
Microcomputer

elere-Telbs-tetese) oo1

\ GIES

1 1 © Wems

oe CRE oS ees Pe |

Cc é La Qe 5

a i Os @y@) TL. Cy we

OOO © Wet

100441204

olor na!
A

a et

68000 # >.
aia EX @ FS)

us Ea DF

| -_—

‘elone Q0100
| -OuA €

; IO
(Oi @ fa a @ ys

x @) OTS ia ea &

©

‘oe ia ie i

a ET

3 015

ROBERT

l i
0 01460 3234

E, KENNEDY LIBRARY

ii A |

d VINHOIINVO

JiVLS OINHOSLA10

LA10d VINHOSITY2
a 3}

AYVHEIT ALISHUSAINA SLYLS DINHO

QA 76. a ey So elooe

Stenatypad Tego.
he 2 y 4 i f S i ? $ 4 , fi /, B ?

iy 68000 Mxerocompyter, .
organiZwtyeg, prc WO

338000

Microcomputer

Organization

and

Programming

Digitized by the Internet Archive

in 2021 with funding from

Kahle/Austin Foundation

https://archive.org/details/68000microcomput0000sten

638000

Microcomputer

Organization

and

Programming

Per Stenstrom

NUN

Prentice Hall

New York London Toronto Sydney Tokyo Singapore

First published 1992 by
Prentice Hall International (UK) Ltd

Campus 400, Maylands Avenue

Hemel Hempstead
Hertfordshire, HP2 7EZ

A division of
Simon & Schuster International Group NUN

© Prentice Hall International (UK) Ltd, 1992

All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted,
in any form, or by an means, electronic, mechanical,
photocopying, recording or otherwise, without the prior
permission, in writing, from the publisher.
For permission within the United States of America
contact Prentice Hall Inc., Englewood Cliffs, NJ 07632

Printed and bound in Great Britain by

Dotesios Ltd, Trowbridge, Wiltshire

Library of Congress Cataloging-in-Publication Data

Stenstrém, Per.
68000 Microcomputer organization and programming / Per Stenstrom.

p. cm.
Includes index.
ISBN 0-13-584855-5
1. Motorola 68000 (Microprocessor) 2. Computer organization.

3. Microcomputers—Programming. I. Title.

QA76.8.M67S73 1992
004.165—dc20 92-27338

CIP

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-13-584855-5S (pbk)

12345 96 95:94 93 92.

To Carina

Oras * > pe -

“9, te ohn
Se ae a

A # —~ =

OW a es ees
6 at

etitwmw @ ed) ize

ee 2 Sree WOU ase |

ZraA s-46 419! le wear &
a er

= "2 @ 15 =—— > Bae) oe

> PR Pay 4" 9 it fein, + on = as
eat en ee

- o.. Sse = caine See SRS4
—_- 7 > SS \&., he sonw !) RGR!

abil dedinks % — |) See SGtr'in
= = ne 1 bom i]

- Nines ne ree 9 OD Asis - deme ae a e aaa a ee a el

_—— ues epee a mal ory rzaay | Oe ern l
°

=e = as —— :
ae - aH. as "

We oe 8 eer ew “6. Lae a ee
ns ies cael era a) Tey Se -

\). ee) Ae 7 _
a fia ~— wad “mh +

ae — ——— —

2 <u» 8 @ as ies
ee — a a SS ————

Pai~a « * oral ~ WCetwi Pe.

. = - 7

a

é ¢€

J

Contents

Preface

1 Number Systems and Symbol Representation in Computers

seal

1.2

1.3

1.4

Number systems

Conversion between number systems

Symbol representation in a computer

Summary and concluding remarks

2 Elementary Computer Arithmetic and Logic

Zeb

222

ANS

2.4

Unsigned integer arithmetic

Two’s complement arithmetic

Logical operations

Summary and concluding remarks

3 Computer System Model

3.1

3.2

3.3

3.4

Memory model

The instruction cycle

Concepts of computer instructions

Summary and concluding remarks

4 Instruction Set Model

4.1

4.2

4.3

4.4

4.5

4.6

4.7

The data register model

Program flow control

Arithmetic and condition codes

Shift instructions

Indirect addressing

Subroutines

Instruction format and coding

vil

vill Contents

4.8 Summary and concluding remarks

5 Assembly Language Programming

5.1 ‘Translating high-level language constructs

5.2 Program design and structure

5.3 A large program design example

5.4 Testing and debugging

5.5 Summary and concluding remarks

6 Input and Output Control

6.1 Input and output model

6.2 Stacks and subroutines

6.3 Instruction execution rate

6.4 Interrupts

6.5 Additional useful instructions

6.6 Summary and concluding remarks

7 Programmable Input/Output Interfaces

7.1 Parallel input and output

7.2 Serial input and output

7.3 Vectored interrupts

7.4 Summary and concluding remarks

8 Real-Time Applications

8.1 Supervisor and user mode

8.2 Exceptions

8.3 Time-sharing operating systems

8.4 Real-time control

8.5 Summary and concluding remarks

A Solutions to Exercises

B 68000 Instruction Set

C ASCII Table

Index

56

58

59

(at

73

83

86

87

87

92

99

101

108

110

112

113

125

132

136

137

137

142

144

148

155

156

175

200

201

Preface

This book is an introduction to microcomputer system organization and assembly

language programming and in particular for the Motorola 68000 (M68000). Besides

presenting the basic concepts of microcomputer systems and instruction set models,

it also presents techniques that facilitate the use of a microcomputer system as a

component in system control applications.

There are two important objectives of this book. First, it provides an introduc-

tion to computer system organization by presenting the functional components of

a naked computer system that is stripped of all the layers of software that it is

usually clothed in. Second, it provides an introduction to assembly language pro-

gramming by presenting the most important concepts of instruction set models.

These objectives are met in the following way.

The important concepts of microcomputer systems are introduced step by step

by using a series of successively refined models. All details that are not relevant

for the time being are hidden so as to let the reader concentrate on one issue at a

time. I have found that this is important in order not to drown in all the details

that often are associated with complex systems such as microcomputers.

The instruction set of the M68000 is also introduced step by step, starting with a

subset of all the available registers and such instructions and addressing modes that

are relevant for the model at hand. The model of the M68000 is then expanded

step by step to cover more instructions and more addressing modes, leading to

more functionality.

The book gives a pure functional presentation of M68000-based microcomputer

systems and does not include implementation issues, thus making it suitable to

use the book for first-year or second-year students in the electrical or computer

engineering curriculum. In fact, the only prerequisite needed is some experience of

programming in a high-level language. I have used the material in the book success-

fully for first-year students in the electrical and computer engineering curriculum

at Lund University for several years.

Control systems is an important area in which microcomputer systems play an

x Preface

important role. Microcomputers are often used as components in a system con-
sisting of a large number of communicating microcomputer systems. In order to
emphasize this important application area, I have included a chapter on real-time
control which illustrates how one can use a microcomputer system to support con-
currently executing processes. We will learn in some detail how to design schedulers
for time-sharing and real-time operating systems.

The outline of the book is as follows: Chapters 1 and 2 provide sufficient prere-
quisites in number systems and elementary computer arithmetic. In Chapter 3 and
4, I give a detailed presentation of the functional components and instruction set
models for microcomputer systems in general, and for the M68000 in particular.
At the conclusion of Chapter 4 I have introduced most of the instructions so that
we will be able to design assembly language programs. The theme of Chapter 5 is
to provide the reader with guidelines on how to design correct assembly language
programs. This is achieved by applying a commonly-used technique known as
step-wise refinement. I advocate the use of a high-level notation to specify the
problem before it is coded in assembly. A Pascal-like notation is used throughout
to express algorithms and solutions. In Chapters 6 and 7, we look in more detail
into how the computer communicates with the outside world. Various schemes
for synchronization of program execution with external events. such as polling
and interrupt, are presented. We also look more closely into how a computer
supports subroutines by introducing the stack. In Chapter 7, we concentrate on
the issue of how two computerized devices can communicate. We note that this
can be done by using programmable interfaces that can be set up to meet the
communication requirements. Finally, in Chapter 8, we will see that a computer
system can efficiently be used to execute several programs in a time-shared fashion.
An important issue in this context is the management of real-time and I/O. I will
show how a simple time-sharing and a real-time scheduler can be designed to meet
this goal.

The textbook contains several worked examples to highlight the basic ideas. In
addition, it also contains a large number of exercises. The appendices contain
solutions to all these exercises, a summary of most instructions for the M68000.
and an ASCII table.

This book is a result of teaching undergraduate students on the sub ject for more
than ten years. Experience has been gathered by many people. I am indebted to
my colleagues, past and present, for having contributed to many fundamental ideas
behind this book, especially Lars Philipson and Lennart Ohlsson. A special thanks
goes to Mats Cedervall for having reviewed the chapters about number systems and
computer arithmetic. Finally, I am indebted to a large number of students from
whom I’ve received many constructive ideas. Thank you all!

Lund, May 1992

Per Stenstrom

Chapter 1

Number Systems and Symbol
Representation in Computers

1.1 Number systems

When we deal with numbers we often mean the decimal number system consisting

of the ten digits, ie. {0,...,9}. The historical reason for this is that we have ten
fingers, which enabled people in the old days to use their fingers as calculators. In

a sense, the reason why we use the decimal number system is arbitrary. We could

use another base or radix other than 10 just as well.

Computers use the binary number system. ‘The reason for this is that they

are built from digital devices which are based on two distinct voltages, namely

‘high’ and ‘low’ or ‘1’ and ‘0’. This makes it extremely convenient to perform all

computations based on the binary number system with radix 2, or a power of 2.

A drawback with the binary number system is that numbers, in general, tend

to be very long. For instance, the decimal number 65,537 needs 17 binary digits,

abbreviated bits, to be represented in the binary number system. In order to

express binary numbers in a more concise form, the hexadecimal number system

has been widely used.

The radix of the hexadecimal number system is 16 (= 2*). It thus comprises

16 digits; 0,1,2,...,9,A,B,C,D,E,F, where A,B,...,F denote the decimal numbers

10,11,...,15. The reasons why 16 is a convenient radix are (i) it is a power of

2 (as we will see this makes it extremely easy to convert binary numbers into

hexadecimal ones and vice versa), (ii) it is sufficiently large to enable us to express

fairly large numbers concisely, and (iii) it has a reasonable number of digits; for

example, if 32 was used as a base, it would result in 32 digits. After this motivating

introduction to number systems, we will look at number systems more formally.

A number system is characterized by a radix r, r > 1, and a set of r digits or

symbols given by the set D = {do, di,...,d,-1}. Any integer N can be represented

in this number system by a finite sequence of digits as

N, =U et On cone O1CD (1.1)

2 Number Systems and Symbol Representation in Computers

Table 1.1 Representation of the 16 smallest non-negative integers in the decimal.
binary, and hexadecimal number systems.

Decimal Binary Hexadecimal Decimal Binary Hexadecimal

0 0 0 8 1000 8
1 1 1 9 1001 9
2 10 2 10 1010 A
3 11 3 it 1011 B
4 100 4 12 1100 C
5 101 5 13 1101 D
6 110 6 14 1110 E
is 1d 7 15 Lit F

where each b; € D. The length of the number is n. Note that we are precise in
expressing which number system we use by the subscript r. In daily life, often we
implicitly assume the decimal number system and can then omit r. Throughout
the book, in case there could be any confusion as to which number system we
mean, we will be careful to tag explicitly the number with its radix.

It is important to distinguish between the representation and numeric value of
an integer. For example 102 and 2;9 have the same numeric value but differ in their
representations. The first number is represented in the binary number system and
the second one is represented in the decimal number system. ‘The numeric value is
an abstraction that is independent of number representation. We could just as well
have represented the numeric values of the numbers by two fingers or two oranges.

The numeric value V(N,.) of an integer N, which comprises n digits is computed
as

0
VN gle. oaatat (1.2)

i=n—1

It is natural to represent the numeric value in the decimal number system, which
is why we will never talk about a numeric value in a particular number system.
Consequently, this formula will turn out to be useful when we convert a number in
any number system into a decimal number, which will be done in the next section.
We end this section by presenting the 16 smallest non-negative integers in the

three number systems we have discussed. They are found in Table 1.1.

1.2 Conversion between number systems

The first case we consider is a method to convert a number in a number system
with radix r into a decimal number. This is easily accomplished by applying the
formula according to Equation 1.2.

Conversion between number systems 3

Let us give an example: Convert the binary number 101011, into decimal rep-

resentation. The length of the binary number is 6 which is why we get

0

LOL011o = $752 =1 x 240% 2 £1 x 2? 0x2? 41% 2)41 x 2° =43i
t=).

The leftmost bit is called the most significant bit (or msb for short) and the right-

most bit is called the least significant bit (or Isb for short).

In the second example, we want to convert 3Fj¢ into decimal representation.

The length of the hexadecimal number is 2 and thus

0

3Big—=) 016’ =3 x 16°+ Fig x 16° =3 x 16' + 1519 x 1 = 63y0
o—

The second method we present applies to conversions of a decimal number to a

number system with an arbitrary radix r. It is based on Euclid’s theorem and can

be found in almost every textbook on discrete mathematics.

We want to convert Nip represented in the decimal number system into N, =

bm—10m—2...6,b9 represented in a number system with radix r, where N, com-

prises m digits. The relation between Nig and N, is given by Nig = bm—ar™) +

bor”? +--+ + br + bo according to Equation 1.2.

Euclid’s theorem says that Nig = Ar+bo, where bo < r. Thus, bp can be obtained

as the remainder from the division Nio/r. The remainder from the division of A

by B is denoted A(mod B), and thus

by = Nio(mod r)

But since b; = |Nio/r|(mod r), where |Nio/7]| is the integer part of the division
Nio/r, we can obtain all digits of N,.. This is done by repeatedly applying Euclid’s

theorem to the integer part of the division, which is expressed in the following

algorithm:

Step 1: Let X = Nip andi = 0.

Step 2: b; = X(mod r).

Step 3: Let X = |X/r| andi=71+1.

Step 4: Repeat Step 2 and 3 until 7 = m.

Now, it may happen that the result of the integer division is zero, before 7 = m.

We could stop at this point, because further application of Step 2 will yield 6; = 0.

These digits result in leading zeros and are not significant. For instance, 12;9 and

01249 both have the same numeric value.

It is now time to look at some examples. Convert 43,9 into an 8-bit binary

number (m = 8).

4 Number Systems and Symbol Representation in Computers

bg 4319(mod 2) = 1
by = [4310/2 | (mod 2) = 2149(mod 2) al

bo = |2110/2| (mod 2) = 1010(mod 2) =| ()

bz = |1040/2|(mod 2) = 5(mod 2)= 1
by = [5/2|(mod 2) = almod 2) = 0
by = [2/21 mod 2) == i(mod 2) 1
be = [1/2|(mod 2) = O(mod 2)= 0
b7 = [0/2|(mod 2) = O(mod 2) = 0

Thus, 4319 = 001010112. As mentioned, we could stop after we calculated be,
because the result of the integer division is zero. Let us convert 6319 into a hexa-
decimal number with 3 digits.

bo = 6319(mod 16) = 1549 == oft

bo = [3/16](mod 16) = 0(mod 16)= 0

Thus, 6319 = 3F 16 which is what we expected since we made the opposite conversion
earlier in this section.

Now we turn our attention to the conversion between binary and hexadecimal
numbers. As we pointed out in the beginning of this chapter, the convenience
of hexadecimal numbers stems from the fact that they are easily converted into
binary numbers. This is because each hexadecimal digit can be represented by
exactly four bits (binary digits). For instance, 0010) = 216 and 1011, =Big (see
Table 1.1). This means that we can convert any hexadecimal number by converting
each individual hexadecimal digit in that number. Convert AB3i¢6 into a binary
number: Since Aig = 10102, Big = 10119, and 316 = 00112 expressed as 4-position
binary numbers we obtain AB3,, = 1010101100119. If instead we convert 123;¢
into a binary number we obtain 000100100011, = 1001000115. In this example, we
obtained leading zeros which, of course, are not significant. Therefore we can omit
them.

Hopefully, we have now an idea of how to make the opposite conversion, that is,
how to convert a binary number into a hexadecimal. If the length of the binary
number is a multiple of four, it is straightforward. Then, we simply decompose
the binary number in groups of four bits each, and use Table 1.1 to convert each
individual group into one hexadecimal number as in the following example: Con-
vert 1101011010015 into a hexadecimal number. We first decompose the binary
number in three four-tuples as 1101|0110]1001. Using Table 1.1, we then obtain
D6916, because 1101, =Dy¢, 0110 = 616, and 10012 = 91g. But how do we convert
11010110102 into a hexadecimal number? The problem here is that the binary
number comprises ten bits which is not a multiple of four. However, we can always
add as many leading zeros as we need, since this will not change the numeric value
of the number. That is, 1101011010, = 0011]0101|1010 = 35A4¢.
We can now summarize the methods we have employed in this section to convert

between different number systems as follows:

Symbol representation in a computer 5

e Conversion of hexadecimal and binary numbers into decimal numbers is per-
formed by using Equation 1.2.

e Conversion of decimal numbers into binary or hexadecimal numbers is per-
formed by using Euclid’s theorem.

e Conversion of hexadecimal numbers into binary numbers or vice versa is
performed by converting each hexadecimal digit or binary four-tuple individ-
ually.

EXERCISES

i Neal Convert 101010, into a decimal number.

i bee Convert 8FF 6 into a decimal number.

133 Convert 233719 into a 4-digit hexadecimal number.

1.4 Convert 29;9 into a 6-bit binary number.

1.5 Convert 9A8 6 into a binary number.

1.6 Convert 10011100101110, into a hexadecimal number.

1.3. Symbol representation in a computer

In this section, we are concerned with the problem of how to represent different

kinds of information such as unsigned and signed integers, e.g. 4319, —115j0, and

alpha-numeric characters such as in the string ‘Hello World’.

Most information coding schemes for computers use binary codes. However, the

coding scheme differs; e.g. integers and characters are coded differently. It is

therefore important to know that the meaning of a sequence of bits is determined

not only by the sequence itself, but also by the coding scheme that has been used.

In the previous section, we showed one coding scheme, namely how non-negative

integers can be represented by binary numbers. In this section, we will demonstrate

other coding schemes that allow us to represent negative integers and characters. In

Chapter 4, we will present yet another coding scheme, namely how the instructions

of a computer, the Motorola 68000, are coded.

1.3.1 Length of a sequence of bits

In a computer information entities, such as numbers, are represented by a. fixed

number of bits. This is referred to as the word length of the computer. The word

6 Number Systems and Symbol Representation in Computers

Table 1.2 Different word lengths used throughout the text.

Name Number of bits

Bit 1

Nibble 4

Byte 8

Word 16

Long word 32

length differs from computer to computer. Some early microprocessors such as
the Intel 8080 and the Zilog Z80 used 8-bit words which are commonly referred
to as a byte. Early minicomputers such as the DEC PDP-11 used 16-bit words.
Contemporary microcomputers often use 32-bit words and mainframes often use
64 bits. Throughout the book, we will refer to 4, 8, 16, and 32 bits word length as
nibble, byte, word, and long word. They are summarized in Table 1.2.

Note that it is only nibble and byte that are terms commonly accepted to denote
4 and 8 bits, respectively. The meaning of word and long word may differ from
manufacturer to manufacturer.

Why is the word length so important? The reason is that it determines the range
of numbers we can express. To show this, we first consider 4-bit unsigned integers.

1.3.2 Unsigned integers

In order to represent unsigned integers, computers use the binary number repre-
sentation presented in the previous section. This means that we can simply use
Equation 1.2 to convert them into decimal numbers. If the word length is a nibble
(4 bits), we can express all decimal numbers in the range [0, 15}.

In general, if we have n-bit binary numbers interpreted as unsigned integers, we
can express all decimal numbers in the range

Rig [0,27 =) (1.3)

because each bit can take one of two values so the number of codes are 2”. We say
that Rio is the decimal range of the binary numbers.

The range not only limits the possibility of expressing any integer, we must also
carefully consider its effects on arithmetic operations, as we will see in the next
chapter.

An important point is that we can obtain a range with any size, given a sufficient
word length. However, we can only express non-negative integers. We will therefore
now present a coding scheme that is commonly used by computers to represent
negative and non-negative integers in a range determined by the word length.

Symbol representation in a computer 7

0001 mer 1111
0010 1110

0011 1101

0100 1100

0101 1011

0110 1010

0111 1000 1001

Figure 1.1 Coding scheme for 4-bit two’s complement numbers.

1.3.3 Signed integers

We shall now consider how to represent integers in an arbitrary range. What we

would like to achieve is to be able to express the same number of negative as

non-negative integers. Given n-bit binary numbers, we would like the range to be

(ie eg ea (1.4)
This way, we have obtained the same number of non-negative as negative integers,

namely 2”~!. We will present a coding scheme which turns out to be convenient to

make conversions between its decimal number counterpart, and, as will be demon-

strated in the next chapter, especially superior in dealing with integer arithmetic.

The coding scheme is called two’s complement representation and will be defined

below.

We present the coding scheme for nibbles in Figure 1.1. We show the coding

scheme by means of a circle. This will turn out to be convenient when we reason

about arithmetic in the next chapter. Inside the circle, we show the decimal num-

bers that can be represented, and outside the circle we show the corresponding

two’s complement representation of these numbers.

There are some interesting observations that can be made about the coding

scheme: (i) the negative integers are coded with a leading ‘1’ and non-negative

integers with a leading ‘0’, and (ii) the non-negative integers are coded in the same

way we used before.

The strange thing with the coding scheme is that one might ask why we code

the negative integers in this way. We will not, however, answer this question until

the next chapter. What we would like to do now is to demonstrate a method of

how to code the negative integers. Given a decimal number jo in the range Rio

as defined in Equation 1.4, the method is as follows:

8 Number Systems and Symbol Representation in Computers

e If Nio > 0, convert it into an n-bit binary number.

e If Nio < 0, convert (2” + Nio)(mod 2”) into an n-bit binary number.

We need to comment on the last point. If we code —7,9 as a 4-bit two’s complement
number, we code (24 — 7)19 = 910 = 10019. This may seem awkward. The reason
is that the coding scheme should allow us to add arbitrary integers. For instance,
given two numbers A and B, where B = —A, then A+ B (= 0) is coded as
(2" + A — A)(mod 2”) = 2” (mod 2”) = 0, but more about this in the next
chapter.

Convert 419 into an 8-bit two’s complement binary number: Since 4 is non-
negative, we simply convert it to a binary number. Thus, 4,9 = 000001005. Now. to
convert —4j9 into an 8-bit two’s complement number: We first obtain 2°—4 = 2521.
This is then coded using Euclid’s theorem as 11111100s. Thus, —4;9 = 11111100,
in 8-bit two’s complement representation.

EXERCISES

IR? What range can be obtained using 8 bits to express unsigned
integers?

1.8 What range can be obtained using 6 bits to express unsigned
integers?

1.9 What range can be obtained using 8 bits to express an equal
number of negative and non-negative integers using two’s com-
plement representation?

1.10 What range can be obtained using 6 bits to express an equal
number of negative and non-negative integers using two’s com-
plement representation?

1.11 Convert 7j9 into an 8-bit two’s complement binary number.

1.12 Convert —71o into an 8-bit two’s complement binary number.

1.13 Interpret the binary string 1001 in the range (0, 15] and as a 4-bit
two’s complement number.

1.3.4 Representation of alpha-numeric characters

It is not sufficient for the computer to deal with numbers only. It must also be
able to deal with text. One obvious example is to manage large databases of
bibliographical information. In this case the computer can be used to aid people in

Symbol representation in a computer 9

Table 1.3 The ASCII coding scheme for alpha-numeric characters.

0 1 2 3 4 5 6 7 ~ey
Of NUL DLE SP 0 @ P D
1| SOH ovCc1 l 1 A Q a q
DUSTx pCa 8 y) B R b r
SuleTx pes. Ve 3 C S C s
4| EOT pea ¢ 4 D T d t
5) ENQ WNAK % 5 E U e u
6) ACK SYN. & 6 F V f v
WePeEeiS” SETBO 7 G W g W
8 | BS CAN (8 H X h x
Gul Toe EM) 9 : Y i y
Al} LE svUB * J Z j z
Bey rec es K k {
CG ree FS e i; \ 1 |
D!| cR Gs = = M m }
BE) eco," “Rs ' ss N “ n ‘
(iy US / ? 0 és DEL

searching for literature. In order to do this, it must be able to treat characters in a

way that makes it possible to perform computations. For instance, when sorting a

number of words into lexicographical order, it must be able to compare the letter

‘A’ with ‘B’ and conclude that ‘B’ is greater than ‘A’, abstractly speaking. Since

the same information is to be used by computers from different manufacturers, it

is also important to have a standard coding scheme for characters.

Characters are not only letters. They are basically all symbols that can be typed

on an ordinary typewriter such as comma ‘,’, exclamation mark ‘!’, as well as the

digit ‘8’. These are collectively called alpha-numeric characters.

In order to meet these requirements, almost all computers agree upon a stan-

dard coding scheme for alpha-numeric characters called ASCII (American Standard

Code for Information Interchange). Each character is represented by a 7-bit code.

We show these codes in hexadecimal representation in Table 1.3.

Each character is associated with a 7-bit code. In Table 1.3, this code is repre-

sented as 2 digit hexadecimal numbers. The first digit is retrieved from the column

and the second one is retrieved from the row. For instance, the letter ‘A’ is coded

as 411, = 10000012. The ASCII code for the digit ‘5’ is 3536 and so forth.

Besides the visible characters, there are some ‘invisible’ control characters such

as ‘carriage return’ (CR) coded as ODi¢, ‘line feed’ (LF), and ‘space’ (SP). In

addition, there are some special characters used for information control such as

‘end of text’ (ETX) etc.

10 Number Systems and Symbol Representation in Computers

EXERCISES

1.14 What is the ASCII code of the letter ‘F’?

1.15 What is the ASCII code of the character ‘+’?

1.16 What is the ASCII code of the letter ‘a’?

1.17 What is the sequence of ASCII codes that encodes the string
‘HELLO’?

1.18 What string has the sequence of ASCII codes ‘36 38 30 30 30°?
(All codes are in hexadecimal representation)

1.4 Summary and concluding remarks

In this chapter, we have presented three coding schemes based on sequences of
binary digits that enable us to represent integers and characters in a computer.

Coding schemes are based on binary codes because computers interpret binary
coded information. We began, therefore, by demonstrating methods of how to
make conversions between binary and decimal numbers. Since binary numbers
tend to be long compared to their decimal number counterparts, the hexadecimal
number system was introduced. It enables us to (i) express binary numbers in a
more concise form and (ii) simplify conversions to the binary number system.

Unsigned integers are simply coded as binary numbers. In order to extend the
representation to cover negative integers as well, we introduced the two’s comple-
ment representation and a method to convert decimal integers into this represen-
tation. In the next chapter, where we deal with arithmetic, we will reveal the
motivation as to why the two’s complement representation is used.

In order to represent characters, we presented a standard coding scheme called
ASCII and explained how strings of text are coded in this coding scheme.

An important conclusion of this chapter is that a sequence of bits is interpreted
differently depending on the coding scheme used. For instance, 0001010, is inter-
preted as 10j0 if it is coded as a 7-bit two’s complement number, or it could be
interpreted as ‘line feed’ if it is coded according to ASCII.

Chapter 2

Elementary Computer
Arithmetic and Logic

2.1 Unsigned integer arithmetic

In the previous chapter, we noted that given a word length of n bits, we can express

unsigned integers in the range [0, 2” — 1]. We show this range for nibbles by means

of a circle in Figure 2.1. When we add two numbers, say 5+ 2, we can illustrate this

by moving 5 steps counter-clockwise and then 2 steps further yielding the correct

result 7. However, what happens if we add 9+7? When we have moved 7 steps

ahead of 9, we get the result zero. The reason for this is that we have exceeded

the range limit 24 — 1 = 15.
We shall now explain formally how addition is performed on unsigned numbers

with a specific length n. Given two n-bit numbers A and B, the result of the

addition is

(A + B)(mod 2”)

This means that the result is correct if and only if A+ B < 2". Otherwise, we say

that the arithmetic operation has led to overflow.

Computers must detect overflow in one way or another. We shall now explain

how this is done. Computers do not actually use circles to perform additions or

subtractions. In fact, the electronic devices that perform arithmetic operations

work in the same way we learn in elementary school, namely, according to the

well-known ‘pen-and-pencil method’. Given two n-bit binary numbers A and B,

where A = dn_1@Qn_2--- 0109 and B = by_1bn_2...5 bo, the sum is also given by an

Hebit mum berS, = S,1S nad +s 481180:

Let us give an example to demonstrate the method. Suppose that A = 10102 =

1040 Anleles = OO1l, == 310

C00 LOO

A | a

ra Ue Ure ol

So 1s 1 Aala(hl

12. Elementary Computer Arithmetic and Logic

0001 ve 1111

0010 1110

0011 1101

0100 1100

0101 1011

0110 1010

0111 1000 1001

Figure 2.1 The range of unsigned integers for nibbles.

These numbers are added by adding the bits in each column, taking into account
the carry from the previous position. Formally, the sum is obtained according to

si = (a; aie b; ail c;)(mod 2) (2.1)

where the carry-bit is computed as

Ci4. = | (a; ar b; ae c;)/2| 23)

and co = 0. Note that ¢4; is computed as the integer part of the division of
the sum with the radix (2). This is the rule we learn in elementary school when
calculating the carry.

From the example, we note that the leftmost carry-bit, c, = 0. The result of
the addition yielded the correct value 1101) = 1319. Now look at the addition of
A= 1010, = 1040 and B= Ollly = T10-

COON ee Pe

A aC et eae

ts a re 8 a a a |

S: ee rae

In this case we get overflow. However, the addition resulted in Cr eeliiiese
examples suggest a method to detect overflow.

For addition of n-bit binary numbers, X, in the range [0,2” — 1], overflow is
detected as the most significant (leftmost) carry-bit, c, = 1.

Two’s complement arithmetic 13

EXERCISES

mer Add the two 4-bit, unsigned numbers A = 01115 and B = 00015.

Determine the decimal values of A, B, and the sum and whether

the addition resulted in overflow.

2.2 Add the two 5-bit, unsigned numbers A = 001002 and B =

111102. Determine the decimal values of A, B, and the sum and

whether the addition resulted in overflow.

2.3 Add the two 6-bit, unsigned numbers A = 0110002 and B =

0000012. Determine the decimal values of A, B, and the sum

and whether the addition resulted in overflow.

2.4 Add the two 8-bit, unsigned numbers A = 100000002 and B =

100000002. Determine the decimal values of A, B, and the sum

and whether the addition resulted in overflow.

2.2 Two’s complement arithmetic

Two’s complement representation not only makes it possible to express negative

integers; it also suggests a method to perform subtraction. This stems from the

fact that the subtraction A -— B = A+(—B). We can simply subtract B from

A by adding B’s negative equivalence. Given a number A, we call A’s negative

equivalence the inverse of A and denote it A.

In the previous chapter, we learned how to code an integer according to the two’s

complement scheme. This method also suggests a way to derive the inverse A of

any integer A.
Given two n-bit two’s complement numbers A and B. The subtraction A —

B(mod, 2”) = A + 2” = Bimod 2”)>= A+ B(mod 2”), where B = 2” — B.

Consider the following example: Perform the subtraction A — B, where A =

01002 = 440, and B = 00102 = 2; expressed as 4-bit two’s complement num-

bers. We first determine the inverse of B, B = (24 — 2)io = 1410 = 1110s.

We then perform the addition (i.e. according to the pen-and-pencil method)

A+ B =01002 + 11102 = 00102 = 240.
There is a convenient method to determine the inverse of an arbitrary two’s

complement number which we present without any proof.

Step 1: Replace all zeros by ones and vice versa.

Step 2: Add one to the remaining number.

For example, find the inverse of B = 0010: Step 1 yields 1101. Adding one to this

number yields the result B = 1110 (compare with B in the above example).

14 Elementary Computer Arithmetic and Logic

We have now learned how to make addition and subtraction with two’s com-
plement binary numbers. The problem of exceeding the range still exists, and
we have to devise a test as to whether the result is correct or not. Let us con-
sider the following example: We want to add two numbers A = 01002 = 449 and
B = 01012 = 5)9 which are 4-bit two’s complement numbers. Recall that the range
is [—8, 7]. Since A + B = 01002 + 0101, = 1001, = —719, the result is not correct.
The reason is that the sum exceeds the upper range limit 7. Likewise, if we add
two negative numbers, for instance, A = 11002 = —4;9 and B = 10115 = —510, we
obtain 01115 = 749.

Condition: (Overflow) The addition of two two’s complement
numbers results in overflow iff

Both numbers have the same sign (either negative or
non-negative), and
the sign of the sum is opposite to the numbers added.

Applying this condition to the previous example, we can immediately see that the
addition results in overflow by just examining the sign of the terms and the sum.
Since both terms have the same sign (negative) and the sum is of the opposite sign
(non-negative), both subconditions are satisfied. For a computer, this test is easily
implemented because the sign of a number is specified by the most significant bit.

EXERCISES

2.5 Add the two 4-bit, two’s complement numbers A = Ollly and
B = 0001. Determine the decimal values of A, B , and the sum
and whether the addition resulted in overflow.

2.6 Add the two 5-bit, two’s complement numbers 4 = 001002 and
B = 111102. Determine the decimal values of A, B, and the sum
and whether the addition resulted in overflow.

et Add the two 6-bit, two’s complement numbers A = 0110002 and
B = 0000012. Determine the decimal values of A, B, and the
sum and whether the addition resulted in overflow.

