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Preface 

This book is an introduction to microcomputer system organization and assembly 

language programming and in particular for the Motorola 68000 (M68000). Besides 

presenting the basic concepts of microcomputer systems and instruction set models, 

it also presents techniques that facilitate the use of a microcomputer system as a 

component in system control applications. 

There are two important objectives of this book. First, it provides an introduc- 

tion to computer system organization by presenting the functional components of 

a naked computer system that is stripped of all the layers of software that it is 

usually clothed in. Second, it provides an introduction to assembly language pro- 

gramming by presenting the most important concepts of instruction set models. 

These objectives are met in the following way. 

The important concepts of microcomputer systems are introduced step by step 

by using a series of successively refined models. All details that are not relevant 

for the time being are hidden so as to let the reader concentrate on one issue at a 

time. I have found that this is important in order not to drown in all the details 

that often are associated with complex systems such as microcomputers. 

The instruction set of the M68000 is also introduced step by step, starting with a 

subset of all the available registers and such instructions and addressing modes that 

are relevant for the model at hand. The model of the M68000 is then expanded 

step by step to cover more instructions and more addressing modes, leading to 

more functionality. 

The book gives a pure functional presentation of M68000-based microcomputer 

systems and does not include implementation issues, thus making it suitable to 

use the book for first-year or second-year students in the electrical or computer 

engineering curriculum. In fact, the only prerequisite needed is some experience of 

programming in a high-level language. I have used the material in the book success- 

fully for first-year students in the electrical and computer engineering curriculum 

at Lund University for several years. 

Control systems is an important area in which microcomputer systems play an 
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important role. Microcomputers are often used as components in a system con- 
sisting of a large number of communicating microcomputer systems. In order to 
emphasize this important application area, I have included a chapter on real-time 
control which illustrates how one can use a microcomputer system to support con- 
currently executing processes. We will learn in some detail how to design schedulers 
for time-sharing and real-time operating systems. 

The outline of the book is as follows: Chapters 1 and 2 provide sufficient prere- 
quisites in number systems and elementary computer arithmetic. In Chapter 3 and 
4, I give a detailed presentation of the functional components and instruction set 
models for microcomputer systems in general, and for the M68000 in particular. 
At the conclusion of Chapter 4 I have introduced most of the instructions so that 
we will be able to design assembly language programs. The theme of Chapter 5 is 
to provide the reader with guidelines on how to design correct assembly language 
programs. This is achieved by applying a commonly-used technique known as 
step-wise refinement. I advocate the use of a high-level notation to specify the 
problem before it is coded in assembly. A Pascal-like notation is used throughout 
to express algorithms and solutions. In Chapters 6 and 7, we look in more detail 
into how the computer communicates with the outside world. Various schemes 
for synchronization of program execution with external events. such as polling 
and interrupt, are presented. We also look more closely into how a computer 
supports subroutines by introducing the stack. In Chapter 7, we concentrate on 
the issue of how two computerized devices can communicate. We note that this 
can be done by using programmable interfaces that can be set up to meet the 
communication requirements. Finally, in Chapter 8, we will see that a computer 
system can efficiently be used to execute several programs in a time-shared fashion. 
An important issue in this context is the management of real-time and I/O. I will 
show how a simple time-sharing and a real-time scheduler can be designed to meet 
this goal. 

The textbook contains several worked examples to highlight the basic ideas. In 
addition, it also contains a large number of exercises. The appendices contain 
solutions to all these exercises, a summary of most instructions for the M68000. 
and an ASCII table. 

This book is a result of teaching undergraduate students on the sub ject for more 
than ten years. Experience has been gathered by many people. I am indebted to 
my colleagues, past and present, for having contributed to many fundamental ideas 
behind this book, especially Lars Philipson and Lennart Ohlsson. A special thanks 
goes to Mats Cedervall for having reviewed the chapters about number systems and 
computer arithmetic. Finally, I am indebted to a large number of students from 
whom I’ve received many constructive ideas. Thank you all! 

Lund, May 1992 

Per Stenstrom 



Chapter 1 

Number Systems and Symbol 
Representation in Computers 

1.1 Number systems 

When we deal with numbers we often mean the decimal number system consisting 

of the ten digits, ie. {0,...,9}. The historical reason for this is that we have ten 
fingers, which enabled people in the old days to use their fingers as calculators. In 

a sense, the reason why we use the decimal number system is arbitrary. We could 

use another base or radix other than 10 just as well. 

Computers use the binary number system. ‘The reason for this is that they 

are built from digital devices which are based on two distinct voltages, namely 

‘high’ and ‘low’ or ‘1’ and ‘0’. This makes it extremely convenient to perform all 

computations based on the binary number system with radix 2, or a power of 2. 

A drawback with the binary number system is that numbers, in general, tend 

to be very long. For instance, the decimal number 65,537 needs 17 binary digits, 

abbreviated bits, to be represented in the binary number system. In order to 

express binary numbers in a more concise form, the hexadecimal number system 

has been widely used. 

The radix of the hexadecimal number system is 16 (= 2*). It thus comprises 

16 digits; 0,1,2,...,9,A,B,C,D,E,F, where A,B,...,F denote the decimal numbers 

10,11,...,15. The reasons why 16 is a convenient radix are (i) it is a power of 

2 (as we will see this makes it extremely easy to convert binary numbers into 

hexadecimal ones and vice versa), (ii) it is sufficiently large to enable us to express 

fairly large numbers concisely, and (iii) it has a reasonable number of digits; for 

example, if 32 was used as a base, it would result in 32 digits. After this motivating 

introduction to number systems, we will look at number systems more formally. 

A number system is characterized by a radix r, r > 1, and a set of r digits or 

symbols given by the set D = {do, di,...,d,-1}. Any integer N can be represented 

in this number system by a finite sequence of digits as 

N, =U et On cone O1CD (1.1) 
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Table 1.1 Representation of the 16 smallest non-negative integers in the decimal. 
binary, and hexadecimal number systems. 

Decimal Binary Hexadecimal Decimal Binary Hexadecimal 

0 0 0 8 1000 8 
1 1 1 9 1001 9 
2 10 2 10 1010 A 
3 11 3 it 1011 B 
4 100 4 12 1100 C 
5 101 5 13 1101 D 
6 110 6 14 1110 E 
is 1d 7 15 Lit F 

where each b; € D. The length of the number is n. Note that we are precise in 
expressing which number system we use by the subscript r. In daily life, often we 
implicitly assume the decimal number system and can then omit r. Throughout 
the book, in case there could be any confusion as to which number system we 
mean, we will be careful to tag explicitly the number with its radix. 

It is important to distinguish between the representation and numeric value of 
an integer. For example 102 and 2;9 have the same numeric value but differ in their 
representations. The first number is represented in the binary number system and 
the second one is represented in the decimal number system. ‘The numeric value is 
an abstraction that is independent of number representation. We could just as well 
have represented the numeric values of the numbers by two fingers or two oranges. 

The numeric value V(N,.) of an integer N, which comprises n digits is computed 
as 

0 
VN gle. oaatat (1.2) 

i=n—1 

It is natural to represent the numeric value in the decimal number system, which 
is why we will never talk about a numeric value in a particular number system. 
Consequently, this formula will turn out to be useful when we convert a number in 
any number system into a decimal number, which will be done in the next section. 
We end this section by presenting the 16 smallest non-negative integers in the 

three number systems we have discussed. They are found in Table 1.1. 

1.2 Conversion between number systems 

The first case we consider is a method to convert a number in a number system 
with radix r into a decimal number. This is easily accomplished by applying the 
formula according to Equation 1.2. 
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Let us give an example: Convert the binary number 101011, into decimal rep- 

resentation. The length of the binary number is 6 which is why we get 

0 

LOL011o = $752 =1 x 240% 2 £1 x 2? 0x2? 41% 2)41 x 2° =43i 
t=). 

The leftmost bit is called the most significant bit (or msb for short) and the right- 

most bit is called the least significant bit (or Isb for short). 

In the second example, we want to convert 3Fj¢ into decimal representation. 

The length of the hexadecimal number is 2 and thus 

0 

3Big—= ) 016’ =3 x 16°+ Fig x 16° =3 x 16' + 1519 x 1 = 63y0 
o— 

The second method we present applies to conversions of a decimal number to a 

number system with an arbitrary radix r. It is based on Euclid’s theorem and can 

be found in almost every textbook on discrete mathematics. 

We want to convert Nip represented in the decimal number system into N, = 

bm—10m—2...6,b9 represented in a number system with radix r, where N, com- 

prises m digits. The relation between Nig and N, is given by Nig = bm—ar™ ) + 

bor”? +--+ + br + bo according to Equation 1.2. 

Euclid’s theorem says that Nig = Ar+bo, where bo < r. Thus, bp can be obtained 

as the remainder from the division Nio/r. The remainder from the division of A 

by B is denoted A(mod B), and thus 

by = Nio(mod r) 

But since b; = |Nio/r|(mod r), where |Nio/7]| is the integer part of the division 
Nio/r, we can obtain all digits of N,.. This is done by repeatedly applying Euclid’s 

theorem to the integer part of the division, which is expressed in the following 

algorithm: 

Step 1: Let X = Nip andi = 0. 

Step 2: b; = X(mod r). 

Step 3: Let X = |X/r| andi=71+1. 

Step 4: Repeat Step 2 and 3 until 7 = m. 

Now, it may happen that the result of the integer division is zero, before 7 = m. 

We could stop at this point, because further application of Step 2 will yield 6; = 0. 

These digits result in leading zeros and are not significant. For instance, 12;9 and 

01249 both have the same numeric value. 

It is now time to look at some examples. Convert 43,9 into an 8-bit binary 

number (m = 8). 
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bg 4319(mod 2) = 1 
by = [4310/2 | (mod 2) = 2149(mod 2) al 

bo = |2110/2| (mod 2) = 1010(mod 2) =| () 

bz = |1040/2|(mod 2) = 5(mod 2)= 1 
by = [5/2|(mod 2) = almod 2) = 0 
by = [2/21 mod 2) == i(mod 2) 1 
be = [1/2|(mod 2) = O(mod 2)= 0 
b7 = [0/2|(mod 2) = O(mod 2) = 0 

Thus, 4319 = 001010112. As mentioned, we could stop after we calculated be, 
because the result of the integer division is zero. Let us convert 6319 into a hexa- 
decimal number with 3 digits. 

bo = 6319(mod 16) = 1549 == oft 

bo = [3/16](mod 16) = 0(mod 16)= 0 

Thus, 6319 = 3F 16 which is what we expected since we made the opposite conversion 
earlier in this section. 

Now we turn our attention to the conversion between binary and hexadecimal 
numbers. As we pointed out in the beginning of this chapter, the convenience 
of hexadecimal numbers stems from the fact that they are easily converted into 
binary numbers. This is because each hexadecimal digit can be represented by 
exactly four bits (binary digits). For instance, 0010) = 216 and 1011, =Big (see 
Table 1.1). This means that we can convert any hexadecimal number by converting 
each individual hexadecimal digit in that number. Convert AB3i¢6 into a binary 
number: Since Aig = 10102, Big = 10119, and 316 = 00112 expressed as 4-position 
binary numbers we obtain AB3,, = 1010101100119. If instead we convert 123;¢ 
into a binary number we obtain 000100100011, = 1001000115. In this example, we 
obtained leading zeros which, of course, are not significant. Therefore we can omit 
them. 

Hopefully, we have now an idea of how to make the opposite conversion, that is, 
how to convert a binary number into a hexadecimal. If the length of the binary 
number is a multiple of four, it is straightforward. Then, we simply decompose 
the binary number in groups of four bits each, and use Table 1.1 to convert each 
individual group into one hexadecimal number as in the following example: Con- 
vert 1101011010015 into a hexadecimal number. We first decompose the binary 
number in three four-tuples as 1101|0110]1001. Using Table 1.1, we then obtain 
D6916, because 1101, =Dy¢, 0110 = 616, and 10012 = 91g. But how do we convert 
11010110102 into a hexadecimal number? The problem here is that the binary 
number comprises ten bits which is not a multiple of four. However, we can always 
add as many leading zeros as we need, since this will not change the numeric value 
of the number. That is, 1101011010, = 0011]0101|1010 = 35A4¢. 
We can now summarize the methods we have employed in this section to convert 

between different number systems as follows: 
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e Conversion of hexadecimal and binary numbers into decimal numbers is per- 
formed by using Equation 1.2. 

e Conversion of decimal numbers into binary or hexadecimal numbers is per- 
formed by using Euclid’s theorem. 

e Conversion of hexadecimal numbers into binary numbers or vice versa is 
performed by converting each hexadecimal digit or binary four-tuple individ- 
ually. 

EXERCISES 

i Neal Convert 101010, into a decimal number. 

i bee Convert 8FF 6 into a decimal number. 

133 Convert 233719 into a 4-digit hexadecimal number. 

1.4 Convert 29;9 into a 6-bit binary number. 

1.5 Convert 9A8 6 into a binary number. 

1.6 Convert 10011100101110, into a hexadecimal number. 

1.3. Symbol representation in a computer 

In this section, we are concerned with the problem of how to represent different 

kinds of information such as unsigned and signed integers, e.g. 4319, —115j0, and 

alpha-numeric characters such as in the string ‘Hello World’. 

Most information coding schemes for computers use binary codes. However, the 

coding scheme differs; e.g. integers and characters are coded differently. It is 

therefore important to know that the meaning of a sequence of bits is determined 

not only by the sequence itself, but also by the coding scheme that has been used. 

In the previous section, we showed one coding scheme, namely how non-negative 

integers can be represented by binary numbers. In this section, we will demonstrate 

other coding schemes that allow us to represent negative integers and characters. In 

Chapter 4, we will present yet another coding scheme, namely how the instructions 

of a computer, the Motorola 68000, are coded. 

1.3.1 Length of a sequence of bits 

In a computer information entities, such as numbers, are represented by a. fixed 

number of bits. This is referred to as the word length of the computer. The word 
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Table 1.2 Different word lengths used throughout the text. 

Name Number of bits 

Bit 1 

Nibble 4 

Byte 8 

Word 16 

Long word 32 

length differs from computer to computer. Some early microprocessors such as 
the Intel 8080 and the Zilog Z80 used 8-bit words which are commonly referred 
to as a byte. Early minicomputers such as the DEC PDP-11 used 16-bit words. 
Contemporary microcomputers often use 32-bit words and mainframes often use 
64 bits. Throughout the book, we will refer to 4, 8, 16, and 32 bits word length as 
nibble, byte, word, and long word. They are summarized in Table 1.2. 

Note that it is only nibble and byte that are terms commonly accepted to denote 
4 and 8 bits, respectively. The meaning of word and long word may differ from 
manufacturer to manufacturer. 

Why is the word length so important? The reason is that it determines the range 
of numbers we can express. To show this, we first consider 4-bit unsigned integers. 

1.3.2 Unsigned integers 

In order to represent unsigned integers, computers use the binary number repre- 
sentation presented in the previous section. This means that we can simply use 
Equation 1.2 to convert them into decimal numbers. If the word length is a nibble 
(4 bits), we can express all decimal numbers in the range [0, 15}. 

In general, if we have n-bit binary numbers interpreted as unsigned integers, we 
can express all decimal numbers in the range 

Rig [0,27 =) (1.3) 

because each bit can take one of two values so the number of codes are 2”. We say 
that Rio is the decimal range of the binary numbers. 

The range not only limits the possibility of expressing any integer, we must also 
carefully consider its effects on arithmetic operations, as we will see in the next 
chapter. 

An important point is that we can obtain a range with any size, given a sufficient 
word length. However, we can only express non-negative integers. We will therefore 
now present a coding scheme that is commonly used by computers to represent 
negative and non-negative integers in a range determined by the word length. 
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0001 mer 1111 
0010 1110 

0011 1101 

0100 1100 

0101 1011 

0110 1010 

0111 1000 1001 

Figure 1.1 Coding scheme for 4-bit two’s complement numbers. 

1.3.3 Signed integers 

We shall now consider how to represent integers in an arbitrary range. What we 

would like to achieve is to be able to express the same number of negative as 

non-negative integers. Given n-bit binary numbers, we would like the range to be 

(ie eg ea (1.4) 
This way, we have obtained the same number of non-negative as negative integers, 

namely 2”~!. We will present a coding scheme which turns out to be convenient to 

make conversions between its decimal number counterpart, and, as will be demon- 

strated in the next chapter, especially superior in dealing with integer arithmetic. 

The coding scheme is called two’s complement representation and will be defined 

below. 

We present the coding scheme for nibbles in Figure 1.1. We show the coding 

scheme by means of a circle. This will turn out to be convenient when we reason 

about arithmetic in the next chapter. Inside the circle, we show the decimal num- 

bers that can be represented, and outside the circle we show the corresponding 

two’s complement representation of these numbers. 

There are some interesting observations that can be made about the coding 

scheme: (i) the negative integers are coded with a leading ‘1’ and non-negative 

integers with a leading ‘0’, and (ii) the non-negative integers are coded in the same 

way we used before. 

The strange thing with the coding scheme is that one might ask why we code 

the negative integers in this way. We will not, however, answer this question until 

the next chapter. What we would like to do now is to demonstrate a method of 

how to code the negative integers. Given a decimal number jo in the range Rio 

as defined in Equation 1.4, the method is as follows: 
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e If Nio > 0, convert it into an n-bit binary number. 

e If Nio < 0, convert (2” + Nio)(mod 2”) into an n-bit binary number. 

We need to comment on the last point. If we code —7,9 as a 4-bit two’s complement 
number, we code (24 — 7)19 = 910 = 10019. This may seem awkward. The reason 
is that the coding scheme should allow us to add arbitrary integers. For instance, 
given two numbers A and B, where B = —A, then A+ B (= 0) is coded as 
(2" + A — A)(mod 2”) = 2” (mod 2”) = 0, but more about this in the next 
chapter. 

Convert 419 into an 8-bit two’s complement binary number: Since 4 is non- 
negative, we simply convert it to a binary number. Thus, 4,9 = 000001005. Now. to 
convert —4j9 into an 8-bit two’s complement number: We first obtain 2°—4 = 2521. 
This is then coded using Euclid’s theorem as 11111100s. Thus, —4;9 = 11111100, 
in 8-bit two’s complement representation. 

EXERCISES 

IR? What range can be obtained using 8 bits to express unsigned 
integers? 

1.8 What range can be obtained using 6 bits to express unsigned 
integers? 

1.9 What range can be obtained using 8 bits to express an equal 
number of negative and non-negative integers using two’s com- 
plement representation? 

1.10 What range can be obtained using 6 bits to express an equal 
number of negative and non-negative integers using two’s com- 
plement representation? 

1.11 Convert 7j9 into an 8-bit two’s complement binary number. 

1.12 Convert —71o into an 8-bit two’s complement binary number. 

1.13 Interpret the binary string 1001 in the range (0, 15] and as a 4-bit 
two’s complement number. 

1.3.4 Representation of alpha-numeric characters 

It is not sufficient for the computer to deal with numbers only. It must also be 
able to deal with text. One obvious example is to manage large databases of 
bibliographical information. In this case the computer can be used to aid people in 
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Table 1.3 The ASCII coding scheme for alpha-numeric characters. 

0 1 2 3 4 5 6 7 ~ey 
Of NUL DLE SP 0 @ P D 
1| SOH  ovCc1 l 1 A Q a q 
DUSTx pCa 8 y) B R b r 
SuleTx pes. Ve 3 C S C s 
4| EOT pea ¢ 4 D T d t 
5) ENQ WNAK  % 5 E U e u 
6) ACK SYN. & 6 F V f v 
WePeEeiS” SETBO 7 G W g W 
8 | BS CAN ( 8 H X h x 
Gul Toe EM ) 9 : Y i y 
Al} LE  svUB * J Z j z 
Bey rec es K k { 
CG ree FS e i; \ 1 | 
D!| cR Gs = = M m } 
BE) eco," “Rs ' ss N “ n ‘ 
(iy US / ? 0 és DEL 

searching for literature. In order to do this, it must be able to treat characters in a 

way that makes it possible to perform computations. For instance, when sorting a 

number of words into lexicographical order, it must be able to compare the letter 

‘A’ with ‘B’ and conclude that ‘B’ is greater than ‘A’, abstractly speaking. Since 

the same information is to be used by computers from different manufacturers, it 

is also important to have a standard coding scheme for characters. 

Characters are not only letters. They are basically all symbols that can be typed 

on an ordinary typewriter such as comma ‘,’, exclamation mark ‘!’, as well as the 

digit ‘8’. These are collectively called alpha-numeric characters. 

In order to meet these requirements, almost all computers agree upon a stan- 

dard coding scheme for alpha-numeric characters called ASCII (American Standard 

Code for Information Interchange). Each character is represented by a 7-bit code. 

We show these codes in hexadecimal representation in Table 1.3. 

Each character is associated with a 7-bit code. In Table 1.3, this code is repre- 

sented as 2 digit hexadecimal numbers. The first digit is retrieved from the column 

and the second one is retrieved from the row. For instance, the letter ‘A’ is coded 

as 411, = 10000012. The ASCII code for the digit ‘5’ is 3536 and so forth. 

Besides the visible characters, there are some ‘invisible’ control characters such 

as ‘carriage return’ (CR) coded as ODi¢, ‘line feed’ (LF), and ‘space’ (SP). In 

addition, there are some special characters used for information control such as 

‘end of text’ (ETX) etc. 
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EXERCISES 

1.14 What is the ASCII code of the letter ‘F’? 

1.15 What is the ASCII code of the character ‘+’? 

1.16 What is the ASCII code of the letter ‘a’? 

1.17 What is the sequence of ASCII codes that encodes the string 
‘HELLO’? 

1.18 What string has the sequence of ASCII codes ‘36 38 30 30 30°? 
(All codes are in hexadecimal representation) 

1.4 Summary and concluding remarks 

In this chapter, we have presented three coding schemes based on sequences of 
binary digits that enable us to represent integers and characters in a computer. 

Coding schemes are based on binary codes because computers interpret binary 
coded information. We began, therefore, by demonstrating methods of how to 
make conversions between binary and decimal numbers. Since binary numbers 
tend to be long compared to their decimal number counterparts, the hexadecimal 
number system was introduced. It enables us to (i) express binary numbers in a 
more concise form and (ii) simplify conversions to the binary number system. 

Unsigned integers are simply coded as binary numbers. In order to extend the 
representation to cover negative integers as well, we introduced the two’s comple- 
ment representation and a method to convert decimal integers into this represen- 
tation. In the next chapter, where we deal with arithmetic, we will reveal the 
motivation as to why the two’s complement representation is used. 

In order to represent characters, we presented a standard coding scheme called 
ASCII and explained how strings of text are coded in this coding scheme. 

An important conclusion of this chapter is that a sequence of bits is interpreted 
differently depending on the coding scheme used. For instance, 0001010, is inter- 
preted as 10j0 if it is coded as a 7-bit two’s complement number, or it could be 
interpreted as ‘line feed’ if it is coded according to ASCII. 



Chapter 2 

Elementary Computer 
Arithmetic and Logic 

2.1 Unsigned integer arithmetic 

In the previous chapter, we noted that given a word length of n bits, we can express 

unsigned integers in the range [0, 2” — 1]. We show this range for nibbles by means 

of a circle in Figure 2.1. When we add two numbers, say 5+ 2, we can illustrate this 

by moving 5 steps counter-clockwise and then 2 steps further yielding the correct 

result 7. However, what happens if we add 9+7? When we have moved 7 steps 

ahead of 9, we get the result zero. The reason for this is that we have exceeded 

the range limit 24 — 1 = 15. 
We shall now explain formally how addition is performed on unsigned numbers 

with a specific length n. Given two n-bit numbers A and B, the result of the 

addition is 

(A + B)(mod 2”) 

This means that the result is correct if and only if A+ B < 2". Otherwise, we say 

that the arithmetic operation has led to overflow. 

Computers must detect overflow in one way or another. We shall now explain 

how this is done. Computers do not actually use circles to perform additions or 

subtractions. In fact, the electronic devices that perform arithmetic operations 

work in the same way we learn in elementary school, namely, according to the 

well-known ‘pen-and-pencil method’. Given two n-bit binary numbers A and B, 

where A = dn_1@Qn_2--- 0109 and B = by_1bn_2...5 bo, the sum is also given by an 

Hebit mum berS, = S,1S nad +s 481180: 

Let us give an example to demonstrate the method. Suppose that A = 10102 = 

1040 Anleles = OO1l, == 310 

C00 LOO 

A | a 

ra Ue Ure ol 

So 1s 1 Aala( hl 
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0001 ve 1111 

0010 1110 

0011 1101 

0100 1100 

0101 1011 

0110 1010 

0111 1000 1001 

Figure 2.1 The range of unsigned integers for nibbles. 

These numbers are added by adding the bits in each column, taking into account 
the carry from the previous position. Formally, the sum is obtained according to 

si = (a; aie b; ail c;)(mod 2) (2.1) 

where the carry-bit is computed as 

Ci4. = | (a; ar b; ae c;)/2| 23) 

and co = 0. Note that ¢4; is computed as the integer part of the division of 
the sum with the radix (2). This is the rule we learn in elementary school when 
calculating the carry. 

From the example, we note that the leftmost carry-bit, c, = 0. The result of 
the addition yielded the correct value 1101) = 1319. Now look at the addition of 
A= 1010, = 1040 and B= Ollly = T10- 

COON ee Pe 

A aC et eae 

ts a re 8 a a a | 

S: ee rae 

In this case we get overflow. However, the addition resulted in Cr eeliiiese 
examples suggest a method to detect overflow. 

For addition of n-bit binary numbers, X, in the range [0,2” — 1], overflow is 
detected as the most significant (leftmost) carry-bit, c, = 1. 
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EXERCISES 

mer Add the two 4-bit, unsigned numbers A = 01115 and B = 00015. 

Determine the decimal values of A, B, and the sum and whether 

the addition resulted in overflow. 

2.2 Add the two 5-bit, unsigned numbers A = 001002 and B = 

111102. Determine the decimal values of A, B, and the sum and 

whether the addition resulted in overflow. 

2.3 Add the two 6-bit, unsigned numbers A = 0110002 and B = 

0000012. Determine the decimal values of A, B, and the sum 

and whether the addition resulted in overflow. 

2.4 Add the two 8-bit, unsigned numbers A = 100000002 and B = 

100000002. Determine the decimal values of A, B, and the sum 

and whether the addition resulted in overflow. 

2.2 Two’s complement arithmetic 

Two’s complement representation not only makes it possible to express negative 

integers; it also suggests a method to perform subtraction. This stems from the 

fact that the subtraction A -— B = A+(—B). We can simply subtract B from 

A by adding B’s negative equivalence. Given a number A, we call A’s negative 

equivalence the inverse of A and denote it A. 

In the previous chapter, we learned how to code an integer according to the two’s 

complement scheme. This method also suggests a way to derive the inverse A of 

any integer A. 
Given two n-bit two’s complement numbers A and B. The subtraction A — 

B(mod, 2”) = A + 2” = Bimod 2”)>= A+ B(mod 2”), where B = 2” — B. 

Consider the following example: Perform the subtraction A — B, where A = 

01002 = 440, and B = 00102 = 2; expressed as 4-bit two’s complement num- 

bers. We first determine the inverse of B, B = (24 — 2)io = 1410 = 1110s. 

We then perform the addition (i.e. according to the pen-and-pencil method) 

A+ B =01002 + 11102 = 00102 = 240. 
There is a convenient method to determine the inverse of an arbitrary two’s 

complement number which we present without any proof. 

Step 1: Replace all zeros by ones and vice versa. 

Step 2: Add one to the remaining number. 

For example, find the inverse of B = 0010: Step 1 yields 1101. Adding one to this 

number yields the result B = 1110 (compare with B in the above example). 



14 Elementary Computer Arithmetic and Logic 

We have now learned how to make addition and subtraction with two’s com- 
plement binary numbers. The problem of exceeding the range still exists, and 
we have to devise a test as to whether the result is correct or not. Let us con- 
sider the following example: We want to add two numbers A = 01002 = 449 and 
B = 01012 = 5)9 which are 4-bit two’s complement numbers. Recall that the range 
is [—8, 7]. Since A + B = 01002 + 0101, = 1001, = —719, the result is not correct. 
The reason is that the sum exceeds the upper range limit 7. Likewise, if we add 
two negative numbers, for instance, A = 11002 = —4;9 and B = 10115 = —510, we 
obtain 01115 = 749. 

Condition: (Overflow) The addition of two two’s complement 
numbers results in overflow iff 

Both numbers have the same sign (either negative or 
non-negative), and 
the sign of the sum is opposite to the numbers added. 

Applying this condition to the previous example, we can immediately see that the 
addition results in overflow by just examining the sign of the terms and the sum. 
Since both terms have the same sign (negative) and the sum is of the opposite sign 
(non-negative), both subconditions are satisfied. For a computer, this test is easily 
implemented because the sign of a number is specified by the most significant bit. 

EXERCISES 

2.5 Add the two 4-bit, two’s complement numbers A = Ollly and 
B = 0001. Determine the decimal values of A, B , and the sum 
and whether the addition resulted in overflow. 

2.6 Add the two 5-bit, two’s complement numbers 4 = 001002 and 
B = 111102. Determine the decimal values of A, B, and the sum 
and whether the addition resulted in overflow. 

et Add the two 6-bit, two’s complement numbers A = 0110002 and 
B = 0000012. Determine the decimal values of A, B, and the 
sum and whether the addition resulted in overflow. 

2.8 Add the two 8-bit, two’s complement numbers A — 10000000, 
and B = 100000002. Determine the decimal values of A, B, and 
the sum and whether the addition resulted in overflow. 

2.3 Logical operations 

We have mostly been concerned with how computers perform arithmetic. There are 
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other kinds of computations that must be carried out as well. An important class 

of computation that we need to be familiar with is referred to as logical operations. 

Logical operations enable the computer to decide whether a statement like ‘it’s 

raining and you are outside’ is true or false. This statement is true provided that 

the statements ‘it’s raining’ AND ‘you are outside’ both are true’ We could consider 

the statement as a composition of logical variables: Let X denote ‘it’s raining’ and 

Y denote ‘you are outside’ then we can rewrite the statement as a logical function: 

f(X,Y) = X AY where A denotes AND. The nice thing about this is that X 
and Y can take only one of two values, namely ‘true’ or ‘false’. This gives us the 

splendid idea of representing them as binary variables with ‘1’ denoting ‘true’ and 

‘0’ denoting ‘false’. Doing this, we can define f( X,Y) with a truth table: 

This function is referred to as the logical AND operation. Note that both X 

AND Y must be ‘1’ in order for the operation to yield the result ‘1’. Another 

useful logical operation is the following one: f(X) = X’. It is called the logical 

inverse, or NOT, of X; when X is true X’ is false, or if we use a truth table: 

NOT 

Eee 

0 1 

A) 

In order for the computer to perform logical reasoning, we need other logical 

operations as well. Consider the example ‘it’s raining or it’s snowing’. In this 

example, we need the inclusive-or, also denoted OR, operation to deal with it. We 

can rewrite the statement as a logical function according to: f(X,Y) = X VY, 

where V denotes OR. We get the following truth table: 

OR 

Nee 

0 0 0 

Oe 1 

Pw 1 

Lee OF 1 
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The logical OR operation is called inclusive-or because it is true if either or both 
subconditions is true. 

In the following logical expression, we want to distinguish the case when both 
subconditions are true: ‘either it’s raining or it’s snowing’. This statement says 
that either subcondition is true, but not both. The logical operation ‘either ... or’ 
is denoted exclusive-or , or EOR, and has the following truth table: 

EOR 

As we have seen, computers deal with binary strings of various lengths. Some- 
times it is useful to perform logical operations on strings of bits in order to compare 
two strings. Therefore, the logical operations must also be defined for a string of 
bits. Given two n-bit binary strings A and B, where A == Qn-1Qn-2...@,A9 and 
B = by_bp_2...bibo, the logical AND between these strings, that is C = A A B. 
provides a string C of n bits, where c; = a; \b;,7 =0,1,...,n—1. We illustrate 
this operation by an example. Suppose that A = 1010 and B — 0011, then 

A Pee Oud 0 

Ber Orit 

C Ofa.0 0 

OR and EOR on strings are defined analogously, namely, the operation on indi- 
vidual bits is performed positionally. With the same bit strings as in the previous 
example, the OR operation yields 

A iL Mt 

Biever “OU ey 

C | il Ma TA | 

and the EOR yields 

A ae et 

ie Ce Ome ort 

C LO er0 E 

Note, in the truth-table above, that c; = 1 iff a; # b;. This observation can be 
used to find out in which positions two binary strings differ. 

The operations AND, OR, and EOR as defined above are examples of binary 
operations because they take two operands. The NOT operation only takes one 
operand and is called a unary operation. 
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EXERCISES 

2.9 Perform the logical AND operation on the 4-bit strings A = 1111 
and B = 0010. 

2.10 Perform the logical AND operation on the 4-bit strings A = 1111 

and B = 0011. What can you say about the result as compared 
to B? 

2.11 Perform the OR operation (inclusive or) on the 4-bit strings 

A = 0000 and B = 1010. What can you say about the result as 

compared to B? 

2.12 Perform the EOR operation (exclusive or) on the 4-bit strings 
A= 0101 and B = 0101. 

2.13 Perform the EOR operation on the 4-bit strings A = 1111 and 

B = 0000. Comment on the result as compared to the previous 

exercise. 

2.4 Summary and concluding remarks 

In this chapter, we learned how to perform elementary arithmetic and logica! 

operations on binary numbers. 

An important issue that was raised when performing arithmetic operations was 

how to detect overflow, namely, when the operation gives an erroneous result. We 

presented simple techniques that are used by computers to test for overflow. 

We also provided a deeper insight into the advantage of the two’s complement 

coding scheme in dealing with arithmetic. It provided us with a means to imple- 

ment subtraction by adding the inverse of the number. For computers, this leads 

to a simpler machine design in that the same electronic devices can be used for 

both subtraction and addition. Finally, we presented some elementary logical op- 

erations. In the subsequent chapters, we will show that these primitive operations 

are essential for the support of high-level language constructs. 



Chapter 3 

Computer System Model 

In order to understand the operation of a computer system, one can use descriptions 
on several levels of abstractions. The intention behind this text is to understand 
the operation of a computer on the instruction set level. This abstraction is usually 
referred to as the architecture or programming model of the computer. Although 
this eliminates the need of explaining details about the electronic design of the 
computer, this abstraction level is still too complex. 

| Registers Arithmetic Logic Unit 
| (ALU) 

Control Unit 

Figure 3.1 The functional units of a computer. 

A computer has three main components (Figure 3.1): A Microprocessor (or 
processor for short), a Memory, and an Input/Output System (I/O). The processor 

18 
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consists of three main parts: the Arithmetic Logic Unit (ALU) where all arithmetic 

and logical operations take place, the Registers where data is temporarily stored, 

and the Control Unit which interprets the instructions contained in the program. 

The processor is an active component that synchronizes all actions in a computer. 

We will later describe its functionality in more detail. 

We have chosen the approach of ‘information hiding’ to explain the operation 

of a computer system. The Motorola 68000 (M68000) is but one example of a 

processor, although a widely used one. Choosing a concrete example enables us to 

exercise practically the concepts of machine language programming. However, it 

is important to know that some of its features are not general. We will therefore 

concentrate on those features that can be found in most computer systems rather 

than specifics about the M68000. 

The memory contains the program (a sequence of instructions) and the data 

to be processed. The memory content can be read as well as modified by the 

processor. The I/O-units are essential in order for the computer to communicate 

with the outside world. A computer without I/O-units could be thought of as a 

person without the abilities to listen and talk; how good a problem solver this 

person may be is irrelevant as long as his/her thoughts cannot be communicated 

to the outside world. 

We will start by looking at a model of the memory sufficient for the rest of the 

text, and then present the fundamental operation of the processor, the instruction 

cycle, namely, that of fetching the next instruction in memory and then executing 

it. 

3.1 Memory model 

The memory contains the program and temporary data. It is divided into a number 

of storage units, called memory cells, and each memory cell can store a number of 

bits. The size of a memory cell, i.e. the number of bits it contains, specifies the 

least amount of information that can be accessed by the processor. In order to 

retrieve the information contained in a memory cell, each memory cell is identified 

will assume that a memory cell contains 

8 bits (a byte). 

ica Se 2 shows a model of a me y aining B = 24 bytes. Since a memory 

address is an unsigned number in the range (0, 24 —1], the address can be expressed 
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Address) 3325 Se 

Byte at address 0 

He Word at address 0 

| 
is Long word at address 0 

Figure 3.2 The memory model. 

by A bits. Since the processor can read and write entities of different sizes, there 
is a need for a rule of how to store words and long words. In F igure 3.2, we show 
this rule for the M68000. A word at address i is stored with ot sguie 
b 1 ») in the memory cell at address 7 , and the least significa yte at 
Seed oe a long word (containing four bytes) at address i is stored 
with the most significant byte at address i and the least significant byte at address 
i+ 3. 

Formally, a read operation contains the following parameters 

READ(Size, Address) 

where Size € { Byte (B), Word (W), Long word (L)}, and Address € {ORe ts 
B—i}. The addresses that are allowed depend on the Size: if Size is Byte then 
? = 1 and if Size is Word or Long word then i = 2. For instance, the possible word 
addresses are 0,2,...,B—2. 
A write operation contains the following parameters 

WRITE( Size, Address, Data) 

where Size and Address are defined above and Data is the information that replaces 
the contents of the memory cells defined by Address and Size. 

The maximum size of the memory that is contained is determined by the number 
of address bits provided by the processor. For the M68000, which we consider in 
this text, the size of the memory that can be attached is 224 bytes. This is a 
huge amount of memory. By the same reason that we use entities like ‘kilo metre’ 
(abbreviated km) to denote 1000 metres, we use Kb (Kilo byte) to denote 1024 (= 
21°) bytes, and Mb (Mega byte) to denote 22° bytes. We will now start to look at 
the fundamental operation of a computer. 

3.2 The instruction cycle 

We now turn our attention to the processor. A computer program consists of a 
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8000. MOVE.L #1,D0 .; .i9:= 1 

8004.) CMPI Ly, #N, DO. .;, af, in > N 

£Or ji := 1. to iNido,8008. BHI $8014 ; then goto 8014 

Jie ich tks 800A ADDI.L #1,j Sagi ese 7+1 

SOOE. (ADDIVE #1,,D0) ie 1+1 

8012 BRA $8004 ; goto 8004 

8014 

Figure 3.3 An example of a Pascal program to the left and its translation into 

M68000 machine language to the right. 

sequence of instructions that exactly specifies what computation the computer is 

required to perform. Computer programs are mostly written by using a high-level 

language (HLL) such as Pascal, C, and Fortran. A program written in a HLL 

cannot be interpreted directly by the computer. It must first be translated into 

a machine language program, which is performed by a program sometimes called 

a compiler. The machine language consists of a set of binary coded instructions. 

Unlike a HLL, the machine language is specific to a particular computer. The 

elements of the machine language, that is the computer instructions, can only 

perform elementary tasks as compared to the more powerful HLL statements. 

In order to get an idea of the properties of a machine language, we consider the 

example program in Pascal and its M68000 machine language equivalence accord- 

Figure 3. 3. The Pascal program appears to the left and the corresponding 

appears to the right. The 

machine la is stored in memory at consecutive addresses which 

are shown to the left. Several important observations can be made: First, the 

HLL program consists of two statements, whereas the machine language program 

consists of more than twice this number of instructions. In general, a HLL pro- 

gram is translated into more than five times as many instructions as the number 

of statements. Second, the operation that is performed by each individual M68000 

instruction is very simple. For example, the first instruction (MOVE.L #1,D0) as- 

signs the value 1 to one of the registers (small memory in the processor), namely 

register DO, and the subsequent instruction compares DO with N. If DO contains 

a number that is greater than N, the execution will continue at address 8014. 

Otherwise, the statement j:=j+1 is carried out and i is incremented before the 

execution continues at address 8004 by the instruction BRA $8004. 

As has been pointed out previously, the machine language program is binary 

coded and stored in the memory. In the example above, we presented the machine 

language program in a more readable form for human beings, the so called assembly 

language notation. In the next chapter we will present the entire set of machine 

instructions for the M68000 and show how these are coded in the memory. At this 

point we shall only make clear that there is usually a one-to-one correspon- 
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dence between an assembly language instruction and the binary coded machine 
instruction. This enables us to explain a few things of how the computer executes 
a machine language program without bothering about coding details. 
_Instructions in a machine language program are stored at consecutive addresses 

in the memory. Each instruction occupies at least one word and, depending on the 
complexity of the instruction, up to five words. Basically, the processor fetches the 
next instruction from the memory. ; 

S the one that appears at the next higher address. However, as in the example 
above, there are exceptions to this rule. Special instructions, such as the branch- 
instructions, assign a new value to the program counter so as ontrol 
flow of the executed program. Consequently, t is to 
perform the following elementary cycle over and over again: 

Step 1: Fetch the instruction at the memory address specified by PC. 
Step 2: Update PC. 

