a particular location and the physical location itself. The
term ‘content’ will be used to refer to the data contained in an address,

irrespective of whether it is code which forms part of a program
instruction or whether it is data representing a character or a numeric

value.

Thus our program code occupies 27 addresses and the contents of the
first six of these can be pictured as follows.

ADDRESS 71680 Instruction
ADDRESS 71681 0 Data

“ADDRESS 71682 24 Instruotion

ADDRESS Instruction

ise 8=6=60 | Data
ADDRESS Data

FIGURE 1-10. Program code.

The instruction codes each occupy a varying number of addresses and
in some cases are followed by addresses containing data. These data
items are treated as being part of an instruction and may represent
either constant data values or data representing the address of another

location.

Beginning Assembly Language 13

The variable data for our program, stored in the ‘data’ section of

memory, is 5 bytes in length and occupies, say, addresses 71712 to

71716.

ADDRESS

ADDRESS

ADDRESS

ADDRESS

ADDRESS

FIGURE 1-11. Program data.

You will notice that the ‘program code’ section also contains data as

well as instruction codes, and you may be wondering why this data is

different from the data in the ‘data’ section. The reason is that there

is a distinction between ‘immediate’ data, which relates to a particular

instruction, and array and variable data stored in the data area. For

example, in the BASIC instruction LET A=8*X the value ‘8’ is stored

along with the BASIC instruction itself, whilst the value of the

variable ‘X’ is fetched from the ‘data’ section of memory during

execution. In other words, the ‘8’ is always 8 and is part of the

program command, whilst X may be one of a number of possible

values, and would be stored in the variables section of memory.

Now consider what happens when our program is executed. It may be

one which has been designed, for example, to add the value 48 to each

of the contents of the addresses in the ‘data’ section and to print the

results to the screen. It should be easy to follow the general sequence

of events which take place.

Two of the instructions in the program area instruct the computer to

take the constant 48 (termed the source operand) and add it to the

contents of the first address in the data area (termed the destination

operand). The next instruction then places the ASCII character

corresponding to the sum in some of the addresses in the display

section. Figure 1.12 illustrates part of the processes involved.

The ASCII characters in a computer are a standard set of characters

which include all alphabetic letters, numerals, punctuation marks and

14 First Steps in Assembly Language for the 68000

essential control codes such as line feed, carriage return and so on.
The binary codes for all these characters are always positive numbers
in the range 0 to 127. The remaining ASCII codes, 128 to 255, are
assigned by different computer manufacturers to various other
functions and are not standardized.

ADDRESS. n

Get an item of data ADDRESS nt] fron the first address
ata section hae occ (the value 24)

ADDRESS nt3

ADDRESS n+4

ADDRESS n+5 Add 48 to it (48+24=72)

ADDRESS

ADDRESS

ADDRESS

ADDRESS n+9

ADDRESS n+#10

piacl b ti ene ADDRESS
isplay subroutine gets the Fi

address of the screen cursor, ADDRESS
the address of the stor =
binar ry pattern for ASCit code ADDRESS
72 (character H) and prints ADDRESS
the character to the screen

ADDRESS

ADDRESS

ADDRESS

ADDRESS

FIGURE 1-12.

In practice, the operation involves the movement and the processing
of data in which all the relevant items, including the instruction and
the data codes, are physically copied into the CPU, processed, and the
resulting data transported to memory addresses in the display area.

Beginning Assembly Language 15

The technical aspects of these operations need not necessarily be
understood in detail by the programmer, since the CPU controls the

sequence of events automatically.

When the first numbers have been added together and the cor-
responding ASCII character printed to the screen, the process can be
repeated with the second item of data by looping back and repeating

the first instruction. This process may then be repeated until all five

additions have been completed and the characters printed to the

screen.

The following example shows how the same operation might be

performed in BASIC:

NOerORscount = 5:to’ STEP. -1

20 READ V

30 PRINT CHR$(48 + V)
40 NEXT count

50 DATA 24,21,28,28,31

This produces the values 72, 69, 76, 76 and 79, for which the

corresponding printed ASCII characters are ‘HELLO’.

The assembly language and BASIC processes have a number of

similarities:

1 The instructions in both programs are executed sequentially,

except for the loop sequence, which allows a section of the program

- to be repeated.

2 Both store their variable data separately and call up each item of

data when it is needed.

3 Both require their instruction codes and program data to be sent to

the CPU for processing during execution.

If we look at a flowchart for each version we shall also see some very

important differences in the way in which the operations are carried

out:

16 First Steps in Assembly Language for the 68000 ee a ee

FIGURE 1-13. Flow chart for BASIC version.

Beginning Assembly Language 17

Set variable S to
address of data

Transfer data from
address S into Al

fidd 48 to variable A

Call character Print
subroutine using data

in variable A

Add 1 to variable §

Subtract 1 from count

Compare count with value 0

Print to
screen

ASCII character Poa aise [O

FIGURE 1-14. Flow chart of assembly-language version.

18 First Steps in Assembly Language for the 68000

The first main difference is that the assembly language version is

much longer, breaking down the individual steps in the operation to

smaller, closely defined units. The BASIC program operates in almost

the same way when it is executed but the individual steps are handled

entirely by the machine’s BASIC interpreter, leaving the programmer

to structure the program using easily understood broad concepts such

as the FOR..NEXT loop and the READ..DATA functions. Hence, the

BASIC flowchart illustrates the flow of BASIC language mechanisms

while the assembly language flowchart illustrates the actual flow of

events between memory and the CPU.

The second difference is that although the BASIC version implies that

data should be moved around in memory, the physical movement of

the data is not specified. Although items of data are added and then

transferred to the screen, the program itself does not concern itself

with the precise locations of the data or where it should be moved to.

The assembly language version on the other hand, is very specific

about where the different elements of the program are located and

where they should be moved to. Thus an assembly language program

consists not only of instructions specifying standard operations, such

as addition and subtraction, but of instructions designed to locate and

control the movement of different categories of data throughout the

system.

Unfortunately, the range of operations which the CPU can perform is

very limited and therefore it is not possible, for example, to write an

instruction which transfers a numeric value into it and requests its

cosine or logarithmic value as you would use C0$ or L0G in BASIC.

In fact it deals entirely with integer values and is only capable of

adding, subtracting and performing logical operations on them such

as AND and OR. Although the CPU cannot handle multiplication and

division directly, the 68000 system incorporates instructions which

can perform these operations and therefore this is not a problem.

Should you require a more complex computation such as the cosine

or logarithm of a number, then it is necessary to break down such an

operation in terms of simple arithmetic and logical steps which the

CPU can perform. There is no need to be deterred by this because

with many computers it is possible to take a short cut by using ready

made mathematical functions which are already programmed into the

operating system. You can simply regard such functions as assembly

language subroutines and call them up from within your own

Beginning Assembly Language 19

program. In some cases a system will incorporate an arithmetic
co-processor which is designed to handle transcendental functions and
floating point numbers. These incorporate their own instruction set
and allow you to specify the operands involved and the mathematical
function required.

Assemblers

Assembly language, like any other computer language, consists of a
set of instructions, representing specific program operations, and a
syntax, which specifies the format in which instructions may be
written. The reason why it is called assembly language is that it is
designed to be used with an assembler program, which interprets the
instruction mnemonics written by the programmer (the source code)
and converts them into a set of numbers which can be interpreted and
executed by the computer. The resulting numbers are called the
object code or machine code.

A program which is written in assembly language cannot be run in the
way that a BASIC program can; only the object code can be executed,
and it is this code which is assembled and saved to tape or disc prior
to being loaded and executed. The resulting machine code program is
simply a list of numbers which represent particular instructions and
some which represent data, as described previously.

When a BASIC program is run the instructions are compiled
(translated) from BASIC to machine code at the time of execution. If
we were to use a disassembler (i.e. a program for converting machine
code back into assembly language) to examine the contents of a
machine code program we would be given a listing which looked
something like the following:

Address Object Code 68000 Instruction
(hexadecimal) —_ (hexadecimal) Mnemonics

29CE8 7200 MOVEQ #00, D1

29CEA 7602 MOVEQ #02, D3

29CEC 41FA0038 LEA 38(PC)!29D26, AD

29CF0 7001 MOVE@ #01, DO

29CF2 4E42 TRAP #2

29CF4 7400 MOVEQ #00, D2

29CF6 183A002C MOVE.B 2C(PC)!29D24, D4

20 First Steps in Assembly Language for the 68000

29CFA 45FA0022 LEAPEE CPE) Se oDTE, Ae

CICPE 12322000 MOVE.B OO(A2,D2.L), D1

29D02 D23A001F ADD.B 1F(PC)!29D23, D1

You will see that we are given three different types of information. In
the left hand column we have a list of addresses (in hexadecimal
format) which represent the locations in which the machine code
program is stored in memory. The right hand column contains the
assembly language instruction mnemonics for the program and the
centre column contains the hexadecimal machine code version of the
assembly listing on the right. The machine code is divided into
different groups of bytes, with each individual byte (2 hexadecimal
digits) representing the contents of a single memory address.

The first instruction, MOVEQ #00,D1 is translated into two bytes of

object code, occupying addresses 29CE8 and 29CE9,,. The second

instruction also occupies two bytes while the third instruction, LEA
38(PC)!29D26, AO consists of 4 bytes, and occupies addresses 29CEC

to. 29CEF i.

The machine code program would be executed sequentially, starting
with the first number of the code of the first instruction and
continuing through each memory byte until a final instruction is
reached. In between there may be program loops, subroutine calls and
conditional jumps, just as there are in BASIC programs.

The program is initiated either by an auto start mechanism, as soon
as it has been loaded into memory, or by calling it with a high level
language instruction, for example from within a BASIC program or
from the operating system. Alternatively, a program may be a
subroutine which is called from within some other machine code
program.

In Chapter 8 we shall be looking at assembler programs in more detail,
showing how the translation from assembly language to object code is

organized. ;

Chapter 2

Registers and Addressing Modes

Sources and Destinations

When an item of data is accessed and transferred from one location to
another, for example when data in one location is added to another

item of data, the the first item is termed the source operand and the
second item, the destination operand. The terms source and destin-

ation are used extensively in assembly language to distinguish the
status of the operands involved in an operation. As we shall see later,
the possible source and destination locations for operands involved in
different operations may be subject to entirely different rules. In the
case of the addition instruction in the previous chapter (ADDQ#1,D2),

the source operand, 1, is an immediate numeric constant, while the

destination operand is located in a register. The register itself is the
destination location, the contents of the register being the actual
destination operand. When the two operands have been added, the
result is automatically stored in the location which previously held the
destination operand.

Registers

An operand which is being addressed by an assembly language
instruction will be in one of two places; either in a memory location
(in either the code or data sections) or in a register.

Registers are identified by alphabetical letters, like BASIC variables,
and are literally temporary memory locations which are situated in the
CPU rather than in RAM or ROM. A register may be treated in much
the same way as any other memory location in that data may be loaded
into one or moved out of one into another location and the contents
of registers may have arithmetic operations performed on them. Some

21

22 First Steps in Assembly Language for the 68000

are also used as temporary variables for holding the codes of memory
addresses.

In the 68000 there are two main types of user registers; data registers
(DO, D1, D2, D3, D4, DS, D6 and D7) and the address registers (A0,
Al, A2, A3, A4, AS and A6), each of which hold up to four bytes of
data. The address registers are normally used for holding the
addresses of memory locations.

Data Registers

Data registers are 32 bits in length and are capable of holding data of
byte, word and long-word lengths. You can imagine them simply as
labelled boxes divided into four byte-sized partitions which can be
loaded with binary values. The least significant byte of a value
occupies the mght hand partition and the most significant byte
occupies the left, corresponding to the way in which you would
normally format a binary number.

As an example of the use of a general data register, suppose that you
had a program in which repeated calculations were being performed
on a set of figures and you wish to add up the totals. Just as you might
use a variable in BASIC to accumulate the total, you could use a data
register such as D2 in assembly language. As with a BASIC variable,
the value contained in a data register can be used in subsequent
program instructions.

DATA REGISTER D2

FIGURE 2-1.

Registers and Addressing Modes 23

Address Registers

An address register is also 32 bits in length and, like a data register,
is used as a source or destination for operands. However, whereas the
purpose of a data register is simply to hold data which is being used
in a program, an address register is used specifically to hold address
numbers. Although an address register can actually hold a 32-bit
value, only the least significant 24 bits (bits 0 to 23) of a value are used
to specify an address, hence the maximum restriction in a 68000 based
computer to 16 777 216 bytes (16 megabytes) of physical memory.
Note that a 68008-based computer is restricted to a maximum of 1
megabyte, since only the lower 20 bits of an address register can be
used to specify an address.

ADDRESS REGISTER A3

a a pl

HI WORD LO WORD
pe /

LOWER 3 BYTES SPECIFY AN ADDRESS

FIGURE 2-2.

Additional Registers

In addition to the address and data registers, the 68000 has a small
number of other registers which are used for special purposes.

Program Counter

The PC (program counter) register is a 32-bit register whose lower 24
bits always contain the address of the program instruction that is
currently being executed and is automatically updated by the system
as each instruction is processed. Whenever a program branches to a
subroutine or jumps to another point in the code, the new address is
automatically loaded into the PC register so that the processor knows
from where in memory to fetch the next instruction. The address
contained in the PC register can be altered by the programmer to
redirect execution to a different point in the program, but this is

24 First Steps in Assembly Language for the 68000

normally only done in special circumstances, for example if there is an
occasion when you want to return from a specific subroutine to a point
other than the normal return address. Under normal circumstances,
you would only need to refer directly to the PC register if you wish to
refer to an address which is a specified number of bytes relative to the
current execution address.

Status Register

The status register (SR) is a 16-bit register which is used to hold a
number of bit-sized ‘flags’ which indicate the current status of the
system. It is used to determine, for example, whether a computed
value is positive or negative, whether it is less than, equal to or greater
than some other value or whether it involves an arithmetic ‘carry’ or
‘borrow’. The main functions of the status register are described in
detail in the following chapter.

Stack Pointer

A special area of memory, termed the stack, is reserved for the storage
of temporary data and variables. The current location of the ‘top’ of
the stack; the point at which fresh data may be stored or old data
removed, is at the address whose value is contained in address register
A7. This register is therefore referred to as the stack pointer (SP),
since it ‘points’ to the current stack top.

Addressing Modes

The available methods by which data may be accessed and moved
around between memory locations, registers and the processor itself
are termed addressing modes and these are clearly defined. It is not
necessary to think too consciously about which mode to use in a
particular situation, any more than it is necessary to think about the
rules of grammar whenever you wish to speak. If you know where
your data is and what you want to do with it then the appropriate
addressing mode will come to mind automatically in most cases.
However, it is useful to be aware of what is possible and what is not
and the following section describes the formal structure of these
modes. In this section we shall be starting to use some actual assembly
language instructions, beginning with the MOVE instruction, which is
used to copy operands from a source to a destination, and the ADD and
SUB instructions, which add and subtract operands.

Registers and Addressing Modes 25

There are two main categories of addressing modes: memory
addressing, in which operands contained in memory are addressed,
and register addressing, in which operands located in registers are
addressed. Although registers do not actually have address numbers
of their own to identify their location, the term ‘addressing’ neverthe-
less includes register as well as memory references.

Implicit Addressing

Certain assembly language instructions involve the use of particular
registers without explicitly stating which registers are to be used. In
all cases, these instructions use one or more registers for the same
reasons as you would choose to use one yourself: to store, retrieve,
move, process or modify data. In these cases however, the particular
register used is chosen for a specific purpose and therefore there is no
need for the programmer to indicate which one is required. For this
reason, this addressing mode is termed implicit, for the register to be
used is implicit in the instruction itself. Such instructions include, for
example, RTS (return from subroutine) which always implies the
contents of the PC register. Some instructions are not only implicit,
in that they imply the contents of SP and/or PC, but also involve the
use of other addressing modes.

Register Direct Addressing

This addressing mode is used for operations performed on data
contained in registers. For example, the contents of two registers may
be added together or the contents of one may be transferred to
another. In BASIC, equivalent instructions would include LET A=B or

LET A=A+B.

In the first of these examples you will notice that the MOVE

instruction has a ‘.L’ after it, whilst in the second, it has a ‘.W’. The

reason for this is that the first example is a ‘long-word’ operation, in

which all four bytes of one register are copied into the other. In the

second example, which is a ‘word’ operation, only the least significant

word of a register is involved, leaving the most significant word of

each register unchanged. This distinction has nothing to do with the

fact that one is a MOVE operation and the other an ADD operation — we

26 First Steps in Assembly Language for the 68000

DATA REGISTER D2

DATA REGISTER D1

OPERATION: MOVE.L D2,D1 {copy the entire contents of data
register D2 into data register D1)

FIGURE 2-3.

DATA REGISTER D2

DATA REGISTER D1

tel fab ADD.W D2,D1 (add the low order word of register D2
o register D1)

FIGURE 2-4.

could just as easily have specified the instructions MOVE.W D2,D1 and
ADD.LD2,D1; the ‘.W’ and the ‘.L’ being the parts of the instructions
which determine the size of the operands involved in the operations.

In both cases we could alternatively have used the instruction suffix
‘,B’, signifying that only the least significant byte of the register
contents be involved. If there is no ‘.B’, ‘.W’ or ‘.L’ suffix after such
an instruction, it is normally assumed by default that ‘.W’ is intended
although there are exceptions to this rule.

The two registers involved can both be data registers or one of them
can be an address register. In the instruction MOVE A2,D1 for example,

the source operand is specified by address register direct addressing
and the destination is specified by data register direct addressing.

The same type of operation performed using an address register as a
destination is slightly different. In this case, only two sizes of data may
be used in an operation — word and long-word. Therefore, the ‘.B’

Registers and Addressing Modes 27

suffix cannot be used. Some instructions indicate the use of an adress

register destination by the addition of an ‘A’ to the instruction
m apemonic, ac a oes and ADDA. The sed a the desnat difference

regist being use he destination register —
0 6 , all our bytes are aff ected, unlike a data register
hie the unused bytes remain unaffected. If we were to transfer a
word of data, say the value 300 (binary 0000000100101100) from
register D1 to register Al, the most significant word of Al would
automatically be sign-extended to a full 32 bits — in other words, the
highest bit of the least significant word, bit 15, would be copied into

bits 16 to 31 of Al, as follows:

DATA REGISTER D1

TUTTI TTT TT TT TT | folotofofojofo}sfofo}sfo}s}s}o/o
ae ee Sr

ADDRESS REGISTER Al

0} 0{0}0}0]0]0}0{0}o{o/0[o/o{o/o/o/o]o}o}ojojo)s}ojo}}o}:]1{o}o
OPERATION: MOVEA.W D1,AL (copy et low order word of data
register Di into the low order word address register Al and
sign extend the value of bit 15 ae ate 16 to 31)

FIGURE 2-5.

The implications of this are very important because it affects the way
in which a memory address is specified. If we load a 4-byte
(long-word) address into an address register, then the address which
it represents will be the one specified by the least significant 24 bits
of the register, as described above.

However, if we load a word value into an address register, the

remaining two bytes of the register, the Hi word, will carry the
sign-extension of the value and part of this will be incorporated in the

24-bit address specification. How does this affect the value of the

address which we wish to specify?

There are two possible alternatives. If the value loaded into the

address register is between 0 and 32767 decimal, the binary represent-

ation in the register will be as follows:

0111111111111111 binary

= 32767 decimal

28 First Steps in Assembly Language for the 68000

which, after being sign-extended in the address register would be the
same:

00000000000000000111111111111111 binary

= 32767 decimal

So far so good. This address is the highest in the bottom 32K of
memory and is exactly the address we specified when we loaded it into
the address register; sign-extension left it unchanged.

However, the alternative possibility is that we load a word value
between 32768 and 65535 decimal into the address register. The
binary representation would be as follows:

1000000000000000 binary
= 32768 decimal

which, after being sign-extended in the address register would become
(counting only the lower 24 bits):

11111111111111111000000000000000 binary
= 16744 448 decimal

This address happens to be the first address of the top 32K of memory
— not the address we originally specified. This is not a fault but an
advantage. If we actually want to access a memory address in the top
or bottom 32K of memory then we only need to use a word (in the
range 0 to 32767 or 32768 to 65535) to specify the address, which is
a saving in both time and space. Hence, a word-sized address is
termed a short address.

If we want to access an address anywhere in memory, we use Jong
addressing; that is, we load a long word address value into the address
register which, since it will not be sign-extended, will produce exactly
the address which we specify, up to a maximum of 24 bits. This
principle applies to any addressing mode which makes use of an
address register.

One final point to note about address register direct addressing is that
in some cases where the destination of an operation is an address
register, for example in ADDA (add address), SUBA (subtract address)
and MOVEA (move address), the condition flags in the CCR register are
not affected by the operation.

Registers and Addressing Modes 29

Absolute Addressing

An absolute addressing operation is one in which an operand is
identified by its actual memory address. In BASIC terms it is similar
to the instructions LET A=PEEK(20000) or POKE 20000,A. In practice,

the address is normally identified in the instruction by means of a user
defined label rather than an actual number.

Direct addressing has Jong and short forms: a ‘long’ address, as
already indicated, being specified by a 32-bit number and a ‘short’
address as a 16-bit number, sign-extended to 32 bits.

DATA REGISTER DS

RE ER

ADDRESS 90000 | ADDRESS 90001 | ADDRESS 90002 | ADDRESS 90003

OPERATION: ed D5,90000 (copy the entire contents of
cegister D5 into four memory addresses, beginning with address

FIGURE 2-6.

This is the long form of direct addressing. The address value is a

3-byte number and therefore the system automatically recognizes it as

a literal address. The ‘.L’ suffix has nothing to do with the address

size; it performs its usual function of denoting the size of the data

which is to be transferred.

DATA REGISTER D5

yall kaa I

ADDRESS 20000 . ADDRESS 20001 ADDRESS 20002 ADDRESS 20003

OPERATION: MOVE.L 05,20000 (copy the entire contents of
peqaage” D5 into four memory addresses, beginning with address

FIGURE 2-7.

30 First Steps in Assembly Language for the 68000

This is the short form of direct addressing. The address value is a
2-byte number, which is automatically sign-extended to 32 bits. Since
the 2-byte number is within the range 0 and 32767, it falls into the
bottom 32K of memory and, after sign-extension, it therefore remains

unchanged. As in the previous example, the ‘.L’ suffix indicates that
four bytes are to be transferred.

Immediate addressing

This is used for operations involving an immediate numeric constant.
For example, a number may be transferred from or loaded into a
register or, it may be added to or subtracted from a number which is
already in a register. Equivalent BASIC instructions would be LET
A=10 or LET A=A+10.

DATA REGISTER Dt

OPERATION: MOVE.L #10,D1 (copy the immediate value 10 into the
er HORA Ts byte of regist and zero the three higher bytes

FIGURE 2-8.

Note that here, the ‘.L’ suffix has been used to indicate that D1
should contain a 32-bit binary representation of 10. This would
normally be done if we wish to ensure that the unused bytes of a data
register are zeroed. The ‘#’ sign is used to indicate that the value is an
immediate constant.

DATA REGISTER D1

OPERATION: MOVE.B #10,D1 46 the immediate value 10 into the
low oreer byte of register leaving the three higher bytes
unaffected)

FIGURE 2-9.

Registers and Addressing Modes 31

In this case the ‘.B’ suffix has been used, specifying that the value 10
is only copied into the least significant byte of D1, leaving the rest
unaffected.

Immediate Quick Addressing

Quick addressing is a form of immediate addressing in which
operations can be formed faster than usual. Many programs, or certain
routines within programs, involve a great deal of processing; especial-
ly those involving program loops or which move a lot of data from one

location to another. It becomes vital, therefore, for programs to be

executed in the shortest possible time and the saving of a few

microseconds (millionths of a second) in the execution time of

individual instructions can have an appreciable effect on the overall

running of a program. You only have to consider the speed which is

required to update the display screen in a fast moving graphics

program, such as a flight simulator, to realise that every microsecond

that is saved in a program can be of great significance.

The ‘quick’ instructions, therefore, are designed to take advantage of

the fact that when very small values of data are being dealt with, it is

worth providing a quicker method of processing them rather than rely

on an operation which is designed to deal with larger and therefore

more complex items of data.

There are only three of these instructions: MOVE@ allows you to set the

entire 32 bits of a register to an 8-bit value, thus avoiding the use of

a longer and less efficient operation such as MOVE.L. ADDQ is slightly

different; it is designed for adding values in the range | to 8 to the

contents of a register. SUBQ subtracts data from a register in the same

numeric range.

_ Address Register Indirect addressing

This is equivalent to a BASIC instruction such as LET A=PEEK(X) or

POKE X,A. It is used to access values which are stored in locations

whose addresses are contained in registers.

Suppose that we have a byte value stored somewhere in memory

which we wish to copy into data register D2. We may have no idea

exactly where in memory the data is stored but we do know that its

32 First Steps in Assembly Language for the 68000

address is currently contained in, say, address register A4. We can
therefore get at it indirectly, via A4. To indicate indirection we
enclose the address register in brackets, which tells the system that it
is not the contents of A4 which we wish to load into D2 but the
contents of the address pointed to by the contents of A4.

ADDRESS REGISTER A4

amen s00ze

Scr

42,02. “copy he data bp the address which
egister

FIGURE 2-10.

The operation can, of course, be performed the other way round:

ADDRESS REGISTER A4

90028

ADDRESS 90028

DATA REGISTER D2

OPERATION; MOVE,B D2,(A4) (copy the data in the low order byte
of register D2 into the address specified by the contents of
register f4)

FIGURE 2-11.

This addressing mode indicates some interesting possibilities. Sup-
pose, for example, you had a list of data somewhere in memory — say
12 bytes representing the number of gallons of gas you have purchased
Over a twelve month period, with each byte representing a month’s
total. You might want to use these figures in a program which is

Registers and Addressing Modes 33

designed to work out the average monthly figure for the year. If the
address of the first month’s gas consumption is contained in address
90028 then you could load this address into an address register so that
it points to the required month. The arrangement would then look
something like this:

ADDRESS REGISTER A4

ADDRESS 90030 | March data |

DATA REGISTER D2

OPERATION: NOVE.B (A4),D
low order byte of Peatater D2)

{copy the data for January into the

FIGURE 2-12.

If you want the figure for January for use in your program then you
could load it into a data register using an instruction such as MOVE.B
(A4),D2, as described above, and then use the data in the data register
in your averaging program. It should also be clear that you could copy
two or four month’s figures in one go from the memory block into a
data register, simply by using the suffixes ‘.W’ or ‘.L’ instead of ‘.B’
in the instruction.

Having accessed your first item of data, you then need to access data
for further months, which could easily be done by incrementing the
value of A4 so that it points to the next required address and then
using an ADD instruction such as ADD.B (A4),D2 to add its contents

to the data register. However, there is one type of addressing mode
which will perform this function for you: the address register indirect
with postincrement, covered next.

34 First Steps in Assembly Language for the 68000

Address Register Indirect with Postincrement

If we were working on the same block of data as before, we could
substitute the following instruction for the one we used previously:
MOVE.B (A4)+,D2. In this case we are doing exactly what was
described before: the data contained at the address indicated by A4 is
loaded into a data register and the address register is incremented by
1, 2 or 4 to point to the next required address, depending on whether
we are transferring byte, word or long-word sized chunks of data. In
this mode however, the incrementation of the address register is
carried out automatically after every transfer of data; a function which
is specified by the ‘+’ sign in the instruction.

Address Register Indirect with Predecrement

This addressing mode works exactly like the one above except that it
operates in reverse. The address register is decremented by 1, 2 or 4
and then the data is accessed, hence the term ‘predecrement’. We
might use this addressing mode to access items of data in memory in
reverse order. In this case A4 would initially be loaded with the
number of the address immediately after the December data; address
90040. The instruction MOVE.B -(A4) ,D2 would then decrement A4

by 1, and then transfer the byte at 90039 into D2. Here, the
predecrement mode is indicated by the ‘-’ sign next to the brackets.

Address Register Indirect with Displacement

Although the regular address register indirect mode allows you to.
address individual memory locations via an address contained in an
address register, it is not versatile enough to allow you to address
locations which are situated relative to a particular address. If you
have a list or table whose base address is contained in address register

A3, how can you address a location within the table at, say, offset 3
from register A3? This kind of indirect memory access is achieved
using the concept of a displacement, in which a constant value,
contained in the instruction, is added to the address register used.

Registers and Addressing Modes 35

ADDRESS REGISTER A3

py the data in the address OPERATION: MOVE.B 3(A3)
A 3 e low order byte of registe is pointed to by °o ro so *s ——_

FIGURE 2-13.

In this example the displacement, 3, is added to the A3 register to
enable access to the contents of the address 3 bytes on, relative to the
address pointed to by register A3.

In this addressing mode, the 16-bit displacement is always sign-
extended so that it represents a displacement in the range —32K to
+32K. The concept of minus numbers will be discussed in the
following chapter.

Address Register Indirect with Index and

Displacement

Similar to the above mode is ‘address register indirect with index and
displacement’, in which one register is used to point to the base of a
block of data and another, either an address or a data register, is used
to hold an index offset. An additional displacement value is placed
outside the brackets as in the previous mode. The advantage of this
over the previous mode is that the index register can be altered under
program control to point to a number of items within a table, relative

to the base register.

36 First Steps in Assembly Language for the 68000

ADDRESS REGISTER A3

DATA REGISTER D4

10007

bt sn) [February data

TOSEREIOM April data —

DATA REGISTER D2

OPERATION: MOVE.B gach, D4),02 (copy the contents of the menor
address pointed to by AS+D4+24 to the low order byte o

FIGURE 2-14.

In the above example the base register is A3, the index register, D4,
contains the value 10007 and the displacement is 24. The address
which is being accessed is therefore the sum of the contents of A3 and
D4 plus the value 24.

It is also possible to specify the size of the index register. In the above
example the byte at address A3+_D4+24 is being copied into register
D2. If we wanted to specify that the entire 32-bit contents of D4 were
to be used as the index variable we could modify the instruction to
MOVE.B24(A3,D4.L),D2. In this case the ‘.L’ length specifier defines
the size of the contents of the index register and the ‘.B’ defines the
size of the operand which is to be loaded into D2.

This instruction could, for example, be used to access an operand
which is in a block of data whose base address is contained in A3.
Within this block is a sub-block whose base is at offset 24 from A3
(counting from zero). Within this sub-block is an address whose offset
is contained in D4.

Registers and Addressing Modes 37

In this mode the immediate displacement is 8 bits in length and is
sign-extended, giving a displacement in the range —-128 to + 127. If the
index register is of size ‘W’, it is also sign-extended giving an index
displacement in the range —32K to +32K, otherwise it is treated as a
32-bit positive value..

Program Counter Relative Addressing

The above addressing modes work very well if we happen to know the
address, or at least the base address, of the data which we wish to
access. However, if our program is one of several which might occupy
memory at any one time we cannot guarantee that on every occasion
it will be located into exactly the same region of memory. In this case,
it does not make much sense for a program to refer to specific address
numbers.

This problem is overcome by writing programs which are position
independent or relocatable, which means that they can be loaded and
run anywhere in memory. In this case, the location of a particular
block of memory can be specified as being relative to a known point;
the only known point being the location of the instruction currently
being executed and whose address will be contained in the PC
(program counter) register.

PC relative addressing instructions are formatted in exactly the same
way as indirect addressing instructions, except that PC is substituted

for the base register, as follows:

MOVE.B4(PC,),D2 PC relative with displacement

MOVE.W6(PC,),D5

MOVE.B6(PC,D3.L),D2 PC relative with index and

MOVE.B4(PC,D3.W),D1 displacement

The following table gives a summary of the addressing modes

discussed in this chapter.

38 First Steps in Assembly Language for the 68000

Addressing Mode

Implicit

Absolute (short & long)

Register Direct

Immediate

Address Register Indirect

Address Register Indirect
with Postincrement

Address Register Indirect
with Predecrement

Address Register Indirect
with Displacement

Address Register Indirect
with Index and Displacement

PC Relative with Displacement

PC Relative with Index
and Displacement

Operand Location

Operands implicit in
instruction
Operand at address
specified in instruction
Operand contained in a
register
Operand contained in
instruction
Address of operand is in an
address register

As above

As above

Address of operand is the
contents of an address
register plus a 16-bit signed
displacement value

Address of operand is the
contents of an address
register plus the contents of
an index register plus an 8-
bit signed displacement
value
Address of operand is PC
plus a 16-bit signed
displacement

Address of operand is PC
plus an index register plus
an 8-bit signed displacement

Chapter 3

Condition Flags

The key to any program, whether written in machine code or in any
other language, is in the way in which it makes conditional decisions
based on the status of various variables. In BASIC, typical decisions
might be expressed as:

IF A$ = "Y" THEN GOTO 500

or

IF X>2 AND Y=3 THEN GOSUB 1000

or

IF count=10 THEN STOP

In the last example the variable ‘count’ is being used as a ‘flag’ in the
sense that in the event of ‘count’ being equal to 10 then it may be
regarded as a flag waved at the computer to indicate that a particular
decision has to be made — the decision to STOP executing. If the flag
is less than or greater than 10 then the need for an alternative decision
is being flagged — the decision not to STOP.

The first two examples also involve the use of flags, although in these
cases they are not so obviously labelled. The simplest way to look at
a flag is to regard it as a proposition that is either true or false. Thus,
during execution, the program flags the condition that it is true that
A$=”Y” , or that X>2 and Y=3, or it is false, and the program lines
following these statements indicate the appropriate action to be taken.

What the program is doing, irrespective of whether it is originally

written in assembly language or in BASIC, is using a ‘bit flag’ within

the CPU to indicate either a true or false condition. Thus, when

executing IF A$=”Y” the computer is not looking at the similarity of

39

40 First Steps in Assembly Language for the 68000

shape between one alphabetical letter and another and thinking to
itself ‘this character in variable A$ looks about as much like the letter

“Y” as a bullfrog’. It is in fact comparing the binary codes which
represent the two items of data and then setting a bit flag in a special
purpose register to either | or 0, indicating either that it is true or false
that the codes are identical. Once this bit has been set (i.e. it becomes
a 1) or reset (i.e. it becomes a 0) the program merely needs to make
a decision about what to do next.

In assembly language programs these decision flags need to be
considered individually by the programmer, because there is no
BASIC interpreter to determine automatically which flag is required
in a particular situation. Are two items of data being compared to see
if they are equal, which is greater than or less than the other, or
whether they are positive or negative? In each case the answer
obviously depends on the context and a separate bit flag is used in each
case.

Let us select a few bit flags to see how they work. Since they only
occupy | bit each they are all stored in a single register. In the 68000,
this special register is termed the CCR (Condition Codes Register),
which forms the lower half of a 16-bit register known as the SR (Status
Register), which holds various flags indicating the current status of
the system.

15 13 10— 9:29 O73 O21 ee

EE.

Condition “odes Register

Status Register

FIGURE 3-1.

Condition Flags 41

Zero Flag (Z)

Taking the zero flag first, consider a typical decision. Suppose that a
key has been pressed on the keyboard and that we have transferred its
ASCII value to register D1. How would we do that? It depends on the
computer we are using and on the particular method of keyboard
scanning being used, but suppose for the present that our computer
has an inbuilt keyboard scanning routine which can be called as a
subroutine from our main program and which automatically returns
the ASCII code of the last key to be pressed in the low byte of register
D1.

What we need to determine is whether the byte code in the D1 register
is the same as the ASCII code for Y In other words, is it true or false
that the Y key has just been pressed? Naturally we need to know the
ASCII code for Y which is 89 (or binary 01011001). The question takes
the form: ‘Is the byte contained in D1 equal to 89?’ This question is
technically a comparison, so we compare the immediate constant 89
with the contents of D1, using the instruction CMPI (which means
compare immediate):

CMPI.B #89,D1

eee
CMPI.B #09,01 (oompare the low order byte of register
imme nnediate’ value 89)

or:

FIGURE 3-2.

How does a computer compare items of data? In this case it must

subtract 89 from the contents of D1 (taking care not to actually alter

the original value of D1 which we may sometimes want to preserve)

and ask itself whether or not the answer is zero, in which case they

must be equal, or greater or lesser than zero, in which case they are

not equal. The answer is indicated by the zero flag which is

automatically ‘set’ to 1 if they are equal or ‘reset’ to 0 if they are not.

42 First Steps in Assembly Language for the 68000

This is an important point to remember about the zero flag: it does not
necessarily indicate that the contents of a register or memory address
equal zero; it indicates whether or not the result of the previous
operation equals zero. In this case the previous operation was a
comparison (in effect, a subtraction) and, since the result of the

comparison was zero, the zero flag is automatically set.

eee ena eae

You can see that any decision we may wish to take now, such as a call
to a subroutine, can be made on the basis of testing the zero flag in
the CCR register to see whether it contains 0 or 1.

FIGURE 3-3.

Let us now look at how we might make such a test. Suppose that our
program has asked us a question to which the input answer is either
Y (yes) or N (no). If our answer is Y then perhaps the program might
transfer execution to a routine labelled, say, ‘FRED’. If the answer is

N, or in fact anything other than Y, execution should move on to the
next instruction in the program sequence. j

In assembly language terms the operation could be described as
follows: If the ASCII code of the last key pressed is the same as the
ASCII code for Y then set the “‘Z”’ flag. If the Z flag contains 1 then
transfer execution to address ‘FRED’, otherwise move to the next
instruction in the sequence. What would this look like as part of a
program?

Pest yo Biri Si: sASCII code for last key pressed is in D1

CMPI.B #89.D1 2s it» tnecsamemas*Ascal code} tom —Yre

BEQ FRED ;'Branch if equal’ to address 'FRED' if so.

;Otherwise continue to next instruction

Condition Flags 43

That is all there is to it. The BEQ (branch if equal) instruction ‘tests’
the Z flag and transfers execution to the address labelled ‘FRED’ if it

is set.

If we wished to restrict our answer to Y or N rather than Y or ‘any
other’ key, we would simply perform two comparisons:

<3) Ae sASCII code for last key pressed is in D1

CMPI.B #89.D1 z;Is it the same as ASCII code for "Y"?

BEQ FRED s"Branch if equal' to address 'FRED' if so.

CMPI.B #78,D1 Or is it the same as ASCII code for "N" ?

BEQ MARY Branch if equal to address 'MARY' if so.

Otherwise carry on to next instruction

A separate comparison could, of course, be performed with every

ASCII code in order to find out exactly which key had been pressed.

This would be rather cumbersome however, and there are other

techniques, on specific machines, for reading and cross-referencing

large areas of the keyboard at once in order to isolate a particular key

or set of keys.

Key testing is, of course, only one application but in all cases the

principle is the same — the Z flag is used to indicate whether the result

of a comparison or any other arithmetic or logical operation is zero.

It also works with instructions such as MOVE, indicating whether a

number moved into a certain location is zero or not.

Sign Flag (N)

Now let us look at the sign flag: N. This is used to indicate whether

an item of data is a positive or a negative number.

Although in most circumstances a byte of data represents a value

between 0 and 255, in some circumstances it is useful to regard it as

representing a signed value in the range —128 to + 127. This is very

easily achieved by regarding bit 7 of a byte (the Most Significant Bit

4d First Steps in Assembly Language for the 68000

or MSB) as being the sign bit. If it is set then the number is negative
and if it is reset then the number is positive.

However, if we were to use bit 7 as the sign bit we would run into
problems when performing arithmetic operations using signed values.
For example, if we add together the signed representations of +10 and
-5 (00001010 + 10000101), we would end up with 10001111 which is
-15 as a signed number, and which is obviously incorrect. Binary
addition is performed in a similar way to decimal addition, with any
‘carry’ being passed to the next column of the addition. The rules are
that 0+0=0, 0+1=1, 1+0=1 and 1+1=0 carry 1, hence:

Binary 2’s Comp

00001010 (+10)

+10000101 Cs >)) (DT C7 Wseset,

a lo Indicating a minus value)

=10001111 Calo

For the processor to have to correct this result would take up valuable
processing time and so the solution is to represent signed numbers in
2’s complement form, in which all positive signed numbers keep their
normal binary value and take the sign indicated by their eighth bit (bit
7), and all negative numbers are obtained by means of the following
method:“

1 All bits in the binary value are complemented (i.e. inverted).
oe Or ne

The value 1 is added to the result -

For example, number 5 is represented by 00000101. When we invert
this, substituting zeroes for all the ones and vice versa, we get
11111010, which is the one’s complement. We then add | to this
number and end up with 11111011, which is the 2’s complement
signed representation of —5.

If we now substitute this representation of —5 we get the correct
answer to our addition:

Binary 2’s Comp

00001010 (+10)

+11111011 C53

=00000101 (+ 5)

Condition Flags 45

Two’s complement arithmetic is recognized implicitly by a number of
assembly language instructions and in most circumstances the
conversion to 2’s complement is performed automatically, without the
programmer needing to specify this form of representation.

Now consider the following byte:

01111111

As a signed number this is, of course, +127: the highest positive
number which can be represented by a signed byte. The value
11111111, in 2’s complement, represents —1, which is the same

number as +127 but with the sign bit set. Again, this is +1
(00000001) inverted to 11111110, with 1 added, which is 11111111.

Two’s complement byte values therefore run as follows:

Binary © 2’s Comp. Unsigned

00000001 = +1 1

00000010 = +2 2

00000011 = +3 3

and so on up to:

Binary 2’s Comp. Unsigned

01111110 = +126 126

01111111 = +127 127

and then the next binary numbers in sequence are:

Binary 2’s Comp. Unsigned

10000000 = 125 128

10000001 = = Zi 129

10000010 = -126 130

and so on up to:

Binary 2’s Comp. Unsigned

tidelsisia Ol, = =) 255

RA t1140. = Sa 254

I 255 11111111

46 First Steps in Assembly Language for the 68000

The same principle applies to two-byte data representation. The
value:

0111111111111111

represents +32767, its MSB being reset and which is the highest 2’s
complement positive word value. The value:

1000000000000000

represents —32768, its sign bit being set, which is the lowest 2’s
complement negative word value. 16 ones would, of course, represent
-1 in a similar way to the byte form.

Suppose that we have performed an operation using byte-sized
operands and we wish to know whether the resulting value is positive
or negative in terms of 2’s complement representation?

We could, of course, subtract 127 from it and see what the remainder
is. It would be far simpler however, if we could just check a flag, and

this is precisely how the N flag functions. After certain operations the
eighth bit (bit 7) of the resulting byte, or the 16th bit (bit 15) of a
word, is automatically copied into the N flag position in the CCR
register and we can test this in much the same way that we tested the
zero flag.

This would be useful, for example, if we were processing a block of
data and wished to separate all those bytes of data which represented
standard ASCII characters from those which do not.

It would be easy to separate standard from non-standard ASCII codes
because, in 2’s complement terms, the standard set is represented by
codes +0 to +127 and the non-standard set, by —1 to -128. In other
words, the distinction is revealed by the status of the sign bit.
Therefore, we can load each of our bytes in sequence into a data
register and test to see whether the N bit in the CCR register has been
set or not, and then write program instructions to take appropriate
action — for example to branch to one subroutine if the N bit is set or
to another if it is reset.

Condition Flags 47

Carry Flag (C)

Because the size of a byte, a word or a long word is limited to a certain

number of bits, it frequently happens that an arithmetic operation

produces a result which falls outside the range of the data size being

used for the operation. Consider the following binary addition:

Binary Decimal

00001010 10

+00000100 4

=00001110 =14

In this case there is no problem. The result is perfectly correct because

it falls within the range 0 to 255. Compare this with the following

addition:

Binary Decimal

10001010 138

+10000100 +132

=00001110 = 14

eanrys 1

The problem here is that the addition has given the result 14, which

is incorrect because the true sum of the two values is greater than 255,

which is the highest value that a binary byte can represent. The binary

addition has therefore resulted in a ‘carry’ from bit 7 which has

nowhere to go. If this were a 16-bit addition it would go into bit 8 (the

9th bit) of the result, giving the correct decimal result of 270. In cases

where the size limit of an operand has been exceeded in an operation,

the carry bit is passed into the ‘C’ or carry flag in the CCR register,

which becomes set, indicating that the operation has resulted in a

value which is out of range. In our first example, which was within

range, the carry flag would remain reset.

The same principle applies to subtraction operations. If we were to

subtract 10 from 4 then the true result is negative. Since the lowest

unsigned binary byte value is 0 then the actual result will be incorrect

and a binary ‘borrow’ will be generated, which is copied into the C flag

in the same way as a Carry.

48 First Steps in Assembly Language for the 68000 mp nlm a ic Sk

The C bit of the CCR register can therefore be regarded as the ninth
bit (bit 8) of a byte value, the 17th bit (bit 16) of a word value or the
32nd bit (bit 31) of a double word value.