2.8 Add the two 8-bit, two’s complement numbers A — 10000000,
and B = 100000002. Determine the decimal values of A, B, and
the sum and whether the addition resulted in overflow.

2.3 Logical operations

We have mostly been concerned with how computers perform arithmetic. There are

Logical operations 15

other kinds of computations that must be carried out as well. An important class

of computation that we need to be familiar with is referred to as logical operations.

Logical operations enable the computer to decide whether a statement like ‘it’s

raining and you are outside’ is true or false. This statement is true provided that

the statements ‘it’s raining’ AND ‘you are outside’ both are true’ We could consider

the statement as a composition of logical variables: Let X denote ‘it’s raining’ and

Y denote ‘you are outside’ then we can rewrite the statement as a logical function:

f(X,Y) = X AY where A denotes AND. The nice thing about this is that X
and Y can take only one of two values, namely ‘true’ or ‘false’. This gives us the

splendid idea of representing them as binary variables with ‘1’ denoting ‘true’ and

‘0’ denoting ‘false’. Doing this, we can define f(X,Y) with a truth table:

This function is referred to as the logical AND operation. Note that both X

AND Y must be ‘1’ in order for the operation to yield the result ‘1’. Another

useful logical operation is the following one: f(X) = X’. It is called the logical

inverse, or NOT, of X; when X is true X’ is false, or if we use a truth table:

NOT

Eee

0 1

A)

In order for the computer to perform logical reasoning, we need other logical

operations as well. Consider the example ‘it’s raining or it’s snowing’. In this

example, we need the inclusive-or, also denoted OR, operation to deal with it. We

can rewrite the statement as a logical function according to: f(X,Y) = X VY,

where V denotes OR. We get the following truth table:

OR

Nee

0 0 0

Oe 1

Pw 1

Lee OF 1

16 Elementary Computer Arithmetic and Logic

The logical OR operation is called inclusive-or because it is true if either or both
subconditions is true.

In the following logical expression, we want to distinguish the case when both
subconditions are true: ‘either it’s raining or it’s snowing’. This statement says
that either subcondition is true, but not both. The logical operation ‘either ... or’
is denoted exclusive-or , or EOR, and has the following truth table:

EOR

As we have seen, computers deal with binary strings of various lengths. Some-
times it is useful to perform logical operations on strings of bits in order to compare
two strings. Therefore, the logical operations must also be defined for a string of
bits. Given two n-bit binary strings A and B, where A == Qn-1Qn-2...@,A9 and
B = by_bp_2...bibo, the logical AND between these strings, that is C = A A B.
provides a string C of n bits, where c; = a; \b;,7 =0,1,...,n—1. We illustrate
this operation by an example. Suppose that A = 1010 and B — 0011, then

A Pee Oud 0

Ber Orit

C Ofa.0 0

OR and EOR on strings are defined analogously, namely, the operation on indi-
vidual bits is performed positionally. With the same bit strings as in the previous
example, the OR operation yields

A iL Mt

Biever “OU ey

C | il Ma TA |

and the EOR yields

A ae et

ie Ce Ome ort

C LO er0 E

Note, in the truth-table above, that c; = 1 iff a; # b;. This observation can be
used to find out in which positions two binary strings differ.

The operations AND, OR, and EOR as defined above are examples of binary
operations because they take two operands. The NOT operation only takes one
operand and is called a unary operation.

Summary and concluding remarks UTE

EXERCISES

2.9 Perform the logical AND operation on the 4-bit strings A = 1111
and B = 0010.

2.10 Perform the logical AND operation on the 4-bit strings A = 1111

and B = 0011. What can you say about the result as compared
to B?

2.11 Perform the OR operation (inclusive or) on the 4-bit strings

A = 0000 and B = 1010. What can you say about the result as

compared to B?

2.12 Perform the EOR operation (exclusive or) on the 4-bit strings
A= 0101 and B = 0101.

2.13 Perform the EOR operation on the 4-bit strings A = 1111 and

B = 0000. Comment on the result as compared to the previous

exercise.

2.4 Summary and concluding remarks

In this chapter, we learned how to perform elementary arithmetic and logica!

operations on binary numbers.

An important issue that was raised when performing arithmetic operations was

how to detect overflow, namely, when the operation gives an erroneous result. We

presented simple techniques that are used by computers to test for overflow.

We also provided a deeper insight into the advantage of the two’s complement

coding scheme in dealing with arithmetic. It provided us with a means to imple-

ment subtraction by adding the inverse of the number. For computers, this leads

to a simpler machine design in that the same electronic devices can be used for

both subtraction and addition. Finally, we presented some elementary logical op-

erations. In the subsequent chapters, we will show that these primitive operations

are essential for the support of high-level language constructs.

Chapter 3

Computer System Model

In order to understand the operation of a computer system, one can use descriptions
on several levels of abstractions. The intention behind this text is to understand
the operation of a computer on the instruction set level. This abstraction is usually
referred to as the architecture or programming model of the computer. Although
this eliminates the need of explaining details about the electronic design of the
computer, this abstraction level is still too complex.

| Registers Arithmetic Logic Unit
| (ALU)

Control Unit

Figure 3.1 The functional units of a computer.

A computer has three main components (Figure 3.1): A Microprocessor (or
processor for short), a Memory, and an Input/Output System (I/O). The processor

18

Memory model 19

consists of three main parts: the Arithmetic Logic Unit (ALU) where all arithmetic

and logical operations take place, the Registers where data is temporarily stored,

and the Control Unit which interprets the instructions contained in the program.

The processor is an active component that synchronizes all actions in a computer.

We will later describe its functionality in more detail.

We have chosen the approach of ‘information hiding’ to explain the operation

of a computer system. The Motorola 68000 (M68000) is but one example of a

processor, although a widely used one. Choosing a concrete example enables us to

exercise practically the concepts of machine language programming. However, it

is important to know that some of its features are not general. We will therefore

concentrate on those features that can be found in most computer systems rather

than specifics about the M68000.

The memory contains the program (a sequence of instructions) and the data

to be processed. The memory content can be read as well as modified by the

processor. The I/O-units are essential in order for the computer to communicate

with the outside world. A computer without I/O-units could be thought of as a

person without the abilities to listen and talk; how good a problem solver this

person may be is irrelevant as long as his/her thoughts cannot be communicated

to the outside world.

We will start by looking at a model of the memory sufficient for the rest of the

text, and then present the fundamental operation of the processor, the instruction

cycle, namely, that of fetching the next instruction in memory and then executing

it.

3.1 Memory model

The memory contains the program and temporary data. It is divided into a number

of storage units, called memory cells, and each memory cell can store a number of

bits. The size of a memory cell, i.e. the number of bits it contains, specifies the

least amount of information that can be accessed by the processor. In order to

retrieve the information contained in a memory cell, each memory cell is identified

will assume that a memory cell contains

8 bits (a byte).

ica Se 2 shows a model of a me y aining B = 24 bytes. Since a memory

address is an unsigned number in the range (0, 24 —1], the address can be expressed

20 Computer System Model

Address) 3325 Se

Byte at address 0

He Word at address 0

|
is Long word at address 0

Figure 3.2 The memory model.

by A bits. Since the processor can read and write entities of different sizes, there
is a need for a rule of how to store words and long words. In F igure 3.2, we show
this rule for the M68000. A word at address i is stored with ot sguie
b 1 ») in the memory cell at address 7 , and the least significa yte at
Seed oe a long word (containing four bytes) at address i is stored
with the most significant byte at address i and the least significant byte at address
i+ 3.

Formally, a read operation contains the following parameters

READ(Size, Address)

where Size € { Byte (B), Word (W), Long word (L)}, and Address € {ORe ts
B—i}. The addresses that are allowed depend on the Size: if Size is Byte then
? = 1 and if Size is Word or Long word then i = 2. For instance, the possible word
addresses are 0,2,...,B—2.
A write operation contains the following parameters

WRITE(Size, Address, Data)

where Size and Address are defined above and Data is the information that replaces
the contents of the memory cells defined by Address and Size.

The maximum size of the memory that is contained is determined by the number
of address bits provided by the processor. For the M68000, which we consider in
this text, the size of the memory that can be attached is 224 bytes. This is a
huge amount of memory. By the same reason that we use entities like ‘kilo metre’
(abbreviated km) to denote 1000 metres, we use Kb (Kilo byte) to denote 1024 (=
21°) bytes, and Mb (Mega byte) to denote 22° bytes. We will now start to look at
the fundamental operation of a computer.

3.2 The instruction cycle

We now turn our attention to the processor. A computer program consists of a

The instruction cycle 21

8000. MOVE.L #1,D0 .; .i9:= 1

8004.) CMPI Ly, #N, DO. .;, af, in > N

£Or ji := 1. to iNido,8008. BHI $8014 ; then goto 8014

Jie ich tks 800A ADDI.L #1,j Sagi ese 7+1

SOOE. (ADDIVE #1,,D0) ie 1+1

8012 BRA $8004 ; goto 8004

8014

Figure 3.3 An example of a Pascal program to the left and its translation into

M68000 machine language to the right.

sequence of instructions that exactly specifies what computation the computer is

required to perform. Computer programs are mostly written by using a high-level

language (HLL) such as Pascal, C, and Fortran. A program written in a HLL

cannot be interpreted directly by the computer. It must first be translated into

a machine language program, which is performed by a program sometimes called

a compiler. The machine language consists of a set of binary coded instructions.

Unlike a HLL, the machine language is specific to a particular computer. The

elements of the machine language, that is the computer instructions, can only

perform elementary tasks as compared to the more powerful HLL statements.

In order to get an idea of the properties of a machine language, we consider the

example program in Pascal and its M68000 machine language equivalence accord-

Figure 3. 3. The Pascal program appears to the left and the corresponding

appears to the right. The

machine la is stored in memory at consecutive addresses which

are shown to the left. Several important observations can be made: First, the

HLL program consists of two statements, whereas the machine language program

consists of more than twice this number of instructions. In general, a HLL pro-

gram is translated into more than five times as many instructions as the number

of statements. Second, the operation that is performed by each individual M68000

instruction is very simple. For example, the first instruction (MOVE.L #1,D0) as-

signs the value 1 to one of the registers (small memory in the processor), namely

register DO, and the subsequent instruction compares DO with N. If DO contains

a number that is greater than N, the execution will continue at address 8014.

Otherwise, the statement j:=j+1 is carried out and i is incremented before the

execution continues at address 8004 by the instruction BRA $8004.

As has been pointed out previously, the machine language program is binary

coded and stored in the memory. In the example above, we presented the machine

language program in a more readable form for human beings, the so called assembly

language notation. In the next chapter we will present the entire set of machine

instructions for the M68000 and show how these are coded in the memory. At this

point we shall only make clear that there is usually a one-to-one correspon-

22 Computer System Model

dence between an assembly language instruction and the binary coded machine
instruction. This enables us to explain a few things of how the computer executes
a machine language program without bothering about coding details.
_Instructions in a machine language program are stored at consecutive addresses

in the memory. Each instruction occupies at least one word and, depending on the
complexity of the instruction, up to five words. Basically, the processor fetches the
next instruction from the memory. ;

S the one that appears at the next higher address. However, as in the example
above, there are exceptions to this rule. Special instructions, such as the branch-
instructions, assign a new value to the program counter so as ontrol
flow of the executed program. Consequently, t is to
perform the following elementary cycle over and over again:

Step 1: Fetch the instruction at the memory address specified by PC.
Step 2: Update PC.

Step 3: Execute the instruction.

This cycle is referred to as the 2 e instruction cycle constitutes
our first model of the functionality of the processor. In the next chapter we will
refine this model, when we present the instruction set of the M68000.

The I/O system enables the processor to transfer information between the mem-
ory and the outside world. The I/O system is a general term for all devices that
can convey such information such as terminals, printers, and disks. We will look
more closely into this in the subsequent chapters.

3.3. Concepts of computer instructions

The instructions in the example program
eration on a number of operands and

f Figure 3.3 typi

In general, an instruction
co about three s: operation to be performed, where
the operands are, and where to put the result. In order to express these basic tasks
in a concise form, we will extensively use the following notation:

A—- B

A location is specified by either t
or t

denot ult.
onsequently, B

ecined by the expression

Concepts of computer instructions 23

A. In order to express the

For example: (L)+3 — L means: e sum of the conten

constant number 3 is placed in location L’. Note that this is what the assignment

statement L:=L+3 would do in Pascal. Thus, parentheses are used to express the

content of a location and the arrow denotes assignment.

The operands are either stored in the memory, in the internal registers of the

processor, or explicitly contained in the instruction. In the instruction ‘MOVE.L

#1,D0’ from Figure 3.3, one of the operands is explicitly contained in the instruc-

tion, namely ‘1’, whereas the other is stored in register DO. In the instruction

‘ADDI.L #1,7 at is, the result is to be

stored at the examples demonstrate a few

of all the po ut the iseagioh of an operand. The concept of

doing this is called ganas °° far, we have introduced the following

three addressing

@ — s the e ory cell at
address 1 to the memory cell at address 2.

xample:qlgg— 2

The assembly language lets the programmer write symbolic names for the op-

erations and their operands. A program written in an assembly language can

be translated automatically by another program, called an assembler. Below, we

provide an example of a line of assembly code:

LOOP ADD.B #$12,DO ; Add 12 (hex) to DO

he first field (‘LOOP’) is optional and,
© this particular instruction. The when used a unique name, called:a label, t

SS ee the symbol rue the nd the third”

sl 4812.00) specs its operas. used —

ent, and the semicolon indicates the Gone a ie comment.

Special characters are used to denote number representation and immediate ad-

dressing. ‘#’ in the instruction tells the assembler that the operand is a number.

In order to enable the programmer to express numbers in different number sys-

tems, there must be a way to point this out in the assembly language program.

We will use the notation found in Table 3.1 which, as a matter of fact, is the

notation chosen by Motorola. The default representation is decimal, that is, if a

Th

24 Computer System Model

Table 3.1 Assembly language notation to express constant values in different
number systems.

Number system Notation

Decimal (default)
Binary %
Hexadecimal $

constant value is not preceded by any of the characters in Table 3.1, the number is
decimal. In the example above, ADD.B #$12,D0 the constant number 12 in hexa-
decimal representation ($ precedes the number) is added to the content of DO. In
the instruction

ADD.B #%10101010,D0

the binary constant 10101010. is added to the content of DO because the constant
is preceded by %.

:

EXERCISES

3.1 A computer can address 4 Mb memory. How many address bits
are required to address each memory location?

3.2 A memory is 4 Mb. How many long words does it contain?

Sig At what address does the most significant byte of the long word
at address 1016 reside?

3.4 At what address does the least significant byte of the long word
at address 2016 reside?

3.5 An instruction occupies 2 words and is stored at address 800046.
What does the program counter contain when the next instruc-
tion is to be fetched?

3.6 An instruction does the following; (42:6) V 551g — 4546. Sup-
pose that (4216) = AAjg. What does the memory cell at address
4516 contain after execution?

Summary and concluding remarks 25

Sui, An instruction does the following; (4215) A 5516 — 4516. Sup-

pose that (4215) = AAig. What does the memory cell at address

45,6 contain after execution?

3.8 An instruction does the following; (4216) + 5516 — 4516. Sup-

pose that (4216) = 5515. What does the memory cell at address
45,6 contain after execution?

3.4 Summary and concluding remarks

In this section, we introduced a simple model of a computer system including

the Microprocessor (processor for short), the Memory, and the I/O-system. The

memory stores the program and the data to be processed. The memory is organized

as a vector of memory cells, where each memory cell is identified by a number called

an address.

In order for the processor to execute instructions and process data stored in the

memory, the memory can be accessed by reading the content of a memory cell or

modifying its content by a write operation. In order for the processor to access

several consecutively stored memory cells, it can specify the number of memory

cells by the Size attribute (byte, word, or long word).

The processor keeps track of the next instruction to execute by a storage element

called program counter. The processor performs the conceptually simple task of

fetching an instruction, updating the program counter, and then executing the

instruction. This repetitive task is referred to as the instruction cycle.

High-level languages are used to specify the computation intended by the pro-

grammer. However, a program written in a HLL cannot be interpreted by a

computer and must be translated into machine language instructions, which is

performed by the compiler.

The instructions of a processor are binary coded and almost impossible for a

human being to understand. In order to simplify the task of machine language

programming, an assembly language is associated with each processor type. The

assembly language instructions are semantically close to the structure of the binary

coded machine language. In fact, there is usually a one-to-one correspondence be-

tween the assembly language and the machine language instructions. The assembly

language not only makes it conceptually attractive to understand the tion of

a computer, it also constitutes a method to write programs and take advantage

of the resources of the computer in an efficient way. Because of the one-to-one

correspondence, the task of translating an assembly language program to machine

instructions is simple. The program that performs this task is referred to as an

assembler.

Chapter 4

Instruction Set Model

This chapter aims to give a thorough understanding of the instruction set model of
the processor. We follow the approach of ‘information hiding’ by first looking at a
small subset of the instruction set and explaining only those parts of the processor
that are relevant for this subset. We then successively refine the instruction set
model by introducing more instructions and more functionality of the processor.
When we finish our presentation in Chapter 6, we have introduced all concepts and
functional units depicted in Figure 4.1, which shows the major parts of a computer
system based on the microprocessor Motorola 68000.

The Memory

Data Address Control
Registers Registers Registers

0

1

FFEFFF

The I/O-ports

Figure 4.1 A model of a computer system based on M68000.

26

The data register model 27

4.1 The data register model

The Motorola 68000 (M68000) uses 24 address bits. It can thus address a mem-
ory containing at most 274 = 16,777,216 memory cells of 8 bits each. In Fig-

ure 4.2, we show the memory. Note that memory addresses are hexadecimal (ad-

dress FFFFFF jg = 16,777, 21519). We will always use hexadecimal representation

for addresses.

Since a lot of computations are performed on the same data over and over again

and since the memory access time is long compared to the processing speed of the

processor, the processor contains a small set of high-speed memory cells denoted

registers. Some of the registers are general purpose while other have dedicated

functions. In the first model, we will introduce the general purpose registers,

called data registers.

The processor contains eight data registers, denoted DO to D7. The data registers

are used as temporary storage for all arithmetic and logical operations. Our first

model consists of the program counter (PC), the data registers, and the memory

as shown in Figure 4.2. In Table 4.1, we list some instructions for arithmetic

and logical operations between operands stored in memory locations and/or data

registers relevant for the instruction set model so far.

The Memory The Processor

Data Control
Registers Registers

Figure 4.2 The data register model of the M68000.

Each data register consists of 32 bits. It can thus store long words. Sometimes,

however, computations need only to deal with bytes or words. Therefore, for all

instructions listed in Table 4.1, there is an option to specify the size of the data

to be manipulated. This is denoted by the suffix S appended to each operation

word of the instruction. To denote a byte, S is replaced by B. Likewise, W and L

represent word and long word manipulation, respectively.

The instructions listed in Table 4.1 can be used to load data (MOVE), add or

subtract data (ADD, SUB (Subtract)) or perform logical operations such as logical

AND (AND), inclusive-or (OR), or exclusive-or (EOR). Besides these binary operations

(two operands), there are three unary operations (one operand) (CLR, NEG, and

28 Instruction Set Model

NOT) which assigns zero, negates, and performs the logical inverse of an operand,
respectively.

In the previous chapter we introduced three methods to refer to an operand
(addressing modes): (data) register direct, absolute addressing, and immediate
addressing. For the instructions in Table 4.1, the first two addressing modes can
be used by replacing ‘a’ by the name of a data register, or an absolute address.
The immediate addressing mode is obtained by using ‘#’ in front of a number.

Table 4.1 Assembly instructions relevant for the data register model. S specifies
the operand size (B, W, or L), a denotes an absolute address or a data register
name, # before a numeric value (n) designates a constant (immediate addressing).
Di denotes any of the data registers DO to D7.

Name Operation

MOVE.S Qj, ag (a1) — >? a9

MOVE.S #n,a n—-a
ADD.S a,Di (Di)+ (a) — Di
ADD.S Dia (Di)+(a) -a
ADDI.S #n,Di (Di)+n — Di
SUB.S a,Di (Di) — (a) — Di
AND.S = a,Di (Di) A(a) — Di
OR.S a,Di (Di) V(a) — Di
EOR.S Dia (Di)@(a) a
CLR.S a 0 >a
NEG.S a 0-(a) > a
NOT.S a (a)’ > a

The first issue to be discussed is the impact of the operand size on the execution
of an instruction. Suppose that we want to perform the operation: (2) — D0
(place the content of memory cell 2 in register DO). This is carried out by the
instruction:

MOVE.B $2,D0

Note that the memory address is hexadecimal. We use the notation from the
previous chapter ‘$’ to express hexadecimal values.

Since DO can store a long word, a natural question is to which part of DO the
content of memory cell 2 is copied. The answer is that it is copied to the least
significant bits of DO. Consequently, bits 7 through 0 will contain the same value
as memory cell 2. All other bits of DO remain unaffected as shown in Figure 4.3. Likewise, if the same operation with operand size word (W) is performed, that is,

The data register model 29

Memory Data register

i+]

in? MOVE.B i DOF

ore MOVE.W i ,DO

MOVE.L i DO oe Je Se

Figure 4.3 The impact of the operand size on the result of a MOVE operation

between memory and a data register.

MOVE.W $2,D0

the content of memory cell 2 is copied to bits 15 through 8 and the content of

memory cell 3 is copied to bits 7 through 0 (recall from the previous chapter how

words and long words are stored at memory). Finally, if we use a long word (L),

such as in

MOVE.L $2,D0

the content of memory cell 2 is copied to bits 31 through 24, the content of memory

cell 3 to bits 23 through 16, the content of memory cell 4 to bits 15 through 8, and

finally, the content of memory cell 5 to bits 7 through 0 in DO. We summarize the

impact of the operand size on the operation in Figure 4.3. The shaded parts of the

register are not affected by the instruction.

The second issue to be discussed is the use of addressing modes. Almost all

instructions listed in Table 4.1 have one thing in common, namely, they need two

operands, where the second operand (the rightmost) specifies the location where

the result is put. We will refer to the first operand as the source operand, and the

second operand as the destination operand.

In Table 4.1, a denotes either the address of a memory location or the name of

a data register. For instance, the operation: (D0) — D1 is performed by the

instruction

MOVE.L DO,D1

If we want to copy a constant into a data register or a memory location, that

is, using immediate addressing, we put ‘7’ before the constant as in the following

example

30 Instruction Set Model

MOVE.L #$25,D1

where the constant 00000025 ¢ is copied into D1 (long word operation).

The ADD-instruction performs addition according to the methods we presented

in Chapter 2. From Table 4.1, we note that there are three versions of the ADD-

instruction. They differ in the use of addressing modes — while the first two versions

either use a data register as a source or destination operand, the third version
(ADDI) employs immediate addressing on the source operand. Although not listed
in Table 4.1, the same addressing-mode combinations are allowed for all other
arithmetic and logical instructions such as SUB, AND, and OR. For example, if the
source operand is a constant, we use SUBI, ANDI, ORI, and EORI. For EOR, however.
the source operand must always be a data register.

The last three instructions in Table 4.1 (CLR, NEG, and NOT) take only one
operand, that is, the source and destination operand, both are the same. CLR
copies zero to the operand, NEG converts an operand into its negative equivalence,
and NOT performs the logical inverse of the operand.

In order to perform a specific computation, more than one instruction is usually
needed. For example, if we wish to perform: (1) + (2) — 3, the following
instructions are needed:

MOVE.B $1,D0

ADD.B $2,D0

MOVE.B_ DO,$3

EXERCISES

4.1 Suppose that (D0) = 12345678, and the contents of memory
cells 0 through 3 are (0) = 8716, (1) = 6546, (2) = 4316, (3) =

2116. What is the content of DO after execution of (a) MOVE.B
$0 ,DO (b) MOVE.W $0,D0 (c) MOVE.L $0,D0?

4.2 Suppose that (D0) = 010101016 and the contents of memory
cells 0 through 3 are (0) — 8716, (1) == 6546, (2) — A316, (3) =

2116. What is the content of DO after execution of (a) ADD.B
$0,DO (b) ADD.W $0,DO0 (c) ADD.L $0,D0?

The data register model 31

4.3 Suppose that (D0) = AAAAAAAAje¢ and the contents of mem-

ory cells 0 through 3 are (0) = 5546, (1) = AAje, (2) = 5516, (3)

= AAjg. What is the content of DO after execution of (a) AND.B

$0,DO (b) AND.W $0,DO (c) AND.L $0,D0?

4.4 What sequence of instructions performs the operation

(21Fig) + 2519 — 2FAj6, assuming 8-bit operands?

4.5 What sequence of instructions performs the operation

(123416) — 2539 — 2516, assuming 8-bit operands?

4.6 What sequence of instructions performs the operation

(3) V4 — 3, assuming 8-bit operands?

In the example programs above, we have used memory locations as variables,

much like variables in high-level languages. In fact, variable names in high-level

languages are translated into absolute memory addresses by the compiler. In order

for this to happen, most high-level languages require that the programmer declares

all the variables used by the program. The compiler then uses the declarations to

substitute all symbolic variable names with absolute addresses. A nice thing about

this is that one can use variable names that reflect the use of them.

Assemblers allow the programmer to use symbolic names for memory locations as

long as they are declared. In the following, we will use symbolic names for memory

locations. However, for the moment, we will assume that they are declared in

the program somehow. We will return to how symbolic names are declared in

Chapter 5.
Given that LOC is a symbolic name of a memory cell, the following instruction

performs the operation (LOC) + 1 — LOC on 8-bit operands

ADDI.B #1,LO0C

We now present a somewhat more complex task. The following sequence of

instructions performs the task: (VAR1) + (VAR2) — VAR3

MOVE.B VAR1,VAR3

MOVE.B VAR2,D0

ADD.B DO,VAR3

Note that the program above is not a unique solution to the problem. The following

sequence of instructions also performs the same task:

32 Instruction Set Model

MOVE.B VAR2,VAR3

MOVE.B VAR1,D0

ADD.B DO,VAR3

It is important to note that there are often several solutions to the same problem.
In Appendix A, we will provide only one solution to the exercises although other
solutions exist.

EXERCISES

All operands are assumed to occupy 8 bits if nothing else is said.

ure What sequence of instructions performs the operations:
(FFF 16)+(ABCj¢) = ABCig6 and (FFF 1¢)+(DEF 46) a; DEF j¢?

4.8 Write a sequence of instructions that performs the operation:
(ROW) + (COL) +1 — MAT?

4.9 Write a sequence of instructions that performs the operation:
2219 + (LOC) — LOC?

4.10 Write a sequence of instructions that performs the operation:
NUM-—(VAR) — VAR?

4.11 Write a sequence of instructions that performs the operations:
1+ (NUM1) — NUMI1

2+ (NUM2) — NUM2

3+(NUM3) — NUM3?

4.2 Program flow control

In the example programs we have met so far, instructions are executed in the order
they appear in the program. This order is maintained by the program counter (PC);
PC is incremented when an instruction has been fetched so as to fetch the next
instruction in the program sequence.

It is obvious that a computer would be rather useless if there were no way to alter
the execution order. For example, one of the strengths of high-level languages is to
express fairly complex computations concisely in terms of loops such as for-loops in
Pascal. Another feature in high-level languages is the alternative execution order
provided by conditionals such as if-statements.

Program flow control 33

Table 4.2 Some compare and program control instructions.

Name Operation

CMP.S a,Di (Di) —(a)
CMPI.S #n,a (a)—n

BRA label branch to instruction at address label

BEQ label if (Z)=1 then BRA label
BNE label if (Z)=0 then BRA label
STOP en the execution stops after this instruction.

In order for loops and if-statements in a high-level language program to be

translated into a machine-language program, a mechanism must be provided by

the processor to alter execution order. The branch-instruction is the most primi-

tive instruction to accomplish this task. The branch-instruction takes a symbolic

memory address, called a label, as its operand. Its effect is to make that instruction

the next one to be executed. The processor performs this task by simply loading

the program counter with the label. The label is the address from which the next

instruction is to be fetched.

In the following (rather useless) program, a branch is performed to label NEXT.

MOVE.B #0,DO ; Execute this one and

ADDI.B #1,D0O ; this one

BRA NEXT ; Branch to label NEXT

nai ; Skip these instructions

NEXT ADDI.B #1,DO ; Continue here

SUBI.B #1,DO ; and then here

In the example program above, a branch is always taken independent of the result

of the execution. Such branch-instructions are denoted unconditional branches to

reflect that they are always taken. In order to support high-level language features

for execution alteration such as for-loops and if-statements, a branch should be

taken only when a certain logical condition is satisfied. Such branch-instructions

are referred to as conditional. There are a large number of logical conditions to test.

To simplify the discussion, we will first look at conditional branch-instructions that

take a branch depending on whether the result of an arithmetic or logical operation

is zero. To perform this test, the processor controls a special flag (a 1-bit register),

called the Z-flag (Z for Zero). This flag is set to one by the processor when the

result of an operation is zero and reset to zero otherwise.

34 Instruction Set Model

In Table 4.2, we show two conditional branch-instructions and two compare-

instructions that compare two operands. The comparison is performed by sub-

tracting the first operand from the second one. Unlike the subtract-instruction,

however, the result is not stored; the only effect this instruction has is that it

affects the Z-flag. This can be used to perform conditional branches as we will

demonstrate in the next example program.

Consider the following computation: N +(N—1)+...+3+2+1 — DO. The
following program performs this task, assuming N is greater than zero and that
the sum never exceeds 25540:

MOVE.B #0,D0

MOVE.B #N,D1 ; D1 is loaded with N

LOOP ADD.B DIDO} = Add Die tomD0

SUBI.B #1,D1 ; Z-flag is affected

BNE LOOP ; Branch to LOOP if (Z)=0

Note that the subtract instruction serves two purposes: (i) D1 is decremented
to contain the next number to be added to DO and (ii) the Z-flag is affected so
that the loop is exited when D1 contains zero. The above program illustrates
how a repetition-statement such as a for-loop can be implemented by an assembly
language program. In the next example, we consider the implementation of the
following if-statement: if (A)=(B) then 0 —» A else 0 —> B.

MOVE.B A,DO

CMP .B B,DO ; if (A) = ()

BNE ELSE

MOVE.B #0,A ; thenO -A

BRA DONE

ELSE MOVE.B #0,B ; else 0 -> B

DONE

In the example above, we have used the compare-instruction (CMP.B B,DO) to check
whether (A) = (B). Note that this instruction only affects the Z-flag depending
on the result of the subtraction (D0) — (B).

An important feature we have forgotten is a means to stop the execution of
a program. One could ask what will happen when the last instruction has been
executed in the example programs demonstrated so far. According to what we now
know about execution order, the next instruction to be executed is the one that
appears on the next consecutive address in memory. In order to stop the execution,
one can use the instruction STOP. For instance, if we want the execution to cease
when the instruction at label DONE is executed in the last example, we write

Arithmetic and condition codes 35

MOVE.B A,DO

CMP.B B,DO

BNE ELSE

MOVE.B #0,A

BRA DONE

ELSE MOVE.B #0,B

DONE STOP #$2700

The operand to.the STOP instruction affects the internal state of the processor.
For now, we will simply assume that $2700 is appropriate. In Chapter 6, we will

explain this further.

EXERCISES

All operands are assumed to occupy 8 bits if not stated otherwise.

4.12 What sequence of instructions performs the computation:

(NUM) + (NUM) — NUM?

4.13 What sequence of instructions performs the computation:

(NUM) + (NUM) +...4+ (NUM) — NUM (8 times)?

4.14 What sequence of instructions performs the multiplication:

(M1) * (M2) — P?

4.15 Write a sequence of instructions that performs the operation:

if ((A) = 1) or ((A) = 2) then (A) — Belse (B) — A.

4.3. Arithmetic and condition codes

In Chapter 2, we learned how the computer performs arithmetic operations such as

addition and subtraction. A fundamental issue was to devise a test as to whether

arithmetic operations result in overflow. Most computers perform this test auto-

matically. The result of the test is available in a dedicated control register denoted

the condition code register (CCR). This register can be read by move instructions.

More importantly, there are conditional branch-instructions that change the con-

trol flow depending on how the bits in this register are set. Besides overflow, the

CCR also indicates other properties of the result.

In the M68000, the condition code register comprises five flags that are stored

in the five least significant bits of the status register (SR) as shown in Figure 4.4.

36 ©Instruction Set Model

The Memory The Processor

Data Control
Registers Registers

0

l

FFFFFF

Figure 4.4 The status register (SR) and the condition code register (CCR) of
the M68000.

The status register contains 16 bits. We will examine the other bits later. In
this section, we will be concerned with how the different flags in the condition
code register are affected by arithmetic and logical operations, and how we can use
conditional branch instructions to change the control flow when the result of the
operation has special properties such as overflow, zero, or negative. The condition
code register (bit 0 through 4 in the status register) contains five flags denoted X,
N, Z, V, and C as shown in Figure 4.4.

In Table 4.3, we show all conditional branch-instructions and their branch con-
ditions. We have already introduced the Z(ero)-flag, which is set when the result
of an arithmetic or logical operation is zero. We have also introduced the condi-
tional branch-instruction BEQ label that takes a branch provided that the Z-flag is
set ((Z)=1) and BNE label that takes a branch provided that the Z-flag is cleared
((Z)=0). In Table 4.3, all branch conditions are presented as logical expressions;
for instance, the logical expression [(N) A (V)’] Vv [(N)’ A (V)] is true, and the
branch is taken, provided that: [(N)=1 AND (V) = 0) OR [(N)=0 AND (V) = 1]

4.3.1 Conditions for unsigned integer arithmetic

In Chapter 2, we noted that the overflow test differs depending on the representa-
tion of numbers. Given n-bit numbers, we could represent all numbers in the range
(0, 2” — 1], that is, unsigned number representation.