Step 3: Execute the instruction. 

This cycle is referred to as the 2 e instruction cycle constitutes 
our first model of the functionality of the processor. In the next chapter we will 
refine this model, when we present the instruction set of the M68000. 

The I/O system enables the processor to transfer information between the mem- 
ory and the outside world. The I/O system is a general term for all devices that 
can convey such information such as terminals, printers, and disks. We will look 
more closely into this in the subsequent chapters. 

3.3. Concepts of computer instructions 

The instructions in the example program 
eration on a number of operands and 

f Figure 3.3 typi 

In general, an instruction 
co about three s: operation to be performed, where 
the operands are, and where to put the result. In order to express these basic tasks 
in a concise form, we will extensively use the following notation: 

A—- B 

A location is specified by either t 
or t 

denot ult. 
onsequently, B 

ecined by the expression 
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A. In order to express the 

For example: (L)+3 — L means: e sum of the conten 

constant number 3 is placed in location L’. Note that this is what the assignment 

statement L:=L+3 would do in Pascal. Thus, parentheses are used to express the 

content of a location and the arrow denotes assignment. 

The operands are either stored in the memory, in the internal registers of the 

processor, or explicitly contained in the instruction. In the instruction ‘MOVE.L 

#1,D0’ from Figure 3.3, one of the operands is explicitly contained in the instruc- 

tion, namely ‘1’, whereas the other is stored in register DO. In the instruction 

‘ADDI.L #1,7 at is, the result is to be 

stored at the examples demonstrate a few 

of all the po ut the iseagioh of an operand. The concept of 

doing this is called ganas °° far, we have introduced the following 

three addressing 

@ — s the e ory cell at 
address 1 to the memory cell at address 2. 

xample:qlgg— 2 

The assembly language lets the programmer write symbolic names for the op- 

erations and their operands. A program written in an assembly language can 

be translated automatically by another program, called an assembler. Below, we 

provide an example of a line of assembly code: 

LOOP ADD.B #$12,DO ; Add 12 (hex) to DO 

he first field (‘LOOP’) is optional and, 
© this particular instruction. The when used a unique name, called:a label, t 

SS ee the symbol rue the nd the third” 

sl 4812.00) specs its operas. used — 

ent, and the semicolon indicates the Gone a ie comment. 

Special characters are used to denote number representation and immediate ad- 

dressing. ‘#’ in the instruction tells the assembler that the operand is a number. 

In order to enable the programmer to express numbers in different number sys- 

tems, there must be a way to point this out in the assembly language program. 

We will use the notation found in Table 3.1 which, as a matter of fact, is the 

notation chosen by Motorola. The default representation is decimal, that is, if a 

Th 
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Table 3.1 Assembly language notation to express constant values in different 
number systems. 

Number system Notation 

Decimal (default) 
Binary % 
Hexadecimal $ 

constant value is not preceded by any of the characters in Table 3.1, the number is 
decimal. In the example above, ADD.B #$12,D0 the constant number 12 in hexa- 
decimal representation ($ precedes the number) is added to the content of DO. In 
the instruction 

ADD.B #%10101010,D0 

the binary constant 10101010. is added to the content of DO because the constant 
is preceded by %. 

: 

EXERCISES 

3.1 A computer can address 4 Mb memory. How many address bits 
are required to address each memory location? 

3.2 A memory is 4 Mb. How many long words does it contain? 

Sig At what address does the most significant byte of the long word 
at address 1016 reside? 

3.4 At what address does the least significant byte of the long word 
at address 2016 reside? 

3.5 An instruction occupies 2 words and is stored at address 800046. 
What does the program counter contain when the next instruc- 
tion is to be fetched? 

3.6 An instruction does the following; (42:6) V 551g — 4546. Sup- 
pose that (4216) = AAjg. What does the memory cell at address 
4516 contain after execution? 
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Sui, An instruction does the following; (4215) A 5516 — 4516. Sup- 

pose that (4215) = AAig. What does the memory cell at address 

45,6 contain after execution? 

3.8 An instruction does the following; (4216) + 5516 — 4516. Sup- 

pose that (4216) = 5515. What does the memory cell at address 
45,6 contain after execution? 

3.4 Summary and concluding remarks 

In this section, we introduced a simple model of a computer system including 

the Microprocessor (processor for short), the Memory, and the I/O-system. The 

memory stores the program and the data to be processed. The memory is organized 

as a vector of memory cells, where each memory cell is identified by a number called 

an address. 

In order for the processor to execute instructions and process data stored in the 

memory, the memory can be accessed by reading the content of a memory cell or 

modifying its content by a write operation. In order for the processor to access 

several consecutively stored memory cells, it can specify the number of memory 

cells by the Size attribute (byte, word, or long word). 

The processor keeps track of the next instruction to execute by a storage element 

called program counter. The processor performs the conceptually simple task of 

fetching an instruction, updating the program counter, and then executing the 

instruction. This repetitive task is referred to as the instruction cycle. 

High-level languages are used to specify the computation intended by the pro- 

grammer. However, a program written in a HLL cannot be interpreted by a 

computer and must be translated into machine language instructions, which is 

performed by the compiler. 

The instructions of a processor are binary coded and almost impossible for a 

human being to understand. In order to simplify the task of machine language 

programming, an assembly language is associated with each processor type. The 

assembly language instructions are semantically close to the structure of the binary 

coded machine language. In fact, there is usually a one-to-one correspondence be- 

tween the assembly language and the machine language instructions. The assembly 

language not only makes it conceptually attractive to understand the tion of 

a computer, it also constitutes a method to write programs and take advantage 

of the resources of the computer in an efficient way. Because of the one-to-one 

correspondence, the task of translating an assembly language program to machine 

instructions is simple. The program that performs this task is referred to as an 

assembler. 



Chapter 4 

Instruction Set Model 

This chapter aims to give a thorough understanding of the instruction set model of 
the processor. We follow the approach of ‘information hiding’ by first looking at a 
small subset of the instruction set and explaining only those parts of the processor 
that are relevant for this subset. We then successively refine the instruction set 
model by introducing more instructions and more functionality of the processor. 
When we finish our presentation in Chapter 6, we have introduced all concepts and 
functional units depicted in Figure 4.1, which shows the major parts of a computer 
system based on the microprocessor Motorola 68000. 

The Memory 

Data Address Control 
Registers Registers Registers 

0 

1 

FFEFFF 

The I/O-ports 

Figure 4.1 A model of a computer system based on M68000. 
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4.1 The data register model 

The Motorola 68000 (M68000) uses 24 address bits. It can thus address a mem- 
ory containing at most 274 = 16,777,216 memory cells of 8 bits each. In Fig- 

ure 4.2, we show the memory. Note that memory addresses are hexadecimal (ad- 

dress FFFFFF jg = 16,777, 21519). We will always use hexadecimal representation 

for addresses. 

Since a lot of computations are performed on the same data over and over again 

and since the memory access time is long compared to the processing speed of the 

processor, the processor contains a small set of high-speed memory cells denoted 

registers. Some of the registers are general purpose while other have dedicated 

functions. In the first model, we will introduce the general purpose registers, 

called data registers. 

The processor contains eight data registers, denoted DO to D7. The data registers 

are used as temporary storage for all arithmetic and logical operations. Our first 

model consists of the program counter (PC), the data registers, and the memory 

as shown in Figure 4.2. In Table 4.1, we list some instructions for arithmetic 

and logical operations between operands stored in memory locations and/or data 

registers relevant for the instruction set model so far. 

The Memory The Processor 

Data Control 
Registers Registers 

Figure 4.2 The data register model of the M68000. 

Each data register consists of 32 bits. It can thus store long words. Sometimes, 

however, computations need only to deal with bytes or words. Therefore, for all 

instructions listed in Table 4.1, there is an option to specify the size of the data 

to be manipulated. This is denoted by the suffix S appended to each operation 

word of the instruction. To denote a byte, S is replaced by B. Likewise, W and L 

represent word and long word manipulation, respectively. 

The instructions listed in Table 4.1 can be used to load data (MOVE), add or 

subtract data (ADD, SUB (Subtract)) or perform logical operations such as logical 

AND (AND), inclusive-or (OR), or exclusive-or (EOR). Besides these binary operations 

(two operands), there are three unary operations (one operand) (CLR, NEG, and 
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NOT) which assigns zero, negates, and performs the logical inverse of an operand, 
respectively. 

In the previous chapter we introduced three methods to refer to an operand 
(addressing modes): (data) register direct, absolute addressing, and immediate 
addressing. For the instructions in Table 4.1, the first two addressing modes can 
be used by replacing ‘a’ by the name of a data register, or an absolute address. 
The immediate addressing mode is obtained by using ‘#’ in front of a number. 

Table 4.1 Assembly instructions relevant for the data register model. S specifies 
the operand size (B, W, or L), a denotes an absolute address or a data register 
name, # before a numeric value (n) designates a constant (immediate addressing). 
Di denotes any of the data registers DO to D7. 

Name Operation 

MOVE.S Qj, ag (a1) — >? a9 

MOVE.S #n,a n—-a 
ADD.S a,Di (Di)+ (a) — Di 
ADD.S Dia  (Di)+(a) -a 
ADDI.S #n,Di (Di)+n — Di 
SUB.S a,Di (Di) — (a) — Di 
AND.S = a,Di (Di) A(a) — Di 
OR.S a,Di (Di) V(a) — Di 
EOR.S Dia (Di)@(a) a 
CLR.S a 0 >a 
NEG.S a 0-(a) > a 
NOT.S a (a)’ > a 

The first issue to be discussed is the impact of the operand size on the execution 
of an instruction. Suppose that we want to perform the operation: (2) — D0 
(place the content of memory cell 2 in register DO). This is carried out by the 
instruction: 

MOVE.B $2,D0 

Note that the memory address is hexadecimal. We use the notation from the 
previous chapter ‘$’ to express hexadecimal values. 

Since DO can store a long word, a natural question is to which part of DO the 
content of memory cell 2 is copied. The answer is that it is copied to the least 
significant bits of DO. Consequently, bits 7 through 0 will contain the same value 
as memory cell 2. All other bits of DO remain unaffected as shown in Figure 4.3. Likewise, if the same operation with operand size word (W) is performed, that is, 
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Memory Data register 

i+] 

in? MOVE.B i DOF 

ore MOVE.W i ,DO 

MOVE.L i DO oe Je Se 

Figure 4.3 The impact of the operand size on the result of a MOVE operation 

between memory and a data register. 

MOVE.W $2,D0 

the content of memory cell 2 is copied to bits 15 through 8 and the content of 

memory cell 3 is copied to bits 7 through 0 (recall from the previous chapter how 

words and long words are stored at memory). Finally, if we use a long word (L), 

such as in 

MOVE.L $2,D0 

the content of memory cell 2 is copied to bits 31 through 24, the content of memory 

cell 3 to bits 23 through 16, the content of memory cell 4 to bits 15 through 8, and 

finally, the content of memory cell 5 to bits 7 through 0 in DO. We summarize the 

impact of the operand size on the operation in Figure 4.3. The shaded parts of the 

register are not affected by the instruction. 

The second issue to be discussed is the use of addressing modes. Almost all 

instructions listed in Table 4.1 have one thing in common, namely, they need two 

operands, where the second operand (the rightmost) specifies the location where 

the result is put. We will refer to the first operand as the source operand, and the 

second operand as the destination operand. 

In Table 4.1, a denotes either the address of a memory location or the name of 

a data register. For instance, the operation: (D0) — D1 is performed by the 

instruction 

MOVE.L DO,D1 

If we want to copy a constant into a data register or a memory location, that 

is, using immediate addressing, we put ‘7’ before the constant as in the following 

example 
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MOVE.L #$25,D1 

where the constant 00000025 ¢ is copied into D1 (long word operation). 

The ADD-instruction performs addition according to the methods we presented 

in Chapter 2. From Table 4.1, we note that there are three versions of the ADD- 

instruction. They differ in the use of addressing modes — while the first two versions 

either use a data register as a source or destination operand, the third version 
(ADDI) employs immediate addressing on the source operand. Although not listed 
in Table 4.1, the same addressing-mode combinations are allowed for all other 
arithmetic and logical instructions such as SUB, AND, and OR. For example, if the 
source operand is a constant, we use SUBI, ANDI, ORI, and EORI. For EOR, however. 
the source operand must always be a data register. 

The last three instructions in Table 4.1 (CLR, NEG, and NOT) take only one 
operand, that is, the source and destination operand, both are the same. CLR 
copies zero to the operand, NEG converts an operand into its negative equivalence, 
and NOT performs the logical inverse of the operand. 

In order to perform a specific computation, more than one instruction is usually 
needed. For example, if we wish to perform: (1) + (2) — 3, the following 
instructions are needed: 

MOVE.B $1,D0 

ADD.B $2,D0 

MOVE.B_ DO,$3 

EXERCISES 

4.1 Suppose that (D0) = 12345678, and the contents of memory 
cells 0 through 3 are (0) = 8716, (1) = 6546, (2) = 4316, (3) = 

2116. What is the content of DO after execution of (a) MOVE.B 
$0 ,DO (b) MOVE.W $0,D0 (c) MOVE.L $0,D0? 

4.2 Suppose that (D0) = 010101016 and the contents of memory 
cells 0 through 3 are (0) — 8716, (1) == 6546, (2) — A316, (3) = 

2116. What is the content of DO after execution of (a) ADD.B 
$0,DO (b) ADD.W $0,DO0 (c) ADD.L $0,D0? 
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4.3 Suppose that (D0) = AAAAAAAAje¢ and the contents of mem- 

ory cells 0 through 3 are (0) = 5546, (1) = AAje, (2) = 5516, (3) 

= AAjg. What is the content of DO after execution of (a) AND.B 

$0,DO (b) AND.W $0,DO (c) AND.L $0,D0? 

4.4 What sequence of instructions performs the operation 

(21Fig) + 2519 — 2FAj6, assuming 8-bit operands? 

4.5 What sequence of instructions performs the operation 

(123416) — 2539 — 2516, assuming 8-bit operands? 

4.6 What sequence of instructions performs the operation 

(3) V4 — 3, assuming 8-bit operands? 

In the example programs above, we have used memory locations as variables, 

much like variables in high-level languages. In fact, variable names in high-level 

languages are translated into absolute memory addresses by the compiler. In order 

for this to happen, most high-level languages require that the programmer declares 

all the variables used by the program. The compiler then uses the declarations to 

substitute all symbolic variable names with absolute addresses. A nice thing about 

this is that one can use variable names that reflect the use of them. 

Assemblers allow the programmer to use symbolic names for memory locations as 

long as they are declared. In the following, we will use symbolic names for memory 

locations. However, for the moment, we will assume that they are declared in 

the program somehow. We will return to how symbolic names are declared in 

Chapter 5. 
Given that LOC is a symbolic name of a memory cell, the following instruction 

performs the operation (LOC) + 1 — LOC on 8-bit operands 

ADDI.B #1,LO0C 

We now present a somewhat more complex task. The following sequence of 

instructions performs the task: (VAR1) + (VAR2) — VAR3 

MOVE.B VAR1,VAR3 

MOVE.B VAR2,D0 

ADD.B  DO,VAR3 

Note that the program above is not a unique solution to the problem. The following 

sequence of instructions also performs the same task: 
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MOVE.B VAR2,VAR3 

MOVE.B VAR1,D0 

ADD.B  DO,VAR3 

It is important to note that there are often several solutions to the same problem. 
In Appendix A, we will provide only one solution to the exercises although other 
solutions exist. 

EXERCISES 

All operands are assumed to occupy 8 bits if nothing else is said. 

ure What sequence of instructions performs the operations: 
(FFF 16)+(ABCj¢) = ABCig6 and (FFF 1¢)+(DEF 46) a; DEF j¢? 

4.8 Write a sequence of instructions that performs the operation: 
(ROW) + (COL) +1 — MAT? 

4.9 Write a sequence of instructions that performs the operation: 
2219 + (LOC) — LOC? 

4.10 Write a sequence of instructions that performs the operation: 
NUM-—(VAR) — VAR? 

4.11 Write a sequence of instructions that performs the operations: 
1+ (NUM1) — NUMI1 

2+ (NUM2) — NUM2 

3+(NUM3) — NUM3? 

4.2 Program flow control 

In the example programs we have met so far, instructions are executed in the order 
they appear in the program. This order is maintained by the program counter (PC); 
PC is incremented when an instruction has been fetched so as to fetch the next 
instruction in the program sequence. 

It is obvious that a computer would be rather useless if there were no way to alter 
the execution order. For example, one of the strengths of high-level languages is to 
express fairly complex computations concisely in terms of loops such as for-loops in 
Pascal. Another feature in high-level languages is the alternative execution order 
provided by conditionals such as if-statements. 
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Table 4.2 Some compare and program control instructions. 

Name Operation 

CMP.S a,Di (Di) —(a) 
CMPI.S #n,a (a)—n 

BRA label branch to instruction at address label 

BEQ label if (Z)=1 then BRA label 
BNE label if (Z)=0 then BRA label 
STOP en the execution stops after this instruction. 

In order for loops and if-statements in a high-level language program to be 

translated into a machine-language program, a mechanism must be provided by 

the processor to alter execution order. The branch-instruction is the most primi- 

tive instruction to accomplish this task. The branch-instruction takes a symbolic 

memory address, called a label, as its operand. Its effect is to make that instruction 

the next one to be executed. The processor performs this task by simply loading 

the program counter with the label. The label is the address from which the next 

instruction is to be fetched. 

In the following (rather useless) program, a branch is performed to label NEXT. 

MOVE.B #0,DO ; Execute this one and 

ADDI.B #1,D0O ; this one 

BRA NEXT ; Branch to label NEXT 

nai ; Skip these instructions 

NEXT ADDI.B #1,DO ; Continue here 

SUBI.B #1,DO ; and then here 

In the example program above, a branch is always taken independent of the result 

of the execution. Such branch-instructions are denoted unconditional branches to 

reflect that they are always taken. In order to support high-level language features 

for execution alteration such as for-loops and if-statements, a branch should be 

taken only when a certain logical condition is satisfied. Such branch-instructions 

are referred to as conditional. There are a large number of logical conditions to test. 

To simplify the discussion, we will first look at conditional branch-instructions that 

take a branch depending on whether the result of an arithmetic or logical operation 

is zero. To perform this test, the processor controls a special flag (a 1-bit register), 

called the Z-flag (Z for Zero). This flag is set to one by the processor when the 

result of an operation is zero and reset to zero otherwise. 
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In Table 4.2, we show two conditional branch-instructions and two compare- 

instructions that compare two operands. The comparison is performed by sub- 

tracting the first operand from the second one. Unlike the subtract-instruction, 

however, the result is not stored; the only effect this instruction has is that it 

affects the Z-flag. This can be used to perform conditional branches as we will 

demonstrate in the next example program. 

Consider the following computation: N +(N—1)+...+3+2+1 — DO. The 
following program performs this task, assuming N is greater than zero and that 
the sum never exceeds 25540: 

MOVE.B #0,D0 

MOVE.B #N,D1 ; D1 is loaded with N 

LOOP ADD.B DIDO} = Add Die tomD0 

SUBI.B #1,D1 ; Z-flag is affected 

BNE LOOP ; Branch to LOOP if (Z)=0 

Note that the subtract instruction serves two purposes: (i) D1 is decremented 
to contain the next number to be added to DO and (ii) the Z-flag is affected so 
that the loop is exited when D1 contains zero. The above program illustrates 
how a repetition-statement such as a for-loop can be implemented by an assembly 
language program. In the next example, we consider the implementation of the 
following if-statement: if (A)=(B) then 0 —» A else 0 —> B. 

MOVE.B A,DO 

CMP .B B,DO ; if (A) = () 

BNE ELSE 

MOVE.B #0,A ; thenO -A 

BRA DONE 

ELSE MOVE.B #0,B ; else 0 -> B 

DONE 

In the example above, we have used the compare-instruction (CMP.B B,DO) to check 
whether (A) = (B). Note that this instruction only affects the Z-flag depending 
on the result of the subtraction (D0) — (B). 

An important feature we have forgotten is a means to stop the execution of 
a program. One could ask what will happen when the last instruction has been 
executed in the example programs demonstrated so far. According to what we now 
know about execution order, the next instruction to be executed is the one that 
appears on the next consecutive address in memory. In order to stop the execution, 
one can use the instruction STOP. For instance, if we want the execution to cease 
when the instruction at label DONE is executed in the last example, we write 
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MOVE.B A,DO 

CMP.B  B,DO 

BNE ELSE 

MOVE.B #0,A 

BRA DONE 

ELSE MOVE.B #0,B 

DONE STOP #$2700 

The operand to.the STOP instruction affects the internal state of the processor. 
For now, we will simply assume that $2700 is appropriate. In Chapter 6, we will 

explain this further. 

EXERCISES 

All operands are assumed to occupy 8 bits if not stated otherwise. 

4.12 What sequence of instructions performs the computation: 

(NUM) + (NUM) — NUM? 

4.13 What sequence of instructions performs the computation: 

(NUM) + (NUM) +...4+ (NUM) — NUM (8 times)? 

4.14 What sequence of instructions performs the multiplication: 

(M1) * (M2) — P? 

4.15 Write a sequence of instructions that performs the operation: 

if ((A) = 1) or ((A) = 2) then (A) — Belse (B) — A. 

4.3. Arithmetic and condition codes 

In Chapter 2, we learned how the computer performs arithmetic operations such as 

addition and subtraction. A fundamental issue was to devise a test as to whether 

arithmetic operations result in overflow. Most computers perform this test auto- 

matically. The result of the test is available in a dedicated control register denoted 

the condition code register (CCR). This register can be read by move instructions. 

More importantly, there are conditional branch-instructions that change the con- 

trol flow depending on how the bits in this register are set. Besides overflow, the 

CCR also indicates other properties of the result. 

In the M68000, the condition code register comprises five flags that are stored 

in the five least significant bits of the status register (SR) as shown in Figure 4.4. 
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Figure 4.4 The status register (SR) and the condition code register (CCR) of 
the M68000. 

The status register contains 16 bits. We will examine the other bits later. In 
this section, we will be concerned with how the different flags in the condition 
code register are affected by arithmetic and logical operations, and how we can use 
conditional branch instructions to change the control flow when the result of the 
operation has special properties such as overflow, zero, or negative. The condition 
code register (bit 0 through 4 in the status register) contains five flags denoted X, 
N, Z, V, and C as shown in Figure 4.4. 

In Table 4.3, we show all conditional branch-instructions and their branch con- 
ditions. We have already introduced the Z(ero)-flag, which is set when the result 
of an arithmetic or logical operation is zero. We have also introduced the condi- 
tional branch-instruction BEQ label that takes a branch provided that the Z-flag is 
set ((Z)=1) and BNE label that takes a branch provided that the Z-flag is cleared 
((Z)=0). In Table 4.3, all branch conditions are presented as logical expressions; 
for instance, the logical expression [(N) A (V)’] Vv [(N)’ A (V)] is true, and the 
branch is taken, provided that: [(N)=1 AND (V) = 0) OR [(N)=0 AND (V) = 1] 

4.3.1 Conditions for unsigned integer arithmetic 

In Chapter 2, we noted that the overflow test differs depending on the representa- 
tion of numbers. Given n-bit numbers, we could represent all numbers in the range 
(0, 2” — 1], that is, unsigned number representation. 

Addition of two numbers in the unsigned representation results in overflow if and 
only if the carry-bit from the most significant position is one. The C(arry)-flag in 
the CCR reflects this. It can thus be used to test for overflow of unsigned number 
arithmetic as in the following example: 
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Table 4.3 Conditional branch-instructions and the their branch conditions. 

Name Branch condition 

BEQ label (Z) 
BNE label (Z)’ 
BCS label (C) 
BCC label (C)’ 
BHI label (C)’ A (Z)’ 

BLS label (C) V (Z) 

BMI label (N) 
BPL label (N)’ 
BVS label (V) 
BVC label (V)’ 
BGT label (Z)’ A [[(N) A (V)] Vv [(N)’ A (V)’)] 
BGE label [(N) A (V)] V [(N)’ A (V)’] 
BLT label [(N) A (V)’] v [(N)’ A (V)} 
BLE label (Z) V [(N) A (V)’] Vv [(N)’ A (V)] 

ADD.L A,DO 

BCS OVERFLOW 

OVERFLOW 

Now consider the subtraction of two n-bit numbers A — B that both belong to 

the range [0,2” — 1]. This subtraction results in overflow if and only if B > A. 

When subtracting two unsigned numbers (using the SUB-instruction), the C-flag is 

set when overflow occurs. 

There are two useful conditional branch-instructions that in conjunction with 

the compare-instruction CMP.S A,DO can test the relation between (A) and (D0). 

These are BHI and BLS. Consider the test ‘branch if (D0) > (A)’. This test is 

equivalent to ‘branch if (D0)—(A) > 0’. According to what has been said about 

overflow for unsigned numbers under subtraction, the branch should be taken if 

and only if (C)= 0 and (Z)= 0 which expressed as a logical expression is (C)’ 

(A (Z)’. This is exactly the test performed by the BHI-instruction (see Table 4.3). 

Thus, 
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CMP a ADO 

BHI GREAT 

GREAT 

implements the test. If we replace BHI by BLS, we test the opposite relation. 

4.3.2 Conditions for signed integer arithmetic 

We shall now turn our attention to two’s complement number arithmetic. The 
N(egative)-flag reflects the most significant bit of the result of an operation, and 
consequently, the sign of the result when arithmetic operations are performed on 
two’s complement numbers. In the following example program, execution continues 
at label MINUS if the result of ADD.L A,DO, that is, the content of DO, is negative: 

ADD.L A,DO 

BMI MINUS 

MINUS 

The condition for overflow when two two’s complement numbers are added is 
that the signs of the operands are the same and opposite to the sign of the result. 
This test is performed by the processor and the result is obtained from the V- 
flag (oVerflow-flag) in the CCR. For instance, in the following example program, 
execution continues at label OVERFLOW if addition of two two’s complement numbers 
results in overflow. 

ADD.L A,DO 

BVS OVERFLOW 

OVERFLOW 

Besides taking a branch when the result is zero, we must also be able to take 
a branch based on the other relational operators < 0,< 0,> 0, and > 0. For 
two’s complement arithmetic, the corresponding conditional branch-instructions 
are BLT, BLE, BGE, and BGT. Note that the names reflect their operation: BLT is 
an abbreviation of ‘Branch Less Than zero’. 
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These branch-instructions can be exclusively used for testing the result of two’s 

complement number arithmetic, which their branch conditions reveal. For instance, 

the branch condition for the BGE-instruction is [(N)=1 AND (V)=1] OR [(N)=0 
AND (V)=0]. Assume that two positive two’s complement numbers A and B are 

added and that the addition results in overflow. Then (V)=1 and the sign of the 

result is opposite to the operands, that is, (N)=1. It means that although the 

addition resulted in overflow, the test will be correct. 

4.3.3. Extending the range beyond long words 

Besides using the C-flag as a test for overflow for unsigned number arithmetic, it 

can also be used to extend arithmetic operations to 64-bit numbers. In this case, 

we must use two long words to store an operand. For instance, let us assume that 

two 64-bit numbers are to be added. The first number is stored with its most 

significant long word in register D1 and the least significant long word in DO. The 

second number is stored in D3 (most significant long word) and D2 (least significant 

long word). The addition of these numbers can be performed by first adding the 

least significant long words. We then add the most significant long words and the 

carry-bit (if any) from the addition of the least significant long words. 

While the carry-bit is affected by (almost) all instructions, there is another flag, 

the X-flag (eXtended-flag), which is set according to the same rules as the C-flag. 

But, unlike the C-flag, it is only affected by arithmetic instructions such as ADD and 

SUB and shift instructions (to be presented in the next section). In the example 

below, we implement 64-bit addition by making use of the instruction ADDX.L Dz, 

Dj which performs (Di) + (Dj) + (X) — Dj. 

ADD.L DO, D2 

ADDX.L D1,D3 

Likewise, there is a corresponding subtraction instruction, SUBX.L Dz,Dj which 

performs (Dj)—(Di)—(X) — Dj. Consequently, the following sequence of instruc- 

tions performs 64-bit subtraction. 

SUB.L DO,D2 

SUBX.L D1,D3 

For both these examples, the result is available in registers D3 (most significant 

long word) and D2 (least significant long word). Note that the scheme presented 

can be extended to operands of any size. 
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Table 4.4 The general conditions for setting the flags in the CCR. 

Flag Condition 

Z Set when the result is zero. 

C and X_ Set when carry/borrow is generated. 

N Set when the result is negative. 

Vv Set when a two’s complement operation results in overflow. 

We end this section by pointing out some general guidelines for the use of the 

condition codes. In general, all instructions affect the condition code regis- 

ter. It is therefore important to be aware of how they are affected. In this section, 

we have pointed out their general behavior which we summarize in Table 4.4. It 

should be noted, however, that there are exceptions. Therefore, it is important for 

the programmer to examine how each individual instruction affects the condition 

codes. In Appendix B, we show how each instruction affects the condition code 
register. 

EXERCISES 

4.16 Assuming 32-bit unsigned integers A and B, write a sequence of 

instructions that implements the following if-statement 

if (A) > (B) then0 — Aelse0 — B. 

4.17 Assuming 32-bit unsigned integers A and B, write a sequence of 

instructions that implements the following if-statement 

if (A) <= (B) then0 — Aelse0 — B. 

4.18 Assuming 32-bit signed integers A and B, write a sequence of 
instructions that implements the following if-statement 

if (A) > (B) then0 — AelseO — B. 

4.19 Assuming 32-bit signed integers A and B, write a sequence of 
instructions that implements the following if-statement 
if (A) <= (B) then 0 — AelseO — B. 

4.20 Write a sequence of instructions that performs 128-bit addition: 
(A) + (B) — B. A is stored in DO, D1, D2, and D3 with the 
least significant 32 bits in D3 and B is stored in D4, D5, D6, and 
D7 with the least significant 32 bits in D7. 
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Table 4.5 Shift instructions for the M68000. 
ROL.S Di,Dj 
ROL.S #n,Di 
ROL a 

ROR.S Di,Dj 
ROR.S #n,Di 
ROR a 
LSL.S Di,Dj 
LSL.S #n,Di 
LSL a 

LSR.S_ Di,Dj 
LSR.S #n,Di 
ESRF ea 

ASL.S_ Di,Dj 
ASL.S #n,Di 
ASE a 

ASR.S._Di,Dj 
ASR.S #n,Di 
ASR a 

4.21 Write a sequence of instructions that performs 128-bit subtrac- 

tion (B)—(A) — B. A is stored in DO, D1, D2, and D3 with the 
least significant 32 bits in D3 and B is stored in D4, D5, D6, and 

D7 with the least significant 32 bits in D7. 

4.4 Shift instructions 

We are now able to write simple assembly language programs that perform arith- 

metic and logical operations on operands stored in memory locations or data reg- 

isters. The move-instructions we have introduced help us to copy data between 

locations. The least amount of data to be copied is a byte. It is sometimes useful, 

however, to move bits within a location. This is exactly what the shift instructions 

perform. 

In Table 4.5, we show the shift instructions. These instructions have in common 

that they move bits either to the left or to the right within the destination operand. 

The number of steps, called the shift count, is specified by the source operand 

which can be a data register or a constant using immediate addressing (n). The 

destination operand (the operand to be affected) is a data register. The range 

of allowed shift counts differs; for immediate addressing, the shift count is in the 

range [1,8] and if a data register is used, the shift count is in the range [1,63]. 

There is also a third variation of the shift instructions using a memory location (a 

in Table 4.5). This instruction shifts the operand in memory beginning at location 

a one step. The implicit operand size in the last case is always a word. 
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In order to specify exactly what the shift-instructions perform, let us denote the 

operand X = %p_1Lyn_2... 2X9. The rotate-instructions shift the operand so that the 

bits that are shifted out in either end will appear in the other. Given a shift count 

of d, the left-rotate instruction (ROL) changes the operand so that 2; = x;, where 

j = %-—d (mod n) (recall the meaning of the mod-operation from Chapter 1), 

and the right-rotate instruction (ROR) changes the operand so that x; = 7;, where 

j =i+d (mod n), fori = 0,1,...,n—1. Note that the C-flag is assigned the value 

of &,~a for the left-rotate and xq_, for the right-rotate instruction, respectively (see 

Table 4.5). For instance, if (D0) = OF00,¢, the result of the execution of ROL.W 

#5 ,DO is (DO) =E001,¢ and the C-flag is set. Note that the four ones stored in bits 

8-11 are moved 5 steps to the left which means that bits 15-13 and 0 are set after 

execution. 

While the rotate-instructions establish a connection between the most and least 

significant bits, the other shift-instructions simply move bits out of the most or 

least significant end of the operand. The logical shift-instructions (LSL and LSR) 

replace the empty bits in the least significant bit-field (LSL) or the most significant 
bit-field (LSR) by zeros. The C- and X-flags are assigned the last bit that was 
shifted out. For example, suppose that the least significant 16 bits of DO are 

00010000000000002, then the instruction LSL.W #4,DO sets the C- and X-flags 

because bit 12 is set. 

The motivation behind the operation of arithmetic shift-instructions lies in the 
fact that they can facilitate multiplication and integer division by a number which 
is a power of two. For instance, multiplication by two can be performed by a left- 
shift operation: 219 X 219 = 00102 x 0010. = 01005. Likewise, division by 2 can be 
implemented by a right-shift operation: 419/219 = 01002/0010 = 0010. In order 
to correctly handle the sign bit for two’s complement numbers, it becomes essential 
to fill the most significant bit positions with the sign bits when performing a right- 
shift: —449/219 = 11002/00102 = 1110. This process is called sign ertension and 
is automatically performed by the arithmetic-right-shift instruction ASR. 

The arithmetic-shift-instructions (ASL and ASR) resemble the operation of the 
logical shift-instructions. The difference between the arithmetic and logical left- 
shift-instructions is that the arithmetic-left-shift instruction (ASL) also affects the 
V-flag; the V-flag is set iff the most significant bit (which is the sign bit) is changed 
during the shift operation. The arithmetic right-shift operation (ASR) copies the 
sign bit in each step. 

The last instruction in Table 4.5 (SWAP) takes a data register as an operand and 
swaps the most significant word (MSW) with the least significant word (LSW). 

EXERCISES 

4.22 What instruction rotates the content of D0 five steps to the right? 
Assume a 32-bit operand. 
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4.23 What instruction rotates the content of DO two steps to the left? 

Assume an 8-bit operand. 

4.24 What instruction rotates the word stored in memory at location 

NUM one step to the right? 

4.25 What shift instruction can be used to implement integer division 

by two of a memory word stored at location NUM? 

4.26 What shift instruction can be used to implement multiplication 

by two of a memory word stored at location NUM? 

4.5 Indirect addressing 

We have now introduced a set of instructions so that we can construct simple 

programs that can perform computations using repetition by means of uncondi- 

tional and conditional branch-instructions. However, we have yet only seen a few 

methods of how to refer to operands; either the operand explicitly is contained in 

the instruction (immediate addressing), or the location of the operand explicitly is 

contained in the instruction (absolute or register direct addressing). These meth- 

ods are examples of addressing modes. As we will see in the next example, these 

addressing modes are not sufficient. 

SUM := 0; 

for i:=0 to 4 do 

SUM S:=""SUMr+ VEC beind; 

The above program computes the sum of the vector elements contained in vector 

VEC. A naive attempt to construct a machine language program to perform this 

task would be the following one, assuming that the first vector element is stored 

at address VEC and that each vector element occupies one byte: 

MOVE.B #0,D0 

ADD.B  VEC,DO 

ADD.B  VEC+1,D0 

ADD.B  VEC+2,D0 

ADD.B VEC+3,D0 

ADD.B  VEC+4,D0 

MOVE.B DO,SUM 

One realizes that if the number of vector elements is large, the corresponding 

program using absolute addressing becomes prohibitively large. We would like to 
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The Memory The Processor 

Data Address Control 
Registers Registers Registers 

0 

1 

FEEEEE 

Figure 4.5 The address register model of the M68000. 

Table 4.6 Assembly language instructions relevant for the address register 

model. S specifies the operand size, a denotes an absolute address or a register 

name, # before a numeric value (n) designates a constant (immediate addressing). 
Ai denotes any of the address registers AO to A6. 

Name Operation 

MOVEA.S a, Ai (ay As 
MOVEA.S #n, Az n > Ai 

ADDA.S a,Ai (Ai)+(a) — Ai 
SUBA.S a, Ai (Ai) — (a) 
CMPA.S a,Ai (Ai) —(a) 

code the program in a loop so that the address of the vector changes in each loop 
iteration. We will now look at some advanced addressing modes to accomplish 
this. 

The M68000 contains seven dedicated registers, called address registers, denoted 
AO to A6, that are used to store operand addresses. In Figure 4.5, we introduce 
these registers and in Table 4.6, we present some instructions that manipulate the 
contents of address registers. Only Word (W) and Long Word (L) are valid Size 
attributes for these instructions. Note that the source operands denoted a in the 
instructions in Tables 4.1, 4.2, and 4.5 in general can be replaced by an address 
register. 

Given the address registers, we are now able to code the above program using a 
loop. 



Indirect addressing 45 

MOVEA.L #VEC,AO 3; Address of VEC[ 0 ] to AO 

MOVE.B #0 , DO 7 SUMS =30 

MOVE.B #5 ,D1 3) Lome: —0 eto 4 do 

LOOP ADD.B (AO) ,DO ; SUM := SUM + VEC[ i ] 

ADDA.L #1,A0 

SUBI.B #1,D1 

BNE LOOP 

MOVE .B DO ,SUM 

We make the following important observations on the use of AQ. First, AO is 

initialized to contain the address of the first vector element using the instruction 

MOVEA.L #VEC,A0O. Note that we load the address of VEC[O] as a 32-bit constant 

into AO. This is important, since addresses consist of 24 bits. Consequently, using 

a 16 bit operand size would not suffice. Second, we use the instruction ADD.B 

(AO) ,DO to add a vector element to DO (the temporary sum is stored in DO) by 

using the content of AO as the address of the operand. This is a new addressing 

mode denoted address register indirect addressing. Using our notation, we can 

express the operation performed by ADD.B (AO) ,DO as ((A0)) + (D0) — DO. 

Note that the content of the location whose address is contained in AO is expressed 

as ((A0)). Third, in order to point to the next vector element, we must add one to 
the content of AO, which is done by the instruction ADDA.L #1,A0. If each vector 

element consisted of a word, we would have incremented AO by 2 and if each vector 

element consisted of a long word, we would have incremented AO by 4. 

In fact, incrementing or decrementing the content of an address register in con- 

junction with the use of indirect addressing is so common that the designers of the 

M68000 have combined the increment and decrement operation with the indirect 

addressing mode as in the example 

MOVE.B (AO)+,D0 

which performs the same operation as 

MOVE.B (AO) ,DO 

ADDA.L #1,A0 

This addressing mode is called address register indirect with postincrement. The 

amount by which the address register is incremented is determined by the operand 

size. In the example above, the operand size is Byte and the address register is 

incremented by 1. If we would have used the instruction MOVE.W (A0Q)+,D0, the 

address register would have been incremented by 2, because each operand occupies 
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one word. Finally, if the operand size would have been a long word, the address 

register would have been incremented by 4. We now show the same program again 

using the optimization provided by this addressing mode. 

MOVEA.L #VEC,AO 

MOVE.B #0,D0 

MOVE.B #5,D1 

LOOP ADD.B (A0)+,D0 

SUBI.B #1,D1 

BNE LOOP 

MOVE.B DO,SUM 

It is also possible to traverse the vector in the reverse order so that the next 

vector element to be accessed is the one that appears at the next lower address: 

SUBA.L #1,A0 

MOVE.B (AO) ,DO 

There is a shorthand form for this computation that does the same, which is 
illustrated by 

MOVE.B -(AO) ,DO 

This addressing mode is called address register indirect with predecrement. As with 
the postincrement addressing mode, the amount by which the address register is 
decremented is determined by the operand size. Note that the address register 
is decremented before the operand is accessed. One would think that we could 
place the minus sign after (AO) in order to decrement the address register after the 
operand is accessed. This is not possible and the reason is that the designers did 
not prioritize this possibility. Likewise, it is not possible to place the plus sign in 
front of (AO) when the increment addressing mode is used. 