Wherever you perform an operation in which a carry or borrow is
likely to occur, you can use an instruction which tests the C flag in
order to determine whether or not the result is incorrect. Again, your
program should specify the appropriate action to be taken.

Overflow Flag (V)

The ‘V’, or overflow flag is very similar to the carry flag except that
it is used to detect binary overflow errors resulting from 2’s complem-
ent arithmetic operations. Consider the following two addition
operations:

Binary 2’s Comp.

10001010 -118

+10001001 = 14.9

=00010011 Se te 19

Binary 2’s Comp. Unsigned

01111000 +120

+00111000 +5516

=10110000 = - 80

carry 7

In both these cases, the signs of the numbers have been altered. In the
first example, the change of sign was caused by the fact that, although
there was no carry from bit 6 into bit 7, there was a carry from bit 7
into the carry flag, leaving a zero in bit 7. In the second example, there
was no external carry into the carry flag but there was an internal carry
from bit 6 into bit 7 of the byte. In both cases therefore, the value of
the sign bit was altered causing an incorrect result. Where an
operation involving 2’s complement values results in the alteration of
the sign flag the condition is termed an overflow and the V bit of the

Condition Flags 49

CCR register is set, otherwise it remains reset. An overflow is usually
an accidental error and a program can be designed to test for such an
error and to redirect execution to a corrective subroutine.

Extend Flag (X)

The ‘X’ or extend flag performs the same kind of function as the carry
flag, except that it is used in binary coded decimal and multiple
precision arithmetic operations. This flag will be described in detail
when we look at binary coded decimal arithmetic in Chapter 7.

Conditional Suffixes

All these flags, both singly and in combination, provide an extremely
flexible means of making conditional branching decisions. The
branching instructions of the 68000 can incorporate suffixes which use
various combinations of these flags to provide every kind of condition-
al testing operation necessary for programming. These suffixes are
appended to three types of instruction: Scc (set from condition), Bcc
(branch on condition) and DBcc (decrement and branch on condition).

An example of the ‘EQ’ suffix was used earlier in this chapter in the
form BEQ (branch if equal).

The table on the next page shows a complete list of the conditional
suffixes:

50 First Steps in Assembly Language for the 68000

Suffix

DBcc and Scc can be used with the additional suffixes T (true) and F
(false).

The following examples show how the carry and overflow flags are

Meaning

if carry clear
if carry set
if equal
if greater or equal

if greater

if high
if less or equal

if low or same

if less than

if minus
if not equal
if plus
if overflow
if not overflow

Conditions

if GeO
i =a)
iiZiul

if either (N: = land V.=3

or (N = 0 and V = 0)
if either (N = l.and. V=1 and

Z = 0)or(N = 0 and V =
0 and Z = 0)

if C= 0iand:Z =o
if N =) and Vi= 0

(N = O0and V = 1

= er 243}

if either (N.= 1 and-V =a

or (N = 0 and V = 1)
if N= 1

) or

)or Zak

if Z = 0
if N = 0
if V = 1
if V = 0

affected by addition operations on various byte values:

Binary. Decimal

* 00001010 10

+00001010 10

00010100 20

Binary 2’s Comp.

01111000 +120

+00001010 + 10

-10000010 “126 =10000010

V=0 and C=0

V=1 and C=0 (overflow error)

Condition Flags 51

Binary 2’s Comp.

00001010 +10

teaer1000 . - 8

=00000010 +2 V=0 and C=1 (correct 2's Comp.

carry 1 result. Carry ignored)

Binary 2’s Comp.

00001000 + 8
erad10410 +. -10

= WhiiO: | - 2 V=0 and C=0

Binary 2’s Comp.

11111000 - 8
Soro -10

=11101110 =a {te} V=0 and C=1 (Correct 2's comp.

carry 7 result. Carry ignored)

Binary 2’s Comp.

10001000 -120

#11110110 - 10

=01111110 +126 V=1 and C=1 (overflow error)

carry 1

Bit Rotation

Arithmetic operations are not the only ones which can alter the status
of the flags. The rotation instructions for example, allow you to rotate
the individual bits in a byte, word or double word of data to the right
or to the left, altering the status of the flags accordingly. Why would
you want to rotate bits to the left or right? The answer is not
immediately obvious perhaps, because in normal, everyday program-
ming we are used to thinking in terms of the ‘face value’ of numbers,

52 First Steps in Assembly Language for the 68000

rather than thinking of them as a pattern of 0s and Is. This is why we
are using binary arithmetic a great deal in this part of the book: it is
only by getting used to the idea of data as a binary number pattern that
we can really appreciate how assembly language works and how an
understanding of its structure can allow you to manipulate these
patterns in creative and imaginative ways.

Imagine that you have a program which is feeding data out of the
computer to some peripheral device — say a disc drive. You have 7
bytes of data to transfer and you need some method of counting off
these bytes as they are transferred. You could, of course, use a register
as a counter variable, subtracting one from it after each transfer and
checking the zero flag until it is set, indicating that the counter has
reached zero. As an alternative you could load a labelled address with
the byte value 252 (binary 11111100). This contains a binary pattern
of 6 ones (i.e. one less than the number you wish to count), followed

by two zeros. Now see what happens when we ‘rotate’ the binary
number to the left by 1 bit:

C

fea] } a]]sjofo}s)

rotate left

FIGURE 3-4. Bit rotation of a binary byte.

As the bits are rotated to the left, the 1 from the leftmost bit position

replaces. the zero which previously occupied the rightmost bit
position. At the same time the leftmost 1 is also copied into the C flag.
This is in fact a carry and effectively sets the carry flag.

We could rotate this byte to the left a total of seven times, each time

following the transfer of a byte of data from the computer into the disc
drive, thus using the 6 set bits in the rotating counter byte as counters
for the amount of data transferred:

Condition Flags 53

Carry Operand value Flag

0 11111100 original number
] 11111001 after first rotation
l 11110011 after second rotation
l 11100111 after third rotation
l 11001111 after fourth rotation
1 10011111 after fifth rotation
1 00111111 after sixth rotation
0 01111110 after seventh rotation

On the seventh rotation, the zero in the leftmost bit position is rotated
into the carry flag which therefore becomes reset.

If each rotation is followed by an instruction which tests the carry flag,
the condition of the flag can therefore be used to determine when the
count has reached 7. This technique is illustrated in PROG6 in Chapter

13. ;

There are a number of instructions for rotating and for ‘shifting’ data
values and all affect some of the flags in various ways. Details of this
group of instructions can be found in Appendix B and include ROL
(rotate left with carry), ROR (rotate right with carry), ROXL (rotate left
with extend), ROXR (rotate right with extend), ASL (shift arithmetic
left), ASR (shift arithmetic right), LSL (shift logical left) and LSR (shift

logical right).

Logical Operations

The final main group of instructions which affect the flags are the

logical operators: AND, OR and EOR. AND takes a source and a

destination operand and returns a result in which each bit is set if both

the corresponding bits in the source and the destination are set. OR

returns a result in which each bit is set if either of the corresponding

bits in the source or the destination are set. EOR returns a result in

which each bit is set if either of the corresponding bits in the source

or the destination bur not both are set. The following examples show

the way in which the flags may be affected accordingly:

54 First Steps in Assembly Language for the 68000

AND OR XOR

10101010 10101010 10101010

01101101 01101101 01101101

00101000 TRO ta 11000111

VAN Lake VENSZA Ke VENEZLSX eC

00000 01000 0-1) 020¥6

Note that the ‘X’ flag is not affected by these instructions and the ‘C’
and ‘V’ flags are always zeroed.

Specific Flag-altering Instructions

Most of the instructions on the 68000 affect various flags in one way
or another as a program is executed and you sometimes need to be sure
that a particular flag is in the required state before you use it.

One way of doing this is by performing a logical AND operation on
the CCR register in order to reset all or some of the flags. The
instruction for this is ANDI #x,CCR (AND immediate to CCR). The ‘x’
is a value whose bit pattern corresponds to the flag bits, X,N,Z,V and

C of the CCR. Thus, for example, to reset all the flags the ‘x’ would
be 0. To reset the carry and zero flags only, those two bits should be
equal to zero and so ‘x’ would be 26 (i.e. binary 11010). The operation
for setting flags is similar except that a logical OR operation is used:
ORI #x,CCR (OR immediate to CCR) and instead of using reset bits to
reset particular flags, we use set bits to set them. To set Z and C
therefore, ‘x’ would be given the value 5 (i.e. binary 00101)

Flag Testing

It is possible to test data without previously having performed an
operation on it. Suppose that you have an item of data in memory and
you wish to know whether it is zero or negative. Using the TST (Test)
instruction you can specify an operand and the ‘Z’ and ‘N” flags will
be set or reset according to its value. Since the value is not actually
altered in any way, the ‘V’, ‘C’ and ‘X’ flags will not be altered either.

Condition Flags 55

There are a number of other test instructions which specifically
operate on individual bits within an operand and which affect the zero
flag. These instructions are summarized as follows and a fuller
description of their functions can be found in Appendix B. Note that
these operations are normally used in multiprocessor operations where
several processors have access to a shared memory resource. Testing
an operand allows a program to determine whether another processor
is accessing a particular part of memory and setting an operand bit
informs other processors that your own processor is accessing it.

BCHG

(Test Bit and Change) This instruction tests a specified bit within an
operand in memory or in a register. If the bit
is reset then the zero flag is set and if the bit
is set then the zero flag is reset. The specified
bit is then complemented — in other words, if
reset it is set or if set it is reset.

BCLR

(Test Bit and Clear) This is similar to BCHG except that instead of
being complemented, the specified bit is left
reset.

BSET

(Test Bit and Set) This is similar to BCLR except that the specifi-

ed bit is always left set.

BIST

(Test Bit) This is similar to the above three instructions
except that the specified bit is left unchanged.

TAS

(Test and Set) TAS tests a specified operand and the N and Z
flags are set or reset according to its value,
after which the high order bit of the operand
is set. No other processor can access the
operand while the TAS operation is taking
place.

Se 4 ne i oe en

haart Sy siw ena 9 4 { a
e 5

4 'izoitn Swe c t t t (ott

fie
7 i > YOKOL 2 AS Lt PT) Ps 19 ‘ POOP 0s 4) |

’
s iM ’ i; ‘ve \\ - ; '

FEMME CLR } > 19 art mu ¥ ure

‘? * ’

~ Loy . v

; x ‘ : “ é

bf Tw iCatai yr ba 4)

{ A + "Je & 4 ,

? % ad yy

y

: pgs 4 “3 ‘
¢ - “
i= s ‘

oa '
$ * at

‘

'

cL-r48 os af ” at l § at
‘

‘ -
} 4 ~

‘ - ‘ :

a

. a 5 i- »

; T e«

'

Lad

: :
' ty i) bd atk ' a i bei

- r : ‘
Fm rt, ‘. ght .

tess A welts mary ba licege & ores CA! me Ow

in? 2! Sa wstvey he Shi éx:1? ,

hukagy Std td wakae pid scr store toity >=

nate Eee Shounen Lovuy peribg
yoite. mga! ted> pe deeetistage (doce 4 T

1 ate 0 ude Maier hy eero ue ewqganlge Unig ‘
ine iene ie ie Seay Wh Operkad a ue “7 FE; wd, vs

D2 mt ie watt. ‘Suse Ab e eit, “a

) P ¢ pT
nme a a etch

~— -

Chapter 4

Branching Operations

Relative Addressing

In a BASIC program it is frequently necessary to redirect execution

from the current line number to another line number; either to GOTO

another section of the program or to GOSUB to a subroutine.

In assembly language the same applies, except that in this case we

would be redirecting execution not to another line number but to a

memory address.

In BASIC, such an operation would normally involve a direct

destination. In other words, we would specify something like G0T0

300 or GOSUB 800. In assembly language we would do something

similar, specifying that program execution should go to the instruction

located at, say, address 70000 within the code segment for example,

or to a subroutine starting at address 80000. The actual address value

need not necessarily be known beforehand: it could be contained in

one of the address registers, in which case we could specify it in the

instruction using the register indirect addressing mode.

There will be occasions when we wish to redirect execution to an

address which is relative to the instruction which is specifying the

redirection. In BASIC this is an unnecessary operation but we would

express such a command using an instruction such as:

100 GOTO 100+30

or

100 GOSUB 100+30.

In these cases we would be referring to line 130, which is 30 lines

further on in the program relative to the GOTO or GOSUB commands.

57

58 First Steps in Assembly Language for the 68000

The reason why we do not need to use relative addressing in BASIC
is that the destination of a branch is explicit in the program. If we
know that the target routine is at line 130 then we can refer to the
line number directly. In assembly language there are no line numbers
and therefore a target routine must be relative to some fixed point.
If the target routine is positioned relative to the instruction which
calls it then it is necessary to calculate the relative number of addresses
between the branching command and the routine or subroutine
address to which it refers.

If the fixed point is the address of the current instruction then the
relative displacement between PC and the target routine must be
calculated, since at any given time, PC contains the address of the
instruction which is currently being executed. If PC is altered to point
to a target routine relative to the branching instruction, the relative
displacement is added to the current value of the PC register. If the
address of the target routine is absolute rather than relative, then the
absolute address must replace the value currently contained in PC.

In assembly language it is necessary to specify in the instruction itself
the number of relative addresses between a branching command and
the program or subroutine address to which it refers, or to specify
or ‘point’ to the actual address of an absolute location. These two
types of redirection instructions are distinguished in the 68000 by
the use of two different types of instructions: jump and branch
commands:

JMP (Jump) — jump to a specified address
JSR (Jump to Subroutine) — jump to a subroutine at a specified address
BRA (Branch) — branch to an address relative to the branch command

BSR.(Branch to Subroutine) — branch to a subroutine address relative
to the branch command.

Jump Operations

Taking the first of these, JMP is perfectly straightforward. We can
jump to an address which is either absolute (i.e. the address number
is specified in the instruction) or indirect (i.e. the address number
can be specified using one of the forms of the address register indirect
addressing mode). If you are unsure of the meanings of these modes
you should refer back briefly to chapter two to refresh your memory.

Branching Operations 59
ee eens

The JSR command operates in almost exactly the same way except

that it redirects execution to a subroutine located at a particular

address. When the command is executed, the address immediately

following the JSR command is temporarily stored away so that when

a return is made from the subroutine, the program can recommence

execution from the point where it left off.

Branch Operations

The Branch commands are a little more complex. In these cases we

are transferring execution to an address a relative distance away from

the branching command and if we were to look at the code of the

command in program memory it would appear something like this:

ADDRESS 70000 Branch instruction code

ADDRESS 70001 8-bit displacement code

ADDRESS 70002 1

ADDRESS 70003

ADDRESS 70004

OPERATION: BRA 264 (branch to a location 264 bytes forward from

the branch comman

16-bit displacement code

FIGURE 4-1.

The first byte of the command, in address 70000, contains the

branching instruction itself. The following three addresses contain

the data which specifies the distance of the displacement (i.e. the

relative distance) between the branch command and the address to

which execution will be transferred. This can either take the form of

a single byte of data (in address 70001), giving a two‘s complement

displacement in the range -128 to +127, or a word of data (in

addresses 70002 and 70003) giving a two‘s complement displacement

in the range -32K to +32K. If the byte in address 70001 is other

than zero then a signed byte displacement will be used and if it is

zero, then a signed word-sized displacement will be used.

60 First Steps in Assembly Language for the 68000

Since the address of the program instruction currently being executed
is always held in the PC register, any relative displacements will
therefore be relative to the value of the PC register. However, since
the PC register increments by | after every byte of an instruction has
been interpreted, by the time it has interpreted the required
displacement distance it will have moved on to an address two bytes
further on from the beginning of the branch instruction. The
displacement value, therefore, does not refer to the relative distance
from the beginning of the branch instruction itself but from a point
two bytes further on, as illustrated by the following diagram:

ADDRESS 70000 Branch instruction code

ADDRESS 70001 8-bit displacement oode
ADDRESS 70002 —
ADDRESS 70002
ADDRESS 70004
Tie #8€8=6=|=|—h|
aooress 7000
imi |

Wisi = =—h ee

rom 70002

FIGURE 4-2.

This diagram illustrates the use of the instruction BRA 6, which means
‘branch relative to the BRA instruction by 6 bytes’. If we wanted to
branch backwards instead of forwards in memory we might use an
instruction such as BRA -6.

Labelled Branching Operations

It will no doubt have occurred to you that if we had to calculate these
relative values individually each time, then programming would be
something of a nightmare. It would be easier if we could simply
program an instruction such as BRA ADDR1, where ADDR1 is a label or
variable equivalent to the new execution address. This is precisely
what an assembler program allows us to do. We can ‘declare’ the
value of a label name of our own choosing to be the addres of a

Branching Operations 61

particular program routine. Thereafter, when the program is com-
piled into object code, the relative distance between the BRA ADDR1
command and the actual destination address to which it refers would
be calculated and coded automatically, as would the relative distances
for any other instruction which refers to ADDR1. Apart from making
the job of programming easier, this also means that a program can be
loaded anywhere in memory since the label does not refer to a fixed
address.

The same principle applies to BSR instructions. The command BSR
ADDR2 would redirect execution to a subroutine whose start address
is defined as ADDR2 in the source listing. Labels may also be used
with JMP and JSR instructions.

Wherever a JSR or BSR instruction has redirected execution to a
subroutine, a return is made by the inclusion in the subroutine itself
of a return.command, which serves the same function as the RETURN

command in BASIC. In assembly language, the command is RTS
(return from subroutine). There are some other return commands

which are used in special circumstances and these will be described in

later chapters.

As a summary of the principles described above, the following
diagram shows how a BSR command redirects execution to a
subroutine located at address 70000, and, after a return is made, how

a JMP command is used to jump to address 80000.

FIGURE 4-3.

62 First Steps in Assembly Language for the 68000

Absolute and Indirect Branching

JMP and JSR jumps are either absolute or indirect and BRA and BSR
branches involve an absolute displacement. An absolute branch is
one which is made to a target location whose address is specified in
the instruction. An indirect branch is one whose target address is
contained not in the instruction but in a location pointed to by the
instruction.

Absolute

JMP ROUT3 as an absolute instruction redirects execution to an
address represented by the label ROUT3. This address is auto-
matically loaded into the PC register and becomes the new
execution address. In the case of JSR the target address is obtained
in the same way.

Indirect

JMP (A4) is an indirect instruction which redirects execution to a
target location whose address is contained in register A4. This
address is automatically loaded into the PC register and becomes
the new execution address. In the case of JSR the target address is
obtained in the same way.

Relative
BRA ROUT3 is a PC relative branch because the value of the label is
an absolute displacement which is added to the PC register. The
same principle applies to BSR.

Note that it is easy to become confused about the notion of absolute
addressing. Technically, an absolute address is a specified address
number. When a label is used then the absolute address is represented
by the label and the absolute address to which the label refers may
differ, depending on what part of memory the program has been
loaded into. In position dependent programs a label may be defined
by the program as being equal to a particular address number. In
position independent programs the label is assigned to the position
of a particular instruction, whatever address that happens to be when
the program is loaded. The assembler computer it as a PC relative
location for most practical purposes you should simply regard the
term absolute as referring to an operand which is not in a register
and which is not referred to indirectly. ‘Thuis JMP ROUTS, JMP (A4) and

Branching Operations 63

The only difficulty which you are likely to run into in this respect is
where a label is used which represents an address which has been
computed as a program counter relative value, which is the case with
programs which have been assembled as position independent code.
In this case an operand in a labelled address cannot be altered.

Conditional Branching

The JMP, JSR, BRA BRS and RTS commands are termed unconditional

redirection or ‘program control’ commands, corresponding to the
BASIC instructions GOSUB, GOTO and RETURN. In most circumstances
where we require redirection however, we need to use conditional

instructions, corresponding to BASIC instructions such as IF A=B

THENGOTO .. or IF A<=BTHENGOSUB ... It 1s in these circumstances

that we use the condition code flags in the CCR register, as described

in the previous chapter. If you refer to the table on page 51 in the

last chapter, you will see that certain condition code flags are affected

by program operations which, in various combinations, correspond

to conditions such as less than, equal to, greater than and so on. In

branching operations we use these in a special form of the branch

command: Bcc (Branch according to condition code), where ‘cc’ is one

of the suffixes listed in the table. This was illustrated in our discussion

of the zero flag, where the instruction BEQ@ (i.e. Bcc with ‘EQ’

substituted for the ‘cc’) was used to branch to a new execution address

conditional upon the zero flag being set. We are now in a position

to go a stage further and see how a conditional branching command

and the zero flag can be used to simulate a BASIC FOR. .NEXT loop.

Imagine that we have a routine which we wish to enclose within a

program loop, which is to be iterated 10 times. We need to have

some means of counting up to, or down from, 10 so that we know

when the iterations have been completed. We can do this by selecting

one of our data registers, say D4, as a loop control ‘counter’ and load

it with the immediate value 10:

MOVEQ #10,D4

64 First Steps in Assembly Language for the 68000

The low order byte of D4 now contains 10 and the higher three bytes
are zeroed.

The routine which is to be iterated starts at address 80000 and ends
at address 80007. Following this, starting at address 80008, we need
to write a routine which tests to see whether the iteration has been
completed. If it has, we want the program execution to carry on with
the next instruction in sequence. If not, execution must loop back
to address 80000 to repeat the routine. Here is the process in
diagrammatic form:

ADDRESS INSTRUCTION

79998 MOVEO #10,D4 Load D4 with 10

the loop routine
instructions go

in here

80000 St
la

Subtract 1 from D4
and set zero flag
if D4 equals zero

80008 SUBQ #1,D4

Branch if zero flag
is not equal to one

back to ’LOOPL’

80010 BNE LOOP1

Else continue with next 80012 +s next instruction t
instruction in sequence

FIGURE 4-4.

Immediately before the routine, D4 is loaded with 10; a procedure
which uses up 2 bytes from addresses 79,998 to 79,999. Then follows
the loop itself, from addresses 80000 to 80007. Following this is
a subtraction instruction: SUBQ.B #1,D4 which means ‘subtract quick’
the value 1 from the least significant byte of D4’. In addition to
subtracting 1 from D4, this operation will also set the zero flag if D4
now contains the value zero, or leave it reset otherwise. We are then

in a position to test the zero flag and branch back to address 80000
if it is reset, which is achieved with the command BNE L00P1 (branch
if ‘not equal’ back to LO0P1). The term ‘not equal’ refers to the status
of the zero flag; if it is reset then the result of the previous SUBQ
instruction must be ‘not equal’ to zero and execution is therefore
redirected back to LOOP1 (address 80000). If D4 has reached zero

Branching Operations 65

after the SUBQ instruction then the zero flag is set. The branch is
therefore not made and execution continues with the next program
instruction.

The above example is, in effect, a FOR. .NEXT loop and it is almost as

simple to understand and as easy to program in assembly language
as it is in BASIC. This kind of loop is so fundamental to programming
that the 68000 has been provided with a mechanism for speeding up
and simplifying the operation even further: DBcc (decrement and
branch according to condition code). Again, DBcc instructions can
take the form of branching instructions conditional upon the status
of a range of flags.

This time, however, the process is a little more subtle. Suppose we
have a loop which adds 1 to the contents of data register D2 up to
10 times until either register D2 is equal to register D3 or the count
of ten has finished, whichever happens first. We could perform this
operation by continually adding 1 to D2 and then using the
comparison instruction, CMP, until the zero flag becomes set, which
would indicate equality, or until our counter register has finished
counting.

If we enclosed this routine within a DBcc loop we would use the form
DBEQ@ (Decrement and branch until equal), as follows:

;lLabel Instruction Comment
7 eweewewee eee ew ee ewe ewe ew ewe ee we ewe ew eww ew wm ew ew eww ew ew ewe errr rerrrrrrerererererererero

MOVEQ #9,D1 ;Load counter register with 9

LP1 ADDQ #1,D2 ;Add 1 to register D2

CMP.L D2,D3 ;Compare D2 with D3

DBEQ D1,LP1 ;If zero flag is set, go to NEXT

;Otherwise decrement D1

sIf 01<>=-1, Loop back to LP1

;Otherwise goto NEXT

NEXT 33 .

Firstly, we load our counter register with the value 9 (i.e. 1 less than

the value of the required count). Then we add 1 to D2, using the

ADDQ (add quick) instruction and then compare the contents of D2

66 First Steps in Assembly Language for the 68000

with the contents of D3, using CMP. Next comes the DBEQ instruction.
Firstly, it tests the zero flag to see if the previous comparison
instruction resulted in equality. If D2 1s equal to D3 (i.e. zero flag
has been set) the loop is finished and execution passes to the next
instruction. If D2 is not equal to D3, the D1 (counter) register is

automatically decremented by 1. If D1 is not equal to —1, execution
loops back to the instruction labelled ‘LP1’ (the ADDQ instruction). If

D1 is equal to —1 the loop is finished and execution passes to the next
instruction.

In BASIC the process could be coded as follows:

100 D1=9

200 REPEAT

300 D2=D2+1

400 IF D2=D3 THEN GOTO 700

500 D1=D1-1

600 UNTIL D1=-1

700 Next instruction ...

Using other condition suffixes, other types of loops can easily be
constructed. For example DBMI can be used for a REPEAT/UNTIL MINUS
loop and DBT corresponds to REPEAT/UNTIL TRUE. The DBF (Decrement
and branch until false) form of this instruction, which on some
assembler programs is expressed as DBRA (Decrement and branch)
is equivalent to having no condition: an unconditional branch. In
other words the loop will terminate only when the counter register
has reached —1.

Subroutines

When a subroutine is called the following events take place:

1 The address of the instruction which follows the JSR or BSR
instruction is automatically stored in a special reserved area of
memory termed the ‘stack.’

2 The new execution address specified by the branching instruction
is loaded into the program counter (PC register) (or added to it in
the case of BSR) and this therefore becomes the new execution
address.

Branching Operations 67

3 On completion of the subroutine, normally signalled by an RTS
(Return from subroutine) instruction in the subroutine, the
temporary address which was stored on the stack is transferred
back into the PC register so that the program will recommence
execution starting with the instruction which followed the branch-
ing instruction.

Where subroutines are nested, i.e. when a subroutine calls itself or

calls another subroutine, the same sequence of events takes place,
except that the RTS in every subsequent subroutine returns execution
to the instruction following the branching instruction in the previous
subroutine. The execution flow of a nested subroutine sequence is
shown in the following diagram:

SUBRT1 SUBRT2

FIGURE 4-5.

=

Passing Parameters to Subroutines

It is frequently necessary to pass parameters to a subroutine; in other
words, to transmit specific values to a subroutine which you are
calling which it needs for performing calculations or for some other

purpose.

For example, because of the complex structures of many computer
systems, it is often difficult to write program sequences which directly
perform tasks such as printing strings, numbers or graphic figures
to the screen. On most computers it is possible to overcome these
problems by using the same subroutines which the operating system
itself uses, which are permanently located in memory. The exact
methods of calling these subroutines will vary between machines but

68 First Steps in Assembly Language for the 68000

the principle is always essentially the same: your program performs
a branch to one of the system subroutines and passes parameters,
which would be coded instructions which specify the subroutine
required plus any data which the subroutine needs for its execution.
The following diagram illustrates a typical example of this, showing
how a user program passes parameters to the system specifying that
a character is to be printed to the display screen.

ADDRESS 80000

ADDRESS 80001.

ADDRESS 80002
ADDRESS 80003 _
ADDRESS 80004

ADDRESS 80005

ADDRESS 80006

ADDRESS 80007

FIGURE 4-6.

In this case the ASCII code of the character to be printed is contained
in register D1, the time allowed for the operation (e.g. delayed,
infinite or specified) in register D3 a code (5) indicating that a single
character is to be printed and in register DO. These values are the
parameters for the operation and the subroutine will expect to find
suitable values in these particular registers.

A mechanism such as this will be given different names by various
manufacturers, such as a ‘function despatch’, ‘operating system call’
or ‘trap’ mechanism. You should refer to the specific documentation
for your machine to establish the method of operating these functions,
and the parameters and registers required. You will normally find
that all important system control, device control, graphics and
arithmetic operations have system calls which can be called by the
user and they will save a great deal of programming time.

In the above example we considered the passing of subroutine
parameters by means of registers, which is normally the case with
simple subroutines or with system call mechanisms. However, when
passing parameters to your own subroutines you may find that there
are not enough free registers available. In this case, you can opt to

Branching Operations 69

have your parameters stored elsewhere in a labelled data table and
call them ‘by name’ when they are required.

The method used for passing parameters depends entirely on your
requirements. You may wish to pass a ‘one-off’ series of parameters
to a subroutine, in which case it makes sense to pass them via
registers, Or you may wish to pass a frequently used block of
parameters, in which case it makes sense to keep them in a separate
‘parameter block’ and call them ‘by name’ whenever they are
required.

If you pass parameters by name rather than via registers, it is up to
you to include instructions within the subroutine which collect the
parameters from their original locations before they are actually used
in the subroutine.

With both methods, you will frequently need to pass parameters back
from the subroutine to your main program. Again, these may be
passed via registers or they may be placed in particular labelled areas
of memory from where they can be retrieved by name after the
subroutine has been completed. We shall be looking more closely at
these methods in Chapter 11, where some program examples are

given.

a oe -—— ee lle ~ es wee it ES Le ES SS fe be

be okie scm UAthot @ 4!) Aes hep ot sto it

vicki tee pete oyster sips cage hY Gaia
2s ty do Jlgbe Theanine ¢ hak te kL Le

crivest yp wy “wate weit +32) eitiLraat: HHT

xe { ° ¢ MO 7tF « - i) ">

it Wrst | ‘ite Pon ‘ pel

; c - a pad 7 7® r
” 7 a

t

cal

, Pes! »

ww & a4 “ id wa c arty

| Fre Peay Pty :

>
&

of 5 t its

,
-

_ a4 t

‘ o>)

é . P yh a. ‘/_T ' :

at 1+ , » et j

4 \ J ry "i fivit ety {2 rt fey

el hy an , " . aah 9

7 * 8 iy ad 3? ’ a? t

4.3 s
care SOP SOR W NP ik 4 ent esi

at d J ay

_

:
:

ia]

3

j

q ci if)

. t ‘) ae cpaly’ ie ' ee 5e “at otrnges

‘ 11) « hat < mrtg 7

ie cles ung Pisiere. PeGQurrah Woe Wel NOTRE
xan ef notre contd) sap

Laide sVvreen re WoW Le is ae

gov wilh seve 6 eer Geeloof praerunenin ee as ry

7 ig Ce cane Bega. WA as cubadedst * q sh

; sie a,

suse a ; x -

Chapter 5

The Stack

Every time you temporarily need to store some information, in
Memory or in registers, it can be a time consuming and complex
business. You may, for example, have some data stored in several
registers which you want to keep, and at the same time you want to
use those registers for some other purpose. Perhaps you may wish to
call a subroutine which uses these registers and therefore their current
contents would be lost. What do you do to preserve this data? There
may be no spare registers available and you have to think about
finding some free space in memory where you can store the data away
for later retrieval. It would be useful if there were a general purpose
storage area where you could dump your data so that you could pick

it up again later without too much difficulty.

Fortunately, all microprocessor systems have such a storage area,
which is called a stack. You can picture the stack as a vertical series
of memory locations, arranged in pairs. Its precise location in memory
need not necessarily be known: all you need to remember is that the

current address of the first available free space on the stack, the ‘top’

of the stack, is always held in a special register which is termed the

stack pointer (SP) register.

The SP register is in fact address register A7, which plays a dual

role. When the 68000 is operating in user mode, A7 is the stack

pointer for a stack called the user stack and in supervisor mode, it

points to the supervisor stack. In practice, the system organizes the

stack status in each mode and you only need to remember that A7

points to the top of the stack.

There is no reason why you should not set up separate stacks for

different purposes within your own user programs and that is simply

done by moving the address of the top of your alternative stack into

a free address register and using that register as a stack pointer in

the same way that you would use A7.

71

72 First Steps in Assembly Language for the 68000

SP reeiey es points to
the ‘top’ of the stack

High memory
Low memory

FIGURE 5-1.

A stack normally extends downwards in memory from the stack top.
Every time some data is stored or ‘pushed’ on the stack, by means
of a MOVE instruction (which simply means that data is into the free
memory addresses at the current ‘top’ of the stack), then the SP
register is decremented by two or four bytes (depending on whether
you are stacking word or long word data) and the data is copied into
the address pointed to by SP and SP-1 or SP to SP-3. For example,
to stack the contents of D4 you would use the following instruction,
which uses the ‘address register indirect with predecrement’ addres-
sing mode: MOVE.LD4,-(A7). When the data is subsequently removed
from the stack, again by means of a MOVE instruction, the word or
long-word data pointed to by SP is copied into the specified
destination and then the SP register is automatically incremented by
two or four. For example, to unstack or ‘pop’ the long word on top
of the stack into DS you would use the instruction MOVE.L (A7)+,D5.
Note that the unstacking operation uses the ‘address register indirect
with postincrement’ addressing mode.

You will notice that data which has been stored on the stack is
removed in the opposite order. In other words, the last data to be
stored on the stack is the first to be retrieved. This is known as a
LIFO (last in, first out) arrangement and you should always take
care that any information which you retrieve from the stack is popped
in the correct order. In the following example we shall see how the
stack might be used in a typical situation.

The Stack 73

Suppose that you have a program which contains data in all the data
registers, all of which you want to keep. Your program branches off
into a subroutine in which you need to use two of these registers, say
D1 and D2.

Your first action is to push onto the stack all four words contained
in D1 and D2, say, 300, 287, 524 and 1176. The SP register originally

pointed to address 70000 in the stack. After pushing, using the
instructions MOVE.LD1,-(A7) and MOVE.L D2,-(A7), the contents of
D1 and D2 have been copied to addresses 69992 to 69998 and SP now

points to address 69992.

SP starts here ADDRESS 70000

SP points here:
after values. ace
stacked.

in de a stack ADDRESS 69988

ADDRESS 69986

ADDRESS 69984 eae aebi coal)

FIGURE 5-2.

Next you branch to the subroutine, which uses registers D1 and D2
for some purpose. After this, you return from the subroutine back to
the main program and you are now ready to retrieve your four original
values, which you can ‘pop’ back into D1 and D2 in reverse order
using the instructions MOVE.L (A7)+,D2 and MOVE.L (A7)+,D1. The

SP register now points to address 70000, as it did originally.

During this whole operation the contents of the stack have grown
downwards in memory by 8 bytes and then shrunk back again.

Note that although the values are popped off the stack in the reverse

order to that in which they were pushed, they need not necessarily

be popped back into the same registers from which they were pushed.

74 First Steps in Assembly Language for the 68000

SP points here ADDRESS 70000
after the four
words isi ADDRESS 69998

Senn rereed es ADDRESS 69996
ad Ad
on the stack ADDRESS 69994

after they 99)
have been ADDRESS: 69992 .
popped an o6 city Bees A ADDRESS 69990

mitten ® by any ADDRESS 69988
subsequen z!
push operations. ADDRESS 69986

FIGURE 5-3.

An important point has been omitted from this description which is
worth noting because it is essential to your understanding of how the
system operates. Every time you call a subroutine, the program has
to have some means of knowing where to return to when a return
from the subroutine is made. The easiest method of doing this is to
use the stack and in fact in the above example the system would have
stored the return addresses from your subroutine on the stack in
addition to the data which you stored there yourself. On returning
from the subroutine, the return address would automatically be
popped off the stack and transferred to the instruction pointer (IP)
register, which indicates the current execution address of your
program. Therefore, the order of data actually stored on the stack
would have been as follows:

ADDRESS 70000
ADDRESS 69998
ADDRESS 69996
ADDRESS 69994
ADDRESS 69992
ADDRESS 69990.

SP points here:—Hii) lacmccre
after values are Sawer ces
stacked. This ADDRESS 69986
if oa new stack & . me

Return
Address

FIGURE 5-4.

The Stack 75

Obviously the return address data stacked by the system would not
interfere with your own data at all since it would be retrieved first.

You will notice that in the above diagrams the stack is depicted as
columns of pairs of addresses. This is because only word and Jong

ord data can be pushed onto a stack. Obviously, if we were to push

byte-sized data on to the stack as well there would be both odd and

even sized items of information stored there which would cause some

confusion. If you wish to store a single byte of data on a stack then

the solution is simply to store it as part of a word, remembering that

half the word is irrelevant when you come to retrieve it. For example,

to store the value 6 on the stack it could first be loaded into the lower

half of a data register and then pushed on to the stack. For example,

MOVE.W #6,D4 followed by MOVE.WD4,-(A7).

In the above example we saw how the stack can be used to store

temporary items of information when we need to free one or more

registers for some other purpose. What happens when we want to

free all the registers whilst retaining their data? Rather than having

to stack the contents of each register separately, the 68000 has a single

instruction, MOVEM (Move Multiple), which makes it possible to push

or pop the contents of all or some of the registers at once. This

essentially works in much the same way as the stacking process for

the contents of a single register. With the MOVEM instruction the data

in each of the registers is transferred to the stack in the order in

which you list them in the instruction and the SP register is

decremented accordingly. On retrieval, again using MOVEM, the data

is popped back into the registers. For example, the instruction

MOVEM.L D1-D4/D6/D7/A3-A6,-(A7)

pushes all of the contents of D1, D2, D3, D4, D6, D7, A3, A4, A5 and A6é

onto the stack. The instruction

MOVEM.L (A7)+,D1-D4/D6/D7/A3-A6

retrieves them.

76 First Steps in Assembly Language for the 68000

Reverse Stacks

A reverse stack works in exactly the same way as a normal stack
except that it grows upwards in memory rather than downwards.
Again, data is pushed and popped on a LIFO basis but the SP register
is of course incremented after every push operation and decremented
before every pop operation.

Queues

The stack principle is used in one other useful kind of data structure
in the 68000: the queue. In a queue, data is pushed in much the same
way as it is in a stack except that it is popped on a first in, first out
(FIFO) basis. You can imagine a queue as looking rather like a stack
except that it is open at both ends. As fresh data is added to the head
of the queue, earlier data is left further and further behind. A queue
needs two stack pointers, which consist of two address registers: one
to point to address of the first free space at the head of the queue
(the ‘put’ pointer) and one to point to the back of the queue (the

‘get’ pointer). The put pointer works in a similar way as the SP pointer
in a reverse stack: it always points to the current free space and
increments according to the size of the data which is put on the queue.
The get pointer always points to the earliest item of data contained in
the queue and therefore can be used to retrieve it. The get pointer is
also incremented when data has been retrieved from the queue.

In the following diagram you can see how this works. The data has
been put in the queue starting from address 60000 and the last item
to be entered is at address 60010 The put pointer points to address
60012, the next free address, while the get pointer points to the
earliest item of data at address 60000. If we wanted to retrieve the
first word which was entered in the queue we would take it from the
address pointed to by the get pointer using, say, MOVE.W (A3)+,01 and
the pointer would then move up to the next item of data in sequence
at 60002. If we wanted to add a word to the head of the queue we
would place it at the address pointed to by the put pointer, which
would then increment by two bytes to point to the next free space at
60014. e.g. MOVE D6,(A4) +.

The Stack |

‘Put’ pointer ADDRESS 60012
points to here

ADDRESS 60010

ADDRESS 60008

ADDRESS 60006

ADDRESS 60004
ADDRESS 60002

ADDRESS 60000 ‘Get’ pointer
points to here

ADDRESS 59998

FIGURE 5-5.

Like stacks, queues can extend upwards or downwards in memory,
the only difference in operation being that the put and get pointers
both either auto-increment or auto-decrement, according to the
direction of the queue.

Since both pointers either increment or decrement in the same
direction for both types of queue, the problem arises that as data is
stored and retrieved, the queue begins to creep through memory from
the point where it started and if we are not careful it can move through
memory like a caterpillar and devour any program or data code in
its path. It is necessary, therefore, to create ‘circular’ queues, in order
to restrict their movement within predefined limits. This is done by
checking the put pointer to ensure that it has not moved beyond a
predetermined address. If it has then the entire queue can be moved
and the get and put pointers adjusted accordingly.

Altering Return Addresses

As we saw earlier in this chapter and in Chapter 4, when a branch
is made to a subroutine the address of the instruction immediately
following the branching instruction is automatically saved on the

stack for subsequent retrieval when the subroutine has been com-

pleted, so that the original program sequence can be recommenced

from the point at which the temporary branch was made.

78 First Steps in Assembly Language for the 68000

It is sometimes necessary in a program to alter return addresses on
the stack, either to redirect a return to a point other than the address

following the original calling instruction or because you have used a
programming method which causes the return address to be incorrect.

For example, suppose that you branch from your main program to
a subroutine. Within the subroutine you have a conditional decision
routine, after which control will return to the main program either
at the point where you left off or at some other point, depending on
the outcome of the decision operation. To return to the point where
you left off you would simply use an RTS instruction and the return
address would be retrieved from the stack and execution would
recommence from that point. To return to a different address
however, the return address would have to be altered so that it

corresponds to the new location. One method of doing this would be
to store the new return address on the stack by over-writing the old
one. For example, if the old return address is currently on top of the
stack and the new return address is in register A4, you can simply
load the contents of A4 into the address pointed to by A7 without
actually altering the value of A7:

MOVE.L A4,(A7)

The RTS instruction would then cause a return to be made to the new

address.

ADDRESS 70000

by wheelie Return

ADDRESS 69988 Address

ce fa

pointed to by A7, iaimiasinaaaane
Fe, MEL a6, C7)

dress by loading
a new address, as
a song ward, into

Alter return ad- (

the a ress

FIGURE 5-6.

The Stack 79

Passing Parameters via the Stack

In Chapter 4 we looked at how parameters can be passed to

subroutines ‘by register’, where they are simply passed via registers,

or ‘by name’, where the address label of the data block in which they

are stored is passed to the subroutine. It is also possible to pass them

using the stack. In this case, the parameters are simply pushed on to

the stack prior to the subroutine call and then retrieved from the stack

by the subroutine as required. As you will see from the following

diagram, which uses the same data parameters as in our previous

example, the four words are placed on the stack before the return

address, which is always pushed onto the top. The data must therefore

be retrieved by by-passing the return address using an offset value,

e.g. MOVE.W 4(A7),D1. The stack pointer stays unchanged and the

word, above the return address is copied into D1.

HDDRESS “UUUU

ADDRESS 69998

ADDRESS 69996

ADDRESS 69994
Retrieve 1176 m
into D1 using igh Scab aes
MOVE.W 4(A7),D1 ADDRESS 69990 athen

A7 points here: Seca ddress
after values are
stacked. ADDRESS 69986

ADDRESS 69984

FIGURE 5-7.

When the subroutine has finished, and a return has been made to

the main program, the four values should be popped back off the

stack in the normal way. This last operation is performed to tidy up

the stack so that it does not have any redundant data left in it.

The reason why the stack should be kept tidy is that when it contains

a great deal of mixed data such as temporary variables, return

addresses and parameters, it is very easy to lose track of its contents.

At best you will end up by popping incorrect data from the stack

and using it in your programs and at worst you will pop incorrect

return addresses, rendering your programs inexecutable. Everything

pushed onto the stack should therefore be removed as soon as it is

no longer needed.

80 First Steps in Assembly Language for the 68000

Stack Frames

You can create a temporary area within a stack for use by a particular
subroutine. This is done by creating a second stack pointer (any one
of the address registers), which points to the current top of the stack,
and then moving the normal stack pointer, register A7, further down
in memory. The stack space between the two pointers is reserved
space which can be used exclusively by a particular subroutine and
then cancelled after the subroutine has been executed, thus restoring
the stack to its original state.

ADDRESS 70000

SP pointing to PTC TENT
return address on = pees
stack top ADDRESS 69996

ADDRESS 69994

ADDRESS 69984

FIGURE 5-8.

The above diagram shows the condition of the stack on entry to a
subroutine with SP pointing to the return address which is on top of
the stack at address 69998. If you copy SP into an address register,
say A4 for example, and then subtract 10 from SP, the stack pointer
will then point to address 69988 as shown in the following diagram.

The Stack 81

ADDRESS 70000

A4 pointing to fm ADDRESS 69998
eTeskitte address on PRS LS

ADDRESS 69996

ADDRESS 69994

ADDRESS 69992

ADDRESS 69990

ete ADDRESS 69983
arter a een

subtracted from it MUNLSGREEDT

os ot

FIGURE 5-9.