Addition of two numbers in the unsigned representation results in overflow if and
only if the carry-bit from the most significant position is one. The C(arry)-flag in
the CCR reflects this. It can thus be used to test for overflow of unsigned number
arithmetic as in the following example:

Arithmetic and condition codes 37

Table 4.3 Conditional branch-instructions and the their branch conditions.

Name Branch condition

BEQ label (Z)
BNE label (Z)’
BCS label (C)
BCC label (C)’
BHI label (C)’ A (Z)’

BLS label (C) V (Z)

BMI label (N)
BPL label (N)’
BVS label (V)
BVC label (V)’
BGT label (Z)’ A [[(N) A (V)] Vv [(N)’ A (V)’)]
BGE label [(N) A (V)] V [(N)’ A (V)’]
BLT label [(N) A (V)’] v [(N)’ A (V)}
BLE label (Z) V [(N) A (V)’] Vv [(N)’ A (V)]

ADD.L A,DO

BCS OVERFLOW

OVERFLOW

Now consider the subtraction of two n-bit numbers A — B that both belong to

the range [0,2” — 1]. This subtraction results in overflow if and only if B > A.

When subtracting two unsigned numbers (using the SUB-instruction), the C-flag is

set when overflow occurs.

There are two useful conditional branch-instructions that in conjunction with

the compare-instruction CMP.S A,DO can test the relation between (A) and (D0).

These are BHI and BLS. Consider the test ‘branch if (D0) > (A)’. This test is

equivalent to ‘branch if (D0)—(A) > 0’. According to what has been said about

overflow for unsigned numbers under subtraction, the branch should be taken if

and only if (C)= 0 and (Z)= 0 which expressed as a logical expression is (C)’

(A (Z)’. This is exactly the test performed by the BHI-instruction (see Table 4.3).

Thus,

38 Instruction Set Model

CMP a ADO

BHI GREAT

GREAT

implements the test. If we replace BHI by BLS, we test the opposite relation.

4.3.2 Conditions for signed integer arithmetic

We shall now turn our attention to two’s complement number arithmetic. The
N(egative)-flag reflects the most significant bit of the result of an operation, and
consequently, the sign of the result when arithmetic operations are performed on
two’s complement numbers. In the following example program, execution continues
at label MINUS if the result of ADD.L A,DO, that is, the content of DO, is negative:

ADD.L A,DO

BMI MINUS

MINUS

The condition for overflow when two two’s complement numbers are added is
that the signs of the operands are the same and opposite to the sign of the result.
This test is performed by the processor and the result is obtained from the V-
flag (oVerflow-flag) in the CCR. For instance, in the following example program,
execution continues at label OVERFLOW if addition of two two’s complement numbers
results in overflow.

ADD.L A,DO

BVS OVERFLOW

OVERFLOW

Besides taking a branch when the result is zero, we must also be able to take
a branch based on the other relational operators < 0,< 0,> 0, and > 0. For
two’s complement arithmetic, the corresponding conditional branch-instructions
are BLT, BLE, BGE, and BGT. Note that the names reflect their operation: BLT is
an abbreviation of ‘Branch Less Than zero’.

Arithmetic and condition codes 39

These branch-instructions can be exclusively used for testing the result of two’s

complement number arithmetic, which their branch conditions reveal. For instance,

the branch condition for the BGE-instruction is [(N)=1 AND (V)=1] OR [(N)=0
AND (V)=0]. Assume that two positive two’s complement numbers A and B are

added and that the addition results in overflow. Then (V)=1 and the sign of the

result is opposite to the operands, that is, (N)=1. It means that although the

addition resulted in overflow, the test will be correct.

4.3.3. Extending the range beyond long words

Besides using the C-flag as a test for overflow for unsigned number arithmetic, it

can also be used to extend arithmetic operations to 64-bit numbers. In this case,

we must use two long words to store an operand. For instance, let us assume that

two 64-bit numbers are to be added. The first number is stored with its most

significant long word in register D1 and the least significant long word in DO. The

second number is stored in D3 (most significant long word) and D2 (least significant

long word). The addition of these numbers can be performed by first adding the

least significant long words. We then add the most significant long words and the

carry-bit (if any) from the addition of the least significant long words.

While the carry-bit is affected by (almost) all instructions, there is another flag,

the X-flag (eXtended-flag), which is set according to the same rules as the C-flag.

But, unlike the C-flag, it is only affected by arithmetic instructions such as ADD and

SUB and shift instructions (to be presented in the next section). In the example

below, we implement 64-bit addition by making use of the instruction ADDX.L Dz,

Dj which performs (Di) + (Dj) + (X) — Dj.

ADD.L DO, D2

ADDX.L D1,D3

Likewise, there is a corresponding subtraction instruction, SUBX.L Dz,Dj which

performs (Dj)—(Di)—(X) — Dj. Consequently, the following sequence of instruc-

tions performs 64-bit subtraction.

SUB.L DO,D2

SUBX.L D1,D3

For both these examples, the result is available in registers D3 (most significant

long word) and D2 (least significant long word). Note that the scheme presented

can be extended to operands of any size.

40 Instruction Set Model

Table 4.4 The general conditions for setting the flags in the CCR.

Flag Condition

Z Set when the result is zero.

C and X_ Set when carry/borrow is generated.

N Set when the result is negative.

Vv Set when a two’s complement operation results in overflow.

We end this section by pointing out some general guidelines for the use of the

condition codes. In general, all instructions affect the condition code regis-

ter. It is therefore important to be aware of how they are affected. In this section,

we have pointed out their general behavior which we summarize in Table 4.4. It

should be noted, however, that there are exceptions. Therefore, it is important for

the programmer to examine how each individual instruction affects the condition

codes. In Appendix B, we show how each instruction affects the condition code
register.

EXERCISES

4.16 Assuming 32-bit unsigned integers A and B, write a sequence of

instructions that implements the following if-statement

if (A) > (B) then0 — Aelse0 — B.

4.17 Assuming 32-bit unsigned integers A and B, write a sequence of

instructions that implements the following if-statement

if (A) <= (B) then0 — Aelse0 — B.

4.18 Assuming 32-bit signed integers A and B, write a sequence of
instructions that implements the following if-statement

if (A) > (B) then0 — AelseO — B.

4.19 Assuming 32-bit signed integers A and B, write a sequence of
instructions that implements the following if-statement
if (A) <= (B) then 0 — AelseO — B.

4.20 Write a sequence of instructions that performs 128-bit addition:
(A) + (B) — B. A is stored in DO, D1, D2, and D3 with the
least significant 32 bits in D3 and B is stored in D4, D5, D6, and
D7 with the least significant 32 bits in D7.

Shift instructions 41

Table 4.5 Shift instructions for the M68000.
ROL.S Di,Dj
ROL.S #n,Di
ROL a

ROR.S Di,Dj
ROR.S #n,Di
ROR a
LSL.S Di,Dj
LSL.S #n,Di
LSL a

LSR.S_ Di,Dj
LSR.S #n,Di
ESRF ea

ASL.S_ Di,Dj
ASL.S #n,Di
ASE a

ASR.S._Di,Dj
ASR.S #n,Di
ASR a

4.21 Write a sequence of instructions that performs 128-bit subtrac-

tion (B)—(A) — B. A is stored in DO, D1, D2, and D3 with the
least significant 32 bits in D3 and B is stored in D4, D5, D6, and

D7 with the least significant 32 bits in D7.

4.4 Shift instructions

We are now able to write simple assembly language programs that perform arith-

metic and logical operations on operands stored in memory locations or data reg-

isters. The move-instructions we have introduced help us to copy data between

locations. The least amount of data to be copied is a byte. It is sometimes useful,

however, to move bits within a location. This is exactly what the shift instructions

perform.

In Table 4.5, we show the shift instructions. These instructions have in common

that they move bits either to the left or to the right within the destination operand.

The number of steps, called the shift count, is specified by the source operand

which can be a data register or a constant using immediate addressing (n). The

destination operand (the operand to be affected) is a data register. The range

of allowed shift counts differs; for immediate addressing, the shift count is in the

range [1,8] and if a data register is used, the shift count is in the range [1,63].

There is also a third variation of the shift instructions using a memory location (a

in Table 4.5). This instruction shifts the operand in memory beginning at location

a one step. The implicit operand size in the last case is always a word.

42 Instruction Set Model

In order to specify exactly what the shift-instructions perform, let us denote the

operand X = %p_1Lyn_2... 2X9. The rotate-instructions shift the operand so that the

bits that are shifted out in either end will appear in the other. Given a shift count

of d, the left-rotate instruction (ROL) changes the operand so that 2; = x;, where

j = %-—d (mod n) (recall the meaning of the mod-operation from Chapter 1),

and the right-rotate instruction (ROR) changes the operand so that x; = 7;, where

j =i+d (mod n), fori = 0,1,...,n—1. Note that the C-flag is assigned the value

of &,~a for the left-rotate and xq_, for the right-rotate instruction, respectively (see

Table 4.5). For instance, if (D0) = OF00,¢, the result of the execution of ROL.W

#5 ,DO is (DO) =E001,¢ and the C-flag is set. Note that the four ones stored in bits

8-11 are moved 5 steps to the left which means that bits 15-13 and 0 are set after

execution.

While the rotate-instructions establish a connection between the most and least

significant bits, the other shift-instructions simply move bits out of the most or

least significant end of the operand. The logical shift-instructions (LSL and LSR)

replace the empty bits in the least significant bit-field (LSL) or the most significant
bit-field (LSR) by zeros. The C- and X-flags are assigned the last bit that was
shifted out. For example, suppose that the least significant 16 bits of DO are

00010000000000002, then the instruction LSL.W #4,DO sets the C- and X-flags

because bit 12 is set.

The motivation behind the operation of arithmetic shift-instructions lies in the
fact that they can facilitate multiplication and integer division by a number which
is a power of two. For instance, multiplication by two can be performed by a left-
shift operation: 219 X 219 = 00102 x 0010. = 01005. Likewise, division by 2 can be
implemented by a right-shift operation: 419/219 = 01002/0010 = 0010. In order
to correctly handle the sign bit for two’s complement numbers, it becomes essential
to fill the most significant bit positions with the sign bits when performing a right-
shift: —449/219 = 11002/00102 = 1110. This process is called sign ertension and
is automatically performed by the arithmetic-right-shift instruction ASR.

The arithmetic-shift-instructions (ASL and ASR) resemble the operation of the
logical shift-instructions. The difference between the arithmetic and logical left-
shift-instructions is that the arithmetic-left-shift instruction (ASL) also affects the
V-flag; the V-flag is set iff the most significant bit (which is the sign bit) is changed
during the shift operation. The arithmetic right-shift operation (ASR) copies the
sign bit in each step.

The last instruction in Table 4.5 (SWAP) takes a data register as an operand and
swaps the most significant word (MSW) with the least significant word (LSW).

EXERCISES

4.22 What instruction rotates the content of D0 five steps to the right?
Assume a 32-bit operand.

Indirect addressing 43

4.23 What instruction rotates the content of DO two steps to the left?

Assume an 8-bit operand.

4.24 What instruction rotates the word stored in memory at location

NUM one step to the right?

4.25 What shift instruction can be used to implement integer division

by two of a memory word stored at location NUM?

4.26 What shift instruction can be used to implement multiplication

by two of a memory word stored at location NUM?

4.5 Indirect addressing

We have now introduced a set of instructions so that we can construct simple

programs that can perform computations using repetition by means of uncondi-

tional and conditional branch-instructions. However, we have yet only seen a few

methods of how to refer to operands; either the operand explicitly is contained in

the instruction (immediate addressing), or the location of the operand explicitly is

contained in the instruction (absolute or register direct addressing). These meth-

ods are examples of addressing modes. As we will see in the next example, these

addressing modes are not sufficient.

SUM := 0;

for i:=0 to 4 do

SUM S:=""SUMr+ VEC beind;

The above program computes the sum of the vector elements contained in vector

VEC. A naive attempt to construct a machine language program to perform this

task would be the following one, assuming that the first vector element is stored

at address VEC and that each vector element occupies one byte:

MOVE.B #0,D0

ADD.B VEC,DO

ADD.B VEC+1,D0

ADD.B VEC+2,D0

ADD.B VEC+3,D0

ADD.B VEC+4,D0

MOVE.B DO,SUM

One realizes that if the number of vector elements is large, the corresponding

program using absolute addressing becomes prohibitively large. We would like to

44 Instruction Set Model

The Memory The Processor

Data Address Control
Registers Registers Registers

0

1

FEEEEE

Figure 4.5 The address register model of the M68000.

Table 4.6 Assembly language instructions relevant for the address register

model. S specifies the operand size, a denotes an absolute address or a register

name, # before a numeric value (n) designates a constant (immediate addressing).
Ai denotes any of the address registers AO to A6.

Name Operation

MOVEA.S a, Ai (ay As
MOVEA.S #n, Az n > Ai

ADDA.S a,Ai (Ai)+(a) — Ai
SUBA.S a, Ai (Ai) — (a)
CMPA.S a,Ai (Ai) —(a)

code the program in a loop so that the address of the vector changes in each loop
iteration. We will now look at some advanced addressing modes to accomplish
this.

The M68000 contains seven dedicated registers, called address registers, denoted
AO to A6, that are used to store operand addresses. In Figure 4.5, we introduce
these registers and in Table 4.6, we present some instructions that manipulate the
contents of address registers. Only Word (W) and Long Word (L) are valid Size
attributes for these instructions. Note that the source operands denoted a in the
instructions in Tables 4.1, 4.2, and 4.5 in general can be replaced by an address
register.

Given the address registers, we are now able to code the above program using a
loop.

Indirect addressing 45

MOVEA.L #VEC,AO 3; Address of VEC[0] to AO

MOVE.B #0 , DO 7 SUMS =30

MOVE.B #5 ,D1 3) Lome: —0 eto 4 do

LOOP ADD.B (AO) ,DO ; SUM := SUM + VEC[i]

ADDA.L #1,A0

SUBI.B #1,D1

BNE LOOP

MOVE .B DO ,SUM

We make the following important observations on the use of AQ. First, AO is

initialized to contain the address of the first vector element using the instruction

MOVEA.L #VEC,A0O. Note that we load the address of VEC[O] as a 32-bit constant

into AO. This is important, since addresses consist of 24 bits. Consequently, using

a 16 bit operand size would not suffice. Second, we use the instruction ADD.B

(AO) ,DO to add a vector element to DO (the temporary sum is stored in DO) by

using the content of AO as the address of the operand. This is a new addressing

mode denoted address register indirect addressing. Using our notation, we can

express the operation performed by ADD.B (AO) ,DO as ((A0)) + (D0) — DO.

Note that the content of the location whose address is contained in AO is expressed

as ((A0)). Third, in order to point to the next vector element, we must add one to
the content of AO, which is done by the instruction ADDA.L #1,A0. If each vector

element consisted of a word, we would have incremented AO by 2 and if each vector

element consisted of a long word, we would have incremented AO by 4.

In fact, incrementing or decrementing the content of an address register in con-

junction with the use of indirect addressing is so common that the designers of the

M68000 have combined the increment and decrement operation with the indirect

addressing mode as in the example

MOVE.B (AO)+,D0

which performs the same operation as

MOVE.B (AO) ,DO

ADDA.L #1,A0

This addressing mode is called address register indirect with postincrement. The

amount by which the address register is incremented is determined by the operand

size. In the example above, the operand size is Byte and the address register is

incremented by 1. If we would have used the instruction MOVE.W (A0Q)+,D0, the

address register would have been incremented by 2, because each operand occupies

46 Instruction Set Model

one word. Finally, if the operand size would have been a long word, the address

register would have been incremented by 4. We now show the same program again

using the optimization provided by this addressing mode.

MOVEA.L #VEC,AO

MOVE.B #0,D0

MOVE.B #5,D1

LOOP ADD.B (A0)+,D0

SUBI.B #1,D1

BNE LOOP

MOVE.B DO,SUM

It is also possible to traverse the vector in the reverse order so that the next

vector element to be accessed is the one that appears at the next lower address:

SUBA.L #1,A0

MOVE.B (AO) ,DO

There is a shorthand form for this computation that does the same, which is
illustrated by

MOVE.B -(AO) ,DO

This addressing mode is called address register indirect with predecrement. As with
the postincrement addressing mode, the amount by which the address register is
decremented is determined by the operand size. Note that the address register
is decremented before the operand is accessed. One would think that we could
place the minus sign after (AO) in order to decrement the address register after the
operand is accessed. This is not possible and the reason is that the designers did
not prioritize this possibility. Likewise, it is not possible to place the plus sign in
front of (AO) when the increment addressing mode is used.

There are other useful addressing modes which we will describe before we close
this section. Consider the following Pascal program:

SUM := 0;

for i:=0 to N-1 do

SUM := SUM + VEC[i +N] - VEC[L i];

This program calculates the accumulated difference between two subvectors of size
N stored in VEC. In each iteration, the difference of the two vector elements that

Indirect addressing 47

appear N elements apart is calculated. The following program demonstrates the

use of an efficient addressing mode to refer to the vector elements.

MOVEA.L #VEC,AO

MOVE.B #0,D0

MOVE.B- #N,D2

LOOP MOVE. Biv-N(A0);, D1) 3 VECE i +.N] => D1

SUB.B (AO) 2 Diges ODides VECL i] => D1

ADD.B D1,DO 3) (DO) EOP) => DO

SUBI.B #1,D2

BNE LOOP

MOVE.B DO,SUM

In order to access VEC[i+N], we have used yet another addressing mode called

address register indirect with displacement. The instruction MOVE.B N(AO) ,D1 per-

forms (N + (A0)) — D1. The displacement N is a constant value to be added
to the address register before the operand is accessed. It is stored as a 16-bit

two’s complement number which means that the displacement can be in the range

[—32768, 32767].

Instead of adding a constant value to the address register, it may sometimes be

convenient to add the content of another register which we call the index register.

This is useful if we want to perform the following computation:

SUM := 0;

for i:=0 step 8 to K do

SUM := SUM + VEC[i];

This program can be implemented by

MOVEA.L #VEC,AO

MOVE.L #0,D0 ; SUM := 0

=) MOVES #0 ,D1 3 dy =O

LOOP ADD.B OCAO;D1)>D0~ 7 SUM) i=) SUM © VEC a")

ADDI.B #8 ,D1 a B= ah S

CMPI.B #K ,D1

BLE LOOP

The instruction ADD.B 0(AO,D1) ,DO uses register D1 as an index register to access

the operand at location 0 + (D1) + (AO). This addressing mode is called address

register indirect with index. The instruction ADD.B 0(A0,D1) ,DO performs (0 +

(AO) +(D1)) — DO. Any of the data or address registers can be used as index

registers. However, the displacement (in this case 0) is an 8-bit two’s complement

number (range [—128, 127]) when used in conjunction with index registers.

48 Instruction Set Model

Instead of using an address register, it may be convenient to refer to an operand

relative to the location of the next instruction to be executed. This location is

pointed out by the program counter (PC). There are two addressing modes which

use the program counter; the program counter indirect with displacement and the

program counter indirect with index addressing mode. We exemplify the first ad-

dressing mode with the instruction

MOVE.B 20(PC),D1

which copies the content at location 20 + (PC) to D1. The following instruction

MOVE.B 20(PC,DO) ,D1

copies the content at location 20+ (PC)+(D0) to D1. We summarize all addressing
modes we have described in Table 4.7. We also provide examples of their use by
means of the generic move instruction MOVE.B a,DO.

In Tables 4.1, 4.2, 4.5, and 4.6 we have introduced a number of instructions
that are relevant for the model of the 68000 depicted in Figure 4.5. All addressing
modes found in Table 4.7 can generally be applied to designate the source and
destination operands by replacing a in the instruction tables we have presented
by any of the addressing modes for the M68000. Unfortunately, however, there is
no simple rule for which addressing modes are applicable to a specific instruction.
Consequently, therefore, one should consult the detailed information about the
available addressing modes for each instruction. This information is provided in
Appendix B.

Note the correspondence between the assembly language syntax and the nota-
tion. In general, the rule for the assembly syntax is to point out the address (or
register name) for the operand. For instance, the address of an operand pointed to
by indirect addressing is (Az), that is, the content of register Ai which is exactly
what the notation says.

EXERCISES

4.27 Write a program that performs the following operation, us-
ing indirect addressing with postincrement and assuming 16-bit
operands: (10046) ar (10216) ae (10446) = 10646.

4.28 Generalize the previous program to compute: (10016) + (10236) +
-.- + (10016 +2N) — 10016 +2N +2, wherel1<N< 25510.

4.29 Rewrite the same program so that it uses the address register
indirect with displacement addressing mode.

Subroutines 49

Table 4.7 The addressing modes for the M68000.

Addressing mode Example Notation

Data register direct MOVE.B D1,DO (D1) — DO

Address register direct MOVE.L AO,DO (A0) — DO

Absolute MOVE.B 1,D0 @, "=" D0

Immediate MOVE.B #1,D0 1 D0

Indirect MOVE.B (AO) ,DO ((A0)) — DO

Indirect with MOVE.B (AO)+,DO0 ((A0)) — DO;

postincrement (A0)+1 — AO

Indirect with MOVE.B -(AO) ,DO (A0)-1 — AO;

predecrement ((A0)) — DO

Address register

indirect MOVE.B 10(AQ) ,DO ((A0) + 10) — DO

with displacement

Address register
indirect MOVE.B 10(AO,D1),DO0 ((A0)+(D1)+10) — DO

with index

Program counter

indirect MOVE.B 10(PC) ,DO (2G) 10) aie 0)
with displacement

Program counter

indirect MOVE.B 10(PC,D1),D0 ((PC)+(D1) +10) — DO
with index

4.30 Rewrite the same program so that it uses the address register

indirect with index addressing mode.

4.6 Subroutines

We have seen how to capture repeating sequences of operations by using conditional

branches to construct loops. But there are other kinds of common patterns for

which the loop concept is not sufficient. Consider the following computation:

50 Instruction Set Model

a(4) + 2(8) 4 9(°) —, RESULT. This could be accomplished by the following
sequence of instructions, ignoring the overflow that might occur:

MOVE.L A,D1

MOVE.L #1,D0

ASL-L = D1, DO ; Shift (A) times

MOVE.L DO,RESULT

MOVES ESB: Dill

MOVE.L #1,D0

ASL.L Di,DO ; Shift (B) times

ADD.L DO,RESULT

MOVErn eC) Da:

MOVE.L #1,D0

ASLL) Dit DO ; Shift (C) times

ADD.L DO,RESULT

The code above contains three sequences of instructions that are exactly identical,

namely, the instruction sequence that computes two to the power of an operand

contained in register D1. What we would like to do is to write this code segment

only once and somehow make a reference to it so that it can be ‘called’ from
various places in the program. There are many important reasons why we should
not repeat the code of this computation. First, in order to reuse the same code
over and over again and second, it occupies less space in memory. What we want
to achieve is a way to support what in high-level languages are referred to as a
subroutine or a procedure, that is, a piece of code that can be called at various
places in the program. There are two fundamental mechanisms needed to support
subroutines; a subroutine call and a subroutine return mechanism.

The calling and returning mechanism on the M68000 is supported by the in-
structions BSR and RTS, see Table 4.8. The BSR instruction is like a BRA instruction
except that the processor ‘remembers’ where the call was made. The RTS instruc-
tion is like a BRA instruction except that its argument is implicitly the address
of the instruction following the corresponding BSR instruction. For now, we.will
ignore how these mechanisms are implemented in the processor. We will return to
this issue in Chapter 6.

By using the subroutine call and return instructions, we can rewrite the previous
program as follows:

MOVE.L A,D1

BSR POW2

MOVE.L DO,RESULT

Subroutines

Table 4.8 The call and return instructions.

Name Operation

BSR label BRA label

remember return address

RTS BRA return address

MOVE.L B,D1

BSR POW2

ADD.L DO,RESULT

MOVER Cee Ce Dili

BSR POW2

ADD.L DO, RESULT

POW2 MOVE.L #1,D0

ASL.L D1,DO

RTS

EXERCISES

51

4.31

4.32

4.33

4.34

Write a subroutine that determines which of the two 32-bit un-

signed integers in DO and D1 that are largest. DO is assigned the

largest of these numbers.

Use the subroutine in the previous exercise to write a program

that determines the largest of all vector elements contained in

vector VEC[i], i =0,1,2,..., N—1, where WN all vector elements

are 32-bit unsigned numbers.

Write a subroutine that computes the integer division

(D0) /2"° — DO, where DO contains a 32-bit operand. Hint:
Use an arithmetic shift-instruction.

Use the subroutine in the previous exercise to compute

VEC(0]+VEC(1]/2' + ...VEC(N]/2%. All vector elements con-

tain 32 bits and the result should be available in register D2.

52 Instruction Set Model

15 8 7 0

Operation word

Immediate operand (if any, one or two words)

Source effective address extension (if any, one or two words)

Destination effective address extension (if any , one or two words)

Figure 4.6 Instruction format for M68000.

lus) SWAP OS} es IME GS) ace 7 oy Sr eh By DY

ADD nye Loe Effective address
Regist -Mode

ee td
is) Se ad 0

pra [0110000 0] thrdainenen
Figure 4.7 Operation word of the ADD and BRA instructions.

4.7 Instruction format and coding

In this chapter, we have been concerned with the operation of the processor at
the instruction set level. In order to simplify the discussion, we used the assembly
language notation to describe the semantics of the instruction set of the M68000.
This is not the true picture, however, when it comes to the questions on how the
machine language program is stored in memory, and how the processor fetches the
next instruction to be executed.

It was mentioned in Chapter 3 that the assembly language instructions provide
a one-to-one correspondence to the binary-coded machine language instructions.
Therefore, the process of translating an assembly language program into a sequence
of machine instructions is conceptually simple. In this section, we will look at how
the M68000 instructions are coded to get an idea of how a machine language
program, in general, is coded.

Each M68000 instruction makes up one to five consecutive words in memory.
The first word, the operation word, specifies the instruction and the addressing
modes to be used. The additional four words (if any), which are stored at the next
higher addresses, keep information about immediate operands, and/or absolute
addresses as shown in Figure 4.6.
We shall look more closely at the instruction coding scheme by considering the

ADD and BRA instructions in detail. These instructions will give a general idea of the
kind of information stored in the operation word and in the subsequent words that
accompany the instruction. The operation words of the ADD and BRA instructions
are shown in Figure 4.7. Let us first look at the ADD instruction.

Bits 15-12 in the operation word of the ADD instruction is always 1101. This is
the operation code of the instruction. The additional information in the operation

Instruction format and coding 53

Table 4.9 The op-mode field of the ADD instruction. Bit 8 specifies whether

the data register is a source or destination operand and bits 7 and 6 specify the

operand size.

8 7 6 Description

0 -— -— _ Data register is destination operand

1 — ~— Data register is source operand

—~ 0 O Byte operation

— 0 1 Word operation

— 1 0 Long word operation

Table 4.10 The effective address field of the ADD instruction. + These addressing

modes are allowed only when specifying source operands.

Mode _ Register Description

000 Data reg. number _— Data register direct}

111 100 Immediatet

i ui 001 Absolute

001 Addr. reg. number Address register direct

010 Addr. reg. number Address register indirect

O11 Addr. reg. number Address register indirect with postincrement

100 Addr. reg number Address register indirect with predecrement

101 Addr. reg. number Address register indirect with displacement

110 Addr. reg. number Address register indirect with index

dial 010 Program counter indirect with displacementt

LL O11 Program counter indirect with index

word specifies the variations of the ADD instruction allowed. As can be seen from

Table 4.1, one of the operands in the ADD instruction is always a data register. Bits

11-9 designates one of the eight data registers. For instance 000 designates DO

and 101 designates D5. From Table 4.1, we also note that there are two forms of

the ADD instruction, namely, ADD.S a,Dz and ADD.S Di,a. The first form uses the

data register as a destination operand while the second one uses the data register

as a source operand. This choice and the Size attribute are encoded by bits 8-6,

according to Table 4.9.

Bits 5-0 specify the addressing mode of the operand denoted a in Table 4.1

according to Table 4.10. It is referred to as the effective address.

Let us look at some examples:

54 Instruction Set Model

Instruction 15-12 11-9 8-6 5-3 2-0 Hex.

ADD.W A3,D5 1101 101 001 O01 O11 DA4B

ADD.B DO,D1 1101 001 000 000 000 D200

ADD.L D2, (A1) 1101 010 10> 0107 (001, D592

ADD.W D5,-(A4) 1101 101 101 100 4100 # DB64

The instructions coded above have in common that they only need the operation

word to exactly specify what is to be performed. Some of the addressing modes need

additional information. For instance, if we use immediate or absolute addressing,

the constant and the address must accompany the instruction which is done in one

or a sequence of words that are stored at the next higher addresses. Below we

present some more examples:

Instruction 15-12 11-9 8-6 5-3 2-0 Hex.

ADD.W #1,D5 1101 101 OUP ~ ht Et DAAC

0001

ADD.L #$12345678,D1 1101 OO1 ONO) AL AN) = wyeaeXe:

1234

5678

ADD.L $F234,D2 1101 010 010 111 OO1 D4B9

0000

F234

Note that the constant value to be added in the instruction ADD.L #$12345678 Dal
is a long word. It is stored with the 16 most significant bits first and the 16 least
significant bits last. This instruction comprises three words. It is also noticeable
that the instruction ADD.L $F234,D2 stores its absolute address as a long word
with the most significant bits (all zeros) in the word immediately following the
instruction and the least significant bits in the next word.

The address and program counter indirect addressing modes which use displace-
ment and/or index registers also need some additional information. This informa-
tion is kept in the word immediately following the operation word (at the next
higher address).
We shall now turn our attention to how the BRA instruction is coded. The

operation word appears in Figure 4.7. The branch-instruction takes a label as an
operand. The label is simply a memory address at which the next instruction is
to be fetched. Since the execution time of an instruction depends on the number
of words that the instruction makes up, a primary objective for the designers
of a computer is to minimize the number of words that an instruction occupies.
Although it could have been possible to code the branch-instruction as an operation
word accompanied by a long word which denotes the address of the next instruction,
a fundamental property steered the designers to store the branch address in another
way.

Branch-instructions are mostly used to implement repetitive high-level language
constructs such as for- and while-loops in Pascal. Since such loops do not contain

Instruction format and coding 55

many statements (it is unlikely that a for-loop covers several pages in a program
listing), the number of memory cells that store the loop is a fairly small number.
Therefore, another approach of storing the branch address is to store a constant,
the displacement to be added to the current value of the PEQgram counter, as in
the program below:

8000 ADD.B DO,D1 D200

8002 ADD.B Di,D1 D201

8004 ADD.B D2,D1 D202

8006 BRA $8000 60F8

8008 ADD.B D3,D1 D203

In this example, we show the machine code of each instruction to the right.

The branch-instruction at address 80066 is coded 60F8,¢ according to Figure 4.7

and we shall now explain why. When the branch instruction is executed, the

program counter has been updated to contain the address of the next instruction

to be executed, that is, (PC) = 80085. Consequently, —8 should be added to PC in

order to take a branch to address 800015. The operation word of the BRA instruction

contains an 8-bit displacement which designates a number in the range [—128, 127]

(8-bit two’s complement representation). Consequently, the machine code of the

instruction BRA $8000 in the example above is 60F8 6, since F8;g = —8109 in 8-bit

two’s complement representation.

The conditional branch-instructions found in Table 4.3 and the subroutine call

instruction BSR use similar coding schemes. A natural question that arises is how

to translate a branch-instruction that needs a displacement larger than the range

permits. M68000 allows displacements in the range [—32768, 32767] by using an

extra word after the operation word. However, the question remains what to do if

this displacement is not sufficient. To solve this problem, there is an unconditional

branch-instruction JMP address that takes a long word as the branch address.

Likewise, there is an alternative branch-subroutine instruction denoted JSR, that

has the same function as BSR and can be used if the displacement is not sufficient.

We show these instructions in Table 4.11.

Table 4.11 Alternative branch instructions if the displacement provided by BRA

and BSR is not sufficient.

Name Operation

JMP address BRA address

JSR address BSR address

56 Instruction Set Model

EXERCISES

4.35 Determine the machine code in hexadecimal representation

of the following instructions: (a) ADD.L D5,D6 (b) ADD.B
#7%10110110,D3 (c) ADD.W $53254,D2

4.36 Determine the machine code in hexadecimal representation

of the following instructions: (a) ADD.L D7,(A2) (b) ADD.B
(A3)+,D2 (c) ADD.W A2,D2

4.37 Determine the machine code in hexadecimal representation of

the following instructions, assuming that they are stored at ad-

dress 10006 in memory. (a) BRA $1004 (b) BRA $FFE (c) BRA
$FFO

4.8 Summary and concluding remarks

In this chapter, we have looked in detail at the instruction set model of a processor.
This chapter provided an insight into the kind of instructions and their semantics
provided by the M68000. By illustrating the concepts of instruction set models bya
concrete example, we can practically exercise on existing computers. A drawback of
this, however, is the necessity of burdening the reader with a fair amount of details.
Therefore, the intention behind this summary is to provide the reader with those
principles of instruction set models, that are applicable to most computer systems.

A processor usually contains a small number of registers to act as high-speed
memory cells. These are used to carry out a computation on operands by reusing
and accessing them efficiently. The instructions we have seen carry the follow-
ing vital information: the operation, the operand locations, and the size of the
operands.