There are other useful addressing modes which we will describe before we close 
this section. Consider the following Pascal program: 

SUM := 0; 

for i:=0 to N-1 do 

SUM := SUM + VEC[ i +N] - VEC[L i]; 

This program calculates the accumulated difference between two subvectors of size 
N stored in VEC. In each iteration, the difference of the two vector elements that 
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appear N elements apart is calculated. The following program demonstrates the 

use of an efficient addressing mode to refer to the vector elements. 

MOVEA.L #VEC,AO 

MOVE.B  #0,D0 

MOVE.B- #N,D2 

LOOP MOVE. Biv-N(A0);, D1) 3 VECE i +.N ] => D1 

SUB.B (AO) 2 Diges ODides VECL i] => D1 

ADD.B D1,DO 3) (DO) EOP) => DO 

SUBI.B #1,D2 

BNE LOOP 

MOVE.B  DO,SUM 

In order to access VEC[ i+N ], we have used yet another addressing mode called 

address register indirect with displacement. The instruction MOVE.B N(AO) ,D1 per- 

forms (N + (A0)) — D1. The displacement N is a constant value to be added 
to the address register before the operand is accessed. It is stored as a 16-bit 

two’s complement number which means that the displacement can be in the range 

[—32768, 32767]. 

Instead of adding a constant value to the address register, it may sometimes be 

convenient to add the content of another register which we call the index register. 

This is useful if we want to perform the following computation: 

SUM := 0; 

for i:=0 step 8 to K do 

SUM := SUM + VEC[ i ]; 

This program can be implemented by 

MOVEA.L #VEC,AO 

MOVE.L #0,D0 ; SUM := 0 

=) MOVES #0 ,D1 3 dy =O 

LOOP ADD.B OCAO;D1)>D0~ 7 SUM) i=) SUM © VEC a") 

ADDI.B #8 ,D1 a B= ah S 

CMPI.B #K ,D1 

BLE LOOP 

The instruction ADD.B 0(AO,D1) ,DO uses register D1 as an index register to access 

the operand at location 0 + (D1) + (AO). This addressing mode is called address 

register indirect with index. The instruction ADD.B 0(A0,D1) ,DO performs (0 + 

(AO) +(D1)) — DO. Any of the data or address registers can be used as index 

registers. However, the displacement (in this case 0) is an 8-bit two’s complement 

number (range [—128, 127]) when used in conjunction with index registers. 
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Instead of using an address register, it may be convenient to refer to an operand 

relative to the location of the next instruction to be executed. This location is 

pointed out by the program counter (PC). There are two addressing modes which 

use the program counter; the program counter indirect with displacement and the 

program counter indirect with index addressing mode. We exemplify the first ad- 

dressing mode with the instruction 

MOVE.B 20(PC),D1 

which copies the content at location 20 + (PC) to D1. The following instruction 

MOVE.B 20(PC,DO) ,D1 

copies the content at location 20+ (PC)+(D0) to D1. We summarize all addressing 
modes we have described in Table 4.7. We also provide examples of their use by 
means of the generic move instruction MOVE.B a,DO. 

In Tables 4.1, 4.2, 4.5, and 4.6 we have introduced a number of instructions 
that are relevant for the model of the 68000 depicted in Figure 4.5. All addressing 
modes found in Table 4.7 can generally be applied to designate the source and 
destination operands by replacing a in the instruction tables we have presented 
by any of the addressing modes for the M68000. Unfortunately, however, there is 
no simple rule for which addressing modes are applicable to a specific instruction. 
Consequently, therefore, one should consult the detailed information about the 
available addressing modes for each instruction. This information is provided in 
Appendix B. 

Note the correspondence between the assembly language syntax and the nota- 
tion. In general, the rule for the assembly syntax is to point out the address (or 
register name) for the operand. For instance, the address of an operand pointed to 
by indirect addressing is (Az), that is, the content of register Ai which is exactly 
what the notation says. 

EXERCISES 

4.27 Write a program that performs the following operation, us- 
ing indirect addressing with postincrement and assuming 16-bit 
operands: (10046) ar (10216) ae (10446) = 10646. 

4.28 Generalize the previous program to compute: (10016) + (10236) + 
-.- + (10016 +2N) — 10016 +2N +2, wherel1<N< 25510. 

4.29 Rewrite the same program so that it uses the address register 
indirect with displacement addressing mode. 
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Table 4.7 The addressing modes for the M68000. 

Addressing mode Example Notation 

Data register direct MOVE.B D1,DO (D1) — DO 

Address register direct MOVE.L AO,DO (A0) — DO 

Absolute MOVE.B 1,D0 @, "=" D0 

Immediate MOVE.B #1,D0 1 D0 

Indirect MOVE.B (AO) ,DO ((A0)) — DO 

Indirect with MOVE.B (AO)+,DO0 ((A0)) — DO; 

postincrement (A0)+1 — AO 

Indirect with MOVE.B -(AO) ,DO (A0)-1 — AO; 

predecrement ((A0)) — DO 

Address register 

indirect MOVE.B 10(AQ) ,DO ((A0) + 10) — DO 

with displacement 

Address register 
indirect MOVE.B 10(AO,D1),DO0 ((A0)+(D1)+10) — DO 

with index 

Program counter 

indirect MOVE.B 10(PC) ,DO (2G) 10) aie 0) 
with displacement 

Program counter 

indirect MOVE.B 10(PC,D1),D0 ((PC)+(D1) +10) — DO 
with index 

4.30 Rewrite the same program so that it uses the address register 

indirect with index addressing mode. 

4.6 Subroutines 

We have seen how to capture repeating sequences of operations by using conditional 

branches to construct loops. But there are other kinds of common patterns for 

which the loop concept is not sufficient. Consider the following computation: 
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a(4) + 2(8) 4 9(°) —, RESULT. This could be accomplished by the following 
sequence of instructions, ignoring the overflow that might occur: 

MOVE.L A,D1 

MOVE.L #1,D0 

ASL-L = D1, DO ; Shift (A) times 

MOVE.L DO,RESULT 

MOVES ESB: Dill 

MOVE.L #1,D0 

ASL.L  Di,DO ; Shift (B) times 

ADD.L DO,RESULT 

MOVErn eC) Da: 

MOVE.L #1,D0 

ASLL) Dit DO ; Shift (C) times 

ADD.L  DO,RESULT 

The code above contains three sequences of instructions that are exactly identical, 

namely, the instruction sequence that computes two to the power of an operand 

contained in register D1. What we would like to do is to write this code segment 

only once and somehow make a reference to it so that it can be ‘called’ from 
various places in the program. There are many important reasons why we should 
not repeat the code of this computation. First, in order to reuse the same code 
over and over again and second, it occupies less space in memory. What we want 
to achieve is a way to support what in high-level languages are referred to as a 
subroutine or a procedure, that is, a piece of code that can be called at various 
places in the program. There are two fundamental mechanisms needed to support 
subroutines; a subroutine call and a subroutine return mechanism. 

The calling and returning mechanism on the M68000 is supported by the in- 
structions BSR and RTS, see Table 4.8. The BSR instruction is like a BRA instruction 
except that the processor ‘remembers’ where the call was made. The RTS instruc- 
tion is like a BRA instruction except that its argument is implicitly the address 
of the instruction following the corresponding BSR instruction. For now, we.will 
ignore how these mechanisms are implemented in the processor. We will return to 
this issue in Chapter 6. 

By using the subroutine call and return instructions, we can rewrite the previous 
program as follows: 

MOVE.L A,D1 

BSR POW2 

MOVE.L DO,RESULT 



Subroutines 

Table 4.8 The call and return instructions. 

Name Operation 

BSR label BRA label 

remember return address 

RTS BRA return address 

MOVE.L B,D1 

BSR POW2 

ADD.L DO,RESULT 

MOVER Cee Ce Dili 

BSR POW2 

ADD.L DO, RESULT 

POW2 MOVE.L #1,D0 

ASL.L D1,DO 

RTS 

EXERCISES 

51 

4.31 

4.32 

4.33 

4.34 

Write a subroutine that determines which of the two 32-bit un- 

signed integers in DO and D1 that are largest. DO is assigned the 

largest of these numbers. 

Use the subroutine in the previous exercise to write a program 

that determines the largest of all vector elements contained in 

vector VEC[i], i =0,1,2,..., N—1, where WN all vector elements 

are 32-bit unsigned numbers. 

Write a subroutine that computes the integer division 

(D0) /2"° — DO, where DO contains a 32-bit operand. Hint: 
Use an arithmetic shift-instruction. 

Use the subroutine in the previous exercise to compute 

VEC(0]+VEC(1]/2' + ...VEC(N]/2%. All vector elements con- 

tain 32 bits and the result should be available in register D2. 
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15 8 7 0 

Operation word 

Immediate operand (if any, one or two words) 

Source effective address extension (if any, one or two words) 

Destination effective address extension (if any , one or two words) 

Figure 4.6 Instruction format for M68000. 

lus) SWAP OS} es IME GS) ace 7 oy Sr eh By DY 

ADD nye Loe Effective address 
Regist -Mode 
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is) Se ad 0 

pra [0110000 0] thrdainenen 
Figure 4.7 Operation word of the ADD and BRA instructions. 

4.7 Instruction format and coding 

In this chapter, we have been concerned with the operation of the processor at 
the instruction set level. In order to simplify the discussion, we used the assembly 
language notation to describe the semantics of the instruction set of the M68000. 
This is not the true picture, however, when it comes to the questions on how the 
machine language program is stored in memory, and how the processor fetches the 
next instruction to be executed. 

It was mentioned in Chapter 3 that the assembly language instructions provide 
a one-to-one correspondence to the binary-coded machine language instructions. 
Therefore, the process of translating an assembly language program into a sequence 
of machine instructions is conceptually simple. In this section, we will look at how 
the M68000 instructions are coded to get an idea of how a machine language 
program, in general, is coded. 

Each M68000 instruction makes up one to five consecutive words in memory. 
The first word, the operation word, specifies the instruction and the addressing 
modes to be used. The additional four words (if any), which are stored at the next 
higher addresses, keep information about immediate operands, and/or absolute 
addresses as shown in Figure 4.6. 
We shall look more closely at the instruction coding scheme by considering the 

ADD and BRA instructions in detail. These instructions will give a general idea of the 
kind of information stored in the operation word and in the subsequent words that 
accompany the instruction. The operation words of the ADD and BRA instructions 
are shown in Figure 4.7. Let us first look at the ADD instruction. 

Bits 15-12 in the operation word of the ADD instruction is always 1101. This is 
the operation code of the instruction. The additional information in the operation 



Instruction format and coding 53 

Table 4.9 The op-mode field of the ADD instruction. Bit 8 specifies whether 

the data register is a source or destination operand and bits 7 and 6 specify the 

operand size. 

8 7 6 Description 

0 -— -— _ Data register is destination operand 

1 — ~— Data register is source operand 

—~ 0 O Byte operation 

— 0 1 Word operation 

— 1 0 Long word operation 

Table 4.10 The effective address field of the ADD instruction. + These addressing 

modes are allowed only when specifying source operands. 

Mode _ Register Description 

000 Data reg. number _— Data register direct} 

111 100 Immediatet 

i ui 001 Absolute 

001 Addr. reg. number Address register direct 

010 Addr. reg. number Address register indirect 

O11 Addr. reg. number Address register indirect with postincrement 

100 Addr. reg number Address register indirect with predecrement 

101 Addr. reg. number Address register indirect with displacement 

110 Addr. reg. number Address register indirect with index 

dial 010 Program counter indirect with displacementt 

LL O11 Program counter indirect with index 

word specifies the variations of the ADD instruction allowed. As can be seen from 

Table 4.1, one of the operands in the ADD instruction is always a data register. Bits 

11-9 designates one of the eight data registers. For instance 000 designates DO 

and 101 designates D5. From Table 4.1, we also note that there are two forms of 

the ADD instruction, namely, ADD.S a,Dz and ADD.S Di,a. The first form uses the 

data register as a destination operand while the second one uses the data register 

as a source operand. This choice and the Size attribute are encoded by bits 8-6, 

according to Table 4.9. 

Bits 5-0 specify the addressing mode of the operand denoted a in Table 4.1 

according to Table 4.10. It is referred to as the effective address. 

Let us look at some examples: 
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Instruction 15-12 11-9 8-6 5-3 2-0 Hex. 

ADD.W A3,D5 1101 101 001 O01 O11 DA4B 

ADD.B DO,D1 1101 001 000 000 000 D200 

ADD.L D2, (A1) 1101 010 10> 0107 (001, D592 

ADD.W D5,-(A4) 1101 101 101 100 4100 # DB64 

The instructions coded above have in common that they only need the operation 

word to exactly specify what is to be performed. Some of the addressing modes need 

additional information. For instance, if we use immediate or absolute addressing, 

the constant and the address must accompany the instruction which is done in one 

or a sequence of words that are stored at the next higher addresses. Below we 

present some more examples: 

Instruction 15-12 11-9 8-6 5-3 2-0 Hex. 

ADD.W #1,D5 1101 101 OUP ~ ht Et DAAC 

0001 

ADD.L #$12345678,D1 1101 OO1 ONO) AL AN) = wyeaeXe: 

1234 

5678 

ADD.L $F234,D2 1101 010 010 111 OO1 D4B9 

0000 

F234 

Note that the constant value to be added in the instruction ADD.L #$12345678 Dal 
is a long word. It is stored with the 16 most significant bits first and the 16 least 
significant bits last. This instruction comprises three words. It is also noticeable 
that the instruction ADD.L $F234,D2 stores its absolute address as a long word 
with the most significant bits (all zeros) in the word immediately following the 
instruction and the least significant bits in the next word. 

The address and program counter indirect addressing modes which use displace- 
ment and/or index registers also need some additional information. This informa- 
tion is kept in the word immediately following the operation word (at the next 
higher address). 
We shall now turn our attention to how the BRA instruction is coded. The 

operation word appears in Figure 4.7. The branch-instruction takes a label as an 
operand. The label is simply a memory address at which the next instruction is 
to be fetched. Since the execution time of an instruction depends on the number 
of words that the instruction makes up, a primary objective for the designers 
of a computer is to minimize the number of words that an instruction occupies. 
Although it could have been possible to code the branch-instruction as an operation 
word accompanied by a long word which denotes the address of the next instruction, 
a fundamental property steered the designers to store the branch address in another 
way. 

Branch-instructions are mostly used to implement repetitive high-level language 
constructs such as for- and while-loops in Pascal. Since such loops do not contain 
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many statements (it is unlikely that a for-loop covers several pages in a program 
listing), the number of memory cells that store the loop is a fairly small number. 
Therefore, another approach of storing the branch address is to store a constant, 
the displacement to be added to the current value of the PEQgram counter, as in 
the program below: 

8000 ADD.B DO,D1 D200 

8002 ADD.B Di,D1 D201 

8004 ADD.B D2,D1 D202 

8006 BRA $8000 60F8 

8008 ADD.B D3,D1 D203 

In this example, we show the machine code of each instruction to the right. 

The branch-instruction at address 80066 is coded 60F8,¢ according to Figure 4.7 

and we shall now explain why. When the branch instruction is executed, the 

program counter has been updated to contain the address of the next instruction 

to be executed, that is, (PC) = 80085. Consequently, —8 should be added to PC in 

order to take a branch to address 800015. The operation word of the BRA instruction 

contains an 8-bit displacement which designates a number in the range [—128, 127] 

(8-bit two’s complement representation). Consequently, the machine code of the 

instruction BRA $8000 in the example above is 60F8 6, since F8;g = —8109 in 8-bit 

two’s complement representation. 

The conditional branch-instructions found in Table 4.3 and the subroutine call 

instruction BSR use similar coding schemes. A natural question that arises is how 

to translate a branch-instruction that needs a displacement larger than the range 

permits. M68000 allows displacements in the range [—32768, 32767] by using an 

extra word after the operation word. However, the question remains what to do if 

this displacement is not sufficient. To solve this problem, there is an unconditional 

branch-instruction JMP address that takes a long word as the branch address. 

Likewise, there is an alternative branch-subroutine instruction denoted JSR, that 

has the same function as BSR and can be used if the displacement is not sufficient. 

We show these instructions in Table 4.11. 

Table 4.11 Alternative branch instructions if the displacement provided by BRA 

and BSR is not sufficient. 

Name Operation 

JMP address BRA address 

JSR address BSR address 
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EXERCISES 

4.35 Determine the machine code in hexadecimal representation 

of the following instructions: (a) ADD.L D5,D6 (b) ADD.B 
#7%10110110,D3 (c) ADD.W $53254,D2 

4.36 Determine the machine code in hexadecimal representation 

of the following instructions: (a) ADD.L D7,(A2) (b) ADD.B 
(A3)+,D2 (c) ADD.W A2,D2 

4.37 Determine the machine code in hexadecimal representation of 

the following instructions, assuming that they are stored at ad- 

dress 10006 in memory. (a) BRA $1004 (b) BRA $FFE (c) BRA 
$FFO 

4.8 Summary and concluding remarks 

In this chapter, we have looked in detail at the instruction set model of a processor. 
This chapter provided an insight into the kind of instructions and their semantics 
provided by the M68000. By illustrating the concepts of instruction set models bya 
concrete example, we can practically exercise on existing computers. A drawback of 
this, however, is the necessity of burdening the reader with a fair amount of details. 
Therefore, the intention behind this summary is to provide the reader with those 
principles of instruction set models, that are applicable to most computer systems. 

A processor usually contains a small number of registers to act as high-speed 
memory cells. These are used to carry out a computation on operands by reusing 
and accessing them efficiently. The instructions we have seen carry the follow- 
ing vital information: the operation, the operand locations, and the size of the 
operands. 

The operations we have seen are either binary in nature, requiring two operands 
(source and destination operands) or unary requiring only one operand. Examples 
of binary operations provided by most computers are addition, subtraction, logical 
operations such as logical AND, OR (inclusive-or), and EOR (exclusive-or). Other 
kinds of operations we have seen are branch, shift, and subroutine-call instructions. 

An important feature that we examined was the use of condition codes to con- 
trol the program flow depending on the result of an arithmetic or logical opera- 
tion. This is supported by a class of branch-instructions called conditional branch- 
instructions. 

The operand locations are specified by the so-called addressing modes of the 
computer. The most widely used addressing modes are register direct, immediate, 
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absolute, and register indirect addressing. We presented some additional address- 

ing modes that are provided by the M68000. We also noted that the operand size 

can be controlled by the instruction in the operand size attribute. 

Finally, we looked at how assembly instructions are translated into machine 

language instructions by two example instructions, namely, the ADD and BRA in- 

structions. An important observation is that a primary objective is to code the 

instructions in a concise form so as to reduce the number of words to be fetched 

when the processor fetches the next instruction. An example of this is the cod- 

ing scheme for the BRA instruction that stores a displacement to be added to the 

current value of PC instead of storing the branch address explicitly. 



Chapter 5 

Assembly Language 
Programming 

In the previous chapter, we presented the syntax and semantics of the most com- 

monly used assembly language instructions for a computer in general, and for 

M68000 in particular. We designed small programs from well-defined descriptions. 

When it comes to solving larger problems, however, it is almost never the case 

that the problem can be directly translated into a sequence of assembly language 

instructions. Instead, the programmer must spend a significant amount of time in 
structuring the problem in a way that makes it easier to translate it into a sequence 
of primitive assembly language instructions. 

Most problems are solved using high-level languages such as Pascal, Fortran, 
and C, because they provide powerful constructs to express complex computations. 
Examples of such constructs are not only repetition-statements such as for-, while-, 
and repeat-loops, but also conditionals such as if-then-else statements. Another 
important feature is the procedure, or subroutine concept. Procedures serve an 
important role in the structuring process in the program design; the programmer 
can break down the problem into smaller subproblems, which in turn can be broken 
down into smaller problems until a point when it is straightforward to translate 
them into assembly language instructions. 

Not only must the programmer translate the problem description into a sequence 
of instructions. Another important aspect is to write the program in such a way 
that makes it possible for others to read and understand the code. There are several 
important means of enhancing the program readability. First, symbolic names can 
be used to express the intention behind their use. Second, data structures that 
are used by a certain subroutine, for example, should be declared close to that 
subroutine. 

Finally, when the program has been designed, the programmer must make sure 
that it works correctly. Certain methods and tools are available to make testing 
easier. 

The purpose of this chapter is severalfold. First, since the reader is familiar 
with high-level language programming, we will use an example language, in essence 

58 
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Pascal, to present how commonly used high-level language constructs are translated 
into sequences of assembly language instructions for the M68000 in Section 5.1. In 

Section 5.2, we discuss a method of how to solve larger problems by using top- 

down design. We will also discuss the issue of structuring an assembly language 

program. Third, in order to illustrate how the design methodology can be applied 

to a realistic problem, we will present the design process for a larger program in 

Section 5.3. Finally, in Section 5.4, we will present methods and tools that can be 

used to test (debug) an assembly language program. 

5.1 Translating high-level language constructs 

One of the advantages of a high-level language is that it provides powerful con- 

structs to design complex programs. As we have seen in the previous chapters, this 

is not the case for assembly language instructions. However, it is possible to build 

sequences of instructions that implement high-level language constructs. If such 

sequences are available, we can use the same methodology that is useful for high- 

level language programming design in the process of designing assembly language 

programs. We start with a high-level language description of the problem. We then 

translate the high-level language constructs into sequences of assembly language 

instructions almost in a mechanical fashion. This method is advantageous because 

of its robustness; common constructs have always the same assembly language 

instruction structure. This fact promotes correctness of the resulting program. 

A disadvantage with this method, however, is that it can result in an assembly 

language program that does not lead necessarily to the most efficient solution. 

Once we have a program working correctly, however, the programmer can then 

concentrate on efficiency issues and improve the solution separately. 

In this section, we shall look at the implementation of commonly used high- 

level language constructs, in essence constructs in Pascal, using M68000 assembly 

language instructions. 

5.1.1 Data structures 

We noted in the previous chapter that symbolic names can be used to refer to mem- 

ory locations. Symbolic names enhance program readability considerably. Other 

means of enhancing readability include the use of symbolic names for constants. 

Most assemblers support definition of symbolic names by special instructions to the 

assembler called assembler directives. In Table 5.1, we provide a list of commonly 

used directives for the M68000 assembler and their meaning. Note, however, that 

the names of the directives may differ from assembler to assembler.. 

Let us look at some examples to demonstrate the use of the directives in Ta- 

ble 5.1. Consider a string of characters ‘HELLO WORLD!’ that is to be printed out on 
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Table 5.1 Examples of assembler directives for the M68000. 

Assembler directive Description 

sym EQU- exp 

ORG n 

sym DC.S n 

sym DS.5 n 

EVEN 

END 

Assigns the constant called sym the value of expression 

exp. 

The instructions and declarations following this direc- 

tive are to be placed in memory beginning at address 

n. 

Initializes the operand of size S at the symbolic address 

sym to the value n. The size attribute S can denote a 

byte (B), word (W), or long word (L). 

Reserves memory space for n operands, each of size S, 

where the first operand is stored at the symbolic address 

sym. 

Causes the next instruction or memory location to be 
stored at an even address. 

This is a mandatory directive that must appear as the 

last statement in the assembly code. 

the terminal screen continuously. We want to write a subroutine PRSTR that prints 
out the string pointed to by AO. In order to do this, we make use of a predefined 
subroutine at address F0432;5 that prints out the character corresponding to the 
ASCII-code stored in the seven least significant bits of register DO. 

PRINT EQU 

NUL EQU 

ORG 

$F0432 

0 

$9000 

STRING DC.B ’HELLO WORLD!’ ,NUL 

EVEN 

START MOVEA.L #STRING,AO ; Let AO point at STRING 
BSR 

BRA 

PRSTR  CMPI.B 

BEQ 

MOVE.B 

JSR 

BRA 

PRRET RTS 

END 

PRSTR ; Print out the string 

START 

#NUL, (AO) ; If character = NUL 

PRRET ; return from the subroutine 

(A0)+,D0O ; Otherwise, print it out 

PRINT 

PRSTR 



Translating high-level language constructs 61 

We make the following important observations on the use of assembler directives 

in this example. First, in order to use a more comprehensive subroutine name 

than its address, we have defined PRINT to denote the address of the subroutine 

that prints out a single character. We also use EQU to define a symbolic name for 

the NUL ASCII-character. The third line is the ORG-directive. It is used to tell the 

assembler that the subsequent line (a memory cell or an instruction) is to be located 

at address 900015. After the ORG-directive follows the string ‘HELLO WORLD!’ which 

is stored using the Define Constant directive with the first character H (ASCII 4816) 

at memory address STRING (in effect address 900016). All twelve letters comprising 
the string are stored as bytes (DC.B) at address 9000,¢ to 900B,5. NUL is stored 

at address 900C ig. Immediately after STRING follows the EVEN directive. This is 

needed in order to make the instruction MOVEA.L #STRING, AO following STRING to 

be located at an even address. Since the last character (NUL) is located at address 

900C,6, the instruction would have been located at the odd address 900Dj.. It 

would introduce an address error since M68000 can only fetch instructions and 

operands of size word and long word on even addresses. The last statement is the 

END directive which should not be confused with the STOP instruction. The END 

directive tells the assembler that there are no more instructions to be translated. 

Most high-level languages provide a means to declare a set of variables that is 

logically considered as a unit. One example is a record with information about 

a person such as name, address, and birth date. The next example demonstrates 

how to implement such a data structure, in essence the record concept in Pascal. 

Consider a data structure for a buffer in which integers are retrieved in the front 

and inserted in the end. The size of the buffer is 1009 integers starting at address 

LIST. The current number of elements in the buffer is kept in a variable called 

COUNT. 

const SIZE = 100; 

type BUFFER = record 

LIST sarray[0..SIZE-1] of integer; 

FIRST, LAST ;integer; 

COUNT > integer ; 

end; 

var INBUF :BUFFER; 

Variables FIRST and LAST are used to retrieve and insert elements in LIST. We 

assume that integers are implemented by long words (32 bits). The following 

assembler directives can implement this data structure: 
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SAG, Je(0)U) 100 

INBUFASDS. Le SIZE mVviecror bEsT 

DORE O ; FIRST (initialized to 0) 

DCO WEASInGinapclhizedmomO)) 

DCA 70 ; COUNT (initialized to 0) 

We will now give an example of an assembly language program that uses the 

record INBUF defined above. Consider the following Pascal program: 

procedure INSERT(ITEM : integer) ; 

begin 

INBUF . LIST [INBUF . LAST] :=ITEM; 

INBUF .LAST:=INBUF.LAST+1 ; 

INBUF . COUNT :=INBUF . COUNT+1 ; 

end; 

The above procedure inserts an integer named ITEM in the buffer. In order to im- 
plement procedure INSERT above, we will make considerable use of the addressing 
modes presented in Section 4.5. In order to do this, we note that the base address 
of the record INBUF is INBUF and that the address of the first element of LIST is 
INBUF+0. Secondly, the addresses of FIRST, LAST, and COUNT are INBUF+4*SIZE. 
INBUF+4*SIZE+4, and INBUF+4*SIZE+8, respectively. This makes it possible to 
refer to the record variables by displacements using the EQU-directive below. 

LIST EQU 0 

FIRST EQU 4*SIZE 

LAST EQU 4*SIZE+4 

COUNT EQU 4*SIZE+8 

INSERT MOVEA.L #INBUF,AO 

MOVE.L  LAST(AO) ,DO 

MOVE.L ITEM,LIST(A0,DO) ; INBUF.LIST[INBUF.LAST] :=ITEM 
ADDI.L #4,LAST(AO) ; INBUF.LAST:=INBUF.LAST+1 
ADDI.L  #1,COUNT(AO) ; INBUF.COUNT:=INBUF.COUNT+1 
RTS 

Note that we add 4 to LAST. This is not exactly what the Pascal program does and 
the reason is simply that we use 32-bit integers so the next element in vector LIST 
appears four bytes higher up in the address space. 
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One could ask why we access the record variables using displacements instead 

of absolute addresses. But suppose that we defined more than one variable of type 

BUFFER. If we would have used absolute addressing to access all individual variables 

contained in the records, it would be a cumbersome task to deal with all absolute 

addresses for the individual record variables. By defining displacements, we can 

use the same displacements for all instances of the record BUFFER. For example, 

to access another instance OUTBUF of type BUFFER, we need only change the first 

instruction in the procedure INSERT to MOVEA.L #0OUTBUF, AO. 

In summary, assembler directives help the assembly programmer to write com- 

prehensive assembly language programs. This is facilitated by means of defining 

symbols, constant. values in memory, symbolic names for memory areas etc. Note 

that the assembler directives do not produce executable code and, therefore, should 

not be confused with the assembly instructions which, on the other hand, result in 

executable machine instructions. 

5.1.2 Conditional statements 

Most high-level languages contain various constructs for conditionals. Conditionals 

must be implemented with conditional branch-instructions in an assembly language 

program. For example, the statement 

if A=B then A:=0; 

can be translated into 

MOVE.L A,DO 

CMP .L B,DO ; if A<>B then 

BNE NEXT ; goto NEXT 

CLR A 

NEXT 

assuming that A and B are 32-bit integers. 

We shall now turn our attention to the translation of a more general if-then-else 

construct of the following form: 

if A rel-op B then then-statement else else-statement; 

The relational operator rel-op is one of those found in Table 5.2. The construct is 

equivalent to 

if (A - B) rel-op 0 then then-statement else else-statement; 
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Table 5.2 Relational operators (rel-op), their mnemonics (cc), and their inverses 

relevant for (a) Signed integers and (b) Unsigned integers. 

rel-op cc rel-op’ cc’ rel-op cc rel-op’ cc’ 

<< rab = GE << CS z= CC 

< LE > GT << LS = HI 

Cee isl 2), = EQ f# IE 
Z NE = &EQ A NE = £0 
= GE << CE = CG < cs 

= GT < LE > HI =< ES 

By doing this, we can find the following solution to the problem 

MOVE.L A,DO 

CMP.L B,DO ; if A-B rel-op O then 

Bcc THEN ; goto THEN 

else-statement 

BRA NEXT 

THEN 

then-statement 

NEXT 

where mnemonic cc is obtained from Table 5.2. Note that the mnemonics reflect 
their meaning; for instance, LT stands for ‘Less Than (zero)’ and GT stands for 
‘Greater Than (zero)’. This makes it easier to remember all conditional branch 
instructions. 

Note that if B is a constant, we can replace the first two instructions MOVE.L 
A,DO and CMP.L B,DO by CMPI.L #B,A. Let us give an example. Implement the 
following if-then-else construct as a sequence of M68000 assembly language 
instructions, assuming that A and X are Signed 32-bit integers. 

if A>=5 then X:=A else X:=0; 

The following assembly language program implements this: 

CMPI-L #5,A4 ; if A-5 >="0) then 

BGE THEN ; goto THEN 

GIER Sey ; X:=0 (else-statement) 

BRA NEXT 

THEN MOVE.L A,X ; X:=A (then-statement) 

NEXT 
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A word of warning concerning the tests we have devised is appropriate. As 

mentioned in Section 4.3, we noted that the conditional branch instructions that 

correspond to the relational operators in Table 5.2(a) are relevant for Signed inte- 

gers only. When we are dealing with Unsigned integers, we must use the conditional 

branch instructions listed in Table 5.2(b) instead. 
The translation of a conditional statement with nested else-clauses 

if A=0 then 

then-statement1i 

else if A=1 then 

then-statement2 

else 

else-statement ; 

is a natural extension of the scheme we have shown: 

CMPI.L #0,A 

BEQ THEN1 

CMPI.L #1,A 

BEQ THEN2 

else-statement 

BRA NEXT 

THEN1 

then-statement1 

BRA NEXT 

THEN2 

then-statement2 

NEXT 

5.1.3 Repetition statements 

We will now show how to translate three commonly used high-level language con- 

structs for repetition: for-loops; repeat-loops; and while-loops. 

A for-loop in Pascal has the form: 

for I:=START to STOP do BODY; 

If START is greater than STOP, the loop-iteration BODY is not executed. Other- 

wise, BODY is executed (STOP—START+1) times. The for-loop is equivalent to the 

following statements 
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I :=START; 

goto TEST; 

FOR BODY ; 

Telet; 

TEST if I <= STOP then goto FOR 

NEXT 

which we can translate into the following sequence of instructions 

MOVE.L #START,DO ; I:=START 

BRA TEST PELOLOMEE Ol 

FOR BSR BODY 3 BODY. 

ADDI.L #1,D0 oy Laie 

TEST CMPI.L #STOP,DO ; if I <= STOP then 

BLS FOR ; goto FOR 

NEXT 

assuming that I is an Unsigned 32-bit integer and START and STOP are declared 

constants. 

A repeat-loop is another example of a repetition statement. The difference be- 
tween a for-loop and a repeat-loop is that one can have a general test condition 
for loop termination in a repeat-loop as shown in the example below. 

repeat BODY until A rel-op B; 

The repeat-loop terminates when A rel-op B. This is the same to say that it con- 
tinues as long as A-B rel-op’ 0, where rel-op’ is the inverse relational operator of 
rel-op. The inverse relational operators are found in Table 5.2. For example, the 
inverse relational operator of ‘<’ is ‘>’ and the inverse relational operator of ‘=’ 
is ‘#’. We also show the inverse mnemonics cc’ for each relational operator in 
Table 5.2. Given these operators, the following Pascal-statements are equivalent 
to the repeat construct: 

REPEAT BODY ; 

if A-B rel-op’ 0 then goto REPEAT 

NEXT 
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which becomes 

REPEAT BSR BODY 

MOVE.L A,DO 

CMP. LE B,D0 

Bees REPEAT 

NEXT 

where mnemonic cc’ can be obtained from Table 5.2. 

The example program 

repeat It=Islvunti le Ieee; 

can be translated into 

REPEAT ADDIE. lo c#i 51 Fo JERE 

CMPI.L #5,1 7a felon <=" Onithen' 

BLE REPEAT §; goto REPEAT 

NEXT 

where we have used the inverse relational operator of >, that is <, to construct the 

test. Note that at least one iteration is executed in a repeat-loop. This is because 

the loop termination test is performed after each iteration. 

In a while-loop, the test is performed before the iteration: 

while A rel-op B do BODY; 

which can be rewritten as 

goto TEST; 

WHILE BODY ; 

TED if A-B rel-op O then goto WHILE 

NEXT 

that is, the following sequence of instructions can implement the while-loop: 
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BRA TEST 

WHILE BSR BODY 

TEST MOVES Dae O 

CMP .L B,DO 

Bcc WHILE 

NEXT 

For example, 

while A <> B 

can be translated into 

BRA TEST 

WHILE ADDI.L #10,A 

TEST MOVES ADO 

CMP) BDO 

BNE WHILE 

NEXT 

‘} 

’ 

> 

? 

goto TEST 

BODY 

; if A-B rel-op O then 

; goto WHILE 

do A:=A+10; 

; goto TEST 

; A:=A+10 

7; at A-Be <=) OM then 

; goto WHILE 

5.1.4 Parameter passing to subroutines 

An important problem when using procedures or functions (collectively called sub- 
routines) is how to pass parameters from the calling program to the subroutine. 
There are a number of solutions to this problem which we will discuss here. There 
are two basic approaches to pass parameters to subroutines; we can either pass the 
value or a reference (address) of the variable that comprises the parameter. These 
two methods are usually called call-by-value and call-by-reference in high-level lan- 
guages. 

Values can be passed either by using registers or, if the number of registers is 
not sufficient, by dedicated memory locations. For instance, in the Pascal-function 

function ADDF(X,Y :integer): integer; 

begin 

ADDF :=X+Y; 

end; 
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we can pass X and Y using registers DO and D1 and pass the function value in D1: 

ADDF ADD.L DO,D1 

RTS 

Now suppose that a subroutine uses a larger number of parameters than the 

number of available registers. Then it is not possible to use registers as a means 

to pass values. A solution to this problem is to associate a memory area with the 

subroutine in which the calling program puts all parameters. For instance, if the 

ADDF subroutine is to be used to add five numbers 

function ADDF(X1,X2,X3,X4,X5 :integer) : integer; 

begin 

ADDF : =X1+X2+X3+X4+X5; 

end; 

we can use five memory locations associated with ADDF in the following way 

X DS.L 5 ; Space for X1 through X5 

ADDF MOVEA.L #X,A0 

MOVE.L #0,D1 

MOVE.B #5 ,D2 

LOOP ADD.L (AO)+,D1 

SUBI.B #1,D2 

BNE LOOP 

RTS 

where the function value is returned in D1. Now suppose that we want to use the 

function to add two arbitrary memory locations, then the calling program would 

have to be responsible for moving the values into registers or memory locations 

before calling the ADDF function. It would be more efficient, in this case, to pass the 

addresses (call-by-reference) of the operands as in the following implementation: 

ADDF MOVE.L (A0),D1 

ADD.L CAT DE 

RTS 
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In this implementation, the addresses of the operands are passed through address 

registers AO and Al. The result is returned in register D1 also in this case. 

EXERCISES 

rail Implement the following procedure that retrieves an element 

from vector LIST, using the declarations on page 61. 

procedure RETRIEVE; begin 

ITEM: =INBUF .LIST [INBUF . FIRST] ; 

INBUF .FIRST:=INBUF .FIRST+1; 

INBUF . COUNT: =INBUF . COUNT-1; 

end; 

5.2 What sequence of instructions implements the following 

if-then-else construct 

if A<B then A:=0 else A:=1; 

assuming that A and B are 32-bit Signed integers? 

5.3 What sequence of instructions implements the following 

if-then-else construct 

if A<B then A:=0 else A:=1; 

assuming that A and B are 32-bit Unsigned integers? 

5.4 What sequence of instructions implements the following 
if-then-else construct 

if (A=>5) and (A<=10) then A:=0 else A:=1; 

assuming that A is a 32-bit Signed integer? 
Hint: The above if-then-else construct can be rewritten as nested 
else-clauses as follows: 

ict AG GE omaGhen 

A:=1 

else if A > 10 then 

A:=1 

else 

A:=0; 
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5.5 What sequence of instructions implements the following for-loop 

for =1, to 10"do 

URS te 

assuming that I and J are 32-bit Unsigned integers? 

5.6 What sequence of instructions implements the following Pascal- 
statements 

I:=0; 

while I < 10 do 

Piers 

assuming that I is a 32-bit Unsigned integer? 

5.7 What sequence of instructions implements the following Pascal- 

statements 

I:=0; 

repeat 

ie=Ne ake 

Diaten IL IS20)3 

assuming that I is a 32-bit Signed integer? 

5.2 Program design and structure 

In the previous section, we showed how commonly used high-level language con- 

structs such as conditionals and repetition-statements can be translated into se- 

quences of assembly language instructions. In this section, we will present a method 

of how to design large assembly language programs. The approach is based on a 

commonly used design methodology referred to as top-down design. The general 

idea is to describe the solution to a problem using high-level primitives such as 

procedures and functions. Each high-level primitive is in turn described in terms 

of primitives on a more detailed level. This stepwise refinement continues until a 

point when it is straightforward to translate it into a sequence of assembly language 

instructions. 

As a base for describing the solution of a problem, one can use an arbitrary 

high-level language. But it is also possible to mix this language with one’s own 

inventions. A description using a high-level language mixed with one’s own in- 

ventions is usually referred to as pseudo-code. We will illustrate this technique by 

using Pascal. 

The specification and implementation of a program can be summarized by the 
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following five steps: 

1. Specifying the task in pseudo-code 

2. Refining the specification by breaking down high-level constructs into more 

manageable units. 

3. Coding and documenting the program 

4. Testing the program 

5. Isolating and removing program errors, debugging 

The first three steps constitute the design process. First, the solution is described 

using pseudo-code. Preferably, one uses a high-level language as long as possible. 

The advantage of this is that it provides well-defined constructs. Furthermore, by 

using standard translations, as we have shown in the previous section, one can 

reach a correct solution faster. Second, each primitive (i.e. a high-level procedure 

or function) is specified in terms of primitives at. a more detailed level. This 

process continues until a point when it is obvious how to translate each primitive 
into a sequence of assembly language instructions. Third, the assembly language 
program is coded. At this point it is appropriate to add informative comments so 
as to enhance readability. 

There are many ways to document a program. First, the comments ought to be 
informative. For example: in ‘MOVE.B DO,D1 ; Move DO to D1’ the comment is 
NOT informative. Comments should be problem-oriented rather than language- 
oriented — it should be assumed that any person that reads the program listings 
is familiar with the language (in this case the M68000 assembly language). One 
way of adding informative comments is to use the pseudo-code. Each high-level 
statement is used as an in-line comment to explain the corresponding sequence of 
instructions. Another good idea is to use headers of comments for each piece of 
code such as a subroutine. Below, we show what information should go into that 
header: 

; NAME ADD64 

; DESCRIPTION: Adds two 64-bit numbers C := A + B 

we NEUI DO and Di pass A, D2 and D3 pass B 

; OUTPUT: D2 and D3 return C 

; REGISTERS: D2 and D3 

ADD64 ADD.L DARDS 

ADDX.L DO,D2 

RTS 

The header contains the name of the subroutine, a short description of what it 
does, how the input and output parameters are passed, and which registers are 
affected by the subroutine. This information is useful for other persons that use 
the subroutine. For example, if a subroutine uses register D2, it is important for 
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the program that performs a subroutine call to save register D2 provided that it 
uses register D2. 