This creates a free local storage area between addresses 69996 and
69989 into which 5 temporary word variables created by the
subroutine can be stored. This area is termed a stack frame and
individual data items can be accessed within this frame using A4 as
a base pointer. For example, a word stored in addresses 69996 and
69997 can be addressed as -2(A4) and a word stored in addresses
69994 and 69995 can be addressed as -4(A4). Before returning from
the subroutine, the stack frame can be cancelled and SP returned to

its original address 69998 simply by copying A4 back into SP with
MOVEA.L A4,A7 and then a straightforward return can be made.

In practice, the construction of stack frames can sometimes become
fairly complicated such as in the implementation of high level
languages in 68000 machine code, where a series of multiple linked
stack frames may be needed. To make the job simpler, two special
instructions are provided which allow you to create and remove stack
frames: LINK and UNLK.

When the LINK instruction is used, the following three actions are
performed automatically. In this example we shall assume that register
A4 is to be used as the reserved space pointer:

1 The current contents of register A4 are pushed on to the stack

2 The SP register (A7) is copied into register A4

3 The SP register is decremented by an appropriate amount,
specified by a 16 bit displacement integer. This is a two’s
complement value and, since a stack normally extends downwards
in memory, it will usually be a negative value between —2 and
—32768.

82 First Steps in Assembly Language for the 68000

For example, to reserve eight bytes on the stack, the following
instruction might be used: LINK A4,#-8. The effect of this instruction

is illustrated in the following diagram:

ADDRESS 70000

SP pointed here ADDRESS 6999
before LINK eee

Contents of
A4 points here ee, ADDRESS 69994 Register A4
after LIN ——

! ADDRESS 69992

ADDRESS 69990

ADDRESS 69988
SP points here ADDRESS 69986 —
after LIRK Bs Hi

FIGURE 5-10.

The original contents of the stack were the return address for the

subroutine. The current long-word length contents of A4 are then

pushed on to the stack and the SP register is decremented by four

bytes in the normal way. SP is then copied into A4 and is then

decremented by 8 bytes, as specified in the instruction. We now have

two stack pointers. SP can be used in the normal way, as the user

stack pointer, and A4 is the pointer for the stack frame of eight

reserved addresses.

Data can be entered into the stack relative to A4. The instruction

MOVE.LD4,-4(A4) for example, will load the long-word contents of D4
into the stack frame at addresses 69990 to 69993.

When the subroutine has been completed, the entire stack frame can

be removed, and the stack returned to its former state, by reversing

the Link process: The contents of A4 are automatically copied back
into A7 and the original contents of A4 are popped off the stack into
A4. By this means, the entire stack frame effectively disappears and
the stack returns to its original condition. This unlinking process is
achieved by using the UNLK instruction, which simply specifies the

name of the stack frame pointer being used, e.g. UNLK A4.

Chapter 6

Data Handling

In Chapter 2 we looked at the addressing modes used by the 68000.
We saw how, by use of the indirect addressing modes, we could use
address registers to contain addresses pointing to items in blocks of
data stored in memory.

In this chapter we shall be looking in more detail at the uses of the
indirect addressing modes, showing how they can be used to access
complex arrangements of data.

In the earlier example we had a set of data, occupying 12 consecutive
bytes in memory, which represented 12 month’s totals of petrol
consumption. Suppose we wished to go further and include the
consumption figures for a three year period. We might want to use
these, for example, in a program which compared our petrol
consumption for corresponding months in each of the three years.
Our data now occupies 36 bytes and the first item of data, our petrol
consumption for the first month of year 1, is located at address 80000,
which is labelled ‘DAT_1’.

Initially, we might want to access the data for January in each of the
three years, then for February and so on. To do this, we need to
have some method of pointing to the required months.

The simplest method is to use direct or ‘absolute’ addressing, in
which the data is addressed by reference to its actual address number
or to a label representing the actual address number. The instruction
MOVE.B DAT_1,D4 for example, copies the first item of data into the
low order byte of register D4. Other individual items can be addressed
by using their address value or an equivalent label.

This addressing method works very well for individual items of data
but for addressing multiple items in complex structures of data the
indirect addressing modes provide much more flexibility.

83

84 First Steps in Assembly Language for the 68000

If we use address register indirect, loading an address register with
the value 80000, we can use the address register indirect with

postincrement mode to move sequentially through memory, accessing
the data for each month, say, one byte at a time. However, this may
not be exactly what we want to do: instead of moving sequentially
we may want to access the data for January of the first year, January
of the second and third years and then February of the first, second
and third years and so on. To do this, we need to have some method
of pointing not only to the required month but to the required month

in any of the three years.

The data for January of the first year is located at address 80000
(DAT_1), so we load this address into an address register, say, A3,
using an instruction such as MOVEA #80000A3 or LEA DAT_1,A3. LEA

means ‘load effective address’ and calculates the physical address of
the labelled operand and loads it into a specific address register. It
is now easy to access the data for this month, using an instruction

such as MOVE.B (A3),D1 to move the January data into register D1.
This is a straightforward application of address register indirect
addressing. January of the following year is 12 months, and therefore
12 bytes, further on. We can access this by means of an instruction
such as ADD.B 12(A3),D1 which adds the value 12 to the value of A3

(leaving A3 itself unaffected) and then adds the data contained in
address DAT_1+12 (i.e. the value of A3+12) into Dl. The data for
January of the third year would, of course, be accessed and added
to the total by means of an instruction along the lines of ADD.B
24(A3),D01. Figure 6.1 shows this in diagrammatic form.

This type of addressing corresponds to the address register indirect
with displacement addressing mode described in chapter 2.

The number which is added to the A3 register in this mode is termed
the displacement and must always be no larger than a word-sized

value. The displacement is always sign-extended prior to being added
to an address register and therefore any 16 bit value which has its
most significant bit set (i.e. numbers in the range 32768 to 65535)
will become negative. The displacement, therefore, is effectively a
value in the range —32K to +32K.

This is not the end of the story. It would be awkward if we always
had to have a separate instruction for each of the displacement values
we used in such an operation. It would be a lot easier if we could

Data Handling 85

A3: DAT_I

at ee SPS 12 by + Te

A3+12: Lt Fer be resent us ats f srealt three

A3+24:

FIGURE 6-1.

use a pointer to indicate the start of our data and have another variable
pointer which could be altered within our program to index each
subsequent item of data automatically.

If we were to load an address register such as A3 with the start address
of the data as before and one of the other registers, say D4, with a
zero: MOVEQ #0,D4 then register A3 points to the base of the data, as

before, and D4 can be used as an index register to point to locations
which are relative to the beginning of DAT_1. If A3=80000 and D4=0
then January of the first year can be addressed as 0(A3,D4), the zero
being a zero displacement. So we could retrieve the January data with
an instruction such as MOVE.B0(A3,D4.L),D5. By altering the value of
D4 within a program loop we can easily point to any individual item
of data in the table.

The above MOVE instruction is given the suffix ‘.B’ because it is
byte-sized data which we are transferring and the index register is
given the suffix ‘.L’, indicating that it is the entire 32 bits of Dl
which forms the index value.

86 First Steps in Assembly Language for the 68000

A3; Offset DAT_L

0(A3,D4):/ Jan (when AZ=DAT_1 & D4=12 or AZ=DAT_1+12 & D4=0)

Dec
0(A3,D4): (when A3=DAT_1 & D4=24 or AZ=DAT_1+24 & D4=0)

FIGURE 6-2.

If we wish to compare different months in each year we can alter
both the address register and the index register as required. A3 then
A3+12 followed by A3+12 again will base the address register at the
first month of each of the three years in succession, whilst D4 can
be incremented or decremented to point to any month within a year
as required.

This is an example of the address register indirect with displacement
and index addressing described in Chapter 2.

If we use the displacement as well as the index in this mode, it
increases addressing flexibility considerably. Again the displacement
is a sign extended value but when used with an index it represents a
displacement of only —128 to +127 bytes. The index value is either
long (32-bit) as in the previous example, or a 16-bit sign extended
value in the range —32K to +32K.

Suppose that in addition to petrol consumption data for a three year
period, you also had blocks of data giving mileage information for
the three year period as well. The data starts at address DAT_2 and
extends for 72 bytes. The data is arranged in groups with the 12
consumption figures for year 1 followed by the 12 mileage figures for
year 1 and with the same arrangement for the two following years.

Data Handling 87

A3: (address DAT_2)
year 1

me 3 is loaded with addres 4 2
4 is loaded with the value 24

onsumption (A3,D4) points to start of year 2

yp jvear 2 2(A3,D4) points to month 3 in year 2

, BT on 14(A3,BD4) points to month 3 mileage in year 2

onsumption

te

FIGURE 6-3.

Your base register (A3) can point to the block of data required, your
index register (D4) to the year required and your displacement
constant to the data required. Referring to figure 6.3 you can see that
you can get the consumption data and the mileage data from the third
month of the second year by means of the instructions:

LEA.L DAT_2,A3 ;address of base of data table.

MOVEQ #24,D4 ;offset of 2nd year (Jan. consumption)

2=->> MOVE.B 2(A3,D4),D5 ;consumption for year 2, month 3 into D5

Lol--> MOVE.B 14(A3,D4),D6 ;mileage for year 2, month 3 into D6

DISPACENEM
In this case D4 points to the offset of the year and the displacement
points to the offset of the month (counting from zero). Alternatively
you could use the displacement to point to the year and the index to
point to the month, depending on how you want to access the data.

The same data for month 3 of year 3 can be obtained with the same
instructions but after adding 24 to D4 to point it to the start of the
third year’s data. Different months can be addressed by using
different displacement values and, if sequential data needs to be
accessed then the value of D4 can be altered within a loop structure
so that it is incremented to point to each item in turn.

88 First Steps in Assembly Language for the 68000

There are many different ways in which indexed blocks of data might
be used in a program. On a simple level they can be used in much
the same ways as multidimensional arrays in BASIC and the above
examples illustrate this kind of usage.

Indexing Lookup Tables

Another common form of indexed data is the lookup table, in which
a list of numeric or textual data is stored in a single dimensional array
for reference by programs. Suppose that you are writing a conversion
program in which the multiplication factors for converting the source
data are stored in a separate area of memory. A base address register,
such as A2, points to the base of the table: LEA MYTABLE,A2.

You may to convert feet into metres and the necessary 16-bit
conversion factor is stored at offset 7 in the table (counting from
zero). The data may be retrieved from the table using an instruction
such as MOVE.W 7(A2),D3 and then used in your calculation.

Another use for lookup tables is where you have a series of subroutines
stored in memory and you need to select any one of these during the
execution of a program.

The address of each of these subroutines could be stored in a lookup
table so that they can be used to redirect execution to any of the
subroutines required. The advantage of this method is that all the
required addresses are stored consecutively as 32-bit numbers in the
table and each one can be accessed using an indexed offset. You can
then use the table base address with the indexed offset to access any
of the address numbers listed in the table and then redirect execution
to the target subroutine.

For example, a peripheral device such as a joystick might feed a
particular value into the computer which indicates that a subroutine
for shooting at a space invader should be called. If this value is 8
(contained in, say D3) then the address of the subroutine is at offset
8 in the subroutine table. The base of the table might be contained
in register A6. The instruction MOVEA.L 0(A6,D3),A2 loads the

address of the subroutine, located at A6+D3, into A2 and the

appropriate subroutine can then be called using an instruction such as
JSR (A2). Alternatively, you could achieve the same objective by
substituting the single instruction: JSR 0(A6,D3).

Data Handling 89

A6:
tains b tabl

ert yld BS Centaies! theconies Bis
subroutine

1

Receess

soot piss

0(AG6,D3): A6+D3 points to offeat 8, which contains
Address the first byte of the address of

of — subroutine 3,
subroutine

3

FIGURE 6-4.

Block Instructions

Another important use for indexing is where you have blocks of data
which need to be compared, input from an external device, output
to an external device, processed in sequence, transferred from one
part of memory to another or stored sequentially in memory as they
are generated by a program.

For example, in a games program you might have a block of data
containing the graphics bit-pattern for an entire screen image which
periodically will be copied on to the VDU screen. Alternatively, you
might be writing a printer dump program which copies the bit-pattern
of the screen image to a printer, one byte or one word at a time.

Again, you might have a block of data in memory representing the
ASCII codes of a text which you wish to print to the screen and which
needs to be loaded one byte at a time into a particular register before
being passed to a display subroutine.

In cases where blocks of data need to be addressed in this kind of
way, the address register indirect with postincrement or address
register in direct with predecrement addressing modes are used.

As an example of a block operation, suppose you wished to copy 100
items of consecutive data from one memory area to another. In order
to transfer the data it is necessary to use at least three registers: one

pointing to the first address of the destination of the data (say, a

90 First Steps in Assembly Language for the 68000

VDU screen address location), one pointing to the first address of
the source data and one to count the quantity of data transferred.

The source register, say A2, is loaded with the address of the first
byte of the source data: MOVEA.L £80000,A2. The destination register,
say A3, is loaded with the address of the first byte of the area of
memory into which the data will be moved: MOVEA.L #90000,A3. A

data register is then loaded with the number of bytes to be moved, less

he
MOVE.L #99,D4.

The entire operation can then be executed in a program loop with a
DBRA (decrement and branch) instruction being used to decrement
D4 and branch back to the instruction labelled ‘L00P’ until D4 equals
-1:

LOOP MOVE.B (A2)+,(A3)+

DBRA D4,L00P

The MOVE instruction automatically copies the data from the location
addressed by A2 to the location addressed by A3 and then increments
both A2 and A3 so that they point to the next locations in sequence.
The DBRA instruction automatically subtracts 1 from D4 and if it is
greater than —1, branches execution back to ‘LOOP’ to repeat the
operation.

The operation could also be performed backwards with A2 and A3
initially pointing to the /Jast addresses in the source and destination
blocks, plus 1. In this case the address register indirect with
predecrement mode would be used:

LOOP MOVE.B -(A2),-(A3)

DBRA D4,LO00P

Instead of moving.a block of data from one area of memory to another,
we could equally well compare two separate blocks of data. This is
frequently done, for example, where text has been input at the
keyboard and you wish to compare it with text stored in memory.
In this case we would use a method similar to the above, using
registers to point to the start addresses of the two blocks of data to
be compared. Instead of using the MOVE instruction we would use
CMPM (compare memory): CMPM.B (A2)+,(A3)+ and instead of using
DBRA as a loop control instruction we could use DBNE (decrement and

Data Handling 91

branch until not equal). The CMPM instruction will set the zero flag
for each data pair of equal value and therefore, as long as each
compared item is equal, DBNE will decrement D4 and loop back to
‘LOOP'. If two compared items are not equal the zero flag will be reset
and execution will then pass to the next instruction in sequence. In
any case the loop will terminate when the counter register equals —1.

Altering Indexed Blocks

There will be occasions when you wish to modify the contents of a
block of data: to change, add or remove items for example. Again,
this is done using indexing methods to access the required items in
the block. How would we do this? Obviously, we need some method
of defining the size and structure of the list so that a program can
add, subtract or modify items accurately. Suppose we had a list of
unstructured items — in other words, the data in the list does not
correspond to any external structural concept such as years or months.
You may, for example, be programming a whole series of mathemat-
ical calculations, the results of which you wish to store in a variable
length list for later reference. In this case you could structure the list
as follows:

ADDRESS

Offset 6:

FIGURE 6-5.

Here the list is of variable length and is comprised of a series of

word-sized data. You may wish to add or subtract items, either at

the end of the list or within the body of it. The first word on the list

is a value corresponding to the offset value of its last item. Therefore,

to reference the end of the list, all you need to do is to load this value

into an index register and use it to reference the last entry. The list

starts at an address offset within the data section labelled ‘LIST_1’ so

we load this into a base register.

92 First Steps in Assembly Language for the 68000

LEASLALISTLIVAZ

Address ‘LIST_1’ contains the offset value of the last item in the list,
6, so we load this into a data register to use as an index:

MOVE.W (A2),D4

Item 3 at offset 6 in the list can now be retrieved by an indirect index
instruction, e.g.:

MOVE.W O(A2,D4) ,D6

and ‘removed’ from the list by decrementing D4 by 2, which implies
that item 2 is now the last item in the list at offset 4:

SUBQ #2,D4

The fact that item 3 still physically exists does not matter since
nothing is now pointing to it.

Suppose that we now wish to add a new item 3 to the list, which is
currently in data register D3. The index needs to be incremented
again:

ADDQ #2,D4

And the new item can be added:

MOVE.W D3,0(A2,D4)

Then to add a fourth item, from DS:

ADDQ #2,D4 (D4 now points to offset 8)

MOVE.W D5,0(A2,D4)

Now we have finished with the list for the time being. D4 contains
the offset value of item 4 which is now the last item in the list. This
must be copied into the first word location in the list for future
reference:

MOVE.W D4,(A2)

Data Handling 93

And so the operation has been completed. This same technique can
be modified so that items elsewhere in the list can be added,
subtracted or modified in some way. Suppose that we wished to take
the second item in the list, add 10 to it and replace it. Assuming that
A2 is still pointing to address ‘LIST_1’, we must first check that there
is a second item in the list. So we retrieve the offset value of the last
item, as before:

MOVE.W (A2),D4

The offset of item 2 will be 4 (2 times 2) since we are dealing with
word length data. We therefore need to compare the contents of D4
with the value 4 to make sure that we are not looking for an item
beyond the boundary of the list:

CMPI.W #4,D4

The comparison effectively subtracts 4 from D4 without actually
altering the value of D4. However, certain flags may be affected by
the operation and can be used to test the result.

If the result is negative (i.e. D4 < 4) then the carry flag will be set
because the operation will cause a binary borrow, otherwise 4 will be
either less than or equal to D4 and the carry flag will be reset. In
either case we can take some appropriate action.

If the carry flag is set then there cannot be an item at offset 4 and
so the operation should be abandoned. At this point there would be
an instruction such as BCS NEXT (branch if carry set to a point in the
program labelled ‘NEXT’).

If the carry flag is not set, there must be an item at offset 4 in the
list and so we can access it using the instructions:

MOVE.W 4(A2),D6 j;get item at offset 4 into D6

ADDI.B #10,D6 ;add 10 to it

MOVE.W D6,4(A2) ;replace it at offset 4

Alternatively, the above three instructions could be replaced by the

single instruction ADDI.B #10,4(A4).

There is no need to update the end of list offset value because we
have done nothing to alter it.

94 First Steps in Assembly Language for the 68000

Now let’s go back to our petrol consumption data and find out
whether we can see more clearly how this kind of arrangement allows
us to access the information in whatever way we wish. We shall
consider just twelve months consumption data as we did originally,
except that this time our array, labelled DAT_1, is arranged in word
lengths, with an extra word at the beginning of the table which holds
the offset of the last item in the table. We know of course that there
are twelve months in a year but the computer doesn’t know that and
so addresses DAT_1 and DAT_1+1 must contain the value 24; the offset
of the month 12 data. By loading the offset of the last item in the
table into an index register we can point to the address of the data
for the twelfth month and we can alter this and use it as we wish.

LEA.L DAT_1,A2 ;Get the address of the start of

;the table in register A2

MOVE.W (A2),D4 ;Get the offset value of the

;last item of the table in D4

MOVE #0,D1 ;Set D1 to offset value 0

What might you want to do with this data? If you want to work out
your average consumption for the year you can run your D1 index
register through the data, adding the value of each item of data to,
say, D6 and comparing D4 and D1 after each addition to make sure
that D1 does not exceed the boundary of your data:

j;Label Instruction Comment

MOVEQ #0,D6 ;Clear the D6 register

LOOP1 ADD.W O(A2,D1),D6 ;Add an item of data to D6

ADDQ #2,D1 ;Update the index pointer

CMP D1,D4 ;Compare the index offset

swith the end of list offset

BCC LOOP1 ;lf carry clear (end of list

;not reached), branch back

sto *LOOP1"

Data Handling 95

When you have the final total you divide the contents of the D6
register by the number of items in the list and you have your average.
This division operation is illustrated in example program PRO0G6 in
Chapter 13.

You might want to know the highest consumption figure for any one
month. In that case you need a data register, say D6, to hold the
highest item value. You run through the data table as before and
compare each sequential item of data with the highest item value
found so far. If any item is higher than the current content of D6
then the value of the item becomes the new D6 value and is MOVEed
into the D6 register, otherwise you carry on to the next item until
the Bcc instruction indicates that you have finished.

If you feel that you cannot work out the exact sequence of instructions
required then don’t be too concerned. It is only essential at this stage
to establish a firm mental picture of what it is you are trying to do,
how your'data might be efficiently arranged and the kinds of
addressing methods you need to use to access the data. Once you have
properly understood the structure of your task, you will eventually be
able to code the instructions standing on your head — and often, with
complex structures of data, it will feel that way.

Sorting Data

It is fairly easy to sort the items in a list so that, for example, its data
is rearranged in ascending numeric order. The following BASIC
program illustrates a very simple bubble sort, in which a FOR/NEXT
loop is used to compare each item in a single dimensional array A(6)
with the next item. If the value of an item is greater than the next
item then a flag is set to indicate that the values are out of order and
the values are then swapped. The process continues until all the items
are in the correct order, as indicated by the ‘FLAG’ variable becoming
equal to zero at the end of a reiteration of the loop:

10 FLAG=0

20 FOR X=1 TO 5

30 IF A(X) <= A(X+1) THEN GOTO 80

40 FLAG=1

50 TEMP=A(X)

96 First Steps in Assembly Language for the 68000

60 ACX)=A(X+1)

70 ACX+1)=TEMP

80 NEXT X

90 IF FLAG=1 THEN GOTO 10 ELSE END

We shall be looking at a full assembly language version of a bubble
sort in Part IJ. At this point it is only necessary to think about the
structure of the array of data in assembly language and to see how
the indirect addressing modes we have been using could be used to
form an equivalent method of sorting to the BASIC method above.

If you examine the following diagram of the data list, you should be
able to work out how the assembly language version of the program
might be constructed. There is always more than one way of doing
something so there is no ‘right’ answer — you should think about the
simplest and most efficient way of doing it.

ASCII code for A

ASCII code for B

ASCII code for D

ASCII code for F

ASCII code for C

ASCII code for E

ASCII code for 6

ASCII code for H

NSH] aH So] olan; a

FIGURE 6-6.

Program Positioning and Labelling

The problem with addressing and branching is that, at the time a
program comes to be executed, its position within memory may not

be known. When a program is loaded into a computer it can either
be loaded into a specific block of memory or, more commonly, it is
loaded into the first available memory area. The former is called
position dependent and the latter, position independent code.

Data Handling 97 ee ce ee

It is important when planning a program to decide which of these it
is going to be. Preferably, programs should be position independent
because you may not know beforehand the circumstances in which
a program will be used. At some point it may have to share memory
with other programs or it may be transported and run on an entirely
different type of 68000 based computer from the one on which it was
coded.

If a program is position dependent, the addresses of its various data
blocks, subroutines and other code sections will always be the same.
In position independent programs the addresses may differ each time
the programs are loaded, depending on how many other programs
are loaded and the amount of space which they occupy. The main
thing which concerns the programmer however, is that the positions
of all the elements of a program are constant relative to each other.
When you wish to access a particular data table amongst several which
occupy memory, you need to be confident that the address value of
the table relative to the position of the current instruction is correct.

This is why the use of labels to identify the locations of code and
data sections is so useful. By identifying each separate section of a
program by means of labels in your assembly source program, you
ensure that the assembled object code contains the correct relative
offset values for all the key elements of the program which you will
need to access. If your program is position independent, the assembler
will automatically calculate all relative branches and the relative
positions of data items using the PC relative addressing mode.

Your petrol consumption table might be assigned the label GASTAB1.
When the program is finally assembled into object code, the assembler
knows the exact position of your table in memory relative to the start
of your program. Any instruction in the program which refers to this
table by means of its label, such as LEA,L GASTAB1,A2 will autom-

atically be assembled in such a way that the relative displacement
between the current program instruction (held in the PC register) and
the required data will be computed automatically. Likewise, a table
called GASTAB2 will be given a different address value, which again
will be obtained by reference to the label.

e ms

d

- _ —_ ame - - os ox

, r 2 , t we
of} acy si ul ee 7 i eset f)

:
j a 3 Tt). teens | 5 DY f ‘4 a ‘

A, <i) CRAM eH = v af ni
-

ay wd } if fale i ti

hans fp aii 5. : * .

“¥ re:?. a fay “i4 “’ -

*
P j
°

'
) Ai 4, j j

, ‘
é =v

t Ue ' : ;
* w . ¢

’ 4 .
’ q

N ay eis * n ;

: °

+ 4 | }
vi ‘bite. ade i ‘ a a! git é ‘

' ‘ Si :

;

yi *

tha “ MW
-

a
fA + ‘ a ag

‘ } j ;

¢ t
| a

4
i !

Prasat titi 4 i
 s

7 te wuTy oe &

i . Ciyri dobld 1
a

‘ S

¥) . hipit ' .

“ yerarirader Veit 25 7a

« 9fi af svitalos yiomeu ni Wide) wey lo aeindeg oN 2 od
‘ P

T'shtiW PtSi RO NM, Bi) Gi Uo’ i wit (ai gous
aia!) ww : -

‘Bal 4 *y, Gre lst 22) DL Se ez

\- 4) Maas SAREE ARS GY & Ui Ae sd
due 1 aderu bieds aonautiam mrayo1g tse yTh uh os

iat ees GP. Mico’ ERT Bilaquete-ss i eat 7A
1 ‘hi aed hies nbs mls yaad Zo

» Som 5 ctog a ghalekuded weensesotighiten
nf lene € tpecific. Sigck of utemMery Hr, tae vray

ihe jac wastasly weary, cet. The bong aa

Chapter 7

Exceptions, I/O and Arithmetic
Operations

Exceptions

When a computer is in operation, even if it is not currently executing
programs, it has a number of routine tasks to perform. The keyboard
needs to be checked for input and other devices may be sending
signals or data which require the processor’s attention.

These kinds of tasks are performed by exception mechanisms,
whereby the CPU literally interrupts whatever it is doing and services
any exception task which need to be performed.

An exception operates in a similar way to a subroutine call. The CPU
halts execution at whatever point in a program it has reached and
recommences execution with an exception procedure, after which it
normally returns and carries on with its original task. An exception
differs from a subroutine call in that it is designed to cope with a set
of necessary and sometimes urgent tasks for which it would be
impractical or impossible to incorporate BSR or JSR instructions in a
program. Many of these tasks have nothing to do with the program
currently being executed.

Exception calls may be initiated by a timer, in the case of the keyboard
scan for example, by signals from an external device or by program
errors such as attempts to divide by zero or to address non-existent
memory locations. Exceptions may also be initiated by certain
program instructions.

There are basically two types of exceptions: external exceptions,
associated with peripheral devices, with bus errors and reset signals,
and internal exceptions, which are associated with the execution of
program instructions.

99

100 First Steps in Assembly Language for the 68000

Internal exceptions may be initiated by certain ‘privileged’ instruct-

ions attempted in user mode, by attempts to address word or long

word data at odd addresses, by attempts to use illegal or unimplement-

ed instuctions, by using the trace facility and by certain other

instructions which will be discussed presently.

Some exceptions may be masked or disabled by setting the three I

(interrupt) flags in the CCR register. These are termed maskable

exceptions and may include, for example, the operating system

exception which checks the keyboard. By disabling exceptions you

can inhibit keyboard entries until a certain routine is completed and

then exceptions can be re-enabled by resetting the I flags. Whenever

an exception takes place then further exceptions are automatically

disabled until the exception routine has been completed.

Some exceptions are non-maskable — they will operate no matter what
the status of the interrupt flags. Obviously if some catastrophic event

has occurred in the system it is desirable that its associated exception

mechanism should be able to override other events which are taking

place.

Operation of Exceptions

Whenever an exception takes place, the program which is currently
being executed is halted, usually temporarily, and execution is then
diverted to one of a series of procedures which are designed to ‘service’
the exception, that is, to do whatever is necessary for the type of
exception which is taking place and then return execution back to the
program. Some service procedures will do no more than print an error
message while others may perform fairly complex tasks — it depends
on what the system programmers have designed for the particular

computer which you are using.

These service procedures are accessed by means of a vector table,
situated in lower memory, which contains the addresses of all the
exception routines provided by the system. The vector table is
indexed by a ‘vector number’, which is either calculated within the
system or which is supplied by an external device connected to the
system. The address of the service routine is then read from the vector
table at an offset derived from the vector number, and execution is

redirected to it.

Exceptions, I/O and Arithmetic Operations 101

Since a program may be interrupted at any point by an exception, it
is vital that the current parameters of the program, such as the
contents of the status register and the current PC contents, are saved
for later retrieval. This is performed automatically during an
exception and other parameters may also be saved, depending on the
type of exception taking place.

Return from an exception is effected by the inclusion of an RTE
(return from exception) instruction at the end of the exception service
routine.

Exception Priority System

Exceptions are not all of equal priority. Clearly an exception resulting
from an attempt to divide by zero is less important, in terms of
urgency, than a sudden voltage loss. In order to differentiate different
levels of priority, the 68000 has an exception priority mechanism
which determines a priority level for each category of exception.
Priority group 0 exceptions occur immediately, whatever else the
processor is doing at the time. Priority group 1 exceptions are delayed
until the current instruction is completed. Priority group 2 exceptions
are those which only occur when particular instructions are being
executed. The exceptions within each group are are as follows:

Group __ Exception type

0 Reset

Bus error

Address Error

l Trace
Interrupt request
Illegal instruction
Unimplemented instruction
Privilege violation

2 TRAP instruction
TRAPYV instruction
CHK instruction
Division by zero

102 First Steps in Assembly Language for the 68000

Internal Exceptions

Internal exceptions may be caused by the following:

Addressing Errors

Privilege Violation

Illegal commands

Trap exceptions

Since word and double word operands may only
be aligned with even numbered addresses, an
attempt to address a word or long word at an odd
numbered address will result in an address error
exception.

Attempts to use certain ‘privileged’ instructions
whilst in user mode will result in a privilege
violation exception. These instructions include:

AND.W immediate to SR
OR.W immediate to SR
EOR.W immediate to SR
MOVE USP

MOVE to SR

Sve U

RTE

STOP

An illegal instruction is one which does not
belong to the 68000 and therefore has no opcode
which is intelligible to the processor. All illegal
opcodes will will cause an exception. Unimplem-
ented instructions are similar except that they are
a special case. Any instruction code whose higher
four bits consist of the binary digits 1010 or 1111
cause a special type of exception which allows
system designers to simulate instructions which
are not implemented on the standard 68000.

The TRAP instruction is used to divert execution
to particular system subroutines. Trap exception
types 0-15 occur only when the TRAP instruction
is used. The TRAPV instruction causes an excep-
tion if the overflow flag in the status register is set
when the instruction is used.

CHK generates a trap exception if the contents
of the destination data register to which it

Exceptions, I/O and Arithmetic Operations 103 ocean errr ee

refers are less than 0 or greater than the
contents of the source operand.

DIVS and DIVU instructions cause trap excep-
tions if they involve an attempt to divide by
zero.

Trace exceptions When the ‘T’ (trace) flag in the status register is
set, a trace exception is performed after every
single instruction. The trace exception service
routine is used in Chapter 8 to obtain a listing of
the register contents during the execution of an
instruction.

External Exceptions

External exceptions are generated as a result of events outside the
immediate processor environment and may be caused by the fol-
lowing:

Bus Errors

Reset

Interrupts

A bus error exception is caused by an attempt to
address incorrect destinations such as non-existent

addresses.

A reset is an event in which the entire system is
re-initialized, either when it is first powered up or
when some event has caused catastrophic system
failure.

Interrupts are a type of exception resulting from a
signal: which is input from an external device. The
exception vector to which execution is diverted is
obtained as usual from the vector table but the vector
number for the service routine is supplied by the
interrupting device itself.

The external devices may each be assigned a priority level between 0
and 7 which, when an interrupt request is detected, is automatically
compared with the processor priority level set by the three interrupt
mask bits in the system byte of the status register. If the processing
priority code is greater than or equal to the priority level of the

104 First Steps in Assembly Language for the 68000

requesting device then the interrupt request is left pending while the
next instruction is processed. If the requested interrupt is of a higher
priority level then the interrupt exception is serviced immediately.

Exception Vector Table

The exception vector table occupies 1024 bytes, containing 256
exception vectors, each consisting of 32-bit exception routine address
pointers. The first 64 vectors are dedicated to certain types of
exceptions and the remainder are user defined vectors which are used
by system designers for pointing to customized exception routines for
particular operating systems.

Vector Address Exception
Number Number Type

0 0 Reset
1 4 Reset
Zz 8 Bus error
3 12 Address error
4 16 Illegal instruction
5 20 Division by zero
6 24 CHK instruction
y. 28 TRAPV instruction
8 32 Privilege violation
9 36 Trace
10 40 Line 1010 emulator
1] ae Line 1111 emulator
12-23 48-95 Reserved
24 96 Spurious interrupt
25 100 Level 1 interrupt autovector
26 104 Level 2 interrupt autovector
27 108 Level 3 interrupt autovector
28 112 Level 4 interrupt autovector
Phe 116 Level 5 interrupt autovector
30 120 Level 6 interrupt autovector
31 124 Level 7 interrupt autovector
32-47 128-192 TRAP vectors

48-63 192-255 Reserved
64-255 256-1023 User interrupt vectors

Exceptions, I/O and Arithmetic Operations 105

Input and Output Operations

On most processors, data may be input from or output to peripheral
devices by means of I/O ‘ports’ which are addressed in a similar way
to memory addresses, using instructions such as ‘IN’ and ‘OUT’.

The 68000 does not implement these instructions and I/O operations
must be performed via peripheral hardware devices such as the 6821
Peripheral Interface Adaptor (PIA) and the 6850 Asynchronous
Communications Interface Adaptor (ACIA).

Communication via these devices can be fairly complex and a detailed
description of their operation is beyond the scope of a book of this
kind. In practice, many operating systems will provide a simple
method of communicating through these devices by linking them to
a trap mechanism so that data may be input or output by loading
parameters into certain data registers and then initiating an appropr-
iate trap mechanism, using the TRAP instruction.

Binary Arithmetic

Performing binary arithmetic on the 68000 is an easy matter because
special instructions are provided for binary addition and subtraction
and for signed and unsigned binary multiplication and division.

The instructions allow multiple precision arithmetic operations — that
is, operands several words in length can be operated on, yielding
multiple word results where necessary. Where there is a binary carry
or borrow between operands, the ‘X’ (extend) flag is set and certain
arithmetic instructions automatically pass the carry from one operand
to the next. For this reason, it is advisable to ensure that the extend
flag is reset before you start, using MOVE £0,CCR. With some
arithmetic instructions the Z flag is set by a zero result but unchanged
by a non-zero result. In this case it is necessary to ensure that the Z
flag is in the desired condition before the instruction is executed if the

flag is to be tested afterwards.

64-bit binary addition and subtraction

As a first example, let us suppose that we wish to add together two
64-bit numbers. There are several forms of the ADD instruction: ADD

106 First Steps in Assembly Language for the 68000

(add binary), where one of the operands has to be in a data register,
ADDA (add address), where the destination operand has to be in an
address register; ADDI (Add immediate), where the source operand
has to be an immediate value; ADDQ@ (Add quick), where the source
operand has to be an immediate value in the range | to 8; and ADDX
(Add extended), where the value of the extend flag is incorporated in

the result. Since this is a multiple precision operation we shall be using
ADDX.

The two 64-bit numbers are initially located in binary form in memory
and will be transferred, one byte at a time into data registers, starting
with the least significant byte of each number, and added together one
at a time. If we store the bytes in data register D2 and D3 the addition
instruction would take the form ADDX.B D2,D3. After each byte

addition the result would be stored in D3 and may be transferred from
there to a separate memory location. The program would then loop
back and add the next bytes in sequence until all 64 bits have been
added:

;A2 points to address beyond end of first 64-bit number

;A3 points to address beyond end of second 64-bit number

304 holds the number of additions to be performed, less 1

;D2 & D3 will hold each byte to be added

MOVE #0,CCR ;Clear flags in CCR

LOOP MOVE.B -(A2),D2 ;Decrement A2 and move byte

;from first number into D2.

MOVE.B -(A3),D3 ;Decrement A3 and move byte

;from second number into D3.

ADDX.B D2,D3 ;Add bytes together (including

j;extend flag value).

MOVE.B D3,(A2) ;Replace sum in memory space

,of first number.

DBRA D4&,LO0P ;Subtract 1 from D4 and loop back

;to 'LOOP' if D4 greater than -1

If you imagine the binary operands printed horizontally, you can see
how this process corresponds to the manual addition process, from
right to left, with the binary carries being passed automatically from
a less significant to a more significant byte of the sum at each stage via
the extend flag.

Exceptions, I/O and Arithmetic Operations 107

The addition instruction may be performed on both signed and
unsigned operands and no separate instruction is needed for each case.

The same operation can be performed without removing the operands
from memory, as follows:

MOVE #0,CCR ;Clear flags in CCR

LOOP ADDX.B -(A3),-(A2) ;Add two bytes

DBRA D4,LO00P

Binary subtraction follows exactly the same principles as binary
addition, the subtraction instructions being SUB (Subtract Binary),
SUBA (Subtract Address), SUBI (Subtract Immediate), SUBQ (Subtract
Quick) and SUBX (Subtract with Extend). If the above examples were
subtraction operations we would, of course, be using SUBX.

Binary Multiplication

Multiplication is performed on either signed or unsigned operands
and a separate instruction is used for each case: MULS (Multiply
Signed) and MULU (Multiply Unsigned). In both cases the multiplicand
(the number being multiplied) is held in a data register and the
multiplier may be immediate, in memory or stored in another data
register. The following example shows how a 16-bit multiplicand in
register D2 is multiplied by a 16-bit multiplier in D1, with the 32-bit
result being stored automatically in D2, using the instructions MULS
D1,D2 or MULU D1,D2, depending on whether signed or unsigned
numbers are being used. Note that the original operands may not be
larger than 16 bits. The multiplication instructions have no size
specifier after them because operations are always of word-size.

REGISTER D2 REGISTER D1

ieemeeey 8) f/8O agg |X parent fe one] Seay

REGISTER D2

78000

FIGURE 7-1. MULU D1,D2.

108 First Steps in Assembly Language for the 68000

Binary Division

Division is also performed on signed or unsigned operands and the
instructions used are DIVS (Divide Signed) and DIVU (Divide
Unsigned). In this case the dividend (number to be divided) is a 32-bit
number in a data register and the divisor is a 16-bit number which
may be immediate, in memory or in another data register. In the
following example the unsigned dividend in D2 is divided by the
immediate value 10 and the result is automatically stored in register
D2, with the quotient occupying the low word and the remainder
occupying the high word.

REGISTER D?

FIGURE 7-2. DIVU #10,D2.

If you need to swap over the quotient and remainder words in the

register then the SWAP instruction is used, as demonstrated in PROG6
in Chapter 13, e.g. SWAP D2.

Binary Coded Decimal Arithmetic

In some circumstances, binary representation is an inconvenient way
or storing and transmitting data. If the computer is exchanging
floating point numeric data, such as financial information, with some
peripheral device then the format in which the data is represented by
the two machines may be incompatible.

The solution to this problem is to use binary coded decimal (BCD)
arithmetic, which is a technique whereby binary numbers are used to
represent the decimal digits 0 to 9, so that numeric values can be
stored, exchanged and processed in regular decimal form. This is done
by using four bits of a byte (a nibble) to represent each decimal digit,
as follows:

Exceptions, I/O and Arithmetic Operations 109

Binary BCD Binary BCD

0000 0 1000 8
0001] 1001 2
0010 2 1010 —_
0011 3 1011 —
0100 4 1100 a
0101 5 1101 —
0110 6 1110 —
0111 7 1111 —~

You will notice that, of the fourteen number combinations possible
using four bits, nine are used to represent decimal digits and the rest
are unused. This slightly complicates the performance of arithmetic
operations as we shall see presently.

From this table you will see that it is possible to represent decimal
digits directly in memory. The decimal digit 8, for example, could be
stored in a memory byte as 00001000; exactly the same as it would be
stored as a binary value. This representation is termed unpacked
binary coded decimal (BCD). Since the remaining four bits of the byte
are wasted, they too can be used to hold a BCD digit, so that a single
byte can hold a decimal value between 0 and 99. The number 48, for

example, would be represented as 01001000 (BCD 4 followed by BCD
8). This form of BCD representation is termed packed BCD.

From this you will be able to see that there is no limit to the type of
value which can be stored in this way. By using some of the unused
four-bit codes in the above table, you can devise BCD data structures
which incorporate signs, decimal points and other mathematical
symbols. The decimal number —2834.85, for example, might be stored
as follows:

jj1o sJoo1 oft oo ojoor toro ojsooojoros

6 BCD digits

Indicates position of decimal point

Sign bit

FIGURE 7-3.

110 First Steps in Assembly Language for the 68000

The left hand bit indicates the negative sign of the number and the
next three digits, 101, indicate that the decimal point comes just
before the fifth digit of the value.

The problem with BCD arithmetic, however, is that because some of
the possible bit combinations in a nibble are unused, this leads to
inaccuracies when arithmetic operations are performed on them. For
example, in binary arithmetic the addition of 4 and 8 yield the
following result:

00000100 = 4

+00001000 = 8

=00001100 =12

In BCD however, this is an inaccurate result since there is no
representation of the number ‘12’. In BCD, the result required is ‘1’
and ‘2’ (0001 0010) which would be 18 in binary (i.e. a difference of
six). This is, in fact, how adjustments to binary numbers are carried
out in BCD arithmetic in order to convert then to correct BCD values.
The least significant nibble in the binary result is 12 (1100). If we add
6 to this the result is modified as follows:

0000 1100 binary 12

+0000 0110 binary 6

=0001 0010

1 2 = '12' in BCD

Whenever addition or subtraction operations are performed in which
BCD rather than binary values are involved, a special set of
instructions are provided which automatically convert the results into
BCD format. These are ABCD (Add Decimal with Extend) and SBCD
(Subtract Decimal with Extend).

These work in much the same way as binary addition and subtraction
operations and may be performed between BCD values in memory or
in data registers.

ABCD, like ADDX, takes the value of the extend flag into account during
each stage of a calculation and multiple-precision BCD operations can
be performed in the same way as binary operations, substituting ABCD
for ADDX and SBCD for SUBX.

Exceptions, I/O and Arithmetic Operations 111

There are no specific multiplication or division instructions provided
for BCD values.

tei iret ‘epee? coteliinls See Ce
Ee AS CE ete a a

Vitetrig mea edhe ore Fb Va anatotigitliny ices Oe
mm Weer Giutk Mt pat | 90 ees a

ew Til ;

— ’ 7 ‘

s

=
4 *.

‘

\

uf

‘ '

-

.

| “
» fh

*

. £
sg

:

jf.

ie , ‘ |

4

‘ ‘ pel ae 2) P .

e “.) wk > Lee.

‘
iv

“we OR os DOT Cet tates pie byaatry eee ent
x oat aed thay he pex“ortend Geter P1) waloes ig

| co? 6 per’,

Part I

Assembling Proc:

J.

{

7, ts ‘ Ar

y - nila’ é +
[' 4 (eee Y Sots Ce ese - 7

Nike Curd mh Ta asdiberoeni
) * Gecaeadd Gigaty ke @

. The peiaiocy wot of dase enerap3,
. i Dweo tetes 9 e e
rv } The pu ner Gil » i, eee 41%

tt Joe a ee
bet’. - 1 UO bebe,

- 7 Z parte é

eee a ti

P

Li Fie“h =

‘ > &

. Pe
- Py a

-

Chapter 8

Assembling Programs

In the first chapter we took a general overview of the system, looking
at the sizes of data which can be used in programming and the ways
in which the data is stored in memory. We then looked at part of a
simple program, seeing how the code and data sections relate to each
other and how the processor executes a program by moving data from
one location to another and processing it. Finally, we took a brief
look at the general principles of assembler programs.

In this chapter we shall revise some of the key points about program
and data storage. We shall also be starting to use hexadecimal
numbering rather than binary representation. Finally, we shall
examine the use of assembler programs in more detail and produce
a complete coding of the example program which we looked at in
Chapter 1.

Data Sizes

In Chapter 1 we saw how the basic unit of data is the binary byte
and how data can also be represented in word and long word lengths.
By way of revision, the following table lists the primary data lengths
which are commonly used:

Length Name Comment

1 bit Bit The primary unit of binary numbering.
4 bits Nibble Used in BCD arithmetic to represent

decimal digits 0 to 9.
8 bits Byte The primary unit of data storage.
16 bits Word Two bytes.
24bits — The number of bits used to represent a

memory address value.
32 bits Long word Four bytes.