The operations we have seen are either binary in nature, requiring two operands
(source and destination operands) or unary requiring only one operand. Examples
of binary operations provided by most computers are addition, subtraction, logical
operations such as logical AND, OR (inclusive-or), and EOR (exclusive-or). Other
kinds of operations we have seen are branch, shift, and subroutine-call instructions.

An important feature that we examined was the use of condition codes to con-
trol the program flow depending on the result of an arithmetic or logical opera-
tion. This is supported by a class of branch-instructions called conditional branch-
instructions.

The operand locations are specified by the so-called addressing modes of the
computer. The most widely used addressing modes are register direct, immediate,

Summary and concluding remarks 57

absolute, and register indirect addressing. We presented some additional address-

ing modes that are provided by the M68000. We also noted that the operand size

can be controlled by the instruction in the operand size attribute.

Finally, we looked at how assembly instructions are translated into machine

language instructions by two example instructions, namely, the ADD and BRA in-

structions. An important observation is that a primary objective is to code the

instructions in a concise form so as to reduce the number of words to be fetched

when the processor fetches the next instruction. An example of this is the cod-

ing scheme for the BRA instruction that stores a displacement to be added to the

current value of PC instead of storing the branch address explicitly.

Chapter 5

Assembly Language
Programming

In the previous chapter, we presented the syntax and semantics of the most com-

monly used assembly language instructions for a computer in general, and for

M68000 in particular. We designed small programs from well-defined descriptions.

When it comes to solving larger problems, however, it is almost never the case

that the problem can be directly translated into a sequence of assembly language

instructions. Instead, the programmer must spend a significant amount of time in
structuring the problem in a way that makes it easier to translate it into a sequence
of primitive assembly language instructions.

Most problems are solved using high-level languages such as Pascal, Fortran,
and C, because they provide powerful constructs to express complex computations.
Examples of such constructs are not only repetition-statements such as for-, while-,
and repeat-loops, but also conditionals such as if-then-else statements. Another
important feature is the procedure, or subroutine concept. Procedures serve an
important role in the structuring process in the program design; the programmer
can break down the problem into smaller subproblems, which in turn can be broken
down into smaller problems until a point when it is straightforward to translate
them into assembly language instructions.

Not only must the programmer translate the problem description into a sequence
of instructions. Another important aspect is to write the program in such a way
that makes it possible for others to read and understand the code. There are several
important means of enhancing the program readability. First, symbolic names can
be used to express the intention behind their use. Second, data structures that
are used by a certain subroutine, for example, should be declared close to that
subroutine.

Finally, when the program has been designed, the programmer must make sure
that it works correctly. Certain methods and tools are available to make testing
easier.

The purpose of this chapter is severalfold. First, since the reader is familiar
with high-level language programming, we will use an example language, in essence

58

Translating high-level language constructs 59

Pascal, to present how commonly used high-level language constructs are translated
into sequences of assembly language instructions for the M68000 in Section 5.1. In

Section 5.2, we discuss a method of how to solve larger problems by using top-

down design. We will also discuss the issue of structuring an assembly language

program. Third, in order to illustrate how the design methodology can be applied

to a realistic problem, we will present the design process for a larger program in

Section 5.3. Finally, in Section 5.4, we will present methods and tools that can be

used to test (debug) an assembly language program.

5.1 Translating high-level language constructs

One of the advantages of a high-level language is that it provides powerful con-

structs to design complex programs. As we have seen in the previous chapters, this

is not the case for assembly language instructions. However, it is possible to build

sequences of instructions that implement high-level language constructs. If such

sequences are available, we can use the same methodology that is useful for high-

level language programming design in the process of designing assembly language

programs. We start with a high-level language description of the problem. We then

translate the high-level language constructs into sequences of assembly language

instructions almost in a mechanical fashion. This method is advantageous because

of its robustness; common constructs have always the same assembly language

instruction structure. This fact promotes correctness of the resulting program.

A disadvantage with this method, however, is that it can result in an assembly

language program that does not lead necessarily to the most efficient solution.

Once we have a program working correctly, however, the programmer can then

concentrate on efficiency issues and improve the solution separately.

In this section, we shall look at the implementation of commonly used high-

level language constructs, in essence constructs in Pascal, using M68000 assembly

language instructions.

5.1.1 Data structures

We noted in the previous chapter that symbolic names can be used to refer to mem-

ory locations. Symbolic names enhance program readability considerably. Other

means of enhancing readability include the use of symbolic names for constants.

Most assemblers support definition of symbolic names by special instructions to the

assembler called assembler directives. In Table 5.1, we provide a list of commonly

used directives for the M68000 assembler and their meaning. Note, however, that

the names of the directives may differ from assembler to assembler..

Let us look at some examples to demonstrate the use of the directives in Ta-

ble 5.1. Consider a string of characters ‘HELLO WORLD!’ that is to be printed out on

60 Assembly Language Programming

Table 5.1 Examples of assembler directives for the M68000.

Assembler directive Description

sym EQU- exp

ORG n

sym DC.S n

sym DS.5 n

EVEN

END

Assigns the constant called sym the value of expression

exp.

The instructions and declarations following this direc-

tive are to be placed in memory beginning at address

n.

Initializes the operand of size S at the symbolic address

sym to the value n. The size attribute S can denote a

byte (B), word (W), or long word (L).

Reserves memory space for n operands, each of size S,

where the first operand is stored at the symbolic address

sym.

Causes the next instruction or memory location to be
stored at an even address.

This is a mandatory directive that must appear as the

last statement in the assembly code.

the terminal screen continuously. We want to write a subroutine PRSTR that prints
out the string pointed to by AO. In order to do this, we make use of a predefined
subroutine at address F0432;5 that prints out the character corresponding to the
ASCII-code stored in the seven least significant bits of register DO.

PRINT EQU

NUL EQU

ORG

$F0432

0

$9000

STRING DC.B ’HELLO WORLD!’ ,NUL

EVEN

START MOVEA.L #STRING,AO ; Let AO point at STRING
BSR

BRA

PRSTR CMPI.B

BEQ

MOVE.B

JSR

BRA

PRRET RTS

END

PRSTR ; Print out the string

START

#NUL, (AO) ; If character = NUL

PRRET ; return from the subroutine

(A0)+,D0O ; Otherwise, print it out

PRINT

PRSTR

Translating high-level language constructs 61

We make the following important observations on the use of assembler directives

in this example. First, in order to use a more comprehensive subroutine name

than its address, we have defined PRINT to denote the address of the subroutine

that prints out a single character. We also use EQU to define a symbolic name for

the NUL ASCII-character. The third line is the ORG-directive. It is used to tell the

assembler that the subsequent line (a memory cell or an instruction) is to be located

at address 900015. After the ORG-directive follows the string ‘HELLO WORLD!’ which

is stored using the Define Constant directive with the first character H (ASCII 4816)

at memory address STRING (in effect address 900016). All twelve letters comprising
the string are stored as bytes (DC.B) at address 9000,¢ to 900B,5. NUL is stored

at address 900C ig. Immediately after STRING follows the EVEN directive. This is

needed in order to make the instruction MOVEA.L #STRING, AO following STRING to

be located at an even address. Since the last character (NUL) is located at address

900C,6, the instruction would have been located at the odd address 900Dj.. It

would introduce an address error since M68000 can only fetch instructions and

operands of size word and long word on even addresses. The last statement is the

END directive which should not be confused with the STOP instruction. The END

directive tells the assembler that there are no more instructions to be translated.

Most high-level languages provide a means to declare a set of variables that is

logically considered as a unit. One example is a record with information about

a person such as name, address, and birth date. The next example demonstrates

how to implement such a data structure, in essence the record concept in Pascal.

Consider a data structure for a buffer in which integers are retrieved in the front

and inserted in the end. The size of the buffer is 1009 integers starting at address

LIST. The current number of elements in the buffer is kept in a variable called

COUNT.

const SIZE = 100;

type BUFFER = record

LIST sarray[0..SIZE-1] of integer;

FIRST, LAST ;integer;

COUNT > integer ;

end;

var INBUF :BUFFER;

Variables FIRST and LAST are used to retrieve and insert elements in LIST. We

assume that integers are implemented by long words (32 bits). The following

assembler directives can implement this data structure:

62 Assembly Language Programming

SAG, Je(0)U) 100

INBUFASDS. Le SIZE mVviecror bEsT

DORE O ; FIRST (initialized to 0)

DCO WEASInGinapclhizedmomO))

DCA 70 ; COUNT (initialized to 0)

We will now give an example of an assembly language program that uses the

record INBUF defined above. Consider the following Pascal program:

procedure INSERT(ITEM : integer) ;

begin

INBUF . LIST [INBUF . LAST] :=ITEM;

INBUF .LAST:=INBUF.LAST+1 ;

INBUF . COUNT :=INBUF . COUNT+1 ;

end;

The above procedure inserts an integer named ITEM in the buffer. In order to im-
plement procedure INSERT above, we will make considerable use of the addressing
modes presented in Section 4.5. In order to do this, we note that the base address
of the record INBUF is INBUF and that the address of the first element of LIST is
INBUF+0. Secondly, the addresses of FIRST, LAST, and COUNT are INBUF+4*SIZE.
INBUF+4*SIZE+4, and INBUF+4*SIZE+8, respectively. This makes it possible to
refer to the record variables by displacements using the EQU-directive below.

LIST EQU 0

FIRST EQU 4*SIZE

LAST EQU 4*SIZE+4

COUNT EQU 4*SIZE+8

INSERT MOVEA.L #INBUF,AO

MOVE.L LAST(AO) ,DO

MOVE.L ITEM,LIST(A0,DO) ; INBUF.LIST[INBUF.LAST] :=ITEM
ADDI.L #4,LAST(AO) ; INBUF.LAST:=INBUF.LAST+1
ADDI.L #1,COUNT(AO) ; INBUF.COUNT:=INBUF.COUNT+1
RTS

Note that we add 4 to LAST. This is not exactly what the Pascal program does and
the reason is simply that we use 32-bit integers so the next element in vector LIST
appears four bytes higher up in the address space.

Translating high-level language constructs 63

One could ask why we access the record variables using displacements instead

of absolute addresses. But suppose that we defined more than one variable of type

BUFFER. If we would have used absolute addressing to access all individual variables

contained in the records, it would be a cumbersome task to deal with all absolute

addresses for the individual record variables. By defining displacements, we can

use the same displacements for all instances of the record BUFFER. For example,

to access another instance OUTBUF of type BUFFER, we need only change the first

instruction in the procedure INSERT to MOVEA.L #0OUTBUF, AO.

In summary, assembler directives help the assembly programmer to write com-

prehensive assembly language programs. This is facilitated by means of defining

symbols, constant. values in memory, symbolic names for memory areas etc. Note

that the assembler directives do not produce executable code and, therefore, should

not be confused with the assembly instructions which, on the other hand, result in

executable machine instructions.

5.1.2 Conditional statements

Most high-level languages contain various constructs for conditionals. Conditionals

must be implemented with conditional branch-instructions in an assembly language

program. For example, the statement

if A=B then A:=0;

can be translated into

MOVE.L A,DO

CMP .L B,DO ; if A<>B then

BNE NEXT ; goto NEXT

CLR A

NEXT

assuming that A and B are 32-bit integers.

We shall now turn our attention to the translation of a more general if-then-else

construct of the following form:

if A rel-op B then then-statement else else-statement;

The relational operator rel-op is one of those found in Table 5.2. The construct is

equivalent to

if (A - B) rel-op 0 then then-statement else else-statement;

64 Assembly Language Programming

Table 5.2 Relational operators (rel-op), their mnemonics (cc), and their inverses

relevant for (a) Signed integers and (b) Unsigned integers.

rel-op cc rel-op’ cc’ rel-op cc rel-op’ cc’

<< rab = GE << CS z= CC

< LE > GT << LS = HI

Cee isl 2), = EQ f# IE
Z NE = &EQ A NE = £0
= GE << CE = CG < cs

= GT < LE > HI =< ES

By doing this, we can find the following solution to the problem

MOVE.L A,DO

CMP.L B,DO ; if A-B rel-op O then

Bcc THEN ; goto THEN

else-statement

BRA NEXT

THEN

then-statement

NEXT

where mnemonic cc is obtained from Table 5.2. Note that the mnemonics reflect
their meaning; for instance, LT stands for ‘Less Than (zero)’ and GT stands for
‘Greater Than (zero)’. This makes it easier to remember all conditional branch
instructions.

Note that if B is a constant, we can replace the first two instructions MOVE.L
A,DO and CMP.L B,DO by CMPI.L #B,A. Let us give an example. Implement the
following if-then-else construct as a sequence of M68000 assembly language
instructions, assuming that A and X are Signed 32-bit integers.

if A>=5 then X:=A else X:=0;

The following assembly language program implements this:

CMPI-L #5,A4 ; if A-5 >="0) then

BGE THEN ; goto THEN

GIER Sey ; X:=0 (else-statement)

BRA NEXT

THEN MOVE.L A,X ; X:=A (then-statement)

NEXT

Translating high-level language constructs 65

A word of warning concerning the tests we have devised is appropriate. As

mentioned in Section 4.3, we noted that the conditional branch instructions that

correspond to the relational operators in Table 5.2(a) are relevant for Signed inte-

gers only. When we are dealing with Unsigned integers, we must use the conditional

branch instructions listed in Table 5.2(b) instead.
The translation of a conditional statement with nested else-clauses

if A=0 then

then-statement1i

else if A=1 then

then-statement2

else

else-statement ;

is a natural extension of the scheme we have shown:

CMPI.L #0,A

BEQ THEN1

CMPI.L #1,A

BEQ THEN2

else-statement

BRA NEXT

THEN1

then-statement1

BRA NEXT

THEN2

then-statement2

NEXT

5.1.3 Repetition statements

We will now show how to translate three commonly used high-level language con-

structs for repetition: for-loops; repeat-loops; and while-loops.

A for-loop in Pascal has the form:

for I:=START to STOP do BODY;

If START is greater than STOP, the loop-iteration BODY is not executed. Other-

wise, BODY is executed (STOP—START+1) times. The for-loop is equivalent to the

following statements

66 Assembly Language Programming

I :=START;

goto TEST;

FOR BODY ;

Telet;

TEST if I <= STOP then goto FOR

NEXT

which we can translate into the following sequence of instructions

MOVE.L #START,DO ; I:=START

BRA TEST PELOLOMEE Ol

FOR BSR BODY 3 BODY.

ADDI.L #1,D0 oy Laie

TEST CMPI.L #STOP,DO ; if I <= STOP then

BLS FOR ; goto FOR

NEXT

assuming that I is an Unsigned 32-bit integer and START and STOP are declared

constants.

A repeat-loop is another example of a repetition statement. The difference be-
tween a for-loop and a repeat-loop is that one can have a general test condition
for loop termination in a repeat-loop as shown in the example below.

repeat BODY until A rel-op B;

The repeat-loop terminates when A rel-op B. This is the same to say that it con-
tinues as long as A-B rel-op’ 0, where rel-op’ is the inverse relational operator of
rel-op. The inverse relational operators are found in Table 5.2. For example, the
inverse relational operator of ‘<’ is ‘>’ and the inverse relational operator of ‘=’
is ‘#’. We also show the inverse mnemonics cc’ for each relational operator in
Table 5.2. Given these operators, the following Pascal-statements are equivalent
to the repeat construct:

REPEAT BODY ;

if A-B rel-op’ 0 then goto REPEAT

NEXT

Translating high-level language constructs 67

which becomes

REPEAT BSR BODY

MOVE.L A,DO

CMP. LE B,D0

Bees REPEAT

NEXT

where mnemonic cc’ can be obtained from Table 5.2.

The example program

repeat It=Islvunti le Ieee;

can be translated into

REPEAT ADDIE. lo c#i 51 Fo JERE

CMPI.L #5,1 7a felon <=" Onithen'

BLE REPEAT §; goto REPEAT

NEXT

where we have used the inverse relational operator of >, that is <, to construct the

test. Note that at least one iteration is executed in a repeat-loop. This is because

the loop termination test is performed after each iteration.

In a while-loop, the test is performed before the iteration:

while A rel-op B do BODY;

which can be rewritten as

goto TEST;

WHILE BODY ;

TED if A-B rel-op O then goto WHILE

NEXT

that is, the following sequence of instructions can implement the while-loop:

68 Assembly Language Programming

BRA TEST

WHILE BSR BODY

TEST MOVES Dae O

CMP .L B,DO

Bcc WHILE

NEXT

For example,

while A <> B

can be translated into

BRA TEST

WHILE ADDI.L #10,A

TEST MOVES ADO

CMP) BDO

BNE WHILE

NEXT

‘}

’

>

?

goto TEST

BODY

; if A-B rel-op O then

; goto WHILE

do A:=A+10;

; goto TEST

; A:=A+10

7; at A-Be <=) OM then

; goto WHILE

5.1.4 Parameter passing to subroutines

An important problem when using procedures or functions (collectively called sub-
routines) is how to pass parameters from the calling program to the subroutine.
There are a number of solutions to this problem which we will discuss here. There
are two basic approaches to pass parameters to subroutines; we can either pass the
value or a reference (address) of the variable that comprises the parameter. These
two methods are usually called call-by-value and call-by-reference in high-level lan-
guages.

Values can be passed either by using registers or, if the number of registers is
not sufficient, by dedicated memory locations. For instance, in the Pascal-function

function ADDF(X,Y :integer): integer;

begin

ADDF :=X+Y;

end;

Translating high-level language constructs 69

we can pass X and Y using registers DO and D1 and pass the function value in D1:

ADDF ADD.L DO,D1

RTS

Now suppose that a subroutine uses a larger number of parameters than the

number of available registers. Then it is not possible to use registers as a means

to pass values. A solution to this problem is to associate a memory area with the

subroutine in which the calling program puts all parameters. For instance, if the

ADDF subroutine is to be used to add five numbers

function ADDF(X1,X2,X3,X4,X5 :integer) : integer;

begin

ADDF : =X1+X2+X3+X4+X5;

end;

we can use five memory locations associated with ADDF in the following way

X DS.L 5 ; Space for X1 through X5

ADDF MOVEA.L #X,A0

MOVE.L #0,D1

MOVE.B #5 ,D2

LOOP ADD.L (AO)+,D1

SUBI.B #1,D2

BNE LOOP

RTS

where the function value is returned in D1. Now suppose that we want to use the

function to add two arbitrary memory locations, then the calling program would

have to be responsible for moving the values into registers or memory locations

before calling the ADDF function. It would be more efficient, in this case, to pass the

addresses (call-by-reference) of the operands as in the following implementation:

ADDF MOVE.L (A0),D1

ADD.L CAT DE

RTS

70 Assembly Language Programming

In this implementation, the addresses of the operands are passed through address

registers AO and Al. The result is returned in register D1 also in this case.

EXERCISES

rail Implement the following procedure that retrieves an element

from vector LIST, using the declarations on page 61.

procedure RETRIEVE; begin

ITEM: =INBUF .LIST [INBUF . FIRST] ;

INBUF .FIRST:=INBUF .FIRST+1;

INBUF . COUNT: =INBUF . COUNT-1;

end;

5.2 What sequence of instructions implements the following

if-then-else construct

if A<B then A:=0 else A:=1;

assuming that A and B are 32-bit Signed integers?

5.3 What sequence of instructions implements the following

if-then-else construct

if A<B then A:=0 else A:=1;

assuming that A and B are 32-bit Unsigned integers?

5.4 What sequence of instructions implements the following
if-then-else construct

if (A=>5) and (A<=10) then A:=0 else A:=1;

assuming that A is a 32-bit Signed integer?
Hint: The above if-then-else construct can be rewritten as nested
else-clauses as follows:

ict AG GE omaGhen

A:=1

else if A > 10 then

A:=1

else

A:=0;

Program design and structure 71

5.5 What sequence of instructions implements the following for-loop

for =1, to 10"do

URS te

assuming that I and J are 32-bit Unsigned integers?

5.6 What sequence of instructions implements the following Pascal-
statements

I:=0;

while I < 10 do

Piers

assuming that I is a 32-bit Unsigned integer?

5.7 What sequence of instructions implements the following Pascal-

statements

I:=0;

repeat

ie=Ne ake

Diaten IL IS20)3

assuming that I is a 32-bit Signed integer?

5.2 Program design and structure

In the previous section, we showed how commonly used high-level language con-

structs such as conditionals and repetition-statements can be translated into se-

quences of assembly language instructions. In this section, we will present a method

of how to design large assembly language programs. The approach is based on a

commonly used design methodology referred to as top-down design. The general

idea is to describe the solution to a problem using high-level primitives such as

procedures and functions. Each high-level primitive is in turn described in terms

of primitives on a more detailed level. This stepwise refinement continues until a

point when it is straightforward to translate it into a sequence of assembly language

instructions.

As a base for describing the solution of a problem, one can use an arbitrary

high-level language. But it is also possible to mix this language with one’s own

inventions. A description using a high-level language mixed with one’s own in-

ventions is usually referred to as pseudo-code. We will illustrate this technique by

using Pascal.

The specification and implementation of a program can be summarized by the

72 Assembly Language Programming

following five steps:

1. Specifying the task in pseudo-code

2. Refining the specification by breaking down high-level constructs into more

manageable units.

3. Coding and documenting the program

4. Testing the program

5. Isolating and removing program errors, debugging

The first three steps constitute the design process. First, the solution is described

using pseudo-code. Preferably, one uses a high-level language as long as possible.

The advantage of this is that it provides well-defined constructs. Furthermore, by

using standard translations, as we have shown in the previous section, one can

reach a correct solution faster. Second, each primitive (i.e. a high-level procedure

or function) is specified in terms of primitives at. a more detailed level. This

process continues until a point when it is obvious how to translate each primitive
into a sequence of assembly language instructions. Third, the assembly language
program is coded. At this point it is appropriate to add informative comments so
as to enhance readability.

There are many ways to document a program. First, the comments ought to be
informative. For example: in ‘MOVE.B DO,D1 ; Move DO to D1’ the comment is
NOT informative. Comments should be problem-oriented rather than language-
oriented — it should be assumed that any person that reads the program listings
is familiar with the language (in this case the M68000 assembly language). One
way of adding informative comments is to use the pseudo-code. Each high-level
statement is used as an in-line comment to explain the corresponding sequence of
instructions. Another good idea is to use headers of comments for each piece of
code such as a subroutine. Below, we show what information should go into that
header:

; NAME ADD64

; DESCRIPTION: Adds two 64-bit numbers C := A + B

we NEUI DO and Di pass A, D2 and D3 pass B

; OUTPUT: D2 and D3 return C

; REGISTERS: D2 and D3

ADD64 ADD.L DARDS

ADDX.L DO,D2

RTS

The header contains the name of the subroutine, a short description of what it
does, how the input and output parameters are passed, and which registers are
affected by the subroutine. This information is useful for other persons that use
the subroutine. For example, if a subroutine uses register D2, it is important for

A large program design example 73

the program that performs a subroutine call to save register D2 provided that it
uses register D2.

In the next section, we shall illustrate how all ideas developed in this chapter
can be used to design a larger assembly language program. The last two issues
regarding how to test and debug a program will be addressed in the last section in
this chapter.

5.3. A large program design example

In this section, we shall make use of what we have learned about programming

methodology and style by designing an assembly language program that performs

a nontrivial task. The task we will consider is a program that retrieves information

from a database consisting of a number of records of the following type:

type PERSON = record

FNAME :array[0..20] of char;

LNAME :array([0..20] of char;

MALE :boolean;

BYEAR : integer;

NEXT : PERSON;
end;

Each record keeps information of a person’s first and last name (FNAME and

LNAME), a boolean variable (MALE) that is true if the person is a male, and finally,

the birth year of the person (BYEAR). For simplicity, we use integers to express the

boolean variable MALE (1 for true, and 0 for false). The last variable in the record

(NEXT) is a pointer to the next record. In Figure 5.1, we show how the database
keeps track of three records. The first record appears at address 9000,.¢, while the

last record starts at address 906816.

The program will be able to insert a new record of type PERSON, list all persons

that were born in a specific year, and list all persons of a specific sex. This task

could be described using the following Pascal specification.

9000 Peter 9034, Mary a | goes | 3"

Wilson “| Nelson an _ Anderson

} 1965s W106, sues «ipl i 4067.09 © (1

ieee foo eat
9034 A 9068 Pi | 909C

Figure 5.1 An example of how the database keeps track of three records.

74 Assembly Language Programming

begin

repeat

CHOICE: =PRMEN; (*** PRMEN prints the menu

and returns the CHOICE ***)
if CHOICE = i then

INSREC (*** INSREC inserts a new person

into the database ***)

else if CHOICE = 2 then

PRBORN (*** PRBORN prints all persons

born a specific year ***)
else if CHOICE = 3 then

PRSEX ; (***x PRSEX prints all persons

of a specific sex ***)

tahealIe COs = —ile

end.

Although we haven’t written the procedures that implement the desired function,

we can structure the program at this very early stage of the design process. The

next step is to refine the specification of each procedure and function.

function PRMEN;

begin

PRSTR(’?1. Insert new record’);

PRSOTRC?25 Find’ all’ persons born’ in year fr")%

PROTRC' So" "Find all persons with sexy .7):

CHOICE: =READINT;

if (CHOICE <"1) or (CHOICE >"3)) then’ CHOPCE :=—1"

PRMEN : =CHOICE;

end;

PRMEN first prints out the menu and then reads an integer by calling a function

named READINT. The menu choice is an integer between 1 and 3. If another integer
is read, CHOICE is assigned —1.

procedure INSREC;

begin

PRSTR(’ Input the first name’); LAST.FNAME:=READSTR;

PRSTR(’ Input the last name’); LAST.LNAME:=READSTR;

PRSTR(’ Input sex’); LAST.MALE:=READINT;

PRSTR(’ Input year’); LAST.BYEAR:=READINT;

LAST: =LAST . NEXT;

end;

INSREC reads all variables in the record from the terminal. This is done by using
a function called READSTR. Note that LAST is a pointer to the last record to be

A large program design example 75

inserted in the database. In Figure 5.1, LAST contains the address to the record

where the new person shall be inserted. It must be initialized in the main program

to point to the first record. When a new record is inserted, LAST is updated to

point to a new record.

procedure PRBORN;

begin

PRSTR(’ Input year’) ;

YEAR:=READINT;

RECS ="‘First) record? ;

while REC <> LAST do

begin

if YEAR = REC.BYEAR then

begin

PRSTR(REC. FNAME) ;
PRSTR(REC.LNAME) ;

end;

REC: =REC . NEXT ;

end;

end;

PRBORN reads an integer from the keyboard using the function READINT. It then

traverses the records in the database according to Figure 5.1 to check for the

occurrence of a person whose birth year matches the variable YEAR. If there is a

match, the person’s name is printed out on the terminal screen using the procedure

PRSTR. The next procedure we consider, PRSEX, is similar in its structure:

procedure PRSEX;

begin

PRSTR(’ Input sex’);

SEX :=READINT;

REG eer ireste record...

while REC <> LAST do

begin

if SEX = REC.MALE then

begin

PRSTR(REC. FNAME) ;

PRSTR (REC. LNAME) ;

end;

REC: =REC . NEXT ;

end;

end;

76 Assembly Language Programming

In the specification of the procedures PRBORN and PRSEX, we have used a mix

of English such as REC := ‘First record’ and fairly well-defined functions such

as READINT which reads an integer from the keyboard. This has made it possible

to specify the intention of each procedure in terms of other procedures. The net

effect of this is that the only procedures that are left to be specified are PRSTR,

READSTR, and READINT. These might be offered by the computer system in terms

of device drivers in the so called operating system, or, can be coded directly in

M68000 assembly code. We can now start to code the entire program, but before

we do this, we need to agree upon a program structure.

Besides the advice given in the previous sections, we shall give some additional

advice on how to structure a program such as the one we are dealing with here.

In essence, it consists of a main program, a number of subroutines, and data

structures. We will apply to the following structure:

e Main program. A header of comments describes its function.

e Subroutines. Each subroutine (procedure or function) should be preceded

by a header specifying its name, a short description of its function, input as

well as output parameters, and registers that are affected. In addition, the

declarations and local variables should precede the subroutine code.

e Global data structures.

On the next few pages, we show the assembly code for the entire program starting

with the main program.

; PROGRAM: MAIN

; DESCRIPTION: Inserts new records of persons and answers simple queries.

MAIN BSR PRMEN ; repeat CHOICE:=PRMEN

CMPI.L #1,CHOICE ; if CHOICE=1 then

BEQ THEN1

CMPI.L #2,CHOICE ; else if CHOICE=2 then

BEQ THEN2

CMPI.L #3,CHOICE ; else if CHOICE=3 then

BEQ THEN3

BRA TEST

THEN1 BSR INSREC ; INSREC

BRA TEST

THEN2 BSR PRBORN ; PRBORN

BRA TEST

THEN3 BSR PRSEX ; PRSEX

TEST CMPI.L #-1,CHOICE ; until CHOICE=-1
BNE MAIN

STOP #$2700

A large program design example 77

On the previous page, we show the code for the main program. We note how the

original specification in Pascal is used as comments in the main program. This way,

it is easy to understand how the program works. Also note how we have made use

of standard translations for the if-then-else statements and the repeat-statement

that appear in the Pascal specification.

The main program will terminate if a menu choice outside the allowed range

(1,2, and 3) is typed in. The STOP instruction that appears as the last instruction

is then executed.

; NAME: PRMEN

; DESCRIPTION: Prints a menu and reads menu choice.

o) ENPUT None

POULE UL: Menu choice 1,2,3 or -1 in memory location CHOICE.

; REGISTERS: AO

STR1 DeaB ?>4. Insert new record’ ,$0D,$0A,0

STR2 DEAE ?2. Find all persons born in year...’,$0D,$0A,0

STR3 DEAE 23. Find all persons with sex...’,$0D,$0A,0

EVEN

CHOICE DSec 1

PRMEN MOVEA.L #STR1,A0

BSR PRSTR ; PRSTR(’?1. Insert new

PTecordyy)

MOVEA.L #STR2,A0

BSR PRSTR ; PRSTR(’?2. Find all persons

R Isfenciet. abiol WEGEGo ua)

MOVEA.L #STR3,A0

BSR PRSTR ; PRSTR(’?3. Find all persons

S) AWist eS Oman. 2)

MOVEA.L #CHOICE, AO

BSR READINT ; CHOICE:=READINT

CMPI.L #1, CHOICE ‘alt (CHOlCKe< J cthen

BLT MINUS1 ; BRA MINUS1, or

CME #3 , CHOICE if .CHOMGESS 3 then

BGT MINUS1 ; BRA MINUS1

RTS

MINUS1 MOVE.L #-1,CHOICE ; CHOICE:=-1

RTS

The function PRMEN above uses a variable named CHOICE to return the menu

choice. The first thing PRMEN does is that it prints out the menu. Note how all

strings are declared using the DC directive. Also note that each character string is

terminated by the ASCII codes for carriage return (OD), line feed (OA), and NUL (0).

While the first two ASCII characters cause the cursor on the screen to proceed to

the beginning of the next line, the NUL character does not result in any output. It

78 Assembly Language Programming

is used by the PRSTR subroutine as an end-of-string mark. The PRSTR subroutine,

which is used to print out the string, assumes that the address of the first character

is stored in AO. This is why AO is initialized before the subroutine is called.

; NAME: INSREC

; DESCRIPTION: Inserts a new record into the database.

uN RU None

sPOUME Un None

; REGISTERS: AO,A1

FNAME EQU 0 ; Displacement for FNAME

LNAME EQU 20 ; Displacement for LNAME

MALE EQU 40 ; Displacement for MALE

BYEAR EQU 44 ; Displacement for BYEAR

NEXT EQU 48 ; Displacement for NEXT

NREC EQU 52 ; Displacement to next record

LAST Dems DATABASE

ISTR1 DC.B >Input the first name’ ,$0D,$0A,0

ISTR2 DC.B ?Input the last name’ ,$0D,$0A,0

ISTR3 DC.B ?Input sex’,$0D,$0A,0

ISTR4 DC.B ?Input year’ ,$0D,$0A,0

EVEN

INSREC MOVEA.L LAST,A1

MOVEA.L #ISTR1,A0

BSR PRSTR ; PRSTR(’Input the first name’)

LEA FNAME (A1) , AO
BSR READSTR ; LAST.FNAME:=READSTR

MOVEA.L #ISTR2,A0

BSR PRSTR ; PRSTR(’?Input the last name’)

LEA LNAME(A1) , AO

BSR READSTR ; LAST.LNAME:=READSTR

MOVEA.L #ISTR3,A0

BSR PRSTR ; PRSTR(’Input sex’)

LEA MALE (A1) , AO

BSR READINT ; LAST.MALE:=READINT

MOVEA.L #ISTR4,A0

BSR PRSTR ; PRSTR(’?Input year’)
LEA BYEAR(A1) , AO

BSR READINT ; LAST.BYEAR:=READINT

MOVEA.L A1,A0O

ADDA.L #NREC, At ; Address of the next entry

MOVE.L A1,NEXT (AO)

MOVE.L A1,LAST ; LAST:=LAST.NEXT

RTS

A large program design example 79

In INSREC on the previous page, character strings and integers are read using

the subroutines READSTR and READINT. Both these subroutines use AO to point at

the location in memory where to put the result. We have used a special instruction

called LEA a,Ai that computes the absolute address of expression a and stores it

in address register Az. For example, LEA LNAME(A1),A0 performs the operation

LNAME+(A1) — AO. For more details about this instruction please refer to
Appendix B.

Also note that the address of the new record to be inserted is always present in

the variable LAST. This is why A1 is initialized to contain the address stored in

variable LAST. LAST must also be updated before the return instruction is executed.

This is done by first adding the displacement NREC to Al and then updating LAST

with the content of Al.