In the next section, we shall illustrate how all ideas developed in this chapter 
can be used to design a larger assembly language program. The last two issues 
regarding how to test and debug a program will be addressed in the last section in 
this chapter. 

5.3. A large program design example 

In this section, we shall make use of what we have learned about programming 

methodology and style by designing an assembly language program that performs 

a nontrivial task. The task we will consider is a program that retrieves information 

from a database consisting of a number of records of the following type: 

type PERSON = record 

FNAME :array[0..20] of char; 

LNAME :array([0..20] of char; 

MALE :boolean; 

BYEAR : integer; 

NEXT : PERSON; 
end; 

Each record keeps information of a person’s first and last name (FNAME and 

LNAME), a boolean variable (MALE) that is true if the person is a male, and finally, 

the birth year of the person (BYEAR). For simplicity, we use integers to express the 

boolean variable MALE (1 for true, and 0 for false). The last variable in the record 

(NEXT) is a pointer to the next record. In Figure 5.1, we show how the database 
keeps track of three records. The first record appears at address 9000,.¢, while the 

last record starts at address 906816. 

The program will be able to insert a new record of type PERSON, list all persons 

that were born in a specific year, and list all persons of a specific sex. This task 

could be described using the following Pascal specification. 

9000 Peter 9034, Mary a | goes | 3" 

Wilson “| Nelson an _ Anderson 

} 1965s W106, sues «ipl i 4067.09 © (1 

ieee foo eat 
9034 A 9068 Pi | 909C 

Figure 5.1 An example of how the database keeps track of three records. 
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begin 

repeat 

CHOICE: =PRMEN; (*** PRMEN prints the menu 

and returns the CHOICE ***) 
if CHOICE = i then 

INSREC (*** INSREC inserts a new person 

into the database ***) 

else if CHOICE = 2 then 

PRBORN (*** PRBORN prints all persons 

born a specific year ***) 
else if CHOICE = 3 then 

PRSEX ; (***x PRSEX prints all persons 

of a specific sex ***) 

tahealIe COs = —ile 

end. 

Although we haven’t written the procedures that implement the desired function, 

we can structure the program at this very early stage of the design process. The 

next step is to refine the specification of each procedure and function. 

function PRMEN; 

begin 

PRSTR(’?1. Insert new record’); 

PRSOTRC?25 Find’ all’ persons born’ in year fr" )% 

PROTRC' So" "Find all persons with sexy .7): 

CHOICE: =READINT; 

if (CHOICE <"1) or (CHOICE >"3)) then’ CHOPCE :=—1" 

PRMEN : =CHOICE; 

end; 

PRMEN first prints out the menu and then reads an integer by calling a function 

named READINT. The menu choice is an integer between 1 and 3. If another integer 
is read, CHOICE is assigned —1. 

procedure INSREC; 

begin 

PRSTR(’ Input the first name’); LAST.FNAME:=READSTR; 

PRSTR(’ Input the last name’); LAST.LNAME:=READSTR; 

PRSTR(’ Input sex’); LAST.MALE:=READINT; 

PRSTR(’ Input year’); LAST.BYEAR:=READINT; 

LAST: =LAST . NEXT; 

end; 

INSREC reads all variables in the record from the terminal. This is done by using 
a function called READSTR. Note that LAST is a pointer to the last record to be 
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inserted in the database. In Figure 5.1, LAST contains the address to the record 

where the new person shall be inserted. It must be initialized in the main program 

to point to the first record. When a new record is inserted, LAST is updated to 

point to a new record. 

procedure PRBORN; 

begin 

PRSTR(’ Input year’) ; 

YEAR:=READINT; 

RECS ="‘First) record? ; 

while REC <> LAST do 

begin 

if YEAR = REC.BYEAR then 

begin 

PRSTR(REC. FNAME) ; 
PRSTR(REC.LNAME) ; 

end; 

REC: =REC . NEXT ; 

end; 

end; 

PRBORN reads an integer from the keyboard using the function READINT. It then 

traverses the records in the database according to Figure 5.1 to check for the 

occurrence of a person whose birth year matches the variable YEAR. If there is a 

match, the person’s name is printed out on the terminal screen using the procedure 

PRSTR. The next procedure we consider, PRSEX, is similar in its structure: 

procedure PRSEX; 

begin 

PRSTR(’ Input sex’); 

SEX :=READINT; 

REG eer ireste record... 

while REC <> LAST do 

begin 

if SEX = REC.MALE then 

begin 

PRSTR(REC. FNAME) ; 

PRSTR (REC. LNAME) ; 

end; 

REC: =REC . NEXT ; 

end; 

end; 
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In the specification of the procedures PRBORN and PRSEX, we have used a mix 

of English such as REC := ‘First record’ and fairly well-defined functions such 

as READINT which reads an integer from the keyboard. This has made it possible 

to specify the intention of each procedure in terms of other procedures. The net 

effect of this is that the only procedures that are left to be specified are PRSTR, 

READSTR, and READINT. These might be offered by the computer system in terms 

of device drivers in the so called operating system, or, can be coded directly in 

M68000 assembly code. We can now start to code the entire program, but before 

we do this, we need to agree upon a program structure. 

Besides the advice given in the previous sections, we shall give some additional 

advice on how to structure a program such as the one we are dealing with here. 

In essence, it consists of a main program, a number of subroutines, and data 

structures. We will apply to the following structure: 

e Main program. A header of comments describes its function. 

e Subroutines. Each subroutine (procedure or function) should be preceded 

by a header specifying its name, a short description of its function, input as 

well as output parameters, and registers that are affected. In addition, the 

declarations and local variables should precede the subroutine code. 

e Global data structures. 

On the next few pages, we show the assembly code for the entire program starting 

with the main program. 

; PROGRAM: MAIN 

; DESCRIPTION: Inserts new records of persons and answers simple queries. 

MAIN BSR PRMEN ; repeat CHOICE:=PRMEN 

CMPI.L #1,CHOICE ; if CHOICE=1 then 

BEQ THEN1 

CMPI.L #2,CHOICE ; else if CHOICE=2 then 

BEQ THEN2 

CMPI.L #3,CHOICE ; else if CHOICE=3 then 

BEQ THEN3 

BRA TEST 

THEN1 BSR INSREC ; INSREC 

BRA TEST 

THEN2 BSR PRBORN ; PRBORN 

BRA TEST 

THEN3 BSR PRSEX ; PRSEX 

TEST CMPI.L #-1,CHOICE ; until CHOICE=-1 
BNE MAIN 

STOP #$2700 
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On the previous page, we show the code for the main program. We note how the 

original specification in Pascal is used as comments in the main program. This way, 

it is easy to understand how the program works. Also note how we have made use 

of standard translations for the if-then-else statements and the repeat-statement 

that appear in the Pascal specification. 

The main program will terminate if a menu choice outside the allowed range 

(1,2, and 3) is typed in. The STOP instruction that appears as the last instruction 

is then executed. 

; NAME: PRMEN 

; DESCRIPTION: Prints a menu and reads menu choice. 

o) ENPUT None 

POULE UL: Menu choice 1,2,3 or -1 in memory location CHOICE. 

; REGISTERS: AO 

STR1 DeaB ?>4. Insert new record’ ,$0D,$0A,0 

STR2 DEAE ?2. Find all persons born in year...’,$0D,$0A,0 

STR3 DEAE 23. Find all persons with sex...’,$0D,$0A,0 

EVEN 

CHOICE DSec 1 

PRMEN MOVEA.L #STR1,A0 

BSR PRSTR ; PRSTR(’?1. Insert new 

PTecordyy) 

MOVEA.L #STR2,A0 

BSR PRSTR ; PRSTR(’?2. Find all persons 

R Isfenciet. abiol WEGEGo ua) 

MOVEA.L #STR3,A0 

BSR PRSTR ; PRSTR(’?3. Find all persons 

S) AWist eS Oman. 2) 

MOVEA.L #CHOICE, AO 

BSR READINT ; CHOICE:=READINT 

CMPI.L #1, CHOICE ‘alt (CHOlCKe< J cthen 

BLT MINUS1 ; BRA MINUS1, or 

CME #3 , CHOICE if .CHOMGESS 3 then 

BGT MINUS1 ; BRA MINUS1 

RTS 

MINUS1 MOVE.L #-1,CHOICE ; CHOICE:=-1 

RTS 

The function PRMEN above uses a variable named CHOICE to return the menu 

choice. The first thing PRMEN does is that it prints out the menu. Note how all 

strings are declared using the DC directive. Also note that each character string is 

terminated by the ASCII codes for carriage return (OD), line feed (OA), and NUL (0). 

While the first two ASCII characters cause the cursor on the screen to proceed to 

the beginning of the next line, the NUL character does not result in any output. It 
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is used by the PRSTR subroutine as an end-of-string mark. The PRSTR subroutine, 

which is used to print out the string, assumes that the address of the first character 

is stored in AO. This is why AO is initialized before the subroutine is called. 

; NAME: INSREC 

; DESCRIPTION: Inserts a new record into the database. 

uN RU None 

sPOUME Un None 

; REGISTERS: AO,A1 

FNAME EQU 0 ; Displacement for FNAME 

LNAME EQU 20 ; Displacement for LNAME 

MALE EQU 40 ; Displacement for MALE 

BYEAR EQU 44 ; Displacement for BYEAR 

NEXT EQU 48 ; Displacement for NEXT 

NREC EQU 52 ; Displacement to next record 

LAST Dems DATABASE 

ISTR1 DC.B >Input the first name’ ,$0D,$0A,0 

ISTR2 DC.B ?Input the last name’ ,$0D,$0A,0 

ISTR3 DC.B ?Input sex’,$0D,$0A,0 

ISTR4 DC.B ?Input year’ ,$0D,$0A,0 

EVEN 

INSREC MOVEA.L LAST,A1 

MOVEA.L #ISTR1,A0 

BSR PRSTR ; PRSTR(’Input the first name’) 

LEA FNAME (A1) , AO 
BSR READSTR ; LAST.FNAME:=READSTR 

MOVEA.L #ISTR2,A0 

BSR PRSTR ; PRSTR(’?Input the last name’) 

LEA LNAME(A1) , AO 

BSR READSTR ; LAST.LNAME:=READSTR 

MOVEA.L #ISTR3,A0 

BSR PRSTR ; PRSTR(’Input sex’) 

LEA MALE (A1) , AO 

BSR READINT ; LAST.MALE:=READINT 

MOVEA.L #ISTR4,A0 

BSR PRSTR ; PRSTR(’?Input year’) 
LEA BYEAR(A1) , AO 

BSR READINT ; LAST.BYEAR:=READINT 

MOVEA.L A1,A0O 

ADDA.L #NREC, At ; Address of the next entry 

MOVE.L A1,NEXT (AO) 

MOVE.L A1,LAST ; LAST:=LAST.NEXT 

RTS 
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In INSREC on the previous page, character strings and integers are read using 

the subroutines READSTR and READINT. Both these subroutines use AO to point at 

the location in memory where to put the result. We have used a special instruction 

called LEA a,Ai that computes the absolute address of expression a and stores it 

in address register Az. For example, LEA LNAME(A1),A0 performs the operation 

LNAME+(A1) — AO. For more details about this instruction please refer to 
Appendix B. 

Also note that the address of the new record to be inserted is always present in 

the variable LAST. This is why A1 is initialized to contain the address stored in 

variable LAST. LAST must also be updated before the return instruction is executed. 

This is done by first adding the displacement NREC to Al and then updating LAST 

with the content of Al. 

; NAME: PRBORN 

; DESCRIPTION: Prints all persons born in a specific year 

7 UNPUT : None 

OUDEUT2 None 

; REGISTERS: AO,Ai,DO 

PRSTR1 DC.B >Input year’ ,$0D,$0A,0 

EVEN 

YEAR DS.L 1 

PRBORN MOVEA.L #PRSTR1,AO 

BSR PRSTR ; PRSTR(’?Input year’) 

MOVEA.L #YEAR,AO 

BSR READINT ; YEAR:=READINT; 

MOVEA.L #DATABASE,A1 ; REC:= ‘First record’ 

BRA WTEST1 

WLOOP1 MOVE.L YEAR,DO 

CMP... BYEAR(A1),DO ; if YEAR = REC.BYEAR then 

BNE CONT1 

LEA FNAME(A1) , AO 

BSR PRSTR ; PRSTR(REC. FNAME) 

LEA LNAME (Ai) , AO 

BSR PRSTR ; PRSTR(REC.LNAME) 

CONT1 MOVEA.L NEXT(A1),A1 ; REC:=REC.NEXT 

WIEST1 CMPA.L LAST, Ai te RE Gee LAS lL <>aOl then 

BNE WLOOP 1 ; goto WLOOP1 

RTS ; end; 

The assembly code for PRBORN appears above. The first thing it does is to read 

the year to be matched against all entries in the database from the keyboard (BSR 

READINT). The first record appears at address DATABASE. Al is used to point to the 

current record in the database. This is why it is initialized to contain the absolute 

address corresponding to DATABASE. Since PRSEX is very similar in structure, we 

leave it as an exercise for the reader to design PRSEX. 
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Finally, we need to specify the subroutines PRSTR, READSTR, and READINT. They 

appear on the next two pages. Parameters to/from these subroutines are passed by 

reference using AO to contain the address. PRSTR prints all characters until ASCH 

NUL (0) is encountered. READSTR reads characters until a carriage return (ODj¢) is 

encountered. It then inserts ASCII NUL and exits. All these subroutines use two 

subroutines CHRIN and CHROUT that print and read an ASCII character to/from the 

terminal, respectively. In the next chapter, we will see how these subroutines can 

be implemented by extending the model of the computer system with input/output 

devices. 

; NAME: PRSTR 

; DESCRIPTION: Prints a string terminated by NUL on the terminal screen 

; INPUT: A string pointed to by AO 

; OUTPUT: None 

; REGISTERS: AO ,DO 

NUL EQU 0 

CHROUT EQU $F0432 

PRSTR CMPI.B  #NUL, (AO) 
BEQ PREND 

MOVE.B  (A0)+,D0 

JSR CHROUT ; Print the character in DO 

BRA PRSTR 

PREND RTS 

; NAME: READSTR 

; DESCRIPTION: Reads a string from the keyboard 

7 INEUL: A string pointed to by AO 

; OUTPUT: None 

; REGISTERS: AO, DO 

CR EQU $0D ; Carriage return 

CHRIN EQU $F0420 

READSTR JSR CHRIN ; Read a character into DO 

JSR CHROUT ; Print it on the screen 

CMPI.B #CR,DO ; Exit if Carriage Return 

BEQ RSTEND 

MOVE.B- DO, (A0)+ ; else, insert it into buffer 

BRA READSTR 

RSTEND MOVE.B  #NUL, (AO) 
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READINT, that appears below, reads a decimal unsigned number from the key- 

board and converts it into a 32-bit unsigned integer in the following way: If a 

character is not a decimal symbol, the subroutine simply ignores it. Otherwise, 

it converts the string of decimal symbols into a 32-bit unsigned integer. To do 

this, we make use of the instruction MULU which multiplies the source operand by 

the destination operand (register D1) to yield a 32-bit unsigned product. There 

is a corresponding instruction for signed multiplication called MULS. For additional 

information on how to use them, see Appendix B. 

; NAME: READINT 

; DESCRIPTION: Reads and converts an unsigned decimal number. 

UN BUI: An integer pointed to by AO 

OUTPUT: None 

; REGISTERS: DO,D1 

READINT MOVE.L #0,D1 

READL MOVE.L #0,D0 

JSR CHRIN ; Read character 

JSR CHROUT sischomsct 

CMPI.L #CR,DO ; Exit if Carriage Return 

BEQ RINT 

SUBI.L #$30,D0 

BLT READL ; Less than 07, ignore it 

CMPI.L #9,D0 

BGT READL ; Greater than 97, ignore it 

MULU #10,D1 ; Di:=10*(D1) 

ADD.L DO,D1i 

BRA READL 

RINT MOVE.L D1, (AO) 
RTS 

Finally, we show the assembly code for the declaration of the database on the 

next page. It is implemented using a memory area that consists of 10*52 bytes, 

sufficient to store ten records. A critical issue in this application is how to prevent 

the user from inserting too many records. The solution to this problem is to test 

whether there is a sufficient amount of memory to insert a new record in INSREC. 

We have deliberately overlooked this test and will only mention that the program 

developed in this section is not guaranteed to work correctly if more than 10 records 

are inserted. 
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DATABASE DS.B_ 52 

DSp baa 

DSpBw noe 

Dobe 

DiSigle} Ley 

Dor oaos 

DSi be 

DSB oe 

DSP Baeo2 

DS by 

END 

EXERCISES 

5.8 Write a subroutine CONVERT that converts the ASCII-character in 

DO as follows: If it is upper-case (A,B,C,...) then it does nothing, 

if it is lower-case (a,b,c,...) it converts it into upper-case (Use 

the ASCII-table from Chapter 1). 

5.9 Use the subroutine from the previous exercise to write another 

subroutine CSTR that converts a string of characters pointed to 

by AO and ended by ASCII NUL. 

5.10 Define a table TAB with N integers, each occupying one word. 

Then write a subroutine that adds all these integers and returns 

the value in register DO. 

5.11 Write a program that calculates and prints all Fibonacci numbers 

< 65 535. PUTINT can be used to print a 16-bit number stored in 

register DO. The Fibonacci numbers are defined recursively as: 

ag = ay = 1 

a; = Ay + Aj_9, > Il 

5.12 Implement the PRSEX procedure according to the Pascal specifi- 

cation on page 75. 
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5.4 Testing and debugging 

Testing is the phase of the design process in which the programmer identifies pro- 

gram errors, bugs. The debugging phase aims at locating the bugs and removing 

them. These two phases are repeated until the program is virtually free from 

bugs. Virtually, because in practice it is impossible to prove correctness of large 

programs. 

Many people tend to believe that the major part of the time to develop a program 

is spent at the specification and coding phase. This is not the true picture at all. 

It is not unusual that testing and debugging count for half the time of the design 

process. 

One way of shortening this time is to follow the advice given in the previous 

sections. By using a structured approach in the design phase, the number of bugs 

will be reduced. Furthermore, bugs that are introduced will be easier to locate. It 

is not very likely that a program will work correctly the first time it is run. Most 

programmers will not experience this during their life-time, apart from very small 

problems. Therefore, an important part of the programming methodology is to 

devise some rules for testing and debugging, which will be done in this section. 

The first kind of error test is carried out by the assembler. The assembler 

checks the program for syntactical errors. It can detect nonexistent instructions 

and symbolic names that are not defined. However, it cannot detect logical errors, 

which is a very important fact to be aware of. The kind of errors that the assembler 

can detect are called assembly-time errors. We will not discuss these in further 

detail. Instead, we will focus on program errors that pass the assembler and are 

detected at run-time. These are called run-time errors, or bugs. 

The task of a program is to generate a certain output (result) for a certain input. 

This task is the core of the testing phase, namely, the programmer should devise 

some tests consisting of a number of input/output pairs. 

Once a faulty output is detected, the debugging phase aims at locating the bug 

that caused this output. This is usually facilitated by a tool called a debugger. A 

debugger is a program that is run in order to aid the programmer in locating the 

bugs. We say that the processor is in debug mode, when the debugger is executed 

and in user mode when the program under test is run. At the assembly language 

level, a debugger usually provides the following facilities: 

e Single stepping. The program can be executed one instruction at a time in 

user mode. The processor enters debug mode after each instruction. 

e Execution. The program can be started at an arbitrary address and run at 

full speed. 

e Memory and register examination and modification. The contents of memory 

locations and registers can be inspected and altered when the processor is in 

debug mode. 

e Running with breakpoints. Addresses, so called breakpoints, can be specified 

so as to enter debug mode when the breakpoints are reached. 
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Let us look at how these facilities can be used in a typical debugging session. A 

common situation is that the program never terminates when it is run for the first 

time. In this case a first step is to make an educated guess as to where the bug is 

located. The second step is to set some breakpoints in order to isolate the location 

where the bug is and execute the program. If the breakpoints are reached, the task 

is to make sure that the register and variable contents are exactly as expected. If 

not, the bug is tracked. Otherwise, continue until the bug is found. One can also 

make use of the ‘Single step’ facility to chase the bug when you are close to it. 

We end this chapter by presenting a few bugs that are common to novice assem- 

bly language programmers: 

Structure: 

MOVE.L #VAR,DO 

LOOP SUBI.L #1,D0 

VAR iDS2E 1 

BNE LOOP 

Although this program is syntactically correct (the assembler won’t complain), it 
will not work as expected. The problem is that location VAR is defined in the 

middle of the code. The processor will interpret the content of VAR as an instruc- 

tion, instead of fetching the branch instruction. Note that the assembler doesn’t 

rearrange instructions — it simply translates them one after another. 

Operand size: 

MAIN ORG $8000 

TAB DC.B WS 5 a 

EVEN 

START MOVEA.W #TAB,AO 

MOVE.B  #0,D0 

LOOP ADD.B (A0)+,D0 

SUBI.L #1,D0 

BNE LOOP 

Some programmers believe that the start address of an assembly language program 

is the one that corresponds to the first line, that is 8000;¢ in the example above. 

This is of course not true. Therefore, always make sure at what address the first 
instruction of a program starts. 

Another important problem is the proper use of operand size attributes. In the 

example above, we have used operand size Word to load AO, which is in general 

wrong! The reason is that addresses are considered as 32-bit unsigned integers. In 
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general, the choice of operand size should be carefully considered. 
The programmer should also avoid accessing a word or double word on odd 

addresses. This results in address error (which will be explained in Chapter 8) and 
is in particular difficult to locate. A related problem, which has been discussed 
earlier, is to avoid instructions to be loaded at odd addresses at memory. This 
could be avoided by inserting the EVEN assembler directive prior to the code. 

Addressing modes: 

MAIN ORG $8000 

VAR DGrE START 

START MOVEA.L #VAR,AO 

MOVE.B (AO) ,DO 

MOVEA.L VAR, AO 

MOVE.B (AO) ,DO 

Another common problem is to use the addressing modes incorrectly. The first 

instruction loads the value of VAR (= 8000j¢) into AO, while the third instruc- 

tion loads the content of VAR (=START=8004j.) into AO. Make sure that you 

have understood the difference between all the addressing modes we 

introduced in the previous chapter (see page 49)! 

Branches: 

The reason for executing a program loop too many or too few times can be that 

the loop variable is initialized incorrectly: 

MOVE.L #0,D0 

LOOP ADDI.L #1,D0 

CMPI.B #5,D0 

BGT LOOP 

Note that the branch is taken 4 times (and not 5) times. Another problem could 

be the incorrect use of conditional branch instructions. 

Improper base for constants: 

Forgetting a ‘$’ or ‘%’ when dealing with hexadecimal and binary numbers may 

introduce severe bugs. 
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5.5 Summary and concluding remarks 

In this chapter, we presented a methodology for designing and testing assembly 

language programs. The primary objective is to design for reliability. 

The assembler provides support for this by the assembler directives. These 

are used to define symbolic names for certain entities such as memory locations, 

constants etc. 

By using a high-level language notation to specify the task of the program, 

we can use a top-down methodology in order to refine the specification for a final 

implementation by assembly language instructions. By using standard translations 

for certain common high-level language constructs, we can translate these in a 

mechanical fashion and thus support reliability. The pseudo-code can serve as 

in-line comments in the course of documentation. 

We illustrated the methodology developed in the first two sections by the devel- 

opment of a fairly large example program. We imposed a structure in which we 

made considerable use of headers as a means of documenting the subroutines and 

global data structures. 

Finally, we gave some advice on how to locate and remove program errors. An 

important tool in the course of debugging is the debugger which enables the pro- 

grammer to execute the program in a controlled fashion by letting him examine 

the content of relevant registers and memory locations. 



Chapter 6 

Input and Output Control 

In this chapter, we will refine our model of the computer system introduced in 

Chapters 3 and 4 by adding the important concept of I/O. Other topics to be 

discussed in this chapter are how the return addresses from subroutines are handled, 

and some other features of the processor that enhance performance and reliability. 

6.1 Input and output model 

In the simplified models we introduced in the previous chapters, information can 

only be transferred between the processor and the memory. A computer that is 

not capable of exchanging information with the outside world is rather useless. In 

order to explain how this is performed, we need to extend our model to include 

the important concept of input/output (I/O). 

In order for a computer to exchange information with the outside world, there 

are dedicated registers denoted I/O-ports. The I/O-ports are connected to input 

and output devices as shown in Figure 6.1. They are shared between the processor 

and the I/O-devices; an input device can write to a port while the processor can 

read from the same port. The implication of this is that it can be meaningful for a 

program to perform successive reads from a port, because an input device may have 

changed the content of the input register in between two successive read operations. 

Conversely, it can be meaningful for the processor to perform successive writes to 

a port, with no intervening read operations, because an output device may have 

read the last value written by the processor. 

Some ports are dedicated to transferring information from the environment to 

the processor. These are called input ports. Conversely, some ports are dedicated 

for transferring information in the opposite direction. These are called output ports. 

From the discussion so far, it should be clear that it is not meaningful to read from 

output ports. By the same reason, it 1s not meaningful to write to an input port. 

In the example computer system in Figure 6.1, there is one input port, one output 
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The Memory 

Data Address Control 
Registers Registers Registers 
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FRFEFFF 

: The I/O-ports 

V Vv 

Figure 6.1 A computer model including I/O-ports. 

port, and a combined input/output port. 

From the memory model’s point of view, M68000 identifies parts of the address 

space as I/O-port addresses which are connected to dedicated I/O-ports. While 

the instruction set model is the same for all computers based on the M68000, 

the available amount of memory and I/O-ports may differ. The memory map 

of a computer system specifies exactly how the address space of the processor is 

distributed between available memory locations and I/O-ports. The manufacturer 

of a computer system usually offers this information to the system programmer. 

The example computer system in Figure 6.1 connects addresses 0-FFEFFFj¢ to 

memory locations and addresses FFF0001¢, FFF002;6, and FFF004;¢ to I1/O-ports. 

The implications of connecting I/O-ports to memory addresses are twofold (i) 

I/O-ports can be read and written to using the addressing modes provided for mem- 

ory locations, and (ii) there are no dedicated instructions for information transfer 

between the processor and the environment; information is simply transferred us- 

ing the instruction set relevant for accessing memory locations. This type of I/O 

scheme is usually referred to as memory-mapped I/O. 

Let us look at an example. The following instruction reads a byte from the input 

port at address FFF002,¢ and copies it to memory location IO: 

INPORT EQU $FFF002 

MOVE.B INPORT,IO 

Now suppose that an input device, such as a keyboard, is connected to an input 

port. Furthermore, suppose that we want to design a program that reads characters 

from the keyboard. We then run into the problem of how to detect when there is a 
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new character available in the input port. Conversely, suppose that an output port 

is connected to a printer. Now if a program transfers characters from the memory 

to the printer faster than the printer can receive them, characters that have not 

been printed out might be overwritten in the output port. Both these situations 

are examples of the general issue of how to synchronize the information transfer 

between the computer and an input/output device. 

One commonly used technique to solve this problem is to associate a flag with 

each port that can be read by the processor at a dedicated I/O-address. For an 

input port, the flag is set when a new value is available and reset when the processor 

reads from the input port. For an output port, the flag is set when the value has 

been read by the output device, and reset when a new value has been written by 

the processor. Given such flags, we can design a program that synchronizes the 

information between the processor and any device. 

For example, suppose that a flag is available in the least significant bit of port 

FLAG. This flag is set when data is available in input port INPORT. We can then 

write a program that reads from the input port when data is available as follows: 

LOOP ANDI.B #%00000001,FLAG 

BEQ LOOP 
MOVE.B INPORT, (AO)+ 
BRA LOOP 

Note how the program makes use of the logical AND instruction to determine 

whether the least significant bit of input port FLAG is set. If it is cleared, the result 

of this operation is zero and the subsequent branch is taken. If the flag is set, the 

execution continues at the next instruction which copies the content of the input 

port at address INPORT to a memory location pointed to by AO. The use of the 

logical AND instruction demonstrates a means of testing a single bit. We have 

used a constant 000000012 to check bit 0. This constant is often called a mask 

because we mask all bits except for the least significant one. So, regardless of the 

contents of bits 1 through 7, the result is zero iff the content of bit 0 is zero. 

There is a special instruction that tests a particular bit in a location, known as 

BTST #C,a. It sets the Z-flag if bit C in location a is cleared. We could use this 

instruction instead of the logical AND instruction: 

HOOPS bist #0, FLAG 

BEQ LOOP 

MOVE.B INPORT, (AO)+ 

BRA LOOP 

The technique we have demonstrated is known as polling or busy-waiting because 

the processor repeatedly asks whether the input or output device is ready to send 
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Figure 6.2 An example of how a terminal is connected to a computer system 

through I/O ports. 

or receive a new value. It is a simple and reliable scheme but can waste time if 

the transfer rate is small compared to the execution speed of the processor; in 

this case the processor will be occupied with testing the flag most of the time. A 

more attractive solution, in this case, would be to let the input device notify the 

processor when there is data that can be transferred. Using such a scheme would 

allow the processor to perform useful work instead of busy-waiting on a flag to 

be set. This scheme, which is known as interrupt, will be presented later in this 

chapter. 

Our I/O model is useful in the implementation of various schemes that transfer 
information in between the computer system and the outside world. Consider the 

computer system in Figure 6.2. It consists of two input ports at addresses FFF0021¢ 

and FFF 00416, respectively, and an output port at address FFF000,5. A keyboard 

is connected to FFF004;,. The output port can transfer ASCII characters to the 

terminal screen. Two flags are provided to indicate that a new ASCII character is 

available (KREADY) and that the terminal screen is ready to take care of a new ASCII 

character (SREADY). These facilities can be used to implement the two fundamental 

subroutines (CHRIN and CHROUT) we used in Chapter 5 to read and write characters 

to/from a terminal. The CHRIN subroutine can be implemented as 
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KREADY EQU 0 

STATUS EQU $FFFO02 

INPORT EQU $FFFO04 

CHRIN BTST #KREADY , STATUS 

BEQ CHRIN 

MOVE.B INPORT,DO 

RTS 

and the CHROUT subroutine can be implemented as 

SREADY EQU i 

STATUS EQU $FFFO02 

OUTPORT EQU $FFFO0O 

CHROUT BTST #SREADY , STATUS 

BEQ CHROUT 

MOVE.B DO,OUTPORT 

RTS 

Note that the parameter (either the ASCII character to be read or to be written) 

is passed by register DO. The subroutines CHRIN and CHROUT that we have shown 

are often provided by the operating system, that is, the basic software that offers 

commonly used service routines to the programmer. A program that interacts with 

input and output devices is often called a device driver. In Chapter 7, we will go 

deeper into the details of designing device drivers. 

When you input commands or any text to a computer system, all characters you 

type are usually printed out on the terminal screen. This process is called echoing 

because the processor echoes all characters that are read from the keyboard to the 

terminal screen. Below, we combine the programs that read and write characters 

so that all characters that are typed on the keyboard are echoed on the terminal 

screen. 

CHRIN BIST #KREADY , STATUS 

BEQ CHRIN 

MOVE.B INPORT,DO ; Read the character 

CHROUT BTST #SREADY , STATUS 

BEQ CHROUT 

MOVE.B DO,OUTPORT ; Echo the character 

BRA CHRIN 
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EXERCISES 

6.1 Write a sequence of instructions that reads the content of input 

port at address FFF100;¢, multiplies it by 4 and writes the result 

to output port FFF102;. without using polling. 

6.2 Two input ports are available at addresses FFF100;g and 

FFF102;.. An output port is available at address FFF104¢. 

Write a program that repeatedly performs bitwise logical AND 

between the input ports and writes the result to the output port 

without using polling. 

6.3 Given eight input devices. Input device i, where i = 0,1,...,7 

is connected to input port 7 at address (FFF000,, + 7). When 

bit 2 in input port STATUS at address FFF0081¢ is set, data from 

device 7 is available at its input port. Write a program that 

repeatedly checks input port STATUS through polling. When 

data is available at input port 2, its content is copied to memory 

location (9000, + “). 

6.2 Stacks and subroutines 

A branch-to-subroutine instruction is like a branch in that the PC (program 
counter) is loaded with a new value, but a call must also save the old value (that 
is, the address of the instruction following the branch-to-subroutine instruction) 
somewhere so that it can return correctly. We refer to this address as the return 
address. 

To support subroutine calls and returns, there are a number of approaches that 
turn out to have serious weaknesses. One solution would be to have a special 
location for the return address as illustrated in the program according to Figure 6.3. 
In Figure 6.3, a subroutine call is implemented by storing the return address at 
location RETADDR (MOVE.L #RET1,RETADDR) and an unconditional branch to the 
subroutine address (JMP SUBR1). The return-from-subroutine instruction (RTS) is 
implemented by a branch-instruction to the address stored at location RETADDR 
(JMP (AO) performs a branch to address ((A0))). This solution has a major draw- 
back. It prevents a subroutine from calling another subroutine because, in this 
case, the content of location RETADDR will be overwritten, and the old return ad- 
dress is forgotten. For example, when SUBR2 is called, the return address RET1 is 
overwritten. 

This problem could be solved by associating a location to store return addresses 
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RETADDR DS.L al 

START MOVE.L #RET1,RETADDR ; Save return address 

JMP SUBR1 ; Branch to SUBR2 

RET1 

SUBRi ss 

MOVE.L #RET2,RETADDR ; Save return address 

JMP SUBR2 ; Branch to SUBR2 

REZ MOVEA.L RETADDR, AO 

JMP (AO) ; “RTS? Branch to_the address 

; that is stored at RETADDR 

SUBR2 

MOVEA.L RETADDR, AO 

JMP (AO) ; ‘RTS’ Branch to the address 

; that is stored at RETADDR 

Figure 6.3 Using a special location to store the return address. 

with each subroutine. We will still have a problem, namely, it will prevent a 

subroutine from calling itself, a so-called recursive subroutine call. The fact that 

subroutines should be able to call other subroutines (and as a special case calling 

themselves) has led to a technique to handle return addresses which is simplest to 

understand by looking at the following example: 

START BSR SUBR1 

RET1 

SUBR1i BSR SUBR2 

RET2 ae 

RTS 

SUBR2 BSR SUBR3 

RETS eke 

RTS 

SUBROM Nan 

RTS 

Consider the sequence of subroutine calls generated by the execution of the above 

program. This sequence is SUBR1, SUBR2, and SUBR3. The sequence of subroutine 

calls gives rise to the following sequence of return addresses: RET1, RET2, and RETS. 

Now when SUBR3 has been executed, the execution shall continue at address RET3. 
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When SUBR2 has been executed, the execution continues at address RET2, and 

finally, when SUBR1 has been executed, the execution continues at address RET1 in 

the main program. We make the following important observations. First, return 

addresses are generated in the order the subroutines are called (i.e. RET1, RET2, 

and RET3), and the return addresses are used in the reverse order (i.e. RET3, RET2, 

and RET1). Given a data structure that could keep track of return addresses in 

the same way as plates are stored in a dish well in a cafeteria (the plate that is 

retrieved from the dish well is the last one that was put into the dish well), we 

have solved the problem. 

A data structure that handles objects (e.g. return addresses) in this way is called 

a stack. A stack is a list in which items (e.g. return addresses) can be stored and 

retrieved in reverse order. There are two primitive operations, PUSH and POP, 

associated with a stack. A PUSH operation stores a new item on the top whereas 

a POP operation retrieves the top item and a new item comes to the top. When 

a branch-to-subroutine instruction (BSR address or JSR address) is executed, the 

return address is simply PUSHed by the processor onto the stack and when a 

return-from-subroutine instruction is executed, the return address on top of the 

stack is retrieved and loaded into the PC. 

The stack is implemented using a segment of the memory space in conjunction 

with a dedicated location called Stack Pointer (SP for short), which keeps track of 

the address of the top of the stack. The processor designer has to make a decision 

about whether to let the stack grow towards higher or lower addresses, as well 

as whether to let the SP point to the top item, or the first empty item, of the 

stack. In the M68000, SP points to the top item and the stack grows towards 

lower addresses. In Figure 6.4 we show how the stack is managed in the M68000. 

Initially (SP) =i+1. A PUSH operation decrements the SP before a new item is 
put on top of the stack ((SP) = 7). A POP operation removes an item from the 
top of the stack and increments the SP. 

Before we look more closely into how return addresses are handled by the pro- 

cessor, we want to show how the machine language for the M68000 supports user- 

defined stacks. PUSH and POP operations can be implemented using the address 

registers introduced in Section 4.5 in conjunction with the indirect with post- and 

predecrement addressing modes. We illustrate the semantics of PUSH and POP 

by using address register AO: 

MOVEA.L #BOTTOM,AO ; Initialize the stack 

MOVE.L DO,-(AO) ; PUSH DO 

MOVE.L (AO) +,DO 7RORRDO 

The first instruction initializes the Stack Pointer (in our example address register 
AO). The second instruction PUSHes the content of DO onto the top of the stack, 
or formally: (AO) — 4 — AO and (D0) — (AO). The third instruction POPs 
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=<<— SP 
i+] 

«<g— SP 

FFFFFF 

PUSH POP 

Figure 6.4 The Stack Pointer (SP) and the function of PUSH and POP in the 
M68000. 

and places the top item of the stack in DO, or formally: ((A0)) — D0 and (A0) 

+4 — AO. Note that the stack pointer is decremented before the content of DO 

is copied onto the top of the stack and incremented after the top element of the 

stack is removed. 

In Figure 6.1, we have introduced the Stack Pointer (SP) in the model of the pro- 

cessor. SP (or A7) is from the point of view of the instruction set simply another 

address register in the sense that all instructions relevant for address registers (for 

example those listed in Table 4.6 in Section 4.5) are relevant for SP. However, an 

important feature of SP distinguishes it from the other address registers — when a 

branch-to-subroutine instruction (BSR or JSR) is executed, the processor automat- 

ically performs a PUSH operation on PC using SP as a stack pointer. Likewise, 

when a return-from-subroutine instruction (RTS) is executed, the processor auto- 

matically performs a POP operation and places the content of the top of the stack 

in PC (see Table 6.1). 

Table 6.1 Semantics of the BSR and RTS instructions. 

Name Operation 

BSR address (SP)—4 — SP; 

(Pe) = (SB); 
address — PC 

RTS ((SP)) — PC; 
(SP)+4 — SP 

Besides the automatic use of the stack by the subroutine instructions, the stack 

can be used to store temporary data by using the indirect addressing modes avail- 
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able for address registers. In the previous chapter, we had to state explicitly which 

registers are used by a subroutine in the commentary header associated with each 

subroutine. Sometimes it is important to leave all registers unaffected. This can 

be done by using the stack as a temporary memory space for the contents of the 

registers: 

8000 MOVE.L #$1234,D0 

8006 MOVE.L #$5678,D1 

800A BSR SUBR 

800C 

SUBR MOVE.L DO,-(SP) ; PUSH DO 

MOVE.L D1,—(SP) ; PUSH D1 

MOVE .L) (SP)+,D1 5 jeid)e adj) 

MOVE.L (SP)+,D0 3) PUP DO 

RTS 

In the above example program, the absolute addresses of some of the instructions 

appear to the left. In subroutine SUBR, we have used the stack to save the contents 

of registers DO and D1. Note that we POP them from the stack in the reverse 

order (D1 before D0). 
It is important to understand how the stack changes during the execution of the 

program above. In Figure 6.5, we show how the stack is affected by the program 

above. Assume that (SP)=9000,¢ ((1) in Figure 6.5), initially. When the BSR 

instruction has been executed, the return address (800Cj¢) has been PUSHed onto 

the stack ((2) in Figure 6.5) and (SP)=8FFC,.. After the execution of the second 
instruction in the subroutine, DO and D1 both have been PUSHed onto the stack 

as long words and (SP)=8FF4j¢ (8 less than before, see (3) in Figure 6.5). Note 

how the contents of DO and D1 are stored in the stack space in Figure 6.5. Finally, 

immediately before the RTS instruction has been executed, the content of SP is 

SFFC\¢. 