115

116 First Steps in Assembly Language for the 68000

Although these are standard, named data lengths there is no reason

why you should not store data in any size or format you wish,

according to the requirements of your application. You might choose,

for example, to represent floating point numbers in 6 bytes: 2 for the

mantissa (the whole part) and 4 for the exponent (the fractional part),

with one or more bits reserved to indicate the number of decimal

places required when the value is displayed on the screen. In this

case you would need to write routines which encode and decode the

data in accordance with the format you have chosen.

Hexadecimal Numbering

So far we have been using the decimal and binary numbering systems:

the decimal system because we are familiar with it and the binary

system because it constitutes the actual representation of numeric

values in a computer system. Another numbering system is also often

used in computing: the hexadecimal, or base-sixteen system. Its

advantage over the binary system is that it is a convenient way of

representing binary values without needing to go to all the trouble

of writing down a large number of 0s and Is. Its advantage over the

decimal system is that every byte of data can be uniformly represented

by two hex digits, thus it is easy to arrange data in a regular tabular

format and to identify byte-sized units of data in a program listing.

There are 16 hexadecimal digits: 0 to 9, equivalent to the decimal
values 0 to 9, and A to F, equivalent to the decimal numbers 10 to 15

as shown in the table on the next page:

Assembling Programs 117

Decimal Hex Decimal Hex

0 00 16 10
1] 01 17 11
Ps 02 18 12
3 03 19 13
4 04 20 14
5 05 21 j ie
6 06 22 16
ve 07 23 17
8 08 24 18
9 09 25 19

10 0A 26 1A
11 OB 27 1B
Fs 0C 28 1C
13 0D 29 1D
14 OE 30 1E
15 OF 31 1F

If we look at a 16-bit binary number you will be able to see easily
how each hexadecimal digit corresponds to a 4-bit section of it:

0000 1010 1100 1001

0 A ¢ r

= 2761 decimal ((10 * 256) + 201)

= OAC9neEx

Each separate 4-bit section is read as if it were the low order four
digits of a binary number, so that each will represent a value on the
range 0-15 decimal (0O—F hexadecimal).

For conversions between binary, hex and decimal values, you may
find the conversion table in Appendix C useful. All three numbering
systems can be used in programming and in an assembler listing you
can usually specify the radix (the numbering system) of the data as
being hexadecimal simply by appending a ‘$’ to it. To move the
immediate hexadecimal value 3F into register D4 for example, you
might use an instruction such as MOVE.B #$3F,D4 — the # indicating
that it is an immediate value and the $ indicating the radix. To move
a value contained in an absolute address, such as 2AFBy;:x, into D4,

then you would use an instruction such as MOVE.B $2AFB,D4.

118 First Steps in Assembly Language for the 68000

Assembler Programs

In Chapter 1 we briefly looked at assembler programs, which enable
the programmer to enter the assembly language source program as a
listing and from which the object, or machine code version of the
finished program is compiled.

In this chapter we shall be going into the operation of assembler
programs in more detail. Taking the simple program example from
chapter 1 we shall produce a complete source code listing and then
examine the object code which is produced from it.

Assembler Structure

An assembly language ‘source’ program consists of a listing of a
number of separately identifiable blocks of commands which define
the sections of a program in a structured fashion. The general
structure is not imposed and therefore it is up to the programmer to
arrange the sections of the program in an orderly and consistent
sequence so that it is easy to refer to it during the debugging phase.
Typically, the listing will contain definitions of all labelled constant
values, the labelled addresses of data items and reserved memory
blocks and labelled blocks of code, including any subroutines.

The listing consists of four main elements:

at Assembler directives, or ‘pseudo-ops’, which are commands which

are part of the assembler program rather than actual assembly
language instructions.

2 Labels — which are user-defined names which the programmer
gives to the various elements of the program.

3 Comments — which serve the same function as REM statements in

BASIC.

4 Assembly language instructions — which are the actual 68000
program commands.

Since different assembler programs vary in their formats and in the
facilities which they provide, we shall not be going into a full
examination of the operation of any particular package. Readers
should therefore refer to the documentation provided with their own

Assembling Programs 119

assembler, which will normally contain extensive and detailed
instructions on how they should be used.

In this book the assembler formats and directives used to illustrate
the various example programs are typical of those used in most
assemblers and each feature will be fully explained wherever it is
introduced. By the end of this chapter the general structure of an
assembler listing will be reasonably well understood and you should
have no difficulty in following all the program examples listed in the
chapters which follow.

The first program, like all the others in this book, will be relocatable
(i.e. position independent). It is good practice to make programs
relocatable as a matter of course because you cannot always anticipate
the circumstances under which they will be executed. If you are only
likely to run one program at a time on your computer then it does
not matter much — your relocatable program will always be loaded
into the same memory area. If you write a non-relocatable program
then you are free to refer to absolute addresses. For example, it would
be permissible to use an instruction such as MOVE.B 80000, D2 (load the
contents of address 80000 into D2.

A relocatable program would have to use a label to achieve the same
ends because the data to which you are referring is not always likely
to be at address 80000. As you will see in the example program, these
labels are assigned to code and data sections in the listing and the
assembler program calculates their relative offset values during
assembly. In practice, it is common to use labels in non-relocatable
programs as well so that, for example, at the beginning of your source
listing you would have a statement such as TABLE_1 EQU £80000.
Subsequently you can refer to this address using its label.

A non-relocatable program is defined by using the assembler directive
ORG at the beginning of the program, followed by the address at which
you want your program to be loaded.

Separate ORG statements may be used to define the beginning of your
code section, the beginning of your data section and also the base
address of the stack if the default stack is not large enough and you

wish to assign more space for it.

A relocatable program may be defined with a RORG directive and the
system will subsequently work out where the program is to be loaded.

120 First Steps in Assembly Language for the 68000

In many cases relocatable assembly will be the default condition and
therefore RORG will be unnecessary.

A program may be executed in a variety of ways: it may be called as
a subroutine from another program, from the operating system
prompt or from a high level language such as BASIC. The precise
method of calling a program will differ between operating systems
but in most cases you will find that various parameters have to be
passed to the operating system at the beginning of a program in order
to ensure that the correct channels are opened (i.e. to the screen, a
screen window, keyboard, printer etc) and that the program is
correctly integrated with any other ‘tasks’ which the computer is
running. This information may include a priority code, indicating
the level of priority which the current task has in relation to the other
tasks. The example programs will incorporate some of these para-
meters in order to demonstrate the kinds of operations which your
operating system may require you to perform. Since these are
operating system specific, they may be coded completely differently
on your own computer but bear in mind that their inclusion is
normally necessary. The technical manual for your machine should
provide you with the information required by your own operating
system.

Example Program 1

Our first example program will be documented in detail and we shall
go through all the stages of assembly from source code to object code,
so that you can see how the different elements of the program and
the assembler relate to each other.

As a reminder, here is the program once again in BASIC:

10) FOR? count s="5 (tor 1eSTER==1

20 READ V

30 PRINT CHR$(48 + V)

40 NEXT count

50 DATA 24,21,28,28,31

As you will recall, this merely adds 48 to each of the data items and
prints the ASCII characters corresponding to the results to the screen.
In the following assembler version, all user-defined labels are printed

Assembling Programs 121

in italics, assembler directives are printed in normal type and the
assembly language instructions are printed in bold type. Comments
are preceded by the ‘;’ symbol. This format will be used throughout
the remainder of the book. After the listing a full commentary on the
program will be given. At the end of the chapter, a literal translation
of each instruction mnemonic is also given.

Note: On a first reading of this listing the main things you
should be observing are the assembly format and the
structure of the program as a whole. Although the workings
of the actual assembly language program are explained
there may be much that will appear confusing at this stage
but the details will become clearer as you read through later
chapters.

, lel tite nee ee ee ee ee ee

; DATA ADDITION PROGRAM ENTITLED PROG1

; ADDS 48 TO A SET OF VALUES AND PRINTS

Be THE CORRESPONDING ASCII CHARACTERS

Samm www wm Re Re RM ee BP ee ee ee ee ee ee ew em em wm wm em em ee em ew ew ew ee ee ee ee ee ee ee eee

GO MOVEQ #0,01 j;Job ID

MOVEQ #2,D3 ;Exclusive device

BEAL DEVICE, AO ;Address of device code

MOVEQ #1,D0 ;Code for opening channel

TRAP #2 ;Trap for opening channel
Sew we em em ee Me Be em BP MP ew ew eee em ew me we ee ee ee em ee ee ee ee ee ee ee em ee ewe ee eK

MOVEQ #0,D2 3D2 will index data pur Fou nro
MOVEQ FOUR,D4 3D4 will count off data Iv DA FOoR= &
LEA.L MYDATA,A2 ;A2 points to base of

"MYDATA'

;THEN THE ADDITION IS PERFORMED

DCR t. CenwACUE Obl. 82.5...

LOOP1 MOVE.B 0(ad02) ,01 ;Move an item of data to D1

ADD.B ADVAL,D1 ;Add 48 to it

122 First Steps in Assembly Language for the 68000

sTHEN AN OPERATING SYSTEM TRAP IS CALLED TO PRINT

sTHE RESULT TO THE SCREEN

MOVEQ #-1,D3 ;Timeout code in D3

MOVEQ #5,D0 ;Transfer display

;function code into D0

TRAP #3 ;Call operating system

;display function trap

ADDQ #1,D2 ;Increment index pointer

DBRA D4,L00P1 ;Loop back to LOOP? if

“D4 oii ours

MOVEQ #2,D0 ;'close channel' code

TRAP #2 ;Close channel

MOVEQ #-1,01 ;Job ID

MOVEQ #0,D3 ;Error code

MOVEQ #5,D0 ;'remove task' code

TRAP #1 ;Remove task

MYDATA DC.B 24,21,28,28,31 ;Defines and names the set

sof data values in 5

;reserved bytes

ADVAL dC.B 48 ;Defines and names the

OE FUE A saddition value in 1
oNeth ;reserved byte

FOUR DAB 14 Defines and names length of

sMYDATA, less 1, in 1

;reserved byte

DEVICE DC.W 4 ;Number of characters in

;device name in one reserved

;word

DCB CONS ;Device name

Assembling Programs 123

The ‘rem’ statements (;) at the start of the program simply name it
and define what it is intended to do.

Following this, the actual program begins and the first 68000
instruction is given the label ‘G0’. This arbitrary name is merely to
indicate where the actual program starts and is not obligatory.

The first instruction, MOVE@ #0,D1, sets the whole of D1 to zero. This
is a parameter which will instruct the operating system to assign an ID
code to the program. The next instruction, MOVE@ #2,D3 sets D3 to
the value 2. This is a parameter which will inform the operating
system that an exclusive device will be required by the program. The
instruction LEA.L DEVICE,A0, loads the address containing the length
(4) of the device specification (CON_) into the AO register. CON_ stands
for ‘console’ and indicates that communication channels to the screen
and keyboard should be opened. The label DEVICE is defined in the
data section at the end of the program. The MOVEQ #1,D0 instruction
moves the value | into D1. This is a parameter to inform the operating
system to schedule the current program as a new ‘task’ to be
performed.

Then the TRAP #2 instruction calls a specific operating system trap
routine, passing the above parameters to it. The trap routine
interprets the parameters and performs the requested operations
before returning to the program.

Note that all the above operations relate to an operating system
specific procedure and are likely to be different on your own

computer.

Next the program proper begins. The instruction MOVEQ #0,D2 sets
the whole 32 bits of the D2 register to zero. This register will be used
as an index offset to access the data in the data section and initially the

offset will be zero.

The D4 register will be used to count off the five bytes of data and
SO it is initialized with the count value (5) less 1: MOVE@ FOUR, D4.

124 First Steps in Assembly Language for the 68000

The assembler will recognize the label FOUR’ as being the name of
the data address in which the actual value 4 has been stored and
during execution it will be transferred from there into D4.

Again, FOUR is an arbitrarily chosen label which is defined in the data
section at the end of the program. It is the value contained 1n address
FOUR which is loaded into D4 rather than the data address number

itself.

The instruction LEA.L MYDATA,A2 then loads the base address of the
data labelled ‘MYDATA’ into address register A2. MYDATA is the data to
which we shall be adding 48 and is defined at the end of the program.

The label LOOP1 marks the address to which program execution will
loop back after each addition and printing operation has been
completed.

The instruction MOVE.B 0(A2,D2),D1 moves the data stored at the

address named ‘MYDATA’ (pointed to by A2) plus the index offset in D2

(initially 0) into D1. The instruction ADD.B ADVAL,D1 then adds 48

(the number contained in address ADVAL) to the data contained in D1

so that D1 contains the result of the operation. ADVAL is defined at the

end of the program.

The following three instructions cause the program to branch to an
operating system trap procedure which prints the ASCII code of the
value contained in D1 to the screen. Different computers will have
different ways of doing this and you should refer to the documentation
for your own machine for details. In effect, three parameters: the
contents of D1, the value —-1 and the value 5 are passed to an operating
system trap procedure which performs the printing operation and
returns control back to the program. D1 already holds the ASCII
code for the character to be printed, —] is a timeout parameter,
indicating how long (if at all) the routine should wait to output its
information to the screen if the console channel is being used by some
other program, and 5 is a parameter indicating that a byte of data is
to be sent to the screen.

The D2 index register is then incremented by | to point to the next
data item (ADD@ #1,D2) and the DBRA D4,L00P1 command automati-

cally decrements the D4 register, containing the loop count, and if
the operations have not been completed (i.e. if D4 >= 0) then

Assembling Programs 125 Eth an A RCN I a i a Aas

execution is looped back to the address which has been given the
label ‘LOOP1’.

Finally, another operating system trap is called which closes the
console channel. The parameter 2 specifies this function and trap 2
performs it. Then another trap is called which tells the operating
system that the current task is finished and may be removed from
the execution schedule. The parameter —1 refers to the current task
ID code, 0 refers to an error code and 5 is a task termination code.
TRAP 1 performs these operations and returns control to the operating
system, to any program from which the current program was initiated
or to some other task which is waiting in the schedule queue.

Following this, the data segment of the program is defined. This
section will eventually follow the program code when the assembled
program is loaded and run. The fact that the labels associated with
the data have already been referred to in the body of the program,
prior to their definition, does not matter. The assembler will run
through the source code twice. On the first pass it will take note of
all labels used and on the second pass it will replace all label references
with appropriate values.

MYDATA is an arbitrarily named label which we choose to assign to
the five bytes of data which will be used in the program. When the
program is assembled, the label MYDATA becomes a numeric variable
pointing to the address of the first of the five data items. The directive
*DC.B’ means ‘define byte constant’; in other words, the assembler is
told to reserve five byte-sized memory spaces for the following items
of data and to insert the data in the reserved addresses.

The same is then done for ADVAL, which is the name we choose to
give to the constant value 48 which will eventually be added to each
of the data items. Then we give the name FOUR to the constant value
4, which will be used to count off each item of data after it has been
added.

Finally, the value 4, labelled ‘DEVICE’, is stored as a word using DC.W
(define word constant). This represents the number of characters in
the following data item, ‘CON_’. These two items of data are used at
the beginning of the program to set up a communications channel
for the console. Note that ‘CON_’ is defined as bytes (DC.B). This
means that the ASCII code of each individual character in the word
‘CON’ should be stored as separate bytes in four consecutive
addresses.

126 First Steps in Assembly Language for the 68000

The program is then terminated with the statement ‘END’, indicating

to the assembler that there is no more code or data to assemble.

If we were to type this listing into our computer, using a word

processor or screen editor utility, it can then be read and converted

into object code using an assembler program. The assembler will use

the various elements of the program and calculate the relative

positions in memory between all the labelled elements of the program.

If there are any errors, these will be printed to the screen with

appropriate error messages so that you can amend the listing if

necessary and re-assemble it.

The resulting object code, which is written to disc, is a relocatable

machine code file with all the assembler directives and labels stripped

from it. The assembler assembles the code in such a way that when

the program is loaded, the operating system is free to assign the code,

stack and data sections to whatever free areas of memory are available

and in different circumstances, for example where memory space is

being shared with other programs, the assigned base address of the

program will vary. However, the relationships between the various

data blocks and code sequences of a program will remain constant

because the assembler translates all labelled points in a program into

relative offsets rather than fixed locations. In some cases these offsets

are located relative to the assigned base address of the program and

in some cases, for example in program loops, the offsets are located

relative to the branch instructions.

Linking Program Segments

A program which we have assembled into object code may be just

one of several modules belonging to a larger program, or may be a

program which is intended to interact with other programs which

may share memory space with it at the time it is run. For this reason,

it may be necessary in some cases to run the assembled program

through a LINK program, which gathers together all associated

modules and segments and arranges them in an efficient structure,

ensuring that all code and data shared by more than one program

module are properly linked. The final linked code is usually termed

an ‘executable’ object file: that is, it is finally in a condition in which

it can be loaded and executed.

Assembling Programs 127 eee SS

If we pass our source listing through the assembly and link processes,
the final machine code file can then be read by a ‘disassembler’,
‘monitor’ or ‘debug’ program, which gives a complete listing of the
assembly language mnemonics, a hexadecimal ‘dump’ of the actual
object code for each instruction and the addresses into which each
instruction has been loaded, as follows:

;Address Object Code 68000 Instruction

(hexadecimal) Mnemonics

g enn----------------------------- + -- --- ----

29CE8 7200 MOVEQ #00, D1

29CEA 7602 MOVEQ #02, D3

29CEC 41FA0038 LEA 38(PC)!29D26, AD

29CF0 7001 MOVEQ #01, DO

29CF2 4E42 TRAP #2

29CF4 7400 MOVEQ@ #00, D2

29CF6 © 183A002C MOVE.B 2C(PC)!29D24, D4
29CFA 45FA0022 LEA 22(PC)!29D1E, A2

29CFE 12322000 MOVE.B OO(A2,D2.L), D1

29002 D23A001F ADD.B 1F(PC)!29D23, D1

29006 76FF MOVEQ #FF, D3

29008 7005 MOVEQ #05, DO

29D0A 4E43 TRAP #3

29D0C 5242 ADDQ #1, D2

29D0E S5ICCFFEE DBRA D4,29CFE

29012 7002 MOVEQ #02, DO

29014 4E42 TRAP #2

29016 72FF MOVEQ #FF, D1

29018 7600 MOVEQ #00, D3

29D1A 7005 MOVEQ #05, DO

29D01C 4E41 TRAP #1

From this you can see that the program code has been loaded into an
area of memory beginning at address $29CE8 (171240 decimal). You
will recall from Chapter 1 that code must always be loaded at an even
address so that it can be ‘word aligned’. The first instruction has
been located in memory at address $29CE8. The object code is listed
in hexadecimal and if you examine the listing you will see that each
pair of hex digits represent 1 memory byte. The second instruction,
for example, is located at $29CEA (decimal 171242) and its object

128 : First Steps in Assembly Language for the 68000

code occupies 2 bytes; therefore, the third instruction starts two bytes

further on at $29CEC (decimal 171244).

If you look at the mnemonics in this listing carefully and compare

them with those in the original source file, you will notice that there

are a number of differences. The third instruction for example, LEA.L

38(PC)!29D26,A0, was originally LEA.L DEVICE,A0. The reason for

this is that the actual physical address of the data labelled ‘DEVICE’ is

$38 bytes further on in memory, relative to the value which will be

held in the PC register at the time this instruction is executed. The

assembler has noted the fact that this program is relocatable and has

specified the location of ‘DEVICE’ to be PC relative rather than

absolute. The monitor program which loaded the program and which

produced the above assembly listing has introduced a separation

symbol: ‘!’ following which it has inserted the actual address at which

‘DEVICE’ has been located: $29D26. Had the entire program been

loaded at a different address then ‘DEVICE’ would still be located at an

offset of $38 bytes relative to the third instruction but of course its

actual physical address would be different. The seventh physical

instruction, MOVE.B 2C(PC)!29D24,D4 at address $29CF6 was origin-

ally MOVE.B FOUR,D4 and has been interpreted similarly, as has LEA.L

22(PC)!29D1E,A2 (originally LEA.L MYDATA,A2) at address $29CFA.

When the program is executed the data contained in the address

labelled ‘FOUR’, in this case the data contained in address $29D24, is

moved into low order byte of register D4. The actual address of

‘MYDATA’ (in this case $29D1E) is loaded into address register A2.

Note that the instruction at address $29D06, MOVEQ #FF,D3 was

originally MOVEQ -1,03. FF is of course the hexadecimal 2’s comple-

ment representation of —1.

The DBRA D4,29CFE instruction at address $29DOE was originally DBRA

D4,L00P1. The monitor program has simply substituted the physical

address of the instruction labelled L00P1 for the label.

Often a number of small details will be altered automatically when a

source program is assembled. One example in this case can be seen

in the instruction at address $29CFE: the index register D2 has

acquired an ‘.L’ size specifier, indicating that the entire 32 bits of D2

are used as the index value. In the source listing no size specification

was given but its inclusion in the object listing can be useful since it

can help to identify possible errors resulting from the use of an

incorrect data size. In this particular case it does not matter whether

Assembling Programs 129 Re ii SS a I Sa

16 or 32 bits of D2 are used because the index value will never be
greater than 16 bits and the earlier MOVEQ instruction would have set
the hi word of D2 to zero.

In addition to the executable object file, the assembler may also have
generated a ‘list’ file, containing a copy of the original source code
with line numbers and error codes added to aid the debugging
process. It may also have generated a ‘symbol table’ which gives
information about all the labels contained in your program, indicating
whether they relate to code or data addresses and, if they are data
labels, their defined size and the initial values contained in them.
The table would normally indicate the total size of the program and
the sizes of the code and data sections.

Tracing a Program

Once our program has been assembled and listed we can test it by
executing it one instruction at a time using a toolkit program which
‘traces’ the status of the registers as each instruction is executed. A
trace listing for the second program instruction, MOVE #2, D3, appears
as follows. This shows the status of the registers immediately before
the instruction is executed:

29CEA 7602 MOVEQ #02, D3
DO=0 D1=0 D2=0 D3=0 D4=0 D5=0 D6=0
D7=0 AQ=0 A1=0 A2=0 A3=0 A4=0 A5=0
A6=0

A7=3DBC6 Status= Z T Imask=0 Program Counter =29CEA

From this you can see that the top of the stack, whose address is in
register A7, is located at $3DBC6 and the instruction, MOVEQ £02 a)
is located at address $29CEA as indicated on the top line of the first
trace. Since the program counter is pointing to this instruction it also
contains the same value. The ‘T’ after the word ‘Status’ indicates that
the trace flag is set in the status register because the program which
prints out the listing is making use of the processor’s trace facility.
The Z flag is set because the previous instruction moved an 0 into
register D1. The IMASK (interrupt mask) in the status register is at
zero, indicating that interrupts have not been masked.

130 First Steps in Assembly Language for the 68000
thet SE

29CEC 41FA0038 LEA 38¢(PC)!29D26, AD

D0=0 D1=0 D2=0 D3=2 D4=0 D5=0 D6=0

D7=0 A0=0 A1=0 A2=0 A3=0 A4=0 A5=0

A6=0

A7=3DBC6 Status= T Imask=0 Program Counter =29CEC

The second trace shows what happens when the MOVE instruction

is executed. Register D3 now contains the value 2 and, since the

previous instruction occupied two bytes of memory, the program

counter has been incremented by 2 to point to address $29CEC, ready

for the LEA instruction to be executed.

29CFO 7001 MOVEQ@ #01, DO

DO=0 D1=0 D2=0 D3=2 D4=0 D5=0 D6=0

D7=0 A0=29D26 A1=0 A2=0 A3=0 A4=0 A5=0

A6=0 A7=3DBC6 Status= T Imask=0 Program Counter =29CFO

29CF2 4E42 TRAP #2

DO=1 D1=0 d2=0 D3=2 D4=0 D5=0 D6=0

D7=0 A0=29D26 A1=0 A2=0 A3=0 A4=0 A5=0

A6=0 A7=3DBC6 Status= T Imask=0 Program Counter =29CF2

The third trace shows what happens after the LEA.L 38(PC)! 29D26,A0

instruction has been executed. The value of the address $38 bytes

relative to the PC counter, address $29D26, has been loaded into

register AO and the program counter has been incremented by 4 bytes

to $29CFO0.

Data Dumps

A further debugging aid is normally provided in a monitor program:

a hexadecimal ‘dump’ of a program and its data can be obtained,

together with a listing of the printable ASCII codes which correspond

to the data contained in the dumped addresses. This gives. a broad

overview of the space occupied by your program and can be used to

check the operation of individual instructions against the data

addresses to which they refer. For example, if your program is

designed to load a string of calculated values into a certain block of

memory, you can run your program through once under control of

the monitor program and then obtain a dump of the data area

concerned to check that your program is inserting the correct values.

Assembling Programs 131 It

The following listing shows a dump for PR0G1:

“LOOP 1°

29CE8 72 88 74 @2 41 ra\ee 38 78 81 4E 42 74 88 18 3A r.v.Az.8p.NBt..: 29CF8 @8 2C 45 FA @@ 22 12 32 20 2B D2 3A @8 1F 76 FF .,Ez.".2 .R:..v 29D@8 78 @5 4E 43 52 42 51 CC FF EE 7@ 82 4E 42 72 FF p.NCRBQL np.NBr 29D18 76 @@ 7@ @5 4E 41 18 15 1C 1C 1F 38 @4 @@ @@ O04 v.p.NA..... @.... 29D28 43 4F 4E SF
CON__

“MYDATA’ “ADVAL’ ‘FOUR’ ‘DEVICE’
CON_

FIGURE 8-1.

The four digit numbers in the left hand column are memory
addresses, starting with the first address of the program at $29CE8.
The centre block shows the hexadecimal contents of the individual
bytes of the program, arranged in rows of 16 bytes. The block on
the right shows the printable ASCII codes corresponding to the values
contained ‘in each of the 16 rows. Where a code has no printable
ASCII character associated with it, it is represented by a dot.
Obviously the program code itself results in a meaningless jumble of
character codes, as does most of the data section except for the codes
representing the name ‘CON_’. With some programs, where the data
section contains lines of text, the words of the text will appear in the
ASCII block and this can be useful for checking and correcting textual
data. In PROG1 there are no texts in the original data and so the ASCII
block is largely irrelevant.

Note that the data section of the program follows on immediately
from the end of the code, exactly as it was positioned in the original
source program. Had we chosen to define our data before the code
in the source program, which is the normal practice with some
assembly languages, we might have ended up with an odd number
of data bytes which would cause code alignment problems, with the
code starting illegally at an uneven address. For this reason, 68000
program data is conventionally placed after the code.

Executing a Machine Code Program

The program may be executed in a number of different ways. It can
be loaded and run by keying in its disc file name from the operating
system prompt, from within a monitor program, from within another
machine code program or from within a high level language program.

132 First Steps in Assembly Language for the 68000

For example, to execute it from the operating system we would simply

begin with the operating system screen prompt, type in the name

under which the program has been filed on disc and then press return.

The program would automatically load and run, displaying the word

‘HELLO’ on the screen.

In comparison with the BASIC version of the program, there seems

to be a very great deal of code involved for such a modest result. If

you go back and compare the source listing with the object code

listing you will see that some of the original material had little to do

with the actual program at all, consisting mostly of assembly program

labels and directives rather than actual assembly language. The source

listing is extensively padded out with short explanatory notes, as all

programs should be. When programs need to be debugged or altered

and combined with other programs they can be very difficult to follow

unless the listing has been carefully documented in this way.

If you look at the object listing you will see that much of it is

concerned with setting up and closing channels and so on, which in

many cases would not be necessary. The heart of the program, starting

with the instruction MOVE@ #0,D2 and ending with DBRA D4,LO0P1

consists of only 10 assembly language mnemonic instructions which

are assembled into 30 bytes of machine code. Obviously in a larger

program the proportion of ‘real’ program code in relation to all the

formal definition statements and rem statements would be much

greater and if you build up a disc library of commonly used assembler

subroutines, the amount of physical work involved in keying in an

assembly language program can compare favourably with that

required for a BASIC or other high level language program.

The following list is a brief reference key to the meanings and

functions of the assembly language mnemonics used in the above

program:

ES
9S 800500

Mnemonic Meaning
a ci ite MAR li nlaelner dasa RMN ona

MOVE #0,D1 MOVE Quick the immediate value 0 into

register D1, resetting the entire 32 bit of

the register to zero.

MOVEQ #2,D3 MOVE Quick the immediate value 2 into

register D3.

Assembling Programs 133 eed

Mnemonic Meaning

The low order byte of D3 will contain the 2 and the
remaining 3 bytes will be zeroed.

LEA.LDEVICE,A0 Load the Effective Address which is
labelled ‘DEVICE’ into the whole of
register AO.

MOVEQ #1,D0 MOVE Quick the immediate value 1 into
register DO.

TRAP #2 Call operating system trap number 2.

MOVEQ@ #0,D2 MOVE Quick the immediate value 0 into
register D2.

MOVE.B FOUR,D4 MOVE the Byte of data contained in the
address labelled ‘FOUR’ into the low byte
of register D4, leaving the three higher
bytes of D4 unchanged.

LEA.LMYDATA,A2 Load the Effective Address which is
labelled ‘MYDATA’ into the whole of
register A2.

MOVE.BO(A2,D2) ,D1
MOVE the Byte of data at the address
which is the sum of (0+reg A2
contents+reg D2 contents) into the low
byte of register D1.

ADD.BADVAL,D1 ADD the Byte contained in the address
labelled ‘ADVAL’ to the contents of the low
byte of Dl.

MOVEQ#-1,D3 . MOVE Quick the immediate value minus 1
into register D3.

MOVEQ #5,D0 MOVE Quick the immediate value 5 into
register DO.

TRAP #3 Call operating system trap number 3.

ADDQ #1,D2 ADD Quick the immediate value 1 to
register D2.

DBRA D4,L00P1 Decrement register D4 by 1 and BRAnch
to the address labelled ‘L00P1’ if D4 is
greater than —1.

134 First Steps in Assembly Language for the 68000

Mnemonic Meaning

MOVEQ #2,D0 MOVE Quick the immediate value 2 into

register DO

TRAP #2 Call operating system trap number 2.

MOVEQ #-1,D1 MOVE Quick the immediate value minus 1

into register D1.

MOVEQ #0,D3 MOVE Quick the immediate value 0 into

register D3.

MOVEQ #5,D0 MOVE Quick the immediate value 5 into

register DO.

TRAP #1 Call operating system trap number 1.

Chapter 9

Addressing Modes

In Chapter 2 we looked at some of the different types of registers used
in the 68000 and examined the addressing modes used for addressing
data located in both registers and in memory.

In this chapter we shall be looking at the registers in greater detail and
then the addressing modes illustrated in Chapter 2 will be sum-
marized, along with some sample instructions. Finally, we shall look
at another. complete program which illustrates some of these modes in
a practical context.

Register Model

Figure 9.1 shows all the 68000 registers, arranged in their different
categories, as follows:

1 Data Registers
The eight 32-bit registers which are used for holding program data.

2 Address Registers
The seven 32-bit registers which are used to hold memory addresses
for accessing data which is located in memory.

3 Stack Pointer

Used to point to the ‘top’ of the stack. The stack pointer is register
A7.

4 Program Counter
The PC register holds the address of the instruction currently being
executed.

Status Register
The SR register contains bit flags indicating the current status of
the system.

wa

135

136 First Steps in Assembly Language for the 68000
a a i a alae preee

DATA REGISTERS:

ADDRESS REGISTERS:

SPECIAL REGISTERS:
A? User Stack Pointer (USP)
A? Supervisor Stack Pointer (SSP)

[________] PC (Program Counter)

[___] SR (Status Register)

FIGURE 9-1.

Register Descriptions

Registers: D0 D1 D2 D3 D4 D5 D6 D7

The eight 32-bit registers in this group are mainly used to hold data

for transfer, for temporary storage and for arithmetic and logical

operations. The main features of data registers are as follows:

1 Data may be copied into or out of data registers in byte, word or

long word lengths. When byte or word data is copied into a data

register it is copied into the low order byte or word of the register

leaving the higher order 24 or 16 bits unaltered.

2 Data registers may be used as sources or destinations in program

instructions.

Addressing Modes 137 I a

3 Data registers may be used as counter registers, containing, for
example, count values for loop operations. The DBRA (decrement
and branch) and DBcc (decrement and branch according to
condition code) instructions decrement the values of nominated
data registers automatically.

4 A data register may be used as an index register, containing an
offset value which is added to the value of an address register to
obtain the full effective memory address of an operand.

Address Registers: AO Al A2 A3 A4 AS A6

Address registers are used to contain the addresses of code or data
contained in memory. They may also be used to contain data,
providing that it is held in the form of word or long word sized values.
Their principal features are as follows:

1 When a memory address is contained in an address register, only
the low order 24 bits of the value are used to specify the address.
The remaining high order byte, if any, is ignored.

2 Address registers may only contain word or long word sized values.
When a word sized value is loaded into an address register its most
significant bit (the sign bit) is copied (sign extended) into the 16
high order bit positions of the register. Thus 0000000000001010
(binary) loaded into an address register will automatically become:

00000000000000000000000000001010

1000000000001010 (binary) will become:

11111111111111111000000000001010

Thus a 16-bit address value with its sign bit zeroed will represent
an address within the bottom 32K of memory. A 16-bit address
with its sign bit set will represent an address in the top 32K of
memory. A 32-bit address value loaded into an address register (of

which only 24 bits are significant) may represent any address within
a 16 megabyte range.

3 Address registers may be used as both sources and destinations in
program instructions. When an address register is a destination
operand for certain instructions such as MOVEA, ADDA and SUBA,

none of the flags are altered by the operation.

4 An address register may be used as an index register, containing an
offset value which is added to the value of another address register
to obtain the full effective memory address of an operand.

138 First Steps in Assembly Language for the 68000

Special Registers: SP PC SR

The registers described above are the ones which are most commonly
used in programming and which are referred to by name in source
listings. The three special registers described below may also be
specified in certain instructions but for the most part they are used
implicitly, which means they are used automatically in some oper-

ations.

Program Counter: PC Register

As explained in Chapter 2, the program counter is used by the system
to point to the address of the instruction which is currently being
executed. In the last chapter we saw this in action in the trace listing,
where the PC register was pointing to the address in the code segment
at which the traced instruction was located. The PC register is
incremented automatically by the system as each byte of code is
accessed and executed. The address of the instruction currently being
executed, or more accurately the address of whichever byte of the
instruction is currently being executed, is thus always contained in
PC. The location of an address which is to be referenced by the
instruction may be addressed as being relative to the value of PC, as
illustrated in the program in the previous chapter.

A branch to a different point in the program involves the alteration of
the PC register to point to the new execution address. In the previous

program for example, the address of the instruction DBRA D4,29CFE

was $29DOE. By the time this four byte instruction has been decoded
by the processor, PC is pointing to $29D12 (the address following the
end of the instruction). If the branch to $29CFE is made then this

becomes the new value of the PC register, otherwise execution

continues from $29D12.

Status Register: SR

The status register consists of two bytes: the CCR (condition codes

register) and the system byte. The CCR contains the bit flags which

provide information about the result of the operation instruction: X
(extend), N (negative), Z (zero), V (overflow) and C (carry). The

system byte contains bit flags indicating the current status of the

system: T (trace flag), S (supervisor bit) and I (3 maskable interrupt
bits). These flags will be discussed in detail in the next chapter.

Addressing Modes 139

Stack Pointer: SP Register

The top of the stack; the location at which data can be added to or
removed from the stack, is contained in the SP register which is
address register A7. When the system is operating in user mode, A7
is referred to as the USP (user stack pointer) and in supervisor mode,
A7 is referred to as the SSP (supervisor stack pointer). In either case
the register is normally referred to in program instructions simply as
A7 and no distinction is made. However, there is a privileged
instruction, MOVE USP, which specifies the stack pointer directly and
can only be used in supervisor mode to move an address value to or
from register A7. This is used to set an initial value for the stack
pointer or to store it temporarily elsewhere when a new stack is being
set up.

Addressing Modes

In Chapter.2 an overview of the addressing modes was given. It was
explained that an operand may be addressed implicitly, where it is
contained in a register which is automatically used by a specific
program instruction; it may be in a register (register addressing); it
may be an immediate data value (immediate addressing); it may be in
a specified memory address (absolute addressing); it might be in an
address pointed to by one or more of the registers (indirect addressing)
or it might be positioned relative to the program counter (PC relative
addressing).

The following summary of each of these modes shows how the
location of an operand is determined in each case. The actual physical
location of an operand is called the effective address, and in the
following examples the elements required for the calculation of an
effective address are shown where relevant. If the operations are not
entirely clear, it may help to refer back to Chapter 2 where the
addressing modes are shown in diagrammatic form.

Implicit addressing

The operands are implicit in the instruction. The instruction RTS
(return from subroutine) for example, implicitly refers to the PC and
SP registers. The return address is automatically taken from the top
of the stack, which is pointed to by SP, and loaded into PC. SP is

automatically incremented.

140 First Steps in Assembly Language for the 68000

Register Direct Addressing

This mode involves operands which are contained in data and/or
address registers. Data registers may have byte, word or long word
values loaded into or copied from them and address registers are
confined to word and long word sized values. When an address
register is the destination of a word operand in a register addressing
operation then the value contained in the register is sign extended to
32 bits. Instructions which specify an address register destination
usually have an ‘A’ suffix: for example MOVEA, ADDA, SUBA etc. These
are essentially the same as the MOVE, ADD and SUB instructions but in

their ‘A’ format they serve as a reminder that with some instructions

none of the flags will be altered by the operation.

Examples:

MOVE.BD2,D3 Byte transfer operation
MOVEA.WD3,A5 Word transfer operation
MOVEA.LA4,A5 Long word transfer operation
ADD.WA2,D6 Word addition operation
ADDA.LD5,A6 Long word addition operation

Absolute Addressing

In this mode an actual address value is given for the operand and is
included in the instruction itself. The number is expressed as a label
representing the address containing the required operand or as an
actual address number. The calculation of the effective address, in

hexadecimal notation, is as follows:

Operation:

MOVE DATA,D4 Move the operand contained in the address
indicated by the label ‘DATA’ into register D4.

DATA $2294C

EFFECTIVE
ADDRESS =$2294C = address of operand

Examples:
MOVE.LD5,ANADDR Copy 4 bytes of data from D5 to the

address labelled ‘ANADDR’ and the three

following addresses).

Addressing Modes 141

MOVE.W ANADDR,D3 Copy 2 bytes of data from the address
labelled ‘ANADDR’ (and the following
address) to D3.

ADDA.L 80000,A2 Add the contents of address 80000 to
A2.

If the absolute address is in the top 32 or the bottom 32K of memory
then it can be addressed using a short instruction. For example MOVE
$1000,D04. The hexadecimal value $1000 is the low order 16 bits of the
address which is sign extended to 32 bits to give the full address. The
instruction MOVE $20000,D4 contains a ‘long’ address; the hexadec-
imal value $20000 being interpreted as a 32 bit address, of which the
lower 24 bits are relevant.

Immediate Addressing

Immediate addressing involves operands which are numeric constants
and which are stored as part of the instruction rather than in the data
section or in a register. Some instruction types have a special form of
mnemonic for operations involving immediate operands, such as
ADDI, SUBI and CMPI.

Examples:

MOVE £408,D4 Load the word value 408 into D4

CMPI.L £22,D4 Compare contents of D4 with 22
MOVEQ £1,D6 Move the value 1 into D6

Address Register Indirect Addressing

This is where the effective address is contained in one of the address

registers.

Operation:

MOVE.L (A3),D4 Move the operand in the address pointed to by
A3 into D4.

A3 $29DI1E

EFFECTIVE
ADDRESS =$29DI1E

= address of operand (the remaining 3 bytes of
the long word operand are in $29D1F, $29D20
and $29D21)

142 First Steps in Assembly Language for the 68000

Examples:

ADD.W (A2),D4 Add the contents of the address pointed to by
A2 (and the following address) to the low word
of D4.

MOV.WD4,(A2) Copy contents of low order word of D4 into

the address pointed to by A2 (plus the fol-
lowing address).

CMP.W (A0),D4 Compare word value in address pointed to by
AO (plus the following address) to the value of
D4

Address Register Indirect with Predecrement

This mode is similar to the address register indirect mode except that
the value of the address register is decremented by 1, 2 or 4 bytes prior

to the operation, depending on whether a byte, word or long word

operand is involved.

Operation:

MOVE.WD4,-(A6) Subtract 2 from register A6 and copy the low
order word of register D4 into the address
pointed to by the new value of A6 (and the
following address)

A6 $29D1E
iy = $29D1C
EFFECTIVE
ADDRESS = $29D1C

= address of operand. The low order byte
from D4 will be copied into $29D1D

Examples:

MOVE.L DO,-(A5) Subtract 4 from A5 and copy the whole of DO
into the address pointed to by the new value of
A5 and the 3 following addresses.

ADD.B -(A3),D1 Subtract 1 from A3 and add the value contain-
ed in the address pointed to by A3 into the low
order byte of D1.

Addressing Modes 143 EE a a ee a rs

Address Register Indirect with Postincrement

This mode is similar to the address register indirect with predecre-
ment mode except that the value of the address register is incremented
by 1, 2 or 4 bytes after the operation, depending on whether a byte,
word or long word operand is involved.

Operation:

MOVE.WD4,(A6)+ Copy the low order word of register D4 into
the address pointed to by A6 (and the fol-
lowing address) then add 2 to register A6.

A6 $29DI1E

EFFECTIVE
ADDRESS = $29DIE

= address of operand. The low order byte
from D4 will be copied into $29D1F. Then A6
= A6 + 2

Examples:

MOVE.LDO,(A5)+ Copy the whole of D0 into the address pointed
to by AS and the 3 following addresses. Then
add 4 to AS.

ADD.B (A3)+,D1 Copy the value contained in the address

pointed to by A3 into the low order byte of
D1. Then add | to A3.

Address Register Indirect with Displacement

This is a form of indirect addressing in which an address register, used

as a base, is combined with a displacement value to give the effective
address of the operand.

Operation:

MOV.B 12(A4) ,D4 Move the byte operand in the address pointed
to by the sum A4 plus 12 into the low order
byte of D4.

A4 $29DI1E
+ 12 $0C

144 First Steps in Assembly Language for the 68000

EFFECTIVE
ADDRESS =$29D2A

= address of operand

Examples:

ADD.W2(A6),D1 Add the word contents of the address pointed
to by A6+2 (and the following address) to the
low order word of D1.

MOV.BD3,6(A4) Copy the low order byte of D3 into the address
pointed to by the sum of A4+6.

The displacement is limited to 16 bits and is automatically sign

extended, giving a displacement offset value in the range plus or

minus 32K. Displacements greater than or equal to $8000 are

negative. The displacement constant may be labelled, so that an

instruction such as MOVE.B OFFSET(A6) ,D4 may be used. (Effective

address is value of A6 plus the value of ‘OF FSET’).

Address Register Indirect with Index and Displacement

In this form of indirect addressing a displacement constant is

combined with an index register (any of the address or data registers)

to give the effective address of the operand.

Operation:

MOVE.B6(A1,D2.L),D04 Move the word operand in the address

pointed to by Al plus the constant value 6
plus the value of D2 into register D4.

Al $29D1E
+ 6 $06
+ D2 $0A

EFFECTIVE
ADDRESS =$29D2E

= address of operand

Addressing Modes 145 Se i alll alii A cel a a er

Examples:

ADD.B 12(A0,A2.W),D5 Add the contents of the address pointed to
by the sum of AO plus the constant value 12
plus the value contained in the low order
word of A2 to DS.

MOVE.LD4,2(A4,D2.L) Copy the entire contents of D4 into address

pointed to by the sum of A4 plus constant
value 2 plus value contained in D2. (Cont-
ents of the low order 24 bits of D4 go into
the next three addresses).

In this addressing mode the displacement constant is always a byte
value which is automatically sign extended, giving a displacement in
the range plus or minus 127 bytes. The index register value may be
of either word or long word size. If the index is a word value then it
is automatically sign extended giving an index offset in the range plus
or minus 32K.

Note that the index register is given a size indicator (.W or .L) of its
own, in addition to the specification suffix for the operand size.

PC relative addressing

Program counter relative addressing is very similar to the address
register indirect addressing modes except that the PC register is
substituted for the address register in the instructions. PC relative
addressing is normally used in the writing of position independent
code such as the program in the previous chapter. In that program
there was no need to specify the PC register directly since the
assembler, being aware that position independent code was required,
calculated all PC relative offsets automatically.

The following examples show typical PC relative instructions:

Program Counter Relative with Displacement

ADD.W2(PC),D1 Add the word contents of the address pointed

to by the sum of PC+2 (and the following
address) to the low order word of D1.