; NAME: PRBORN

; DESCRIPTION: Prints all persons born in a specific year

7 UNPUT : None

OUDEUT2 None

; REGISTERS: AO,Ai,DO

PRSTR1 DC.B >Input year’ ,$0D,$0A,0

EVEN

YEAR DS.L 1

PRBORN MOVEA.L #PRSTR1,AO

BSR PRSTR ; PRSTR(’?Input year’)

MOVEA.L #YEAR,AO

BSR READINT ; YEAR:=READINT;

MOVEA.L #DATABASE,A1 ; REC:= ‘First record’

BRA WTEST1

WLOOP1 MOVE.L YEAR,DO

CMP... BYEAR(A1),DO ; if YEAR = REC.BYEAR then

BNE CONT1

LEA FNAME(A1) , AO

BSR PRSTR ; PRSTR(REC. FNAME)

LEA LNAME (Ai) , AO

BSR PRSTR ; PRSTR(REC.LNAME)

CONT1 MOVEA.L NEXT(A1),A1 ; REC:=REC.NEXT

WIEST1 CMPA.L LAST, Ai te RE Gee LAS lL <>aOl then

BNE WLOOP 1 ; goto WLOOP1

RTS ; end;

The assembly code for PRBORN appears above. The first thing it does is to read

the year to be matched against all entries in the database from the keyboard (BSR

READINT). The first record appears at address DATABASE. Al is used to point to the

current record in the database. This is why it is initialized to contain the absolute

address corresponding to DATABASE. Since PRSEX is very similar in structure, we

leave it as an exercise for the reader to design PRSEX.

80 Assembly Language Programming

Finally, we need to specify the subroutines PRSTR, READSTR, and READINT. They

appear on the next two pages. Parameters to/from these subroutines are passed by

reference using AO to contain the address. PRSTR prints all characters until ASCH

NUL (0) is encountered. READSTR reads characters until a carriage return (ODj¢) is

encountered. It then inserts ASCII NUL and exits. All these subroutines use two

subroutines CHRIN and CHROUT that print and read an ASCII character to/from the

terminal, respectively. In the next chapter, we will see how these subroutines can

be implemented by extending the model of the computer system with input/output

devices.

; NAME: PRSTR

; DESCRIPTION: Prints a string terminated by NUL on the terminal screen

; INPUT: A string pointed to by AO

; OUTPUT: None

; REGISTERS: AO ,DO

NUL EQU 0

CHROUT EQU $F0432

PRSTR CMPI.B #NUL, (AO)
BEQ PREND

MOVE.B (A0)+,D0

JSR CHROUT ; Print the character in DO

BRA PRSTR

PREND RTS

; NAME: READSTR

; DESCRIPTION: Reads a string from the keyboard

7 INEUL: A string pointed to by AO

; OUTPUT: None

; REGISTERS: AO, DO

CR EQU $0D ; Carriage return

CHRIN EQU $F0420

READSTR JSR CHRIN ; Read a character into DO

JSR CHROUT ; Print it on the screen

CMPI.B #CR,DO ; Exit if Carriage Return

BEQ RSTEND

MOVE.B- DO, (A0)+ ; else, insert it into buffer

BRA READSTR

RSTEND MOVE.B #NUL, (AO)

A large program design example 81

READINT, that appears below, reads a decimal unsigned number from the key-

board and converts it into a 32-bit unsigned integer in the following way: If a

character is not a decimal symbol, the subroutine simply ignores it. Otherwise,

it converts the string of decimal symbols into a 32-bit unsigned integer. To do

this, we make use of the instruction MULU which multiplies the source operand by

the destination operand (register D1) to yield a 32-bit unsigned product. There

is a corresponding instruction for signed multiplication called MULS. For additional

information on how to use them, see Appendix B.

; NAME: READINT

; DESCRIPTION: Reads and converts an unsigned decimal number.

UN BUI: An integer pointed to by AO

OUTPUT: None

; REGISTERS: DO,D1

READINT MOVE.L #0,D1

READL MOVE.L #0,D0

JSR CHRIN ; Read character

JSR CHROUT sischomsct

CMPI.L #CR,DO ; Exit if Carriage Return

BEQ RINT

SUBI.L #$30,D0

BLT READL ; Less than 07, ignore it

CMPI.L #9,D0

BGT READL ; Greater than 97, ignore it

MULU #10,D1 ; Di:=10*(D1)

ADD.L DO,D1i

BRA READL

RINT MOVE.L D1, (AO)
RTS

Finally, we show the assembly code for the declaration of the database on the

next page. It is implemented using a memory area that consists of 10*52 bytes,

sufficient to store ten records. A critical issue in this application is how to prevent

the user from inserting too many records. The solution to this problem is to test

whether there is a sufficient amount of memory to insert a new record in INSREC.

We have deliberately overlooked this test and will only mention that the program

developed in this section is not guaranteed to work correctly if more than 10 records

are inserted.

82 Assembly Language Programming

DATABASE DS.B_ 52

DSp baa

DSpBw noe

Dobe

DiSigle} Ley

Dor oaos

DSi be

DSB oe

DSP Baeo2

DS by

END

EXERCISES

5.8 Write a subroutine CONVERT that converts the ASCII-character in

DO as follows: If it is upper-case (A,B,C,...) then it does nothing,

if it is lower-case (a,b,c,...) it converts it into upper-case (Use

the ASCII-table from Chapter 1).

5.9 Use the subroutine from the previous exercise to write another

subroutine CSTR that converts a string of characters pointed to

by AO and ended by ASCII NUL.

5.10 Define a table TAB with N integers, each occupying one word.

Then write a subroutine that adds all these integers and returns

the value in register DO.

5.11 Write a program that calculates and prints all Fibonacci numbers

< 65 535. PUTINT can be used to print a 16-bit number stored in

register DO. The Fibonacci numbers are defined recursively as:

ag = ay = 1

a; = Ay + Aj_9, > Il

5.12 Implement the PRSEX procedure according to the Pascal specifi-

cation on page 75.

Testing and debugging 83

5.4 Testing and debugging

Testing is the phase of the design process in which the programmer identifies pro-

gram errors, bugs. The debugging phase aims at locating the bugs and removing

them. These two phases are repeated until the program is virtually free from

bugs. Virtually, because in practice it is impossible to prove correctness of large

programs.

Many people tend to believe that the major part of the time to develop a program

is spent at the specification and coding phase. This is not the true picture at all.

It is not unusual that testing and debugging count for half the time of the design

process.

One way of shortening this time is to follow the advice given in the previous

sections. By using a structured approach in the design phase, the number of bugs

will be reduced. Furthermore, bugs that are introduced will be easier to locate. It

is not very likely that a program will work correctly the first time it is run. Most

programmers will not experience this during their life-time, apart from very small

problems. Therefore, an important part of the programming methodology is to

devise some rules for testing and debugging, which will be done in this section.

The first kind of error test is carried out by the assembler. The assembler

checks the program for syntactical errors. It can detect nonexistent instructions

and symbolic names that are not defined. However, it cannot detect logical errors,

which is a very important fact to be aware of. The kind of errors that the assembler

can detect are called assembly-time errors. We will not discuss these in further

detail. Instead, we will focus on program errors that pass the assembler and are

detected at run-time. These are called run-time errors, or bugs.

The task of a program is to generate a certain output (result) for a certain input.

This task is the core of the testing phase, namely, the programmer should devise

some tests consisting of a number of input/output pairs.

Once a faulty output is detected, the debugging phase aims at locating the bug

that caused this output. This is usually facilitated by a tool called a debugger. A

debugger is a program that is run in order to aid the programmer in locating the

bugs. We say that the processor is in debug mode, when the debugger is executed

and in user mode when the program under test is run. At the assembly language

level, a debugger usually provides the following facilities:

e Single stepping. The program can be executed one instruction at a time in

user mode. The processor enters debug mode after each instruction.

e Execution. The program can be started at an arbitrary address and run at

full speed.

e Memory and register examination and modification. The contents of memory

locations and registers can be inspected and altered when the processor is in

debug mode.

e Running with breakpoints. Addresses, so called breakpoints, can be specified

so as to enter debug mode when the breakpoints are reached.

84 Assembly Language Programming

Let us look at how these facilities can be used in a typical debugging session. A

common situation is that the program never terminates when it is run for the first

time. In this case a first step is to make an educated guess as to where the bug is

located. The second step is to set some breakpoints in order to isolate the location

where the bug is and execute the program. If the breakpoints are reached, the task

is to make sure that the register and variable contents are exactly as expected. If

not, the bug is tracked. Otherwise, continue until the bug is found. One can also

make use of the ‘Single step’ facility to chase the bug when you are close to it.

We end this chapter by presenting a few bugs that are common to novice assem-

bly language programmers:

Structure:

MOVE.L #VAR,DO

LOOP SUBI.L #1,D0

VAR iDS2E 1

BNE LOOP

Although this program is syntactically correct (the assembler won’t complain), it
will not work as expected. The problem is that location VAR is defined in the

middle of the code. The processor will interpret the content of VAR as an instruc-

tion, instead of fetching the branch instruction. Note that the assembler doesn’t

rearrange instructions — it simply translates them one after another.

Operand size:

MAIN ORG $8000

TAB DC.B WS 5 a

EVEN

START MOVEA.W #TAB,AO

MOVE.B #0,D0

LOOP ADD.B (A0)+,D0

SUBI.L #1,D0

BNE LOOP

Some programmers believe that the start address of an assembly language program

is the one that corresponds to the first line, that is 8000;¢ in the example above.

This is of course not true. Therefore, always make sure at what address the first
instruction of a program starts.

Another important problem is the proper use of operand size attributes. In the

example above, we have used operand size Word to load AO, which is in general

wrong! The reason is that addresses are considered as 32-bit unsigned integers. In

Testing and debugging 85

general, the choice of operand size should be carefully considered.
The programmer should also avoid accessing a word or double word on odd

addresses. This results in address error (which will be explained in Chapter 8) and
is in particular difficult to locate. A related problem, which has been discussed
earlier, is to avoid instructions to be loaded at odd addresses at memory. This
could be avoided by inserting the EVEN assembler directive prior to the code.

Addressing modes:

MAIN ORG $8000

VAR DGrE START

START MOVEA.L #VAR,AO

MOVE.B (AO) ,DO

MOVEA.L VAR, AO

MOVE.B (AO) ,DO

Another common problem is to use the addressing modes incorrectly. The first

instruction loads the value of VAR (= 8000j¢) into AO, while the third instruc-

tion loads the content of VAR (=START=8004j.) into AO. Make sure that you

have understood the difference between all the addressing modes we

introduced in the previous chapter (see page 49)!

Branches:

The reason for executing a program loop too many or too few times can be that

the loop variable is initialized incorrectly:

MOVE.L #0,D0

LOOP ADDI.L #1,D0

CMPI.B #5,D0

BGT LOOP

Note that the branch is taken 4 times (and not 5) times. Another problem could

be the incorrect use of conditional branch instructions.

Improper base for constants:

Forgetting a ‘$’ or ‘%’ when dealing with hexadecimal and binary numbers may

introduce severe bugs.

86 Assembly Language Programming

5.5 Summary and concluding remarks

In this chapter, we presented a methodology for designing and testing assembly

language programs. The primary objective is to design for reliability.

The assembler provides support for this by the assembler directives. These

are used to define symbolic names for certain entities such as memory locations,

constants etc.

By using a high-level language notation to specify the task of the program,

we can use a top-down methodology in order to refine the specification for a final

implementation by assembly language instructions. By using standard translations

for certain common high-level language constructs, we can translate these in a

mechanical fashion and thus support reliability. The pseudo-code can serve as

in-line comments in the course of documentation.

We illustrated the methodology developed in the first two sections by the devel-

opment of a fairly large example program. We imposed a structure in which we

made considerable use of headers as a means of documenting the subroutines and

global data structures.

Finally, we gave some advice on how to locate and remove program errors. An

important tool in the course of debugging is the debugger which enables the pro-

grammer to execute the program in a controlled fashion by letting him examine

the content of relevant registers and memory locations.

Chapter 6

Input and Output Control

In this chapter, we will refine our model of the computer system introduced in

Chapters 3 and 4 by adding the important concept of I/O. Other topics to be

discussed in this chapter are how the return addresses from subroutines are handled,

and some other features of the processor that enhance performance and reliability.

6.1 Input and output model

In the simplified models we introduced in the previous chapters, information can

only be transferred between the processor and the memory. A computer that is

not capable of exchanging information with the outside world is rather useless. In

order to explain how this is performed, we need to extend our model to include

the important concept of input/output (I/O).

In order for a computer to exchange information with the outside world, there

are dedicated registers denoted I/O-ports. The I/O-ports are connected to input

and output devices as shown in Figure 6.1. They are shared between the processor

and the I/O-devices; an input device can write to a port while the processor can

read from the same port. The implication of this is that it can be meaningful for a

program to perform successive reads from a port, because an input device may have

changed the content of the input register in between two successive read operations.

Conversely, it can be meaningful for the processor to perform successive writes to

a port, with no intervening read operations, because an output device may have

read the last value written by the processor.

Some ports are dedicated to transferring information from the environment to

the processor. These are called input ports. Conversely, some ports are dedicated

for transferring information in the opposite direction. These are called output ports.

From the discussion so far, it should be clear that it is not meaningful to read from

output ports. By the same reason, it 1s not meaningful to write to an input port.

In the example computer system in Figure 6.1, there is one input port, one output

87

88 Input and Output Control

The Memory

Data Address Control
Registers Registers Registers

°
1

FRFEFFF

: The I/O-ports

V Vv

Figure 6.1 A computer model including I/O-ports.

port, and a combined input/output port.

From the memory model’s point of view, M68000 identifies parts of the address

space as I/O-port addresses which are connected to dedicated I/O-ports. While

the instruction set model is the same for all computers based on the M68000,

the available amount of memory and I/O-ports may differ. The memory map

of a computer system specifies exactly how the address space of the processor is

distributed between available memory locations and I/O-ports. The manufacturer

of a computer system usually offers this information to the system programmer.

The example computer system in Figure 6.1 connects addresses 0-FFEFFFj¢ to

memory locations and addresses FFF0001¢, FFF002;6, and FFF004;¢ to I1/O-ports.

The implications of connecting I/O-ports to memory addresses are twofold (i)

I/O-ports can be read and written to using the addressing modes provided for mem-

ory locations, and (ii) there are no dedicated instructions for information transfer

between the processor and the environment; information is simply transferred us-

ing the instruction set relevant for accessing memory locations. This type of I/O

scheme is usually referred to as memory-mapped I/O.

Let us look at an example. The following instruction reads a byte from the input

port at address FFF002,¢ and copies it to memory location IO:

INPORT EQU $FFF002

MOVE.B INPORT,IO

Now suppose that an input device, such as a keyboard, is connected to an input

port. Furthermore, suppose that we want to design a program that reads characters

from the keyboard. We then run into the problem of how to detect when there is a

Input and output model 89

new character available in the input port. Conversely, suppose that an output port

is connected to a printer. Now if a program transfers characters from the memory

to the printer faster than the printer can receive them, characters that have not

been printed out might be overwritten in the output port. Both these situations

are examples of the general issue of how to synchronize the information transfer

between the computer and an input/output device.

One commonly used technique to solve this problem is to associate a flag with

each port that can be read by the processor at a dedicated I/O-address. For an

input port, the flag is set when a new value is available and reset when the processor

reads from the input port. For an output port, the flag is set when the value has

been read by the output device, and reset when a new value has been written by

the processor. Given such flags, we can design a program that synchronizes the

information between the processor and any device.

For example, suppose that a flag is available in the least significant bit of port

FLAG. This flag is set when data is available in input port INPORT. We can then

write a program that reads from the input port when data is available as follows:

LOOP ANDI.B #%00000001,FLAG

BEQ LOOP
MOVE.B INPORT, (AO)+
BRA LOOP

Note how the program makes use of the logical AND instruction to determine

whether the least significant bit of input port FLAG is set. If it is cleared, the result

of this operation is zero and the subsequent branch is taken. If the flag is set, the

execution continues at the next instruction which copies the content of the input

port at address INPORT to a memory location pointed to by AO. The use of the

logical AND instruction demonstrates a means of testing a single bit. We have

used a constant 000000012 to check bit 0. This constant is often called a mask

because we mask all bits except for the least significant one. So, regardless of the

contents of bits 1 through 7, the result is zero iff the content of bit 0 is zero.

There is a special instruction that tests a particular bit in a location, known as

BTST #C,a. It sets the Z-flag if bit C in location a is cleared. We could use this

instruction instead of the logical AND instruction:

HOOPS bist #0, FLAG

BEQ LOOP

MOVE.B INPORT, (AO)+

BRA LOOP

The technique we have demonstrated is known as polling or busy-waiting because

the processor repeatedly asks whether the input or output device is ready to send

90 Input and Output Control

The Memory

Data Address Control
Registers Registers Registers

0

]

FEEFFE

The 1/O-ports

Figure 6.2 An example of how a terminal is connected to a computer system

through I/O ports.

or receive a new value. It is a simple and reliable scheme but can waste time if

the transfer rate is small compared to the execution speed of the processor; in

this case the processor will be occupied with testing the flag most of the time. A

more attractive solution, in this case, would be to let the input device notify the

processor when there is data that can be transferred. Using such a scheme would

allow the processor to perform useful work instead of busy-waiting on a flag to

be set. This scheme, which is known as interrupt, will be presented later in this

chapter.

Our I/O model is useful in the implementation of various schemes that transfer
information in between the computer system and the outside world. Consider the

computer system in Figure 6.2. It consists of two input ports at addresses FFF0021¢

and FFF 00416, respectively, and an output port at address FFF000,5. A keyboard

is connected to FFF004;,. The output port can transfer ASCII characters to the

terminal screen. Two flags are provided to indicate that a new ASCII character is

available (KREADY) and that the terminal screen is ready to take care of a new ASCII

character (SREADY). These facilities can be used to implement the two fundamental

subroutines (CHRIN and CHROUT) we used in Chapter 5 to read and write characters

to/from a terminal. The CHRIN subroutine can be implemented as

Input and output model 91

KREADY EQU 0

STATUS EQU $FFFO02

INPORT EQU $FFFO04

CHRIN BTST #KREADY , STATUS

BEQ CHRIN

MOVE.B INPORT,DO

RTS

and the CHROUT subroutine can be implemented as

SREADY EQU i

STATUS EQU $FFFO02

OUTPORT EQU $FFFO0O

CHROUT BTST #SREADY , STATUS

BEQ CHROUT

MOVE.B DO,OUTPORT

RTS

Note that the parameter (either the ASCII character to be read or to be written)

is passed by register DO. The subroutines CHRIN and CHROUT that we have shown

are often provided by the operating system, that is, the basic software that offers

commonly used service routines to the programmer. A program that interacts with

input and output devices is often called a device driver. In Chapter 7, we will go

deeper into the details of designing device drivers.

When you input commands or any text to a computer system, all characters you

type are usually printed out on the terminal screen. This process is called echoing

because the processor echoes all characters that are read from the keyboard to the

terminal screen. Below, we combine the programs that read and write characters

so that all characters that are typed on the keyboard are echoed on the terminal

screen.

CHRIN BIST #KREADY , STATUS

BEQ CHRIN

MOVE.B INPORT,DO ; Read the character

CHROUT BTST #SREADY , STATUS

BEQ CHROUT

MOVE.B DO,OUTPORT ; Echo the character

BRA CHRIN

92 Input and Output Control

EXERCISES

6.1 Write a sequence of instructions that reads the content of input

port at address FFF100;¢, multiplies it by 4 and writes the result

to output port FFF102;. without using polling.

6.2 Two input ports are available at addresses FFF100;g and

FFF102;.. An output port is available at address FFF104¢.

Write a program that repeatedly performs bitwise logical AND

between the input ports and writes the result to the output port

without using polling.

6.3 Given eight input devices. Input device i, where i = 0,1,...,7

is connected to input port 7 at address (FFF000,, + 7). When

bit 2 in input port STATUS at address FFF0081¢ is set, data from

device 7 is available at its input port. Write a program that

repeatedly checks input port STATUS through polling. When

data is available at input port 2, its content is copied to memory

location (9000, + “).

6.2 Stacks and subroutines

A branch-to-subroutine instruction is like a branch in that the PC (program
counter) is loaded with a new value, but a call must also save the old value (that
is, the address of the instruction following the branch-to-subroutine instruction)
somewhere so that it can return correctly. We refer to this address as the return
address.

To support subroutine calls and returns, there are a number of approaches that
turn out to have serious weaknesses. One solution would be to have a special
location for the return address as illustrated in the program according to Figure 6.3.
In Figure 6.3, a subroutine call is implemented by storing the return address at
location RETADDR (MOVE.L #RET1,RETADDR) and an unconditional branch to the
subroutine address (JMP SUBR1). The return-from-subroutine instruction (RTS) is
implemented by a branch-instruction to the address stored at location RETADDR
(JMP (AO) performs a branch to address ((A0))). This solution has a major draw-
back. It prevents a subroutine from calling another subroutine because, in this
case, the content of location RETADDR will be overwritten, and the old return ad-
dress is forgotten. For example, when SUBR2 is called, the return address RET1 is
overwritten.

This problem could be solved by associating a location to store return addresses

Stacks and subroutines 93

RETADDR DS.L al

START MOVE.L #RET1,RETADDR ; Save return address

JMP SUBR1 ; Branch to SUBR2

RET1

SUBRi ss

MOVE.L #RET2,RETADDR ; Save return address

JMP SUBR2 ; Branch to SUBR2

REZ MOVEA.L RETADDR, AO

JMP (AO) ; “RTS? Branch to_the address

; that is stored at RETADDR

SUBR2

MOVEA.L RETADDR, AO

JMP (AO) ; ‘RTS’ Branch to the address

; that is stored at RETADDR

Figure 6.3 Using a special location to store the return address.

with each subroutine. We will still have a problem, namely, it will prevent a

subroutine from calling itself, a so-called recursive subroutine call. The fact that

subroutines should be able to call other subroutines (and as a special case calling

themselves) has led to a technique to handle return addresses which is simplest to

understand by looking at the following example:

START BSR SUBR1

RET1

SUBR1i BSR SUBR2

RET2 ae

RTS

SUBR2 BSR SUBR3

RETS eke

RTS

SUBROM Nan

RTS

Consider the sequence of subroutine calls generated by the execution of the above

program. This sequence is SUBR1, SUBR2, and SUBR3. The sequence of subroutine

calls gives rise to the following sequence of return addresses: RET1, RET2, and RETS.

Now when SUBR3 has been executed, the execution shall continue at address RET3.

94 Input and Output Control

When SUBR2 has been executed, the execution continues at address RET2, and

finally, when SUBR1 has been executed, the execution continues at address RET1 in

the main program. We make the following important observations. First, return

addresses are generated in the order the subroutines are called (i.e. RET1, RET2,

and RET3), and the return addresses are used in the reverse order (i.e. RET3, RET2,

and RET1). Given a data structure that could keep track of return addresses in

the same way as plates are stored in a dish well in a cafeteria (the plate that is

retrieved from the dish well is the last one that was put into the dish well), we

have solved the problem.

A data structure that handles objects (e.g. return addresses) in this way is called

a stack. A stack is a list in which items (e.g. return addresses) can be stored and

retrieved in reverse order. There are two primitive operations, PUSH and POP,

associated with a stack. A PUSH operation stores a new item on the top whereas

a POP operation retrieves the top item and a new item comes to the top. When

a branch-to-subroutine instruction (BSR address or JSR address) is executed, the

return address is simply PUSHed by the processor onto the stack and when a

return-from-subroutine instruction is executed, the return address on top of the

stack is retrieved and loaded into the PC.

The stack is implemented using a segment of the memory space in conjunction

with a dedicated location called Stack Pointer (SP for short), which keeps track of

the address of the top of the stack. The processor designer has to make a decision

about whether to let the stack grow towards higher or lower addresses, as well

as whether to let the SP point to the top item, or the first empty item, of the

stack. In the M68000, SP points to the top item and the stack grows towards

lower addresses. In Figure 6.4 we show how the stack is managed in the M68000.

Initially (SP) =i+1. A PUSH operation decrements the SP before a new item is
put on top of the stack ((SP) = 7). A POP operation removes an item from the
top of the stack and increments the SP.

Before we look more closely into how return addresses are handled by the pro-

cessor, we want to show how the machine language for the M68000 supports user-

defined stacks. PUSH and POP operations can be implemented using the address

registers introduced in Section 4.5 in conjunction with the indirect with post- and

predecrement addressing modes. We illustrate the semantics of PUSH and POP

by using address register AO:

MOVEA.L #BOTTOM,AO ; Initialize the stack

MOVE.L DO,-(AO) ; PUSH DO

MOVE.L (AO) +,DO 7RORRDO

The first instruction initializes the Stack Pointer (in our example address register
AO). The second instruction PUSHes the content of DO onto the top of the stack,
or formally: (AO) — 4 — AO and (D0) — (AO). The third instruction POPs

Stacks and subroutines 95

=<<— SP
i+]

«<g— SP

FFFFFF

PUSH POP

Figure 6.4 The Stack Pointer (SP) and the function of PUSH and POP in the
M68000.

and places the top item of the stack in DO, or formally: ((A0)) — D0 and (A0)

+4 — AO. Note that the stack pointer is decremented before the content of DO

is copied onto the top of the stack and incremented after the top element of the

stack is removed.

In Figure 6.1, we have introduced the Stack Pointer (SP) in the model of the pro-

cessor. SP (or A7) is from the point of view of the instruction set simply another

address register in the sense that all instructions relevant for address registers (for

example those listed in Table 4.6 in Section 4.5) are relevant for SP. However, an

important feature of SP distinguishes it from the other address registers — when a

branch-to-subroutine instruction (BSR or JSR) is executed, the processor automat-

ically performs a PUSH operation on PC using SP as a stack pointer. Likewise,

when a return-from-subroutine instruction (RTS) is executed, the processor auto-

matically performs a POP operation and places the content of the top of the stack

in PC (see Table 6.1).

Table 6.1 Semantics of the BSR and RTS instructions.

Name Operation

BSR address (SP)—4 — SP;

(Pe) = (SB);
address — PC

RTS ((SP)) — PC;
(SP)+4 — SP

Besides the automatic use of the stack by the subroutine instructions, the stack

can be used to store temporary data by using the indirect addressing modes avail-

96 Input and Output Control

able for address registers. In the previous chapter, we had to state explicitly which

registers are used by a subroutine in the commentary header associated with each

subroutine. Sometimes it is important to leave all registers unaffected. This can

be done by using the stack as a temporary memory space for the contents of the

registers:

8000 MOVE.L #$1234,D0

8006 MOVE.L #$5678,D1

800A BSR SUBR

800C

SUBR MOVE.L DO,-(SP) ; PUSH DO

MOVE.L D1,—(SP) ; PUSH D1

MOVE .L) (SP)+,D1 5 jeid)e adj)

MOVE.L (SP)+,D0 3) PUP DO

RTS

In the above example program, the absolute addresses of some of the instructions

appear to the left. In subroutine SUBR, we have used the stack to save the contents

of registers DO and D1. Note that we POP them from the stack in the reverse

order (D1 before D0).
It is important to understand how the stack changes during the execution of the

program above. In Figure 6.5, we show how the stack is affected by the program

above. Assume that (SP)=9000,¢ ((1) in Figure 6.5), initially. When the BSR

instruction has been executed, the return address (800Cj¢) has been PUSHed onto

the stack ((2) in Figure 6.5) and (SP)=8FFC,.. After the execution of the second
instruction in the subroutine, DO and D1 both have been PUSHed onto the stack

as long words and (SP)=8FF4j¢ (8 less than before, see (3) in Figure 6.5). Note

how the contents of DO and D1 are stored in the stack space in Figure 6.5. Finally,

immediately before the RTS instruction has been executed, the content of SP is

SFFC\¢.

We have assumed that the stack is infinitely large, which in practice means that

it is sufficiently large. A critical point is that the stack pointer must be initialized

so that there is sufficient memory space to prevent the stack from overflowing. This

could happen as a result of too many nested subroutine calls; if the program to

be supported by the stack can perform n nested subroutine calls, the stack space

must exceed 4n bytes in order to have space for n return addresses.

A word of warning is justified. It turns out be a common mistake that the stack
is incorrectly handled. Consider the following erroneous subroutine:

Stacks and subroutines 97

8FF2

8FF4

8FF6

8FF8

8FFA

8FFC

8FFE

9000

(1) (SP)=9000 (2) (SP)=8FFC (3) (SP)=8FF4

Figure 6.5 The content of the SP and the stack at different places in the example
program.

SUB MOVE.L DO,-(SP)

RTS

The first instruction PUSHes the content of DO onto the stack, while RTS POPs

the top element of the stack (that is the old value of DO) and copies it into PC.

This means that PC will not be loaded with the correct return address. Problems

of this kind result in bugs that are especially hard to locate.

EXERCISES

6.4 In this exercise we shall implement a recursive algorithm, that

computes the sum of all integers between | and N:

function NSUM(N);

begin

if N=1 then NSUM:=1

else NSUM:= N + NSUM(N-1);

end;

If NSUM > 1 then NSUM must be called again. Note that the

sum is computed first when NSUM has been called N times.

This implies that one copy of N must exist for every instance

of NSUM in the calling sequence, which means that we cannot

use a fixed location for N. Write NSUM as a subroutine that

implements the recursion above. Hint: Use the stack to save N.

98 Input and Output Control

6.5

6.6

6.7

In the example program below, we show the addresses to the

left. Analyze the program and answer the questions below:

8000 BSR NSUM

8004 STOP #$2700

8008 NSUM MOVE.L_ DO,-(SP)

800A MOVE.L #0,D1

8010 SUBI.L #1,D0

8016 BEQ OUT

801A BSR NSUM

801C ADD.L DO,D1

801E OUT MOVE.L (SP)+,D0

8020 RTS

(a) Assume that (SP)=90006 and that (DO)= 3, initially. Show
the content of the stack and the stack pointer each time SUBI.L

is executed.(b) What does D1 contain when subroutine NSUM has
been executed if (D0) = 3, initially?

In the program below, PREGS pushes all data registers denoted by

the word immediately following the subroutine call instruction

in the following way: if bit 2 = 1 then Di is pushed. PREGS also

ensures that the return address is the address of the instruction

immediately following the word (that is, MOVE.L D1,D2). Write

a subroutine that implements PREGS.

JSR PREGS

DC.W %000000000100101 ; DS,D2,DO0 are pushed

MOVE.L D1i,D2 ; Next instruction...

We shall perform calculations using a stack which is maintained

by AO as a stack pointer. Implement the following subroutines:

ENTER: Pushes the content of DO onto the stack.

ADDSTACK: Pops the top of stack item and adds it to DO.

SUBSTACK: Pops the top of stack item and subtracts it from DO.

POPSTACK: Pops the top of stack item into DO.

Instruction execution rate 99

6.8 Consider the following program which uses the subroutines in
the previous exercise

MOVEA.L #$8000,A0

MOVE.L #$10000005 , DO

BSR ENTER

MOVE.L #$10000006, DO

BSR ENTER

BSR ADDSTACK

BSR SUBSTACK

Show the content of the stack (and AO) after the execution of
each subroutine.

6.3. Instruction execution rate

We have now introduced almost all important features relevant to the machine

language programmer in order fully to take advantage of the functionality of a

computer system. Our model so far has been functional and we have not addressed

maybe the most important objective of using computers — the processing speed of

a computer.

Efficiency is one of the primary objectives of all computing. The main explana-

tion of the ‘revolution of computers’ is that computers can perform operations at

a high rate. Typically, standard computers of today can perform in the order of

1,000,000 instructions per second, although this number is rapidly changing. Some

instructions take a longer time to execute than others. Therefore, computer manu-

facturers use an average measure of instruction execution rate called the MIPS-rate

(Million Instructions Per Second). Consequently, a 1-MIPS computer executes 10°

instructions/s on average.

In order to get an idea of how the instruction execution time differs for different

instructions, we shall pick a few instructions from the instruction set of the M68000.

In Table 6.2, we show the execution time of some instructions for specific addressing

modes in terms of cycles. The cycle time may differ from computer to computer.

To get a rough estimate of the execution time, we shall assume that the cycle time

is (00s (10-"s)!
From Table 6.2 we note that the execution time ranges from 4 cycles to 18 cycles,

that is, close to five times. One would like to know the reason for this discrepancy.

The number of memory accesses carried out by an instruction has a first order

effect on the execution time. For instance, if we compare the execution time of

100 Input and Output Control

Table 6.2 Execution time in terms of cycles for some M68000 instructions.

Instruction Cycles

MOVE.W DO,D1 4

ADD.W DO,Di1i 4

ADD.W 10,D1 16

BRA LOOP 10

Bcc LOOP 10/8
BSR SUBR 18

RTS 16

the two ADD instructions, we see that if the source operand is pointed out using

absolute addressing, we get an increase by 12 cycles compared to register-direct

addressing. The reason is twofold: (i) the instruction occupies three words (the

operation word and two words for the absolute address) instead of one, and (ii) the

operand to be fetched requires one extra word to be fetched from memory. This

results in three more words to be fetched from memory.

The reason why a branch-to-subroutine instruction takes almost twice as long to

execute than an unconditional branch-instruction has also to do with extra memory

accesses. The difference between these two instructions is that the return address

has to be PUSHed onto the stack before the branch is taken, thus requiring two

words to be transferred to memory.