We have assumed that the stack is infinitely large, which in practice means that 

it is sufficiently large. A critical point is that the stack pointer must be initialized 

so that there is sufficient memory space to prevent the stack from overflowing. This 

could happen as a result of too many nested subroutine calls; if the program to 

be supported by the stack can perform n nested subroutine calls, the stack space 

must exceed 4n bytes in order to have space for n return addresses. 

A word of warning is justified. It turns out be a common mistake that the stack 
is incorrectly handled. Consider the following erroneous subroutine: 
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8FF2 

8FF4 

8FF6 

8FF8 

8FFA 

8FFC 

8FFE 

9000 

(1) (SP)=9000 (2) (SP)=8FFC (3) (SP)=8FF4 

Figure 6.5 The content of the SP and the stack at different places in the example 
program. 

SUB MOVE.L DO,-(SP) 

RTS 

The first instruction PUSHes the content of DO onto the stack, while RTS POPs 

the top element of the stack (that is the old value of DO) and copies it into PC. 

This means that PC will not be loaded with the correct return address. Problems 

of this kind result in bugs that are especially hard to locate. 

EXERCISES 

6.4 In this exercise we shall implement a recursive algorithm, that 

computes the sum of all integers between | and N: 

function NSUM( N ); 

begin 

if N=1 then NSUM:=1 

else NSUM:= N + NSUM( N-1 ); 

end; 

If NSUM > 1 then NSUM must be called again. Note that the 

sum is computed first when NSUM has been called N times. 

This implies that one copy of N must exist for every instance 

of NSUM in the calling sequence, which means that we cannot 

use a fixed location for N. Write NSUM as a subroutine that 

implements the recursion above. Hint: Use the stack to save N. 
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6.5 

6.6 

6.7 

In the example program below, we show the addresses to the 

left. Analyze the program and answer the questions below: 

8000 BSR NSUM 

8004 STOP #$2700 

8008 NSUM MOVE.L_ DO,-(SP) 

800A MOVE.L #0,D1 

8010 SUBI.L #1,D0 

8016 BEQ OUT 

801A BSR NSUM 

801C ADD.L DO,D1 

801E OUT MOVE.L (SP)+,D0 

8020 RTS 

(a) Assume that (SP)=90006 and that (DO)= 3, initially. Show 
the content of the stack and the stack pointer each time SUBI.L 

is executed.(b) What does D1 contain when subroutine NSUM has 
been executed if (D0) = 3, initially? 

In the program below, PREGS pushes all data registers denoted by 

the word immediately following the subroutine call instruction 

in the following way: if bit 2 = 1 then Di is pushed. PREGS also 

ensures that the return address is the address of the instruction 

immediately following the word (that is, MOVE.L D1,D2). Write 

a subroutine that implements PREGS. 

JSR PREGS 

DC.W %000000000100101 ; DS,D2,DO0 are pushed 

MOVE.L D1i,D2 ; Next instruction... 

We shall perform calculations using a stack which is maintained 

by AO as a stack pointer. Implement the following subroutines: 

ENTER: Pushes the content of DO onto the stack. 

ADDSTACK: Pops the top of stack item and adds it to DO. 

SUBSTACK: Pops the top of stack item and subtracts it from DO. 

POPSTACK: Pops the top of stack item into DO. 
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6.8 Consider the following program which uses the subroutines in 
the previous exercise 

MOVEA.L #$8000,A0 

MOVE.L #$10000005 , DO 

BSR ENTER 

MOVE.L #$10000006, DO 

BSR ENTER 

BSR ADDSTACK 

BSR SUBSTACK 

Show the content of the stack (and AO) after the execution of 
each subroutine. 

6.3. Instruction execution rate 

We have now introduced almost all important features relevant to the machine 

language programmer in order fully to take advantage of the functionality of a 

computer system. Our model so far has been functional and we have not addressed 

maybe the most important objective of using computers — the processing speed of 

a computer. 

Efficiency is one of the primary objectives of all computing. The main explana- 

tion of the ‘revolution of computers’ is that computers can perform operations at 

a high rate. Typically, standard computers of today can perform in the order of 

1,000,000 instructions per second, although this number is rapidly changing. Some 

instructions take a longer time to execute than others. Therefore, computer manu- 

facturers use an average measure of instruction execution rate called the MIPS-rate 

(Million Instructions Per Second). Consequently, a 1-MIPS computer executes 10° 

instructions/s on average. 

In order to get an idea of how the instruction execution time differs for different 

instructions, we shall pick a few instructions from the instruction set of the M68000. 

In Table 6.2, we show the execution time of some instructions for specific addressing 

modes in terms of cycles. The cycle time may differ from computer to computer. 

To get a rough estimate of the execution time, we shall assume that the cycle time 

is (00s (10-"s)! 
From Table 6.2 we note that the execution time ranges from 4 cycles to 18 cycles, 

that is, close to five times. One would like to know the reason for this discrepancy. 

The number of memory accesses carried out by an instruction has a first order 

effect on the execution time. For instance, if we compare the execution time of 
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Table 6.2 Execution time in terms of cycles for some M68000 instructions. 

Instruction Cycles 

MOVE.W DO,D1 4 

ADD.W  DO,Di1i 4 

ADD.W 10,D1 16 

BRA LOOP 10 

Bcc LOOP 10/8 
BSR SUBR 18 

RTS 16 

the two ADD instructions, we see that if the source operand is pointed out using 

absolute addressing, we get an increase by 12 cycles compared to register-direct 

addressing. The reason is twofold: (i) the instruction occupies three words (the 

operation word and two words for the absolute address) instead of one, and (ii) the 

operand to be fetched requires one extra word to be fetched from memory. This 

results in three more words to be fetched from memory. 

The reason why a branch-to-subroutine instruction takes almost twice as long to 

execute than an unconditional branch-instruction has also to do with extra memory 

accesses. The difference between these two instructions is that the return address 

has to be PUSHed onto the stack before the branch is taken, thus requiring two 

words to be transferred to memory. 

We also show the execution time for conditional branch-instructions. The execu- 

tion time differs depending on whether the branch is taken or not. If the branch is 

taken, the execution time is 10 cycles. Otherwise it is 8 cycles. The reason for this 
discrepancy is that if the branch is taken, the PC must be loaded with a new ad- 
dress. This is not needed if the branch is not taken because the PC already points 
to the next instruction to be fetched, namely, the instruction that immediately 
follows the branch-instruction. 

From this discussion we can conclude that when performance is crucial to a 
program, one should carefully consider the choice of instructions. Since most of 
the time is spent in executing loops, one should especially try to optimize these. 
Let us give a rough estimate of the execution time of the program below: 

START MOVE.L #10000,D0 

LOOP SUBI.L #1,D0 

BNE LOOP 

STOP #$2700 
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The loop is executed 10,000 times so the number of instructions executed is 1-+2 
10,000 + 1 = 20,002. Assuming that each instruction takes 10 cycles to execute, 
the execution time is about 210°10~’ s = 2:10~? s, assuming that the cycle time 
is 100 ns. 

6.4 Interrupts 

In Section 6.1, we studied a scheme to synchronize an external event, such as a 
keyboard input, with the program execution. We called it polling, because the 
processor is polling an extern il device to find out whether it needs service. Now 
recall the example program from Section 6.1: 

LOOP BIST #0, FLAG 

BEQ LOOP 

MOVE.B INPORT, (AQ)+ 

BRA LOOP 

Let us assume that the above program reads characters from a keyboard, and that a 

secretary is writing at a speed of ten characters each second. (This is tough even for 

an extremely experienced secretary!) What is the fraction of time the processor 

spends on useful computation? Considering what is performed in the program 

above, we must admit that the only useful computation is when the character is 

stored at the location pointed to by AO. This instruction takes about 107° s to 

execute, so the magnitude of the fraction of useful work is only 10~°/107! = 107°. 
This is of course not acceptable given the fact that the processor could perform 

999990 useful operations each second instead of repeatedly asking the question ‘Is 

there anything to me?’ over and over again. A better approach would be to let 

the keyboard, or more general, the external device notify the processor when an 

action needs to be taken. 

The mechanism that implements this concept is the interrupt. In the data input 

example above it works as follows: The synchronization flag is connected to an 

interrupt input on the processor. When a new data value is loaded into the port the 

processor automatically senses this. Instead of executing the instruction pointed 

to by PC, the processor automatically performs a subroutine call to a special 

subroutine called an interrupt service routine, which takes care of the input value. 

The interrupt service routine is ended with a special return instruction which 

resumes execution of the interrupted program. 

The interrupt service routine is similar in structure with an ordinary subroutine. 

However, there is a fundamental difference between the two. While a subroutine 

is called from specific points in the program, determined by the programmer, an 

interrupt service routine can be called at an arbitrary point in the program because 

of the unpredictability of external events. ‘This means that the programmer cannot 
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predict when the interrupt service routine is called so special actions need to be 

taken. Especially, an interrupt service routine must always return leaving all 

registers unaffected. We call the contents of all registers the processor contect. 

This means that if the interrupt service routine uses any registers, their 

contents must first be saved and later restored. The interrupt service routine 

has the following basic structure: 

INT MOVEM.L_ reg-list,-(SP) ; Save registers used 

; by the service routine 

; Instructions that 

sys ; implement the service 

MOVEM.L (SP)+,reg-list ; Restore registers used 

; by the service routine 

RTE ; Return from exception 

There are a few remarks that need to be made regarding this example. First, 

besides pushing the return address onto the stack, the processor also automatically 

saves the status register. The reason for this is that almost all instructions affect 

the condition code register (CCR) which is part of the status register (recall Section 

4.3). Second, all registers used by the interrupt service routine need to be saved. 

A safe way to do this is to use the stack. Note that we use a new instruction 

called MOVEM. It takes a list of register names as operands and stores them onto 

the top of the stack (we will talk about this instruction more in detail later in this 

chapter). Third, the dots represent the action that is to be taken to service the 

external event. Fourth, we need to restore the registers by making the reverse POP 

operation to copy the register contents from the stack. Finally, we use a special 

return-from-subroutine instruction (RTE). The reason for this is that, unlike an 

ordinary subroutine call, the status register is PUSHed onto the stack and needs 

to be restored. This is exactly what RTE does, besides POPing PC as the ordinary 
return-from-subroutine instruction RTS does. 

Let us give an example on the use of interrupts. Consider a system in which a 

certain character string which is stored at location STRING shall be written to the 

screen as soon as an interrupt occurs. We use the PRSTR subroutine from Chapter 

5 to solve this problem. This subroutine uses registers AO and DO, which means we 

have to save them: 

INT MOVEM.L DO/A0,-(SP) 

MOVEA.L #STRING, AO 

BSR PRSTR 

MOVEM.L (SP)+,D0/A0 

RTE 
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We have not discussed the issue of how the processor knows at what address the 

interrupt service routine is located. To make the problem even worse, the processor 

may have a number of interrupt inputs, each with an associated call address of its 

own. With several interrupt inputs, a priority order is usually defined so that the 

behavior is determined when more than one interrupt occurs simultaneously. 

M68000 supports interrupts according to various schemes. In the following, we 

will present a scheme that is often used in computer systems with a small number 

of interrupts. It is referred to as the autovector interrupt scheme. In Chapter 7, we 

will look at an extended model of the interrupt system called vectored interrupts. 

The base for the autovector interrupt system is seven interrupts which we denote 

I, to I. In order for the M68000 to keep track of the addresses of the interrupt 

service routines that service these interrupts, there is a table called exception vector 

table which consists of one entry for each interrupt input. The machine language 

programmer is responsible for initializing the entries in this table. The address of 

the interrupt service routine that is connected to interrupt input I, is stored at 

address 4(18,. +7). In the table below, we show the addresses of the entries for I, 

through Iy. 

Interrupt input Address 

I; 7416 

Ig 7816 

I, 7Ci6 

Since there are more than one interrupt inputs, there must be a rule for how to 

deal with several interrupts that are activated at the same time. The general rule 

is that if two interrupts are activated at the same time, the one with the highest 

number will get service first. 

Another question is how to prevent an interrupt input from getting service. This 

is solved by associating a priority level with the processor. We refer to this as the 

current priority level (CPL). The general rule is that a certain interrupt input Ln 

can interrupt the processor provided that n >CPL. There is one exception to this 

rule, namely, if n = 7. Interrupt input I7, known as non-maskable interrupt, can 

always interrupt the processor. 

The machine language programmer can set the CPL which is done by accessing 

the status register. In Figure 6.6, we show the computer system model again, 

highlighting all the bits contained in the status register (SR). The CPL is controlled 

by bits 8-10 called C1, C2, and C3. They can be modified by the following move 

instruction that sets the current priority level to 5: 

MOVE #$2500,SR 
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Figure 6.6 The control bits in the status register. 

Note that the above instruction sets (C1 C2 C3) = 101», that is, the CPL is binary 

coded by bits 8-10 in SR. There are two other bits named T and S (bits 15 and 

13) whose function we will describe in Chapter 8. We shall only mention that the 

S-bit must be set in order to change the CPL. This is why bit 13 in the word 2500,¢ 

(= 001010100002) is set. We say that an interrupt is enabled when the processor 

can be interrupted by this interrupt. For M68000, we note that interrupt n is 

enabled when CPL < n, n < 7. Interrupt I; is always enabled. 

We are now able to write a program that takes care of more than one interrupt. 

In the following example, we want to service interrupt inputs Ip and I; with two 

interrupt service routines INT2 and INTS5. We show the necessary initializations 

for these interrupts: 

START MOVE.L #INT2,$68 

MOVE.L #INT5,$74 

MOVE #$2100,SR 

SU eulsulalaey AUN: 

; Initialize INT5 

; Enable interrupts with CPL>1 

; Interrupts are enabled here... 

LOOP BRA LOOP 

INT2 Svs 

RTE 

INTS “us 

RTE 

In the program above, we first initialize the exception vector table entries that 
correspond to INT2 and INTS. We then enable these interrupts by setting CPL=1 
(why 1?). Note that it is important to enable the interrupts after the exception 
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vector table has been initialized. Otherwise, the interrupt service routines cannot 

be called and the system can act unpredictably. In general, therefore, it is impor- 

tant to consider carefully when to enable the interrupts because an interrupt can 

theoretically happen immediately after this point in the program. 

To summarize, in order to design a program in which a certain service is to be 

achieved when an interrupt is encountered, the machine language programmer is 

responsible for the following: 

e Design an interrupt service routine which saves and restores all registers 

‘affected by the routine. 

e Initialize the exception vector table and enable the interrupts. 

We are now able to write interrupt service routines but have not discussed what 

happens when the processor encounters an interrupt which is to be done now. 

While interrupts can occur at any point in time, the processor checks whether an 

interrupt has occurred after each instruction only. Recall the instruction cycle from 

Chapter 3: 

Step 1: Fetch the instruction at the memory address specified by PC. 

Step 2: Update PC. 

Step 3: Execute the instruction. 

Step 4: Check if there are any pending interrupts. 

We have augmented the instruction cycle with the interrupt check (Step 4). When 

an interrupt from interrupt input I,, occurs, the processor performs the following 

tasks automatically, without involving any machine language program: 

Step 1: If n < CPL, nothing is done. Otherwise, 

Step 2: it makes an internal copy of the content of SR (status register). 

Step 3: CPL:=n in SR, in order to prevent further interrupts at the same 

or lower priority level. 
Step 4: It sets the S-bit and clears the T-bit in SR. 

Step 5: It pushes PC onto the stack. Then it pushes its internal copy of 

SR (the old value) onto the stack. 
Step 6: It loads PC with the entry 4(1815 + m) and performs a branch to 

this address (the interrupt service routine). 

When the interrupt service routine has been executed, that is, when the RTE 

instruction is executed, the processor resumes execution at the point in the program 

where it was interrupted and with the same SR content as before the interrupt 

occurred. The processor performs this by popping SR and PC from the stack 

(recall that these values were pushed in the reverse order). Note that since SR is 

restored, the priority level that was set before the interrupt occurred is restored. 
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8FF2 

8FF4 

8FF6 

8FF8 

8FFA 

8FFC 

8FFE 

9000 

Cl) CSP) 
(SR) 
(PC) 

9000 (2) (SP) 
210A (SR) 
8008 (PC) 

8FFA 

220A 
8020 

Figure 6.7 The content of the SP at various places during the interrupt. 

Consider the following program: 

8000 MOVE.B #$7F,D0 

8004 ADDI.B #1,D0 ; An interrupt occurs here 

8008 MOVE.B #1,D1 ; This instruction is executed 

; when the interrupt has been 

; handled 

502 ORrns 

RIE 

Assume that an interrupt occurs at interrupt input I, when the ADDI instruction is 

being executed. The corresponding interrupt service routine is located at address 

8020. When the interrupt service routine has been executed, the execution con- 

tinues at address 8008. We further assume that the initial contents of the status 

register and the stack pointer are (SR)=2100 and (SP)=9000, respectively. The 
content of the condition code register will be changed by the ADDI instruction so 
that the content of the status register is (SR)=210A when the interrupt occurs 
(confirm this as an exercise). We will now look at how the contents of the stack, 
the program counter, and the status register change when the interrupt service 
routine is invoked. The contents of SP, SR, and PC when ADDI is being executed 
are shown to the left in Figure 6.7. When the interrupt is being processed by the 
processor, PC and SR will be pushed onto the top of the stack ((2) in Figure 6.7). 
Note also that the current priority level is changed to the same priority as the 
interrupt ((SR)=220A, i.e. CPL=2) when the first instruction of the interrupt ser- 
vice routine is to be executed. When finally the interrupt has been processed, the 
content of SP, SR, and PC are exactly the same as before the interrupt occurred 
((1) in Figure 6.7). 
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We will now look at an application in which interrupts from a timer form the 

base. A timer is connected to interrupt input I; in such a way that an interrupt 

is generated each millisecond. We will implement a program that keeps track of 

the actual time using four memory locations: TICK, SEC, MIN, and HOUR. These 

locations contain the actual time in milliseconds (TICK), seconds (SEC), minutes 

(MIN), and hours (HOUR). 
We first show the algorithm using Pascal-like code to explain what the interrupt 

service routine is supposed to do: 

procedure TIME; 

begin 

TICK: =TICK+1; 

if TICK=1000 then 

begin 

TICK:=0; SEC:=SEC+1; 

if SEC=60 then 

begin 

SEC:=0; MIN:=MIN+1; 

if MIN=60 then 

begin 

MIN:=0; HOUR:=HOUR+1 ; 

if HOUR=24 then 

HOUR: =0 ; 

end; 

end; 

end; 

end; (*** RTE ***) 

The interrupt service routine to be invoked every millisecond appears in Fig- 

ure 6.8. Note that we do not need to save and restore any registers, because the 

interrupt service routine does not affect any of them. The initializations that are 

needed to get it to work are as follows: 

MAIN MOVE.L #0,TICK ; TICK:=0 

MOVE.L #0,SEC + SEG: =0 

MOVE.L #0,MIN ; MIN:=0 

MOVE.L #0,HOUR HOUR =O 

MOVE.L #TIME,$74 ; Initialize exception table 

MOVE #$2400,SR ; Enable Is 

LOOP BRA LOOP 
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TIME ADDI. #1,TICK ; TICK:=TICK+1; 

CMPI. #1000,TICK ; if TICK=1000 then 

BNE BACK 

MOVE. #0 , TICK ; TICK:=0; 

ADDI. #1,SEC ; SEC: =SEC+1; 

CMPI. #60 , SEC ; 1f SEC=60 then 

BNE BACK 

MOVE. #0 ,SEC ; SEC:=0; 

ADDI. #1,MIN ; MIN: =MIN+1; 

CMPI. #60 ,MIN ; if MIN=60 then 

BNE BACK 

MOVE. #0 ,MIN ; MIN:=0; 

ADDI. #1 ,HOUR ; HOUR:=HOUR+1 ; 

CMPI. #24 , HOUR ; if HOUR=24 then 

BNE BACK 

MOVE.L #0,HOUR ; HOUR:=0; 

BACK RTE 

Figure 6.8 Assembly code for the interrupt service routine that implements the 

clock. 

Note that we must initialize the locations TICK, SEC, MIN, HOUR before we enable 

the interrupt. 

6.5 Additional useful instructions 

We will end this chapter by presenting in this section the instructions we have 
introduced in this chapter and make some remarks on the use of them. They 
appear in Table 6.3. 

The BTST instruction tests the bit in a denoted by a data register D; or a constant 
(using immediate addressing). It only affects the Z-flag. 

The MOVEM reg-list,b instruction copies the contents of the registers denoted by 
reg-list to the consecutive addresses where the first address is denoted by operand 
b. 6 may designate absolute addressing, indirect addressing, and indexed (with 
displacement) addressing. The syntax of the register list is as follows: A range 
of registers such as DO, D1, D2 is denoted DO-D3, while a list of registers such as 
D1,A3,A5 is denoted D1/A3/A5. For example, this program 

MOVEA.L #$9000,A0 

MOVEM.L DO-D2/D5/A0-A3, (AO) 
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Table 6.3 Program control instructions introduced in this Chapter. denotes W 

or L. 6 is a restricted set of addressing modes (see text) 

Name Operation 

BTST D,,a if bit (D;) of (a) is set then 0 — Zelse 1 — Z 

ist #C,a if bit C of (a) is set then 0 — Zelse 1 — Z 
MOVEM.S  reg-list,b (reg-list) — b 
MOVEM.S  b,reg-list (b) — reg-list 

MOVE a,SR (a) —SR 
MOVE SR,a (SR) - a 

RTE ((SP))— SR; (SP)+2— SP; ((SP)) — PC; (SP) + 4— SP 

copies the contents of DO,D1,D2,D5,A0,A1,A2,A3 to addresses 9000;g — 901F y6 

because each register occupies 4 bytes which adds up to 32 bytes. 

The instruction MOVEM b,reg-list, performs the opposite operation. We need to 

make a remark when the source operand uses indirect addressing with predecrement 

(which was used in the generic interrupt service routine on page 102). In this 

case it is important to pop the registers in the reverse order, the MOVEM b, reg-list 

instruction is smart enough to do so: 

MOVEM.L DO-D2/D5/A0-A3,- (AO) 

MOVEM.L (A0)+,DO0-D2/D5/A0-A3 

In this example, the registers are pushed in the order specified by the sequence in 

the register list. However, they will be popped in the reverse order. 

The MOVE SR,aand MOVE a,SR facilitates copying of SR to any location as spec- 

ified by the addressing mode denoted by a. Since SR is a 16-bit register, the default 

size is word. For additional information on the use of these instructions, please 

refer to Appendix B. 

EXERCISES 

6.9 Consider the interrupt service routine TIME on page 108. A 

switch is connected to interrupt input Ig. Write an interrupt 

service routine connected to this interrupt that sets the vari- 

ables TICK, MIN etc. to zero. Also, modify the main program to 

initialize this interrupt. 
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6.10 A timer generates an interrupt each 100 ms at I5. Fifteen ASCII- 

character displays are connected to output ports at addresses 

570016 — 570E;¢. The ASCII-codes of the string ‘68000 FOR 

EVER’ are stored at address 600016 — 600E,¢ (ended by NUL). 

In the subsequent exercises, we shall design a complete program 

that results in the following successive sample printouts on the 

displays each second: 

68000 FOR EVER 

8000 FOR EVER 

000 FOR EVER 6 

OO FOR EVER 68 

Write a subroutine MCHAR according to the Pascal-specification 

below: 

procedure MCHAR; 

begin 

POINTER: =POSITION; 

for I:=0 to 14 do begin 

if STRING(POINTER] = NUL then 

POINTER: =0; 

DISPLAY [I] :=STRING [POINTER] ; 

POINTER: =POINTER+1 

end; 

POSITION: =POSITION+1 ; 

if POSITION > 14 then 

POSITION: =0; 

end; 

6.11 Write an interrupt service routine that each second calls sub- 
routine MCHAR in the previous exercise. All registers must be left 

unaffected when the routine is exited. 

6.12 Write a main program that initializes interrupt I; and the vari- 
able POSITION in the previous two exercises. 

6.6 Summary and concluding remarks 

In this chapter, we have looked into special program control features needed to 
support such things as I/O and subroutines. All communication with the outside 
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world is achieved through I/O-ports, which in the M68000 is done through spe- 

cial memory locations. They are memory locations in the sense that information 

transfer is supported by the same subset of the instruction set that is used to 

transfer information to/from memory locations. However, they are special in the 

sense that the information written to an output port can generally not be read 

afterwards. Similarly, information read from an input port may change from one 

time to another without having written to it in between. 

An important scheme to synchronize an external event to the actions taken by 

the machine language program was to check repeatedly a dedicated I/O-location 

that is affected by the external device that needs service. This scheme is known as 

polling or busy-waiting. 

In order to support nested subroutines, most computers manage the return ad- 

dresses by a data structure called a stack. Upon a subroutine call, the PC (con- 

taining the return address) is automatically pushed onto the stack. Upon a return 

from the subroutine, the return address is popped from the stack. The stack can 

also be used to store register contents, in order to leave all registers unaffected. 

Another synchronization scheme known as interrupt was also investigated. The 

motivation behind this scheme is when the external events are rare. In this case, 

the polling scheme will waste most of the capacity of the processor to check for 

external events. Therefore, most computers have dedicated interrupt inputs that, 

when activated, makes the processor perform a subroutine call to an interrupt 

service routine. The machine language programmer must design the interrupt 

service routine and connect it to a dedicated interrupt through something we called 

exception vector table. Furthermore, the machine language programmer must 

enable the interrupt at an appropriate point in time, usually when all initializations 

have been performed. 

In order to handle several external events, most computers have not only one 

interrupt input, but a number of them. This raises the issue of priority. Each 

interrupt input is associated with an interrupt priority. This is used to resolve 

several interrupts that occur at the same time. 



Chapter 7 

Programmable Input /Output 
Interfaces 

In the previous chapter, we studied how to transfer information between the com- 

puter system and the environment through I/O-ports. The simplified model we 

presented viewed the I/O-ports as special memory cells. We did not discuss the 

issue of how a particular input/output device such as e.g. a printer or a termi- 

nal from one manufacturer can be connected to a computer system from another 

manufacturer so that they can communicate with each other. In general when we 

have two units, such as a computer system and a printer, a rule is established for 

how they are supposed to communicate. Such a rule is called a communications 

protocol. The communications protocol establishes a set of requirements to make 

it possible to transfer information between two units. 

Let us consider an example. Suppose that we have purchased a printer from one 
manufacturer and a computer system from another. Our task is to connect these 
two units and implement a printer device driver so that we can send characters 
to this unit. There are two separate issues involved in this task: (i) how do we 
connect the units, and once they are connected, (ii) what is the synchronization 
scheme supposed to look like? Are we going to use polling or interrupt-driven 
communication? 

Information between two units is usually transferred using a cable with one or 
several lines, where each line can transfer a bit. Since each ASCII-coded character 
makes use of seven bits, a common way to connect a computer system to a printer 
is to use seven lines, one for each bit. This enables us to transfer one character at 
a time, in parallel. In order for a computer system to support parallel transfers to 
a printer, for example, there is often a parallel interface, that is, a connection to a 
port at which an input or output device can be connected. The parallel interface 
can be used if the physical distance between the computer system and the printer 
is small, typically less than a meter. However, suppose that the printer is located 
in a room far away from the computer system. One imagines that it would not be 
convenient to transfer characters in a parallel fashion because of the prohibitive 
cost of the cable that connects the printer to the computer system. There are also 

112 
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electrical restrictions that make this alternative less attractive but this discussion 

is outside the scope of this text. A viable alternative in this case would be to use 

a Single line to transfer one bit one after another. In essence, using the printer 

example, an ASCII-coded character could be transferred by seven successive bit 

transfers. There are special interfaces on most computer systems that transfer 

information in such a bit-serial fashion called serial interfaces. 

In this chapter, we shall look at how communications protocols are established 

by special devices that support parallel and serial communication. Because of the 

variety of devices that can be purchased, these interfaces are often programmable 

in the sense that the programmer can set up the communications protocol so as 

to meet the requirement of the device that is to be connected to the computer 

system. Therefore, they are called programmable interfaces. In Subsection 7.1, 

we discuss parallel communication and an example programmable interface from 

Motorola that supports parallel communications protocols. In Subsection 7.2, we 

discuss bit-serial communication and how the comimunication protocol is set up 

with another programmable interface from Motorola. In the previous chapter, we 

noted that Motorola has seven interrupt inputs. A natural question is how we 

support more than seven interrupts. In fact, M68000 can support 192 interrupts 

by requiring that the unit that generates the interrupt identifies itself by an 8- 

bit number called an interrupt vector. In Subsection 7.3, we present the vectored 

interrupt mode of the M68000. 

7.1 Parallel input and output 

7.1.1 Bit I/O and handshake protocols 

We will start the discussion in this section by considering a simple interface prob- 

lem. Suppose that we want to connect two lamps and six switches to a computer. 

The computer is supposed to read the status of the switches and switch on the light 

of any of the lamps. This is an example of a common situation where single bits 

are to be read or written to a device. It is called bit I/O. We can use a combined 

input/output port with eight bits to solve this interface problem as shown in Fig- 

ure 7.1. In Figure 7.1, we use two bits as output ports for the lamps, whereas six 

bits are used as input ports for the switches. In another situation, we may want to 

use six lamps and two switches, that is; six output ports and two input ports are 

needed. One realizes that it would be convenient if a single-bit port could be pro- 

grammed to act as an input in one situation and as an output in another. In fact, 

most manufacturers offer such programmable interfaces. The system programmer 

can program these interfaces to act in a way that suits the application, using a se- 

quence of machine language instructions. We will present a parallel programmable 

interface from Motorola where each individual bit in its ports can be programmed 

either as an input or output. There are other more complicated situations where 
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Figure 7.1 A computer that is interfaced to two lamps and six switches. 

we want to change the way information is transferred between the computer sys- 

tem and the environment. In the next example, we consider a commonly used 

communications protocol to synchronize the transfer between two devices. 

The next example in this section considers a computer system that is supposed 

to transfer characters to a printer. As shown in Figure 7.2, both units have a 

parallel interface that makes it possible to interconnect them. 

The data that are to be transferred to the printer, in essence ASCII-coded char- 

acters, make use of seven lines. In the previous chapter, we noted that the program 

that transfers data simply writes each character to the output port. At almost the 

same time, the character is available in the input port of the printer. However, 

we run into the problem of how the printer knows when a new character is avail- 

able and how the computer system knows when the printer has taken care of the 

previously transferred character. We are now about to present a commonly used 

technique, called handshaking that solves this problem. 

In Figure 7.2, two lines are associated with the parallel connection, denoted 

Ready and Send, to help synchronize the transfer in the following way. The sending 

side (the M68000-based computer system) notifies the receiving side (the printer) 

that data is available by asserting the Send line to a one in the example as shown 

in Figure 7.3. When the receiving side notices that Send is set, it reads the data 

and acknowledges the reception of the data by asserting the Ready line to a logical 

one. The sending side now knows that data is received and can send a new data 

item by again asserting Send. Send and Ready are called handshake lines, because 
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Figure 7.2 Parallel I/O with handshaking between a computer system and a 

printer. 

of the function they have; the communicating devices ‘shake their hands’ so as to 

agree that data has been transferred. 

Note that the above situation is just one example of a handshake protocol. 

While some devices may signal that they have accepted data by resetting Ready, 

other devices may signal that data is available by resetting the Send signal. One 

realizes that a programmable interface should be able to support various handshake 

protocols. This is exactly what the programmable interface we will present next is 

able to do. 

Figure 7.3 Timing diagram for the handshake signals Send and Ready. 
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Figure 7.4 Schematic diagram of the M68230 parallel interface. 

Table 7.1 Operation modes of the Motorola PI/T. 

Mode 0 Mode 1 Mode 2 Mode 3 

(8-bit, unidir.) (16-bit, unidir.) (8-bit, bidir.) (16-bit, bidir.) 
Sub- | Input (00) Input (XO) 
mode | Output (01) Output (X1) 

Bit 1/O (1X) 

7.1.2 The PI/T — an example parallel interface 

We are now ready to present an example of a programmable parallel interface 

from Motorola, called M68230 PI/T. M68230 can be thought of as containing two 

separate units: the parallel interface (PI) and the timer (T). We will only present 

the parallel interface. The interested reader should consult the complete data sheet 

from Motorola for more details. We will not give an exhaustive treatment of all 

features of the PI/T. In fact, it is almost ‘infinitely programmable’ and it would 

cover almost as many pages as this book contains to clarify fully all the possibilities 
that this programmable device provides. We will rather discuss those features that 
are relevant for the discussion in this section. 

The parallel interface of the M68230 contains three 8-bit ports, called Port A, 
B, and C, according to Figure 7.4. These ports can be programmed in a variety 
of ways. In addition, there are four handshake lines, denoted H1 through H4, that 
can be programmed according to various handshake protocols. 

In order to program the device, there are a large number of control registers. 
The interface is programmed by writing a sequence of codes to its control registers. 
There is also a status register that can be used if we desire to use polling to 
synchronize transitions on H1 through H4. 

In Table 7.1, we list the various operation modes that can be selected by pro- 
gramming the PI/T. There are four main operation modes constructed by the key 
terms 8-bit/16-bit and unidirectional/bidirectional. A transfer is unidirectional if 
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the direction of the data transfer between ports in two communicating devices is 

the same all the time. Sometimes it is convenient to let two communicating de- 

vices X and Y use the same lines to transfer data from X to Y as the opposite 

transfer from Y to X. Doing this, we do not have to dedicate a pair of ports to 

data transfers in one direction. Connections between two communicating devices 

that can change data direction are referred to as bidirectional. The main operation 

mode also gives provision for combining the A and B port to form a 16-bit port. 

For the 8-bit modes, each of the ports are controlled individually, whereas for the 

16-bit modes, A and B are considered as a 16-bit port and cannot be programmed 

individually. 

From Table 7.1, we see that a number of alternatives are available for some of 

the main operation modes. These alternatives are referred to as submodes. For 

example, three submodes are associated with Mode 0, whereas no submodes are 

associated with modes 2 and 3. In the following, we will restrict the discussion to 

the submodes of Mode 0. 

The input/output submodes are used when a handshake protocol is desired. Ac- 

cording to Figure 7.4, four handshake lines are available. H1 and H2 are associated 

with port A, while H3 and H4 are associated with port B. The third submode is 

used in bit-I/O operations; each bit in ports A, B, and C can be individually 

programmed as either an input or output. 

Besides the actual ports in the PI/T, there are nine 8-bit control and status 

registers that control its actions. In Table 7.2, we summarize almost all registers 

that support the parallel interface of the PI/T. From left to right, we show the 

register address, the individual control and data bits of all registers, and finaily to 

the right, the name of each register. The manufacturer of a computer system has 

specified a particular address, called base address, for a parallel interface such as 

the PI/T. The address of a certain register within the PI/T can be obtained by 

adding the Register Select Offset in Table 7.2 to the base address. For example, if 

the base address is FFF000,¢, the address of the PACR is FFF006;.. Note that in 

some systems the register select offset is used differently. 

We will now show how various communications protocols can be supported by 

using Port A as an example. In Table 7.3, we show a subset of all registers in the 

PI/T that are relevant for the operation of Port A. 

In the first example, we want to use Port A to be able to read the logical levels 

of the switch settings and, in addition, to control the lamps in Figure 7.1. To do 

this, we need to program Port A to be used in bit-I/O operation; bits 6 and 7 

should be outputs while bits 0-5 should be inputs. This is done by selecting the 

bit-I/O submode of Mode 0 (see Table 7.1). 

The main operation mode (Mode 0) is selected by the two most significant bits 

of the Port General Control Register (PGCR) according to Table 7.3 by simply 

writing the mode number to these bits. The submode of Port A is selected by the 

two most significant bits of the Port A Control Register (PACR) by simply using 

the codes that are found in Table 7.1 (1X denotes Bit I/O, where X means that the 

setting of bit 6 is irrelevant). The remaining bits of the PGCR and of the PACR 
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Table 7.2 Ports, control, and status registers for the parallel interface in the 

Pia 

Register 

Select 
Offset 
(hex.) 

| ff 6 5 4 3 2 1 0 

0 Port Mode H34 H12 H4 H3 H2 H1 Port General 

Control Enable | Enable | Sense Sense Sense Sense Control Register 

(PGCR) 
1 SVCRQ IPF Port Interrupt Port Service 

= Select Select Priority Control Request Register 
(PSRR) 

2) Bit Bit Bit Bit Bit Bit Bit Bit | Port A Data 
16 6 5 4 3 2 1 0 Direction Register 

(PADDR) 
3 Bit Bit Bit Bit Bit Bit Bit Bit Port B Data 

t 6 5 4 3 2 1 0 Direction Register 

pel (PBDDR) 
4| Bit Bit Bit Bit Bit | Bit Bit Bit Port C Data 

7 6 5 4 3 2 1 0 Direction Register 

(PCDDR) 
5 Interrupt Vector “| Port Interrupt 

Number a a Vector Register 

I | (PIVR) 
6 Port A an H2 Hl Hl Port A Control 

Submode H2 Control Int SVCRQ Stat Register 

Enable | Enable Ms Ctrl (PACR) 
i Port B H4 H3 H3 Port B Control 

Submode H4 Control Int SVCRQ Stat Register 

ei Enable | Enable 4. Ciel (PBCR) 
8 Bit Bit Bit Bit Bit Bit Bit Bit Port A Data 

a 6 5 4 3 2 1 0 Register 

(PADR) 
9 Bit Bit Bit Bit Bit Bit Bit Bit Port B Data 

7 6 5 4 3 ? 1 0 Register 

fe (PBDR) 
Cc Bit Bit Bit Bit Bit Bit Bit Bit Port C Data 

(6 6 5 4 3 2 1 0 Register 

| | (PCDR) 
D H4 H3 H2 H1 H4S H38S H2S His | Port Status 

Level | Level Level Level Register 

| ie (PSR) 
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Table 7.3 A subset of the PI/T registers that are relevant for Port A. 

Register 

Select 

Offset 

(hex. ) 

1G 6 5 4 3 2 1 0 

0 | Port Mode H34 H12 H4 H3 H2 H1 Port General 

Control Enable | Enable | Sense Sense Sense Sense Control Register 

(PGCR) 

Oe Bite (mesit Bit Bit Bit Bit Bit Bit Port A Data 
i 6 5 4 3 2 iW 0 Direction Register 

I | (PADDR) 

6 | PortA 2 Al Hi | Port A Control 
Submode H2 Control Int SVCRQ Stat Register 

Enable | Enable Ctrl (PACR) 

SHRBiCs MBit Bit Bit Bit Bit Bit Bit Port A Data 
7 6 5 | 4 | 3 2 1 0 Register 

(PADR) 

affect the operation of the handshake lines and will be discussed later. We therefore 

ignore their settings for a while. The following sequence of instructions programs 

the PI/T according to the specification: 

PGCR EQU $FFFOOO ; Address to the PGCR 

PACR EQU $FFFO06 ; Address to the PACR 

PADDR EQU $FFFOO2 ; Address to the PADDR 

INIT MOVE.B +#%00000000,PGCR ; Mode O 

MOVE.B #%10000000,PACR ; Bit-I/0 submode 

MOVE.B #%11000000,PADDR ; Bits 6-7 outputs and 

; bits 0-5 inputs 

To program the PI/T, we have assumed that its base address is FFF000,5. The 

addresses of the individual registers are obtained by adding the offset of each reg- 

ister from Table 7.3 to the base address of the PI/T. Note that we have arbitrarily 

assigned zero to bit 0-5 in the PGCR. In addition, bits 6 and 7 have been assigned 

10) to set up the bit-I/O submode and the rest of the bits in the PACR are ar- 

bitrarily assigned zero. The third move-instruction sets up the data direction of 

the eight single-bit ports in Port A. A zero indicates that the corresponding bit 

is an input while a one indicates an output. Since we want the two most signifi- 

cant bits in Port A to become outputs (the lamps are connected to these bits, see 

Figure 7.1), these bits are set in the PADDR. 

After the initialization, it is possible to read the switch settings and control the 

lamps. For example, in the example below 
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PADR EQU $FFFOO8 ; Address to the PADR 

MOVE.B PADR,DO ; Read data from Port A 

MOVE.B #%11000000,PADR ; Switch on both lamps 

the switch settings are read and the lamps are controlled using the same port- 

address. This might seem strange. However, the designer of the PI/T has ensured 

that a value written to bit 0-5 is ignored because these bits are inputs. 