MOV.BD3,6(PC) Copy the low order byte of D3 into the address
pointed to by the sum of PC+6.

146 First Steps in Assembly Language for the 68000

Program Counter Relative with Index and Displacement

ADD.B 12(PC,A2.W),D5 Add the contents of the address pointed to
by the sum of PC+12 plus the value
contained in the low order word of A2 to
DS.

MOVE.LD4,2(PC,D2.L) Copy the entire contents of D4 into the
address pointed to by the sum of
PC+2+D2. (The contents of the low order
24 bits of D4 go into the three following
addresses).

If PC relative addressing is used with labels, the assembler will
automatically work out the relative displacement between the PC
register and the address of the operand, as illustrated in the program
object code listing in the previous chapter. If PC relative addressing
is performed using constant values, care must be taken to ensure that
the operand address is calculated as being relative to the value
contained in PC at the start of the instruction. This is done by using
a ‘x’ symbol to force the adjustment. For example, ADD.B *+8,D6 (add
the byte contained in the address 8 bytes relative to the PC register
into the low byte of register D6). This type of instruction is seldom
used because the labelling of addresses is standard practice and saves
a good deal of displacement calculation when using PC relative
addressing.

Addressing Mode Classification

For each 68000 instruction, the addressing modes which can be used
vary a great deal, both for the source and the destination operands. To
simplify matters it is useful to classify the addressing modes according
to their reference types so that the mode which can be used for any
given type of instruction can be expressed as a simple code. These
reference types are as follows:

Data A data referencing addressing mode is one which
addresses data contained either in data registers or in
memory but not in address registers.

Memory Memory referencing addressing modes are those which
address operands contained in memory rather than in any
kind of register.

Addressing Modes 147 i

Control A control reference is one which is the destination of a
jump or branch.

Alterable Alterable references refer to those operands which are
capable of being altered by an operation. This therefore
excludes the immediate addressing mode. It also ex-
cludes PC relative addressing.

These classifications overlap so that it is possible, for example, to refer
to an addressing mode as being ‘control alterable’ or ‘data alterable’.
The various combinations are codified as follows:

<ea> Effective Address — any addressing mode can be used.

<aea) Alterable Effective Address

<cea> Control Effective Address

<dea> ' Data Effective Address

<caea> Control Alterable Effective Address

<daea) Data Alterable Effective Address

<maea> Memory Alterable Effective Address

The addressing modes themselves can be codified by using the
following symbolic representations:

An Any address register

Dn Any data register

Rn Any register

Ri Any register being used as an index

d8 _ 8-bit displacement constant

dl6 16-bit displacement constant

<imm> Immediate data

rl Register list — as used with MOVEM instruction

From this we can construct a table showing the addressing modes
along with their permissible reference types:

148 First Steps in Assembly Language for the 68000

Mode Symbol Data Mem Control Alterable

Data reg direct Dn X xX
Addr reg direct An X
Absolute nnnnn X Xx X
Immediate <imm> X X

Addr reg indirect (An) xX X X X

with predecrement -(An) X X X
with postincrement (An)+ xX X X
with displacement d16(An) X X X X
with index d8(An,Ri) X X X X

PC relative d16(PC) X X X
with index d8(PC,Ri) X X X

From this we can construct a symbolic representation for any given
instruction. For example, the two possible addressing modes for the
BTST instruction (bit test) can be represented by BTST Dn,<daea> and

BTST #<imm>,<dea>, meaning that the source operand can either be
in a data register or immediate. The destination operand can only be
a data such as Dn, (An), d16(An), d8(An.Ri), -(An), (An)+
reference, or absolute. The BSET (bit test and set) instruction would

actually alter the destination operand and therefore would be a data
alterable reference <daea> which would exclude the PC relative
modes. This form of representation is used in the 68000 instruction
glossary in Appendix B.

Example Program 2

The following program illustrates some of the above addressing
modes.. The purpose of this program is to illustrate how to implement
a memory buffer in assembly language and to use it to print a text to
the screen. A buffer is simply a block of memory locations which is
of a fixed length and which can be used to store a measured length of
data before transferring it elsewhere. Buffers are frequently used with
printers where data is passed, a fixed number of bytes at a time, to a
print buffer. From there the buffered text is output to the printer and
the next chunk of data is then loaded into the buffer and so on. The
reason for such a buffer is that certain peripherals may only be able
to handle certain quantities of data within a certain length of time and
the buffer provides a means of measuring and controlling the output.

Addressing Modes 149

On a more general level the buffer concept is extremely useful in
programming because there are many occasions on which a set block
of memory is required. For example, you may wish to add together
two sets of values and store the results in a separate area of memory
before dealing with them. Very often you may need to set up a
keyboard buffer to isolate and identify a fixed number of characters
input from the keyboard.

In this example we are going to transfer a text which is 49 bytes long
onto the screen via a buffer which will be only 26 bytes in length. The
text will therefore be printed in two separate stages, although it will
appear on the screen as one continuous sentence.

Note: On the first reading of this listing you should
primarily be observing the ways in which the data is
addressed. Again, do not worry too much if you cannot
follow all the details of the program. You will be able to
go over these listings again at a later stage when some of
the more difficult concepts have been explained. It is a
good idea to look at the data section at the end of the listing
first so that the labels referred to in the program will make
more sense.

; PROGRAM ENTITLED PROG2

p LOADS TEXT INTO A BUFFER BEFORE DISPLAYING

Ome we we we we we we we ww a oe we ww ew ge ee we ee ee ee eee ee ee em em ee ew ee em ee ew ee ee ee ee ee ee

LEA.L #DEVICE,A0

MOVEQ #1,D0

150 First Steps in Assembly Language for the 68000
i

Initially the length of the buffer (minus 1) is assigned the label BUFLEN
using the EQU (=) assembler directive. This constant will be used
several times during the program to count off character codes as they
are loaded into the buffer and it can therefore be loaded into a count
register using its label. There is no reason why it should not be an
unlabelled immediate constant but it is good practice to label as many
constants as possible so that the finished program is easy to follow
during the debugging phase.

Following this the program ID and console channel are initialized as
explained in the previous chapter.

Next the main part of the program begins:

MOVE.B COUNT,D6 306 to count blocks printed

LEA.L MYDATA,A2 ;A2 points to base of data

LOOP1 LEA.L BUFF,A3 ;Address of buffer in A3

MOV.L #BUFLEN,D4 ;Length of buffer in D4

LOOP2 MOVE.B (A2)+,D5 ;Copy item of data to D5

;and increment A2

CMPI.B #42,D5 ;Compare D5 with ASCII code

stor)? *:

BEQ NEXT Branch if same to 'NEXT'

MOVE.B 0D5,(A3)+ sElse copy data to buffer

;and increment A3

DBRA D4,LO00P2 ;Loop back to 'LOOP2' if

s0G>, +1

NEXT BSR.S PRNT sCall 'PRNT' subroutine

SUBQ #1,06 ;Subtract 1 from count reg.

BEQ EXT? ;Branch to 'EXIT' if 06 = 0
eit

Addressing Modes 151

The first instruction of the program proper; MOVE.B COUNT,D6, loads
the value contained in the address labelled COUNT, as defined at the

end of the program, into the low order byte of register D6. The
buffer will be filled and emptied twice and D6 will keep track of how
many times this has been done.

The instruction LEA.L MYDATA,A2 loads the address of the start of the
text, defined as MYDATA at the end of the program, into register A2.

The next instruction; LEA. L BUFF ,A3 loads the address of the first byte
of the buffer space into A3. This instruction is located at an address
labelled ‘LOOP1’ because we shall need to loop execution back to this
point later in the program.

The instruction MOVE.L #BUFLEN,D4 loads the length of the buffer less
1 (defined at the beginning of the program as 25) into register D4 so
that it can be used to count off the number of characters which are
entered in the buffer. BUFLEN is effectively a constant and therefore
it appears in the instruction as #BUFLEN, indicating that it represents
a numeric constant rather than a value contained in an address labelled
BUFLEN. MOVE.B (A2)+,D5 is labelled ‘LOOP2’ because a subsequent
instruction will loop execution back to this point. This is an address
register indirect with postincrement addressing mode instruction
which copies the data contained in the address pointed to by A2
(initially address ‘MYDATA’) into register DS. A2 is then automatically
incremented by 1, ready to point to the next character code within
YDAT.

The first section of the text to be copied into the buffer will terminate
at the end of ‘FF’ in the word ‘BUFFER’. The second part of the text
is shorter than the buffer and so we need to ensure that the buffer
filling process terminates as soon as the ‘stop’ symbol, ‘*’, is reached.
At this point therefore, we compare the contents of DS with the
ASCII code for ‘*’ (42) using the instruction CMP1.B #42,D5 (immediate
addressing mode). CMPI stands for ‘compare immediate’. If they match
the Z flag will be set and the BEQ NEXT instruction will redirect
execution to the address of the instruction labelled ‘NEXT’. If they
do not match (i.e. Z=0) then execution carries on as follows.

The data which is now in D5 is the ASCII code for one of the text
characters (initially 84, the code for ‘T’), and this needs to be copied
into the buffer, which is indirectly addressed by register A3. This
operation is performed by the instruction MOVE.B D5,(A3)+. A3 is

152 First Steps in Assembly Language for the 68000
i en PE eh Aaa A SEE AE ts RA BNE A Ate

afterwards automatically incremented by 1 to point to the next free

address in the buffer. We have now effectively transferred a character

from the memory block labelled MYDATA to the memory block labelled

BUFF via the DS register and the previous two autoincrement mode

instructions have set A2 and A3 so that they point to the address of

the next text character and to the address of the next free buffer space

respectively.

The DBRA D4,L00P2 instruction automatically decrements the D4

register by 1 and if the buffer is now full, D4 will hold the value —1.

If D4 is greater than —] (i.e. the buffer is not yet full) then execution

loops back to the point labelled ‘L00P2’ so that a further character can

be copied into DS.

If D4 equals zero then execution continues with the next instruction

in sequence: BSR.S PRNT (branch short to subroutine). This is an

instruction which calls the subroutine located at an address labelled

PRNT which will handle the printing of the text contained in the

buffer. The suffix ‘.S’ is optional, specifying that this is a ‘short’

branch, the destination address being within plus or minus 127 bytes

from the branching instruction. This results in a slightly faster

execution speed.

On returning from the PRNT procedure, the program must now check

to see whether the buffer has been filled and emptied twice, in which

case the main routine has effectively finished.

The variable which records this was earlier copied into register D6.
We need to subtract 1 from it: SUBQ #1,D6.

The BEQ EXIT instruction tests the zero flag to see whether the previous

subtraction operation resulted in a zero. If it did then the job is

finished and execution is redirected to a point in the program labelled

‘EXIT’.

If the result of the subtraction was not zero then the buffer must be

refilled and printed again so execution passes on to the next

instruction.

We now have a problem whose solution is found in the next five

instructions. If the first chunk of text has been printed then the buffer

is still full of its ASCII codes. The second chunk of text will be

Addressing Modes 153

shorter than the length of the buffer and so some unwanted leftover
characters will be printed at the end of the text. To avoid this we
must flush the buffer by filling each of its addresses with the value
32: the ASCII code for a blank space.

mmm wm wm em em ee em ee em ee ee em em ew ee em ee em ee ee ew ee ee ee ee ee ee ee ew wwe ee eee ee

LEA. BUFF,AS ;Base addr. of buffer in A3

MOVE.L #BUFLEN,D4 ;Length of buffer in D4

LOOP3 MOVE.B #32,(A3)+ ;Transfer ASCII code for

;space into buffer and add

se ORAS

DBRA D4,LO00P3 ;loop back to 'LOOP3' if

2DG > ut

JMP LOOP1 ;Else jump back to LOOP1

To flush the buffer the A3 register is loaded with the address of the
beginning of the buffer, BUFF. Then the length of the buffer is moved
into our counter register: MOVE.L #BUFLEN,D4. The ASCII code for a
space, 32, is then loaded into the buffer using the instruction MOVE.B
#32,(A3)+. This is done 26 times, according to the count in D4, using
DBRA D4,L00P3 and thus every address in the buffer is loaded with the

space code. It is then necessary to jump back and fill the buffer with
the next batch of text using the instruction JMP LOOP1. This occurs
after the first occasion on which the buffer is filled because the
variable in D6 would not then be equal to zero. On the second pass
the previous BEQ EXIT instruction diverts execution directly to ‘EXIT’.

At this point the main part of the program terminates and so we round
it off with the set of instructions labelled EXIT:

154 First Steps in Assembly Language for the 68000

EXIT MOVEQ #2,00

TRAP #2

MOVEQ #-1,01

MOVEQ #0,D3

MOVEQ #5,00

This is the same set of termination operations which we used in the
previous program, closing the console channel and informing the
operating system that the task is completed.

Following the main program is the subroutine ‘PRNT’, as follows:

PRNT EEA BUFF ,A3 ;Base addr. of buffer in A3

MOVE.L #BUFLEN,D4 ;Length of buffer in D4

LOOP4 MOVE.B (A3)+,D1 ;Copy data to D1 and

;add 1 to A3

BSR.S DISP ;Call display subroutine

DBRA D4,LO00P4 ;Loop back to 'LOOP4' if

2Dhi art

RTS ;Otherwise return to PROG2

The first subroutine in the program, PRNT, is designed to take the
contents of the buffer and print it to the screen. This is simply done
by running an address register pointer through the buffer, loading
each character into D1 and then using our previous character display

Addressing Modes 155

routine to print each character of the text to the screen. This time,
the character display routine is defined as a separate subroutine called
‘DISP’ which is called from within the PRNT subroutine.

Since the A3 register is currently unused, we can use this to point
to the start address of the buffer: LEA.L BUFF,A3.

D4 can again be used as a counter to count off each printed character
and so it is loaded with the length of the buffer: MOVE.L BUFLEN,D4.

Next we set up a program loop labelled ‘L00P4’ to transfer data from
the buffer into D1: (MOVE.B (A3)+,D1) and from there to the DISP
subroutine (BSR.S DISP). The A3 register is auto-incremented after the
MOVE instruction to point to the next character in the buffer and so
the D4 register must be checked to see if it has reached —1 (end of
printing operation) or is greater than —1, in which case execution
loops back to L00P4. This is achieved with the instruction DBRA
D4,LO0P4.

If D4 has in fact reached —] then a return is made back to the main
program by means of the RTS instruction. This effectively returns
execution back to the instruction which follows the BSR.S PRNT
instruction in the main program.

The final block of program code is the character display sequence:

‘

DISP MOVEQ #-1,D3

MOVEG #5,D0

TRAP = #3

RTS ;Return to 'PRNT'

Here, the DISP subroutine is defined, which is simply the character
print routine from the last chapter, elevated to the status of a
subroutine in its own right, labelled ‘DISP’. The RTS at the end returns

execution back to the instruction following the BSR. S$ DISP instruction

within the PRNT subroutine.

156 First Steps in Assembly Language for the 68000

MYDATA DC.B "THIS TEXT GOES IN THE BUFFER "
DC.B "BEFORE BEING PRINTED","*"

BUFF DSB. 26 326 undefined bytes

;for the buffer

COUNT DCEBE x2 ;count variable

DEVICE DC.W 4

DC.B "CON_'

END ;End program

The data section contains the text which is to be printed, which is
defined as a series of byte constants (DC.B). The start address of the
text will be at a location in memory labelled ‘MYDATA’ and therefore
the first letter of the text, ‘T’, will actually be located at ‘MYDATA’
itself. The ‘*’ symbol which follows the text is to be used as a ‘stop’
code to indicate where the text ends and will be detected during the
course of the program.

The actual buffer is labelled ‘BUFF’, which again represents the
address of the start of the buffer. Initially the buffer is empty and is
initialized as a set of 26 undefined bytes using the DS (define storage)
assembler directive.

The label ‘COUNT’ refers to the address of a single memory byte whose
value is 2: the number of times the buffer will be filled and printed
when the program is executed. When we refer to ‘COUNT’ in the
program we are implying not the address of the byte labelled ‘COUNT’
but its contents; the value 2.

The listing terminates as before with the assembler directive ‘END’.

The following object code listing shows the program in assembled
form, which should help you to follow the processes described above.

; Address Code Mnemonic

29CE8 7200 MOVE@ #00, D1

29CEA 7602 MOVEQ #02, D3

29CEC 41FA00B8 LEA B8(PC)!29DA6, AD

29CF0 7001 MOVEQ #01, DO

Addressing Modes

4E42

1C3AQ0AE

45FA0062

47FA008C

28300000019

1A1A

0C05002A

67000008

16C€5

SICCFFF2

6128

5346

67000018

47FAQQ6A

28300000019

16F C0020

—SICCFFFA
4EFAFFCA

7002

4E42

c2rk

7600

7005

4E41

47FA0048

283C00000019

121B

6106

SICCFFFA

4E75

157

TRAP #2
MOVE.B AE(PC)!29DA4, D6
LEA 62(PC)!29D5C, A2
LEA 8C(PC)!29D8A, A3
MOVE.L #19, D4
MOVE.B (A2)+, D5
CMPI.B #2A, DS
BEQ 29016
MOVE.B D5, (A3)+
DBRA 04,29006
BSR 29040
SUBQ #1, D6
BEQ 29034
LEA 6A(PC)!29D8A, A3
MOVE.L #19, D4
MOVE.B #20, (A3)+
DBRA D4,29028
JMP FFCACPC)!29CFC
MOVEQ #02, DO
TRAP #2
MOVEQ #FF, D1
MOVEQ #00, D3
MOVE #05, DO
TRAP #1

LEA 48(PC)!29D8A, A3
MOVE.L #19, D4
MOVE.B (A3)+, D1
BSR 29D54

DBRA D4,29D4A

RTS

MOVEQ #FF, D3

MOVEQ #05, DO

TRAP #3

RTS _

158 First Steps in Assembly Language for the 68000

The following data dump shows the arrangement of the initial data
in memory, prior to the program being executed. The reserved buffer
space occupies the area from the address immediately following ‘*’
(hex code $2A) to the address immediately before the ‘02’ on the

second line from the

2905C -- -- -- --

29068 45 53 20 49

29078 4F 52 45 20

29088 44 2A 00 00

29098 00 00 00 00

29DA8 43 4F 4E SF

The following list contains explanations of the functions of those
assembly language instructions used in PR0OG2 which did not feature

in PROG1:

Mnemonic

CMPI.B #42,D5

BEQ NEXT

BSR.S PRNT

SUBQ #1,D6

JMP LOOP1

RTS

bottom.

54°48 69°53 «..- THIS

54 20 47 4F .TEXT GO

4— 20 42 55 ES IN BU

20 42 45 46 FFER BEF

42 45 49 4E ORE BEIN

49 4— 54 45 G PRINTE

00 00 00 OO Dx......

00 00 00 00

00 00 00 00

02 00 00 04

00 00 00 00 CON....

Meaning

CoMPare Immediate the contents of the low
order byte of D5 with the byte value 42 and
set the Z flag if they are the same.

Branch if EQual (i.e. Z=1) to the program
instruction labelled ‘NEXT’.
Branch to the SubRoutine (using a Short
address) labelled ‘PRNT’.
SUBtract Quick the value 1 from the value
contained in register D6. SUBQ is essentially
the same as SUB.L but is quicker to execute.
JuMP to the program instruction labelled
“LOOP1’.

ReTurn from Subroutine to the program or
subroutine which called it.

Addressing Modes 159
—_—_—_—_—_—_—: re ————

In PROG2 we have not used the more complex indirect addressing
modes and these will be covered in later chapters. In the next chapter
we shall return to the subject of flags, which are essential to the
understanding of the programs which follow.

or] ‘ fa ie Actespiiy 1 angesholl
es ly iO ey i ee a +

grbrerth bi -2p9 tn >
“tere Fe One Ab Boe ater S26
me i: a 4) niicoteys! mnetent e.g b) 2G eae? ip ceil te

a &

a , ees b ey pau ge 0

Odie is) Semele “FRY

Ar. ShStruct Gulch ioe velue |!
- contin 16 cegrees D4. [Ue &

Coe Aorae.26 $09.1 apie tee m™ 7%

s8P 4 Pt OW a to the programe arerracehatt |

= he :
A

- » 4

=; 2 | oe eo a hot ee

eo. Y ae ‘ 4 i Foe

Chapter 10

Status and Condition Flags

In Chapter 3 we discussed the functions of the various condition flags
in the CCR (condition codes register) byte of the status register and
examined how and why various arithmetic and logical operations
affect them. In this chapter we shall briefly revise the condition flag
functions and look at some trace listings which will help you to relate
some of the flag settings to specific operations and to the contents of
the registers as the instructions are executed.

We shall then examine the functions of the status flags which occupy
the ‘system byte’ of the status register. Finally, a number of
instructions will be listed which can be used specifically to alter the
values of various flags.

The Status Register

The status register in the 68000 is structured as follows:

13 10 9

» EE!

System byte Condition Codes Register

Status Register

FIGURE 10-1.

To begin with, we will only be concerned with the condition flags:
V (overflow flag), N (negative or sign flag), Z (zero flag), X (extend
flag)) and the C (carry flag).

Overleaf is a summary of the functions of each of these flags:

161

162 First Steps in Assembly Language for the 68000

Vs Set when an operand’s sign flag is altered by an operation,
indicating an overflow condition in terms of 2’s complement
arithmetic

N_ Set when a value is negative in terms of 2’s complement
arithmetic (high order bit = 1) and reset when the value is
positive (high order bit = 0)

N Set when the result of an operation is zero, otherwise reset

X Set when a carry or borrow occurs in ‘extended’ arithmetic
operations such as ADDX and ABCD.

C Set if an operation results in a binary carry or borrow

We shall now go on to look at some of these flags in action, using a
number of program fragments as illustrations.

Zero Flag

Firstly, we shall deal with the zero flag. In the following operation,
we shall take the example which was used in Chapter 3, where we
took a keyboard entry and used a routine to discover whether the ‘Y’
key had been depressed. The code for this operation is as follows:
(Code for last key pressed is contained in D1)

CMPI.B #89,D1
NOP

If we execute this operation using a trace utility, the following register
and flag values will be printed out for the instructions. Note that
because a trace listing shows the status of the flags and registers
immediately before the corresponding instruction has been executed,
we need to have a trace listing for the next instruction in sequence
so that the effect of the CMPI instruction can be shown. In this example
the dummy instruction NOP (No Operation) had been added. When
executed, NOP has no effect although it occupies space in the program
code and advances the PC register.

The information in which we are specifically interested is printed in
italic:

Status and Condition Flags 163 I

29CEE 0€6010059 CHPF GA e593 DI
DO=0 D1=59 §D2=0 D3=0 D4=0 D5=0 D6=0
D7=0 A0=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0
A7=3DBC6 Status= T Imask=0 Program Counter =29CEE

29CF2 4E71 NOP

DO=O0 D1=59 #8 D2=0 D3=0 D4=0 D5=0 D6=0
D7=0 AQ=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0
A7=3DBC6 Status= Z T Imask=0 Program Counter =29CF2

In this case the D1 register originally contained $59, which is the
hexadecimal equivalent of 89 decimal. The comparison operation
therefore set the Z flag, indicating that D1 is equal to 89. Note that
after the CMPI operation, the original value of D1 has been left
unchanged.

Sign Flag

The sign flag value is always a copy of the most significant bit of a
binary number, regardless of its size. In the following example,
decimal 10 is added to decimal 120 which has the effect of setting
the sign flag. The result in unsigned arithmetic is 130 decimal ($82)
whilst the 2’s complement value of the result is -126. The value 20
is then subtracted from the result, giving an unsigned decimal result
of 110 ($6E) and a 2’s complement value of +110; the sign flag having
been reset again.

MOVEQ #120,D1
ADDI.B #10,D1
SUBI.B #20,01
NOP

The trace printouts for the above operations are as follows. Note the
way in which the value of register D1 alters in each case, showing
the hex values $78, $82 and $6E:

29CF8 7278 MOVEQ #78, D1

D0=0 3=d1=0 D2=0 D3=0 D4=0 D5=0 D6=0

D7=0 §=A0=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0

A7=3DBC6 Status= T Imask=0 Program Counter =29CF8

164 First Steps in Assembly Language for the 68000
a

29CFA 0601000A ADDI.B #A, D1

D0=0 Dd1=78 ~§=d2=0 D3=0 D4=0 D5=0 D6=0

D7=0 A0=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0

A7=3DBC6 Status= T Imask=0 Program Counter =29CFA

29CFE 04010014 SUBI.B #14, D1

DO=0 D1=82 8 Dd2=0 D3=0 D4=0 D5=0 D6=0 D7=0

AO=0 8 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0

A7=3DBC6 Status= V N T Imask=0 Program Counter =29CFE

29002 4E71 NOP

DO=0 D1=6E D2=0 D3=0 D4=0 D5=0 D6=0

D7=0 AQ=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0

A7=3DBC6 Status= V T Imask=0 Program Counter =29D02

Overflow Flag

In the previous example, the overflow flag became set after the ADDI.B

£$0A,D1 instruction was executed. This is because the sign of the value

was altered by the addition. The sign is changed again by the SUBI

instruction so that V is set again. In 2’s complement terms the above

operations correspond to the following:

see WAY
plus + 10

= — 126 (incorrect because the sign flag was altered,

causing an overflow error)

minus + 20

= . + 110 (final result correct)

Carry Flag

In the next example, the 2’s complement value +10 is added to -1,

which is contained in the D1 register. The result of this addition is

+9 which is correct. In this case however the carry flag is set because
there has been a binary carry from the most significant bit of D1 into
the carry flag and therefore in decimal terms the result is incorrect.
-] as a 32-bit unsigned value is 4 294 967 295 ($F FFFFFFF) and
therefore in decimal terms the calculation is 4 294 967 295 + 10 = 9:

Status and Condition Flags 165

MOVEQ #-1,D1 (-1 = FFFFFFFF

ADD.L #10,D1 (+10 =Q000000A

NOP

4294967295 decimal)

10 decimal)

Result is 00000009,,,:x = +9 in 2’s complement and 9 in decimal.

29008 72FF MOVEQ #FF D1

DO=0 D1=0 D2=0 D3=0 D4=0 D5=0 D6=0

D7=0 AOQ=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0

A7=3DBC6 Status= T Imask=0 Program Counter =29D08

29D0A D2BCOO0D0000A ADD.L #A, D1

DO=O0 D1=FFFFFFFF D2=0 D3=0 D4=0 D5=0 D6=0

D7=0 AO0=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0

A7=3DBC6 Status= N T Imask=0 Program Counter =29D0A

29010 4E71 NOP

DO=0 D1=9 D2=0 D3=0 D4=0 D5=0 D6=0 D7=0

AQ=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0

A7=3DBC6 Status= C X T Imask=0 Program Counter =29D10

Extend Flag

In the next example, the decimal value 8 is added to the decimal
value 255. If you look at this operation in binary first of all, you will
see that a carry is generated from the operation:

00001001 (9)

Pewevritt © (255)

=00001000 (8)

carry 1

The result of this is that the extend and carry flags are set, as follows:

MOVEQ #9,D1

ADDI #255,D1

NOP

29016 7209 MOVER #09, D1

DO=0 D1=0 D2=0 D3=0 D4=0 D5=0 D6=0 d7=0

AO=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0

A7=3DBC6 Status= T Imask=0 Program Counter =29D16

166 First Steps in Assembly Language for the 68000

29018 060100FF ADDI.B #FF, D1

DO=0 D1=9 D2=0 D3=0 D4=0 D5=0 D6=0 D7=0

AQ=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0

A7=3DBC6 Status= T Imask=0 Program Counter =29D18

29D1C 4E71 NOP

DO=0 D1=8 D2=0 D3=0 D4=0 D5=0 D6=0 D7=0

AQ=0 A1=0 A2=0 A3=0 A4=0 A5=0 A6=0

A7=3DBC6 Status= C X T Imask=0 Program Counter =29D1C

The extend flag signifies the same condition as the carry flag and is
used in multiple precision operations to ensure that each carry from
an operation is carried automatically over to the next byte, as
explained in Chapter 7.

Status Flags

The status flags, T, S and I, are contained in the system byte of the
status register and are used to indicate the following conditions:

Trace Flag (T)

In this chapter we have been using a ‘trace’ facility to ‘single-step’
through individual instructions, providing a print-out of the status
of all the registers and flags. The assembler toolkit program which
provides this facility is using one of the exception functions incorpor-
ated in the 68000 to achieve this. When the T flag is set, execution
is redirected to a special exception routine which in this case is
programmed to print out the status of the flags and registers for each
individual instruction and then return execution to the main program.
When the T flag is reset, program execution functions normally.

Interrupt Flag (I)

Interrupt exceptions are described in Chapter 7 and if you are not
clear about their function you may wish to refer to this section of the
book. The interrupt flag , consisting of three bits, is used selectively
to disable (mask) external maskable interrupts or to enable them.

When interrupts have been disabled, maskable interrupts from
external devices cannot interrupt the flow of execution. Interrupts
are given a priority code from 0 (lowest) to 7 (highest), hence the
allocation of three interrupt flag bits in the status register. Any device

Status and Condition Flags 167
—_ enn ne eee ee

whose interrupt priority code is less than or equal to the priority level
set by the interrupt flags will be unable to interrupt the processor.

Supervisor Flag

The S flag determines whether the system is operating in user mode
(S = 0) or supervisor mode (S = 1). Note that when an exception
takes place, the processor enters supervisor mode automatically for
the duration of the exception, regardless of the current setting of the
S flag.

Flag Control Instructions

For the purpose of familiarizing yourself with the ways in which the
flags can be altered during program operation, it is useful to divide
the flag altering instructions into four main groups:

1 The first group of flag altering instructions are the routine
instructions such as MOVE, ADD, SUB, CMP etc. which alter the flags
according to the results of the operations being performed. This
group includes the logical instructions, AND, OR and XOR, all
arithmetic instructions, shift and rotate instructions and a number
of miscellaneous instructions such as CHK, CLR, EXT and SWAP.
Notable instructions which do not alter any flags are jump and
branch instructions and some of the instructions which specifically
use an address register as a destination, such as ADDA, MOVEA etc.
In the instruction glossary in Appendix B the flags which are
affected by any specific instruction are listed under each instruction
heading.

2 The second group of instructions which affect the flags are those
which are specifically designed to set, reset or copy one or more of
the condition flags. These include ANDI to CCR, EORI to CCR, MOVE

to CCR, MOVE from CCR and ORI to CCR. For example, MOVE to CCR

can be used to move a source operand into the CCR register. The
flags will be set according to the binary pattern in the source
operand. MOVE #0,CCR would reset all the flags for example.
Individual flags may be specifically set or reset by using the logical
instructions. ORI #1,CCR for example will set the carry flag without
affecting any of the other flags.

3 The third group of flag altering instructions are privileged
instructions which can only be used from within supervisor mod>

168 First Steps in Assembly Language for the 68000

These are normally used by an operating system to set initial values
for the status and condition flags or to alter them for some specific
task and include ANDI to SR, EORI to SR MOVE to SR and ORI to SR.

4 The fourth group of flag altering instructions are those which are
designed to test an individual bit in an operand, set the condition
flags accordingly, and in some cases to alter the value of the original
bit. This group includes BCHG, BCLR, BSET, BTST and TST and TAS.
The TST instruction tests an entire operand in memory or in a
register and alters the status flags without altering the operand.
TAS is intended for use in a resource sharing system where one
program can temporarily test and set a bit in the destination
operand in order to exclude access by other processors whilst it
accesses data. This group of flags is described in more detail in
chapter 3 and under the individual instruction headings in
Appendix B.

One further instruction which is used in relation to the condition
codes is Scc (set according to condition) which uses the same
conditions as the Bcc and DBcc instructions. The effect of using Scc
is that if the condition tested is true, a specified data alterable
destination byte is set to the value 255, otherwise it is set to zero.

For example, suppose that you reserve a special address for use with
the Scc instruction and give it the label TESTBYTE. At some point in
the program you may wish to test a flag, such as the zero flag, after
a certain operation has been performed but you may not wish to make
a conditional decision at that point. In order to keep a record of the
status of the Z flag for later use you can use the instruction SEQ
TESTBYTE. If the zero flag is set then the byte in address TESTBYTE
will be set to 255, otherwise it will be zeroed. Later on you can refer
to the TESTBYTE operand to determine the result of the earlier
operation and make a conditional decision accordingly. Note that in
programs which have been assembled relative to PC, you cannot alter
the contents of a labelled address and it will be necessary to use the
low byte data register as a destination for Scc instead. From there it
can be pushed onto the stack until you need it.

Chapter 11

Conditional and Unconditional

Branching Operations

In Chapter 4 we examined the conditional branch instructions, Bcc
and DBcc and the unconditional jump and branch instructions, BRA,
BSR, JMP and JSR. In this chapter we shall review these instructions
and then look at a program illustrating how these branching functions
are used.

Short and Long Branching

An absolute address within a 16 megabyte memory space needs to be
specified using a 24-bit address value. An absolute address specified

within an instruction in the source listing, such as JMP $29CE8, is

interpreted by the system as being a 24-bit number: $029CE8. If the

address is contained in an address register then it is held as a 32-bit

number: $00029CE8, even though only the lower 24 bits are relevant.

This is termed a Jong address because it contains all the bits necessary

for specifying an address anywhere in memory.

A short absolute address can be represented by only 16 bits which, as

a signed value in an address register, can represent any address within

the top 32K or bottom 32K of memory, for reasons which were

explained in Chapter 2.

A relative address, as used with BRA, DBRA, DBcc, Bcc and BSR

instructions, may also be short, being expressed as a signed 8-bit

displacement relative to the instruction which specifies it and giving

a branch in the range +127 bytes. A 16-bit or ‘long’ relative branch

displacement gives a branch in the range +32K.

For most practical purposes the time and space gained by the use of

short addressing will be negligible and it is not something which you

169

170 First Steps in Assembly Language for the 68000

need normally be concerned about unless your program is time-
critical.

Conditional Branches

The conditional branching instructions are Bcc (branch according to
condition code) and DBcc (decrement and branch according to
condition code). A conditional branch is made to a location indicated

by a positive or negative displacement relative to the PC register. A
branch specified by an 8-bit displacement value gives a branch in the
range +127 bytes and a 16-bit displacement value gives a branch in
the range +32K. In practice, the address to which a conditional
branch is made is normally designated by a user-defined label and the
actual relative displacements are calculated automatically by the
assembler program.

Obviously if your program is unusually long or if one program
branches to another and you wish to branch conditionally to an
address in another part of memory then it may not be possible since
the destination cannot be more than 32K bytes away from the branch
instruction. In this case a JMP or JSR command would be needed.

The DBcc instruction is similar to Bcc except that it automatically
decrements a nominated data register after the condition flags are
tested. If the specific condition is met or if the nominated register
equals —1 after decrementation then the branch is not made.

The conditional branch instructions are as follows. Note that the same
conditions apply both to Bcc and DBcc so that for DBEQ (decrement
and branch if equal) for example, the same flag conditions apply as
those for BEQ (branch if equal). The Bcc conditions should be

interpreted as ‘if’ conditions — e.g. BCC means ‘branch if carry flag
reset’. The DBcc conditions should be interpreted as ‘until’ cond-
itions. For example, DBCC means ‘branch until carry flag reset (or data
register = —1)’.

Note that the DBcc instructions can be used with the additional

conditions T(true) and F(false).

Conditional and Unconditional Branching Operations 171

Instruction Condition Flag Status

BCC if carry reset C=0
BCS if carry set C= 1
BEQ if equal Z=1
BNE if not equal Z=0
BPL if plus N =0
BMI if minus N = 1
BVC if overflow clear V=0
BVS if overflow set V=1
BHI if high C=0&Z=0
BLS if low or same C.=1 or. Z = 1
BHS if high or same C=0
BLO if low C=1
BGT if greater than (N=1&V=1&Z=0)or

(N=0&V=0&Z=0)
BGE if greater or equal (N= 1&V = l)or

(N =0& V = 0)
BLE if less or equal Ac OE N astra. Me OVE

(N=0&V=1)
BLT if less than (N=1&V=0)or

(N=0&V=1))

Unconditional Branches and Jumps

The unconditional branch operations, BRA (branch always), BSR
(branch to subroutine) and DBRA (decrement and branch) work
similarly to Bcc and DBcc except of course that there are no conditions
attached. Again the branches are PC relative and the signed displace-
ment values may be of 8 or 16 bits. The unconditional jumps, JMP
(jump) and JSR (jump to subroutine) use absolute or indirect
addresses as their destinations — in other words the destination address
replaces the current value of the PC register rather than being a
displacement value which is added to it. It is important, however, that
you should try as far as possible to avoid using absolute address
numbers with JMP and JSR instructions. If you jump to a numbered

absolute address and then subsequently alter the source code then the

destination address may have to be changed. By labelling jump

destinations you can ensure that if the program is altered and then

re-assembled, the destination address will automatically be adjusted if

necessary by the assembler.

172 First Steps in Assembly Language for the 68000

If your assembled program is position-dependent then a JMP instruct-
ion which refers to a specific numbered address will not work if the
program has to be loaded into some other part of memory. In this case
you would be quite free to jump out of your program to some other
program at a known address but any attempt to jump into another part
of your own program will fail because the destination address will have
changed. In order to avoid this kind of problem it is best to make your
programs position independent and to use PC relative branches
wherever possible.

Care should be taken when using JMP and JSR instructions because
some assemblers are less sophisticated than others and may not code
the necessary relocation information.

The BRA and JMP instructions never retain the old value of the PC
register after the jump is made. The BSR and JSR instructions,
equivalent to the BASIC GOSUB instruction, automatically store the
current value of the PC register on the stack so that when a return
from the subroutine is made, the old value of the PC register can be
retrieved from the stack and the program can re-commence from
where it left off.

The advantage of the JMP over the BRA instruction is that whereas BRA
is confined to the PC relative addressing mode, the destination of a
JMP instruction can be specified using any memory addressing mode
except indirect with predecrement and indirect with postincrement.
The same advantage applies to the JSR instruction over BSR.
Additionally, JMP and JSR permit a longer jump range then BRA and
BSR.

Conditional Branching to Subroutines

The BSR and JSR instructions are always unconditional, although a
conditional BSR or JSR instruction can easily be simulated by
preceding it with a conditional branch or jump instruction which
by-passes the branch if the condition is not met. This is most easily
illustrated in BASIC, as follows:

30 A=10

40 B=C

50 IF A=B THEN GOTO 70: REM conditional test

Conditional and Unconditional Branching Operations 173

60 GOSUB 210: REM unconditional GOSUB

70 next instruction

In assembly language these operations might be expressed as:

;Label Mnemonic Comment
,--

MOVEQ #10,D2 ;Load D2 register with 10

MOVE D4,D3 ;Load D3 register from D4

CMP.L D2,D3 ;Compare D2 with D3

BEQ NEXTINS ;Branch if equal (Z=1) to NEXTINS

BSR SUBRT1 ;Else call subroutine 1

NEXTINS next instruction ;Continue program

Returning from Subroutines

A return from a subroutine is normally made using an RTS (return
from subroutine) instruction. RTS automatically retrieves the old PC
value from the stack and uses it as the return address.

A variation on this is provided by the RTR (return and restore
condition codes) instruction. This is used when you wish to call a

subroutine and return not only to the point where you left off but with

the condition flags restored exactly as they were before the subroutine

was called. As soon as the subroutine is entered, the current contents

of the SR register are saved on the stack using: MOVE SR,-(A7).

When the subroutine has been completed the RTR instruction

automatically retrieves the stored flag values from the stack and places

the lower 5 bits in the CCR register before retrieving the return

address from the stack and loading it into PC.

A similar instruction, RTE (return from exception) is used for

returning from an exception service routine, although this is a

privileged instruction which cannot be used in user mode. Like RTR,

it automatically retrieves the old flag values and loads them back into

CCR. Unlike RTR however, it also loads the old status flag values back

into the system byte of the status register.

174 First Steps in Assembly Language for the 68000

Example Program 3

In the next example program, PR0G3, four types of branching
operations are illustrated: a call to a subroutine, a conditional branch,
a loop and an RTS.

The purpose of this program is to sort through a list of byte values and
identify those which are valid standard ASCII codes; in other words,
those which have a value between 0 and 127. The characters which
correspond to the valid ASCII codes will be printed to the screen and
the non-valid codes, of which there are two, will be ignored.

In this program, the character display interrupt routine has been
defined as a separate subroutine in its own right, as it was in the
previous program.

Note: on a first reading of this program you should be
looking particularly at the ways in which the branching
operations transfer execution from one point in the program
to another.

As before, the data section is at the end of the listing and it will be
helpful to have a brief look at it before you begin the code listing. The
7 single byte ASCII codes have been defined in the data section at an
address labelled ASCDATA and, as you will see, two of them are invalid
codes having a value greater than 127. The COUNT variable contains
the number of items contained in the ASCDATA array, less 1.

Ho ASCII SORTER PROGRAM CALLED PROG3

; SORTS & PRINTS VALID ASCII CODES

MOVEQ #2,D3

LEA.L #DEVICE,A0

MOVEQ #1,D0

TRAP #2

Conditional and Unconditional Branching Operations 175

MOVE.B

EEA, L

COUNT ,D4

ASCDATA,A2

LOOP1 CR {. D1

MOVE.B (A2)+,D1

EXT.W D1

BX Task D1

BMI NEXTDATA

BSR DISP

NEXTDATA DBRA D4,L00P1

7D4 will count data

;A2 points to data

;Clear register D1

;Copy an item of data to D1

;Byte in D1 is sign-extended

;into a word

;Word in D1 is sign-extended

;into a long word

;Branch if sign negative

eNe= 1) .to tNEXLDATA”

;Otherwise call 'DISP

;subroutine

ite D4 el OO Dike Ow ol40,0 Palin

The main routine initially copies the count value into D4 and loads the
address of the first item of data into A2.

In the main loop the first step is to clear the whole of the D1 register,
ready to hold a data item. Then we load a data byte from ASCDATA
using MOVE.B (A2)+,D1. This also increments A2 by 1 byte to point
to the next data item. We then need to test the D1 register to see
whether it contains a value less than 128. The easiest way to do this
is to test the sign of the value, since, if it is greater than 127 it will have

its sign bit set, which in turn will cause the sign flag to be set.

Firstly the low order byte of D1 is sign extended into a word using

EXT.WD1. Then the low order word of D1 is sign extended to a long

176 First Steps in Assembly Language for the 68000

word using EXT.L D1. The byte in D1 is now fully sign extended so
that we can test the whole of D1. If the original byte in D1 was less
than 128 then it will be positive and the three high order bytes of D1
will have been extended with zeroes, otherwise it will be negative and
D1 will have been extended with Is. We could of course have simply
planned to test the low order byte of D1 but it is useful to see how a
vaJue in a register can be modified in this way.

D1 can now be tested by a conditional branching instruction, in this
case BMI (branch if minus). If the sign (N) flag was set by the EXT
operations then BMI will force execution to branch to the address of
the NEXTDATA routine, thus ignoring the code in D1 and continuing
with the rest of the program. If the sign flag is not set, the code in D1
must be a valid ASCII code and so a branch is made to the DISP
subroutine, which prints the character to the screen and then returns
execution to the instruction following BSR at NEXTDATA. The DBRA
instruction decrements the counter register, D4, and branches back
to LOOP1 if D4 is not yet equal to —1. The loop is executed 7 times,
after which the main program terminates.

Following this we have our display subroutine:

DISP MOVEQ #-1,D3

MOVEQ #5,D0

TRAP #3

RTS ;Return to main program

ASCDATA ODC.B 65,85,200,617,13,,129 15 ;Data

COUNT DC.B 6 ;Defines and names length of

;ASCDATA (less 1) in 1

j;reserved byte

DEVICE DC.W 4

When the program is executed the valid ASCII codes, 65, 83, 67, 73
and 73 are printed consecutively to spell out the word ‘ASCID’.

Conditional and Unconditional Branching Operations 7

The following object code listing derived from PROG3 should help
you to follow the above description.

29CE8 7200
29CEA 7602
29CEC 41FAOO3E
29CF0 7001
29CF2 4E42
29CF4 183A0035
29CF8 45FAOO2A
29CFC 4281
29CFE 121A
29000 4881
29002 48C1
29004 ~ 68000006
29008 61000012
29D0C SICCFFEE
29010 7002
29012 4E42
29014 T2FF

29016 7600
29018 7005
29D1A 4E41
DISP:-
29D1C 76FF
29D1E 7005
29020 4E43
29022 4E75

MOVEQ #00, D1

MOVEQ #02, D3

BEANS ECPC) "2902077 AO

MOVEQ #01, DO

TRAP #2

MOVE.B 35(PC)!29D2B, D4

LEA 2A(PC)!29D24, A2

CUR.C’ OT

MOVE.B (A2)+, D1

EXT.W D1

Ere Lae Dit

BMI 29D0C

BSR 29D1C

DBRA D4,29CFC

MOVEQ #02, DO

TRAP #2

MOVEQ #FF, D1

MOVEQ #00, D3

MOVEQ #05, DO

TRAP #1

MOVEQ #FF, D3

MOVEQ #05, DO

TRAP #3

RTS

The conditional branch instruction, BMI 29D0C, was BMI NEXTDATA in

the source listing. This has therefore been besembled to incorporate

the ADDRESS value of NEXTDATA so that execution branches to 29D0C,

which is the address of the DBRA instruction.