We also show the execution time for conditional branch-instructions. The execu-

tion time differs depending on whether the branch is taken or not. If the branch is

taken, the execution time is 10 cycles. Otherwise it is 8 cycles. The reason for this
discrepancy is that if the branch is taken, the PC must be loaded with a new ad-
dress. This is not needed if the branch is not taken because the PC already points
to the next instruction to be fetched, namely, the instruction that immediately
follows the branch-instruction.

From this discussion we can conclude that when performance is crucial to a
program, one should carefully consider the choice of instructions. Since most of
the time is spent in executing loops, one should especially try to optimize these.
Let us give a rough estimate of the execution time of the program below:

START MOVE.L #10000,D0

LOOP SUBI.L #1,D0

BNE LOOP

STOP #$2700

Interrupts 101

The loop is executed 10,000 times so the number of instructions executed is 1-+2
10,000 + 1 = 20,002. Assuming that each instruction takes 10 cycles to execute,
the execution time is about 210°10~’ s = 2:10~? s, assuming that the cycle time
is 100 ns.

6.4 Interrupts

In Section 6.1, we studied a scheme to synchronize an external event, such as a
keyboard input, with the program execution. We called it polling, because the
processor is polling an extern il device to find out whether it needs service. Now
recall the example program from Section 6.1:

LOOP BIST #0, FLAG

BEQ LOOP

MOVE.B INPORT, (AQ)+

BRA LOOP

Let us assume that the above program reads characters from a keyboard, and that a

secretary is writing at a speed of ten characters each second. (This is tough even for

an extremely experienced secretary!) What is the fraction of time the processor

spends on useful computation? Considering what is performed in the program

above, we must admit that the only useful computation is when the character is

stored at the location pointed to by AO. This instruction takes about 107° s to

execute, so the magnitude of the fraction of useful work is only 10~°/107! = 107°.
This is of course not acceptable given the fact that the processor could perform

999990 useful operations each second instead of repeatedly asking the question ‘Is

there anything to me?’ over and over again. A better approach would be to let

the keyboard, or more general, the external device notify the processor when an

action needs to be taken.

The mechanism that implements this concept is the interrupt. In the data input

example above it works as follows: The synchronization flag is connected to an

interrupt input on the processor. When a new data value is loaded into the port the

processor automatically senses this. Instead of executing the instruction pointed

to by PC, the processor automatically performs a subroutine call to a special

subroutine called an interrupt service routine, which takes care of the input value.

The interrupt service routine is ended with a special return instruction which

resumes execution of the interrupted program.

The interrupt service routine is similar in structure with an ordinary subroutine.

However, there is a fundamental difference between the two. While a subroutine

is called from specific points in the program, determined by the programmer, an

interrupt service routine can be called at an arbitrary point in the program because

of the unpredictability of external events. ‘This means that the programmer cannot

102 Input and Output Control

predict when the interrupt service routine is called so special actions need to be

taken. Especially, an interrupt service routine must always return leaving all

registers unaffected. We call the contents of all registers the processor contect.

This means that if the interrupt service routine uses any registers, their

contents must first be saved and later restored. The interrupt service routine

has the following basic structure:

INT MOVEM.L_ reg-list,-(SP) ; Save registers used

; by the service routine

; Instructions that

sys ; implement the service

MOVEM.L (SP)+,reg-list ; Restore registers used

; by the service routine

RTE ; Return from exception

There are a few remarks that need to be made regarding this example. First,

besides pushing the return address onto the stack, the processor also automatically

saves the status register. The reason for this is that almost all instructions affect

the condition code register (CCR) which is part of the status register (recall Section

4.3). Second, all registers used by the interrupt service routine need to be saved.

A safe way to do this is to use the stack. Note that we use a new instruction

called MOVEM. It takes a list of register names as operands and stores them onto

the top of the stack (we will talk about this instruction more in detail later in this

chapter). Third, the dots represent the action that is to be taken to service the

external event. Fourth, we need to restore the registers by making the reverse POP

operation to copy the register contents from the stack. Finally, we use a special

return-from-subroutine instruction (RTE). The reason for this is that, unlike an

ordinary subroutine call, the status register is PUSHed onto the stack and needs

to be restored. This is exactly what RTE does, besides POPing PC as the ordinary
return-from-subroutine instruction RTS does.

Let us give an example on the use of interrupts. Consider a system in which a

certain character string which is stored at location STRING shall be written to the

screen as soon as an interrupt occurs. We use the PRSTR subroutine from Chapter

5 to solve this problem. This subroutine uses registers AO and DO, which means we

have to save them:

INT MOVEM.L DO/A0,-(SP)

MOVEA.L #STRING, AO

BSR PRSTR

MOVEM.L (SP)+,D0/A0

RTE

Interrupts 103

We have not discussed the issue of how the processor knows at what address the

interrupt service routine is located. To make the problem even worse, the processor

may have a number of interrupt inputs, each with an associated call address of its

own. With several interrupt inputs, a priority order is usually defined so that the

behavior is determined when more than one interrupt occurs simultaneously.

M68000 supports interrupts according to various schemes. In the following, we

will present a scheme that is often used in computer systems with a small number

of interrupts. It is referred to as the autovector interrupt scheme. In Chapter 7, we

will look at an extended model of the interrupt system called vectored interrupts.

The base for the autovector interrupt system is seven interrupts which we denote

I, to I. In order for the M68000 to keep track of the addresses of the interrupt

service routines that service these interrupts, there is a table called exception vector

table which consists of one entry for each interrupt input. The machine language

programmer is responsible for initializing the entries in this table. The address of

the interrupt service routine that is connected to interrupt input I, is stored at

address 4(18,. +7). In the table below, we show the addresses of the entries for I,

through Iy.

Interrupt input Address

I; 7416

Ig 7816

I, 7Ci6

Since there are more than one interrupt inputs, there must be a rule for how to

deal with several interrupts that are activated at the same time. The general rule

is that if two interrupts are activated at the same time, the one with the highest

number will get service first.

Another question is how to prevent an interrupt input from getting service. This

is solved by associating a priority level with the processor. We refer to this as the

current priority level (CPL). The general rule is that a certain interrupt input Ln

can interrupt the processor provided that n >CPL. There is one exception to this

rule, namely, if n = 7. Interrupt input I7, known as non-maskable interrupt, can

always interrupt the processor.

The machine language programmer can set the CPL which is done by accessing

the status register. In Figure 6.6, we show the computer system model again,

highlighting all the bits contained in the status register (SR). The CPL is controlled

by bits 8-10 called C1, C2, and C3. They can be modified by the following move

instruction that sets the current priority level to 5:

MOVE #$2500,SR

104. Input and Output Control

sor The Memory The Proces: Interrupt

Data Address Control Inputs
Registers Registers Registers

0 14
l = 14

zo ee

FEFRFF

| Jevfeztes}| | | Ix} nfz[vic
15 13 LORS SS 4 o3% 120s 20

Figure 6.6 The control bits in the status register.

Note that the above instruction sets (C1 C2 C3) = 101», that is, the CPL is binary

coded by bits 8-10 in SR. There are two other bits named T and S (bits 15 and

13) whose function we will describe in Chapter 8. We shall only mention that the

S-bit must be set in order to change the CPL. This is why bit 13 in the word 2500,¢

(= 001010100002) is set. We say that an interrupt is enabled when the processor

can be interrupted by this interrupt. For M68000, we note that interrupt n is

enabled when CPL < n, n < 7. Interrupt I; is always enabled.

We are now able to write a program that takes care of more than one interrupt.

In the following example, we want to service interrupt inputs Ip and I; with two

interrupt service routines INT2 and INTS5. We show the necessary initializations

for these interrupts:

START MOVE.L #INT2,$68

MOVE.L #INT5,$74

MOVE #$2100,SR

SU eulsulalaey AUN:

; Initialize INT5

; Enable interrupts with CPL>1

; Interrupts are enabled here...

LOOP BRA LOOP

INT2 Svs

RTE

INTS “us

RTE

In the program above, we first initialize the exception vector table entries that
correspond to INT2 and INTS. We then enable these interrupts by setting CPL=1
(why 1?). Note that it is important to enable the interrupts after the exception

Interrupts 105

vector table has been initialized. Otherwise, the interrupt service routines cannot

be called and the system can act unpredictably. In general, therefore, it is impor-

tant to consider carefully when to enable the interrupts because an interrupt can

theoretically happen immediately after this point in the program.

To summarize, in order to design a program in which a certain service is to be

achieved when an interrupt is encountered, the machine language programmer is

responsible for the following:

e Design an interrupt service routine which saves and restores all registers

‘affected by the routine.

e Initialize the exception vector table and enable the interrupts.

We are now able to write interrupt service routines but have not discussed what

happens when the processor encounters an interrupt which is to be done now.

While interrupts can occur at any point in time, the processor checks whether an

interrupt has occurred after each instruction only. Recall the instruction cycle from

Chapter 3:

Step 1: Fetch the instruction at the memory address specified by PC.

Step 2: Update PC.

Step 3: Execute the instruction.

Step 4: Check if there are any pending interrupts.

We have augmented the instruction cycle with the interrupt check (Step 4). When

an interrupt from interrupt input I,, occurs, the processor performs the following

tasks automatically, without involving any machine language program:

Step 1: If n < CPL, nothing is done. Otherwise,

Step 2: it makes an internal copy of the content of SR (status register).

Step 3: CPL:=n in SR, in order to prevent further interrupts at the same

or lower priority level.
Step 4: It sets the S-bit and clears the T-bit in SR.

Step 5: It pushes PC onto the stack. Then it pushes its internal copy of

SR (the old value) onto the stack.
Step 6: It loads PC with the entry 4(1815 + m) and performs a branch to

this address (the interrupt service routine).

When the interrupt service routine has been executed, that is, when the RTE

instruction is executed, the processor resumes execution at the point in the program

where it was interrupted and with the same SR content as before the interrupt

occurred. The processor performs this by popping SR and PC from the stack

(recall that these values were pushed in the reverse order). Note that since SR is

restored, the priority level that was set before the interrupt occurred is restored.

106 Input and Output Control

8FF2

8FF4

8FF6

8FF8

8FFA

8FFC

8FFE

9000

Cl) CSP)
(SR)
(PC)

9000 (2) (SP)
210A (SR)
8008 (PC)

8FFA

220A
8020

Figure 6.7 The content of the SP at various places during the interrupt.

Consider the following program:

8000 MOVE.B #$7F,D0

8004 ADDI.B #1,D0 ; An interrupt occurs here

8008 MOVE.B #1,D1 ; This instruction is executed

; when the interrupt has been

; handled

502 ORrns

RIE

Assume that an interrupt occurs at interrupt input I, when the ADDI instruction is

being executed. The corresponding interrupt service routine is located at address

8020. When the interrupt service routine has been executed, the execution con-

tinues at address 8008. We further assume that the initial contents of the status

register and the stack pointer are (SR)=2100 and (SP)=9000, respectively. The
content of the condition code register will be changed by the ADDI instruction so
that the content of the status register is (SR)=210A when the interrupt occurs
(confirm this as an exercise). We will now look at how the contents of the stack,
the program counter, and the status register change when the interrupt service
routine is invoked. The contents of SP, SR, and PC when ADDI is being executed
are shown to the left in Figure 6.7. When the interrupt is being processed by the
processor, PC and SR will be pushed onto the top of the stack ((2) in Figure 6.7).
Note also that the current priority level is changed to the same priority as the
interrupt ((SR)=220A, i.e. CPL=2) when the first instruction of the interrupt ser-
vice routine is to be executed. When finally the interrupt has been processed, the
content of SP, SR, and PC are exactly the same as before the interrupt occurred
((1) in Figure 6.7).

Interrupts 107

We will now look at an application in which interrupts from a timer form the

base. A timer is connected to interrupt input I; in such a way that an interrupt

is generated each millisecond. We will implement a program that keeps track of

the actual time using four memory locations: TICK, SEC, MIN, and HOUR. These

locations contain the actual time in milliseconds (TICK), seconds (SEC), minutes

(MIN), and hours (HOUR).
We first show the algorithm using Pascal-like code to explain what the interrupt

service routine is supposed to do:

procedure TIME;

begin

TICK: =TICK+1;

if TICK=1000 then

begin

TICK:=0; SEC:=SEC+1;

if SEC=60 then

begin

SEC:=0; MIN:=MIN+1;

if MIN=60 then

begin

MIN:=0; HOUR:=HOUR+1 ;

if HOUR=24 then

HOUR: =0 ;

end;

end;

end;

end; (*** RTE ***)

The interrupt service routine to be invoked every millisecond appears in Fig-

ure 6.8. Note that we do not need to save and restore any registers, because the

interrupt service routine does not affect any of them. The initializations that are

needed to get it to work are as follows:

MAIN MOVE.L #0,TICK ; TICK:=0

MOVE.L #0,SEC + SEG: =0

MOVE.L #0,MIN ; MIN:=0

MOVE.L #0,HOUR HOUR =O

MOVE.L #TIME,$74 ; Initialize exception table

MOVE #$2400,SR ; Enable Is

LOOP BRA LOOP

108 Input and Output Control

TIME ADDI. #1,TICK ; TICK:=TICK+1;

CMPI. #1000,TICK ; if TICK=1000 then

BNE BACK

MOVE. #0 , TICK ; TICK:=0;

ADDI. #1,SEC ; SEC: =SEC+1;

CMPI. #60 , SEC ; 1f SEC=60 then

BNE BACK

MOVE. #0 ,SEC ; SEC:=0;

ADDI. #1,MIN ; MIN: =MIN+1;

CMPI. #60 ,MIN ; if MIN=60 then

BNE BACK

MOVE. #0 ,MIN ; MIN:=0;

ADDI. #1 ,HOUR ; HOUR:=HOUR+1 ;

CMPI. #24 , HOUR ; if HOUR=24 then

BNE BACK

MOVE.L #0,HOUR ; HOUR:=0;

BACK RTE

Figure 6.8 Assembly code for the interrupt service routine that implements the

clock.

Note that we must initialize the locations TICK, SEC, MIN, HOUR before we enable

the interrupt.

6.5 Additional useful instructions

We will end this chapter by presenting in this section the instructions we have
introduced in this chapter and make some remarks on the use of them. They
appear in Table 6.3.

The BTST instruction tests the bit in a denoted by a data register D; or a constant
(using immediate addressing). It only affects the Z-flag.

The MOVEM reg-list,b instruction copies the contents of the registers denoted by
reg-list to the consecutive addresses where the first address is denoted by operand
b. 6 may designate absolute addressing, indirect addressing, and indexed (with
displacement) addressing. The syntax of the register list is as follows: A range
of registers such as DO, D1, D2 is denoted DO-D3, while a list of registers such as
D1,A3,A5 is denoted D1/A3/A5. For example, this program

MOVEA.L #$9000,A0

MOVEM.L DO-D2/D5/A0-A3, (AO)

Additional useful instructions 109

Table 6.3 Program control instructions introduced in this Chapter. denotes W

or L. 6 is a restricted set of addressing modes (see text)

Name Operation

BTST D,,a if bit (D;) of (a) is set then 0 — Zelse 1 — Z

ist #C,a if bit C of (a) is set then 0 — Zelse 1 — Z
MOVEM.S reg-list,b (reg-list) — b
MOVEM.S b,reg-list (b) — reg-list

MOVE a,SR (a) —SR
MOVE SR,a (SR) - a

RTE ((SP))— SR; (SP)+2— SP; ((SP)) — PC; (SP) + 4— SP

copies the contents of DO,D1,D2,D5,A0,A1,A2,A3 to addresses 9000;g — 901F y6

because each register occupies 4 bytes which adds up to 32 bytes.

The instruction MOVEM b,reg-list, performs the opposite operation. We need to

make a remark when the source operand uses indirect addressing with predecrement

(which was used in the generic interrupt service routine on page 102). In this

case it is important to pop the registers in the reverse order, the MOVEM b, reg-list

instruction is smart enough to do so:

MOVEM.L DO-D2/D5/A0-A3,- (AO)

MOVEM.L (A0)+,DO0-D2/D5/A0-A3

In this example, the registers are pushed in the order specified by the sequence in

the register list. However, they will be popped in the reverse order.

The MOVE SR,aand MOVE a,SR facilitates copying of SR to any location as spec-

ified by the addressing mode denoted by a. Since SR is a 16-bit register, the default

size is word. For additional information on the use of these instructions, please

refer to Appendix B.

EXERCISES

6.9 Consider the interrupt service routine TIME on page 108. A

switch is connected to interrupt input Ig. Write an interrupt

service routine connected to this interrupt that sets the vari-

ables TICK, MIN etc. to zero. Also, modify the main program to

initialize this interrupt.

110 Input and Output Control

6.10 A timer generates an interrupt each 100 ms at I5. Fifteen ASCII-

character displays are connected to output ports at addresses

570016 — 570E;¢. The ASCII-codes of the string ‘68000 FOR

EVER’ are stored at address 600016 — 600E,¢ (ended by NUL).

In the subsequent exercises, we shall design a complete program

that results in the following successive sample printouts on the

displays each second:

68000 FOR EVER

8000 FOR EVER

000 FOR EVER 6

OO FOR EVER 68

Write a subroutine MCHAR according to the Pascal-specification

below:

procedure MCHAR;

begin

POINTER: =POSITION;

for I:=0 to 14 do begin

if STRING(POINTER] = NUL then

POINTER: =0;

DISPLAY [I] :=STRING [POINTER] ;

POINTER: =POINTER+1

end;

POSITION: =POSITION+1 ;

if POSITION > 14 then

POSITION: =0;

end;

6.11 Write an interrupt service routine that each second calls sub-
routine MCHAR in the previous exercise. All registers must be left

unaffected when the routine is exited.

6.12 Write a main program that initializes interrupt I; and the vari-
able POSITION in the previous two exercises.

6.6 Summary and concluding remarks

In this chapter, we have looked into special program control features needed to
support such things as I/O and subroutines. All communication with the outside

Summary and concluding remarks 111

world is achieved through I/O-ports, which in the M68000 is done through spe-

cial memory locations. They are memory locations in the sense that information

transfer is supported by the same subset of the instruction set that is used to

transfer information to/from memory locations. However, they are special in the

sense that the information written to an output port can generally not be read

afterwards. Similarly, information read from an input port may change from one

time to another without having written to it in between.

An important scheme to synchronize an external event to the actions taken by

the machine language program was to check repeatedly a dedicated I/O-location

that is affected by the external device that needs service. This scheme is known as

polling or busy-waiting.

In order to support nested subroutines, most computers manage the return ad-

dresses by a data structure called a stack. Upon a subroutine call, the PC (con-

taining the return address) is automatically pushed onto the stack. Upon a return

from the subroutine, the return address is popped from the stack. The stack can

also be used to store register contents, in order to leave all registers unaffected.

Another synchronization scheme known as interrupt was also investigated. The

motivation behind this scheme is when the external events are rare. In this case,

the polling scheme will waste most of the capacity of the processor to check for

external events. Therefore, most computers have dedicated interrupt inputs that,

when activated, makes the processor perform a subroutine call to an interrupt

service routine. The machine language programmer must design the interrupt

service routine and connect it to a dedicated interrupt through something we called

exception vector table. Furthermore, the machine language programmer must

enable the interrupt at an appropriate point in time, usually when all initializations

have been performed.

In order to handle several external events, most computers have not only one

interrupt input, but a number of them. This raises the issue of priority. Each

interrupt input is associated with an interrupt priority. This is used to resolve

several interrupts that occur at the same time.

Chapter 7

Programmable Input /Output
Interfaces

In the previous chapter, we studied how to transfer information between the com-

puter system and the environment through I/O-ports. The simplified model we

presented viewed the I/O-ports as special memory cells. We did not discuss the

issue of how a particular input/output device such as e.g. a printer or a termi-

nal from one manufacturer can be connected to a computer system from another

manufacturer so that they can communicate with each other. In general when we

have two units, such as a computer system and a printer, a rule is established for

how they are supposed to communicate. Such a rule is called a communications

protocol. The communications protocol establishes a set of requirements to make

it possible to transfer information between two units.

Let us consider an example. Suppose that we have purchased a printer from one
manufacturer and a computer system from another. Our task is to connect these
two units and implement a printer device driver so that we can send characters
to this unit. There are two separate issues involved in this task: (i) how do we
connect the units, and once they are connected, (ii) what is the synchronization
scheme supposed to look like? Are we going to use polling or interrupt-driven
communication?

Information between two units is usually transferred using a cable with one or
several lines, where each line can transfer a bit. Since each ASCII-coded character
makes use of seven bits, a common way to connect a computer system to a printer
is to use seven lines, one for each bit. This enables us to transfer one character at
a time, in parallel. In order for a computer system to support parallel transfers to
a printer, for example, there is often a parallel interface, that is, a connection to a
port at which an input or output device can be connected. The parallel interface
can be used if the physical distance between the computer system and the printer
is small, typically less than a meter. However, suppose that the printer is located
in a room far away from the computer system. One imagines that it would not be
convenient to transfer characters in a parallel fashion because of the prohibitive
cost of the cable that connects the printer to the computer system. There are also

112

Parallel input and output 113

electrical restrictions that make this alternative less attractive but this discussion

is outside the scope of this text. A viable alternative in this case would be to use

a Single line to transfer one bit one after another. In essence, using the printer

example, an ASCII-coded character could be transferred by seven successive bit

transfers. There are special interfaces on most computer systems that transfer

information in such a bit-serial fashion called serial interfaces.

In this chapter, we shall look at how communications protocols are established

by special devices that support parallel and serial communication. Because of the

variety of devices that can be purchased, these interfaces are often programmable

in the sense that the programmer can set up the communications protocol so as

to meet the requirement of the device that is to be connected to the computer

system. Therefore, they are called programmable interfaces. In Subsection 7.1,

we discuss parallel communication and an example programmable interface from

Motorola that supports parallel communications protocols. In Subsection 7.2, we

discuss bit-serial communication and how the comimunication protocol is set up

with another programmable interface from Motorola. In the previous chapter, we

noted that Motorola has seven interrupt inputs. A natural question is how we

support more than seven interrupts. In fact, M68000 can support 192 interrupts

by requiring that the unit that generates the interrupt identifies itself by an 8-

bit number called an interrupt vector. In Subsection 7.3, we present the vectored

interrupt mode of the M68000.

7.1 Parallel input and output

7.1.1 Bit I/O and handshake protocols

We will start the discussion in this section by considering a simple interface prob-

lem. Suppose that we want to connect two lamps and six switches to a computer.

The computer is supposed to read the status of the switches and switch on the light

of any of the lamps. This is an example of a common situation where single bits

are to be read or written to a device. It is called bit I/O. We can use a combined

input/output port with eight bits to solve this interface problem as shown in Fig-

ure 7.1. In Figure 7.1, we use two bits as output ports for the lamps, whereas six

bits are used as input ports for the switches. In another situation, we may want to

use six lamps and two switches, that is; six output ports and two input ports are

needed. One realizes that it would be convenient if a single-bit port could be pro-

grammed to act as an input in one situation and as an output in another. In fact,

most manufacturers offer such programmable interfaces. The system programmer

can program these interfaces to act in a way that suits the application, using a se-

quence of machine language instructions. We will present a parallel programmable

interface from Motorola where each individual bit in its ports can be programmed

either as an input or output. There are other more complicated situations where

114 Programmable Input/Output Interfaces

Data Address Control
Registers Registers Registers

Figure 7.1 A computer that is interfaced to two lamps and six switches.

we want to change the way information is transferred between the computer sys-

tem and the environment. In the next example, we consider a commonly used

communications protocol to synchronize the transfer between two devices.

The next example in this section considers a computer system that is supposed

to transfer characters to a printer. As shown in Figure 7.2, both units have a

parallel interface that makes it possible to interconnect them.

The data that are to be transferred to the printer, in essence ASCII-coded char-

acters, make use of seven lines. In the previous chapter, we noted that the program

that transfers data simply writes each character to the output port. At almost the

same time, the character is available in the input port of the printer. However,

we run into the problem of how the printer knows when a new character is avail-

able and how the computer system knows when the printer has taken care of the

previously transferred character. We are now about to present a commonly used

technique, called handshaking that solves this problem.

In Figure 7.2, two lines are associated with the parallel connection, denoted

Ready and Send, to help synchronize the transfer in the following way. The sending

side (the M68000-based computer system) notifies the receiving side (the printer)

that data is available by asserting the Send line to a one in the example as shown

in Figure 7.3. When the receiving side notices that Send is set, it reads the data

and acknowledges the reception of the data by asserting the Ready line to a logical

one. The sending side now knows that data is received and can send a new data

item by again asserting Send. Send and Ready are called handshake lines, because

Parallel input and output 115

68000-—based Computer System

| ae ey Se i ames ad

Laas | |

| |
| =

Parallel Interface

The Printer

Figure 7.2 Parallel I/O with handshaking between a computer system and a

printer.

of the function they have; the communicating devices ‘shake their hands’ so as to

agree that data has been transferred.

Note that the above situation is just one example of a handshake protocol.

While some devices may signal that they have accepted data by resetting Ready,

other devices may signal that data is available by resetting the Send signal. One

realizes that a programmable interface should be able to support various handshake

protocols. This is exactly what the programmable interface we will present next is

able to do.

Figure 7.3 Timing diagram for the handshake signals Send and Ready.

116 Programmable Input/Output Interfaces

| Control and |
(Bey

H1 H2 H3 H4

Figure 7.4 Schematic diagram of the M68230 parallel interface.

Table 7.1 Operation modes of the Motorola PI/T.

Mode 0 Mode 1 Mode 2 Mode 3

(8-bit, unidir.) (16-bit, unidir.) (8-bit, bidir.) (16-bit, bidir.)
Sub- | Input (00) Input (XO)
mode | Output (01) Output (X1)

Bit 1/O (1X)

7.1.2 The PI/T — an example parallel interface

We are now ready to present an example of a programmable parallel interface

from Motorola, called M68230 PI/T. M68230 can be thought of as containing two

separate units: the parallel interface (PI) and the timer (T). We will only present

the parallel interface. The interested reader should consult the complete data sheet

from Motorola for more details. We will not give an exhaustive treatment of all

features of the PI/T. In fact, it is almost ‘infinitely programmable’ and it would

cover almost as many pages as this book contains to clarify fully all the possibilities
that this programmable device provides. We will rather discuss those features that
are relevant for the discussion in this section.

The parallel interface of the M68230 contains three 8-bit ports, called Port A,
B, and C, according to Figure 7.4. These ports can be programmed in a variety
of ways. In addition, there are four handshake lines, denoted H1 through H4, that
can be programmed according to various handshake protocols.

In order to program the device, there are a large number of control registers.
The interface is programmed by writing a sequence of codes to its control registers.
There is also a status register that can be used if we desire to use polling to
synchronize transitions on H1 through H4.

In Table 7.1, we list the various operation modes that can be selected by pro-
gramming the PI/T. There are four main operation modes constructed by the key
terms 8-bit/16-bit and unidirectional/bidirectional. A transfer is unidirectional if

Parallel input and output 117

the direction of the data transfer between ports in two communicating devices is

the same all the time. Sometimes it is convenient to let two communicating de-

vices X and Y use the same lines to transfer data from X to Y as the opposite

transfer from Y to X. Doing this, we do not have to dedicate a pair of ports to

data transfers in one direction. Connections between two communicating devices

that can change data direction are referred to as bidirectional. The main operation

mode also gives provision for combining the A and B port to form a 16-bit port.

For the 8-bit modes, each of the ports are controlled individually, whereas for the

16-bit modes, A and B are considered as a 16-bit port and cannot be programmed

individually.

From Table 7.1, we see that a number of alternatives are available for some of

the main operation modes. These alternatives are referred to as submodes. For

example, three submodes are associated with Mode 0, whereas no submodes are

associated with modes 2 and 3. In the following, we will restrict the discussion to

the submodes of Mode 0.

The input/output submodes are used when a handshake protocol is desired. Ac-

cording to Figure 7.4, four handshake lines are available. H1 and H2 are associated

with port A, while H3 and H4 are associated with port B. The third submode is

used in bit-I/O operations; each bit in ports A, B, and C can be individually

programmed as either an input or output.

Besides the actual ports in the PI/T, there are nine 8-bit control and status

registers that control its actions. In Table 7.2, we summarize almost all registers

that support the parallel interface of the PI/T. From left to right, we show the

register address, the individual control and data bits of all registers, and finaily to

the right, the name of each register. The manufacturer of a computer system has

specified a particular address, called base address, for a parallel interface such as

the PI/T. The address of a certain register within the PI/T can be obtained by

adding the Register Select Offset in Table 7.2 to the base address. For example, if

the base address is FFF000,¢, the address of the PACR is FFF006;.. Note that in

some systems the register select offset is used differently.

We will now show how various communications protocols can be supported by

using Port A as an example. In Table 7.3, we show a subset of all registers in the

PI/T that are relevant for the operation of Port A.

In the first example, we want to use Port A to be able to read the logical levels

of the switch settings and, in addition, to control the lamps in Figure 7.1. To do

this, we need to program Port A to be used in bit-I/O operation; bits 6 and 7

should be outputs while bits 0-5 should be inputs. This is done by selecting the

bit-I/O submode of Mode 0 (see Table 7.1).

The main operation mode (Mode 0) is selected by the two most significant bits

of the Port General Control Register (PGCR) according to Table 7.3 by simply

writing the mode number to these bits. The submode of Port A is selected by the

two most significant bits of the Port A Control Register (PACR) by simply using

the codes that are found in Table 7.1 (1X denotes Bit I/O, where X means that the

setting of bit 6 is irrelevant). The remaining bits of the PGCR and of the PACR

118 Programmable Input/Output Interfaces

Table 7.2 Ports, control, and status registers for the parallel interface in the

Pia

Register

Select
Offset
(hex.)

| ff 6 5 4 3 2 1 0

0 Port Mode H34 H12 H4 H3 H2 H1 Port General

Control Enable | Enable | Sense Sense Sense Sense Control Register

(PGCR)
1 SVCRQ IPF Port Interrupt Port Service

= Select Select Priority Control Request Register
(PSRR)

2) Bit Bit Bit Bit Bit Bit Bit Bit | Port A Data
16 6 5 4 3 2 1 0 Direction Register

(PADDR)
3 Bit Bit Bit Bit Bit Bit Bit Bit Port B Data

t 6 5 4 3 2 1 0 Direction Register

pel (PBDDR)
4| Bit Bit Bit Bit Bit | Bit Bit Bit Port C Data

7 6 5 4 3 2 1 0 Direction Register

(PCDDR)
5 Interrupt Vector “| Port Interrupt

Number a a Vector Register

I | (PIVR)
6 Port A an H2 Hl Hl Port A Control

Submode H2 Control Int SVCRQ Stat Register

Enable | Enable Ms Ctrl (PACR)
i Port B H4 H3 H3 Port B Control

Submode H4 Control Int SVCRQ Stat Register

ei Enable | Enable 4. Ciel (PBCR)
8 Bit Bit Bit Bit Bit Bit Bit Bit Port A Data

a 6 5 4 3 2 1 0 Register

(PADR)
9 Bit Bit Bit Bit Bit Bit Bit Bit Port B Data

7 6 5 4 3 ? 1 0 Register

fe (PBDR)
Cc Bit Bit Bit Bit Bit Bit Bit Bit Port C Data

(6 6 5 4 3 2 1 0 Register

| | (PCDR)
D H4 H3 H2 H1 H4S H38S H2S His | Port Status

Level | Level Level Level Register

| ie (PSR)

Parallel input and output 119

Table 7.3 A subset of the PI/T registers that are relevant for Port A.

Register

Select

Offset

(hex.)

1G 6 5 4 3 2 1 0

0 | Port Mode H34 H12 H4 H3 H2 H1 Port General

Control Enable | Enable | Sense Sense Sense Sense Control Register

(PGCR)

Oe Bite (mesit Bit Bit Bit Bit Bit Bit Port A Data
i 6 5 4 3 2 iW 0 Direction Register

I | (PADDR)

6 | PortA 2 Al Hi | Port A Control
Submode H2 Control Int SVCRQ Stat Register

Enable | Enable Ctrl (PACR)

SHRBiCs MBit Bit Bit Bit Bit Bit Bit Port A Data
7 6 5 | 4 | 3 2 1 0 Register

(PADR)

affect the operation of the handshake lines and will be discussed later. We therefore

ignore their settings for a while. The following sequence of instructions programs

the PI/T according to the specification:

PGCR EQU $FFFOOO ; Address to the PGCR

PACR EQU $FFFO06 ; Address to the PACR

PADDR EQU $FFFOO2 ; Address to the PADDR

INIT MOVE.B +#%00000000,PGCR ; Mode O

MOVE.B #%10000000,PACR ; Bit-I/0 submode

MOVE.B #%11000000,PADDR ; Bits 6-7 outputs and

; bits 0-5 inputs

To program the PI/T, we have assumed that its base address is FFF000,5. The

addresses of the individual registers are obtained by adding the offset of each reg-

ister from Table 7.3 to the base address of the PI/T. Note that we have arbitrarily

assigned zero to bit 0-5 in the PGCR. In addition, bits 6 and 7 have been assigned

10) to set up the bit-I/O submode and the rest of the bits in the PACR are ar-

bitrarily assigned zero. The third move-instruction sets up the data direction of

the eight single-bit ports in Port A. A zero indicates that the corresponding bit

is an input while a one indicates an output. Since we want the two most signifi-

cant bits in Port A to become outputs (the lamps are connected to these bits, see

Figure 7.1), these bits are set in the PADDR.

After the initialization, it is possible to read the switch settings and control the

lamps. For example, in the example below

120 Programmable Input/Output Interfaces

PADR EQU $FFFOO8 ; Address to the PADR

MOVE.B PADR,DO ; Read data from Port A

MOVE.B #%11000000,PADR ; Switch on both lamps

the switch settings are read and the lamps are controlled using the same port-

address. This might seem strange. However, the designer of the PI/T has ensured

that a value written to bit 0-5 is ignored because these bits are inputs.