Now suppose that we want to program Port A so that bits 6 and 7 are inputs 

and bits 5-0 are outputs. The following sequence of instructions will do 

INIT MOVE.B #%00000000,PGCR ; Mode 0 

MOVE.B #%10000000,PACR ; Bit-I/0O submode 

MOVE.B #7%00111111,PADDR ; Bits 6-7 inputs and 

; bits 0-5 outputs 

The only thing that differs from the previous example is how the PADDR is set 

up. Note that Port B can be programmed similarly by using the Port B Control 

Register (PBCR) to determine the submode; Port B Data Direction Register to 

determine the data direction of all individual bits in Port B (See Table 7.2), and 
finally data is accessed from the Port B Data Register (PBDR). 
We will now look at more complex initializations of the PI/T. Suppose that we 

want to use Port A to output data to a printer according to the handshake protocol 
of Figures 7.2 and 7.3. In Figure 7.5, we show how the handshake lines H1 and 
H2 can be used to facilitate the signalling of Ready (the printer has taken care of 
the character) and Send (the processor has written a new character to Port A) ina 
handshake protocol. The handshake lines can be programmed in a variety of ways 
as inputs and outputs. In the following, we will show how the protocol according to 
Figure 7.2 is set up. After that point, we will show how other handshake protocols 
can be supported. 

Table 7.4 Layout of the Port Status Register (PSR) in the PI/T. 

Register 

Select 

Offset 

(hex.) 

ie 6 5 4 2 2D 1 0 
D H4 H3 H2 H1 H4S | H38S | H2S | H1S | Port Status 
|e Level | Level | Level Register 

(PSR) 
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Ready (H1) 

SS Saar) 

aaa 
a Send (H2) 

Figure 7.5 Output handshake protocol using Port A and the H1 and H2 hand- 

shake lines. 

Computer ; 
P Printer 

The Ready line (H1) can be read by reading the content of the Port Status 

Register (PSR) (see Table 7.4). As can be seen from Table 7.4, there are two 

bits associated with H1 (H1 Level and H1S(ense)). Simply speaking, the level-bit 
reflects the direct value of H1 while the sense-bit reflects transitions on H1. For 

instance, if the PI/T is set up to sense when the H1-line is set, the H1S-bit will 

be set when there is a transition on the H1-line from zero to one. However, if the 

H1-line is reset shortly thereafter, H1S will remain set while Hi-Level will reflect 

the direct change. The idea behind this is to let the PI/T do most of the work in 

a handshake protocol — when the printer signals Ready, the H1S-bit is set. The 

processor can sense this by a polling scheme that repeatedly tests the H1S-bit in the 

PSR. When the processor writes a new value to the PI/T, H1S is automatically 

reset, and the H2-line (Send) is automatically asserted. We now show how the 

PI/T can be set up to conform to this protocol. We show the entire sequence of 

control words needed to set up the PI/T below: 

PGCR EQU $FFFOOO ; Address of the PGCR 

PACR EQU $FFFO06 ; Address of the PACR 

PADDR EQU $FFFOO2 ; Address of the PADDR 

INIT MOVE.B #%00010011,PGCR ; Set mode 0. Hi and H2 are 

; asserted when set 

MOVE.B #%01110000,PACR ; Set the output submoce 

; and H2 handshake 

MOVE.B #%11111111,PADDR ; All bits are outputs 

To explain the codes that are used to set up the PI/T, we take a closer look at the 

control registers starting with the PGCR. In Table 7.5, we show the detailed layout 

of the PGCR and the PACR control registers. The four least significant bits of the 

PGCR specify at what logical level a certain handshake line is asserted. If we want 
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Table 7.5 Layout of the Port General Control Register and the Port A Control 

Register. 

Register 

Select 

Offset 
(hex.) 

if 5 4 3 2 1 0 

0 Pout Mode H34 H12 H4 H3 H2 H1 Port General 

Control Enable | Enable | Sense Sense Sense Sense | Control Register 
(PGCR) 

6 Port A H2 H1 H1 Port A Control 

Submode H2 Control Int SVCRQ | Stat Register 

oe Enable | Enable Ctrl (PACR) 

H1 to assert to a logical one, as in our example, we must set the corresponding bit. 

If the bit is cleared assertion will be a logical zero. Since we want H1 and H2 to be 

asserted when set, the corresponding bits are set in the PGCR (see initialization 

sequence above). In order for the handshake-line pairs H1 and H2 to be enabled 

according to the handshake protocol, we also need to set bit 4. 

Continuing on the set up of the PACR, we note that bits 7 and 6 determine 

the submode. Since we want a handshake protocol for output, we have set these 

bits to Oly (see Table 7.1). Bits 3-5 control the handshake protocol that H2 is 

supposed to follow. Below, we provide a list of all the options that are available 

for the output submode: 

Input — status only 

Output — always negated 

Output — always asserted 

Output — interlocked handshake 

Output — pulsed handshake 

bit543= 

See Ke © ORs i eo 

In the above list, X denotes that the setting of the corresponding bit is irrelevant. 

To choose H2 to be an arbitrary input that can be read using the Port Status 

Register, we simply code bits 3-5 as e.g. 000. 100 and 101 make H2 to act as 

an output that is constantly either negated (not asserted) or asserted to a logical 

level according to the H2 sense bit in the PGCR. 110 denotes that H2 is to follow 

an interlocked handshake protocol. Interlocked means that it is asserted when the 

processor writes to the data port (Port A in this example) and negated when the 

output device (the printer in this example) has taken care of the data and signaled 

asserted H1 (Ready). This is exactly what we want to achieve, which is why bits 

3-5 in the PACR are assigned 110. Unlike the interlocked handshake protocol, H2 

will remain only asserted for a short while in the pulsed handshake protocol (111). 
Bits 1 and 2 in PACR determine whether an interrupt is to be generated when H1 
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H1 (Send) 

Computer Keyboard 

H2 (Ready) 

Figure 7.6 Input handshake protocol using Port A and the H1 and H2 handshake 

lines. 

and H2 are asserted. We will discuss the support for interrupt-driven I/O that the 

PI/T provides later in Section 7.3. 
Note that the PI/T takes care of all the handshake signalling. In the following 

example program, we use the handshake scheme to transfer a buffer of characters 

to a printer under the handshake protocol we have described. 

PADR EQU $FFFO08 ; Port A Data Register 

PSR EQU $FFFOOD ; Port Status Register 

NUL EQU 0) ; ASCII-code for NUL 

INIT MOVEA.L #BUFFER, AO 

EQORSCMESE #NUL, (AO) 

BEQ NEXT 

POLL BIST #0,PSR ; Test HiS in the PSR 

BEQ POLL ; If not asserted, try again 

MOVE.B (AO)+,PADR ; Write to Port A 

BRA POLL 

NEXT RTS 

We make the following important observations. First, after initialization, the pro- 

cessor will busy-wait on the least significant bit of the PSR (H1S) (see Table 7.4) 

until the printer asserts Ready (H1). Second, at this point, the processor writes the 

next character to the Port A data register (PADR). When the PI/T senses this, it 

automatically asserts H2 to notify the printer that a new character is available. 

We have now seen how the PI/T can be set up to meet various protocols. Before 

we close this section, we will provide another example in which Port A is used as an 

input port and the data transfer is synchronized by a similar handshake protocol 

according to Figures 7.6 and 7.7. 

The differences between this handshake protocol and the previous one are the 
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Figure 7.7 Timing diagram for the input handshake protocol. 

following. The input device (the keyboard) signals when data is available by as- 

serting the Send handshake line (H1). The 68000-based computer system signals 

that data has been read by asserting the Ready line (H2) according to Figure 7.6. 

The logical levels for assertion also differ. According to Figure 7.7, both Send and 

Ready are asserted to logical level zero — when the key is pressed, the Send signal 

goes from one to zero. Similarly, when data is read from Port A, Ready goes from 

one to zero. We shall now look at the initialization sequence to program the PI/T 

to conform to this protocol. 

PGCR EQU $FFFO00 

PACR EQU $FFFO06 

PADDR EQU $FFFO02 

INIT MOVE.B #%00010000,PGCR 

MOVE.B #%00110000,PACR 

MOVE.B #7%00000000, PADDR 
? 

Address of the PGCR 

Address of the PACR 

Address of the PADDR 

Set mode 0. Hi and H2 are 

asserted when reset 

Set the input submode 

and H2 handshake 

All bits are inputs 

First, the assertion level of H1 and H2 is changed; bits 0 and 1 of the PGCR are 
now reset. Second, the submode is now 00 for input. Third, all Port A bits are 
directed to serve as input ports in the PADDR. 

EXERCISES 

Tek What sequence of instructions is needed to program the PI/T so 

that bits 0-3 of Port A are inputs and bits 4~7 are outputs? 

yey What sequence of instructions is needed to program the PI/T so 
that bits 0-3 of Port B are inputs and bits 4-7 are outputs? 
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4.3 What sequence of instructions is needed to program the PI /T so 
that H1 is asserted when zero in the output handshake protocol 
according to Figure 7.5? 

7.4 What sequence of instructions is needed to program the PI /T so 
that Port B conforms to the output handshake protocol accord- 
ing to Figure 7.5? Note that H3 and H4 are replaces by H1 and 
H2 in the handshake protocol. 

7.5 Write a device driver to the keyboard protocol in Figure 7.6 that 
returns the character in DO when data is available in Port A. 

7.2 Serial input and output 

In the previous section, we have assumed that a computer system communicates 
with a device by sending several bits in parallel at a time. To connect a printer to 
a computer system would require at least seven bits in order to transfer an ASCII- 

coded character in parallel. One could imagine that the cabling cost of connecting 

a computer system in one room in a large building with a printer in another room 

far away from the computer system would be prohibitive. In this section, we shall 

look at an interesting alternative, namely, the use of a single line to transfer the 

bits in a word in a serial fashion. 

7.2.1 Asynchronous bit-serial communication 

The fact that we want to use a single line to transfer information serially poses 

the same synchronization problem we have seen in this book several times by now 

— how is the receiving side supposed to know when a new bit is available? We 

could of course use the handshake protocol that we have described in the previous 

section, but that would be terribly inefficient; the program would have to check 

the status register for each transferred bit. Also, it would take away most of the 

advantages of having a single line to bring down the costs of cabling. Instead, 

a commonly used protocol, called asynchronous serial communication, has been 

developed to solve this problem. 

To be able to use a single line necessitates that the information carried along 

this line must bring synchronization support. The basic assumption for the asyn- 

chronous protocol to work correctly is that the sending and the receiving side 

conforms to the same transfer rate, usually denoted baud rate and measured in 

baud (1 baud = 1 bit/second). In Figure 7.8, we show how two characters ‘A’ 
(1000001,) and ‘B’ (10000102) are transferred serially without any support for 
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Figure 7.8 ‘Two successive serial character transfers without support for syn- 

chronization. 

synchronization. The duration of each transferred bit is the same (ie. the time 

between two consecutive ticks in Figure 7.8 is the same for all bits). When the 

sender has nothing to send, the line is constantly set. Even if both the sending side 

and the receiving side agree on the same baud rate, the receiving side will have the 

problem of knowing when the transfer of a character begins. In the asynchronous 

protocol we will present this problem is solved by assuming that a zero is sent to 

indicate the beginning of a new character, according to Figure 7.9. This bit is 

called a start bit. A start bit is detected by the receiver as a transition from the 

idle one to zero. When the receiver detects this transition, it can determine where 

the actual data transmission starts. 

A problem related to long-distance transfers is that the transfer is not always 

undistorted. In fact, the nice square-shaped pulses as shown in Figure 7.8 can 

be so heavily distorted so that a one is interpreted as a zero and vice versa. A 

simple scheme to detect single-bit transmission errors is to append a so called 

parity bit. The parity bit can either be used to detect odd parity or even parity. 

Under an even parity scheme, the parity bit is set so that the total number of bits 

in the data item including the parity bit is even. For instance, if character ‘A’ is 

transmitted (10000012), the parity bit is zero (see Figure 7.9), while if character ‘B’ 

is transmitted, the parity bit is one. For odd parity calculation, the total number 

of ones including the parity bit is odd. Now suppose that a zero is distorted so 

that the receiver will interpret it as a one. The receiver can then detect that a 

transmission error has occurred by counting the number of ones and checking the 
parity bit. However, note that two errors within the same character cannot be 
detected. 

The last issue to be introduced is that of allowing the receiver to start synchro- 
nizing for a new character to arrive. One often requires that the smallest distance 
between two consecutive character transfers is one or two bits. These bits are 
denoted stop bits because they indicate that the last bit has been sent. The stop 
bits are indistinguishable from the idle state, that is, they are detected as ones. In 
Figure 7.9, we show the transmission of character ‘A’ with the support for synchro- 
nization by means of a start bit preceding each character, and support for error 
detection by means of an even parity bit, and a stop bit to indicate that the last 
bit has been received. 

The asynchronous serial protocol shown in Figure 7.9 is widely used to connect 
e.g. VDTs (Video Display Terminals) and printers to computer systems. There- 
fore, there are special interfaces that take care of the conversion of a character to a 
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Figure 7.9 ‘Transmission of the character ‘A’ with an asynchronous protocol with 
even parity and one stop bit. 

ACIA 

| Status Register 

Computer VDT (Video Display Terminal) 

Control Register 

Figure 7.10 The organization of the ACIA and how it is connected to a Video 

Display Terminal with bit-serial lines. 

sequence of bits including the start, parity, and stop bits and which detects when 

a transmission error occurs. Such interfaces are called UARTs (Universal Asyn- 

chronous Receiver Transmitter). Although the basic protocol is the same, some of 

the operational parameters may vary. First, the transfer rate can be varied from 

110 baud (about 10 characters per second) to 19,200 baud (about 2000 characters 
per second). Second, the parity check can be odd or even, and, finally; one or two 

stop bits can be used. Next we present a programmable UART from Motorola 

which has the marketing name ACIA (Asynchronous Communications Interface 

Adapter), or MC6850. 

7.2.2 The ACIA — an example serial interface 

In Figure 7.10, we show the basic organization of the ACIA and how it is connected 

to a VDT. Before we look at how the protocol parameters can be set up, we note 

that the function of the ACIA is to convert a word (eight or seven bits depending 

on how it is programmed) into a serial bit-stream and to add a start, parity, and 
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one or two stop bits according to Figure 7.9. The word to be transmitted (along the 

TDATA-line in Figure 7.10) is simply written to the data register in Figure 7.10. 

The ACIA can also receive data (along the RDATA-line in Figure 7.10) according 
to the asynchronous bit-serial protocol and detect whether a single-bit transmission 

error has occurred by checking the parity bit. 

Table 7.6 Port, control, and status register for the serial interface ACIA. 
Register 
Select 
Offset 7 6 3) 4 3 2 1 0 

Te aur i mat a all a ea | fee i | 

0 | IRQ| PE eas FE | crs DCD | PORE RDRF | Status Register 
ewes ae AE = a) Sa | oh : 

| __~ Receiver Data Register Full 

| | a —= Transmitter Data Register Empty 

| (SCD atta Carrier Detect 

" SC Clear To Send 

YS tee | Praming Error 

lis & ____ Overrun Error 

~~ %. __ Parity Error 

z - oe E _ Interrupt Request 

0 bee ae 7 Protocol Sample Control Register (CR) 

= a Peeerel| Perri WE Rie 
1 | | | | | Data Register (DR) 

The protocol parameters of the ACIA are set up by writing an 8-bit control 
word to the control register (CR). In Table 7.6, we show the layout of the registers 
contained in the ACIA. Note that the control and status registers have the same 
addresses. The designer has decided this by noting that the control register is 
write-only while the status register is read-only. 

Let us start to see how we set up the protocol parameters for the ACIA. This is 
done by a 3-bit code in bits 2—4 of the control register as follows: 

7 data bits, even parity, 2 stop bits 

7 data bits, odd parity, 2 stop bits 

7 data bits, even parity, 1 stop bit 

7 data bits, odd parity, 1 stop bit 

8 data bits, no parity, 2 stop bits 

8 data bits, no parity, 1 stop bits 

8 data bits, even parity, 1 stop bit 

8 data bits, odd parity, 1 stop bit 

Protocol = 

eRe Fr OOO eo ProCcrrROO FP Or Or OeF © 
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We can choose between 7 or 8 bits of data, odd or even parity, and finally, we 
can have one or two stop bits. The baud rate is usually defined by a timer that is 
connected to the ACIA. How the baud rate is changed may differ between computer 
systems. 

In order for the ACIA to synchronize on the start bit to determine when to read 
the first bit of the data word, it must sample the serial line. This is done with 

a frequency that is typically a magnitude higher than the baud rate. The higher 

this frequency is, the better the ACIA will be able to cope with deviations in the 

baud rate between the sending and receiving devices. The ACIA permits the user 

to specify the number of samples per bit. It is possible to choose between 1, 16, 

64 samples per bit through bits 0 and 1 in the control register according to 

1 sample/bit 

16 samples/bit 
64 samples/bit 

master reset 

Sample = 

rere CO © Ke Or oO 

Usually, 16 bits per sample is used. In order to program the ACIA, we need to 

perform a master reset. This is done by writing 11 to bits 0 and 1 in the control 

register. Bits 5-7 specify whether the ACIA should generate an interrupt when 

the output buffer of the data register is empty, that is, when the ACIA is ready 

to take care of a new character to be transmitted, and whether an interrupt is to 

be generated when a character is ready in the input buffer. These bits will not 

concern us. 
We are now ready to provide some examples of how to program the ACIA. 

Suppose that we want to use 7 bits, odd parity, 2 stop bits, and a sample rate of 

64 samples per bit. The proper initialization of the ACIA is as follows, assuming 

that the base address is FFF0001¢6 

CR EQU $FFFOOO ; Address to control register 

INIT MOVE.B #%00000011,CR ; Master reset of the ACIA 

MOVE.B #%00000110,CR ; 7 bits, odd parity, 

; 2 stop bits, and 64 samples 

In the second example, we assume 8 bits, even parity, and 1 stop bit. We get 

CR EQU $FFFOOO ; Address to control register 

INIT MOVE.B #%00000011,CR ; Master reset of the ACIA 

MOVE.B #%00011010,CR ; 8 bits, even parity, 

; 1 stop bit, and 64 samples 
? 



130 Programmable Input/Output Interfaces 

Note that once we have initialized the ACIA, it is ready for use. We now turn our 

attention to how the processor is supposed to know when the ACIA has received 

a new character, and when it is ready to send a new character. Also, we will 

see how certain transmission errors, such as single-bit errors, are detected. This 

information is provided by the status register (see Figure 7.6). 

Starting from the most significant bit of the status register, bit 7 (IRQ) is set 

when an interrupt is generated (provided that the interrupt control is enabled). Bit 

6 (PE) is set when a parity error has occurred, that is, the receiver has detected a 

single-bit transmission error. Bit 5 (OVRN) detects an overrun error. An overrun 

error results if a character that has not been read by the processor is overwritten 

by a new character that is received by the ACIA. Bit 4 (FE) indicates that the 

wrong number of stop bits have been detected or that the start bit is not correctly 

received. For instance, if the ACIA has been programmed for two stop bits and it 

detects a start bit immediately following the first stop bit, a framing error occurs. 

Bits 0 and 1 indicate when a new character is available in the ACIA (bit 0) and 
when the ACIA is ready to send a new character (bit 1). 

Suppose that we want to transfer a buffer of characters to a VDT. The following 
polling scheme will do 

SR EQU $FFFOOO ; Status Register 

DATA EQU $FFFOO1 ; Data Register 

NUL EQU 0) ; ASCII-code for NUL 

INIT MOVEA.L #BUFFER, AO 

LOOP CMP.B #NUL, (AO) 

BEQ NEXT 

POLL BIST #1,5R ; Test TDRE in the SR 

BEQ POLL ; If not asserted, try again 

MOVE.B (AO)+,DATA ; Write to the ACIA 

BRA POLL 

NEXT ~ RIS 

Note that we test bit 1 in the status register. This bit is one when the ACIA is 
ready to transmit the next character. At this point, we can write the new character 
to the data register in the ACIA. 

Conversely, if we want to read a character string from the ACIA, which is ter- 
minated by NUL, and if we want to detect if any error has occurred, we can do as 
follows 



LOOP 

PERROR 

OERROR 

FERROR 

NEXT 

EQU 

EQU 

EQU 

MOVEA.L 

BTST 
BEQ 
BTST 
BNE 
BIST 
BNE 
BIST 
BNE 
MOVE 
CMP . 
BEQ 
BRA 

RTS 

B 

$FFFO0O 

$FFFOO1 

0 

#BUFFER , AO 

#0,SR 

POLL 

#6 ,SR 

PERROR 

#5,5SR 

OERROR 

#4,5R 

FERROR 

DATA, (AO)+ 

#NUL, (AO) 

NEXT 

POLL 

Serial input and output 

; Status Register 

; Data Register 

; ASCII-code for NUL 

; Test RDRF in the SR 

; If not asserted, try again 

; Parity error? 

; Yes, branch to PERROR 

; Overrun error? 

; Yes, branch to OERROR 

; Framing error? 

; Yes, branch to 

; Read from the ACIA 

FERROR 

} Mpeuesbiony, Ciedepe a a a 

; Overrun error... 

; Framing error... 
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Note how the error flags in the status registers are tested to find out about any 

transmission error that might have occurred. A possible action, upon detection of 

a parity error, could be to request the sender to retransmit the character. 

EXERCISES 

7.6 

hod 

7.8 

What sequence of instructions is needed to set up the ACIA with 

7 bits, even parity, 1 stop bit, and 16 samples per bit? 

What sequence of instructions is needed to set up the ACIA with 

7 bits, even parity, 2 stop bits, and 64 samples per bit? 

What sequence of instructions is needed to set up the ACIA with 

8 bits, no parity, 2 stop bits, and 16 samples per bit? 
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7.9 Write a subroutine that polls the RDRF bit in the status register 

of the ACIA. When a character has been received, it is returned 

in DO. In addition, an error code should be returned in D1 

as follows: 0=no error, 1=parity error, 2=overrun error, and 

3=framing error. 

7.3 Vectored interrupts 

The interrupt mechanism provides a means to let the processor perform useful 

work instead of actively checking whether an external event has happened which is 

the case for polling schemes. However, it is important to note that polling is useful 

if interrupts from a single input device occur frequently and can sometimes be 

more efficient than using interrupts. The reason is as follows. When an interrupt 

occurs, the processor needs to store the program counter and the status register 

on top of the stack. In addition, it has to invoke the interrupt service routine. 

All these actions take a substantial number of cycles to perform. Consequently, 

the response time from the point when the interrupt occurred until the service 

is performed is in general longer in interrupt-driven exception handling than in a 
polling scheme. This is true if the processor only needs to service a few external 
events. Now assume that we want to design a polling scheme for a large number 
of external events. In the below example, we show such a scheme for five events: 

LOOP BIST #1,EVENT ; Is event-flag 1 active? 

BNE EVENT1 ; Yes, handle it 

BIST #2,EVENT ; Is event-flag 2 active? 

BNE EVENT2 ; Yes, handle it 

BIST #5,EVENT ; Is event-flag 5 active? 

BNE EVENTS ; Yes, handle it 

BRA LOOP 

EVEN TIS" a5. ; Handle event 1 

BRA LOOP 

EVENT2 a ; Handle event 2 

BRA LOOP 

EVENT Omens ; Handle event 5 

BRA LOOP 
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In the above scheme, five event-flags are available in an inport at address EVENT. 
Each event-flag is tested in turn; when event-flag 5 has been tested, event-flag 1 is 
tested again etc. Now suppose that event 5 occurs immediately after it has been 

polled. It will now take five tests for the processor to again test whether event 5 

has occurred. One realizes that if the number of events is large, the response time 

becomes extremely long. In such situations it is more efficient to use interrupts. 

In Chapter 6, we noted that there are only seven interrupt inputs. What do we 

do if we want to support more than seven interrupts. In fact, the M68000 as well as 

most computers supports a large number of interrupts called vectored interrupts. 

In this section, we will take a look at how one can extend the number of interrupt 

inputs beyond seven by means of user-defined interrupt vectors. 

M68000 supports seven interrupt priority levels which are denoted I, to Iy. We 

say that I, has interrupt priority level n. In Chapter 6, we noted that an interrupt 

with an interrupt priority level n can be taken care of by the processor provided 

that n > CPL (the current priority level). In 68000-based computer systems 

that only need to take care of at the most seven interrupts, one can associate 

each interrupt with a distinct interrupt priority level. The scheme we presented 

in Chapter 6 assumed that an entry in the exception vector table is associated 

with each interrupt priority level. This scheme is called autovector mode, because 

M68000 calculates the address of the entry in the exception vector table based on 

the interrupt priority level. We noted that the address in the exception vector table 

is given by 4(18;5 +n), assuming that the interrupt priority level of the interrupt 

is n. The autovector for interrupt n is v = 1816 +7. 

M68000 can support more than seven interrupts by letting the interface (or de- 

vice) that generates the interrupt provide the processor with a vector number. In 

this section, we will show how the parallel interface PI/T can be programmed to 

supply M68000 with a vector number when an interrupt occurs. There are 192 vec- 

tor numbers ranging from v = 406 to v =FF 4. In general, if an interface generates 

an interrupt with a vector v, M68000 will fetch the address of the corresponding 

interrupt service routine at address 4v. For example, if an interface provides the 

vector v = 4046, the address of the interrupt service routine is available at address 

4vy = 100;6. In Table 7.7, we show the exception vector table with the addresses 

and vector numbers for all vectored and autovectored interrupts. 

It is possible to program the PI/T, and many other programmable interfaces, to 

provide a certain vector when an interrupt from the interface occurs. However, it 

is necessary that the designer of the computer system has connected the PI/T to 

the processor in such a way that it can generate a vector number. To explain this 

is outside the scope of this text. The only thing we shall bother about is how the 

vector number is programmed and how we initialize the exception vector table to 

connect the interrupt to a corresponding interrupt service routine. In Table 7.8, 

we show the layout of the Port Interrupt Vector Register (PIVR) and the PACR of 

the PI/T. Recalling Section 7.1, we noted that four handshake lines are available 

which are denoted H1 through H4. Each of these handshake lines can cause an 

interrupt. The programmer can associate a vector with each of these handshake 
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Table 7.7 Vector numbers and addresses in the exception vector table for 

autovectors and user-defined interrupt vectors. 

Interrupt Vector number Address 

Level 1 Interrupt Autovector 1916 6416 

Level 2 Interrupt Autovector 1Ai6 6816 

Level 3 Interrupt Autovector 1By¢6 6C 46 

Level 4 Interrupt Autovector 1Ci¢ 7016 

Level 5 Interrupt Autovector 1D46 TAi6 

Level 6 Interrupt Autovector 1Ei6 7816 

Level 7 Interrupt Autovector 1Fi¢ 7TCi6 

User Interrupt Vector 1 4016 10016 

User Interrupt Vector 2 Alig 10416 

User Interrupt Vector 3 4216 10816 

User Interrupt Vector 192 FF i¢ 3FCi¢6 

lines by a 6-bit vector number. The additional two least significant bits in the 
PIVR are assigned by the PI/T itself according to the table below: 

Source Low order bits of the PIVR 

H1 00 

H2 01 

H3 10 

H4 11 

So given that the six bits are 010000, the vector numbers for H1 through H4 

Table 7.8 Layout of the Port Interrupt Vector Register and the PACR of the 
PL 

Register 

Select 

Offset 
(hex.) 

if 6 i 2h 8 2 1 0 
5 Interrupt Vector Port Interrupt 

Number | “5 z Vector Register 
(PIVR) 

6 Port A H2 H1 H1 Port A Control 
Submode ; H2 Control | Int SVCRQ | Stat Register 

Enable | Enable |. Ctrl (PACR) 
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are 01000000,...,01000011. A consequence of the predetermined low order bits 

in the PIVR is that H1 through H4 will get four consecutive vector numbers. 

The programmer must specify the high order six bits. Note that the resulting 

8-bit vector number must be in the range [40,5,FFi¢]. For example, suppose that 

interrupts caused by H1 through H4 shall generate the vector numbers [4016, 4316], 

then the following instruction initializes the PI/T to supply these vector numbers: 

PIVR EQU $FFFO0O5 

MOVE.B #%01000000,PIVR 

assuming that the base address of the PI/T is FFF000;¢. In order to connect four 

interrupt service routines to H1 through H4, the programmer must initialize the 

exception vector table and enable the interrupts. Assuming that the designer of 

the computer system has decided that the PI/T generates interrupts at interrupt 

priority level 3, the necessary initializations of the interrupt system is as follows: 

INIT MOVE.B #%01000000,PIVR 

MOVE.L #H1INT,$100 ; Exception address for Hi 

MOVE.L #H2INT,$104 ; Exception address for H2 

MOVE.L #H3INT,$108 ; Exception address for H3 

MOVE.L #H4INT,$10C ; Exception address for H4 

MOVE #$2200,SR ; Set interrupt priority 2 

; Interrupts are enabled 

JOG NM’ = chee 

RTE 

TSNOIES ore 

RTE 

HS UN leer 

RTE 

H4INT ... 

RTE 

It is important to note that the interrupt priority level and the vector number 

for an interrupt is not the same. Since there are only seven interrupt priority 

levels, the system designer must let many devices generate interrupts at the same 

priority. An important issue now arises. How can we disable some devices to 

generate an interrupt at a certain priority level and still let other devices at the 

same priority level be able to generate interrupts. Most parallel interfaces have 

provision for enabling and disabling a certain interrupt. In the PI/T, it is possible 

to enable/disable interrupts caused by the handshake lines. In order to enable 

interrupts caused by the H1 handshake line, bit 1 in the PACR. must be set (see 

Table 7.8). 
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7.4 Summary and concluding remarks 

In this chapter, we have seen how a variety of communications protocols can be 

supported by programmable interfaces. The simplest kind of interface problem is 

to control output devices, such as lamps, and read status of input devices such 

as switches. This type of I/O is called bit I/O. Programmable interfaces usually 

contain ports where each individual bit can be programmed as either an input or 

an output. 

When information is exchanged between two devices, such as between computers 

and printers or terminals, the information flow needs to be controlled in one way 

or another. We have seen how handshaking can be used to synchronize data 

transmission; two handshake lines are sufficient to design such protocols. When the 

sender has a data item to transfer, it notifies the receiver by asserting its handshake 

line. The receiver, on the other hand, uses another handshake line to notify the 

sender when data has been read. 

When the distance between two devices is small, one can use bit-parallel data 

transfers. Several bytes can then be transferred at the same time. We have looked 

at a parallel programmable interface which supports various handshake protocols. 

Its ability to take care of all handshake control, frees the processor from this task. 

The processor can either use polling or interrupts to synchronize when data is 

available or ready to send. 

When the distance between two devices is large, the cost of connecting two de- 

vices by means of parallel interfaces soon becomes prohibitively expensive. In such 

situations, we can use a bit-serial communications protocol. The asynchronous bit- 

serial protocol that we have seen in this chapter is commonly used to connect e.g. 

terminals with computers. It is asynchronous in the sense that the synchronization 

information is provided in the bit-stream itself. The start bit is used to notify the 

receiver that a new data item is on its way. In order for the receiver to perform 

single-bit error detection, a simple method called parity calculation is often used. 

The parity bit indicates whether the number of ones contained in the data word 

is even or odd. If the receiver counts the number of ones, it can decide whether a 

single-bit error has occurred by simply checking the parity bit. All these functions 

are provided by UART-interfaces (Universal Asynchronous Receiver/Transmitter). 

We looked at one such example, namely the ACIA. 

When a computer system needs to take care of a large number of interrupts, 

it can use vectored interrupts by letting each device identify itself by a vector 

number. The processor uses the vector number to find out about the address of 

the interrupt service routine. 



Chapter 8 

Real-Time Applications 

We have now introduced the most important concepts of a computer system from 

the machine language programmer’s point of view. This chapter aims at taking a 

broader look at what we have learned by applying it to the important domain of 

real-time applications. 

The flexibility of a computer is that it can be programmed to perform various 

tasks. Many microprocessor systems are parts of equipment that aim at controlling 

various processes. Such systems are known as embedded in the sense that the 

microprocessor system has a specific task in the entire system. The task to be 

performed can, for instance, be to regulate the temperature in a chemical process 

or to regulate the flaps in an aircraft etc. Typical for these applications is that 

time plays an important role. Therefore, we call them time-critical or real-time 

applications. 

This chapter gives us some understanding about the basic problems that need 

to be addressed in the course of real-time applications. We will focus on how these 

concepts can be implemented rather than giving an exhaustive treatment of the 

issue, that can be found in almost every text on operating system design. Before 

we look at the implementation of certain real-time mechanisms, we shall extend 

the mcdel of the M68000 by looking at the important concept of supervisor and 

user mode in Section 8.1. We will then look at exception management in general, 

that is, the management of all exceptional events such as interrupts in Section 8.2. 

In Sections 8.3 and 8.4, we present the implementation of a simple time-sharing 

and real-time operating system. 

8.1 Supervisor and user mode 

In Chapter 6, we introduced the concept of interrupt. The interrupt system pro- 

vides a mechanism to make efficient use of the processing power of the processor. 

The reason for this is that the processor can perform useful work until it is notified 
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that an external device needs service. Since an event can cause the processor to 

interrupt at any time, it is important that the interrupted program is unaffected 

by the interrupt service routine. To be more specific, the processor contezt, that 

is, the contents of all registers must be unaffected by the interrupt service routine. 

We solved this problem by saving the contents of all registers on the stack at the 

beginning of the interrupt service routine. By doing this, it appears in the inter- 

rupted program as if nothing had happened other than the fact that the interrupt 

service routine ‘steals’ cycles from the processor. Another way of looking at it is 

that the processor (including all its registers) is shared between the main program 

and the interrupt service routine. From the viewpoint of these two programs (the 

interrupted program and the interrupt service routine), it appears as if they have 

the processor on their own. The idea of assigning a ‘virtual’ processor to a program 

is fruitful because since the processor is very fast we could indeed share it between 

several user (or application) programs. 

Let us consider N programs that are to be executed on the processor. Each 

program produces a result every JT’ seconds and the execution time is AT seconds. 

Furthermore, a user is associated with each program and waits for it to produce 

a new result. The question is how we should share the processor among these 

programs. 

One approach would be to run each program until completion and then start the 

next one. This would result in having the first user to obtain the first result after T 

seconds while the last user would have to wait KT(N —1)+T seconds. Although 

the first user is happy the last user would certainly consider this approach to be 

unfair. 

In order to make all users wait about the same amount of time, we could choose 

to execute the first program for a short while (say 1 millisecond) and then the 

second one etc. Theoretically, each user would have to wait NT seconds for the 

first result, 2NT seconds for the second result and ATN seconds for the last result. 

We call this approach time-sharing because each program, often referred to as a 

process, iS assigned a time-slice and the processor is time-shared between the 

processes. Figure 8.1 shows how the time-sharing scheme affects the execution 

of each process; Proc0, Procl,...,ProcN-1 are executed a time-slice in turn. After 

ProcN-1 has been executed for a while, Proc0 is executed again and so on. 

One way of implementing the time-sharing scheme is to use a timer that generates 

an interrupt periodically. The interrupt service routine saves all registers of the 

executing process in a dedicated memory area and restores the register contents 

of the next process before it is restarted. In general, if we have N processes and 
process 7 is executing, the task of the interrupt service routine is to save the registers 
of process 7 and restart a new process i+1(mod N). What we have achieved with 
this scheme is that the processor is assigned to each process in turn, something 
often referred to as a round-robin policy. The processor assigns a time-slice as 
dictated by the timer to each process. The action of swapping off a process and 
restarting a new one is called a context-switch because the context of the running 
process is saved and the context of the next process in turn is restored. In order 
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ProcN-1 

Time 

Figure 8.1 Time-sharing among N processes according to round-robin. 

to implement the above scheme, we need to make precise what we mean by the 
context of a process. The context is basically all information needed to restart 
a program and making it execute at the same point it was interrupted when the 
timer went off. Below we list the information that specifies the context: 

e Registers. All registers can potentially be used by a program, that is, DO-D7, 

AO-A6, SP, and SR. 

© Program counter (PC). We must save the PC to be able to restart a process 

at the point it was interrupted. 

e Stack pointer. This is a special case of the registers. 

e Stack space. Each process should have its own stack in order to prevent other 

processes from destroying it. 

In Chapter 6, all registers and the program counter were saved on the stack 

when an interrupt service routine was executed. This is a simple method of saving 

the context because we could restore the information by popping the stack. When 

we have more than one process, this scheme is not possible to use — each process 

must have its own stack. In order to cope with this, many computers such as the 

M68000 provide two stack pointers called supervisor stack pointer (SSP) and user 

stack pointer (USP). The processor can be operated in two modes called supervisor 

mode and user mode. 

When the processor encounters an interrupt it enters supervisor mode. There 

are also other exceptions that cause the processor to enter supervisor mode such 

as traps which will be treated in the next section. When the supervisor mode is 

entered, the processor uses the supervisor stack pointer to store data. For instance, 

the return address of the interrupted program is saved on to the supervisor stack. 

The supervisor mode also makes it possible to execute certain privileged instruc- 

tions. An example of a privileged instruction is MOVE a,SR, which is used to change 

the content of the SR (status register). This instruction may only be executed in 

supervisor mode. Bit 13 in SR (see Figure 6.6 at page 104) controls the operating 

mode; if S=1, then the processor is in supervisor mode, otherwise, it is in user 

mode. If the processor executes in user mode, register SP (or A7) refers to USP and 

otherwise, it refers to SSP. 
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We are now ready to present a scheme that saves and restores the context of a 

process. Below, we show parts of the code for two processes PROCO and PROC1. 

PROCO rs ; Here starts PROCO 

; The last instruction 

; Process control block for PROCO 

CNEX ORD Sry aan) On D (aus Omen 

Doak ; SP (USP) 

DS.W 1 ; SR 

Ds.L 1 5 dete; 

DS.L 10 ; Stack space for process 0 

STACKO DS.L 1 

PROC1 aoe ; Here starts PROC1 

; The last instruction 

; Process control block for PROC1 

CNTX1 DS cleo DOB a Dia ae AOs AG 

Deel, ll ; SP (USP) 

DS.W 1 5 tle 

D Siam a Ite 

DS.L 10 ; Stack space for process 1 

SWUNG GL IDYSia Al 

We have associated a memory area, called a process control block (pcb), with 

each process that has space for all registers (DO — D7, AO — A6, USP, SR, and PC). 
In addition, we allocate 10 long words of stack space for each process. Note that 
the stack grows towards lower addresses. This is why we associate the symbolic 

addresses STACKO and STACK1 with the last long word in the stacks. 

The following sequence of instructions initializes the processor to begin executing 
at address PROCO: 

MOVEA.L #STACKO,AO ; Stack for PROCO 

MOVE AO ,USP ; Initialize the USP 

MOVE #0,SR ; Enter user mode 

BRA PROCO 

The two first instructions initialize the user stack pointer to contain the address 
of the first element of stack STACKO. We have used a special form of the MOVE 
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instruction. (See Appendix B.) 
We now turn our attention to the part of the interrupt service routine that 

implements the context switch. This is usually a part of the operating system 
called scheduler. What we wish to do is to save the context of the currently 
running process in its process control block. Suppose that PROCO is running and 
that an interrupt is encountered. From Chapter 6 we learned that the processor 
will set the S-bit (recall the actions taken when an interrupt is generated from 
page 105). It will then push PC and the old value of SR onto the supervisor stack 
before it branches to the entry point of the interrupt service routine. Having this 
in mind, the following sequence of instructions saves the context in the process 
control block of PROCO: 

AOOFF EQU 32 ; Displacement to AO 

USPOFF EQU 60 ; Displacement to USP 

SROFF EQU 64 ; Displacement to SR 

PCOFF EQU 66 ; Displacement to PC 

SCHED MOVE.L A0O,-—(SP) ; Push AO using SSP 

MOVEA.L #CNTXO,AO ; Address to pcb 

MOVEM.L DO-D7/A0-A6,(AO) ; Save DO-D7 and AO-A6 

MOV ETaIE (SP) +, AOOFF (AO) ; Pop AO using SSP 

; and save it 

MOVE USP, Al 

MOVE.L A1,USPOFF (AO) ; Save USP 

MOVE.W (SP)+,SROFF (AO) mESavienok 

MOVE (SP) +, PCOFF (AO) ; Save PC 

SCHED is the entry point of the scheduler. The first thing to be done is to release 

one of the address registers (AO) to be used to point at the process control block. 

We have declared displacements that can be used to access certain entities in the 

process control block. For instance, when all data and address registers have been 

saved by MOVEM.L DO-D7/A0-A6, (AO), we need to save the old value of AO that we 

temporarily have stored in the supervisor stack. This is done by the instruction 

MOVE.L (SP)+,AOOFF(AO). Note the order in which we access the return address 

and the content of SR from the system stack. This is the reverse order from which 

the processor pushed them during the interrupt cycle. 