Similarly, the BSR to the DISP subroutine has been interpreted as BSR

29D1C. This causes execution to branch to 29D1C which is the start

address of the display subroutine. The RTS instruction automatically

returns execution from 29D23, the end of the DISP subroutine, back

to 29D0C which is the instruction immediately following the BSR

instruction.

178 First Steps in Assembly Language for the 68000

The DBRA instruction automatically decrements D4 by 1 and if it is
greater than —1, transfers execution back to 29CFC which was labelled
LOOP1 in the original source listing. If D4 = —1, execution would
continue from 29D 10 instead.

Could this program have been coded more efficiently using a single
DBM1 instruction rather than a combination of BMI and DBRA? You
might find it useful to work out an alternative coding along these lines.

Passing Parameters to Subroutines

In Chapter 4 we saw how parameters can be passed to subroutines.
The two methods described were passing ‘by register’, where the
parameters are moved into registers before the branch to the
subroutine is made, and passing ‘by name’, where the parameters are
stored in a data table starting at a named base address. Parameters
may also be returned from a subroutine, either by value or by name.

The following program, PROG4, illustrates the use of both the ‘by
register’ and ‘by name’ methods.

This program is considerably more complex than the preceding ones
and will need careful study. The main program is a short routine
which passes a message number to a subroutine labelled PRNT, which
organizes the printing of both the output message and a message
header, which is incorporated in the subroutine. PRNT calls a second
subroutine called CHAR which prepares the characters which are to be
printed and which in turn calls a third subroutine, DISP, which is our
old.character print trap routine.

The execution flow is thus as follows:

Conditional an d Unconditional Branching Operations 179

PROG4

eseg ASCIT
code for

‘1’ into D3

CALL PRNT

RETURN

FIGURE 11

PRHT

Store contents of
in ggereit

A2 points to
start of header

message

CALL CHAR

A2 points to
start of main

message

[CALL CHAR i eat
| RETURN

CHAR

Get character in
: register 1

: <is it >
H

CALL ISP XC)

-1. Structure of PROG4.

The screen display output of the program consists of the words:

MESSAGE NUMBER 1. (this is the message header)
BUGS ARE LETHAL (this is the message)

The source listing for the main program, PROG4, is as follows:

PROG4: PARAMETER PASSING PROGRAM

DISPLAYS A MESSAGE

DEVICE,A0

#1,D0

#2

180 First Steps in Assembly Language for the 68000

;DEFINE CONSTANTS

CR EQU 13 ;Define carriage return code

ae EQU 10 ;Define line feed code

MOVE.B FADS AASCiiecodeestom '1' in DS

BSR PRNT ;Call subroutine PRNT

The D3 register is loaded with the ASCII code of the character ‘1’,
which is the number of the message and which will be a parameter
passed ‘by register’ to a subroutine. Note that the ‘1’ in the MOVE.B
#'1',D3 instruction refers neither to the absolute address number 1

(in which case it would be expressed as MOVE.B 1,D3) or to the value
1 (in which case it would be MOVE.B #1,D3). The quote marks indicate

that it is the ASCII code for the physical character 1 which 1s required.

Then a branch is made to the subroutine ‘PRNT’ which functions as

follows:

PRNT PEAGiE NO,A2 ;Address of NO in A2

MOVE.B D3,(A2) ;Get passed code from

;PROG4 in address 'NO'

LEAR INTRO,A2 ;Address of INTRO in A2

BSR CHAR ;Branch to CHAR

LEAwL SMESS AZ ;Address of MESS in A2

BSR CHAR ;Branch to CHAR

RTS ;Return to main

,program

Conditional and Unconditional Branching Operations 181

CHAR MOVE.B (A2)+,D1 ;Get character code

;from array

CMPI.B #0,D1 ;Is it zero? (stop code)

BEQ EXIT PBranch=tovex tte at (sO

BSR DISP ;Else call subroutine

sDISP

BRA CHAR ;Loop back to CHAR

EXais RTS ;Return to PRNT
iid

In the PRNT subroutine the address labelled ‘NO’ is moved into the A2
register. This address is the one in which the ASCII code for ‘1’ will
be loaded. This code, which is currently in the low byte of register
D3, is then loaded into NO using the instruction MOVE.B D3,(A2) so

that it becomes an extension to the header message.

The A2 register is then loaded with the address of the data block
headed INTRO, which marks the start of the header message (LEA.L
INTRO,A2) and a call is made to the subroutine CHAR which will

organize the printing of the header (BSR CHAR).

On returning from CHAR, the A2 register is loaded with the address of
the message: LEA.L MESS,A2. Again, CHAR is called which prints the
message and then the PRNT subroutine concludes with RTS, returning

execution to the main routine.

The CHAR subroutine will call the subroutine DISP and so each

character in turn must be loaded into the low byte of the D1 register.
On each occasion when CHAR is called the A2 register will be pointing
to the base address of the text which is to be printed: firstly INTRO and
secondly MESS. The characters are therefore copied to D1 using
MOVE.B (A2)+,D1 which automatically postincrements A2 to point to
the next character in sequence. The character code in D1 must then

be compared with the immediate value 0 to check whether it is the

‘stop’ code placed at the end of each message. If it is equal to zero the

Z flag will be set and the BEQ (branch if equal) instruction diverts

execution to the location labelled EXIT. If it is not equal (Z = 0) then

D1 must contain one of the message characters and a call is made to

the subroutine DISP which will display the character on the screen.

On returning from DISP an unconditional branch is made back to the

182 First Steps in Assembly Language for the 68000

location labelled CHAR (BRA CHAR) so that the next character code can
be processed.

The EXIT location contains an RTS instruction which returns

execution back to the previous subroutine, PRNT.

Finally, the DISP subroutine is coded as follows. This is the operating
system character display trap exception which was used in the
previous programs.

DISP MOVEQ #-1,D3

MOVEQ #5,D0

TRAP #3

RTS ;Return to main program

On completion, the RTS in this subroutine returns control back to the
CHAR subroutine.

The data for the program is defined as follows:

J

MESS DC.B "BUGS ARE LETHAL',CR,LF,0O

DEVICE DC.W 4

DC.B "CON_'

INTRO DC.B "MESSAGE NUMBER '

NO DS.B 1

DC.B 13,10

DC.B 0

END

The message which is to be sent is defined as a character string and
the base address of this is passed, as a ‘by name’ parameter, to the
subroutine CHAR. By name, in this case, means that the message will
be addressed by the name ‘MESS’. The two strings immediately
following the message, CR and LF stand for ‘carriage return’ and ‘line
feed’ and their ASCII values were defined at the beginning of the

Conditional and Unconditional Branching Operations 183

program, using the EQU (equal to) directive. The ‘0’ is a stop code,
indicating the end of the message, and is used in the same way as the

stop code ‘*’ in PROG1. Note that the address NO is defined as a single
reserved byte storage area (DS.B 1) which is initially empty.

The following object code print outs show the four assembled modules
of the program:

Main program:

29CE8 7200 MOVEQ #00, D1

29CEA 7602 MOVEQ #02, D3

29CEC 41FA0062 LEA 62(PC)!29D50, AO

29CFO 7001 MOVEQ #01, DO

29CF2 4E42 TRAP #2

29CF4 163C€0031 MOVE.B #31, D3

29CF8 6100000E BSR 29008

29CFC 7002 MOVEQ #02, DO
29CFE 4E42 TRAP #2

29000 72FF MOVEQ #FF, D1

29002 7600 MOVEQ #00, D3

29004 7005 MOVEQ #05, DO

29006 4641 TRAP #1

PRNT program:

29008 45FA005B LEA 5B(PC)!29D65, A2

29D0C 1483 MOVE.B D3, (A2)

29D0E 45FA0046 LEA 46¢PC)!29D56, A2

29012 6100000C BSR 29D20

29016 45FA0024 LEA 240PC)'29D035C, A2

29D1A 61000004 BSR 29020

29D1E 4E75 RTS

CHAR program

29D20 121A MOVE.B (A2)+, D1

29D22 0¢010000 CMPI.B #0, D1

29026 6700000A BEQ 29D32

29D2A 61000008 BSR 29034

29D2E 6000FFFO BRA 29020

29032 4E75 RTS

184 First Steps in Assembly Language for the 68000

DISP program:

29034 76FF MOVEQ #FF, D3

29036 7005 MOVEQ #05, DO

29038 4£43 TRAP #3

29D3A 4E75 RTS

The data for these modules has been grouped under the base address
$29DC3, with the the main routine message running from $29DC3
and the header message in PRNT running from $29D56, as shown in
the following hexadecimal data ‘dump’:

29D3C 42 55 47 53 20 41 52 45 BUGS ARE

20 4C 45 54 48 41 4C 20 LETHAL

29D4C OD OA O00 00 O00 04 43 4F...... co

4E SF 4D 45 53 53 41 47 N_MESSAG

2905C 45 20 4E 55 4D 42 45 52 E NUMBER

20 31 06 OA*O0 00 00°00". 1... 5.

Note that $31, the code for ‘1’, has been inserted by the PRNT
subroutine into the correct memory location at $29D65. This was not,
of course, done during assembly but during a test run of the program.

Subroutine Returns

As an example of what happens when a call is made to a subroutine,
it will be useful to examine the contents of the stack at the point just
after the CHAR subroutine has been called from PRNT. The ten
addresses at the top of the stack contain the following data:

5 STACK TOP DATA COMMENT

3DBC6 00 00 ;Original top of stack

3DBC4 9C FC ;Return address from PRNT

3DBC2 00 02

3DBC0 9D 16 ;Return address from CHAR

Conditional and Unconditional Branching Operations 185

As execution passes from the main routine to PRNT, the return address
to the main program ($29CFC) is automatically placed on the stack:
A7 first decrements by two bytes and $9CFC is stacked. A7
decrements by another two bytes and $0002 is stacked so that the
complete return address is stacked in four bytes as $00029CFC. At
that point the stack pointer, A7, is pointing to stack address $3DBC2.
The ‘stacked return address is the address of the instruction in the
main routine which immediately follows the branch to PRNT. When a
return (RTS) is made to the main routine from PRNT, the return
address is automatically popped from the stack and loaded into the PC
register so that the main routine will continue executing from address

$29CFC.

Before that however, PRNT in its turn calls the CHAR subroutine and

so the return address from CHAR to PRNT, $29D16, is added to the

stack and the stack pointer is altered to point to $3DBBE. CHAR in its

turn will call DISP and so the return address from DISP to CHAR will

be stacked below the above data.

The return addresses are unstacked in reverse order and by the time

execution has finally returned to the main program, the stack pointer

is again pointing to the original top of stack at $3DBC6. Note that

values removed from the stack are not physically removed. It is the

position of the stack pointer which determines the top of the stack and

when it has returned to $3DBC6 the return addresses, although still

there, are effectively redundant because as far as the system is

concerned the stack extends no further than the current ‘top of stack’

address. When further values are stacked they will overwrite any

redundant data already stored there.

Linking Programs

This program is a particularly difficult one to follow on a first reading

and could, of course, have been programmed much more simply. Its

function however, is to show the relationships between separate

program modules, demonstrating how parameters can be passed by

register and by value from one subroutine to another.

When you have been able to follow the flow of execution you will

appreciate how a multi-program system based on the 68000 can be

implemented. Separate programs, subroutines, and sets of data

186 First Steps in Assembly Language for the 68000

belonging to one or more different users can be loaded into memory
and shared, so that the code for individual programs can be simplified.
If commonly used sets of data, or utility subroutines such as text
printing routines are stored as commonly accessible library items on
disc, then any new program which needs to use them can access them
without having to duplicate them in its own listing. If a particular
program needs to make use of its own local parameters, these may be
passed to a common library routine by one of the methods illustrated
above.

Suppose for example that the above program had been assembled not
as one complete program but as four, separately assembled modules.
The main program contains the message and the message number in
its data section and PRNT contains the message header in its own data
section. To make code and data in separate programs and subroutines
accessible to each other the assembler directives XDEF and XREF are
used. The main program would contain the assembler directives:
XREF, PRNT and XDEF MESS. XREF PRNT means that any reference to the
subroutine labelled PRNT refers to a separately assembled external
program module. XDEF MESS means that the message data defined in
the main program may be accessed by other, external programs.

Likewise, PRNT would contain the directive XREF MESS meaning that
any reference to MESS in the PRNT program refers to an address in a
program module external to PRNT. It would also contain the directive
XREF CHAR, meaning that the subroutine CHAR is an external reference.
The CHAR routine would contain the directive XREF DISP.

These cross references will be be resolved by a linker program so that,
when the main program is loaded from disc, any other modules cross
referenced with the main program will also be loaded so that all the
separate modules can function together as if they are all part of a single
block of code and data, even if they are loaded into completely
separate areas of memory.

Instead of the main program used above, suppose that you have
written some other program which contains a list of numbered error
messages, any one of which might need to be displayed on screen at
some point. If PRNT, CHAR and DISP already exist as standard library
programs then all you would need to do is to link them to your main
program with a linker program, rather than incorporating their code
in your main program. PRNT might contain the header message ‘ERROR
MESSAGE’ rather than ‘MESSAGE NUMBER’. When your program needs

Conditional and Unconditional Branching Operations 187

to print one of its error messages then all you need to do is to call
PRNT, passing the number and location of the appropriate message as
parameters. You would then get a display message on the screen such
as ‘ERROR MESSAGE 23 FILE NOT FOUND’.

A major advantage of this is that PRNT, CHAR and DISP may also be
available to other users or to other programs running in the system
simultaneously. Any one of them can pass their own parameters to
PRNT and obtain an appropriate message display.

A # aR! ites 6G geltomeak, dgoorAsitate » bhi
a — net ee — samme _ + Ege aa

iia 0 00 io Dee suo bie sao cks shat g ee ,
eae sarge EGS Ol Tt i> IR Lie L Das r cnt

Lore Ls ee 32 7 » rine 4 - hd 45>

r Ty" si

ha [i FAS dF RAG , : >)

aos me ETI OS st i
1 - 144 i age u

ne asl - ,

|

vn

‘ 4 "

= b

‘ ex

vai A Ban o |

i "i ‘ at i oi “we

m ever ad they on Hues wry

wens OO Seti ae
i

Hs

iad o* the wale oroere beet shove. solgane inal
90 weeps otbes pregiam etechs contin @-ieft af Ci? che

vo wit ac) aeegl'whih qught peed op be dapdeved on ge
Saver peat, 1 OPAL, CAR eyed 915% already exiet an
pg ree ace ald yo atid aya to do is tp. 4

ee ; ae! Saath ela potion be ~
ae oa O'S £98

Chapter 12

Stack Operations

In Chapter 5 it was explained that a stack is an area of memory in
which items of data can temporarily be stored and which is also used
to contain return addresses from subroutines. We looked at a number
of stack operations including the stacking of registers, the passing of
parameters by means of stacks and the setting up of stack frames. It
was explained that the SP (stack pointer) register, which is register
A7, points to the current ‘top’ of the stack and that other address

registers may be used to point to data within the body of the stack. It

was also explained that a stack normally extends downwards in

memory from the stack top, although upward extending stacks can

also be created if required, as can circular stacks (queues).

In the following program, one of the most common uses of the stack

is demonstrated, in which the values contained in several of the data

registers are pushed on to the stack prior to a call to a subroutine, so

that they can later be retrieved and loaded back into the registers.

Registers D3, D4, DS and D6 are first loaded with arbitrary byte

values. These values are then preserved on the stack by the MOVEM

(move multiple) instruction.

Following this the text of a message is stored on the stack which will

then be passed to a subroutine called READ which will unstack it and

print it to the screen.

Finally, a return is made to the main program and the values originally

stacked from D3, D4, D5 and D6 are retrieved, in reverse order, by

the MOVEM instruction.

189

190 First Steps in Assembly Language for the 68000

F PROGRAM PROG5

PASSES A MESSAGE VIA THE STACK

MOVEQ #0,01

MOVEQ #2,D3

BER. DEVICE,A0

MOVEQ #1,00

TRAP #2

Initially, the ASCII codes for for carriage return and line feed (13 and

10) are assigned to the labels ‘CR’ and ‘LF’ by means of an EQU (=)
directive.

Following this, the usual task ID and console channel operations are
performed and then the main program starts:

;STACK SOME INITIAL DATA VALUES, TRANSFER THE MESSAGE ONTO

;THE STACK AND CALL THE UNSTACKING PROCEDURE

MOVEQ #1,03 ;lLoad D3 with 1

MOVEQ #2,04 ;Load D4 with 2

MOVEQ #3,05 ;Load D5 with 3

MOVEQ #4,D06 ;Load D6 with 4

MOVEM D3-D6,-(A7) ;Store registers

;D3 to D6 on stack

MOVEA.L A7,A3 ;Copy stack pointer into

;register A3

MOVEA.L A7,A4 ;Copy stack pointer into

;register A4 as well

LEAD Le MESS,A2 ;A2 points to address of

;the message

LOOP MOV.B (A2)+,D1 ;load a message character

;code into D1

Stack Operations 191

CMPI.B #0,01 jis it zero (stop code)?

BEQ NEXT ;Jump to NEXT if so (Z=1)

MOVE Dil CAD ;Else store character

;code on stack as a

;word value

BRA LOOP ;Jump back to 'LOOP'

NEXT MOVEQ #0,01 ;Clear the D1 register

MOVE Di CA e Piisingar t-Onmess tack

BSR READ ;Call the unstacking

;subroutine

MOVEA.L A4,A7 ;Restore original SP

;value

MOVEM (A7)+,D3-D6 ;Then retrieve

;initial data

MOVEQ #2,00

TRAP #2

MOVEQ #-1,01

MOVEQ #0,03

MOVEQ #5,00

TRAP #1

Firstly, the D3 ,D4, D5 and D6 registers are loaded with some

arbitrary initial values, representing data which you might wish to

store for retrieval when the main operation is completed. These are

pushed onto the stack as four words from the low order words of the

four registers using the MOVEM D3-D6,-(A7) instruction. This in-

struction stacks each of the four registers in turn (from D6 to D3),

automatically adjusting the stack pointer before each word is stacked

by default, MOVEM without a size specifier implies MOVEM.W and if all

four bytes of each register need to be stacked, MOVEM.L should be

used. If necessary, all the contents of all the registers may be stacked

using the MOVEM instruction, for example when you wish to call a

subroutine and return with all the registers containing the same values

as they did before the call. Again, if you begin to run out of spare

registers, the MOVEM command can be used to stack the contents of

some of them, freeing them for other purposes.

When we come to retrieve the message from the stack, instead of using

the normal method of popping the stacked ASCII codes, using register

192 First Steps in Assembly Language for the 68000

A7, we shall be retrieving them using another address register, A3. A3
therefore needs to be loaded with the current top of stack value from
A7: MOVEA.LA7,A3. Note the use of the ‘A’ in MOVEA, indicating that

the destination of the MOVE is an address register. A3 now points to the
address in the stack which will eventually contain the first message
character data. This will become clearer later on when we look at the
destacking subroutine.

When the message has been printed, the stack pointer will no longer
be anywhere near the data which we stacked from registers D3 to D6.
If we plan to retrieve this data then we need to make a further copy
of the current A7 value so that we can restore the stack pointer later
on: MOVEA.L A7,A4.

Following this the A2 register is loaded with the address of the start
of the message data and the following instruction, labelled ‘LOOP’,
transfers a message character into the low byte of D1 and increments
A2 to point to the next message character: MOVE.B (A2)+,D1.

D1 is then checked to see if it contains the stop code, 0. If it does (i.e.
Z=1) then execution moves on to the instruction labelled ‘NEXT’
because of the BE@ NEXT instruction. If D1 does not contain 0 then it
must contain a message code and can therefore be stacked.

The MOVE D1,-(A7) instruction stacks the code as a word value and

adjusts the stack pointer. The BRA LOOP instruction then returns
execution back to the instruction labelled ‘LOOP’.

When all the message characters have been pushed onto the stack in
this way, execution moves on to the instruction labelled ‘NEXT’, which
moves the value 0 into the whole of D1. D1 is then stacked so that its
contents can be used as a stop code when the stack contents are
retrieved.

Following this the unstacking subroutine ‘READ’ is called and on
return from this subroutine the original contents of D3, D4, DS and
D6, which were stacked at the beginning of the program, are retrieved
back into those registers using the MOVEM (A7)+,D3-D6 instruction in
the order D3 to D6. However, since the stacking of the message text
the A7 register no longer points to this data. We therefore need to
restore A7 to its original value by loading it with the original SP value
of which a copy is held in A4: MOVEA.L A4,A7.

Stack Operations 193

Finally, the usual termination routine rounds off the main section of
the program.

At the point where the READ subroutine has just been called from the
main program the stack contains the following values:

Stack address Codes ASCII

Original values 3DBC4: 00 04
from registers 3DBC2: 00 03
D3, D4, DS and D6 3DBCO: 00 02
A3 and A4 point here: 3DBBE: 00 01
Message starts here: 3DBBC: 004D M

3DBBA: 0045 E
3DBB8: 0053 S
3DBB6: 0053 S
3DBB4: 0041 A
3DBB2: 0047 G

and so on down to:
3DB80: 0054 T
3DB7E: 0041 A
3DB7C: 0043 C
3DB7A: 004B K
3DB78: 00 0D [cr]
3DB76: 000A [If]
3DB74: 0000 [stopcode]

Return address to
main program: 2DB/2:0.9D 20
A7 points here: 3DB70: 00 02

The first four words on the stack contain the values 1, 2, 3 and 4

which we stacked at the beginning of the program. They were stacked

in predecrement mode in the order D6 to D3 and are unstacked in

post increment mode in the order D3 to D6. The next word in the

stack at address $3DBBC contains the ASCII code of the first

character in the message and is pointed to by the A3 register which

was set up in the main program above. Next come the ASCII codes

for the next characters in the message, finishing with the carriage

194 First Steps in Assembly Language for the 68000

return, line feed and stop codes. Lastly, the return address back from
‘READ’ to the main program is at stack addresses $3DB70 to $3DB73.
A7 points to $3DB70 since this was the address of the last word
stacked.

It should be clear from this that if we were to unstack the data pointed
to by A3 (effectively A3-2) into D1, print the character in D1 to the
screen, subtract 2 from A3, load D1 again from the address pointed
to by A3 and so on all the way down the stack, we can retrieve and
print the whole message without altering the value of A7. In other
words, the message is effectively in a stack frame within the stack and
can be referenced via its base pointer, A3.

The individual operations of the READ subroutine are as follows:

;UNSTACK THE MESSAGE, TRANSFER EACH CHARACTER TO THE DISPLAY

;PROCEDURE & RETURN TO PROGS WITH MESSAGE REMOVED FROM STACK

READ MOVE -(A3),D1 ;Retrieve a character from

j;the stack

CMPI.B #0,01 ;Compare it with the value

50 Ciwesats: nt: <theasitiop

;code?)

BEQ EXIT ;Jump ifesoy (Z=1)«tog' EXiie

BSR DISP ;Else call display

; subroutine

BRA READ ;Branch back to 'READ'

EXIT RTS ;Return to the main program

DISP MOVEQ #-1,D03

MOVEQ #5,00

TRAP #3

RTS ;Return to main program

The first instruction in the READ subroutine, MOVE -(A3),D1, copies
a character code into D1 from the word location in the stack which is
indexed by A3. A3 is first autodecremented by two bytes. In other
words, just as A7 was used in predecrement mode to stack the message
characters, the A3 register, starting at exactly the same position, is
being used in predecrement mode to retrieve them in the same order

Stack Operations 195

The next instruction, CMP1.B #0,D1, compares the contents of D1

with zero and if the result is zero (Z=1) then D1 contains the stop
code, otherwise it contains a character code. The next instruction
therefore, BEQ EXIT, determines whether execution jumps to the end
of the routine or carries on with the following instruction.

Then a call to the subroutine ‘DISP’ is made, which will display the
character in D1 on the screen.

On returning from this call a jump is made back to the instruction
labelled ‘READ’.

Finally, when all the characters have been printed, the RTS instruction
will return execution back to the main program.

At this point the program data is defined:

MESS DC.B "MESSAGE NUMBER 2',CR,LF

DC.B "PASSED VIA STACK',CR,LF,0

DEVICE DC.W 4

DC.B "CON_'

The message is defined as a series of bytes representing the ASCII
codes for the individual characters of the message, terminating with
a carriage return, line feed and stop code: ‘0’. The base address of the
message is labelled ‘MESS’.

The object code listing for PR0G5 is as follows:

;ADDRESS CODE MNEMONICS

,

29CE8 7200 MOVEQ #00, 01

29CEA 7602 MOVEQ #02, D3

29CEC 41FA0086 LEA 86(PC)!29D74, AD

29CFO 7001 MOVEQ #01, DO

29CF2 4E42 TRAP #2

29CF4 7601 MOVEQ #01, D3

29CF6 7802 MOVEQ #02, D4

29022 4C€9F0078

196 First Steps in Assembly Language for the 68000

29CF8 7A03 MOVEQ #03, D5

29CFA 7C04 MOVEQ #04, D6

29CFC 48A71E00 MOVEM.W /D3 /D4 /D5 /D6 ,-(A7)

29000 264F MOVE.L 1 Cael NE

29002 284F MOVE.L A7, A4

29004 45FA0048 LEA 48(PC)!29D4E, A2

29008 121A MOVE.B (A2)+, D1

29D0A 0€010000 CMPI.B #0, D1

29D0E 67000008 BEQ 29D18

29012 3F01 MOVE.W Die CAND

29014 6000FFF2 BRA 29D08

29018 7200 MOVEQ #00, D1

29D1A 3F01 MOVE.W ip SG We:

29D1C 61000014 BSR 29D32

29020 2E4C MOVE.L A4, AZ

MOVEM.W (A7)+,/D3 /D4 /D5 /D6

29026 7002

MOVEQ #02, DO

29028 4E42 TRAP #2

29D2A 72FF MOVEQ #FF, D1

29D2C 7600 MOVEQ #00, D3

29D2E 7005 MOVEQ #05, DO

29030 4641 TRAP #1

READ: -

29032 3223 MOVE.W -(A3), D1

29034 00010000 CAPi ie Fer 0

29038 6700000A BEQ 29D44

29D3C 61000008 BSR 29D46

29040 6000FFFO BRA 29D32

29044 4E75 RTS

HOS ER

29046 76FF MOVEQ #FF, D3

29048 7005 MOVEQ #05, DO

29D4A 4E43 TRAP #3

29D4C 4E75 RTS

Again, READ could be a separately assembled library subroutine which
can unstack and print any message passed to it. The only parameter
required by READ is the base of the stacked message (in A3).

Chapter 13

Data Structures and

Data Processing

In Chapter 6 we looked at some of the ways in which blocks of data

such as arrays can be accessed by means of the indirect addressing

modes. This is a crucial aspect of programming and in this chapter we

are going to work through a complex example in close detail.

This is a fairly long program which shows how data stored in an array

can be accessed and processed in a number of different ways. We shall

be using our earlier petrol consumption model, since you will already

be familiar with the nature of the data we shall be dealing with, and

in the process we shall be covering a number of new topics including

multiplication, division and bit shifting and rotation.

In this program the fuel consumption and mileage figures for a two

year period are stored in the data section in the following order:

Fuel consumption for year 1 (12 separate months)

Mileage for year 1 (12 separate months)

Fuel consumption for year 2 (12 separate months)

Mileage for year 2 (12 separate months)

The program will add up the fuel and mileage figures for both years

and print the totals to the screen. The average monthly consumption

and mileage will also be worked out, together with the overall miles

per gallon calculation. The consumption and mileage for May in each

year will then be added and printed out and finally, there will be a

procedure which allows you to key in the first three letters of any

month in order to obtain the total mileage for the month over the two

year period. The format of the final, printed output is as follows:

197

198 First Steps in Assembly Language for the 68000

TOTAL CONSUMPTION: 524.0

TOTAL MILEAGE: 10327.0

AVERAGE CONSUMPTION: 21.83

AVERAGE MILEAGE: 430.29

MILES PER GALLON: 19.70

MAY CONSUMPTION: 40.0

MAY MILEAGE: 853.0

JAN 780

FEB 807

JUN 762

JUL 944

AUG 898

The general structure of the program is as follows:

1 A pointer register will be used to access each of the values in the
four data arrays. The added totals will be placed in a separate array
labelled TOTALS.

2 The consumption and mileage totals will be used to work out the
monthly averages and the miles per gallon figure. These will also
be placed in the array TOTALS. The totals for May will then be
added and placed in TOTALS.

3 The totals contained in TOTALS will then be converted from binary
values to floating point decimal values and pushed on to the stack.

4 The text messages will be transferred from the data area to the
screen, each followed by the calculated results which are popped
from the stack, converted to ASCII characters and displayed on the
screen along with the messages.

5 The month by month mileage totals will be calculated and
transferred to an array labelled SUBMIL.

6 The data in SUBMIL will be accessed and printed in response to
month names input from the keyboard.

Data Structures and Data Processing 199

: PROGRAM ENTITLED PROG6

i ANALYSIS OF CONSUMPTION AND MILEAGE DATA

MAY EQU 8 ;Offset for may figures

CR EQU 13 ;Carriage return code

LF EQU 10 ;Line feed code

POINT EQU ie ;Decimal point code

MOVEQ #0,01
MOVEQ #2,D3
LEA.L DEVICE,A0
MOVEQ #1,00
TRAP #2

Initially, the ASCII codes for carriage return and line feed are defined
as labelled constants, along with the decimal point code and an index
offset for the May data.

May is the fourth month, counting from zero, and since the data is
stored in word lengths its offset will therefore be 8. CR, LF and POINT
are the labels given to the ASCII character codes for carriage return,
line feed and the decimal point. Note that the decimal point is entered
in character form and the assembler will work out its ASCII code
automatically.

The usual initialization instructions come after this and then the main

program begins as follows:

LEA.L GALLS1,A2 ;Base of consumption data

;(address of GALLS1)

MOVEQ #11,D04 ;Month count (less 1)

LR ak: D5 ;Clear D5 (set it to zero)

LOOP1 ADD (A2)+,D5 ;Add data item from GALLS1

soe DS

200 First Steps in Assembly Language for the 68000

DBRA D4,L00P1 ;Repeat LOOP1 while D4>-1

LEAL GALLS2,A2 ;A2 Points to next year

(GALLS2)

MOVEQ #11,D4 ;Month count (less 1)

LOOP2 ADD (A2)+,D5 ;Add data item from array

et0- Do's

DBRA D4,L00P2 ;Repeat LOOP2 while D4>-1

LEA.L TOTALS ,A4 ;A4 points to 'TOTALS'

jarray

MOVE.W D5,(A4) ;Store consumption total

;in TOTALS array

MOVE.W D5,-(A7) ;Stack consumption total

LEA.L MILES1,A2 ;Base of mileage data

;(address of MILES1)

MOVEQ #11,D4 ;Month count (less 1)

€LR.L D5 ;Clear D5 (set it to zero)

LOOP3 ADD (A2)+,D5 ;Add data item from array

;to D5

DBRA D4,L00P3 ;Repeat LOOPS while D4>-1

LEA.L MILES2,A2 j;A2 Points to next year

(MILES2)

MOVEQ #11,D4 ;Month count (less 1)

LOOP4 ADD (A2)+,D5 j;Add data item from array

“tose.

DBRA D4,LO00P4 ;Repeat LOOP4 while D4>-1

ADDQ #4,A4 j;A4 points to 'TOTALS+4'

MOVE.W D5,(A4) ;Store mileage total

;in TOTALS array

In this section the consumption and mileage figures for the two years
are added together and stored in the TOTALS array. A2 is loaded with
the first address of the data and is used as an indirection register to
retrieve each item of data and add it to the DS register. D4 is loaded
with 11, to count off each month (11 to -1), and A2 is auto-
incremented by two after each addition because each item of data is
stored as a word and the operations are of length ‘.W’.

After the first 12 items, A2 is repositioned to point to the next year
and the data continues to be added to DS as before. Finally, the 24

Data Structures and Data Processing 201

month total is loaded into the first two addresses of the array TOTALS.
Since the low order word of D5 contain the total its contents are
automatically loaded by MOVE.W D5,(A4) into both the address

pointed to by A4 plus the one following. The total consumption is also
stored temporarily on the stack by the MOVE.W D5,-(A7) instruction.
The above steps are then repeated for the mileage figures, which are
stored in the fifth and sixth addresses of the TOTALS array (TOTALS +4
and TOTALS+5), for reasons which will be made clear later on.

In the next section the average consumption and mileage figures will
be calculated:

ADDQ #4,A4 ;Point A4 to next TOTALS

;location (TOTALS+8)

MOVE.W (A7),D6 ;Retrieve consumption total

;from stack into Dé

MOVE.W D6,-(A7) ;Store a copy back on stack

MOVE.W D5,-(A7) »Stack mileage total, which

2) Sees Cie aD

DIVU DNUM1,D6 ;Divide D6 by 24

MOVE.W D6,(A4) ;Store quotient from lo word

;of D6 in TOTALS

MOVEQ #16,D2 ;D2 holds shift count

LSR.L D2,D6 sShift D6 right according to

;count in D2

;

;Now convert the remainder to a decimal fraction
.
/

MULU CENT ,D6 sMultiply D6 by 100

DIVU DNUM1,D6 ;Divide by 24 again

MOV.W D6,2(A4) ;Store in TOTALS array

ADDQ #4,A4 ;Point A4 to next free

TOTALS (TOTALS+12)

DIVU DNUM1,D5 ;Divide D5 by 24

MOVE.W D5,(A4) ;Store quotient from lo word

;of D5 in TOTALS

MOVEQ #16,D2 7D2 holds shift count

202 First Steps in Assembly Language for the 68000

LSR.L D2,D5 ;Shift D5 right according to

;count in D2

,

;Now convert the remainder to a decimal fraction
.
Ye

MULU CENT,DS ;Multiply D5 by 100

DIVU DNUM1,D5 ;Divide by 24 again

MOV.W D5,2(A4) ;Store in TOTALS array

Firstly, A4 is incremented to point to the offset of the next free space
in the TOTALS array (TOTALS+8) to store the average consumption
figure. At this point we have the total mileage in TOTALS+4 and in
D5. The total consumption is both in TOTALS +0 and on the top of the
stack. The consumption figure is popped from the stack into D6. It
does not matter that it was originally pushed from D5 because stacked
data can be popped into any of the general registers. We still need a
copy of the consumption figure in the stack, so it is popped using the
address register indirect mode without postincrement. Now the
consumption figure is in TOTALS, in D6 and on top of the stack.

Next the mileage total is pushed onto the stack from D5. We now have
the mileage and consumption figures in the TOTALS array, on the stack
and in the D5 and D6 registers. To calculate the average consumption
we need to divide the consumption total in D6 by the constant located
at the address labelled DNUM1, which is defined in the data section as
24. This is performed by DIVU DNUM1,D6. The quotient of the division
operation ends up in the low order word of D6 and this is transferred
directly to address TOTALS +8 and TOTALS+9 by the MOVE.WD6,(A4)

instruction. The remainder of the division ends up in the high order
word of D6, but, since we normally prefer our remainders to be
expressed as decimal fractions we need to convert it before storing it
away. This is done by multiplying D6 by 100 and dividing by 24.
However it is first necessary to shift the division remainder from the
high to the low order word of D6 and to ensure that the high order
word is zeroed. The bits in D6 need to be shifted to the right 16 times
with zeroes being passed into the high order word during each shift.
The shift count is loaded into D2: MOVE@ £16,D2 and the shift is

performed by the logical shift right instruction LSR: LSR.L D2,D6.
The multiplication by 100 is then performed by MULU CENT,D6 and the
division by 24 by DIVU DNUM1,D6. CENT is defined in the data section
as 100.

Data Structures and Data Processing 203

Ignoring the remainder from this second division, we load the
contents of the low order word of D6 (the quotient from the second
division) into the TOTALS array at TOTALS+10 and TOTALS+11,
pointed to by A4+2. This is in fact the remainder of the average
consumption calculation.

If this process is not clear, the following calculation example shows
what has just been performed. We shall assume that the actual
consumption total is 205:

Instruction Register Register Function
Mnemonic D6 High D6 Low

0 205
DIVU DNUM1,D6 13 8 D6/24=8 rem’dr 13

MOVE.WD6,(A4) 13 8 store 8 in TOTALS

MOVEQ #16,D2 13 8 Shift count in D2
LSR.LD2,D6 0 13 Shifts remainder over
MULU CENT,D6 0 1300 100 times D6 = 1300

DIV DNUM1 4 54 D6/24=54 remainder 4
MOVE.W D6,2(A4) store 54 in TOTALS

Therefore 205/24=8.54

The figure we end up with in TOTALS in this example is 8.54: the ‘8’
occupying 2 addresses and the ‘54’ occupying the next two addresses.

The A4 register is now incremented by 4 to point to the next free space
in the TOTALS array (TOTALS+12), which will be used for storing the

average mileage.

The next stage is to convert the mileage total, currently in D5, into

an average in the same way as the consumption total above. The result

is again deposited in the TOTALS array at TOTALS+12, TOTALS +13,

TOTALS+14 and TOTALS+15.

We are now ready to calculate the miles per gallon figure.

204 First Steps in Assembly Language for the 68000

cme www mw tw wm wm mm me wm Mm em wm em wm wm mm mm mm wm em me wm wm em mm mm em ee eee ee ewe ee mee ee

CLR.L D6 ;Clear register D6

ADDQ #4,A4 ;Point A4 to next free

; TOTALS (TOTALS+16)

MOVE.W (A7)+,D6 ;Retrieve total mileage from

;stack to D6

MOVE.W (A7)+,D5 ;Retrieve total consumption

;from stack to D5

DIVU D5,D6 ;Divide miles by consumption

7(D6 by D5)

MOVE.W D6,(A4) ;Store quotient in TOTALS

US Ree D2,D6 ;Shift D6 right according to

;count in D2

remainder to a decimal fraction

MULU CENT,D6 ;Multiply by 100

DIVU D5,D6 ;Divide by consumption

7(D6 by D5)

MOVE.W D6,2(A4) ;Store in TOTALS array

In the above section D6 is zeroed to ensure that it contains no
superfluous data and the A4 register is again incremented by 4 to point
to the next free TOTALS space (TOTALS+16). The mileage total is
popped from the stack into D6 and the consumption total is popped
into D5. This time we need to divide the mileage total by the
consumption total to give the miles per gallon figure. The same
division operations as before are performed except that this time, DS
is used as the divisor. Finally, the result is placed in the TOTALS array
at TOTALS+16, TOTALS+17, TOTALS+18 and TOTALS+19.

Next, the consumption figures for May in each year are retrieved,
added together and stored in the TOTALS array:

Cm mem mm tm mm ee mee ee ee em em mw mm em em mm mm mm mm wm eww ew eee ew eee wee eee eee eee

LEAL L GALLS1,A2 sStamt! Of ida ta

MOVE.W MAY(A2),D5 7Get GALLS1 May in D5

ADDA #48,A2 ;Point A2 to GALLS2 May

Data Structures and Data Processing 205

ADD MAY(A2),D5 ;Add GALLS2 May to D5

ADDQ #4,A4 ;Point A4 to next free

sTOTALS (TOTALS+20)

MOVE.W D5,(A4) ;Store May galls in TOTALS

LEA.L MILES1,A2 ;Start of data

MOVE.W MAY (A2) ,D5 Get MILES1 May in D5

ADDA #48,A2 sPoint A2 to MILES2 May

ADD MAY(A2) ,D5 ;Add MILES2 May to D5

ADDQ #4,A4 Point A4 to next free

s TOTALS (TOTALS+24)

MOVE.W D5,(A4) ;Store May miles in TOTALS

A2 is loaded with the GALLS1 address and the first year May figure is

copied into DS from the address pointed to by A2+MAY. MAY, you will

recall, is a labelled constant equal to the value 8, since the May data

is at offset 8 in GALLS1, counting from zero. A2 is then incremented

to point to the second year May figure. Note that because the original

data is stored as word values, A2 is incremented by 48 rather than 24.

Both years’ May totals are added and stored as a word value in the

TOTALS array at TOTALS +20 and TOTALS+21.

The May mileage figures are added and stored in the same way as the

consumption figures, except that A2 is initially given the offset value

of MILES1 and the results are stored in TOTALS +24 and TOTALS +25.

We are now nearly ready to take the stored totals and print them to

the screen with the appropriate text messages. Firstly, the figures are

transferred from TOTALS onto the stack:

sMOVE CONTENTS OF 'TOTALS' ARRAY ON TO THE STACK

LEA.L TOTALS,A2 Point to base of TOTALS

RES CLR.L D5 Clear register D5

MOVE.W 2(A2) ,D6 ;Get a decimal fraction

;from TOTALS

;
;First convert binary data from TOTALS into individual

sdigits so that they can be converted to ASCII and printed:

206 First Steps in Assembly Language for the 68000

LOOPS DIVU DNUM2,D6 ;Divide by 10

SWAP D6 ;Swap halves of D6

MOVE.W D6,-(A7) ;Stack remainder

ADDQ #1,05 ;Increment digit count
CLR.W D6 ;Clear lo word of Dé
SWAP D6 ;Swap halves of Dé

CMPI #0,06 jis D6=0?

BNE LOOPS ;Repeat LOOPS if not (ZF=0)

MOVE.W POINT,D6 ;Get ASCII code for decimal

;point

SUBI.W 48,D6 ;Subtract 48 from it

MOVE.W D6,-(A7) ;Stack it after remainder

MOVE.W (A2) ,06 ;Get a quotient from TOTALS

SWAP D6 ;Swap halves of D5

LOOP6 DIVU DNUM2,D6 ;Divide D6 by 10

SWAP D6 ;Swap halves of Dé

MOVE.W D6,-(A7) ;Stack the remainder

ADDQ £15 ;increment digit count

CLR.W D6 ;Clear lo word of D6

SWAP D6 ;Swap halves of D6

CMPI £0,D6 ;Is D6=0?

BNE LOOP6 ;Repeat LOOP6 if not (ZF=0)

MOVE.W D5,D6 ;Copy digit count into D6

SWAP D5 ;Swap halves of D5

ADD.W D5,D6 ;Rest of digit count added

MOVE.W D6,-(A7) ;Stack total digit count

DE ARE RESPNT,A6 ;Address of RESPNT in A6é

~ MOVE.L A2,(A6) ;Store current TOTALS offset

jin reserved address RESPNT

Firstly, A2 is loaded with the first address of the TOTALS array. At this
point the totals are stored in the TOTALS array in 4-byte chunks: the
first 2 bytes being the quotient of each result and the second 2 bytes
being the decimal remainder (if any) of each result. Our objective is
to break down each number into separate values so that, for example,
quotient 32 remainder 85 (i.e. 32.85) would become 5 separate values:
‘3’, °2”, *.’, °8’ and ‘5’. These values will be pushed separately on to
the stack (in reverse order) and a count will be kept of the total
number of values stacked.

Data Structures and Data Processing 207

DS is cleared so that it can be used to count the individual values and
the first total first is loaded into D6 from TOTALS. Firstly, we load the
remainder value of the total because the result will be pushed onto the
stack in reverse order so that it can be popped off and printed in the
correct order.

The problem we now have is that the first result, the consumption
total remainder in D6, is a 16-bit binary integer, whereas we actually
want to print it as a floating point decimal number. The conversion
is easily achieved by repeatedly dividing the number in D6 by 10
(stored at address DNUM2) and pushing the remainders on to the stack.

This process continues, in program L00P5, until Do=0. The BNE
(branch if not equal) instruction detects this and continuously loops
back to LOOP5 until D6=0.