Now suppose that we want to program Port A so that bits 6 and 7 are inputs

and bits 5-0 are outputs. The following sequence of instructions will do

INIT MOVE.B #%00000000,PGCR ; Mode 0

MOVE.B #%10000000,PACR ; Bit-I/0O submode

MOVE.B #7%00111111,PADDR ; Bits 6-7 inputs and

; bits 0-5 outputs

The only thing that differs from the previous example is how the PADDR is set

up. Note that Port B can be programmed similarly by using the Port B Control

Register (PBCR) to determine the submode; Port B Data Direction Register to

determine the data direction of all individual bits in Port B (See Table 7.2), and
finally data is accessed from the Port B Data Register (PBDR).
We will now look at more complex initializations of the PI/T. Suppose that we

want to use Port A to output data to a printer according to the handshake protocol
of Figures 7.2 and 7.3. In Figure 7.5, we show how the handshake lines H1 and
H2 can be used to facilitate the signalling of Ready (the printer has taken care of
the character) and Send (the processor has written a new character to Port A) ina
handshake protocol. The handshake lines can be programmed in a variety of ways
as inputs and outputs. In the following, we will show how the protocol according to
Figure 7.2 is set up. After that point, we will show how other handshake protocols
can be supported.

Table 7.4 Layout of the Port Status Register (PSR) in the PI/T.

Register

Select

Offset

(hex.)

ie 6 5 4 2 2D 1 0
D H4 H3 H2 H1 H4S | H38S | H2S | H1S | Port Status
|e Level | Level | Level Register

(PSR)

Parallel input and output 121

Ready (H1)

SS Saar)

aaa
a Send (H2)

Figure 7.5 Output handshake protocol using Port A and the H1 and H2 hand-

shake lines.

Computer ;
P Printer

The Ready line (H1) can be read by reading the content of the Port Status

Register (PSR) (see Table 7.4). As can be seen from Table 7.4, there are two

bits associated with H1 (H1 Level and H1S(ense)). Simply speaking, the level-bit
reflects the direct value of H1 while the sense-bit reflects transitions on H1. For

instance, if the PI/T is set up to sense when the H1-line is set, the H1S-bit will

be set when there is a transition on the H1-line from zero to one. However, if the

H1-line is reset shortly thereafter, H1S will remain set while Hi-Level will reflect

the direct change. The idea behind this is to let the PI/T do most of the work in

a handshake protocol — when the printer signals Ready, the H1S-bit is set. The

processor can sense this by a polling scheme that repeatedly tests the H1S-bit in the

PSR. When the processor writes a new value to the PI/T, H1S is automatically

reset, and the H2-line (Send) is automatically asserted. We now show how the

PI/T can be set up to conform to this protocol. We show the entire sequence of

control words needed to set up the PI/T below:

PGCR EQU $FFFOOO ; Address of the PGCR

PACR EQU $FFFO06 ; Address of the PACR

PADDR EQU $FFFOO2 ; Address of the PADDR

INIT MOVE.B #%00010011,PGCR ; Set mode 0. Hi and H2 are

; asserted when set

MOVE.B #%01110000,PACR ; Set the output submoce

; and H2 handshake

MOVE.B #%11111111,PADDR ; All bits are outputs

To explain the codes that are used to set up the PI/T, we take a closer look at the

control registers starting with the PGCR. In Table 7.5, we show the detailed layout

of the PGCR and the PACR control registers. The four least significant bits of the

PGCR specify at what logical level a certain handshake line is asserted. If we want

122 Programmable Input/Output Interfaces

Table 7.5 Layout of the Port General Control Register and the Port A Control

Register.

Register

Select

Offset
(hex.)

if 5 4 3 2 1 0

0 Pout Mode H34 H12 H4 H3 H2 H1 Port General

Control Enable | Enable | Sense Sense Sense Sense | Control Register
(PGCR)

6 Port A H2 H1 H1 Port A Control

Submode H2 Control Int SVCRQ | Stat Register

oe Enable | Enable Ctrl (PACR)

H1 to assert to a logical one, as in our example, we must set the corresponding bit.

If the bit is cleared assertion will be a logical zero. Since we want H1 and H2 to be

asserted when set, the corresponding bits are set in the PGCR (see initialization

sequence above). In order for the handshake-line pairs H1 and H2 to be enabled

according to the handshake protocol, we also need to set bit 4.

Continuing on the set up of the PACR, we note that bits 7 and 6 determine

the submode. Since we want a handshake protocol for output, we have set these

bits to Oly (see Table 7.1). Bits 3-5 control the handshake protocol that H2 is

supposed to follow. Below, we provide a list of all the options that are available

for the output submode:

Input — status only

Output — always negated

Output — always asserted

Output — interlocked handshake

Output — pulsed handshake

bit543=

See Ke © ORs i eo

In the above list, X denotes that the setting of the corresponding bit is irrelevant.

To choose H2 to be an arbitrary input that can be read using the Port Status

Register, we simply code bits 3-5 as e.g. 000. 100 and 101 make H2 to act as

an output that is constantly either negated (not asserted) or asserted to a logical

level according to the H2 sense bit in the PGCR. 110 denotes that H2 is to follow

an interlocked handshake protocol. Interlocked means that it is asserted when the

processor writes to the data port (Port A in this example) and negated when the

output device (the printer in this example) has taken care of the data and signaled

asserted H1 (Ready). This is exactly what we want to achieve, which is why bits

3-5 in the PACR are assigned 110. Unlike the interlocked handshake protocol, H2

will remain only asserted for a short while in the pulsed handshake protocol (111).
Bits 1 and 2 in PACR determine whether an interrupt is to be generated when H1

Parallel input and output 123

H1 (Send)

Computer Keyboard

H2 (Ready)

Figure 7.6 Input handshake protocol using Port A and the H1 and H2 handshake

lines.

and H2 are asserted. We will discuss the support for interrupt-driven I/O that the

PI/T provides later in Section 7.3.
Note that the PI/T takes care of all the handshake signalling. In the following

example program, we use the handshake scheme to transfer a buffer of characters

to a printer under the handshake protocol we have described.

PADR EQU $FFFO08 ; Port A Data Register

PSR EQU $FFFOOD ; Port Status Register

NUL EQU 0) ; ASCII-code for NUL

INIT MOVEA.L #BUFFER, AO

EQORSCMESE #NUL, (AO)

BEQ NEXT

POLL BIST #0,PSR ; Test HiS in the PSR

BEQ POLL ; If not asserted, try again

MOVE.B (AO)+,PADR ; Write to Port A

BRA POLL

NEXT RTS

We make the following important observations. First, after initialization, the pro-

cessor will busy-wait on the least significant bit of the PSR (H1S) (see Table 7.4)

until the printer asserts Ready (H1). Second, at this point, the processor writes the

next character to the Port A data register (PADR). When the PI/T senses this, it

automatically asserts H2 to notify the printer that a new character is available.

We have now seen how the PI/T can be set up to meet various protocols. Before

we close this section, we will provide another example in which Port A is used as an

input port and the data transfer is synchronized by a similar handshake protocol

according to Figures 7.6 and 7.7.

The differences between this handshake protocol and the previous one are the

124 Programmable Input/Output Interfaces

Figure 7.7 Timing diagram for the input handshake protocol.

following. The input device (the keyboard) signals when data is available by as-

serting the Send handshake line (H1). The 68000-based computer system signals

that data has been read by asserting the Ready line (H2) according to Figure 7.6.

The logical levels for assertion also differ. According to Figure 7.7, both Send and

Ready are asserted to logical level zero — when the key is pressed, the Send signal

goes from one to zero. Similarly, when data is read from Port A, Ready goes from

one to zero. We shall now look at the initialization sequence to program the PI/T

to conform to this protocol.

PGCR EQU $FFFO00

PACR EQU $FFFO06

PADDR EQU $FFFO02

INIT MOVE.B #%00010000,PGCR

MOVE.B #%00110000,PACR

MOVE.B #7%00000000, PADDR
?

Address of the PGCR

Address of the PACR

Address of the PADDR

Set mode 0. Hi and H2 are

asserted when reset

Set the input submode

and H2 handshake

All bits are inputs

First, the assertion level of H1 and H2 is changed; bits 0 and 1 of the PGCR are
now reset. Second, the submode is now 00 for input. Third, all Port A bits are
directed to serve as input ports in the PADDR.

EXERCISES

Tek What sequence of instructions is needed to program the PI/T so

that bits 0-3 of Port A are inputs and bits 4~7 are outputs?

yey What sequence of instructions is needed to program the PI/T so
that bits 0-3 of Port B are inputs and bits 4-7 are outputs?

Serial input and output 125

4.3 What sequence of instructions is needed to program the PI /T so
that H1 is asserted when zero in the output handshake protocol
according to Figure 7.5?

7.4 What sequence of instructions is needed to program the PI /T so
that Port B conforms to the output handshake protocol accord-
ing to Figure 7.5? Note that H3 and H4 are replaces by H1 and
H2 in the handshake protocol.

7.5 Write a device driver to the keyboard protocol in Figure 7.6 that
returns the character in DO when data is available in Port A.

7.2 Serial input and output

In the previous section, we have assumed that a computer system communicates
with a device by sending several bits in parallel at a time. To connect a printer to
a computer system would require at least seven bits in order to transfer an ASCII-

coded character in parallel. One could imagine that the cabling cost of connecting

a computer system in one room in a large building with a printer in another room

far away from the computer system would be prohibitive. In this section, we shall

look at an interesting alternative, namely, the use of a single line to transfer the

bits in a word in a serial fashion.

7.2.1 Asynchronous bit-serial communication

The fact that we want to use a single line to transfer information serially poses

the same synchronization problem we have seen in this book several times by now

— how is the receiving side supposed to know when a new bit is available? We

could of course use the handshake protocol that we have described in the previous

section, but that would be terribly inefficient; the program would have to check

the status register for each transferred bit. Also, it would take away most of the

advantages of having a single line to bring down the costs of cabling. Instead,

a commonly used protocol, called asynchronous serial communication, has been

developed to solve this problem.

To be able to use a single line necessitates that the information carried along

this line must bring synchronization support. The basic assumption for the asyn-

chronous protocol to work correctly is that the sending and the receiving side

conforms to the same transfer rate, usually denoted baud rate and measured in

baud (1 baud = 1 bit/second). In Figure 7.8, we show how two characters ‘A’
(1000001,) and ‘B’ (10000102) are transferred serially without any support for

126 Programmable Input/Output Interfaces

i © © 40). - 0) O 7 ioe Oe Omi AO)

Character A Character B

Figure 7.8 ‘Two successive serial character transfers without support for syn-

chronization.

synchronization. The duration of each transferred bit is the same (ie. the time

between two consecutive ticks in Figure 7.8 is the same for all bits). When the

sender has nothing to send, the line is constantly set. Even if both the sending side

and the receiving side agree on the same baud rate, the receiving side will have the

problem of knowing when the transfer of a character begins. In the asynchronous

protocol we will present this problem is solved by assuming that a zero is sent to

indicate the beginning of a new character, according to Figure 7.9. This bit is

called a start bit. A start bit is detected by the receiver as a transition from the

idle one to zero. When the receiver detects this transition, it can determine where

the actual data transmission starts.

A problem related to long-distance transfers is that the transfer is not always

undistorted. In fact, the nice square-shaped pulses as shown in Figure 7.8 can

be so heavily distorted so that a one is interpreted as a zero and vice versa. A

simple scheme to detect single-bit transmission errors is to append a so called

parity bit. The parity bit can either be used to detect odd parity or even parity.

Under an even parity scheme, the parity bit is set so that the total number of bits

in the data item including the parity bit is even. For instance, if character ‘A’ is

transmitted (10000012), the parity bit is zero (see Figure 7.9), while if character ‘B’

is transmitted, the parity bit is one. For odd parity calculation, the total number

of ones including the parity bit is odd. Now suppose that a zero is distorted so

that the receiver will interpret it as a one. The receiver can then detect that a

transmission error has occurred by counting the number of ones and checking the
parity bit. However, note that two errors within the same character cannot be
detected.

The last issue to be introduced is that of allowing the receiver to start synchro-
nizing for a new character to arrive. One often requires that the smallest distance
between two consecutive character transfers is one or two bits. These bits are
denoted stop bits because they indicate that the last bit has been sent. The stop
bits are indistinguishable from the idle state, that is, they are detected as ones. In
Figure 7.9, we show the transmission of character ‘A’ with the support for synchro-
nization by means of a start bit preceding each character, and support for error
detection by means of an even parity bit, and a stop bit to indicate that the last
bit has been received.

The asynchronous serial protocol shown in Figure 7.9 is widely used to connect
e.g. VDTs (Video Display Terminals) and printers to computer systems. There-
fore, there are special interfaces that take care of the conversion of a character to a

Serial input and output 127

=i ba (heer! bo el ul
VA ia th Ss iat

ea | Character A ey

Idle Start Parity Stop Idle
bit bit bit

Figure 7.9 ‘Transmission of the character ‘A’ with an asynchronous protocol with
even parity and one stop bit.

ACIA

| Status Register

Computer VDT (Video Display Terminal)

Control Register

Figure 7.10 The organization of the ACIA and how it is connected to a Video

Display Terminal with bit-serial lines.

sequence of bits including the start, parity, and stop bits and which detects when

a transmission error occurs. Such interfaces are called UARTs (Universal Asyn-

chronous Receiver Transmitter). Although the basic protocol is the same, some of

the operational parameters may vary. First, the transfer rate can be varied from

110 baud (about 10 characters per second) to 19,200 baud (about 2000 characters
per second). Second, the parity check can be odd or even, and, finally; one or two

stop bits can be used. Next we present a programmable UART from Motorola

which has the marketing name ACIA (Asynchronous Communications Interface

Adapter), or MC6850.

7.2.2 The ACIA — an example serial interface

In Figure 7.10, we show the basic organization of the ACIA and how it is connected

to a VDT. Before we look at how the protocol parameters can be set up, we note

that the function of the ACIA is to convert a word (eight or seven bits depending

on how it is programmed) into a serial bit-stream and to add a start, parity, and

128 Programmable Input/Output Interfaces

one or two stop bits according to Figure 7.9. The word to be transmitted (along the

TDATA-line in Figure 7.10) is simply written to the data register in Figure 7.10.

The ACIA can also receive data (along the RDATA-line in Figure 7.10) according
to the asynchronous bit-serial protocol and detect whether a single-bit transmission

error has occurred by checking the parity bit.

Table 7.6 Port, control, and status register for the serial interface ACIA.
Register
Select
Offset 7 6 3) 4 3 2 1 0

Te aur i mat a all a ea | fee i |

0 | IRQ| PE eas FE | crs DCD | PORE RDRF | Status Register
ewes ae AE = a) Sa | oh :

| __~ Receiver Data Register Full

| | a —= Transmitter Data Register Empty

| (SCD atta Carrier Detect

" SC Clear To Send

YS tee | Praming Error

lis & ____ Overrun Error

~~ %. __ Parity Error

z - oe E _ Interrupt Request

0 bee ae 7 Protocol Sample Control Register (CR)

= a Peeerel| Perri WE Rie
1 | | | | | Data Register (DR)

The protocol parameters of the ACIA are set up by writing an 8-bit control
word to the control register (CR). In Table 7.6, we show the layout of the registers
contained in the ACIA. Note that the control and status registers have the same
addresses. The designer has decided this by noting that the control register is
write-only while the status register is read-only.

Let us start to see how we set up the protocol parameters for the ACIA. This is
done by a 3-bit code in bits 2—4 of the control register as follows:

7 data bits, even parity, 2 stop bits

7 data bits, odd parity, 2 stop bits

7 data bits, even parity, 1 stop bit

7 data bits, odd parity, 1 stop bit

8 data bits, no parity, 2 stop bits

8 data bits, no parity, 1 stop bits

8 data bits, even parity, 1 stop bit

8 data bits, odd parity, 1 stop bit

Protocol =

eRe Fr OOO eo ProCcrrROO FP Or Or OeF ©

Serial input and output 129

We can choose between 7 or 8 bits of data, odd or even parity, and finally, we
can have one or two stop bits. The baud rate is usually defined by a timer that is
connected to the ACIA. How the baud rate is changed may differ between computer
systems.

In order for the ACIA to synchronize on the start bit to determine when to read
the first bit of the data word, it must sample the serial line. This is done with

a frequency that is typically a magnitude higher than the baud rate. The higher

this frequency is, the better the ACIA will be able to cope with deviations in the

baud rate between the sending and receiving devices. The ACIA permits the user

to specify the number of samples per bit. It is possible to choose between 1, 16,

64 samples per bit through bits 0 and 1 in the control register according to

1 sample/bit

16 samples/bit
64 samples/bit

master reset

Sample =

rere CO © Ke Or oO

Usually, 16 bits per sample is used. In order to program the ACIA, we need to

perform a master reset. This is done by writing 11 to bits 0 and 1 in the control

register. Bits 5-7 specify whether the ACIA should generate an interrupt when

the output buffer of the data register is empty, that is, when the ACIA is ready

to take care of a new character to be transmitted, and whether an interrupt is to

be generated when a character is ready in the input buffer. These bits will not

concern us.
We are now ready to provide some examples of how to program the ACIA.

Suppose that we want to use 7 bits, odd parity, 2 stop bits, and a sample rate of

64 samples per bit. The proper initialization of the ACIA is as follows, assuming

that the base address is FFF0001¢6

CR EQU $FFFOOO ; Address to control register

INIT MOVE.B #%00000011,CR ; Master reset of the ACIA

MOVE.B #%00000110,CR ; 7 bits, odd parity,

; 2 stop bits, and 64 samples

In the second example, we assume 8 bits, even parity, and 1 stop bit. We get

CR EQU $FFFOOO ; Address to control register

INIT MOVE.B #%00000011,CR ; Master reset of the ACIA

MOVE.B #%00011010,CR ; 8 bits, even parity,

; 1 stop bit, and 64 samples
?

130 Programmable Input/Output Interfaces

Note that once we have initialized the ACIA, it is ready for use. We now turn our

attention to how the processor is supposed to know when the ACIA has received

a new character, and when it is ready to send a new character. Also, we will

see how certain transmission errors, such as single-bit errors, are detected. This

information is provided by the status register (see Figure 7.6).

Starting from the most significant bit of the status register, bit 7 (IRQ) is set

when an interrupt is generated (provided that the interrupt control is enabled). Bit

6 (PE) is set when a parity error has occurred, that is, the receiver has detected a

single-bit transmission error. Bit 5 (OVRN) detects an overrun error. An overrun

error results if a character that has not been read by the processor is overwritten

by a new character that is received by the ACIA. Bit 4 (FE) indicates that the

wrong number of stop bits have been detected or that the start bit is not correctly

received. For instance, if the ACIA has been programmed for two stop bits and it

detects a start bit immediately following the first stop bit, a framing error occurs.

Bits 0 and 1 indicate when a new character is available in the ACIA (bit 0) and
when the ACIA is ready to send a new character (bit 1).

Suppose that we want to transfer a buffer of characters to a VDT. The following
polling scheme will do

SR EQU $FFFOOO ; Status Register

DATA EQU $FFFOO1 ; Data Register

NUL EQU 0) ; ASCII-code for NUL

INIT MOVEA.L #BUFFER, AO

LOOP CMP.B #NUL, (AO)

BEQ NEXT

POLL BIST #1,5R ; Test TDRE in the SR

BEQ POLL ; If not asserted, try again

MOVE.B (AO)+,DATA ; Write to the ACIA

BRA POLL

NEXT ~ RIS

Note that we test bit 1 in the status register. This bit is one when the ACIA is
ready to transmit the next character. At this point, we can write the new character
to the data register in the ACIA.

Conversely, if we want to read a character string from the ACIA, which is ter-
minated by NUL, and if we want to detect if any error has occurred, we can do as
follows

LOOP

PERROR

OERROR

FERROR

NEXT

EQU

EQU

EQU

MOVEA.L

BTST
BEQ
BTST
BNE
BIST
BNE
BIST
BNE
MOVE
CMP .
BEQ
BRA

RTS

B

$FFFO0O

$FFFOO1

0

#BUFFER , AO

#0,SR

POLL

#6 ,SR

PERROR

#5,5SR

OERROR

#4,5R

FERROR

DATA, (AO)+

#NUL, (AO)

NEXT

POLL

Serial input and output

; Status Register

; Data Register

; ASCII-code for NUL

; Test RDRF in the SR

; If not asserted, try again

; Parity error?

; Yes, branch to PERROR

; Overrun error?

; Yes, branch to OERROR

; Framing error?

; Yes, branch to

; Read from the ACIA

FERROR

} Mpeuesbiony, Ciedepe a a a

; Overrun error...

; Framing error...

131

Note how the error flags in the status registers are tested to find out about any

transmission error that might have occurred. A possible action, upon detection of

a parity error, could be to request the sender to retransmit the character.

EXERCISES

7.6

hod

7.8

What sequence of instructions is needed to set up the ACIA with

7 bits, even parity, 1 stop bit, and 16 samples per bit?

What sequence of instructions is needed to set up the ACIA with

7 bits, even parity, 2 stop bits, and 64 samples per bit?

What sequence of instructions is needed to set up the ACIA with

8 bits, no parity, 2 stop bits, and 16 samples per bit?

132 Programmable Input/Output Interfaces

7.9 Write a subroutine that polls the RDRF bit in the status register

of the ACIA. When a character has been received, it is returned

in DO. In addition, an error code should be returned in D1

as follows: 0=no error, 1=parity error, 2=overrun error, and

3=framing error.

7.3 Vectored interrupts

The interrupt mechanism provides a means to let the processor perform useful

work instead of actively checking whether an external event has happened which is

the case for polling schemes. However, it is important to note that polling is useful

if interrupts from a single input device occur frequently and can sometimes be

more efficient than using interrupts. The reason is as follows. When an interrupt

occurs, the processor needs to store the program counter and the status register

on top of the stack. In addition, it has to invoke the interrupt service routine.

All these actions take a substantial number of cycles to perform. Consequently,

the response time from the point when the interrupt occurred until the service

is performed is in general longer in interrupt-driven exception handling than in a
polling scheme. This is true if the processor only needs to service a few external
events. Now assume that we want to design a polling scheme for a large number
of external events. In the below example, we show such a scheme for five events:

LOOP BIST #1,EVENT ; Is event-flag 1 active?

BNE EVENT1 ; Yes, handle it

BIST #2,EVENT ; Is event-flag 2 active?

BNE EVENT2 ; Yes, handle it

BIST #5,EVENT ; Is event-flag 5 active?

BNE EVENTS ; Yes, handle it

BRA LOOP

EVEN TIS" a5. ; Handle event 1

BRA LOOP

EVENT2 a ; Handle event 2

BRA LOOP

EVENT Omens ; Handle event 5

BRA LOOP

Vectored interrupts 133

In the above scheme, five event-flags are available in an inport at address EVENT.
Each event-flag is tested in turn; when event-flag 5 has been tested, event-flag 1 is
tested again etc. Now suppose that event 5 occurs immediately after it has been

polled. It will now take five tests for the processor to again test whether event 5

has occurred. One realizes that if the number of events is large, the response time

becomes extremely long. In such situations it is more efficient to use interrupts.

In Chapter 6, we noted that there are only seven interrupt inputs. What do we

do if we want to support more than seven interrupts. In fact, the M68000 as well as

most computers supports a large number of interrupts called vectored interrupts.

In this section, we will take a look at how one can extend the number of interrupt

inputs beyond seven by means of user-defined interrupt vectors.

M68000 supports seven interrupt priority levels which are denoted I, to Iy. We

say that I, has interrupt priority level n. In Chapter 6, we noted that an interrupt

with an interrupt priority level n can be taken care of by the processor provided

that n > CPL (the current priority level). In 68000-based computer systems

that only need to take care of at the most seven interrupts, one can associate

each interrupt with a distinct interrupt priority level. The scheme we presented

in Chapter 6 assumed that an entry in the exception vector table is associated

with each interrupt priority level. This scheme is called autovector mode, because

M68000 calculates the address of the entry in the exception vector table based on

the interrupt priority level. We noted that the address in the exception vector table

is given by 4(18;5 +n), assuming that the interrupt priority level of the interrupt

is n. The autovector for interrupt n is v = 1816 +7.

M68000 can support more than seven interrupts by letting the interface (or de-

vice) that generates the interrupt provide the processor with a vector number. In

this section, we will show how the parallel interface PI/T can be programmed to

supply M68000 with a vector number when an interrupt occurs. There are 192 vec-

tor numbers ranging from v = 406 to v =FF 4. In general, if an interface generates

an interrupt with a vector v, M68000 will fetch the address of the corresponding

interrupt service routine at address 4v. For example, if an interface provides the

vector v = 4046, the address of the interrupt service routine is available at address

4vy = 100;6. In Table 7.7, we show the exception vector table with the addresses

and vector numbers for all vectored and autovectored interrupts.

It is possible to program the PI/T, and many other programmable interfaces, to

provide a certain vector when an interrupt from the interface occurs. However, it

is necessary that the designer of the computer system has connected the PI/T to

the processor in such a way that it can generate a vector number. To explain this

is outside the scope of this text. The only thing we shall bother about is how the

vector number is programmed and how we initialize the exception vector table to

connect the interrupt to a corresponding interrupt service routine. In Table 7.8,

we show the layout of the Port Interrupt Vector Register (PIVR) and the PACR of

the PI/T. Recalling Section 7.1, we noted that four handshake lines are available

which are denoted H1 through H4. Each of these handshake lines can cause an

interrupt. The programmer can associate a vector with each of these handshake

134 Programmable Input/Output Interfaces

Table 7.7 Vector numbers and addresses in the exception vector table for

autovectors and user-defined interrupt vectors.

Interrupt Vector number Address

Level 1 Interrupt Autovector 1916 6416

Level 2 Interrupt Autovector 1Ai6 6816

Level 3 Interrupt Autovector 1By¢6 6C 46

Level 4 Interrupt Autovector 1Ci¢ 7016

Level 5 Interrupt Autovector 1D46 TAi6

Level 6 Interrupt Autovector 1Ei6 7816

Level 7 Interrupt Autovector 1Fi¢ 7TCi6

User Interrupt Vector 1 4016 10016

User Interrupt Vector 2 Alig 10416

User Interrupt Vector 3 4216 10816

User Interrupt Vector 192 FF i¢ 3FCi¢6

lines by a 6-bit vector number. The additional two least significant bits in the
PIVR are assigned by the PI/T itself according to the table below:

Source Low order bits of the PIVR

H1 00

H2 01

H3 10

H4 11

So given that the six bits are 010000, the vector numbers for H1 through H4

Table 7.8 Layout of the Port Interrupt Vector Register and the PACR of the
PL

Register

Select

Offset
(hex.)

if 6 i 2h 8 2 1 0
5 Interrupt Vector Port Interrupt

Number | “5 z Vector Register
(PIVR)

6 Port A H2 H1 H1 Port A Control
Submode ; H2 Control | Int SVCRQ | Stat Register

Enable | Enable |. Ctrl (PACR)

Vectored interrupts 135

are 01000000,...,01000011. A consequence of the predetermined low order bits

in the PIVR is that H1 through H4 will get four consecutive vector numbers.

The programmer must specify the high order six bits. Note that the resulting

8-bit vector number must be in the range [40,5,FFi¢]. For example, suppose that

interrupts caused by H1 through H4 shall generate the vector numbers [4016, 4316],

then the following instruction initializes the PI/T to supply these vector numbers:

PIVR EQU $FFFO0O5

MOVE.B #%01000000,PIVR

assuming that the base address of the PI/T is FFF000;¢. In order to connect four

interrupt service routines to H1 through H4, the programmer must initialize the

exception vector table and enable the interrupts. Assuming that the designer of

the computer system has decided that the PI/T generates interrupts at interrupt

priority level 3, the necessary initializations of the interrupt system is as follows:

INIT MOVE.B #%01000000,PIVR

MOVE.L #H1INT,$100 ; Exception address for Hi

MOVE.L #H2INT,$104 ; Exception address for H2

MOVE.L #H3INT,$108 ; Exception address for H3

MOVE.L #H4INT,$10C ; Exception address for H4

MOVE #$2200,SR ; Set interrupt priority 2

; Interrupts are enabled

JOG NM’ = chee

RTE

TSNOIES ore

RTE

HS UN leer

RTE

H4INT ...

RTE

It is important to note that the interrupt priority level and the vector number

for an interrupt is not the same. Since there are only seven interrupt priority

levels, the system designer must let many devices generate interrupts at the same

priority. An important issue now arises. How can we disable some devices to

generate an interrupt at a certain priority level and still let other devices at the

same priority level be able to generate interrupts. Most parallel interfaces have

provision for enabling and disabling a certain interrupt. In the PI/T, it is possible

to enable/disable interrupts caused by the handshake lines. In order to enable

interrupts caused by the H1 handshake line, bit 1 in the PACR. must be set (see

Table 7.8).

136 Programmable Input/Output Interfaces

7.4 Summary and concluding remarks

In this chapter, we have seen how a variety of communications protocols can be

supported by programmable interfaces. The simplest kind of interface problem is

to control output devices, such as lamps, and read status of input devices such

as switches. This type of I/O is called bit I/O. Programmable interfaces usually

contain ports where each individual bit can be programmed as either an input or

an output.

When information is exchanged between two devices, such as between computers

and printers or terminals, the information flow needs to be controlled in one way

or another. We have seen how handshaking can be used to synchronize data

transmission; two handshake lines are sufficient to design such protocols. When the

sender has a data item to transfer, it notifies the receiver by asserting its handshake

line. The receiver, on the other hand, uses another handshake line to notify the

sender when data has been read.

When the distance between two devices is small, one can use bit-parallel data

transfers. Several bytes can then be transferred at the same time. We have looked

at a parallel programmable interface which supports various handshake protocols.

Its ability to take care of all handshake control, frees the processor from this task.

The processor can either use polling or interrupts to synchronize when data is

available or ready to send.

When the distance between two devices is large, the cost of connecting two de-

vices by means of parallel interfaces soon becomes prohibitively expensive. In such

situations, we can use a bit-serial communications protocol. The asynchronous bit-

serial protocol that we have seen in this chapter is commonly used to connect e.g.

terminals with computers. It is asynchronous in the sense that the synchronization

information is provided in the bit-stream itself. The start bit is used to notify the

receiver that a new data item is on its way. In order for the receiver to perform

single-bit error detection, a simple method called parity calculation is often used.

The parity bit indicates whether the number of ones contained in the data word

is even or odd. If the receiver counts the number of ones, it can decide whether a

single-bit error has occurred by simply checking the parity bit. All these functions

are provided by UART-interfaces (Universal Asynchronous Receiver/Transmitter).

We looked at one such example, namely the ACIA.

When a computer system needs to take care of a large number of interrupts,

it can use vectored interrupts by letting each device identify itself by a vector

number. The processor uses the vector number to find out about the address of

the interrupt service routine.

Chapter 8

Real-Time Applications

We have now introduced the most important concepts of a computer system from

the machine language programmer’s point of view. This chapter aims at taking a

broader look at what we have learned by applying it to the important domain of

real-time applications.

The flexibility of a computer is that it can be programmed to perform various

tasks. Many microprocessor systems are parts of equipment that aim at controlling

various processes. Such systems are known as embedded in the sense that the

microprocessor system has a specific task in the entire system. The task to be

performed can, for instance, be to regulate the temperature in a chemical process

or to regulate the flaps in an aircraft etc. Typical for these applications is that

time plays an important role. Therefore, we call them time-critical or real-time

applications.

This chapter gives us some understanding about the basic problems that need

to be addressed in the course of real-time applications. We will focus on how these

concepts can be implemented rather than giving an exhaustive treatment of the

issue, that can be found in almost every text on operating system design. Before

we look at the implementation of certain real-time mechanisms, we shall extend

the mcdel of the M68000 by looking at the important concept of supervisor and

user mode in Section 8.1. We will then look at exception management in general,

that is, the management of all exceptional events such as interrupts in Section 8.2.

In Sections 8.3 and 8.4, we present the implementation of a simple time-sharing

and real-time operating system.

8.1 Supervisor and user mode

In Chapter 6, we introduced the concept of interrupt. The interrupt system pro-

vides a mechanism to make efficient use of the processing power of the processor.

The reason for this is that the processor can perform useful work until it is notified

137

138 Real-Time Applications

that an external device needs service. Since an event can cause the processor to

interrupt at any time, it is important that the interrupted program is unaffected

by the interrupt service routine. To be more specific, the processor contezt, that

is, the contents of all registers must be unaffected by the interrupt service routine.

We solved this problem by saving the contents of all registers on the stack at the

beginning of the interrupt service routine. By doing this, it appears in the inter-

rupted program as if nothing had happened other than the fact that the interrupt

service routine ‘steals’ cycles from the processor. Another way of looking at it is

that the processor (including all its registers) is shared between the main program

and the interrupt service routine. From the viewpoint of these two programs (the

interrupted program and the interrupt service routine), it appears as if they have

the processor on their own. The idea of assigning a ‘virtual’ processor to a program

is fruitful because since the processor is very fast we could indeed share it between

several user (or application) programs.

Let us consider N programs that are to be executed on the processor. Each

program produces a result every JT’ seconds and the execution time is AT seconds.

Furthermore, a user is associated with each program and waits for it to produce

a new result. The question is how we should share the processor among these

programs.

One approach would be to run each program until completion and then start the

next one. This would result in having the first user to obtain the first result after T

seconds while the last user would have to wait KT(N —1)+T seconds. Although

the first user is happy the last user would certainly consider this approach to be

unfair.