The next sequence of instructions performs the opposite operation; it copies the 

context from process PROC1 to the processor registers: 
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MOVEA.L #CNTX1,A0 ; Address to pcb 

MOVEA.L USPOFF(AO) ,A1 

MOVE Ai,USP ; Restore user stack pointer 

MOVE.L  PCOFF(AO) ,-(SP) ; Restore program counter 

MOVE.W SROFF (AO) , - (SP) ; Restore status register 

MOVEM.L (AO),DO-D7/AO-A6 ; Restore DO-D7 and AO-A6 

RTE ; Activate PROC1 

An interesting observation from the above sequence of instructions is how the PC 

and the SR are restored. We push their values from the process control block onto 

the supervisor stack. When RTE is executed, PC and SR are restored from the 

supervisor stack and PROC1 is restarted correctly. 

In summary, we have presented a scheme that can be used to save and restore the 

context of a process. By providing two operation modes; the user and supervisor 

mode, we can have separate stacks for all user programs and the scheduler. Later 

in this chapter, we will present the code of a simple time-sharing operating system 

that enables us to execute an arbitrary number of processes on the same processor 

reliably. 

8.2 Exceptions 

We have only met one kind of exception, namely interrupts. Interrupts are exam- 

ples of external events that cause the processor to perform a desired action. There 

are also exceptions caused by internal events. These are often referred to as traps. 

Examples of traps are: 

e Address error. An attempt to execute an instruction or access a word or long 

word at an odd address. 

e Illegal instruction. An attempt to execute an operation word that does not 

correspond to a valid instruction. 

e Trap on Overflow. Explicit trap when the V-flag is set. 

e Zero divide. An attempt to divide by zero. 

e Privilege violation. An attempt to execute a privileged instruction in user 

mode. 

e Trace enabled. The trace-bit is set (bit 15 in SR). 
e Explicit traps. An explicit TRAP instruction has been executed. 

When any of the above mentioned traps are generated, the processor performs the 

same actions as for interrupts (see page 105) except that it will fetch the address 

of the trap service routine, called a trap handler, at another place in the exception 

vector table. Another difference is that the current priority level of the processor 
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Table 8.1 Entries in the exception vector table for various traps. 

Exception Address in exception vector table 

Address error Ci¢6 

Illegal instruction 106 

Zero divide 1446 

Overflow trap (TRAPV) 1Ci¢6 
Privilege violation 2016 

Trace enabled 2416 

Explicit traps 8016 + 4n 

is not changed. Table 8.1 shows the entries for the different traps in the exception 

vector table. 

M68000 provides two division instructions DIVS a,Dz and DIVU a,Dz for signed 

(DIVS) and unsigned (DIVU) division of a 32-bit number by a 16-bit number, where 
the destination operand (a data register) is divided by the source operand. The 

result of the execution is that the quotient is available in the 16 least significant bits 

of Di and the remainder is available in the 16 most significant bits. For additional 

information, please refer to Appendix B. Now if the divisor (the source operand) 

is zero, a Divide-by-Zero trap is generated. 

An overflow trap can explicitly be used by inserting the TRAPV instruction in the 

code. If the V-flag is set, the processor will automatically invoke the trap handler 

whose address is stored at address 1Cj¢ (see Table 8.1). If a privileged instruction 

is executed in user mode, a privilege-violation trap is generated. 

Now recall the T-bit (Trace bit) in the SR from Chapter 6. An important feature 

of a debugger is to interrupt the execution of a program at a specific address 

(breakpoint) or after each instruction (single-step). The Trace-bit can be used to 

cause a trap after the execution of each instruction. When the T-bit is set, a Trace 

trap is generated after each instruction. Note that it is only possible to trace a 

program in user mode this way because the T-bit is reset when an interrupt or a 

Trace trap is handled. 

There are 16 explicit trap instructions available. They are denoted TRAP #n, 

where n= [0,15]. TRAP #i results in a trap to address 80,6 + 4n. For instance, the 

following sequence of instructions initializes the TRAP #0 instruction to perform a 

trap to address TRAPO: 
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MOVE.L #TRAPO,$80 ; Initialize the exception 

; vector table 

TRAP #0 

TRAPO 

RTE 

When the TRAP #0 instruction is executed, the processor performs the actions 
involved when an interrupt is generated and continues to execute at address TRAPO. 

Note that the last instruction to be executed in a trap handler is RTE, that is, the 
saine as we used to exit from an interrupt service routine. Explicit TRAP instructions 
can be used to enter supervisor mode and in a controlled fashion execute a certain 
piece of code. 

To summarize, traps and interrupts both cause the processor to perform a sub- 
routine call to a trap handler or interrupt service routine. Traps and interrupts are 
collectively called exceptions and the routine that services an exception is called 
an exception handler. 

8.3. Time-sharing operating systems 

An operating system of a computer system is responsible for all its resources in- 
cluding the processor and I/O-devices. In this section, we will look at the piece of 
code used to manage the processor resource. Recall the round-robin policy from 
Section 8.1 which in turn assigned a time-slice to each of a number of processes. 
We shall here present the complete code of this scheduler. 
A timer is connected to interrupt input I;. It generates an interrupt periodically 

(typically each millisecond). When an interrupt is generated, the following actions 
are taken by the scheduler: 

e Save the context of the currently running process. 
e Choose the next process to be restarted. 
e Restore the context of the next process and restart it. 

Figure 8.2 shows how N processes and the timer interrupts interact with the 
scheduler. The scheduler is simply an interrupt service routine that performs a 
context-switch on each timer interrupt. 

On the next few pages, we show the code of a scheduler and two processes. The 
first part of the program initializes the interrupt system and starts process PROCO. 
The scheduler (SCHED) is designed to be able to handle an arbitrary number of 
processes in the sense that we can add more processes without having to rewrite 
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Real-Time Clock 

Figure 8.2 The structure of the time-sharing operating system. 

the scheduler code. All we have to do is to add the code and a process control 

block for the new process and insert a constant in the data structure that appears 

at the end of the assembly code: 

AOOFF EQU 32 ; Displacement to AO 

USPOFF EQU 60 ; Displacement to USP 

SROFF EQU 64 ; Displacement to SR 

PCOFF EQU 66 ; Displacement to PC 

NUMPRO EQU 2 ; Number of processes 

START MOVEA.L #CNTX1,A0 ; Initialize the pcb of PROCi 

MOVE .W #$0400 , SROFF (AO) ; Initialize SR 

MOVE.L #PROC1 , PCOFF (AO) &  Moeitesleulstvasy XC 

MOVE. IE #STACK1,SPOFF(AO) ; Initialize SP 

MOVEA.L #STACKO, AO 

MOVE AO,USP ; Initialize USP of PROCO 

MOVE.L #SCHED , $74 ; Initialize exception vector 

MOVE #$0400,SR ; Enable timer interrupts and 

enter user mode 

BRA PROCO w Start PROCO 
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The initialization part in the beginning of the program must initialize parts of the 

process control block of PROC1 in order for the scheduler to start it at the entry 

point with correct status register and user stack pointer contents. In addition, we 

initialize the user stack pointer for PROCO to point to the stack of process PROCO. 

Then we initialize the interrupt system with the exception vector entry equal to 

the address of the interrupt service routine SCHED. Note that we assume that the 

timer is using an autovector with the interrupt priority level 5. We therefore set 

the current processor priority (CPL) to 4 in order to enable timer interrupts. We 

enter user mode by resetting the S-bit in the status register (bit 13) at the same 

time. The two processes PROCO and PROC1 are defined according to the code at 

page 140. 

SCHED 

; SAVE_CNTXT 

MOVE.L 

MOVE.L 

MOVEA.L 

MOVE.L 

ASL.L 

MOVEA.L 

MOVE.L 

MOVEM.L 

MOVE.L 

MOVE. 

MOVE.L 

MOVE. W 

MOVE.L 

; SELECT_NEXT 

ADDI.L 

CMPI.L 

BNE 

MOVE.L 

; RESTORE_CNTXT 

RSTORE MOVEA.L 

MOVE.L 

ASL.L 

MOVEA.L 

MOVEA.L 

MOVE 

MOVE.L 

MOVE.W 

MOVEM.L 

RTE 

AO ,-(SP) 
DOR GSP) 
#CNTXTS , AO 
ACTIVE,DO 
#2,D0 
0(A0,DO) , AO 

(SP)+,DO 

DO-D7/A0-A6, (AO) 

(SP)+, AOOFF (AO) 

USP, Ai 

A1,USPOFF (AO) 

(SP) +, SROFF (AO) 

(SP) +, PCOFF (AO) 

#1, ACTIVE 

#NUMPRO , ACTIVE 

RSTORE 

#0, ACTIVE 

#CNTXTS , AO 

ACTIVE ,DO 

#2 ,D0 

0(A0,DO) , AO 

USPOFF (AO) , A1 

A1,USP 

PCOFF (AO) ,- (SP) 

SROFF (AO) ,- (SP) 

(AO) ,DO-D7/A0-A6 we we 

Push AO onto the stack 

Push DO onto the stack 

Calculate the address 

to the pcb of the 

currently running process 

AO contains the address 

to the pcb 

Restore DO 

Save DO-D7 and AQ-A6 

Pop AO from the stack 

and save it in the pcb 

Save USP 

Save SR 

Save PC 

Calculate the address 

of the pcb of the 

next running process 

AO contains the address 

of the pcb of next process 

Restore USP 

Restore PC 

Restore SR 

Restore DO-D7 and AO-A6 

Activate next process 
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We next show the data structure used by the scheduler. 

CNTXTS DC.L CNTXO,CNTX1 ; Addresses to each pcb 

ACTIVES DCe I a0 ; Current process ID 

END 

The scheduler SCHED has the following general structure 

procedure SCHED; 

begin 

SAVE_CNTXT ; 

SELECT_NEXT ; 

RESTORE_CNTXT ; 

end; 

The scheduler keeps track of the currently running process by a variable called 

ACTIVE which is initialized to 0. The first part of the scheduler (see assembly code 

on the previous page) saves the context of the currently running process. The 

addresses of the process control blocks are stored in a vector at address CNTXTS. In 

SAVE_CNTXT, the context of the currently running process is stored in its process 

control block. The first part of SAVE-CNTXT aims at calculating the address of 

the process control block of the current process (see the assembly code). This 

can be expressed in terms of the content of ACTIVE as: CNTXTS + 4(ACTIVE). The 
multiplication by four is implemented by shifting the contents of ACTIVE twice 

(ASL.L #2,D0). 
The second part of the scheduler (SELECT_NEXT) aims at selecting the next pro- 

cess to be restarted. This is done by incrementing ACTIVE modulo NUMPRO which 

is a constant that specifies the number of processes. The third part of the sched- 

uler (RESTORE_CNTXT) restores the process control block of the selected process and 

restarts it. 

We have structured the scheduler this way to be able to add new processes 

without having to change the code for the scheduler. A new process is added 

by adding a new framework consisting of the code and a process control block. 

The constant NUMPRO must be incremented by one, and finally, the address of the 

process control block for the new process must be inserted in the table at address 

CNTXTS. 
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mt 

|Timer interrupt |; 

Figure 8.3 State diagram of a process. 

8.4 Real-time control 

The scheduler in the previous section is only meaningful if all processes can perform 
useful computation all the time. If that is the case, the processor is efficiently 
shared between all processes. 

Now assume that a process is waiting for a human user to input data. Then the 
scheduler would make more efficient use of the processor if it did not assign any 
time at all for a process that is waiting. What the scheduler needs, is to be able to 
handle two kinds of processes; those ready for execution and those blocked because 
they are waiting for an external event such as manual input from a keyboard. 

In this section, we shall extend the functionality of the scheduler to take care of 
external events. Each process can be in exactly one of the following three states: 
ACTIVE, READY, or BLOCKED. 

In Figure 8.3, we show these states and what actions that cause a process to 
transit from one state to another. Note that at most one process can be active at 
a time. The number of processes in state READY ranges from zero to the total 
number of processes minus one (the one that is in state ACTIVE), whereas the 
number of processes in state BLOCKED ranges from zero to the total number of 
processes. However, the sum of processes in all states is of course the total number 
of processes. 

A state transition is triggered by an event. An event can be internal (a system 
call) or external (a timer interrupt or another type of interrupt). The purpose of 
the scheduler is to make a choice as to which process to run next based on the 
type of event and to move processes in between the states. The facts that there 
can be zero processes that are ready for execution and more than one process in 
state BLOCKED or READY have two important implications. First, in case all 
processes are BLOCKED, the scheduler cannot activate a new process. Therefore, 
an idle process called the NULL process must be available. Second, since more 
than one process can be BLOCKED or READY, a queue must be associated with 
these states. The NULL process is designed in the same manner as an ordinary 
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Scheduler 

Figure 8.4 The structure of a simple real-time operating system. 

process. Thus, it has a process control block in order to make it possible to treat 

it in the same way as any other processes. However, the NULL process does not 

perform any useful task; it simply executes an infinite loop. 

Figure 8.4 shows the general structure of a simple real-time operating system 

we will present on the next few pages. It supports N processes and can handle 

k& events in the following way. As long as no process needs service, all processes 

will be in the ready state except for one process which is in the active state, and 

thus is executing. For each timer-interrupt, the scheduler selects a new process in 

the ready queue according to a round-robin. When a process needs service (e.g. is 

waiting for a keyboard input) it performs a system call. The system call invokes 

the scheduler which removes the process from the active state and puts it into the 

queue for blocked processes (see Figure 8.3). The process will be blocked until the 

external event occurs that it is awaiting. At this point, the scheduler is invoked 

again to move the process from the BLOCKED state to the READY state. 

Note that the basic structure of the scheduler is the same as before: SAVE_CNTXT, 

SELECT NEXT, and RESTORE_CNTXT. The only part that differs from the time-sharing 

operating system is the SELECT_NEXT procedure. This procedure is presented below 

in a Pascal-like notation. We start with the additional data structures needed to 

control the action of the scheduler, in essence, the events and the queues associated 

with the BLOCKED and READY states. 

type EVENT_TYPE = (SYS-CALL , TIMER, EXT_EVENT) ; 

EX TeTYPEs= (NONSBLOCK , EXT AG EXT224)4...4 EXT.K).; 

READY_TYPE = (NOT_READY, READY) ; 

const NUMPROC = 10; 

NULL = NUMPROC; 
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var 

EVENT EVENTS RY PE 

SYS 8 aC IN Ae as 

BLOCK_Q : array[0..NUMPROC-1] of EXT_TYPE; 

READY_Q : array[0O..NUMPROC-1] of READY_TYPE; 

ACTIVE : integer; 

We have defined three types of events that can result in the scheduler to be 

invoked — SYS_CALL, TIMER, and EXT_EVENT — which are caused by a system call, a 

timer interrupt, and an external event, respectively. When the scheduler is invoked, 

the event type is reflected by the variable EVENT. Each system call corresponds 

to a service. For example, when input from a keyboard is needed, the process 

simply performs a system call. The corresponding process is then blocked until an 

interrupt from the keyboard occurs. To support such external services, we associate 

an external event with each system call. There are K such external events named 

EXT_1, EXT_2,..., EXT_K. When either a system call or an external event occurs, 

the type of the external event is available in variable SYS. The BLOCKED and 
READY queues are implemented by two vectors (BLOCK_Q and READY_Q) that have 
the same number of elements as the number of processes (NUMPROC). Assuming that 
process 2 is blocked due to an external event EXT_k, then BLOCK_Q[:] = EXT_k and 
READY_Q[?] = NOT_READY. Let us now look at the SELECT_NEXT procedure. 

procedure SELECT_NEXT; 

begin 

if EVENT = SYS_CALL then 

BLOCK_Q [ACTIVE] :=SYS 

else if EVENT = TIMER then 

READY_Q[ACTIVE] :=READY 

else if EVENT = EXT_EVENT then 

MAKE_READY ; 

ACTIVE: =NEXT_PROC ; 

end; 

The purpose of the SELECT_NEXT procedure is to move processes between the 
different states according to the state-transition graph in Figure 8.3. Note that 
the identity of the currently running process is stored in the variable ACTIVE. 
First, if a process performs a system call, the scheduler puts the currently run- 
ning process into the BLOCKED state simply by marking the vector element that 
corresponds to the currently active process with the type of the external event 
(BLOCK _Q[ACTIVE] :=SYS). 

Second, if the scheduler is invoked as a result of a timer interrupt (EVENT = 
TIMER), the currently running process will be put into the READY queue. Finally, 
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if the scheduler is invoked as a result of an external event (EVENT = EXT_EVENT), 

the process that was blocked due to this event is removed from the BLOCKED 

queue and inserted into the READY queue (MAKE_READY). 

Independent of the type of event that invoked the scheduler, a new process must 

be selected as the next running process. This task is accomplished by the function 

NEXT_PROC. 

We now look at the implementation of NEXT_PROC and MAKE_READY. We list the 

specification of these functions and subroutines in a Pascal-like notation below. 

function NEXT_PROC: integer ; 

begin 

1:=0; NEXT :=ACTIVE; 

repeat 

1:=1i+1; 

NEXT : =NEXT+1; 

if NEXT = NUMPROC then 

NEXT : =0; 

until (i=NUMPROC) or READY_Q[NEXT] = READY; 

if i<>NUMPROC then 

begin 

NEXT_PROC:=NEXT ; 

READY_Q [NEXT] :=NOT_READY ; 

end; 

else 

NEXT_PROC:=NULL; 

end; 

The NEXT_PROC function selects the next process to be activated by performing a 

round-robin policy among the processes that are marked READY in the READY 

queue. If all processes are marked NOT_READY, the NULL process will be the next 

process to run. We next look at the MAKE-READY procedure. 

procedure MAKE_READY ; 

begin 

1:=0; 

while BLOCK_Q[i] <> SYS do 

date 

BLOCK_Q[i] :=NON_BLOCK ; 

READY_Q[i] :=READY; 

end; 



152 Real-Time Applications 

The purpose of the MAKE_READY procedure is to find the identity of the process that 

is blocked due to the external event SYS. By examining the BLOCKED queue, the 

index of the element that matches SYS is the identity of the process that has been 

blocked due to this external event. This process is moved to the READY queue 

and removed from the BLOCKED queue. 

Note that this real-time scheduler is simplified; it assumes that exactly one 

process can be blocked for each external event. Despite this limitation, we will 

look at the implementation of the scheduler next. 

To simplify the presentation, we will assume that there are two system calls 

and external events. The external events are caused by two distinct interrupts at 

priority 1 and 2, respectively. The corresponding system calls are performed by 

executing TRAP #1 and TRAP #2. Below, we show the necessary initializations of 

the exception vector table for these traps and interrupts. We also assume that the 

timer generates an autovectored interrupt with priority 5. 

INIT MOVE.L #TRAP1,$84 ; Entry for TRAP #1 

MOVE.L #TRAP2,$88 ; Entry for TRAP #2 

MOVE.L #INT1,$64 ; Entry for interrupt 1 

MOVE.L #INT2,$68  ; Entry for interrupt 2 

MOVE.L #INT5,$74 ; Entry for timer interrupt 

MOVE #$2000,SR ; Enable all interrupts 

Given the entry points of the system calls and the interrupts above, we show the 

data structures needed to implement the real-time scheduler below: 

EVENT AIY PE 

SYS_CALL  EQU 

TIMER EQU 

EXT_EVENT EQU LS jm XS} 

5 UO. gete 

NON_BLOCK EQU 0 

EXT1 EQU 

EXT2 EQU heer 
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; READY -TYPE 

NOT_READY EQU 0 

READY EQU 1 

NUMPROC EQU 10 

NULL EQU NUMPROC 

; Variables 

EVENT DS il 

SYS DS sl, Sh 

BLOCK_Q DS.B NUMPROC 

READY_Q DS.B NUMPROC 

EVEN 

ACTIVE DS eieee! 

Before we show the implementation of the SELECT_NEXT procedure, we show the 

entry points for the traps and the interrupts below: 

TRAPi MOVE.L #SYS_CALL,EVENT ; EVENT:=SYS_CALL 

MOVE.L #EXT_1,SYS ; SYS:=EXT_i 

BRA SCHED 

TRAP2 MOVE.L #SYS_CALL,EVENT ; EVENT: =SYS_CALL 

MOVE.L #EXT_2,SYS 5 Si esyes)h 7 

BRA SCHED 

INT1 MOVE.L #EXT_EVENT,EVENT ; EVENT:=EXT_EVENT 

MOVE.L #EXT_1,SYS BS S3 0). 4 eal 

BRA SCHED 

INT2 MOVE.L #EXT_EVENT,EVENT ; EVENT:=EXT_EVENT 

MOVE.L #EXT_2,SYS LON oe Ee 

BRA SCHED 

INT5 MOVE.L #TIMER,EVENT ; EVENT:=TIMER 

BRA SCHED 

For each system call and interrupt, we properly set up the variables that keep 

track of the event type (EVENT) and the type of external event (SYS). After that 
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point, a branch is taken to the entry point of the scheduler (SCHED). For example, 

if a system call is performed by executing TRAP #1, the variables EVENT and SYS 

are assigned SYS_CALL and EXT_1, respectively. We are now ready to present the 

implementation of the SELECT_NEXT procedure (we call the entry point SEL below). 

; SELECT_NEXT 

SEL CMPI.L #SYS_CALL,EVENT ; if EVENT = SYS_CALL 

BEQ SYST ; then goto SYST 

CMPIaE #TIMER , EVENT ; else if EVENT = TIMER 

BEQ TIME ; then goto TIME 

BSR MAKE_READY ; MAKE_READY 

BRA ACT 

SYST MOVEA.L #BLOCK_Q, AO 

MOVE.L ACTIVE,DO 

MOVE.L SYS,0(AO,DO) ; BLOCK_Q{ACTIVE]:=SYS 

BRA ACT 

TIME MOVEA.L #READY_Q, AO 

MOVE.L ACTIVE,DO 

MOVE.L #READY,0(AO,DO) ; READY_Q[ACTIVE]:=READY 

ACT BSR NEXT_PROC ; ACTIVE: =NEXT_PROC 

RTS 

The implementations of NEXT_PROC and MAKE READY are straightforward and left 

to the reader as an exercise. Before we close this chapter, we want to note the fol- 

lowing. The simple real-time scheduler we have outlined does not address several 

important issues. For example, in real-life implementations, there are often some 

processes that should be given more time than others. Therefore, one often has a 

number of READY queues with different priorities. Processes with the same prior- 

ity are competing with each other using a round-robin scheme. Another problem 

is that mutual exclusion is needed for shared resources. For instance, a keyboard 

should be owned by one process at a time — imagine how strange it could be if 

one process is reading from a keyboard and another steals some of the characters. 

Therefore, there are dedicated mechanisms in an operating system that guarantee 

mutual exclusion. To go into further detail of this is definitely outside the scope of 
this text. However, the interested reader should consult a text on operating system 
principles. 
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8.5 Summary and concluding remarks 

In this chapter, we have introduced some new features needed to support the 

execution of multiple programs on the same processor. The crucial point is to save 

the context of each program called a process control block. The context includes 

the content of all registers and the stack of each process. 

In order to handle multiple stacks, we can use the supervisor and user mode 

concepts. This makes it possible for the supervisor (in our example the scheduler) 

to have its own stack, while all user processes have their own private stacks which 

are controlled by the user stack pointer. 

We also talked about exceptions in general. Exceptions can be external events 

such as interrupts, but also internally generated events such as certain arithmetic 

conditions and explicit system calls. These are referred to as traps. 

We implemented a time-sharing operating system which makes it possible for 

multiple programs to share the same processor. The scheduler executes each pro- 

cess for a short while, a time-slice. It then picks a new process. This makes it 

appear as if all processes are executing at the same time. 

Finally, we generalized the scheduler to take care of system calls which enabled us 

to make more efficient use of the processor. A program (or process) may be waiting 

for an external event. When it is waiting (blocked) it does not load the processor. 

Therefore, we introduced three states: ACTIVE, READY, and BLOCKED. The 

process that currently uses the processor is denoted ACTIVE, while all other pro- 

cesses that are ready are kept in state READY. Those processes that are waiting 

for an event are kept in the state BLOCKED. Since it is possible that all processes 

are kept in state BLOCKED, a system process called NULL is needed. This pro- 

cess has the same basic structure as the other processes but executes in an infinite 

loop. 
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Solutions to Exercises 

ed 4210 

1.2 230310 

1.3 092116 

1.4 011101, = 11101, 

1.5 1001101010002 

1.6). 2¢2bie 

17s (O55) 

1.8 [0,63] 

9m “e12se27} 

P10 (232 31) 

1.11 00000111 

1.12) ** TEPTtoo1 

1.13 Interpretation as an unsigned integer: 9} 

Interpretation as a signed (two’s complement) integer: —710 

1.14 46). = 1000110, 

ei (s2 Bie = O10101E: 

1.16 61,6 = 1100001, 

1.17 48 45 4C 4C 4F. Hexadecimal representation 

1.18 68000 

231 Ae Olll, = 710, i= 00012 = lio, A+B = 10002 — 810: The addition 

did not result in overflow. 
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Pap Range (0, 31] yee 00100 — Ano, i = 111105 = 3010, A+B — 000105 = 

219. The addition resulted in overflow. 

2.3 Range [0,63] A = 011000. = 2415,B = 0000012 = 1y,A+B = 
0110019 = 25y9. The addition did not result in overflow. 

2.4 Range [0,255] A = 100000002 = 1289, B = 100000002 = 12819, A + 
B = 000000002 = 019. The addition resulted in overflow. 

2.9 A= Olll, — tio. B — 00015 = 110, A =F Be 10005 = —810. The 

addition resulted in overflow since both numbers have the same sign 

(positive) and the sum has opposite sign (negative). 

2.6 Range [-16,15] A = 00100, = 449,B = 11110, = —2;,,A+B = 

0000102 = 219. The addition did not result in overflow. 

2-0 Range [—32,31] A = 0110002 = 2419, B = 0000012 = 14,,A+B = 

0110012 = 25,9. The addition did not result in overflow. 

2.8 Range [—128,127] A = 100000002 = —1281,B = 10000000. = 

—128;9, A + B = 000000002 = Oyo. The addition resulted in over- 

flow. 

2.9 0010 

2.10 0011. It is the same because A=1111. 1A X =X 

> eal lit) 1010. It is the same because A = 0000. 0 VX = X 

2.12 0000. 

2.13 1111. The strings in the previous exercise did not differ in any position. 

The strings in this exercise differ in all positions 

3.1 22 bits 

sre a8 

3.3 1046 

3.4 2316 

3.5 800446 

3.6 (4516) =FFi¢ 

oot (4516) = 00 

3.8 (4516) =AAi6 

4.1 (a) (DO) = 12345687,6 (b) (DO) = 12348765;¢ (c) (DO) = 8765432116 

4.2 (a) (DO) = 0101018816 (b) (DO) = 0101886616 (c) (D0) = 886644224¢ 

4.3 (a) (D0) = AAAAAA00 6 (b) (DO) = AAAAODAAs (c) (DO) = 
OOAADDA A 46 
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4.4 

MOVE.B $21F,$2FA 

ADDI.B #25,$2FA 

4.5 

MOVE.B $1234,$25 

SUBI.B #25,$25 

4.6 

ORI.B #4,$3 

4.7 

MOVE.B $FFF,DO 

ADD.B  DO,$ABC 

ADD.B  DO,$DEF 

4.8 

MOVE.B ROW,DO 

ADD.B  COL,DO 

ADDI.B #1,D0 

MOVE.B DO,MAT 

4.9 

ADDI.B #22,L0C 

4.10 

SUBI.B #NUM,VAR 

NEG.B VAR 

4.11 

ADDI.B  #1,NUM1 

ADDI.B #2,NUM2 

ADDI.B  #3,NUM3 



4.12 

4.13 

4.14 

4.15 

4.16 

LOOP 

LOOP 

DONE 

THEN 

ELSE 

NEXT 

THEN 

DONE 

MOVE.B 

ADD .B 

MOVE .B 

MOVE.B 

ADD.B 

SUBI.B 

BNE 

MOVE.B 

MOVE.B 

MOVE.B 

CMPI.B 

BEQ 

ADD.B 

SUBI.B 

BNE 

CMPI.B 

BEQ 

CMPI.B 

BNE 

MOVE.B 

BRA 

MOVE.B 

MOVE.L 

CMP.L 

BHI 

MOVE.L 

BRA 

MOVE.L 

NUM,D1 

D1,NUM 

#7 ,DO 

NUM, D1 

D1,NUM 

#1,D0 

LOOP 

#0 ,P 

M1,DO 

M2,D1 

#0 , DO 

DONE 

Dal le 

#1 ,D0O 

LOOP 

#1,A 

THEN 

#2,A 

ELSE 

A,B 

NEXT 

B,A 

A,DO 

B,DO 

THEN 

#0 ,B 

DONE 

#0,A 
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4.17 

MOVE.L A,DO 

CMP.L 8B,DO 

BLS THEN 

MOVE.L #0,B 

BRA DONE 

THEN MOVE.L #0,A 

DONE 

4.18 

MOVE.L A,DO 

CMP.L 8B,DO 

BGT THEN 

MOVE.L #0,B 

BRA DONE 

THEN MOVE.L #0,A 

DONE 

4.19 

MOVE.L A,DO 

CMP.L B,DO 

BLE THEN 

MOVE.L #0,B 

BRA DONE 

THEN MOVE.L #0,A 

DONE 

4.20 

ADD.L  D3,D7 

ADDX.L D2,D6 

ADDX.L D1,D5 

ADDX.L DO,D4 

4.21 

SUB.L D3,D7 

SUBX.L D2,D6 

SUBX.L D1,D5 

SUBX.L DO,D4 



4.22 

4.23 

4.24 

4.25 

4.26 

4.27 

4.28 

LOOP 

LOOP 

ROR.L #5,D0 

ROL.B #2,D0 

ROR NUM 

ASR NUM 

ASL NUM 

MOVEA.L #$100,A0 

MOVE.B #2,D0 

MOVE .W (A0)+,D2 

ADD .W (AO) +,D2 

SUBI.B  #1,D0 

BNE LOOP 

MOVE.W D2, (AO) 

MOVEA.L #$100,A0 

MOVE.B #N,DO 

MOVE.W (A0)+,D2 

ADD .W (A0)+,D2 

SUBI.B #1,D0 

BNE LOOP 

MOVE.W D2, (AO) 
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4.29 

4.30 

4.31 

4.32 

LOOP 

LOOP 

MAX 

DONE 

LOOP 

MOVEA.L 

MOVE.B 

MOVE. W 

ADDA.L 

ADD .W 

ADDA.L 

SUBI.B 

BNE 

MOVE.W 

MOVEA.L 

MOVE.B 

MOVE.L 

MOVE .W 

ADDI.L 

ADD .W 

ADDI.L 

SUBI.B 

BNE 

MOVE.W 

CMP.L 

BLS 

#$0, AO 

#N ,DO 

$100(A0) ,D2 

#2, A0 

$100(A0) ,D2 

#2, AO 

#1,D0 

LOOP 

D2,$100(A0) 

#$100, AO 

#N ,DO 

#0,D1 

0(AO,D1) ,D2 

#2,D1 

0(A0,D1) ,D2 

#2,D1 

#1,D0 

LOOP 

D2,0(A0,D1) 

DO,D1 

DONE 

MOVE.L D1,DO 

RTS 

MOVEA.L 

MOVE.L 

MOVE.L 

MOVE.L 

BSR 

SUBI.L 

BNE 

#VEC , AO 

#N+1,D2 

#0, DO 

(AO)+,D1 

MAX 

=r, 5) DW 

LOOP 



4.33 

4.34 

4.35 

4.36 

4.37 

DIV2 

LOOP 

ASR DIDO: 

RTS 

Solutions to Exercises 

MOVEA.L #VEC,AO 

#0 ,D1 MOVE.L 

MOVE.L 

MOVE.L 

BSR 

ADD.L 

ADDI.L 

CMPL.L 

BNE 

#0, 

(AO 
DIV 

D2 

y+, DO 

2 

DO ,D2 

#1,D1 

#N+ a 5 DNL 

LOOP 

a) DC85 b) D63C 00B6 c) D479 0005 3254 

a) DF92 b) D41B c) D44A 

a) 6002 b) 60FC c) 60EE 
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owl 

5.2 

ITEM 

RETRIEVE 

THEN 

NEXT 

DS.L 

RTS 

MOVE.L 

CMP .L 

BET 

MOVE.L 

BRA 

CLR.L 

L 

L 

Ib 

IL 

A,DO 

B,DO 

THEN 

#1,A 

NEXT 

A 

MOVEA.L #INBUF,AO 

MOVE. 

MOVE. 

ADDI. 

SUBI. 

FIRST(AO) ,DO 

LIST(AO,DO), ITEM ; ITEM:=LIST[FIRST] ; 

#4, FIRST (AO) 5 UMS SSN SEP 

#1, COUNT (AO) ; COUNT: =COUNT-1; 
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5.3 

5.4 

5.5 

5.6 

THEN 

NEXT 

THEN 

NEXT 

FOR 

TEST 

NEXT 

WHILE 

TEST 

NEXT 

MOVE. 

CMP .L 

BCS 

MOVE. 

BRA 

CLR.L 

CMP IT 

BLT 

CMPI. 

BGT 

CLR.L 

BRA 

MOVE. 

MOVE. 

BRA 

ADDI. 

ADDI. 

CMPI. 

BLS 

MOVE. 

BRA 

ADDI. 

CMPI. 

BCS 

L 

IG. 

L 

L 

IE, 

ES 

#1,D0 

TEST 

#1,J 

#1,D0 

#10,D0 

FOR 

#0 ,I 

TEST 

#1,1 

#10,1 

WHILE 

> 

’ 

’ 

’ 

> 

> 

Fe EAE 

; goto TEST 

Feo bat 

I:=I+1 

if I <= 10 then 

; goto FOR 

- Te=0 

; goto TEST 

3} RES 

lt TOR Oxthen 

; goto WHILE 



5.7 

5.8 

5.9 

5.10 

MOVE.L 

REPEAT ADDI.L 

CMPI.L 

BLE 

NEXT 

CONVERT CMPI.B 

BCS 

CMPI.B 

BHI 

SUBI.B 

OUT RTS 

CSTR 

FINE RTS 

N EQU 

TAB DC.W 

MOVEA.L 

MOVE.W 

MOVE.L 

ADD .W 

SUBI.L 

BNE 

RTS 

ADDF 

ADDL 

Solutions to Exercises 

#0,I1 ss =05 

#1,1 OIL GE a iepike 

#20,1 if le <=" 20 

REPEAT ; then goto REPEAT 

#$61,D0 

OUT 

#$7A,DO 

OUT 

#$20,DO 

#NUL, (AO) 

FINE 

(AO) , DO 

CONVERT 

DO, (AO) + 
CSTR 

5 

OPE ose 

#TAB , AO 

#0,DO 

#N,D1 

(AO) +,DO 

#1,D1 

ADDL 
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5.11 Example solution: 

AOLD := 1; 

A:=1; 

repeat 

TEMP :=A; 

A:=A+AOLD; 

PUTINT(A) ; 

AOLD : =TEMP ; 

until A > 65535; 

AOLD ODS.L 1 

A DS.L 1 

TEMPS Dom il 

FIB MOVE.W #1,A0LD 

MOVE.W #1,A 

REP MOVE.W A,TEMP 

MOVE.W AOLD,DO 

ADD.W A,DO 

BSR PUTINT 

MOVE.W DO,A 

MOVE.W TEMP,AOLD 

CMPI.W #65535,A 

BLS REP 

’ 

? 

’ 

AOLD:=1 

A:=1 

TEMP: =A 

DO: =A+AOLD 

PUTINT (A) 

; AOLD:=TEMP 



Solutions to Exercises 167 

5.12 

; NAME: PRSEX 

; DESCRIPTION: Prints all persons with a specific sex 

; INPUT: None 

SOULEUT: None 

; REGISTERS: AO,A1,DO 

PRSTR2 DC.B ?Input sex’, $0D,$0A,0 

EVEN 

PSEX DSae 1 

PRSEX MOVEA.L #PRSTR2,A0 

BSR PRSTR ; PRSTR(’? Input sex’); 

MOVEA.L #PSEX,A0 

BSR READINT ; SEX:=READINT; 

MOVEA.L #DATABASE,A1 ; REC:= "First record"; 

BRA WIEST2 

WLOOP2 MOVE.L PSEX , DO 

CMP .L MALE(A1) ,DO ; if PSEX = REC.MALE then 

BNE CONT2 

LEA FNAME (A1) , AO 

BSR PRSTR ; PRSTR(REC.FNAME) ; 

LEA LNAME(A1) , AO 

BSR PRSTR ; PRSTR(REC.LNAME) ; 

CONT2 MOVEA.L NEXT(A1),A1 ; REC:=REC.NEXT; 

WTEST2 CMPA.L LAST, Ai ite ECe—s GASlm<2n ON then 

BNE WLOOP2 ; goto WLOOP2 

RTS ; end; 

6.1 

MOVE.B $FFF100,D0 

ASL.B #2 ,DO 

MOVE.B DO,$FFF102 
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6.2 

IN1i EQU $FFF100 

IN2 EQU $FFF102 

OUT EQU $FFF104 

LOOP MOVE.B IN1,DO 

AND.B IN2,D0 

MOVE.B DO,OUT 

BRA LOOP 

6.3 

INDEV EQU $FFFO00O 

STATUS EQU $FFFO08 

MEM EQU $9000 

START MOVEA.L #INDEV, AO 

MOVEA.L #MEM,A1 

MOVE.L #0 , DO 

LOOP BTST DO, STATUS 

BNE COPY 

ADDA.L #1, A0 

ADDA.L #1,A1 

TEST ADDI.L #1,D0 

CMPI.L #8 , DO 

BNE LOOP 

BRA START 

COPY MOVE.B (AO) +, (A1)+ 

BRA TEST 

6.4 We use DO to pass N to the subroutine and D1 to return the function 

value NSUM. 

NSUM MOVE.L DO,D1 ; NSUM:=N; 

CMPI.L #1,D0 ; if N=1 then 

BEQ NEND ; return 

MOVE.L DO,-(SP) ; Push DO 

SUBI.L #1,D0 

BSR NSUM ; D1:=NSUM(N-1) ; 
MOVE.L (SP)+,DO ; Pop DO 
ADD.L  DO,D1 ; NSUM:=N+NSUM(N-1) ; 

NEND RTS 



6.5 

6.6 

(a) SP1 shows the content of the stack and the stack pointer the first 

Solutions to Exercises 

time SUBI .L is executed, SP2 the second time etc. 

Content Address 

0001 

0000 

801C 

Se2-—> 0000 

0002 

0000 

801C 

Sloe 0000 

0003 

0000 

8004 

(b) (D1) = 3. 

PREGS MOVEA.L 

ROR 

BCC 

MOVE.L 

REG1 ROR 

BCC 

MOVE.L 

REG2 ROR 

BCC 

MOVE.L 

REG3 ROR 

BCC 

MOVE.L 

REG4 

REG7 ROR 

BCC 

MOVE.L 

FINE ADDA.L 

MOVE.L 

RTS 

(SP)+,A0 

(AO) 
REG1 

DO,-(SP) 

(AO) 
REG2 

Di,=tSP) 

(AO) 
REG3 

D2,-(SP) 

(AO) 
REG4 

D3,-(SP) 

(AO) 
FINE 

Di tor) 

#2, AO 

AO,-(SP) 

’ 

? 

’ 

’ 

? 

Get address to the word 

; Shift one step to the right 

Check least significant bit 

If set, push DO 

Modify return address 
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Ons 

6.8 

6.9 

Solutions to Exercises 

ENTER MOVE.L DO,-(AO) 

RTS 

ADDSTACK ADD.L (AO) +,D0O 

RTS 

SUBSTACK SUB.L (A0)+,DO 

RTS 

POPSTACK MOVE.L (A0)+,D0 

RTS 

ENTER ENTER ADDSTACK 

7FF8 === LOOC 1000 

7FFA 0006 0006 

CRG ==> OOS 1000 ea O OY 

(GHEE 0005 0005 0005 

8000 

(AO)=7FFC (AO)=7FF8 (AO)=7FFC 

The interrupt service routine: 

SWITCH MOVE.L #0,TICK 

MOVE.L #0,SEC 

MOVE.L #0,MIN 

MOVE.L #0,HOUR 

RTE 

We need to modify the main program as follows: 

MAIN 

MOVE.L #SWITCH,$68 

MOVE.L #TIME,$74 

MOVE #$2100,SR ; ...and modify 

SUBSTACK 

1000 
0006 
1000 
0005 

--> 

(A0) =8000 

Add this) Jaine® . . 

this one. 



6.10 

6.11 

NUL 

STRING 

DISPLAY 

POSITION 

MCHAR 

MLOOP 

NEXT 

NEXT1 

GOBACK 

COUNT 

PRINT 

POPREG 

DS.L 

MOVE. 