Every time D6 is divided by 10 the remainder goes into its high word

and the quotient into its low word. The SWAP D6 instruction swaps

over these two words so that the MOVE.W D6,--(A7) instruction can

be used to stack the remainder. The DS (counter register) is

incremented by 1 after each division and swap and the low order

(remainder) word of D6 is cleared. Another SWAP then transfers the

quotient back into the low order word so that another division can

take place. The following example shows how this process works, with

D6 initially containing the remainder value ‘85’:

Instruction Register Register Function

Mnemonic D6 High D6 Low

0 85

DIVU DNUM2 ,D6 5 8 D6/10=8 remainder 5

SWAP D6 8 5 Words swapped over

MOVE.WD6,-(A7) 8 5 Stack the value 5

CLR.W D6 8 0 Clear low byte

ADDQ #1,D5 8 0 Increment counter

SWAP D6 0 8 Words swapped over

CMPI #0,D6 0 8 Does D6=0? (no)

BNE LOOPS (this causes a repeat if D6>0, as follows):

DIVU DNUM2,D6 8 0 D6/10=0 remainder 8

SWAP D6 0 8 Words swapped over

MOVE.WD6,-(A7) O 8 Stack the value 8

0 Clear low byte CLR.W D6 0

208 First Steps in Assembly Language for the 68000

ADDQ #1,D5 0 0 Increment counter

SWAP D6 0 0 Words swapped over
CMPI #0,D6 0 0 Does D6=0?

Yes

Therefore the stack

holds ‘5’ and ‘8’ which
will be printed out in
reverse as ‘85’.

The decimal point needs to be stacked now and this is currently stored
as an ASCII value at the address pointed to by the label POINT. This
is moved into D6 and 48 is subtracted from it before it is pushed onto
the stack. The 48 will be added to it again later when all the converted
digits are translated to ASCII codes before printing them.

The total number of digits stacked is now in the low order word of the
counter register DS and this is temporarily transferred to the high
order word: SWAP D5.

After this the quotient of the consumption total is moved into D6 and
the above conversion process is repeated in L00P6, dividing D6 by 10
until it equals 0 and pushing each remainder on to the stack.

After L00P6, the total count of quotient digits is in the low order word
of DS and the total number of remainder digits is in the high order
word. The low order word of D5 is transferred to D6 and the high
order word of D5 is swapped with its low order word: SWAP D5. Then
the low order word is added to D6 so that D6 now holds the count of
the total number of stacked digits in the decimal number. This digit
count is pushed onto the stack for later use.

After printing these newly stacked digits we will need to come back
and repeat the above process with the next result in the TOTALS array.
We therefore need to store the offset of the current result (contained
in A2), so the contents of A2 are copied into a reserved memory
address labelled ‘RESPNT’ for later retrieval. First the address of
RESPNT is loaded into A6 and the instruction MOVE.L A2,(A6) stores

the contents of A2 in the RESPNT address.

At this point in the program the contents of the stack are as follows:

Data Structures and Data Processing 209

Hi bytes superfluous

The value 780.0 will
be popped off the
stack and printed,
a pee ie he decinal
point. fhe digit 4 is
popped oH indicat-
ing the it count
(4 to ot siloved by
fahegeu, stand. 0;

Digit count from D6

FIGURE 13-1. First result on stack, prior to printing.

The next task is to print the first message to the screen, which is
“TOTAL CONSUMPTION: “ stored at address MES1:

LEA.L MES1,A2
MOVE.L § _MESSOFF,D2

MOVEQ #20,04

LOOP? MOVE.B O(A2,D2),D1

BSR DISP

ADDQ #1,D2

DBRA D4,L00P7

BEAL MESSOFF,A6

MOVE.L D2,(A6)

;A2 points to base of text

;Offset of current message

;into D2 from 'MESSOFF'

;Text length count (less 1)

;in register D4

;Get text character in D1

;Display character on screen

;Point to next character

;Repeat LOOP? while D4>-1

;Get address of MESSOFF

;Store offset of next

;message in reserved

;address 'MESSOFF'

The address offset of ‘MES1’ is copied into A2 and D2 is loaded with
the index offset contained in the address pointed to by the label
MESSOFF (initially zero). D4 is then loaded with the message length

(less 1), which is 20. Each message will be defined in the data section

as 21 bytes, including spaces.

LOOP7 copies each of the ASCII codes of the message into D1 using

MOVE.BO(A2,D2) ,D1 and calls the DISP subroutine to print them one

210 First Steps in Assembly Language for the 68000

by one to the screen. After they have all been printed, the index offset
currently contained in D2 is stored back in address MESSOFF for use
with the next message. Having printed the message heading we are
now ready to transfer the actual consumption total to the screen.

MOVE.W (A7)+,D04 ;Retrieve result digit total

;from stack into D4

LOOPS. CER SU D1 ;Clear register D1

MOVE.W (A7)+,D1 ;Get a digit from stack

ADDI.B #48 ,01 ;Convert it to ASCII

BSR DISP ;Display it

DBRA D4,LO0P8 ;Repeat while D4>-1

MOVE.B CR,D1 ;Carriage return code goes

aan Di

BSR DISP SPR unit. cit

MOVE.B LF,D1 ;Line feed code goes in D1

BSR DISP SPR Nite it

LEASE MESCNT,A6 ;Address of MESCNT in A6

ROL (A6) ;Rotate header message count

jwhich is stored in 'MESCNT'

BCC MONTHS ;Branch to MONTHS routine if

jall results printed

ays RESPNT,A2 ;Else retrieve TOTALS offset

;into A2 from RESPNT

ADDQ #4,A2 ;Point to offset of next

;result in TOTALS array

BRA RES ;Branch back to 'RES'

The first step is to retrieve the count of the number of digits in the
consumption total, which is popped off the stack into D4. This will
be used as a loop count value.

Next, the first result digit is popped off the stack into D1, after which
48 is added to it to convert it into its ASCII form. Note that the
decimal point code, which is stacked among the digits, will also have
48 added to restore it to its original ASCII value when its turn comes
to be popped. The ASCII digit is now held in D1 and a call is made
to the DISP subroutine to print it to the screen. This process is
repeated until D4=-1, after which the carriage return and line feed
codes are also passed to DISP for printing.

Data Structures and Data Processing 211

At this point we need to check to see whether all the results and
messages have been printed and this is done by rotating the bits in the
address pointed to by the label MESCNT to the left, using the
instructions LEA.L MESCNT,A6 to obtain the address of MESCNT and
ROL (A6) to perform the rotation. This rotates the binary number in
MESCNT once to the left, depositing the high order bit into the carry
flag and also transferring it to the low order bit position. If a zero bit
is thus rotated into the carry flag, then all the results have been
printed and the BCC instruction (branch if carry clear) transfers
execution to MONTHS; the start of the next routine. If a set bit is rotated
into the carry flag then there are further results to print and the BRA
instruction loops execution back to RES, where the next message and
result will be processed. Before branching to RES, the value contained
in the address pointed to by the label RESPNT is copied into A2. This
contains the index offset within the TOTALS array of the result which
has just been printed. This offset was stored in RESPNT earlier in the
program.

A2 is then incremented by 4 to point to the next result within the
TOTALS array.

Finally, when all the results have been printed, the program moves on
to the next routine, MONTHS, which will allow the monthly totals to be
printed in response to key inputs.

In this section we first need to add the month by month mileage
figures from year 2 to those from year | and stores them in a separate
array called SUBMIL, as follows:

¥

MONTHS LEA.L MILES1,A2 ;Point A2 to MILES1 data

LEA.L MILES2,A5 ;Point A5 to MILES2 data

LEA.L SUBMIL,A4 ;Point A& to SUBMIL array

MOVEQ #11,D04 ;D4 to count off months

EOOP9) CLR.L D5 ;Clear D5 register

ADD.W (A2)+,D5 ;Add word pointed to by A2

;to D5 and add 2 to A2

ADD.W (A5)+,D5 ;Add word pointed to by A5

j;to D5 and add 2 to A5

MOVE.W D5,(A4)+ ;Transfer total to SUBMIL

DBRA D4,LO00P9 ;Repeat LOOP9 while D4>-1
Seeeeeeee em eee eee eee ee ee ee eee ew ew eB ee ee wee eee Tee eee eee wee wwe

212 First Steps in Assembly Language for the 68000

This operation is very simple. The addresses of MILES1 and MILES2
are loaded into A2 and AS respectively, while the destination address,
SUBMIL, is loaded into A4. D4 will count off each of the 12 monthly
subtotals and so it is loaded with the value 11 to count from 11 to -1.

DS is cleared and then the word data at the address pointed to by A2
is added to it, after which A2 is automatically incremented by 2. The
word data pointed to by AS is then added to DS so that D5 now
contains the sum of the mileage figures for a particular month for each
of the two years. AS is also autoincremented by 2.

The contents of D5 are then copied into SUBMIL by MOVE.WD5,(A4)+
and A4 is also autoincremented by two. A2 and AS now point to the
next month’s figures for each of the two years and A4 points to the

next free space in SUBMIL.

The DBRA instruction decrements and checks the D4 counter and
loops back to LOOP9 until all the data has been added and transferred.

Now that the mileage subtotals are stored in the SUBMIL array, we can
consider what method we might use for accessing any one of these
subtotals by inputting the name of a particular month from the
keyboard and outputting the corresponding subtotal to the screen.

Like the DISP procedure used in the previous programs, the particular
method of inputting text from the keyboard will depend on which
operating system your computer uses. In this case we shall assume
that it is done by using an operating system TRAP routine which
transfers characters from the keyboard into a buffer whose base
address is contained in register Al, as follows:

KEY CLR.L D5 ;Clear register D5

LE Avil KEYBUF,A1 ;Address of buffer in At

MOVEA.L A1,A3 ;Copy into A3

MOVEQ #4,D02 ;Character count in D2

MOVEQ #2,00 30/S function code in DO

TRAP #3 20/S Arapicalt

MOVEQ #2,D04 ;Count of required

;characters in D4 (less 1)

KEYTOT ADD.B (A3)+,D5 ;Add character code to D5

Data Structures and Data Processing 213

DBRA D4,KEYTOT ;Repeat loop KEYTOT while

7D4>-1

CMPI.B #215,D5 ;Has 'END' been entered?

BEQ EXIT ;Branch to finish if so

MOVEQ #32,01 ;ASCII code for space

BSR DISP ;Display it

In this routine the number of characters we want from the keyboard
is 3, since this will suffice to identify the name of any particular
month. The fourth character will be the carriage return code following
the input of the three characters.

DS is first cleared because we shall need to use its lower byte for an
addition operation. Al is then loaded with the address of the four byte
keyboard buffer which is labelled KEYBUF in the data section. A copy
of this base address is loaded into A3 so that we can later retrieve the
buffered characters.

Next, the operating system TRAP is invoked by loading the number of
characters to be fetched, 4, into register D2 and a function parameter,
2, into DO and then initiating a TRAP #3 exception which causes the
program to wait until four characters have been typed in at the
keyboard.

At this point there would be three characters printed on the current
screen line: the ones which would have just been input on the
keyboard. The carriage return used to enter the characters would have
placed the screen cursor on the line below. The ASCII codes for these

would also be stored in the KEYBUF array with A3 pointing to the
address of the first character.

Then the accumulated totals of the ASCII values of the three
characters keyed in need to be obtained. This is done by the loop
starting at the instruction labelled KEYTOT which adds the ASCII
values of the three characters into DS.

The next two instructions, CMPI.B #215,D5 and BEQ EXIT, test the
input to see if the program is to be terminated and this procedure will
be explained later.

Before we print the corresponding mileage total for the required
month we might wish to insert a space so that the result will be

214

indented from the left margin of the screen by one character. This is

done by loading D1 with 32, the ASCII code for a space, and calling

the DISP routine to print it.

Next, we are ready to retrieve the mileage totals from SUBMIL and

print them:

tec eee eee eae wen anes coe ea ew ee oe eee ee eae ee ee ee ee ee eee ess te

First Steps in Assembly Language for the 68000

sUSE TOTALLED ASCII CODES OF 3 INPUT CHARACTERS TO INDEX A

;LOOKUP TABLE POINTING TO MILEAGE TOTALS
Seema ees e ses oc weawoes ees ecees ewes enews esas eeeseeeseaeeeee2e=s=""—~~—

MATCH MOVE.B

CMP.B

DBEQ

LOOP10 DIVU

LOOP11 MOVE.W

D6

DATES, A4
#23,D4

(A4)+,D06

D5,06

D4,MATCH

SUBMIL,A2

(A4) ,D6

0(A2,06) ,D5

#-1,4

DNUM2,D5

D5

D5,-CA7)

#1,04

#16,D2

D2,D5

#0,D5
LOOP10
(A7)+,D1
#48,01
DISP
D4,LO0P11
CR,D1
DISP
LF,D1
DISP

;Clear register D6

Point to DATES table

s;Length of DATES table

;less 1

;Copy data fron DATES

into D6 and add 1 to A4

;Compare with input code

;1f codes match or D4=-1

;then go to next instruction

zelse loop back to MATCH

;Address of SUBMIL in A2

;Get index value from DATES

;Copy total from SUBMIL

into D5

;Set counter to -1

sDivide D5 by 10

;Swap halves of D5

;Stack remainder

;Update counter

Shift count in D2

;Shift D5 according to

scount in D2

;ls 05=0?

;Repeat LOOP10 if not

;Else retrieve a digit

MEONVETCL MENLO ANGLE

sDisplay it

;Repeat while D4>-1

;Carriage return code

“Print aut

;Line feed code

SPiriintlt

Data Structures and Data Processing 215

Seem wm mem mem ee ee ew ew ee eee eee

EXIT MOVEQ #2,00

TRAP #2

MOVEQ #-1,01

MOVEQ #0,03

MOVEQ #5,00

TRAP #1

DISP MOVEQ #-1,03

MOVEQ #5,00

TRAP #3

RTS ;Return to main program
Sm mmm em em am we we ee aw we ee ee em ee ee em ee em ee em em ee em ew ee ee eee ee ee eee ee ee ee

Firstly, register D6 is cleared, after which the address of the array
labelled ‘DATES’ is loaded into A4. The length of the DATES array, less

1, is loaded into D4 as a count variable.

The DATES array has a strange structure, as you can see if you refer
to the data section. Its first value, 217, is the sum of the ASCII codes
for capital ‘J’, ‘A’ and ‘N’, representing January. The number which
follows, 0, is the offset of the January mileage totals in the SUBMIL

array. Similarly, the third value, 205, is the sum of the ASCII
character codes for ‘F’, ‘E’ and ‘B’, representing February. The fourth

value, 2, is the offset within the SUBMIL array of the mileage totals for
February, and so on through the year. It so happens that the total
value of the ASCII codes for the first three capital letters of each
month in the year is a unique number in each case so that we can use
these totals to identify every individual month.

It follows that if we were to take the total of the ASCII values for the
three letters which have just been keyed in at the keyboard and
compare it with each byte in the DATES array then eventually there will
be a match. The value immediately following the matched number
will be the value of the corresponding mileage result offset within the
SUBMIL array. For example, if we input ‘APR’ at the keyboard then we
shall get the code 227 from the ‘KEY’ loop. Comparing this with each

216 First Steps in Assembly Language for the 68000

byte in DATES we find a match at the 7th byte. The value following
this in DATES is 6, so the mileage total for April is at offset 6 within

the SUBMIL array.

In practice it works like this: The ASCII total of the entered
characters is currently in register D5 and the DATES array is pointed
to by A4. The instruction MOVE.B (A4)+,D6 copies a byte from DATES
into D6 and autoincrements A4 by 1. The CMP.B D5,D6 instruction
compares this byte with the ASCII total in D5 and the DBE@ D4,MATCH

instruction loops back to the start of the MATCH loop if there is no
match between the contents of D5 and D6 and D4 is greater than -1.
This continues until either D4=-1 (no match found) or a match is
found, in which case the Z flag will become set and the DBEQ
instruction terminates the loop, with the A4 register pointing to the
data immediately following the matched values, which will represent

the index offset into SUBMIL. In the case of April this would be 6.

A2 is then loaded with the address of the SUBMIL array and the index
offset from DATES is loaded into D6. The next instruction, MOVE.W
0(A2,D6),D5 copies the value contained in SUBMIL at the address

represented by A2+D6 into D5.

The value now in DS is the required mileage total and we are ready
to convert it into individual character codes before displaying it on the
screen. LOOP10 performs a similar function to L00P6, dividing the
total in D5 by 10 until DS=0 and pushing the remainder values onto
the stack after each division. At the end of L00P10 the result has been
divided into separate digits which have been pushed onto the stack,
the total digit count being held in the D4 register.

LOOP11 pops one digit at a time from the stack into D1, adds 48 to it
to obtain its ASCII code and calls the DISP routine. After all the digits
have been displayed (D4=-1) it then prints the carriage return and
line feed codes. At this point the result has been displayed on the
screen, indented below the month name, and the program can then
loop back to KEY, using the BRA KEY instruction, so that a further
keyboard entry can be intercepted.

In practice, the program keeps looping back from the BRA KEY
instruction to ‘KEY’, printing the mileage total for every month which
is entered at the keyboard. The only way to break this loop is to input
the characters ‘END’ from the keyboard, whose ASCII codes add up to
215. If you go back and look at the instructions which immediately

Data Structures and Data Processing eer n Se ee Oe, SS. 217

follow the ‘KEYTOT’ label, you will see that the three characters
entered at the keyboard each have their ASCII codes added to the D5
register. If the total of these codes becomes 215, as would be the case
if ‘END’ were keyed in, the BEQ EXIT instruction would direct
execution to the end of the program.

;
GALLS1

MILES1

GALLS2

MILES2

TOTALS

MES1

SUBMIL

DATES

MESSOFF

MESCNT

RESPNT

DNUM1 DC.

Sr iia ee ee a cee ie

zeezezetezrztiztzeiz =

ia. 6 Ck ee Sououwvoiwao wow ww

ave ae ane oe F (Sw oo ww

22,23,18,20,16,15
25,22,20,23,20,19
400,450,350,425,375,280
479 ,423,398,416,423,368
18,18,26,27,24,25
2A? Spmlbes 424628
380,357,496,501,478,482
465,475,423 ,489,470,524
14

"TOTAL CONSUMPTION: fF.

"TOTAL MILEAGE: ,

"AVERAGE CONSUMPTION: "

"AVERAGE MILEAGE: ?

"MILES PER GALLON: .

"MAY CONSUMPTION: 5

"MAY MILEAGE: -

12

217,0,205,2,224,4,227

6,251,8,237,10,255,12

221,14,232,16,230,18

243,20,204,22

0

%41111110000000000

24

;Gallons year 1

;Mileage year 1

;Gallons year 2

j;Mileage year 2

;Reserve memory space

;for calculated data

;Headings for the

;output of the

;calculated data

;Reserve memory space

;for mileage totals

j;Date codes and

j;offsets for each

;month

;Reserve memory for

ycurrent header

;message address

;Define counter for

;counting off each

;printed heading

;Reserve memory

;for storing index

;offset of data in

; TOTALS array

;Store divisor no.1

218 First Steps in Assembly Language for the 68000

DNUM2 DC.W 10 ;Store divisor no.2

CENT DC.W 100 ;Store multiplier

KEYBUF DS.B 4 ;Buffer for inputs

DEVICE ODC.W 4

DC.B "CON

END ;End of program

The first four lines of the data section contain the original data figures,

with the gallons and mileage for year 1 followed by those for year 2.

Each set of data is separately labelled.

Following this is TOTALS, a reserved array of 14 words which is used
for storing the results as they are calculated. All calculated results will
occupy two words, irrespective of their values, because it is normally
helpful to store data in a uniform size format. A minimum of two
words are needed because some results are floating point decimal
values and therefore require an appropriate amount of memory space.

The seven text messages, with their base offset labelled ‘MES1’, form

part of the output of the results at the end of the program and these
have all been made the same length by padding them out with spaces
so that it is easier to format the output neatly on the screen later on.

SUBMIL is the label of another array reserved for results: this one being
for the total mileage figures for each corresponding month of the two
years. The data which goes in here is used to print out results in
response to the keyed in month names.

DATES is an array containing coded data representing the names of
months of the year, together with the offsets of the mileage totals,
which are used for indexing the results contained in SUBMIL.

The label MESSOFF refers to the address of a message offset value
which is initially zero. It is used to keep a record of the offset address

of the current message text as each result is printed out.

MESCNT is the address of a word which is used to count off each result

as it is displayed and this has been entered directly as a binary value,
as specified by the ‘%’ at the beginning.

RESPNT is the label of the address containing the offset of the current

data being referenced in the TOTALS array and which is initially zero.

Data Structures and Data Processing 219

DNUM1, DNUM2 and CENT are the addresses of the numeric constants 24,

10 and 100 which are used in the division and multiplication
operations.

KEYBUF consists of 4 bytes as a buffer for keyboard inputs.

Sorting Data

In Chapter 6 a simple BASIC bubble sort was shown. The following
assembly language program is an adaptation of this, in which several
characters are sorted into alphabetic order and displayed on the

screen.

This listing, which is presented with only brief rem statements,
should help you to test your understanding of the programs in this
book. It consists of instructions which have all been previously
demonstrated and follows the principles applied in the BASIC version
fairly closely. Once you have worked out how this program operates,

you will no doubt be able to expand it and adapt it for your own

purposes. Note that it has been coded as a subroutine so that it can

be called from other programs, therefore it terminates with an RTS

instruction.

A SORT PROGRAM DESIGNED TO SORT A SET OF

ASCII CHARACTERS INTO ALPHABETIC ORDER

w

LOOP 1 CERI S D6 306 will count swaps

LEA.L CHARS,A2 Offset of data in A2

MOVEQ #6,D4 sLength of data (less 2)

,in D4

LOOP2 MOVE.B (A2),D1 sMove an item of data to D1

MOVE.B 1(A2),D2 sMove the next one into D2

CMP.B D1,D2 ;Compare the two items

BCC NEXT ;Branch if C=0 to NEXT

EXG D1,D2 ;Otherwise exchange the

220 First Steps in Assembly Language for the 68000

;contents of D1 and De

MOVE.B 01,(A2) ;Replace in memory

MOVE.B D2,1(A2) ;Replace in memory

ADDQ #1,D06 ;Increment exchange counter
, wwe eee ew ewe ew ew ew ew ew ww ew ew ew ew ew ew ew ew ew ew ew ew ew ew ew ee ww eww ww ww ww ww wwe werner nw

;POINT TO NEXT ITEM AND REPEAT THE LOOP

NEXT ADDQ #1,A2 ;Point to next data item

DBRA D4,LO00P2 ;Loop back to LOOP2 while

704>-1
, ween ee we ew ee ew ew ew eww ew ew ew eww eww ew ew ew ew ee ew ew ew ew ew ww eww ww ew ew www ew ew ww wr rw errr eS

LOOP3

CMPI #0,D6 ;Any swaps in this loop?

BNE LOOP 1 ;1f so, go back to LOOP1

MOVEQ #7,D4 ;Otherwise get character

;count (less 1) in D4

LEA.L CHARS,A2 ;Point A2 to start of

;sorted data

MOVE.B (A2)+,D1 ;Transfer data item to D1

BSR DISP ;Call display subroutine

DBRA D4,L00P3 ;Go back to LOOP3 while

7D4>-1

RTS ;Return from sort subroutine

MOVEQ #-1,D3

MOVEQ #5,D0

TRAP #3

RTS

THE DATA

DC.B "ABDFCEGH' ;Define the data to be

sorted

END

Chapter 14

Debugging,
Instruction Formats &

Supervisor Mode Operation

Program Debugging

The process of debugging a machine code program can sometimes be
difficult and time consuming.

With a BASIC program only two things can happen if a program is
faulty: either the program stops and an identifying error message
appears, or the program runs but produces erroneous results. Either
way it is usually a simple matter to go through the listing to identify
and correct the faults.

A machine code program is much more difficult to debug because
minor errors can be very difficult to detect and an examination of the
original source listing, however well it might be annotated, will not
necessarily reveal the problem.

There is no universal law, other than Murphy’s Law, which
determines that a machine code program will fail at the first attempt.
Murphy’s Law is nevertheless powerful enough to ensure that most
programs of any degree of complexity will surely fail, not only on the
first attempt but probably on the second, third and fourth as well. In
machine code bugs appear to propagate: a successful attempt to
eliminate one type of bug seems to cause some kind of genetic
mutation process which spawns more virulent strains of bug which are
inured to most kinds of systematic treatment. Nevertheless, tried and
tested methods are available which will enable you eventually to coax

your programs into a stable condition, or even into a complete state

of perfect health.

Ninety percent of errors are easily traceable, since they are of a

common and almost inevitable kind. These include:

221

222 First Steps in Assembly Language for the 68000

[> Confusing absolute addresses with immediate data — the former

require only an address value or label name such as 80000, $29D1C

or YLABEL. The latter must be preceded by a ‘#’ sign such as

#80000, #$29D1C or #MYLABEL.

(> Destination errors — such as forgetting to use ADDA, MOVEA etc.

when the destination is an address register. An assembler may

insist that you use an ‘A’ suffix although some disassemblers may

remove the ‘A’ when they produce a listing. Check the source

code, not the object code for such errors.

f> Size errors — such as forgetting whether the data in a data register

is to be regarded as a byte, word or long word operand.

(> Address register errors — such as forgetting that a 16-bit operand

in an address register is automatically sign extended or that

address registers cannot accept byte operands.

(> Alignment errors — aligning word and long word operands at odd

numbered addresses.

[> Flag errors — forgetting that some operations do not affect any and

some do not affect all of the flags; and that some operations, such

as ABCD, do not change the zero flag if the result is zero.

[> Conditional branching errors — a loop count variable may be

incorrect, the loop may branch to the wrong location, or the

wrong conditions may be specified. DBcc instructions are particu-

larly problematic in this respect until you are used to them.

[> Loop register errors — some loops require a register to be cleared

before the beginning of the loop, for example when the loop is

being used to add separate items of data to the register on each

iteration. Always clear a register before use if you are unsure that

it is already clear since it may contain redundant data which will

affect your calculations.

(> Positioning — if specific addresses are referred to in a program,

destinations may have changed during editing or a non-relocatable

program may have been loaded from the wrong address.

These are only a few examples but they will serve to demonstrate some

of the simple errors which can render an otherwise perfectly designed

program unexecutable.

To identify and correct these and other errors, there are a number of

diagnostic procedures which can be performed. The following

paragraphs describe the most elementary of these.

Debugging, Instruction Formats & Supervisor Mode 223

Assembly Errors

The first line of defence is the assembly process itself. Any program
instructions which are formally incorrect will be identified by the
assembler as it converts the assembly language mnemonics into object
code. A good assembler will produce an annotated source listing of its
own, numbering all the program lines and identifying any incorrect
instructions with an error message such as ‘Line 8: second operand
cannot be an address register’. Only when all such errors have been
eliminated will the assembler produce an executable object file and
issue a message such as ‘Minor errors 0, Major errors 0’. This

reassuring message merely means that there are no formal errors left
in the program. Any structural or functional errors will be revealed
later.

Trial Run

The second step is to load and run your program, at which point your
program may work perfectly, you may simply get an error message
such as ‘Error 23: division by zero’, the system may go into limbo,

leaving you with nothing on the screen and no response from the
keyboard, or the entire system may crash. This trial run will give you
some idea of the scale of the problem and in some cases certain errors
will be identified immediately. If your program was supposed to print
a message for example, and gets no further than the first character,
then the problem probably lies in a program loop mechanism.

Debugging Monitor

The next stage is to reload the program under the control of a monitor

program. A typical monitor provides a number of useful debugging

tools which can be used in a systematic way to test a program

thoroughly. The most important of these are as follows:

> Disassembly listing — this produces an output similar to the object

code listings used in earlier chapters and is useful among other

things for checking that jumps and branches transfer execution to

the correct locations and that data accesses refer to the correct

locations.

224 First Steps in Assembly Language for the 68000
C—O

[> Breakpoints — very often it is not obvious where a fault is located

in a program. A breakpoint feature allows you to assign ‘break-

points’ to a number of key locations such as the final instructions

of important routines. The program may then be run under

monitor control (not necessarily from the beginning) and will

automatically stop and return to the monitor when it encounters a

breakpoint. At this stage you can obtain a listing of the current

register contents and flag settings to check whether they contain the

correct values.

[> Trace —a single step trace mechanism, which allows you to execute

a program one instruction at a time, will give a listing of all register

and flag contents after the execution of every instruction. This is

not much use for extensive tracing because the trace will follow

every twist and turn your program takes. If you have a lot of

branches to common subroutines, TRAP instructions or loops which

iterate hundreds or even thousands of times then you will produce

several miles of printer paper containing information which you can

never hope to analyze. A trace is very useful however in cases where

you have identified a possible error source and need to run through

a short sequence of code to determine exactly what occurs during

execution.

[> Dump —a hexadecimal ‘dump’ of the contents of a specified block

of memory can be useful to check that data is being entered or

modified correctly. A dump will normally show the byte contents

of about sixteen memory addresses per line and will normally

include a listing of the corresponding printable ASCII characters.

Systematic use of these facilities will normally be sufficient to track

down most types of error, although you must be prepared to exercise

a lot of patience in some cases. The important thing is to adopt a clear

and logical approach. If object code listings, breakpoint runs, traces

and dumps reveal no obvious errors but a particular routine will still

not run correctly, remember the obvious fact that an error must exist

somewhere. It may be that the error is due to faulty programming

rather than a lack of accuracy or else you are subconsciously looking

for one kind of error and therefore overlooking another.

PROG6 in Chapter 13 took two days to debug, despite all evidence that

the code was operating correctly. The fault lay not in the program but

in a reference table in the assembler documentation, which contained

a misprinted ASCII value! It is advisable to adopt the maxim of Sir

Arthur Conan Doyle’s Sherlock Holmes: “When you have eliminated

Debugging, Instruction Formats & Supervisor Mode 225 ce ee ee

the impossible, whatever remains, however improbable, must be the
truth.”

Instruction Opcode Formats

Although it is usual to program using the 68000 instruction mnemon-
ics, it is useful to be aware of the way in which these mnemonics are
translated by an assembler into a machine language opcode. It is
unlikely that you would ever want to program directly using opcodes,
but frequently you may need to alter the opcodes in an assembled
program. For example, if you are debugging a program and have
loaded it into a debugging monitor, you may wish to alter a few of the
opcodes in order to test or fine tune your object program.

Suppose, for example, that there is some unidentified minor fault
somewhere in your program which prevents it from operating
correctly. On of the most effective ways of tracing faults is to use a
‘trace’ utility to obtain a listing of all register contents as each
instruction is executed one at a time. If you have any TRAP
instructions in the program, the trace utility will divert execution to
an Operating system trap routine and you will have to trace all the way

through that before returning to your own code — a time consuming
and unnecessary procedure. It would be a lot simpler if you could
temporarily convert every TRAP code into a NOP code so that the trap
routines are not actually called during debugging.

You may also wish to insert additional instructions into the program,
without having to go to all the trouble of altering the source listing and
re-assembling the entire program.

A TRAP instruction is coded as a two byte opcode:

01001110 0100XXXxX ($4E4?)

The most significant 12 bits of this opcode represent the TRAP
instruction itself and the four least significant bits (represented by
*XXXX’ are reserved for the code of the type of trap required (i.e. traps
0 to 15). The opcode for a NOP instruction is:

01001110 01110001 ($4E71)

226 First Steps in Assembly Language for the 68000
a al i a Att ae

From this you can see that whatever the value of the low byte of a

TRAP instruction might be, the higher byte is exactly the same as the

higher byte of a NOP instruction. A TRAP instruction can therefore be

transformed into a NOP instruction simply by changing the lower byte

of the TRAP to $71.

Most other instructions are more complicated than this although some

other instructions which you are likely to want to change to NOP

during debugging, such as JMP, JSR and TRAPV are also two byte

instructions with their higher byte set to $4E.

If you look at the first instruction used in the programs in the

preceding chapters, MOVE@ #0,D1 you will see from the object code

listings that this is assembled as $7200.

In this case the object code follows the pattern:

0111RRRO DDDDDDDD

in which 0111 and the single 0 is the unique opcode for any MOVEQ

instruction, RRR is a three bit code for the register referred to in the

instruction and the eight Ds represent the single byte binary number

which is loaded into the register. The three byte code for D1 is 001

and the immediate value is 00000000, so the complete opcode for this

instruction 1s:

01110010 00000000 ($7200)

More complex instructions are encoded in a similar way but

incorporating a data size specifier and an effective address field,

indicating the operands containing the values which collectively

specify the physical address or addresses of the instruction operands.

The effective address field incorporates a mode field, indicating the

addressing mode used by the instruction. For example, the instruction

MOVE.B2(A2),D4 moves a byte from the effective address specified by

the sum of the contents of A2 plus 2 into the low order byte of register

D4. The opcode for this instruction consists of four bytes:

0001 000 100 101 010 00000000 00000010 ($112A0002)

The highest four bits, 0001, are the opcode for a byte move operation.

The next three bits, 000, are a code indicating the addressing mode

used for the destination operand (data register direct), the next three

Debugging, Instruction Formats & Supervisor Mode ree | ——————— EEE e—E

bits, 100, represent the code number for the destination register, D4.
The next three bits (101) represent the addressing mode used for the
source operand (address register indirect with displacement) and the
next three bits (010) are the code for address register A2. The final 16
bits are the opcode for the displacement (00000000 00000010).

It will be clear from this that instruction encoding is a complex
business and it is unfortunately not possible, because of the way in
which opcodes are irregularly split up into varying sized bit fields in
different instructions, to construct a simple one-for-one table showing
how various opcodes correspond to their assembly language mnemon-
Ics.

In the dark ages of computing it was usual to program in assembly
language by hand, carefully working out the opcodes for each
instruction and recording them on paper before copying them into the
computer.

With the availability of relatively inexpensive assemblers and disas-
semblers the necessity for all this effort has disappeared so that it is
possible not only to encode the original source listing using mnemon-
ics but also to edit the assembled object code in this way. Most
monitor programs will allow you to create spaces in assembled code
and to insert or modify existing instructions using standard 68000
mnemonics as well as hex values.

Supervisor Mode Operation

In the preceding chapters, numerous references have been made to
differences in operation between supervisor and user mode on the
68000. ©

Supervisor mode is something which you would normally have no
direct contact with since it always operates automatically at ‘manage-
ment’ level whenever it is required. Supervisor mode is initiated
automatically when the system is powered up and allows the operating
system to use certain ‘privileged’ instructions to allocate memory, to

establish contact with the console and to set various pointers such as
the stack pointer, the PC register and the initial contents of the status
register. Once control is handed over to user mode (by zeroing the ‘S’
flag in the status register) it usually remains there, switching

228 First Steps in Assembly Language for the 68000
OO EE eee

temporarily back to supervisor mode whenever certain events take

place such as TRAP instructions and other exceptions, I/O operations,

multi-processor communications and access by user programs to

operating system routines. From user mode it is impossible to select

supervisor mode directly since the instructions which can do this are

privileged. When user programs initiate a mode switch, such as with

a call to a TRAP routine, supervisor mode is automatically selected for

the duration of the operation and then returns to user mode

immediately afterwards.

Where a user program is running in a multi-user environment in

which a number of different programs are competing for the

processor’s attention, the system must arbitrate between the claims of

different programs, ensuring that no program can use, modify or

destroy the contents of other programs without pre-determined

authority. This protection extends to the execution of certain key

operations such as I/O transactions. It could be catastrophic if one

user were able to mask interrupts or communicate freely with external

devices if these operations were to interfere with the efficient running

of other processes. The operating system must therefore control and

coordinate these operations so that the system as a whole runs

smoothly and continuously.

The visible consequence of any attempt by a program to display

anti-social tendencies is that the operating system, functioning in

supervisor mode, will intercept and prevent such actions, either

redirecting execution to some corrective mechanism which smoothly

maintains law and order or to some customized system exception

routine which displays an error message and excludes the offending

program from current system operation.

Certain 68000 instructions are specifically designed for use by the

operating system running in supervisor mode. These are mostly

instructions which are concerned with loading pre-determined values

into system registers such as the system byte of the supervisor register

during system initialization and for obvious reasons may not be used

in applications programs. In user mode, any attempt to use these

privileged instructions is interrupted by an exception mechanism.

These special instructions are ANDI to SR, EORI to SR, MOVE to SR,

MOVE USP, ORI to SR, RESET, RTE and STOP.

You will notice that most of these privileged instructions are ones

which can be used directly to modify the contents of the SR register.

Debugging, Instruction Formats & Supervisor Mode 229 er ee ne

The lower byte of the SR register, the CCR, can be accessed freely in
user programs and a separate set of corresponding instructions is
provided for this purpose.

Memory Management System

Under normal circumstances there are very few problems associated
with addressing memory locations. When you need to execute a
program, address data or call a subroutine which is external to your
Own program you simply program the appropriate instruction and the
system itself works out the correct address for the required destina-
tion.

When the system is supporting a multi-user environment however,
the situation is considerably more complex. You may not be the only
user of the system and your current program may not be the only one
active at any one time.

You can imagine a situation in which your precious program, which
may not be considered by the system to have the highest priority, may
be located somewhere amongst millions of bytes of memory, fighting
for its existence amongst bigger and more important programs which
might at any moment invade your stored data and wipe out your own
program.

Furthermore, there is the danger that your own program may alter
vital flags or memory pointers and disrupt the functioning of other
processes in the system.

With this in mind you may feel that you could lead a far less traumatic
existence if you could write straightforward programs and expect the
system to work out for itself exactly where and when your code should

reside in physical memory and be executed; at the same time making
sure that no other users have access to your own, private, code and

data.

The memory management unit (MMU) of the 68000 is designed to do
precisely this. The ordinary applications programmer need have no
detailed understanding or knowledge of the way in which a multi-
user, multi-tasking system is configured.

230 First Steps in Assembly Language for the 68000

Essentially the MMU enables the operating system to allocate memory

into discrete blocks called memory spaces — some only being available

in supervisor mode, some in user mode, some containing data, some

containing code and some containing code and data.

The MMU is selectively able to separate these spaces so that a ‘task’

operating within one address space may be unable to access either the

code or the data belonging to another task. The operating system itself

can be protected in such a way that although it cannot be hijacked or

altered by a user program, its code can be accessed by user programs

under supervisor mode control so that key subroutines such as

peripheral control and communication routines can be used without

causing any harm.

Since the system has more extensive responsibilities than to concern

itself exclusively with the operation of one single user’s particular

program, it is designed to be task oriented rather than program

oriented. In simple terms, a task is simply a complete and coherent set

of instructions which together perform a particular function. The

memory management system holds a table containing details of the

position and status of all the tasks currently resident in the system,

enabling the operating system to maintain a smooth flow of execution

throughout the system, switching back and forth between different

tasks and between user and supervisor mode where required.

Afterword

The aim of this book has been to explain and demonstrate the main
concepts of assembly language programming and to provide you with
enough knowledge and understanding to be able to write some fairly
sophisticated programs of your own.

The subject of assembly language is a large and complex one and there
is a great deal more to learn. The next step is to go through the
instruction glossary in Appendix B, which will help to reinforce your
understanding of the instructions which you have learned and to
discover some new ones which have not been included in the previous
chapters.

After that, you may wish to go a stage further and buy a more
technical book which covers the subject in a more formal way and
which will introduce you to some of the finer points of programming.

It is important that you should be able to relate the material in this
book to the operation of you own system and therefore it is essential
to obtain some documentation which explains how to load and execute
machine code programs and how to access the graphics and other
service routines provided in your system.

231

232 First Steps in Assembly Language for the 68000
Se SS Ee

There are other topics which have not been covered here and which

may be of special interest to you. These include interfacing with high

level languages such as Pascal, programming associated processors

such as the 68008, 68010 and 68020 and using devices such as the 6820

PIA and the 6850 ACIA. You may also wish to go much more deeply

into the subject of system architecture than we have here and if you

ultimately wish to become involved in system design then you will

need much more precise and extensive technical details of system

operation.

For complete, detailed technical information on most aspects of 68000

processor operation then the essential reference book is Motorola’s

own 16-bit Microprocessor User’s Manual, available from book-

shops.

You will by now appreciate that aside from the technical aspects of
assembly language programming, there is scope for a lot of ‘creative’
development. Any potter will tell you that no matter how academically
expert you are on the molecular behaviour of clay, the shape in which
it finally ends up depends on the skill and creativity of the craftsman.

The kinds of programs which you fashion with a computer language
depend a great deal on the way in which a language is structured.
Artificial intelligence programmers mostly use programs like LISP
and Prolog because those languages are structured in such a way that
they suit that particular kind of application. The languages themselves
virtually suggest the way in which you set about a problem. Assembly
language on the other hand is about as structured as the potter’s lump
of clay, and there is plenty of scope for twisting your programs into
such weird and ugly shapes that even your computer will refuse to
have anything to do with them. The worst thing you can do is to sit
down and start a program without the slightest idea of how it is
supposed to end up. Assembly language is not like that.

Ultimately, any kind of program is an expression of what is going on
in your imagination. The careful definition of the problem which you
are working on usually suggests to you the kinds of data structures
which you need for its solution. If you can get into the habit of
thinking in structures, of imagining a real-world problem as sets of
efficiently interrelated sets of data, then you can virtually formulate
your programs before you even sit in front of the keyboard. Assembly
language itself is simply a means of manipulating and expressing those

ord 233

res and with practice and familiarity you should have no
ilty in achieving a high level of proficiency in a relatively short

-

ee ee <a ~—a tin ate = ——,. 4 = yr pe +O i acaetiiamenpreniine eatnge tein petal

i - r ——»

i bi > ew oa itergul too aT : ue *Soes
1 Ad ‘ pQsiz fey TIO This . 16 3 7 | é _

4
[het } 4) iS %, i wa Wee
’ Ade ProvigkiaS & 4! be OTT x By ' Pr Ae ae i

ni c .

i ae ote F :

tac * .

’ Dia |

7 2

u .

: _

i

A

i]

; e ‘
- ’ ,

’ nes ' sa ed m

ws

} i? ‘i i ‘ hq

Vt ; yar yeMs ttre ; ‘a

« ¢ uy “3 ’ > iad alt

i

TeLCTYy any kien? 4% WOT att »\\ seyTeLe >t a7 wies. %

ve imagcatTam,. 2c eee. deiniqgas of igic Dax flew

: ve eothigg chitsaally sagpeiy te you he kinds ol 5 se
Ly yon aoe for i sebytsgn) af, en cee get purrs

Vay. o) atcoante, of immgningg o onal wore neti
e tix Old : Mote 6 dato, thee ~ has, fs ms nai a Sates eet n ae

; = pupae age 2 ai ucel aia g ehte Sc a
a? se +

d on ee _ .s s ww »

aah “Yd :
: ; ! os»

LaF) J : . -

Appendices

290 bnsaqd A

Appendix A

Instructions by Category

Data Movement

EXG Exchange registers
LEA Load Effective Address
LINK Link and Allocate
MOVE Move data
MOVEA Move address
MOVEM Move multiple
MOVEP Move data to peripheral
MOVEQ Move quick
PEA Push effective address
SWAP Swap register halves
UNLK Unlink

Integer Arithmetic

ADD Add binary
ADDA Add address
ADDI Add immediate
ADDQ Add quick
ADDX Add extended
CLR Clear operand
CMP Compare
CMPA Compare address
CMPI Compare immediate
CMPM Compare memory
DIVS Signed division
DIVU Unsigned division
EXT Sign extend
MULS Signed multiplication
MULU Unsigned multiplication
NEG Negate
NEGX Negate with extend

237

238

SUB
SUBA

SUBI

SUBQ

SUBX

TAS

TST

ASL

ASR

LSL

LSR

ROL

ROR

ROXL

ROXR

BIST

BSET

BCLR

BCHG

First Steps in Assembly Language for the 68000

Subtract binary
Subtract address

Subtract immediate

Subtract quick
Subtract with extend
Test and set

Test

Logical

Logical and
And immediate
Logical or
Or immediate
Logical exclusive or
Eor immediate
Logical complement

Shift & Rotate

Arithmetic shift left
Arithmetic shift right
Logical shift left
Logical shift right
Rotate left
Rotate right
Rotate left with extend
Rotate right with extend

Bit Manipulation

Bit test
Bit test and set

Bit test and clear

Bit test and change

ABCD

SBCD

NBCD

Appendix A - Instructions by Category

BCD Operations

Add decimal

Subtract decimal

Negate decimal

Program Control

Bcc

DBcc

DBRA

$cc

BRA

BSR

JMP

JSR

RTR

RTS

ANDI to SR

EORI to SR

MOVE to SR

MOVE USP

ORI to SR

RESET

RTE

STOP

CHK

TRAP

TRAPV

ANDI to CCR

EORI to CCR

MOVE to CCR

MOVE from SR

ORI to CCR

Branch on condition

Decrement, test and branch
Decrement and branch

Set from condition
Unconditional branch

Branch to subroutine

Unconditional jump
Jump to subroutine
Return & restore CCR

Return from subroutine

System Control

AND immediate to SR

EOR immediate to SR

Move to SR

Move user stack pointer
OR immediate to SR

Reset
Return from exception
Load SR and stop
Check register

Trap
Trap on overflow

AND immediate to CCR

EOR immediate to CCR

Move to CCR

Move from SR

OR immediate to CCR

239

en

A ~

fe

bi

ba

“7%

-

:
n f i

j
* '

od

‘

a4

> Tait

a mn

fern tre D itu ee +" a

sex? (A ; 5

& teat 2 ‘ 3286

"? FAC
an a's e one

S10 ion ory! J au

rise 09" : are
deci an,

Zt a eS ag

Ti 1 1 oT?

BP ery Zs
7

ay , Creat

ia7Tipe/ Maeve 3

Y a ferosr er en) / ‘wa
, 4 often Ey gz

te'g) Yay ’ yo"

") 494 VR VuF 7 ios

Wee RT Re i2g

nie TSA

£33 61 Sie
AJ) OF 387

wrag chet et ise teregees Codie
ee nc ge a i es ca,

ranting? (lOi

heen Bur - 398

my) 4

o wat e625
inary 3 dow)

By Manig@iliica 8 Sh
wiitsra a qerl

bean! GAA

aad
¥92 of

Appendix B

Instruction Glossary

Key to Abbreviations

Instruction Mnemonics

The following abbreviations are used in the glossary to represent
registers operands:

An Any address register
Dn Any data register
Rn Any register
Ri Any register being used as an index

Addressing Modes
The following table indicates how the various addressing modes are
classified under the effective address categories: Data, Memory
(shown as Mem in the table), Contro/ and Alterable (shown as Alt).

Mode Symbol Data) Mem Control Alterable

Data reg direct Dn Xx Xx
Addr reg direct An X
Absolute nnnnn xX x xX
Immediate <imm> xX X
Addr reg indirect (An) xX xX X X
with predecrement -(An) Xx Xx xX
with postincrement (An)+ X X xX
with displacement d16(An) D4 X xX X
with index d8(An,Ri) X X X X

PC relative d16(PC) X X X
with index d8(PC,Ri) X xX X

The following codes, based on these classifications, are used in the
glossary to specify the effective address of certain operands:

241

242 First Steps in Assembly Language for the 68000

<ea> Effective Address — any addressing mode can be used

<aea) Alterable Effective Address

<cea> Control Effective Address

<dea> Data Effective Address

<caea> Control Alterable Effective Address

<daea) Data Alterable Effective Address

<maea> Memory Alterable Effective Address

Operand Sizes

The operand sizes applicable to the instructions are coded as B.

(byte), W. (word) and L. (long word).

Flags
The N, Z, V, C and X flags are listed in the glossary under each

instruction heading. The codes used to indicate the effect of individual

instructions on the flags are as follows:

0 flag reset
1 flag set
A flag affected by instruction.

> flag affected but setting undefined

Blank spaces under the flags indicate that they are not altered by the

instruction.

ABCD (decimal addition)

Addressing Modes:

ABCD Dn,Dn

ABCD -(An),-(An)

Mnemonic Operation Size Flags: NZ VCX

ABCD Decimal addition B. > AP AA

Description:

ABCD is a BCD addition operation which adds a binary coded decimal

Appendix B - Instruction Glossary 243 a cd

source operand and the value of the extend flag to a destination
operand with the result being stored in the destination. Note that the
zero flag is zeroed if the result is greater than zero, Otherwise it is
unchanged.

ADD, ADDA, ADDI, ADDQ

and ADDX (binary addition)

Addressing Modes:

ADD <ea>,Dn

ADD Dn,<maea>

ADDA <ea>,An

ADDI #<imm>,<daea>

ADDQ ¥<imm>,<aea>

ADDX Dn,Dn

ADDX -(An) ,-(An)

Mnemonic Operation Size Flags: NZ VCX

ADD Add binary B.W.L. AAAAA
ADDA Add address W.L.
ADDI Add immediate Bi Wirihe AAAAA
ADDQ Add quick oe AAAAA
ADDX Add extended B.W.L. AAAAA

Description: ADD adds a source to a destination operand and stores
the result in the destination.

The ADDA form of ADD specifies that the destination operand must be
an address register and that the data size must be either word or long.
Word sized results are sign extended. No flags are affected.

The ADDI form of ADD specifies that the source operand must be an
immediate value.

The ADDQ form of ADD specifies that the source operand must be an
immediate value in the range | to 8.

The ADDX form of ADD specifies that the extend bit is added to the
source operand before it is added to the destination.

244 First Steps in Assembly Language for the 68000
a ee a

Note that with ADD@ the flags are not affected if the destination is an

address register. With ADDX the zero flag is reset if the result is greater

than zero, otherwise it is unchanged.

AND, ANDI, ANDI to CCR

and ANDI to SR (Logical AND)

Addressing Modes:

AND <dea>,Dn

AND Dn,<maea>

ANDI #<imm>,<daea>

ANDI #<imm>,CCR

ANDI #<imm>,SR

Mnemonic Operation Size Flags: NZVCX

AND Logical AND B.W.L. AAO 0

ANDI AND immediate B Wa Ls AAO 0

ANDI to CCR AND immediate to CCRB. AAAAA

ANDI to SR AND immediate to SR W. AAAAA

Description: AND performs a logical AND operation between a source

and a destination operand with the result being stored in the

destination.

ANDI performs the same function but the source operand must be an

immediate value.

ANDI to CCR ANDs an immediate operand with the low order byte of

the status register.

ANDI to SR is a privileged instruction which ANDs an immediate

operand with the entire 16 bits of the status register.

Note that with ANDI to CCR and ANDI to SR the flags are affected

according to the bit values of the immediate value.

Appendix B — Instruction Glossary 245 ——

ASL & ASR (arithmetic bit shifts)

Addressing Modes:

SLDn,Dn

ASL #<imm>,Dn

ASL <maea>

ASR Dn,Dn

ASR #<imm>,Dn

ASR <maea>

Mnemonic Operation Sie ides NZ Vi

ASL Arithmetic shift left B.W.L. AAAAA
ASR Arithmetic shift right B.W.L. AAAAA

Description: ASL shifts the bits in an operand to the left, moving the
most significant bit of the operand into both the carry and extend flags
and moving a zero into the least significant bit position.

ASR shifts the bits in an operand to the right, moving the least
significant bit of the operand into the carry and extend flags. The high
order (sign) bit is replicated into its original position.

FIGURE B-1. ASL.

FIGURE B-2. ASR.

246 First Steps in Assembly Language for the 68000

Bcc, BRA & BSR (branch instructions)

Addressing Modes:

BCC <label>

BRA <label>

BSR <label>

gt
 Ee Be he tt 2 ee

Mnemonic Operation Size Flags: NZVCX

Bcc Branch conditionally B.W.

BRA Branch always B.W.

BSR Branch to subroutine B.W.

Description: BRA is a relative branch instruction which redirects

execution to a location relative to its own position, indicated by a label

representing a signed 8- or 16-bit displacement value.

BSR is similar to BRA except that it redirects execution to a subroutine.

The return address is automatically stacked so that a return can be

made to the instruction immediately following the BSR instruction.

Bcc is a conditional relative branching instruction which branches to

a destination location only if the specified conditions are true.

The conditions are incorporated in the instruction name: e.g. BEQ,

BNE etc. and are as follows:

EF

Condition Meaning Flags

cc Carry clear C=0
CS Carry set C=1
EQ Equal Z=1
F False 0
GE Greater or equal (N=1 & V=1) or (N=0 & V=0)

GT Greater than (N=1 & V=1 & Z=0)

or (N=0 & V=0 & Z=0)

HI High C=0 & Z=0
LE Less or equal Z=1 or (N=1 & V=0) or (N=0 & V=1)

LS Low or same C=1 or Z=1
LT Less than (N=1 & V=0) or (N=0 & V=1)
MI Minus N=1
NE Not equal Z=0

Appendix B — Instruction Glossary 247 eee

PI Plus N=0
T True]
vc Overflow clear V=0
vs Overflow set V>J

BCHG, BCLR, BSET

and BTST (bit testing instructions)

Addressing Modes:

BCHG Dn,<daea>

BCHG #<imm>,<daea>

BCLR Dn,<daea>

BCLR #<imm>,<daea>

BSET.Dn,<daea>

BSET #<imm>,<daea>

BTST Dn,<dea>

BIST #<imm>,<dea>

Mnemonic Operation Size Flags: NZ VC X

BCHG Bit test and change _B.L A
BCLR Bit test and clear B.L A
BSET Bit test and set B.L A
BTST Bit test B.L A

Description: BCHG tests a specified bit in a destination operand and
sets or resets the zero flag accordingly. The bit number is specified in
the source operand (modulo 32 for Dn source and modulo 8 for
#<imm> source). Following this the state of the specified bit is
changed (0 becomes | or 1 becomes 0).

BCLR works similarly except that after the test the specified bit is
always left reset.

BSET works similarly except that after the test the specified bit is
always left set.

BTST works similarly except that after the test the specified bit is
always left unchanged.

248 First Steps in Assembly Language for the 68000

CHK (check register against bounds)

Addressing Modes:

CHK <dea>,Dn

Se ee ae ee ee

Mnemonic Operation Size Flags: NZVCX

CHK Check register W. Av? 7a

against bounds

Description: CHK is intended to allow you to check that a specified

boundary allocated to a section of memory, such as an array, has not

been exceeded. The source operand is the boundary value (e.g. the

length of the array) as a signed integer and the destination register

holds the value to be checked. If the destination value is less than zero

or if it is greater than the source operand then a CHK trap exception

is initiated. The N flag is set if the destination is less than zero and

reset if it is greater than the source operand, otherwise it remains as

it was. The Z, V & C flags may also be affected but their values have

no significance.

CLR (set to zero)

Addressing Modes:

CLR <daea>

Mnemonic Operation Size . Flags: NZ VC X

CLR Reset destination B.W.L 0100

Description: The destination operand is zeroed. To zero a whole

register then the operation must be of long size.

CMP, CMPA, CMPI & CMPM (compare)

Addressing Modes:

CMP <ea>,Dn

CMPA <ea>,An

Appendix B — Instruction Glossary 249 a EY

CMPI #<imm>,<daea>

CMPM (An)+,(An)+

a a
Mnemonic Operation oie series: N ZV CX,
CMP Compare source and

destination B.W.L AAAA
CMPA Compare address a AAAA
CMPI Compare immediate B.W.L. AAAA
CMPM Compare memory Bs Wai AAAA

Description: (MP Compares a source with a destination operand
without altering either and alters the condition flags accordingly. The
destination must be a data register.

CMPA is the same as CMP but the destination operand must be an
address register.

CMPI is the same as CMP but the source operand must be an immediate
value.

CMPM is the same as CMP but the source and destination operands are
addressed in postincrement mode, allowing two separate sequential
blocks of data in memory to be compared under the control of a
program loop.

DBcc & DBRA

(decrement and branch instructions)

Addressing Modes:

DBcc Dn,<label>

DBRA Dn,<label>

Mnemonic Operation Size” Flags: (N2ZVC X

DBcc Decrement and W.
branch conditionally

DBRA Decrement and W.
branch unconditionally

250 First Steps in Assembly Language for the 68000

Description: DBRA decrements the source register by 1. If the source

register is then greater than —1 then execution is branched to a relative

destination specified by the label, otherwise execution continues with

the next instruction. The label represents a 8- or 16-bit signed

displacement.

DBcc is similar to DBRA except that before the register is decremented,

a specified condition is tested. If the condition is nor true then the

decrementation and register test is performed as for DBRA. If the

condition is true then no operation is performed and execution

continues with the following instruction.

The instruction DBE@ D4,L00P for example will branch execution to

a destination labelled ‘L00P’ until either D4 equals —1 or the Z flag is

set.

The conditions are incorporated in the instruction name: e.g. DBEQ,

DBNE etc. and are as follows:

SIDS Ay 2 eS ee

Condition Meaning Flags

CC Carry clear C=0

CS Carry set C=1

EQ Equal Z=1

F False 0

GE Greater or equal (N=1 & V=1) or (N=0 & V=0)

GT Greater than (N=1 & V=1 & Z=0)

. or (N=0 & V=0 & Z=0)

HI High C=0 & Z=0

LE Less or equal Z=1 or (N=1 & V=0) or (N=0 & V=1)

LS Low or same C=1 or Z=

LT Less than (N=1 & V=0) or (N=0 & V=1)

MI Minus N=]

NE Not equal Z=0

PI Plus N=0

T True]

vc Overflow clear V=0

VS Overflow set V=1

Appendix B - Instruction Glossary 251 a HE al MR A ASS ES 8 a ae

DIVS & DIVU (binary division)

Addressing Modes:

DIVS <dea>,Dn

DIVU <dea>,Dn

Mnemonic Operation Sizem Plage ON ZV CX

DIVS Signed division W. AAAO
DIVU Unsigned division W. AAAO

Description: DIVS divides a 32-bit destination operand (the dividend)
by a 16-bit source operand (the divisor) and stores the 32-bit result in
the destination. The quotient of the result is in the lower word of the
destination location and the remainder is in the higher word. The sign
of the remainder is the same as that of the original dividend unless the
remainder is zero (Z=1).

The sign of the quotient is indicated by the status of the N flag.

DIVU performs the same operation but using unsigned operands.

EOR, EORI, EORI to CCR

and EORI to SR (exclusive OR operations)

Addressing Modes:

EOR Dn,<daea>

EORI #<imm>,<daea>

EORI #<imm>,CCR
EORI #<imm>,SR

Mnemonic Operation Size Flags; NZVCX

EGR Logical exclusive OR B.W.L. AAO 0
EORI EOR imm. B.W.L. AAO 0
EORI to CCR EOR imm. to CCR B AAAAA
EORI to SR EOR immediate toSR_ W AAAAA

252 First Steps in Assembly Language for the 68000

Description: EOR performs a logical EOR operation between a source

and a destination operand with the result being stored in the

destination.

EORI performs the same function but the source operand must be an

immediate value.

EQRI to CCR EORs an immediate operand with the low order byte of

the status register.

EORI to SR is a privileged instruction which EORs an immediate

operand with the entire 16 bits of the status register.

Note that with EORI to CCR and EORI to SR the flags are affected

according to the bit values of the immediate value.

EXG (exchange registers)

Addressing Modes:

EXCH Rn,Rn

Mnemonic Operation Size Flags; NZ VCX

EXG Exchange registers ie

Description: Exchanges the entire 32-bit contents of the source and

destination registers.

EXT (sign extend)

Addressing Modes:

EXT Dn

Mnemonic Operation Size. .Flags: NZ ViGae

EXT Sign extend W.L. AAO 0

Description: copies bit 7 of a data register into bit positions 8 to 15 or

bit 15 into bit positions 16 to 31, depending on the operation size

specified.

Appendix B - Instruction Glossary 253

JMP & JSR (jump operations)

Addressing Modes:

JMP <cea>

JSR <cea>

Mnemonic Operation Size’ Flags: NZ'V CX

JMP Jump
JSR Jump to subroutine

Description: JMP transfers execution to a specified address.

JSR transfers execution to a subroutine at a specified address. The
return address is automatically stacked so that on return, execution
can continue with the instruction following the JSR instruction.

LEA (load effective address)

Addressing Modes:

LEA <cea>,An

Mnemonic Operation Sewers: NZ VCs

LEA Load effective
address

Description: Loads a specified address into an address register.

LINK (link and allocate)

Addressing Modes:

LINK An,#<imm>

Mnemonic Operation Size Flags: NZVCX

LINK Link and allocate

254 First Steps in Assembly Language for the 68000
en ee ee eee —eeereereeecocrerane

Description: LINK is used to allocate a stack frame area within the

stack.

The contents of the address register specified in the instruction are

pushed on to the stack. The stack pointer value is then copied into the

address register and an immediate 16-bit negative displacement value

is added to the stack pointer, thus creating a reserved area within the

stack whose base is held in the address register.

See also ‘UNLK’.

LSL & LSR (logical bit shifts)

Addressing Modes:

LSL Dn,Dn

LSL #<imm>,Dn

LSL <maea>

LSR Dn,Dn

LSR #<imm>,Dn

LSR <maea>

te tw as oo ee a ae ee

Mnemonic Operation Size Flags: NZVCX

LSL Logical shift left B.W.L. AAOAA

LSR Logical shift right B.W.L. AAOAA

Description: LSL shifts the bits in an operand to the left, moving the

original contents of the most significant bit into the carry and extend

flags and moving a zero into the least significant bit position.

LSR operates similarly except that the bits are shifted to the right, the

original least significant bit being copied into the carry and extend

flags and a zero being shifted in to the most significant bit position.

Multiple shifts are performed by using a count value in the source

operand.

Appendix B - Instruction Glossary 255

FIGURE B-3. LSL.

FIGURE B-4. LSR.

MOVE (move data)

Addressing Modes:

MOVE <ea>,<daea>

MOVEA <ea>,An
MOVEM <register list>,-(An)

MOVEM <register list>,<caea>

MOVEM (An)+,<register list>

MOVEM <cea>,<register list>

MOVEP Dn,d(An)
MOVEP d(An),Dn
MOVEQ £<imm>,Dn

MOVE <dea>,CCR
MOVE <dea>,SR

MOVE SR,<daea>

MOVE USP,An
MOVE An,USP

Mnemonic Operation Size Flags: NZ VC X

MOVE Move data von AAO 0

MOVEA Move address
MOVEM Move multiple
MOVEP Move to peripheral
MOVEQ Move quick aa 2. a i os (so

| al ie oc. 8

AAO 0

256 First Steps in Assembly Language for the 68000

MOVE to CCR Move to CCR W AAAAA

MOVE to SR Move to SR W. AAAAA

MOVE from SR Move from SR W.

MOVE USP Move user stack ptr L

Description: MOVE copies the contents of a source location into a

destination location.

MOVEA is the same as MOVE except that the destination must be an

address register. The flags are not affected.

MOVEM copies the contents of a specified list of registers on to the stack

or into an area of memory. MOVEM is also used to retrieve data which

has been stored previously by a MOVEM command. If the addressing

mode used with MOVEM is a control mode or (An)+ then the registers

are copied in the order DO to D7 then AO to A7. If the -(An) mode

is used then the registers are loaded in the order A7 to AO then D7 to

DO.

MOVEP copies two or four bytes of data from a data register into

alternate destination locations, or from alternate source locations into

a data register. MOVEP is used with peripheral interface units to

exchange data with peripheral devices. The interface units are

configured in such a way that data must be passed in alternate rather

than sequential byte units.

MOVE@ copies an 8-bit immediate value into a register. The higher

three bytes of the register are sign extended by the operation. If the

destination is an address register then the flags are not affected.

MOVE to CCR moves the low order byte of a 16-bit operand into the

CCR byte of the status register.

MOVE to SR is a privileged instruction which moves a 16-bit operand

into the entire status register.

MOVE from SR moves the entire contents of the status register into a

destination location.

MOVE USP is a privileged instruction which copies the user stack

pointer (A7) contents into an address register or vice versa.

Appendix B — Instruction Glossary 257 A A

MULS and MULU (multiply)

Addressing Modes:

MULS <dea>,Dn

MULU <dea>,Dn

Mnemonic Operation bizese’ Flags: N Z«eG.X

MULS Signed multiply W. AAO 0
MULU Unsigned multiply W. AAO 0

Description: MULS multiplies a signed 16-bit source operand and a
signed 16-bit destination operand with the 32-bit signed result being
stored in the destination register.

MULU operates similarly but with unsigned operands and yields an
unsigned result.

NBCD (negate decimal witu extend)

Addressing Modes:

NBCD <daea>

Mnemonic Operation Size ,urlags: INZ V Cars

NBCD Negate decimal B.. Renae AN

Description: NBCD subtracts the binary coded decimal destination
operand and the extend flag from zero and stores the result in the

destination. Note that the Z flag is zeroed by a NBCD result greater
than zero, otherwise it is unchanged.

258 First Steps in Assembly Language for the 68000

NEG and NEGX (negate and negate with extend)

Addressing modes:

NEG <daea>

NEGX <daea>

Se Re repr ete cia hace atl ane

Mnemonic Operation Size Flags: NZ VCX

NEG Negate binary B.W.L. AAAAA

NEGX Negate with extend 8B.W.L. AAAAA

Description: NEG subtracts the destination operand from zero and

stores the result in the destination.

NEGX subtracts the destination operand and the extend flag from zero

and stores the result in the destination. NEGX is similar to NBCD except

that it is a binary rather than a decimal operation. Note that the Z flag

is zeroed by a NEGX result greater than zero, otherwise it is

unchanged.

NOP (no operation)

Addressing Modes:
NOP (implicit)

eee

Mnemonic Operation Size Flags;s NZ VC X

NOP No operation

Description: NOP occupies two bytes of memory space in the code but

has no effect, other than to advance the program counter by two.

NOT (logical not)

Addressing Modes:
NOT <daea>

a a ae a bape oe ere arenas ea are ee

Mnemonic Operation Size Flags: NZ VCX

NOT Logical complement B.W.L. AAO 0

Appendix B - Instruction Glossary 259 a

Description: NOT produces the 1’s complement of the destination
operand, storing the result in the destination.

OR, ORI, ORI to CCR

and ORI to SR (logical OR operations)

Addressing Modes:

OR <dea>,Dn

OR Dn,<maea>

ORI #<imm>,<daea>

ORI #<imm>,CCR

ORI #<imm>,SR

Mnemonic Operation Size Flags: NZ VCX

OR Logical OR B.Wals AAO 0
ORI OR immediate Bu Wels AAO 0
ORI to CCR OR immediate to CCRB. AAAA
ORI to SR OR immediate to SR W. AAAA

Description: 0R performs a logical OR operation between a source and
a destination operand with the result being stored in the destination.

ORI performs the same function but the source operand must be an
immediate value.

ORI to CCR ORs an immediate operand with the low order byte of the
Status register.

ORI to SR is a privileged instruction which ORs an immediate operand
with the entire 16 bits of the status register.

Note that with ORI to CCR and ORI to SR the flags are affected
according to the bit values of the immediate value. For every set bit
in the immediate value the corresponding flag is set, otherwise it is
unchanged.

260 First Steps in Assembly Language for the 68000

PEA (push effective address)

Addressing Modes:
PEA <cea>

Mnemonic Operation Size Flags: NZ VCX

PEA Push effective addr. L.

Description: PEA calculates the effective address of the operand and

pushes it, as a long word, on to the stack.

RESET (reset external devices)

Addressing Modes:
RESET (implicit)

Mnemonic Operation Size Flags: NZ VCX

RESET Reset

Description: RESET is a privileged instruction which resets the reset

lines, resetting all external devices.

ROL, ROXL, ROR

and ROXR (bit rotation instructions)

Addressing Modes:

ROL Dn,Dn

ROL #<imm>,Dn

ROL <maea>

ROXL Dn,Dn

ROXL #<imm>,Dn

ROXL <maea>

ROR Dn,Dn

ROR #<imm>,Dn

ROR <maea>

ROXR Dn,Dn

ROXR #<imm>,Dn

ROXR <maea>

Appendix B - Instruction Glossary 261 eee hc

Mnemonic Operation nize ae Plagss NZ VC X

ROL Rotate left B.W.L. AAOA
ROXL Rotate left with extend B.W.L. AAOAA
ROR Rotate right BeWetss AAOA
ROXR Rotate right with extend B.W.L. AA Oca A

Description: ROL rotates the bits in the destination operand to the left,
copying the original high order bit into the carry flag and also copying
it into the least significant bit position. The source operand specifies
the number of times the destination operand is rotated; if the source
is immediate it must be in the range 1 to 8. A memory operand (maea)
can only be rotated once and the operand must be word sized.

ROXL works the same way except that the high order bit is copied into
the extend flag as well as the carry flag. The previous value of the
extend flag is copied into the low order bit position.

ROR rotates an operand to the right, copying the low order bit of the
operand into the carry flag and also copying it into the high order bit
position.

ROXR is similar to ROR except that the low order bit is copied into both
the carry and extend flags and the previous extend flag value is copied
into the high order bit.

FIGURE. B-5. ROL.

FIGURE B-6. ROXL.

262 First Steps in Assembly Language for the 68000
hh nee oe ec ca an

fiero =
FIGURE B-7. ROR.

FIGURE B-8. ROXR.

RTE, RTR and RTS (return instructions)

Addressing Modes:
RTE (implicit)

RTR (implicit)

RTS (implicit)

Mnemonic Operation Flags;) NZ VC X

RTE Return from exception AAAAA

RTR Return & restore CCR flags AAAAA

RTS Return from subroutine

Description: RTE is a privileged instruction which is used to return

from exception subroutines to the program which was being executed

before the exception was initiated.

RTR is used to return from a subroutine to the program which was

being executed before the subroutine was called. The instruction pops

the return address from the stack and copies it into the PC register and

also pops the previous value of the CCR register from the stack and

replaces it in the CCR. (The previous contents of the CCR must first

have been saved at the beginning of the subroutine).

RTS is used as a straightforward return from a subroutine to the

program which was being executed before the subroutine was called.

It pops the return address from the stack and copies it into the PC

register.

Appendix B - Instruction Glossary 263 + Nl ili a i lieth ai

SBCD (subtract decimal with extend)

Addressing Modes:
SBCD Dn,Dn

SBCD -(An) ,- (An)

Mnemonic Operation size’, Flags; NZVC X

SBCD Sub dec with extend B. PAS ALE.

Description: SBCD subtracts a source operand, together with the value
of the extend flag, from a destination operand and stores the result in
the destination. The operation is performed using binary coded
decimal arithmetic.

Note that the zero flag is zeroed by a non-zero result, otherwise it is
unchanged.

Scc (set from condition)

Addressing Modes:
Scc <daea>

Mnemonic Operation Size Flags: NZ VC X

Bcc Set from condition B.

Description: Scc tests a destination byte operand for a specified
condition. If the condition is true then the destination byte is set to
the value 255, otherwise it is set to zero.

The conditions are incorporated in the instruction name: e.g. SEQ,

SNE etc. and are as follows:

Condition Meaning Flags

CC Carry clear C=0
CS Carry set C=
EQ Equal Z=1
F False 0

GE Greater or equal (N=1 & V=1) or (N=0 & V=0)

GT Greater than (N=1 & V=1 & Z=0)

or (N=0 & V=0 & Z=0)

264 First Steps in Assembly Language for the 68000
is |) Seen manta Satria eT tra

HI High C=0 & Z=0

LE Less or equal Z=1 or (N=1 & V=0) or (N=0 & V=))

LS Low or same C=1 or Z=1

LT Less than (N=1 & V=0) or (N=0 & V=1)

MI Minus N=1
NE Not equal Z=0
PI Plus N=0

T True 1

vc Overflow clear V=0
vs Overflow set V=1

STOP (load status register and stop)

Addressing Modes:
STOP #<imm>

Mnemonic Operation Size Flags: NZVCX

STOP Stop execution AAAAA

Description: STOP is a privileged instruction which loads an im-

mediate value into the status register increments PC and then stops all

execution until a trace or external reset exception is initiated or untl

an external interrupt of sufficient priority occurs.

SUB, SUBA, SUBI, SUBQ

and SUBX (binary subtraction)

Addressing Modes:

SUB <ea>,Dn

SUB Dn,<maea>

SUBA <ea>,An

SUBI #<imm>,<daea>

SUBQ #<imm>,<aea>

SUBX Dn,Dn

SUBX -(An) ,-(An)

Appendix B — Instruction Glossary 265

a ee

Mnemonic Operation Size Flags: NZVCX

SUB Subtract binary B.-L. AAAAA
SUBA Subtract address W.L.
SUBI Subtract immediate .B.W.L. AAAAA
SUBQ Subtract quick B.W.L. AAAAA
SUBX Subtract with extend B.W.L. AAAAA

Description: SUB subtracts a source from a destination operand and
stores the result in the destination.

The SUBA form of SUB specifies that the destination operand must be
an address register and that the data size must be either word or long.
Word sized results are sign extended. The flags are not affected.

The SUBI form of SUB specifies that the source operand must be an
immediate value.

The SUBQ form of SUB specifies that the source operand must be an
immediate value in the range 1 to 8. The flags are not affected if the
destination is an address register.

The SUBX form of SUB specifies that the extend bit is added to the
source operand before it is subtracted from the destination. Note that
with SUBX the zero flag is set if the result is zero, otherwise it is
unchanged.

SWAP (swap register words)

Addressing Modes:
SWAP Dn

Mnemonic Operation _ Size Flags: NZ VC X

SWAP Swap register words W. AAO 0

Description: SWAP exchanges the values of the hi and lo words of the

specified data register.

266 First Steps in Assembly Language for the 68000

TAS (test and set)

Addressing Modes:
TAS <daea>

Mnemonic Operation Size Flags: NZ VC X

TAS Test bit and set B. AAO 0

Description: TAS tests the byte contained in the effective address

specified in the instruction and sets or resets the N and Z flags

according to its value. The high order bit of the operand is then set.

No other processor may access the operand while the instruction is

being executed.

TRAP & TRAPYV (trap exceptions)

Addressing Modes:
TRAP £<imm>

TRAPV (implied)

Mnemonic Operation Size Flags: NZVCX

TRAP Trap exception

TRAPV Trap if overflow

Description: A TRAP instruction forces a trap exception, diverting

execution to one of 16 trap handling subroutines as specified by the

immediate operand in the instruction (in the range 0 to 15).

TRAPV forces a TRAPV exception if the overflow flag is set at the time

the instruction is executed.

TST (test)

Addressing Modes:
TST <daea>

Appendix B - Instruction Glossary 267 I es

Mnemonic Operation Size Plaga: NN 2V.C X

TST west A AAO 0

Description: TST compares the specified operand with zero, altering
the condition flags according to the result.

UNLK (unlink)

Addressing Modes:
UNLK An

Mnemonic Operation nize FlapoN ZV CX

UNLK Unlink

Description: UNLK reverses the operation of the LINK instruction,
relinquishing a stack frame. The contents of the specified address
register are loaded into A7 and the long word on top of the stack is
then loaded into the address register. See also ‘LINK’.

)@al yesh SUSE rt ‘vaezaebe? bctiqaatne Forth

; ~
«t Siete a =< m a .

j 5
|

vv AS ieu,e a
roger. | | *

; (? ; de Peg Keartr, ae - ‘
aT Alis Ceri Sit Ae > Ae Lies A ¢

, ; ‘
1Miz94 2 itt. i. cpa

j are

© °
" Le * a7) 1% 3

‘
¥ fay A

tJ . : ‘ § z +) ; ‘ hk Aue ent

v ! * LF ae 1¢ et 4 Sih PL t | o4é 7 4 fe Pa ‘it

C J 4 ‘. ‘ ont

ate ren 10 Creep ot A ole aot
ri < ‘ue : . -_s ‘a Ay He, Soc rsh Pd BAP Mw Ot OS

4 *

' “ t
i

r+

. 7 A , s7u

§

a 7) <> , 7

‘ ni

‘ tae beri nt ' (ve

an | ren te : cr by | , \

!

PY exfetren a oid ereriow | » set ahs

rat 14 CRRTAS
le

rgT ‘ A , \ a ~ >) Lt 7 ab : ify

As exis 7 wt
Week Me ae Sey ; hoe ae ad ee ls i

Vey Sk oe ' ;

Appendix C

Conversion Table

ion Se |
Get ee i es BYTE 1

Luex brent 5 oxerr 41 pxerr 3 pretr af pert 1
0

| BINARY
0000
0001
0010
0011
0100
0101
0110
O111
1000
1001
1010
1011
1100
1104
1110
1111

Won racine wre! &

AMO ODBDDwo WSs wre 983040

FIGURE C-1. Conversion Table.

The above table is designed for rapid conversion between decimal,
hexadecimal and binary numbers. The columns headed Digit 1, HEX
and BINARY contain the decimal, hexadecimal and binary values 0
to 15. Columns ‘Digit 1’ and ‘Digit 2’ together represent the lo and
hi order nibbles of a single byte. Columns ‘Digit 3’ and ‘Digit 4
together represent the hi byte of a 16-bit number. Column 5
represents the decimal value of the high order nibble of a 20-bit

number.

Converting from hexadecimal to decimal

Look up the least significant hexadecimal digit in the HEX column

and read across to the corresponding decimal value in Column ‘Digit

1’. Look up the second least significant hexadecimal digit in the HEX

269

270 First Steps in Assembly Language for the 68000

column and read across to the corresponding decimal value in Column

‘Digit 2’. Repeat this process for each hex digit and then add the

decimal values obtained. For example, to convert hex A24B3:

ee

Hex Decimal

3
176

1024
8192

655360 >N Ey w ae th

a ——————

664755

a

ee

Converting from decimal to hex

Locate the nearest number in the table which is less than or equal to

the decimal number and read off the corresponding hex digit in the

HEX column. Subtract the decimal number in the table and repeat

the above procedure until the result equals zero. For example, to

convert decimal 754368 to hex:

eee

Decimal Table Hex

754368 -— 720896 B
= 33499 - 32768 8

= i py Aatede 2
= 219 - 208 D

= L1> 2 re

= 0
754368 = B82DB

Converting from decimal to binary

Follow the same procedure as for decimal to hex but substitute the

numbers from the BINARY column for those in the HEX column.

For example, to convert decimal 75436 to binary:

Appendix C — Conversions 271
eee

Decimal Table Binary

754368 — 720896 1011
= 33499 — 32768 1000
= 731 — 512 0010
= 219 — 208 =1101
= ll — Ie? 1004
= 0
754368 = 1011 1000 0010 1101 1011

Converting from binary to decimal

Divide the binary numbers into 4-bit sections and add the cor-
responding decimal values, starting with the low order nibble. For
example, to convert 1001 1101 1010 0011 to decimal:

Nibble Col No. Decimal

0011] 3
1010 "4 160
1101 3 3328
1001 4 36864

= 40355

Converting from hex to binary and binary to hex

Each hex digit corresponds to a 4-bit binary value. Use the HEX and

BINARY columns for direct conversion.

For example, hex 2AD46 is

0010 1010 1101 0100 0110.

75 & ns TH Axsom bebcaiivap Time?

; / ;
; on ey }

ne 4t2208 oY WA sa
ae. ee tn — PF Ste » aes bi » +3 ee a

< ~ *

px pA a }

. ¥

7 ™ 7
> ‘ sf j - ale |

| *

4 r? ;

i}; j :

Ay

' 4 ‘ .
ed | . ' STL. %; ; Sra 5) tj)

=~ Wry ‘ T 4 fi

[: me he * ; ; 7

- : | 7 ‘3

] >

7

‘ 4 °
“-

SR ST
*, 4 eee Pe

. ly 4%

’
1

‘>

ri wt ify nd t bne Yteaid O§ xed qweyt sandisvel

Zit edo hey VE we lath-P a ot bre eer Re

> mursevage Bond 1 t zucrulon YR

«i BOTAS xad. 984

Converting in deci 6 fae |

. :
x . os =

fare ; J agl ee ae he rT = ~T ; i. re "a

fore ahs, ABH 1a
- : : hey & f

Index

ACIA (and PIA) 105, 231 Base register 87

AsbWandylSk, LSR(53 Binary Coded Decimal 108, 115
ASR 245 Binary arithmetic 52, 105
Absolute addressing 29, 140 —numbers 6
—branch 62 —to decimal conversion 271
—displacement 62 — to hexadecimal conversion 271
Addition 105 Bits 115
Address (Program counter relative) 36 Bit flags 40
—return 77 —rotation 5]
— registers 22-3, 135, 137, 141 —testing 148
— register indirect 34 Blocks (indexed) 91
Addresses 2 Branch (absolute) 57, 59, 62, 169

—memory 4 —conditional 63, 170
— long and short 28 —errors 222
Addressing (PC relative) 145 — indirect 62
— register indirect 31 —relative 60, 62
—absolute 29, 140 — short and long 169

—immediate 30, 141 — unconditional 171
— immediate quick 31 Breakpoints 224
—implicit 139 Buffer flushing 153
— register direct 140 Bullfrogs 40
—relative 57 Bus errors 103
-errors 102, 222 Bytes 3,5, 10, 115

— mode classification 146
— modes Zi, 24, 135, 139, 241 CHK 102, 167

—indirect 83 CURS l67. 17>

Alignment errors 222 CMP 65, 167
Alphabetising (sorting) 219 CMPI 41, 162
Alterable referencing 147 CMPM 90
Arithmetic (binary) 105 Calenianons 18

— operations 99 Calling subroutines 67
— co-processor 19 Carriage return 14
Assembler mnemonics 132 Carry flag 164

- programs 118 Classification of addressing modes 146

~ structure 118 Co-processor (arithmetic) 19
Assembling 115 Communication 12

Assembly language | Comparisons 41
-errors 223 Compiling 19

Condition code flags 28, 39-40, 63, 138,161

Bcc 63, 168, 169, 170, 246 Conditional branching 63, 170

BCHG,BCLR 55, 168, 247 - suffixes 49

BEQ 43, 49, 63, 152 Console initialisation 150

BMI 1767 Control codes 14

BRA 58, 169, 171, 246 - referencing 147
BSET 55148, 168, 247 Conversions (numeric) 269

BSR 58, 99, 152, 169, 171, 176, 177, 246 Counting 52

BIST 55, 148, 168, 247 CPU (Central Processing Unit) 2

273

274 First Steps in Assembly Language for the 68000

DBEQ 65
DBF 66
DBRA 90, 152, 169, 171, 249
DBcc 168, 169, 170, 249

DIVS 251
DIVU 251
Data 2
-~dumps_ 130

—handling 83
—immediate 147
— processing 197
—referencing 146

—registers 22, 135
—sizes 115
=storage 7,12

— structures 197
Debugging 127, 221, 223
Decimal to binary 270

—to hexadecimal 270

Destinations 21
Destination register 26

—errors 222
Disabling exceptions 100
Disassembling 19, 127, 223

Displacement 62
Display memory 11

Division 108
Dumps (data) 130, 224

END 126
EOR 53102, 251
EORI 228, 251
EQU 150
EXG 252
EXT 167, 175-6, 252
Errors (address registers) 222

-—addressing 102, 222

—alignment 222
—assembly 223

~branching 222

—bus 103
— destination 222

— flag 222
—loop register 222

— size 222

Exceptions 99
— disabling 100
—external 99, 103

—internal 102

— masking 100
—priorities 101
—trace 103

—trap 102
— vector table 104

Extend flag 49, 165
External devices 103
—exceptions 99, 103

FOR..NEXT 18, 65
FIFO (First In First Out) 76

Flags 24, 28, 39-40, 51, 53, 95, 138, 161

Flag errors 222
— alterations (testing) 54

—carrv 164

— condition codes 63
— control instructions 167

—extend 165

—interrupt 166
— masking 166
— overflow 164

-—sign 163
— status 166
— supervisor 167

—trace 166

— zero 162
Floating point numbers 5

Flushing buffer 153
Format of instructions 221, 225

Frames (stack) 80

GOSUB, GOTO 57, 63

Hexadecimal to binary 271
—to decimal 269

Hiand Lo bytes 8

FRSTHEND “63
IN 105
ID initialisation 150

Illegal commands 102
IMASK (Interrupt mask) 129

Immediate addressing 30-1,
Implicit addressing 25, 139

Index register 35
Indexed blocks 91

Indexes 34
Indexing 88

141

Indirect addressing modes 83

—branch 62
Initialisation (ID and CON)

— of registers 175
Input operations 105
—and output 105, 99
Instruction codes 10, 12

-formats 221, 225
—~mnemonics 241
Internal exceptions 99, 102

Interrupt flag 166
Interrupts 103

JMP 58, 162, 253
JSR 99, 58, 62, 88, 171, 253
Jumps 58

150

Index

LER. 253
LINK 81, 253
LSL 254
LSR 254
Labels 96
—branch to 60
Linefeed 14
Linking programs 185
—sections 126

Locations (memory) 3
Logical operations 53
Long addressing 28
-— branching 169
-word 7, 115

— storage 10

Lookup tables 88
Loop register errors 222

MOVE 25, 36-7, 102, 167
MOVEA 28, 137, 167, 256
MOVEM 75, 147, 256
MOVEP 256 °
MOVEQ 256
MOVE to 256
MOVE USP 228
MULS 107, 257
MULU 107, 257
Machine code 1, 131
Masking (exceptions) 100

—flags 166
Memory 2
—management 229

—-map 10

—referencing 146

MMU (Memory Management Unit) 229
Mnemonics 132, 241
Modes (addressing) 135
Monitor program 127, 223
Multi-user environment 229
Multiplication 107
Murphy (Law of) 221

NBCD 257

NEG 258
NEGX 258
NOP 162, 258

NOT 258

Negative numbers 44
Number representation 5, 44

Numeric conversions 8, 269

OR 53, 259
ORG 119
ORI 228, 259
OUT 105
One’s complement 44

Opcode formats 225

Output operations 105
Overflow flag 164

PEA 260
PEEK and POKE 31
Parameter passing 67, 178

— via stack 79

PC relative addressing 145
PIA (and ACIA) 105, 231
Pointers 135

Position dependence 96

Priorities (exception) 101
— interrupts 166
Privilege violation 102
Processing data 197

Program counter 23, 36, 135, 138
— addressing 36

—execution 20, 131
— branching 59

— positioning 96
— storage 12

— termination 154
Programs (assembler) 118
— linking 185

—relocatable 36-7

READ. .DATA function 18

REM 118
RESET 102, 228, 260
ROL 260
ROR, ROXL,R 53, 260
RORG 119
RTE 101, 102, 172, 228, 262
RTR 172, 262
RUS 2172. 77262
RAM addresses 4
Register (index) 35

— addressing 25, 31, 140-1
— base 87

— condition codes 40, 138

— indirect addressing 31
—model 135
-—stack 7]

— status 40, 135, 138
Registers 6, 21

-—address 23, 22, 135, 137
—data 22, 135

-— other 138
—status 16]

Relative addressing 57, 169
—branch 60, 62

— stack operations 82
Relocatable program 36-7
Reset 103

Return address (changing) 77
— from subroutine 77, 172, 184

276 First Steps in Assembly Language for the 68000

Reverse stacks 76

ROM addresses 4

Rotating bits 51

SBCD 110, 263
STOP 102, 264
SUB 167, 264
SUBA 28, 107, 137, 264
SUBI,Q,X 107, 264
Scie 263
Screen memory 11

Short absolute addressing 28, 169
—branching 169

Sign bit 44-4, 163
Signed values 43
Size errors 222

Size of data 115
Sorting 95, 173, 219

Source listing 127
Sources 21

Stack 66, 71
—frames 80
- pointer 24, 71, 135, 139

— register 228

— relative operations 82

— reverse 76

Status flags 161, 166
—register 24, 40, 135, 138, 161

Subroutines 20, 66, 154, 172, 184

— calling 67

—example 176

— returning from 77, 172, 184
Subtraction 105

Suffixes (conditional) 49
Supervisor flag 167
—~mode 221]

TAS 55, 168, 266
TRAP. 102, 225, 228, 266

TRAPV 266
TST 54, 168, 266
Tables (lookup) 88

Terminating a program = 154

Testing flags 54

Trace exceptions 103
—flag 166
Tracing a program 129, 221, 224
Trap exceptions 102
Trial runs 223
Two’s complement 44

UNLK 81
Unconditional branching 171

Vector tables 100
Violation (privilege) 102

Word 7, 115
— and long word (stacks) 75

— storage 10

Zero flag 41, 162

First Steps in 68000 Assembly Language

Owners of Motorola 68000-based micros, such as the Apple Macintosh,

Commodore Amiga and Atari 520 & 1040 STs, enjoy some of the best user

interfaces available. All of these computers have been designed to shield the

user from the technical side of machine operation. However, some working

knowledge of assembly language is needed in order to fully understand the

way data is processed inside the machine. These computers, which utilise an

extremely sophisticated machine architecture, can appear to be difficult to

master. First Steps in 68000 Assembly Language, however, describes the

ins and outs of assembly language and shows that it can be easily learned.

This book clearly explains the meaning of all the basic assembly language

details, including data storage and data addressing; the use of registers, flags

and stacks; conditional branching and referencing indexed tables of data.

These concepts are presented in a clear and concise manner with many

illustrations to guide the reader.

Topics covered include:

- Mnemonics and machine code — converting instructions to numbers

~ Memory, Registers and Stacks — storing data for all occasions

- Flags — making conditional decisions

- Branching - redirecting program execution

_ JIndexing — addressing data

Robert Erskine, the founder of the software house Microgame Simula-

tions, is the author of a number of books on computer programming and

two best-selling computer games. He has broadcast regularly about

computing and written many articles for the computer press.

%12.50

Glentop Press Ltd

Standfast House

Bath Place

~. Barnet

a Herts EN5 5XE