MOVE. 

MOVEA.L 

MOVEA.L 

CMPI. 

BHI 

CMPI. 

BNE 

MOVE. 

MOVE. 

ADDI. 

ADDI. 

BRA 

ADDI. 

CMPI. 

BLT 

MOVE. 

RTS 

DS.B 

EVEN 

MOVEM.L 

ADDI.B 

CMPI.B 

BNE 

MOVE.B 

BSR 

MOVEM.L 

RTE 

B 

Ib 

B 

B 
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#0 , DO sL3=0 

POSITION ,D1 

#DISPLAY , AO 

#STRING, At 

#14,D0 etOresl= Oto: 14do 

NEXT1 

#NUL,0(A1,D1) ; if STRING[POINTER] = NUL 

NEXT 

#0 ,D1 ; then POINTER:=0 

OGAWT, Di) PACA) ee BD ESPIEAY iti 

; STRING [POINTER] 

#1,D1 ; POINTER: =POINTER+1 

#1,D0 

MLOOP 

#1, POSITION 

#14, POSITION 

GOBACK 

#0, POSITION 

DO-D1/A0-A1,-(SP) 

#1, COUNT 

#10, COUNT 

POPREG 

#0 , COUNT 

MCHAR 

(SP)+,D0-D1/A0-A1 



172 Solutions to Exercises 

6.12 

MAIN MOVE.L #0,POSITION ; POSITION:=0 

MOVE.B #0,COUNT ; COUNT:=0 

MOVE.L #PRINT,$74 ; Exception vector 

MOVE #$2400,SR 

(fol 

PGCR EQU $FFFOOO 

PACR EQU $FFFO06 

PADDR EQU $FFFO02 

INIT MOVE.B #%00000000,PGCR ; Mode 0 

MOVE.B #%10000000,PACR ; Bit-I/0 submode 

MOVE.B #%11110000,PADDR ; Bits 0-3 inputs and 

; bits 4-7 outputs 

Uo? 

PGCR EQU $FFFOOO 

PBCR EQU $FFFOO7 

PBDDR EQU $FFFOO3 

INIT MOVE.B #%00000000,PGCR ; Mode 0 

MOVE.B #%10000000,PBCR ; Bit-I/0 submode 

MOVE.B #%11110000,PBDDR ; Bits 0-3 inputs and 

; bits 4-7 outputs 

eo 

PGCR EQU $FFFOOO 

PACR EQU $FFFOO6 

PADDR EQU $FFFOO2 

INIT MOVE.B #%00010010,PGCR ; Mode 0, H1 asserts to 0 

; but H2 asserts to 1 

MOVE.B #%01110000,PACR ; Output submode 

MOVE.B #%11111111,PADDR ; Bits 0-7 outputs 



7.4 

7.5 

7.6 

Tek 

7.8 

PGCR 

PBCR 

PBDDR 

INIT 

PSR 

PADR 

CHRIN 

CR 

INIT 

CR 

INIT 

CR 

INIT 

EQU 
EQU 
EQU 

MOVE.B 

MOVE.B 

MOVE.B 

EQU 

EQU 

BIST 

BNE 

MOVE.B 

RTS 

EQU 

MOVE.B 

MOVE.B 

EQU 

MOVE.B 

MOVE .B 

EQU 

MOVE.B 

MOVE.B 

$FFFO0O 
$FFFOO7 
$FFFO03 

#7,00101100, 

#7,01110000, 

#7,11111111,PBDDR 

$FFFOOD 

$FFFO08 

#0,PSR : 

PADR,DO- ; 

$FFFO0O 

#7,00000011, 

#7,00001001, 

$FFFO0O 

#7%,00000011, 

#7%,00000010, 

$FFFOOO 

#7,00000011, 

#7,00010001, 

PGCR 

PBCR 

Solutions to Exercises 

; Mode 0, H3 and H4 

; assert to i 

; Output submode 

jEbits OR outputs 

if Hi is not asserted 

CHRIN ; goto CHRIN 

Read from Port A 

CRaae 

CRae 

CRs 

CRY 

CRees 

Chas 

> 

Master reset 

7 bits, even parity, 

1 stop bit, 16 samples 

Master reset 

7 bits, even parity, 

2 stop bits, 64 samples 

Master reset 

8 bits, no parity, 

2 stop bits, 16 samples 

173 
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7.9 

SR EQU $FFFOOO ; Status Register 

DATA EQU $FFFOO1 ; Data Register 

POLL Bist #0 ,SR ; Test RDRF in the SR 

BEQ PORE ; If not asserted, 

; try again 

BIST #6,5SR ; Parity error? 

BNE PERROR ; Yes, branch to PERROR 

BTST #5,5SR ; Overrun error? 

BNE OERROR ; Yes, branch to OERROR 

BTST #4,5SR ; Framing error? 

BNE FERROR ; Yes, branch to FERROR 

MOVE.B DATA,DO ; Read from the ACIA 

MOVE.B #0,D1 ; No error 

RTS 

PERROR MOVE.B #1,D1 har ibyee Gros 

RTS 

OERROR MOVE.B #2,D1 ; Overrun error 

RTS 

FERROR MOVE.B #3,D1 ; Framing error 

RTS 



Appendix B 

68000 Instruction Set 

This appendix provides detailed information on the use of most instructions avail- 

able for the M68000. For additional information, please refer to M68000 User’s 

Manual issued by Motorola. 

For each instruction, information is provided about the syntax, including the 

available: addressing modes and the operand size; a description of the operation 

that is carried out; and how the condition codes are affected. The example below 

shows the information that is available for each instruction. 

ADD Add 

Syntax: ADD. S° ap, , ‘or ADDVS"D; a3 j 

Operand size: S.= (BB. W,b) 

Operation: (a,) + (D;) — D; or (Dj) + (a3) — az 

Condition codes: EGE 

The syntax specifies the name of the instruction and the addressing modes avail- 

able by means of either a register name (e.g. D; or A;) or a set of addressing modes 

(e.g. a) that are applicable to the source or destination operand of the instruc- 

tion. The operation is described either using the notation in Chapter 3, or verbally. 

Moreover, it is shown how the instruction affects the condition codes using special 

symbols. In the following, we will present the shorthand notations used in the 

instruction summaries. 

In Table B.1, we show all addressing modes treated in the textbook and an 

abbreviation for each of them. Since only a subset of all available addressing modes 

are applicable to a specific operand in an instruction, we define nine addressing- 

mode subsets (a1, @2,..-,@9) in Table B.2 using the abbreviations from Table B.1. 

An ‘X’ in a specific position means that the corresponding addressing mode is 

available. For example, a, means that all addressing modes can be used to specify 
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Table B.1 All addressing modes introduced in the text. 

DRD 

ARD 

ABS 

IMM 

IND 

IDI 

IDD 

AID 

All 

PID 

Abbreviation Addressing mode Example 

Data register direct MOVE.B D1i,DO 

Address register direct MOVE.L AO,DO 

Absolute MOVE.B 1,D0 

Immediate MOVE.B #1,D0 

Indirect MOVE.B (AO) ,DO 

Indirect with MOVE.B (A0)+,D0 

postincrement 

Indirect with MOVE.B -(AO) ,DO 

predecrement 

Address register indirect MOVE.B 10(A0) ,DO 

with displacement 

Address register indirect MOVE.B 10(A0,D1) ,DO 

with index 

Program counter indirect MOVE.B 10(PC) ,DO 

with displacement 

Program counter indirect MOVE.B 10(PC,A0) ,DO Pat 

with index 

Table B.2 Addressing-mode subsets as used by various instructions. 

DRD ARD ABS IMM IND IDI IDD AID AII PID PII 
aes Xx Xx xX Xx x Xx Xx Xx X Xx 

Xx xX Xx X X X Xx 

x Xx Xx Xx Xx Xx 
Xx Xx X Xx X X Xx Xx Xx x 

xX xX Xx Xx Xx 
Xx Xx xX X X X Xx 
Xx Xx Xx Xx Xx X 

oe Xx X Xx Xx Xx X Xx 
x x Xx X Xx X X X x 
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Table B.3 Notation for how the condition codes are affected by each instruction. 

Description Notation 

Common case . 
Not affected 

The flag is set 

The flag is cleared 

The flag is undefined 

Special meaning —-ador | 

Table B.4 The common case for how the condition codes are affected. 

Flag Condition 

Set if the C-flag is set. Cleared otherwise. 

Set when the result is negative. Cleared otherwise. 

Set when the result is zero. Cleared otherwise. 

Set when two’s complement operation results in overflow. Cleared otherwise. 

Set when carry/borrow is generated. Cleared otherwise. Oe <u 2 Ps 

an operand whereas aq means that all addressing modes are available except for 

ARD (address register direct). 
To specify how the condition codes are affected by each instruction, we use the 

symbols found in Table B.3. The common case (denoted by an asterisk ‘*’) means 

that the flags are set in a way that conforms to their meaning. We specify precisely 

what the common case means in Table B.4. For some instructions, a flag can be 

set according to special rules. We denote this case by an exclamation mark and 

will describe the special setting of the flag in the instruction summary. 

ADD Add J 

Syntax: ADD.S a,,D; or ADD.S D;,as 

Operand size: S = (B,W,L) 

Operation: (a,)+(D;) — D; or (Di) + (a3) > ag 

Condition codes: ae [= Fr] 
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ADDA Add Address 

Syntax: ADDA.S a,,A; 

Operand size: = WV) 

Operation: (a,;) + (A;) > A; 

Xe NeAVEe 
Condition codes: 

ADDI Add Immediate 

Syntax: ADDI.S #n,a 

Operand size: Se (Wels) 

Operation: n+(ad2) — ae 

Condition codes: SEE Fr] 

ADDQ Add Quick 

Syntax: ADDQ.S #n,axg 

Operand size: S = (B,W,L) 

Operation: n+(ag) — ag, where] <n <8 

XEN ZV. C 
Condition codes: 

Remark: This instruction occupies one word only. 

ADDX Add Extended 

Syntax: ADDX.S D;,D; or 

Operand size: 

Operation: 

Condition codes: 

ADDX.S —(A;), —(A;) 

S = (B,W,L) 

(D;) SF (D;) i (X) > ID or 

where k depends on 

ANZYVC 
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AND And 

Syntax: AND.S a4,D; or AND.S D,,a3 

Operand size: 5 =a(6.W,) 

Operation: (a4) \(D;) — D; or (Dj) A (a3) > ag 

KIN ZV G 
Condition codes: ETE [o10 
ANDI And Immediate 

Syntax: ANDI.S #n,a9 

Operand size: oo NV) 

Operation: nf (a2) > ag 

XONE ZV. 
Condition codes: 

ANDI to CCR 

-TlTofo} 
And Immediate to Condition Codes 

Syntax: 

Operand size: 

ANDI #n,CCR 

Byte 

Operation: nA(CCR) — CCR 

oN VC 

ANDI to SR And Immediate to Status Register 

Syntax: ANDI #n,SR 

Operand size: Word 

Operation: nA (SR) — SR 

x N-ZV © 
* | x | x 

Remark: Privileged instruction 
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ASL Arithmetic Shift Left 

Syntax: 

Operand size: 

Operation: 

Condition codes: 

ASR 

ASL.S D;,D; or 

ASL.S #n,D; or 

ASL a3 

S=(B,W,L). The last form assumes Word. 

Shifts the bits in the destination operand to the 

left the number of steps denoted by the source 

operand. If the source operand is a data regis- 

ter, the shift count is (D;) mod 64. If the source 
operand is a constant, the shift count is n = [1, 8}, 
and if the destination is a memory word (last 

form), the shift count is one. Zeros are shifted 

into the least significant bits. 

A ONEZEVEG 
*l ele] 1] 

V_ Set iff the most significant bit is 

changed at any time during the 

shift operation. 
C Set according to the last bit shifted out. 

Arithmetic Shift Right 

Syntax: 

Operand size: 

Operation: 

Condition codes: 

ASR.S D;,D,; or 

ASR.S #n,D; or 

ASR ag 

S=(B,W,L). The last form assumes Word. 

Shifts the bits in the destination operand to the 

right the number of steps denoted by the source 

operand. If the source operand is a data regis- 

ter, the shift count is (D;) mod 64. If the source 

operand is a constant, the shift count is n = [1,8], 
and if the destination is a memory word (last 

form), the shift count is one. Zeros are shifted 
into the most significant bits. 

XNZVC 
Abe tor 
C Set according to the last bit shifted out. 
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Bec Branch Conditionally 

Syntax: Bcc label 

Operation: If Condition cc then label — PC. Condition cc 

specifies one of the following conditions: 

COL CC)" 

Compe, 
NE (Z)’ 

EQ (Z) 
VE uy): 
vs (V) 

PL O(N} 

MI (N) 
Ts. (GC) (Z) 
Hii(@) AZ) 

LT ((N) A (V)’) v ((N)’ A (V)) 
LE (Z) A (((N) A (V)’) Vv ((N)’ A (V))) 
GTM A UENO ON). AE) 
GE ((N) A(V)) V ((N)’ A (V)) 

Condition codes: “ Bere 

BCHG Test a Bit and Change 

Syntax: BCHG D,;,a2 or 

Operand size: 

Operation: 

Condition codes: 

BCHG #n, a2 

When the destination is a data register, the 

operand size is Long word; otherwise it is Byte. 

Tests the bit in the destination operand denoted by 

the source operand and sets the Z-flag accordingly. 

The tested bit is then inverted. 

Xx NEA WAG 

TEE] 
Z See operation above. 
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BCLR Test a Bit and Clear 

Syntax: 

Operand size: 

Operation: 

Condition codes: 

BRA 

BCLR D;,a@2 or 

BCLR #n, a9 

When the destination is a data register, the 

operand size is Long word. Otherwise it is Byte. 

Tests the bit in the destination operand denoted by 

the source operand and sets the Z-flag accordingly. 

The tested bit is then cleared. 

X NSA VEG 

Z See operation above. 

Branch Unconditionally 

Syntax: 

Operation: 

Condition codes: 

BSET 

BRA label 

label => PC 

XN Vie © 

Test a Bit and Set 

Syntax: 

Operand size: 

Operation: 

Condition codes: 

BSET D;, a2 Or 

BSET #n, a2 

When the destination is a data register, the 

operand size is Long word. Otherwise it is Byte. 

Tests the bit in the destination operand denoted by 

the source operand and sets the Z-flag accordingly. 

The tested bit is then set. 

Aol ch VEG 

Z See operation above. 
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BSR Branch to Subroutine 

Syntax: BSR label 

Operation: (SP) —4 — SP; 

(PC) — (SP); 
label — PC 

Condition codes: aT] 2 ET 

BTST Test a Bit 

Syntax: BTST D;,a2 or 

BIST #n, dg 

Operand size: 

Operation: 

Condition codes: 

When the destination is a data register, the 

operand size is Long word. Otherwise it is Byte. 

Tests the bit in the destination operand denoted by 

the source operand and sets the Z-flag accordingly. 

NNT VEG 

“EET 
Z See operation above. 

CHK Check Register Against Bounds 

Syntax: CHK a4, D; 

Operand size: Word 

Operation: 

Condition codes: 

if (D;)< 0 or (D;) > (a4), a trap (vector number 

6) occurs. 

x NZ 

[- |! fululu) 
N_ Set if (D,;)< 0; cleared if (D;) > (as). 

Undefined otherwise. 

CLR Clear an Operand 

Syntax: CLR.S ao 

Operand size: 5S = (BW-b) 

Operation: 0 — ag 

XNZVC 
Condition codes: 

-Jofifolo| 
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CMP Compare 

Syntax: CMP.S a,,D; 

Operand size: S =(B,W,L) 

Operation: (D;)—(a1) 

Condition codes: 

CMPA Compare Address 

Syntax: CMPA.S a,,A; 

Operand size: S = (W,L) 

Operation: (A;)—(a1) 

vi RAN Zev € 
Condition codes: 

CMPI Compare Immediate 

Syntax: CMPI.S #n,d9 

Operand size: Si=1( BW. 15) 

Operation: (ag)—n 

Condition codes: SAE | aE 

CMPM Compare Memory 

Syntax: CMPM.S (A;)+,(A;)+ 

Operand size: 5 =(B,W,L) 

Operation: (A;)—(A5); (Ai)+k — Aj; (Aj)+k > A; 

where k depends on the operand size 

XIN EA Wale Condition codes: 5 [ [* | [* 
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Test Condition, Decrement, and Branch 

Syntax: 

Operand Size: 

Operation: 

Condition codes: 

DIVS 

Syntax: 

Operand Size: 

Operation: 

Condition codes: 

DBcc D;, label 

Word 

If Condition cc nothing is done. Otherwise, 

(D;)-1 — D,; if (D;) # —1 then 
label — PC. 

Condition cc is one of those listed under the Bcc 

instruction and in addition the following: 

F always FALSE 

T always TRUE 

Xx NZAVIG 

Signed Divide 

DIVS.W a4,D; 

Word 

Divides the signed destination operand (32 bits) 
by the signed source operand (16 bits). The result 
is a signed quotient in the least significant 16 bits 

and the remainder in the most significant 16 bits. 

The sign of the remainder is the same as the sign 

of the dividend. The instruction results in a trap 

if the divisor is zero. 

KeNiuZeV. @ 
ee eat lsh O 

N Common case but undefined 

when overflow occurs. 
Z Common case but undefined 

when overflow occurs. hee 
V Common case but undefined if di- 

vide by zero occurs. 
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DIVU Unsigned Divide 

Syntax: DIVU.W a4,D; 

Operand Size: Word 

Operation: 

Condition codes: 

Divides the unsigned destination operand (32 bits) 

by the unsigned source operand (16 bits). The re- 

sult is an unsigned quotient in the least significant 

16 bits and the remainder in the most significant 

16 bits. The instruction results in a trap if the 

divisor is zero. 

KANE. VEC 
-[! Tt] to] 
N Common case but undefined 

when overflow occurs. 
Z Common case but undefined 

when overflow occurs. 
V Common case but undefined if di- 

vide by zero occurs. 

EOR Exclusive OR 

Syntax: EOR.S D;, a2 

Operand size: S = (B,W,L) 

Operation: (D;) ® (a2) > ag 

XNZVOC 
Condition codes: 

= 1*{*{0] 0) 

EORI Exclusive OR Immediate 

Syntax: EORI.S #n,ao 

Operand size: Sv=.(B, Wi) 

Operation: n@® (a2) > ag 

eh KUNZE VAG 
Condit des: ondition codes -T*[*[o10] 
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Exclusive OR Immediate to Condition 

Codes 

Syntax: 

Operand size: 

Operation: 

Condition codes: 

EORI to SR 

EORI #n,CCR 

Byte 

n® (CCR) — CCR 

KLIN LEV CC 

Exclusive OR Immediate to Status Register 

Syntax: 

Operand size: 

Operation: 

Condition codes: 

EORI #n,SR 

Word 

n@® (SR) — SR 

x NZL 
CEeEE 

Remark: Privileged instruction 

EXG Exchange Registers 

Syntax: EXG. DD, 22), or 

EXG ds Jal or 

EXG (wiels or 

EXG. A,, D, 

Operand size: Long word 

Operation: 

Condition codes: 

Exchanges the contents of the source and the des- 

tination operands. 

XN ZA: VO 

[EEL 
EXT Sign Extend 

Syntax: EXD). oD; 

Operand size: 5S=(W,L) 

Operation: 

Condition codes: 

Extends the sign bit of the operand. If the operand 

size is Word, the least significant 8 bits are sign 

extended to a Word, and if operand size is Long 

word, the least significant 16 bits are sign extended 

to a Long word. 

XEN Ze VC 

-[[*ToT0 
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JMP Jump 

Syntax: JMP az 

Operation: az — PC 

MING Zev 
Condition codes: 

ae es al 
JSR Jump to Subroutine 

Syntax: JSR a7 

Operation: (SP) —4 — SP; 

_ Condition codes: 

LEA 

(PC) — (SP); 

Ghee = PC 

x NEVE 

Load Effective Address 

Syntax: 

Operand size: 

Operation: 

Condition codes: 

LEA a7, A; 

Long word 

dz >A; 

ao Na ZaVec 
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LSL Logical Shift Left 

Syntax: ESL. SD); or 

LSL.S #n,D,; or 

LSL az 

Operand size: S=(B,W,L). The last form assumes Word. 

Operation: Shifts the bits in the destination operand to the 

left the number of steps denoted by the source 

operand. If the source operand is a data regis- 

ter, the shift count is (D;) mod 64. If the source 

operand is a constant, the shift count is n = [1,8], 

and if the destination is a memory word (last 

form), the shift count is one. Zeros are shifted 

into the least significant bits. 

SNC. 
Condition codes: T*[*folh 

C Set according to the last bit shifted out. 

LSR Logical Shift Right 

Syntax: USK. ee), OF 

LSR.S #n,D; or 

LSR az 

Operand size: S=(B,W,L). The last form assumes Word. 

Operation: Shifts the bits in the destination operand to the 

right the number of steps denoted by the source 

operand. If the source operand is a data regis- 

ter, the shift count is (D;) mod 64. If the source 

operand is a constant, the shift count is n = [1,8], 

and if the destination is a memory word (last 

form), the shift count is one. Zeros are shifted 

into the most significant bits. 

Condition codes: Ar ane 

C Set according to the last bit shifted out. 
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MOVE Move Data from Source to Destination 

Syntax: MOVE.S aj1,@2 

Operand size: Ss =(B WL) 

Operation: (a1) — a 

AN AV ae 
Condition codes: 

MOVEA 

fe) 1 ole 

Move Address 

Syntax: 

Operand size: 

Operation: 

Condition codes: 

MOVEA.S aj, A; 

5 ( Wak) 

(a1) — A; 

XON ZV eC 

MOVE Move to Condition Code Register 

Syntax: MOVE a4,CCR 

Operand size: Word 

Operation: (a4) — CCR 

X NEZW-G 
Condition codes: 

ete Slee 

MOVE Move to Status Register 

Syntax: MOVE a4,SR 

Operand size: Word 

Operation: (a4) — SR 

XNZVC 
Condition codes: 

Remark: Privileged instruction 
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MOVE Move User Stack Pointer 

Syntax: MOVE A;,USP or MOVE USP,4A; 

Operand size: Long word 

Operation: (A;) — USP or (USP) — A; 

XNZVC 
Condition codes: -EEEE 
Remark: Privileged instruction 

MOVEM Move Multiple Registers 

~ Syntax: MOVEM.S register list,a5 or 

Operand size: 

Operation: 

MOVEM.S ag, register list 

S=(W,L) 

Moves the contents of the selected registers to (first 

form) or from (second form) consecutive memory 

locations. 

Condition codes: 

MOVEQ Move Quick 

Syntax: MOVEQ #n,D; 

Operand size: Long word 

Operation: 

Condition codes: 

n — D,, where n is an 8-bit two’s complement 

number which is sign extended in the destination. 

XNZVC 

[-]*[*]o[o| 
Remark: This instruction occupies one word only. 

MULS Signed Multiply 

Syntax: MULS.W  a4,D; 

Operand Size: Word 

Operation: 

Condition codes: 

Multplies two signed 16-bit operands yielding a 

signed 32-bit result. 

xX Nese ViG 

-[+[*[ofo] 
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MULU Unsigned Multiply 

Syntax: MULU.W a4,D; 

Operand Size: Word 

Operation: Multplies two unsigned 16-bit operands yielding 

an unsigned 32-bit result. 

by XiINSAaV GC 
Condition codes: : | [*[o [0 

NEG Negate 

Syntax: NEG.S ag 

Operand size: SN) 

Operation: 0 — (a2) > ag 

aie Noa VS 
Condition codes: 

NEGX Negate with Extend 

Syntax: NEGX.S ag 

Operand size: Reece (1 ANE 

Operation: 0 — (ag) -(X) > ag 

Condition codes: Le Fae 

Z Cleared if the result is non-zero. 

Unaffected otherwise. 

NOP No Operation 

Syntax: NOP 

Operation: Performs no operation. 

Condition codes: a x see 

NOT Logical Inverse 

Syntax: NOT.S ap 

Operand size: S'= (BsW,L) 

Operation: Inverts all bits in the destination. 

A NEL Ve Condition codes: 

L-]*[*]o[o 
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Inclusive OR 

Syntax: 

Operand size: 

Operation: 

Condition codes: 

OR.S a4, D; or OR.S D;, as 

S = (B,W,L) 
(a4) V(D;) — D; or (D,) V (as) > as 

ANTONE © 

-[*[*fofo 
ORI Inclusive OR Immediate 

Syntax: ORI.S #n,a9 

Operand size: 5 ='"(B.W,5) 

Operation: nV (a2) > ag 

xX NeZaV eC 
Condition codes: 

-[*[*[oJo} 
ORI to CCR Inclusive OR Immediate to Condition 

Codes 

Syntax: ORI #n,CCR 

Operand size: Byte 

Operation: nV (CCR) — CCR 

KONGZ Vv ve 
Condition codes: 

ORI to SR OR Immediate to Status Register 

Syntax: ORI #n,SR 

Operand size: Word 

Operation: nV (SR) — SR 

XANGA, © 
Condition codes: 

Remark: Privileged instruction 
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PEA Push Effective Address 

Syntax: PEA az 

Operand size: Long word. 

Operation: (SP)—4 — SP; a7 — (SP) 

Condition codes: 

ROL 

XNZVC 

mei) 
Rotate Left 

Syntax: 

Operand size: 

Operation: 

Condition codes: 

ROL.) 2D 201 

ROL.S #n,D; or 

ROL ag 

S=(B,W,L). The last form assumes Word. 

Rotates the bits in the destination operand to the 

left the number of steps denoted by the source 

operand. If the source operand is a data regis- 

ter, the shift count is (D;) mod 64. If the source 

operand is a constant, the shift count is n = [1, 8}, 
and if the destination is a memory word (last 

form), the shift count is one. Bits shifted out from 

the most significant bit are shifted into the least 

significant bit. 

XNA WS 

SRGIE 
C Set according to the last bit shifted out. 
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Rotate Right 

Syntax: 

Operand size: 

Operation: 

Condition codes: 

ROXL 

ROR OL) On 

ROR.S #n,D, or 

ROR a3 

S=(B,W,L). The last form assumes Word. 

Rotates the bits in the destination operand to the 

right the number of steps denoted by the source 

operand. If the source operand is a data regis- 

ter, the shift count is (D;) mod 64. If the source 

operand is a constant, the shift count is n = (1, 8}, 

and if the destination is a memory word (last 

form), the shift count is one. Bits shifted out from 

the least significant bit are shifted into the most 

significant bit. 

XNZVC 
SRE 
C Set according to the last bit shifted out. 

Rotate Left with Extend 

Syntax: 

Operand size: 

Operation: 

Condition codes: 

ROMS 1), -0r 

ROXL.S #n,D; or 

ROXL a3 

S=(B,W,L). The last form assumes Word. 

Rotates the bits in the destination operand to the 

left the number of steps denoted by the source 

operand. If the source operand is a data regis- 

ter, the shift count is (D;) mod 64. If the source 

operand is a constant, the shift count is n = [1,8], 

and if the destination is a memory word (last 

form), the shift count is one. Bits shifted out from 

the most significant bit are shifted into the X-flag 

and the X-flag is shifted into the least significant 

bit. 

PP TIO. 
a C Set according to the last bit shifted out. 
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ROXR Rotate Right with Extend 

Syntax: 

Operand size: 

Operation: 

Condition codes: 

RTE 

ROXR.S D;,D; or 

ROXR.S #n,D; or 

ROXR az 

S=(B,W,L). The last form assumes Word. 

Rotates the bits in the destination operand to the 

right the number of steps denoted by the source 

operand. If the source operand is a data regis- 

ter, the shift count is (D;) mod 64. If the source 
operand is a constant, the shift count is n = {1, 8], 

and if the destination is a memory word (last 

form), the shift count is one. Bits shifted out from 
the least significant bit are shifted into the X-flag 

and the X-flag is shifted into the most significant 
bit. 

Ken ZAveC 
ERG re 
C Set according to the last bit shifted out. 

Return from Exception 

Syntax: 

Operation: 

Condition codes: 

RTE 

((SP)) — SR; (SP) +2 — SP; 
((SP)) — PC; (SP) +4 — SP 

KINZ NAG 

PPT 
Remark: Privileged instruction 

RTR Return and Restore Condition Codes 

Syntax: RTR 

Operation: 

Condition codes: 

P)) — CCR; (SP) +2 — SP; 
P)) — PC; (SP) +4 — SP 
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RTS Return from Subroutine 

Syntax: RTE 

Operation: ((SP))' — PC; (SP) +4 — SP 

Condition codes: Ss a : ul C 

Scc Set According to Condition 

Syntax: Scc ag 

Operand Size: Byte 

Operation: If Condition cc then 1111111ly — ag 

else 0 — ag 

Condition cc is one of those listed under the DBcc 

instruction. 

Condition codes: ae E ate 

STOP Load Status Register and Stop 

Syntax: STOP #n 

Operation: n — SR; execution stops. An exception resumes 

execution. 

an RINGING SC 
Condition codes: 

SUB Subtract 

Syntax: SURFS ute slik SUBS 2D; 5a 

Operand size: 5S = (B3W31) 

Operation: (D;) — (a,) — Dj; or (a3) — (Di) > a3 

N WC 
Condition codes: OE fs | fs | 

SUBA Subtract Address 

Syntax: SUBA.S a,,A; 

Operand size: pr (Wall) 

Operation: (A;) — (a1) — A; 

Condition codes: ae Ee i 2 
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SUBI Sub Immediate 

Syntax: SUBI.S #n,de 

Operand size: S = (BiwsL) 

Operation: (ag) -n — ag 

Condition codes: ae aan 

SUBQ Sub Quick 

Syntax: SUBQ.S #n,as 

Operand size: S:=.(B, WL) 

Operation: (ag) -n — ag, wherel<n<8 

XN ZV C 
Condition codes: 

eta ed 
Remark: This instruction occupies one word only. 

SUBX Subtract Extended 

Syntax: SUBX.S D;,D; cor 

Operand size: 

Operation: 

Condition codes: 

SUBX.S. —(A.)—(A,) 

5 = (Bs Va) 

(Dj) — (Di) — (X) — Dj or 

(Aj)—k — Aj; (Aj)—& — Aj; ((Aj)) — (Ai) 
Oo) 
where & depends on the operand size 

ANZ VOC 
* i] *K) * |] *K)] x 

SWAP Swap Register Halves 

Syntax: SWAP D; 

Operand size: Word 

Operation: 

Condition codes: 

Exchanges the contents of the 16 most significant 

bits and the 16 least significant bits. 

SENeZ, Vac 

a uO 
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TRAP Trap 

Syntax: TRAP #n 

Operation: Causes a trap to exception with vector number n, 

Condition codes: 

where n = (0, 15]. 

XON TZ VC 

TRAPV Trap on overflow 

Syntax: TRAPV 

Operation: If (V)=1 then cause a trap to exception with vector 

Condition codes: 

number 7. 

SONGZ VG 

BEEES 

TST Test an Operand 

Syntax: TSE.S Og 

Operand size: S303, W.D) 

Operation: (ag) —O 

XIN ZV G 
Condition codes: 

[-]*[*[ofo 
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ASCII Table 

A. DLE 

& SYN 

CAN 
D
N
 

e
e
?
 

d
m
M
o
d
a
a
 

eed SS] ee a 

SUB 

ESC 

DEL US SI 
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Index 

The index consists of two parts. The 

first part lists all important concepts 

that are used in the book. The second 

part lists all 68000-instructions that 

are discussed and/or used in the book. 
For index terms that have multiple en- 

tries, the first entry usually corresponds 

to where the term is introduced or used 

in an important way. Exceptions to 

this rule are marked by typing the sec- 

ond or any subsequent entries in bold- 

face type. 

Concepts 

# (immediate operand) 28 

$ (hexadecimal representation) 24 
% (binary representation) 24 
® (EOR operation) 16 

V (OR operation) 15 
A (AND operation) 15 

absolute addressing 23, 28, 49 

ACTIVE (process state) 148 
address 19 

address error 142 

address register 44 

addressing modes 23 

absolute 23, 28, 49 

201 

displacement 47, 49 

immediate 23, 28, 49 

index 47, 49 

indirect 45, 49 

register direct 23, 28, 49 

AND (operation) 15 
architecture 18 

ASCII 9, 200 

assembler 23 

assembler directives 59 

assembly language 23 

assembly-time error 83 

asynchronous serial communication 125 

autovector 103 

baud rate 125 

bidirectional 117 

binary codes 5 

binary number system 1 

binary operation 16 

bit 1 

bit I/O 113 

BLOCKED (process state) 148 

blocked queue 148 

branch-instruction 33 

conditional 33 

unconditional 33 

breakpoint 83 

busy-waiting 89 

byte 6 
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C-flag 36 

call-by-reference 68 

call-by-value 68 

carriage return 9 

carry 12 

CCR (condition code) 35 
communications protocol 112 

condition code (CCR) 35 
context 102, 139 

context-switch 138 

CPL (current priority level) 103 

current priority level (CPL) 103 

data register 27 

DC (define constant) 60 
debug mode 83 

debugger 83 

debugging 83 

decimal number system | 

device driver 91 

displacement 47 

displacement addressing 47, 49 

double-precision arithmetic 39 

DS (define space) 60 

echoing 91 

enable interrupt 104 

END (end directive) 60 
EQU (equate) 60 
EVEN (even directive) 60 
exception 142 

exception handler 144 

exception vector table 103 

exclusive-or 16 

explicit traps 142 

flag 36 

for-loop 65 

framing error 130 

handshake lines 114 

handshaking 114 

hexadecimal number system 1 

I/O-ports 87 

if-then-else 63 

illegal instruction 142 

inclusive-or 15 

index addressing 47, 49 

index register 47 

indirect addressing 45, 49 

input ports 87 

instruction 21 

instruction coding 52 

instruction cycle 20 

instruction format 52 

interrupt 101 

interrupt service routine 101 

interrupt vector 113 

Kb (Kilo byte) 20 

least significant bit 3 

line feed 9 

logical operations 14 

long word 6 

mask 89 

Mb (Mega byte) 20 

memory map 88 

memory model 19 

memory read 19 

memory write 19 

memory-mapped I/O 88 

MIPS 99 

most significant bit 3 

N-flag 36 

nibble 6 

non-maskable interrupt 103 

NOT (operation) 15 

NULL (process) 148 
numeric value 2 

operand 22 

operand size 6, 29 

byte (B) 29 

long word (L) 29 
word (W) 29 

operating system 144 

ORG (Originate) 60 



output ports 87 

overflow, 11 

two’s complement 14 

unsigned 11 

parallel interface 112 

parity bit 126 

PC (program counter) 22 
polling 89 

POP (operation) 94 
postincrement 45, 49 

predecrement 46, 49 

privileged instruction 139 

process 138 

process control block 140 

processor 18 

program counter, PC 22 

programmable interface 113 

programming methodology 59 

programming model 18 

pseudo-code 71 

PUSH (operation) 94 

radix 1 

range 6 

READY (process state) 148 
ready queue 148 

real-time control 148 

register 27 

register direct addressing 23, 28, 49 

relational operator 63 

repeat-loop 65 

return address 92 

round-robin 138 

run-time error 83 

scheduler 141 

serial interface 113 

shift instructions 41 

sign extension 42 

signed integers 7 

Index 203 

single step 83 

SP (stack pointer) 95 
SR (status register) 36 
stack 94 

stack pointer 94 

stack pointer (SP) 95 
start bit 126 

status register (SR) 35 
stop bit 126 

subroutine call 50 

subroutine return 50 

supervisor mode 137 

symbolic names 31 

system call 148 

time-sharing 138 

time-slice 138 

top-down design 71 

trace bit 143 

trap 142 

trap handler 142 

truth table 15 

two’s complement inverse 13 

two’s complement representation 7 

UART 127 

unary operation 16 

unidirectional 116 

unsigned integers 6 

user mode 137 

V-flag 36 

vectored interrupt 133 

while-loop 65 

word 6 

word length 5 

X-flag 36 

Z-flag 36 
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68000-instructions 

ADD (add) 27, 177 
ADDA (add address) 44, 178 
ADDI (add immediate) 30, 178 
ADDQ (add quick) 178 
ADDX (add extended) 39, 178 
AND (and) 27, 179 
ANDI (and immediate) 30, 179 

ASL (arithmetic shift left) 41, 180 
ASR (arithmetic shift right) 41, 180 

BCC (branch carry clear) 37, 181 
BCHG (test a bit and change) 181 
BCLR (test a bit and clear) 182 
BCS (branch carry Set) 37, 181 
BEQ (branch equal) 37, 181 
BGE (branch greater or equal) 37, 181 

BGT (branch greater than) 37, 181 
BHI (branch high) 37, 181 
BLE (branch less or equal) 37, 181 
BLS (branch lower or same) 37, 181 
BLT (branch less than) 37, 181 
BMI (branch minus) 37, 181 
BNE (branch not equal) 33, 37, 181 
BPL (branch plus) 37, 181 
BRA (branch unconditional) 33, 182 
BSET (test a bit and set) 182 
BSR (branch to subroutine) 51, 183 
BTST (test a bit) 89, 183 
BVC (branch overflow clear) 37, 181 
BVS (branch overflow set) 37, 181 ( 

CHK (check register) 183 

CLR (clear an operand) 27, 183 
CMP (compare) 33, 184 

CMPA (compare address) 44, 184 
CMPI (compare immediate) 33, 184 
CMPM (compare memory) 184 

DBcc (test condition) 185 

DIVS (signed division) 143, 185 
DIVU (unsigned division) 143, 186 

EOR (exclusive OR) 27, 186 

EORI (exclusive OR immediate) 30, 186 
EXG (exchange registers) 187 

EXT (sign extend) 187 

JSR (jump to subroutine) 55, 188 

LEA (load effective address) 79, 188 

LSL (logical shift left) 41, 189 

LSR (logical shift right) 41, 189 

( 
( 

JMP (jump) 55, 188 

( 

( 
( 

MOVE (move data) 27, 190 

MOVEA (move address) 44, 190 
MOVEM (move multiple) 108, 191 

MOVEQ (move quick) 191 

MULS (signed multiply) 81, 191 

MULU (unsigned multiply) 81, 192 

NEG (negate) 27, 192 

NEGX (negate with extend) 192 

NOP (no operation) 192 
NOT (logical inverse) 28, 192 

OR (inclusive OR) 27, 193 

ORI (inclusive OR immediate) 30, 193 

PEA (push effective address) 194 

ROL (rotate left) 41, 194 

ROR (rotate right) 41, 195 

ROXL (rotate left with extend) 195 
ROXR (rotate right with extend) 196 

RTE (return from exception) 102, 196 

RTR (return and restore CCR) 196 

RTS (return from subroutine) 51, 197 

Scc (set according to CCR) 197 

STOP (load SR and stop) 33, 197 

SUB (subtract) 27, 197 
SUBA (subtract address) 44, 197 

SUBI (subtract immediate) 30, 198 

SUBQ (subtract quick) 198 

SUBX (subtract extended) 39, 198 
SWAP (swap register halves) 42, 198 

TRAP (trap) 143, 199 
TRAPV (trap on overflow) 143, 199 
TST (test an operand) 199 
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THIS. BOOK IS AN INTRODUCTION to microcomputer system organization and 

assembly language programming, in particular for the Motorola 68000. 

Experience in high-level language programming, such as an introductory 

course in Pascal, is all that is needed to learn how a computer works that 

is stripped of all the layers of software it is usually clothed in. From this 
starting point, the book systematically introduces the programming model 

and organization of microcomputers. 

The instruction set model of a state-of-the-art microprocessor is often 

difficult to understand mainly because of its complexity. This book aims to 
dispel this difficulty by starting with a simple model of a computer, in 

essence a 68000-based system, and then successively refining this model 
to include more functionality. When the complete instruction set model 

has been introduced, the book shows how high-level language constructs, 

essentially Pascal-constructs, can be translated into sequences of 

assembly language instructions. 

Control systems play an important role as embedded systems in 
microcomputers. This book emphasizes this application area by 

examining the concepts of I/O (polling, interrupts and programmable 

interfaces) and the design of I/O drivers. A case study provides an 

introduction to designing schedules for time-sharing and real-time 

operating systems. 

This textbook contains several worked examples to highlight the basic 
ideas, and in addition there are a large number of exercises. The 

appendices contain solutions to all these exercises, a summary of most 

instructions for the Motorola 68000, and an ASCII asi 

« Basic mechanisms needed to support time-sharing and redtiiine 
operating systems. | 

= Symbol representation and elementary computer arithmetic 

« “Assembly-language programming methodology based on high-level 
language (HLL) programming techniques 

« Low-level communication schemes between computer systems sea 

external devices using programmable interfaces 
| 
| 
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