In order to make all users wait about the same amount of time, we could choose

to execute the first program for a short while (say 1 millisecond) and then the

second one etc. Theoretically, each user would have to wait NT seconds for the

first result, 2NT seconds for the second result and ATN seconds for the last result.

We call this approach time-sharing because each program, often referred to as a

process, iS assigned a time-slice and the processor is time-shared between the

processes. Figure 8.1 shows how the time-sharing scheme affects the execution

of each process; Proc0, Procl,...,ProcN-1 are executed a time-slice in turn. After

ProcN-1 has been executed for a while, Proc0 is executed again and so on.

One way of implementing the time-sharing scheme is to use a timer that generates

an interrupt periodically. The interrupt service routine saves all registers of the

executing process in a dedicated memory area and restores the register contents

of the next process before it is restarted. In general, if we have N processes and
process 7 is executing, the task of the interrupt service routine is to save the registers
of process 7 and restart a new process i+1(mod N). What we have achieved with
this scheme is that the processor is assigned to each process in turn, something
often referred to as a round-robin policy. The processor assigns a time-slice as
dictated by the timer to each process. The action of swapping off a process and
restarting a new one is called a context-switch because the context of the running
process is saved and the context of the next process in turn is restored. In order

Supervisor and user mode 139

ProcN-1

Time

Figure 8.1 Time-sharing among N processes according to round-robin.

to implement the above scheme, we need to make precise what we mean by the
context of a process. The context is basically all information needed to restart
a program and making it execute at the same point it was interrupted when the
timer went off. Below we list the information that specifies the context:

e Registers. All registers can potentially be used by a program, that is, DO-D7,

AO-A6, SP, and SR.

© Program counter (PC). We must save the PC to be able to restart a process

at the point it was interrupted.

e Stack pointer. This is a special case of the registers.

e Stack space. Each process should have its own stack in order to prevent other

processes from destroying it.

In Chapter 6, all registers and the program counter were saved on the stack

when an interrupt service routine was executed. This is a simple method of saving

the context because we could restore the information by popping the stack. When

we have more than one process, this scheme is not possible to use — each process

must have its own stack. In order to cope with this, many computers such as the

M68000 provide two stack pointers called supervisor stack pointer (SSP) and user

stack pointer (USP). The processor can be operated in two modes called supervisor

mode and user mode.

When the processor encounters an interrupt it enters supervisor mode. There

are also other exceptions that cause the processor to enter supervisor mode such

as traps which will be treated in the next section. When the supervisor mode is

entered, the processor uses the supervisor stack pointer to store data. For instance,

the return address of the interrupted program is saved on to the supervisor stack.

The supervisor mode also makes it possible to execute certain privileged instruc-

tions. An example of a privileged instruction is MOVE a,SR, which is used to change

the content of the SR (status register). This instruction may only be executed in

supervisor mode. Bit 13 in SR (see Figure 6.6 at page 104) controls the operating

mode; if S=1, then the processor is in supervisor mode, otherwise, it is in user

mode. If the processor executes in user mode, register SP (or A7) refers to USP and

otherwise, it refers to SSP.

140 Real-Time Applications

We are now ready to present a scheme that saves and restores the context of a

process. Below, we show parts of the code for two processes PROCO and PROC1.

PROCO rs ; Here starts PROCO

; The last instruction

; Process control block for PROCO

CNEX ORD Sry aan) On D (aus Omen

Doak ; SP (USP)

DS.W 1 ; SR

Ds.L 1 5 dete;

DS.L 10 ; Stack space for process 0

STACKO DS.L 1

PROC1 aoe ; Here starts PROC1

; The last instruction

; Process control block for PROC1

CNTX1 DS cleo DOB a Dia ae AOs AG

Deel, ll ; SP (USP)

DS.W 1 5 tle

D Siam a Ite

DS.L 10 ; Stack space for process 1

SWUNG GL IDYSia Al

We have associated a memory area, called a process control block (pcb), with

each process that has space for all registers (DO — D7, AO — A6, USP, SR, and PC).
In addition, we allocate 10 long words of stack space for each process. Note that
the stack grows towards lower addresses. This is why we associate the symbolic

addresses STACKO and STACK1 with the last long word in the stacks.

The following sequence of instructions initializes the processor to begin executing
at address PROCO:

MOVEA.L #STACKO,AO ; Stack for PROCO

MOVE AO ,USP ; Initialize the USP

MOVE #0,SR ; Enter user mode

BRA PROCO

The two first instructions initialize the user stack pointer to contain the address
of the first element of stack STACKO. We have used a special form of the MOVE

Supervisor and user mode 141

instruction. (See Appendix B.)
We now turn our attention to the part of the interrupt service routine that

implements the context switch. This is usually a part of the operating system
called scheduler. What we wish to do is to save the context of the currently
running process in its process control block. Suppose that PROCO is running and
that an interrupt is encountered. From Chapter 6 we learned that the processor
will set the S-bit (recall the actions taken when an interrupt is generated from
page 105). It will then push PC and the old value of SR onto the supervisor stack
before it branches to the entry point of the interrupt service routine. Having this
in mind, the following sequence of instructions saves the context in the process
control block of PROCO:

AOOFF EQU 32 ; Displacement to AO

USPOFF EQU 60 ; Displacement to USP

SROFF EQU 64 ; Displacement to SR

PCOFF EQU 66 ; Displacement to PC

SCHED MOVE.L A0O,-—(SP) ; Push AO using SSP

MOVEA.L #CNTXO,AO ; Address to pcb

MOVEM.L DO-D7/A0-A6,(AO) ; Save DO-D7 and AO-A6

MOV ETaIE (SP) +, AOOFF (AO) ; Pop AO using SSP

; and save it

MOVE USP, Al

MOVE.L A1,USPOFF (AO) ; Save USP

MOVE.W (SP)+,SROFF (AO) mESavienok

MOVE (SP) +, PCOFF (AO) ; Save PC

SCHED is the entry point of the scheduler. The first thing to be done is to release

one of the address registers (AO) to be used to point at the process control block.

We have declared displacements that can be used to access certain entities in the

process control block. For instance, when all data and address registers have been

saved by MOVEM.L DO-D7/A0-A6, (AO), we need to save the old value of AO that we

temporarily have stored in the supervisor stack. This is done by the instruction

MOVE.L (SP)+,AOOFF(AO). Note the order in which we access the return address

and the content of SR from the system stack. This is the reverse order from which

the processor pushed them during the interrupt cycle.

The next sequence of instructions performs the opposite operation; it copies the

context from process PROC1 to the processor registers:

142 Real-Time Applications

MOVEA.L #CNTX1,A0 ; Address to pcb

MOVEA.L USPOFF(AO) ,A1

MOVE Ai,USP ; Restore user stack pointer

MOVE.L PCOFF(AO) ,-(SP) ; Restore program counter

MOVE.W SROFF (AO) , - (SP) ; Restore status register

MOVEM.L (AO),DO-D7/AO-A6 ; Restore DO-D7 and AO-A6

RTE ; Activate PROC1

An interesting observation from the above sequence of instructions is how the PC

and the SR are restored. We push their values from the process control block onto

the supervisor stack. When RTE is executed, PC and SR are restored from the

supervisor stack and PROC1 is restarted correctly.

In summary, we have presented a scheme that can be used to save and restore the

context of a process. By providing two operation modes; the user and supervisor

mode, we can have separate stacks for all user programs and the scheduler. Later

in this chapter, we will present the code of a simple time-sharing operating system

that enables us to execute an arbitrary number of processes on the same processor

reliably.

8.2 Exceptions

We have only met one kind of exception, namely interrupts. Interrupts are exam-

ples of external events that cause the processor to perform a desired action. There

are also exceptions caused by internal events. These are often referred to as traps.

Examples of traps are:

e Address error. An attempt to execute an instruction or access a word or long

word at an odd address.

e Illegal instruction. An attempt to execute an operation word that does not

correspond to a valid instruction.

e Trap on Overflow. Explicit trap when the V-flag is set.

e Zero divide. An attempt to divide by zero.

e Privilege violation. An attempt to execute a privileged instruction in user

mode.

e Trace enabled. The trace-bit is set (bit 15 in SR).
e Explicit traps. An explicit TRAP instruction has been executed.

When any of the above mentioned traps are generated, the processor performs the

same actions as for interrupts (see page 105) except that it will fetch the address

of the trap service routine, called a trap handler, at another place in the exception

vector table. Another difference is that the current priority level of the processor

Exceptions 143

Table 8.1 Entries in the exception vector table for various traps.

Exception Address in exception vector table

Address error Ci¢6

Illegal instruction 106

Zero divide 1446

Overflow trap (TRAPV) 1Ci¢6
Privilege violation 2016

Trace enabled 2416

Explicit traps 8016 + 4n

is not changed. Table 8.1 shows the entries for the different traps in the exception

vector table.

M68000 provides two division instructions DIVS a,Dz and DIVU a,Dz for signed

(DIVS) and unsigned (DIVU) division of a 32-bit number by a 16-bit number, where
the destination operand (a data register) is divided by the source operand. The

result of the execution is that the quotient is available in the 16 least significant bits

of Di and the remainder is available in the 16 most significant bits. For additional

information, please refer to Appendix B. Now if the divisor (the source operand)

is zero, a Divide-by-Zero trap is generated.

An overflow trap can explicitly be used by inserting the TRAPV instruction in the

code. If the V-flag is set, the processor will automatically invoke the trap handler

whose address is stored at address 1Cj¢ (see Table 8.1). If a privileged instruction

is executed in user mode, a privilege-violation trap is generated.

Now recall the T-bit (Trace bit) in the SR from Chapter 6. An important feature

of a debugger is to interrupt the execution of a program at a specific address

(breakpoint) or after each instruction (single-step). The Trace-bit can be used to

cause a trap after the execution of each instruction. When the T-bit is set, a Trace

trap is generated after each instruction. Note that it is only possible to trace a

program in user mode this way because the T-bit is reset when an interrupt or a

Trace trap is handled.

There are 16 explicit trap instructions available. They are denoted TRAP #n,

where n= [0,15]. TRAP #i results in a trap to address 80,6 + 4n. For instance, the

following sequence of instructions initializes the TRAP #0 instruction to perform a

trap to address TRAPO:

144 Real-Time Applications

MOVE.L #TRAPO,$80 ; Initialize the exception

; vector table

TRAP #0

TRAPO

RTE

When the TRAP #0 instruction is executed, the processor performs the actions
involved when an interrupt is generated and continues to execute at address TRAPO.

Note that the last instruction to be executed in a trap handler is RTE, that is, the
saine as we used to exit from an interrupt service routine. Explicit TRAP instructions
can be used to enter supervisor mode and in a controlled fashion execute a certain
piece of code.

To summarize, traps and interrupts both cause the processor to perform a sub-
routine call to a trap handler or interrupt service routine. Traps and interrupts are
collectively called exceptions and the routine that services an exception is called
an exception handler.

8.3. Time-sharing operating systems

An operating system of a computer system is responsible for all its resources in-
cluding the processor and I/O-devices. In this section, we will look at the piece of
code used to manage the processor resource. Recall the round-robin policy from
Section 8.1 which in turn assigned a time-slice to each of a number of processes.
We shall here present the complete code of this scheduler.
A timer is connected to interrupt input I;. It generates an interrupt periodically

(typically each millisecond). When an interrupt is generated, the following actions
are taken by the scheduler:

e Save the context of the currently running process.
e Choose the next process to be restarted.
e Restore the context of the next process and restart it.

Figure 8.2 shows how N processes and the timer interrupts interact with the
scheduler. The scheduler is simply an interrupt service routine that performs a
context-switch on each timer interrupt.

On the next few pages, we show the code of a scheduler and two processes. The
first part of the program initializes the interrupt system and starts process PROCO.
The scheduler (SCHED) is designed to be able to handle an arbitrary number of
processes in the sense that we can add more processes without having to rewrite

Time-sharing operating systems 145

Real-Time Clock

Figure 8.2 The structure of the time-sharing operating system.

the scheduler code. All we have to do is to add the code and a process control

block for the new process and insert a constant in the data structure that appears

at the end of the assembly code:

AOOFF EQU 32 ; Displacement to AO

USPOFF EQU 60 ; Displacement to USP

SROFF EQU 64 ; Displacement to SR

PCOFF EQU 66 ; Displacement to PC

NUMPRO EQU 2 ; Number of processes

START MOVEA.L #CNTX1,A0 ; Initialize the pcb of PROCi

MOVE .W #$0400 , SROFF (AO) ; Initialize SR

MOVE.L #PROC1 , PCOFF (AO) & Moeitesleulstvasy XC

MOVE. IE #STACK1,SPOFF(AO) ; Initialize SP

MOVEA.L #STACKO, AO

MOVE AO,USP ; Initialize USP of PROCO

MOVE.L #SCHED , $74 ; Initialize exception vector

MOVE #$0400,SR ; Enable timer interrupts and

enter user mode

BRA PROCO w Start PROCO

146 Real-Time Applications

The initialization part in the beginning of the program must initialize parts of the

process control block of PROC1 in order for the scheduler to start it at the entry

point with correct status register and user stack pointer contents. In addition, we

initialize the user stack pointer for PROCO to point to the stack of process PROCO.

Then we initialize the interrupt system with the exception vector entry equal to

the address of the interrupt service routine SCHED. Note that we assume that the

timer is using an autovector with the interrupt priority level 5. We therefore set

the current processor priority (CPL) to 4 in order to enable timer interrupts. We

enter user mode by resetting the S-bit in the status register (bit 13) at the same

time. The two processes PROCO and PROC1 are defined according to the code at

page 140.

SCHED

; SAVE_CNTXT

MOVE.L

MOVE.L

MOVEA.L

MOVE.L

ASL.L

MOVEA.L

MOVE.L

MOVEM.L

MOVE.L

MOVE.

MOVE.L

MOVE. W

MOVE.L

; SELECT_NEXT

ADDI.L

CMPI.L

BNE

MOVE.L

; RESTORE_CNTXT

RSTORE MOVEA.L

MOVE.L

ASL.L

MOVEA.L

MOVEA.L

MOVE

MOVE.L

MOVE.W

MOVEM.L

RTE

AO ,-(SP)
DOR GSP)
#CNTXTS , AO
ACTIVE,DO
#2,D0
0(A0,DO) , AO

(SP)+,DO

DO-D7/A0-A6, (AO)

(SP)+, AOOFF (AO)

USP, Ai

A1,USPOFF (AO)

(SP) +, SROFF (AO)

(SP) +, PCOFF (AO)

#1, ACTIVE

#NUMPRO , ACTIVE

RSTORE

#0, ACTIVE

#CNTXTS , AO

ACTIVE ,DO

#2 ,D0

0(A0,DO) , AO

USPOFF (AO) , A1

A1,USP

PCOFF (AO) ,- (SP)

SROFF (AO) ,- (SP)

(AO) ,DO-D7/A0-A6 we we

Push AO onto the stack

Push DO onto the stack

Calculate the address

to the pcb of the

currently running process

AO contains the address

to the pcb

Restore DO

Save DO-D7 and AQ-A6

Pop AO from the stack

and save it in the pcb

Save USP

Save SR

Save PC

Calculate the address

of the pcb of the

next running process

AO contains the address

of the pcb of next process

Restore USP

Restore PC

Restore SR

Restore DO-D7 and AO-A6

Activate next process

Time-sharing operating systems 147

We next show the data structure used by the scheduler.

CNTXTS DC.L CNTXO,CNTX1 ; Addresses to each pcb

ACTIVES DCe I a0 ; Current process ID

END

The scheduler SCHED has the following general structure

procedure SCHED;

begin

SAVE_CNTXT ;

SELECT_NEXT ;

RESTORE_CNTXT ;

end;

The scheduler keeps track of the currently running process by a variable called

ACTIVE which is initialized to 0. The first part of the scheduler (see assembly code

on the previous page) saves the context of the currently running process. The

addresses of the process control blocks are stored in a vector at address CNTXTS. In

SAVE_CNTXT, the context of the currently running process is stored in its process

control block. The first part of SAVE-CNTXT aims at calculating the address of

the process control block of the current process (see the assembly code). This

can be expressed in terms of the content of ACTIVE as: CNTXTS + 4(ACTIVE). The
multiplication by four is implemented by shifting the contents of ACTIVE twice

(ASL.L #2,D0).
The second part of the scheduler (SELECT_NEXT) aims at selecting the next pro-

cess to be restarted. This is done by incrementing ACTIVE modulo NUMPRO which

is a constant that specifies the number of processes. The third part of the sched-

uler (RESTORE_CNTXT) restores the process control block of the selected process and

restarts it.

We have structured the scheduler this way to be able to add new processes

without having to change the code for the scheduler. A new process is added

by adding a new framework consisting of the code and a process control block.

The constant NUMPRO must be incremented by one, and finally, the address of the

process control block for the new process must be inserted in the table at address

CNTXTS.

148 Real-Time Applications

mt

|Timer interrupt |;

Figure 8.3 State diagram of a process.

8.4 Real-time control

The scheduler in the previous section is only meaningful if all processes can perform
useful computation all the time. If that is the case, the processor is efficiently
shared between all processes.

Now assume that a process is waiting for a human user to input data. Then the
scheduler would make more efficient use of the processor if it did not assign any
time at all for a process that is waiting. What the scheduler needs, is to be able to
handle two kinds of processes; those ready for execution and those blocked because
they are waiting for an external event such as manual input from a keyboard.

In this section, we shall extend the functionality of the scheduler to take care of
external events. Each process can be in exactly one of the following three states:
ACTIVE, READY, or BLOCKED.

In Figure 8.3, we show these states and what actions that cause a process to
transit from one state to another. Note that at most one process can be active at
a time. The number of processes in state READY ranges from zero to the total
number of processes minus one (the one that is in state ACTIVE), whereas the
number of processes in state BLOCKED ranges from zero to the total number of
processes. However, the sum of processes in all states is of course the total number
of processes.

A state transition is triggered by an event. An event can be internal (a system
call) or external (a timer interrupt or another type of interrupt). The purpose of
the scheduler is to make a choice as to which process to run next based on the
type of event and to move processes in between the states. The facts that there
can be zero processes that are ready for execution and more than one process in
state BLOCKED or READY have two important implications. First, in case all
processes are BLOCKED, the scheduler cannot activate a new process. Therefore,
an idle process called the NULL process must be available. Second, since more
than one process can be BLOCKED or READY, a queue must be associated with
these states. The NULL process is designed in the same manner as an ordinary

Real-time control 149

Scheduler

Figure 8.4 The structure of a simple real-time operating system.

process. Thus, it has a process control block in order to make it possible to treat

it in the same way as any other processes. However, the NULL process does not

perform any useful task; it simply executes an infinite loop.

Figure 8.4 shows the general structure of a simple real-time operating system

we will present on the next few pages. It supports N processes and can handle

k& events in the following way. As long as no process needs service, all processes

will be in the ready state except for one process which is in the active state, and

thus is executing. For each timer-interrupt, the scheduler selects a new process in

the ready queue according to a round-robin. When a process needs service (e.g. is

waiting for a keyboard input) it performs a system call. The system call invokes

the scheduler which removes the process from the active state and puts it into the

queue for blocked processes (see Figure 8.3). The process will be blocked until the

external event occurs that it is awaiting. At this point, the scheduler is invoked

again to move the process from the BLOCKED state to the READY state.

Note that the basic structure of the scheduler is the same as before: SAVE_CNTXT,

SELECT NEXT, and RESTORE_CNTXT. The only part that differs from the time-sharing

operating system is the SELECT_NEXT procedure. This procedure is presented below

in a Pascal-like notation. We start with the additional data structures needed to

control the action of the scheduler, in essence, the events and the queues associated

with the BLOCKED and READY states.

type EVENT_TYPE = (SYS-CALL , TIMER, EXT_EVENT) ;

EX TeTYPEs= (NONSBLOCK , EXT AG EXT224)4...4 EXT.K).;

READY_TYPE = (NOT_READY, READY) ;

const NUMPROC = 10;

NULL = NUMPROC;

150 Real-Time Applications

var

EVENT EVENTS RY PE

SYS 8 aC IN Ae as

BLOCK_Q : array[0..NUMPROC-1] of EXT_TYPE;

READY_Q : array[0O..NUMPROC-1] of READY_TYPE;

ACTIVE : integer;

We have defined three types of events that can result in the scheduler to be

invoked — SYS_CALL, TIMER, and EXT_EVENT — which are caused by a system call, a

timer interrupt, and an external event, respectively. When the scheduler is invoked,

the event type is reflected by the variable EVENT. Each system call corresponds

to a service. For example, when input from a keyboard is needed, the process

simply performs a system call. The corresponding process is then blocked until an

interrupt from the keyboard occurs. To support such external services, we associate

an external event with each system call. There are K such external events named

EXT_1, EXT_2,..., EXT_K. When either a system call or an external event occurs,

the type of the external event is available in variable SYS. The BLOCKED and
READY queues are implemented by two vectors (BLOCK_Q and READY_Q) that have
the same number of elements as the number of processes (NUMPROC). Assuming that
process 2 is blocked due to an external event EXT_k, then BLOCK_Q[:] = EXT_k and
READY_Q[?] = NOT_READY. Let us now look at the SELECT_NEXT procedure.

procedure SELECT_NEXT;

begin

if EVENT = SYS_CALL then

BLOCK_Q [ACTIVE] :=SYS

else if EVENT = TIMER then

READY_Q[ACTIVE] :=READY

else if EVENT = EXT_EVENT then

MAKE_READY ;

ACTIVE: =NEXT_PROC ;

end;

The purpose of the SELECT_NEXT procedure is to move processes between the
different states according to the state-transition graph in Figure 8.3. Note that
the identity of the currently running process is stored in the variable ACTIVE.
First, if a process performs a system call, the scheduler puts the currently run-
ning process into the BLOCKED state simply by marking the vector element that
corresponds to the currently active process with the type of the external event
(BLOCK _Q[ACTIVE] :=SYS).

Second, if the scheduler is invoked as a result of a timer interrupt (EVENT =
TIMER), the currently running process will be put into the READY queue. Finally,

Real-tume control 151

if the scheduler is invoked as a result of an external event (EVENT = EXT_EVENT),

the process that was blocked due to this event is removed from the BLOCKED

queue and inserted into the READY queue (MAKE_READY).

Independent of the type of event that invoked the scheduler, a new process must

be selected as the next running process. This task is accomplished by the function

NEXT_PROC.

We now look at the implementation of NEXT_PROC and MAKE_READY. We list the

specification of these functions and subroutines in a Pascal-like notation below.

function NEXT_PROC: integer ;

begin

1:=0; NEXT :=ACTIVE;

repeat

1:=1i+1;

NEXT : =NEXT+1;

if NEXT = NUMPROC then

NEXT : =0;

until (i=NUMPROC) or READY_Q[NEXT] = READY;

if i<>NUMPROC then

begin

NEXT_PROC:=NEXT ;

READY_Q [NEXT] :=NOT_READY ;

end;

else

NEXT_PROC:=NULL;

end;

The NEXT_PROC function selects the next process to be activated by performing a

round-robin policy among the processes that are marked READY in the READY

queue. If all processes are marked NOT_READY, the NULL process will be the next

process to run. We next look at the MAKE-READY procedure.

procedure MAKE_READY ;

begin

1:=0;

while BLOCK_Q[i] <> SYS do

date

BLOCK_Q[i] :=NON_BLOCK ;

READY_Q[i] :=READY;

end;

152 Real-Time Applications

The purpose of the MAKE_READY procedure is to find the identity of the process that

is blocked due to the external event SYS. By examining the BLOCKED queue, the

index of the element that matches SYS is the identity of the process that has been

blocked due to this external event. This process is moved to the READY queue

and removed from the BLOCKED queue.

Note that this real-time scheduler is simplified; it assumes that exactly one

process can be blocked for each external event. Despite this limitation, we will

look at the implementation of the scheduler next.

To simplify the presentation, we will assume that there are two system calls

and external events. The external events are caused by two distinct interrupts at

priority 1 and 2, respectively. The corresponding system calls are performed by

executing TRAP #1 and TRAP #2. Below, we show the necessary initializations of

the exception vector table for these traps and interrupts. We also assume that the

timer generates an autovectored interrupt with priority 5.

INIT MOVE.L #TRAP1,$84 ; Entry for TRAP #1

MOVE.L #TRAP2,$88 ; Entry for TRAP #2

MOVE.L #INT1,$64 ; Entry for interrupt 1

MOVE.L #INT2,$68 ; Entry for interrupt 2

MOVE.L #INT5,$74 ; Entry for timer interrupt

MOVE #$2000,SR ; Enable all interrupts

Given the entry points of the system calls and the interrupts above, we show the

data structures needed to implement the real-time scheduler below:

EVENT AIY PE

SYS_CALL EQU

TIMER EQU

EXT_EVENT EQU LS jm XS}

5 UO. gete

NON_BLOCK EQU 0

EXT1 EQU

EXT2 EQU heer

Real-time control 153

; READY -TYPE

NOT_READY EQU 0

READY EQU 1

NUMPROC EQU 10

NULL EQU NUMPROC

; Variables

EVENT DS il

SYS DS sl, Sh

BLOCK_Q DS.B NUMPROC

READY_Q DS.B NUMPROC

EVEN

ACTIVE DS eieee!

Before we show the implementation of the SELECT_NEXT procedure, we show the

entry points for the traps and the interrupts below:

TRAPi MOVE.L #SYS_CALL,EVENT ; EVENT:=SYS_CALL

MOVE.L #EXT_1,SYS ; SYS:=EXT_i

BRA SCHED

TRAP2 MOVE.L #SYS_CALL,EVENT ; EVENT: =SYS_CALL

MOVE.L #EXT_2,SYS 5 Si esyes)h 7

BRA SCHED

INT1 MOVE.L #EXT_EVENT,EVENT ; EVENT:=EXT_EVENT

MOVE.L #EXT_1,SYS BS S3 0). 4 eal

BRA SCHED

INT2 MOVE.L #EXT_EVENT,EVENT ; EVENT:=EXT_EVENT

MOVE.L #EXT_2,SYS LON oe Ee

BRA SCHED

INT5 MOVE.L #TIMER,EVENT ; EVENT:=TIMER

BRA SCHED

For each system call and interrupt, we properly set up the variables that keep

track of the event type (EVENT) and the type of external event (SYS). After that

154 Real-Time Applications

point, a branch is taken to the entry point of the scheduler (SCHED). For example,

if a system call is performed by executing TRAP #1, the variables EVENT and SYS

are assigned SYS_CALL and EXT_1, respectively. We are now ready to present the

implementation of the SELECT_NEXT procedure (we call the entry point SEL below).

; SELECT_NEXT

SEL CMPI.L #SYS_CALL,EVENT ; if EVENT = SYS_CALL

BEQ SYST ; then goto SYST

CMPIaE #TIMER , EVENT ; else if EVENT = TIMER

BEQ TIME ; then goto TIME

BSR MAKE_READY ; MAKE_READY

BRA ACT

SYST MOVEA.L #BLOCK_Q, AO

MOVE.L ACTIVE,DO

MOVE.L SYS,0(AO,DO) ; BLOCK_Q{ACTIVE]:=SYS

BRA ACT

TIME MOVEA.L #READY_Q, AO

MOVE.L ACTIVE,DO

MOVE.L #READY,0(AO,DO) ; READY_Q[ACTIVE]:=READY

ACT BSR NEXT_PROC ; ACTIVE: =NEXT_PROC

RTS

The implementations of NEXT_PROC and MAKE READY are straightforward and left

to the reader as an exercise. Before we close this chapter, we want to note the fol-

lowing. The simple real-time scheduler we have outlined does not address several

important issues. For example, in real-life implementations, there are often some

processes that should be given more time than others. Therefore, one often has a

number of READY queues with different priorities. Processes with the same prior-

ity are competing with each other using a round-robin scheme. Another problem

is that mutual exclusion is needed for shared resources. For instance, a keyboard

should be owned by one process at a time — imagine how strange it could be if

one process is reading from a keyboard and another steals some of the characters.

Therefore, there are dedicated mechanisms in an operating system that guarantee

mutual exclusion. To go into further detail of this is definitely outside the scope of
this text. However, the interested reader should consult a text on operating system
principles.

Summary and concluding remarks 155

8.5 Summary and concluding remarks

In this chapter, we have introduced some new features needed to support the

execution of multiple programs on the same processor. The crucial point is to save

the context of each program called a process control block. The context includes

the content of all registers and the stack of each process.

In order to handle multiple stacks, we can use the supervisor and user mode

concepts. This makes it possible for the supervisor (in our example the scheduler)

to have its own stack, while all user processes have their own private stacks which

are controlled by the user stack pointer.

We also talked about exceptions in general. Exceptions can be external events

such as interrupts, but also internally generated events such as certain arithmetic

conditions and explicit system calls. These are referred to as traps.

We implemented a time-sharing operating system which makes it possible for

multiple programs to share the same processor. The scheduler executes each pro-

cess for a short while, a time-slice. It then picks a new process. This makes it

appear as if all processes are executing at the same time.

Finally, we generalized the scheduler to take care of system calls which enabled us

to make more efficient use of the processor. A program (or process) may be waiting

for an external event. When it is waiting (blocked) it does not load the processor.

Therefore, we introduced three states: ACTIVE, READY, and BLOCKED. The

process that currently uses the processor is denoted ACTIVE, while all other pro-

cesses that are ready are kept in state READY. Those processes that are waiting

for an event are kept in the state BLOCKED. Since it is possible that all processes

are kept in state BLOCKED, a system process called NULL is needed. This pro-

cess has the same basic structure as the other processes but executes in an infinite

loop.

Appendix A

Solutions to Exercises

ed 4210

1.2 230310

1.3 092116

1.4 011101, = 11101,

1.5 1001101010002

1.6). 2¢2bie

17s (O55)

1.8 [0,63]

9m “e12se27}

P10 (232 31)

1.11 00000111

1.12) ** TEPTtoo1

1.13 Interpretation as an unsigned integer: 9}

Interpretation as a signed (two’s complement) integer: —710

1.14 46). = 1000110,

ei (s2 Bie = O10101E:

1.16 61,6 = 1100001,

1.17 48 45 4C 4C 4F. Hexadecimal representation

1.18 68000

231 Ae Olll, = 710, i= 00012 = lio, A+B = 10002 — 810: The addition

did not result in overflow.

156

Solutions to Exercises 157

Pap Range (0, 31] yee 00100 — Ano, i = 111105 = 3010, A+B — 000105 =

219. The addition resulted in overflow.

2.3 Range [0,63] A = 011000. = 2415,B = 0000012 = 1y,A+B =
0110019 = 25y9. The addition did not result in overflow.

2.4 Range [0,255] A = 100000002 = 1289, B = 100000002 = 12819, A +
B = 000000002 = 019. The addition resulted in overflow.

2.9 A= Olll, — tio. B — 00015 = 110, A =F Be 10005 = —810. The

addition resulted in overflow since both numbers have the same sign

(positive) and the sum has opposite sign (negative).

2.6 Range [-16,15] A = 00100, = 449,B = 11110, = —2;,,A+B =

0000102 = 219. The addition did not result in overflow.

2-0 Range [—32,31] A = 0110002 = 2419, B = 0000012 = 14,,A+B =

0110012 = 25,9. The addition did not result in overflow.

2.8 Range [—128,127] A = 100000002 = —1281,B = 10000000. =

—128;9, A + B = 000000002 = Oyo. The addition resulted in over-

flow.

2.9 0010

2.10 0011. It is the same because A=1111. 1A X =X

> eal lit) 1010. It is the same because A = 0000. 0 VX = X

2.12 0000.

2.13 1111. The strings in the previous exercise did not differ in any position.

The strings in this exercise differ in all positions

3.1 22 bits

sre a8

3.3 1046

3.4 2316

3.5 800446

3.6 (4516) =FFi¢

oot (4516) = 00

3.8 (4516) =AAi6

4.1 (a) (DO) = 12345687,6 (b) (DO) = 12348765;¢ (c) (DO) = 8765432116

4.2 (a) (DO) = 0101018816 (b) (DO) = 0101886616 (c) (D0) = 886644224¢

4.3 (a) (D0) = AAAAAA00 6 (b) (DO) = AAAAODAAs (c) (DO) =
OOAADDA A 46

158 Solutions to Exercises

4.4

MOVE.B $21F,$2FA

ADDI.B #25,$2FA

4.5

MOVE.B $1234,$25

SUBI.B #25,$25

4.6

ORI.B #4,$3

4.7

MOVE.B $FFF,DO

ADD.B DO,$ABC

ADD.B DO,$DEF

4.8

MOVE.B ROW,DO

ADD.B COL,DO

ADDI.B #1,D0

MOVE.B DO,MAT

4.9

ADDI.B #22,L0C

4.10

SUBI.B #NUM,VAR

NEG.B VAR

4.11

ADDI.B #1,NUM1

ADDI.B #2,NUM2

ADDI.B #3,NUM3

4.12

4.13

4.14

4.15

4.16

LOOP

LOOP

DONE

THEN

ELSE

NEXT

THEN

DONE

MOVE.B

ADD .B

MOVE .B

MOVE.B

ADD.B

SUBI.B

BNE

MOVE.B

MOVE.B

MOVE.B

CMPI.B

BEQ

ADD.B

SUBI.B

BNE

CMPI.B

BEQ

CMPI.B

BNE

MOVE.B

BRA

MOVE.B

MOVE.L

CMP.L

BHI

MOVE.L

BRA

MOVE.L

NUM,D1

D1,NUM

#7 ,DO

NUM, D1

D1,NUM

#1,D0

LOOP

#0 ,P

M1,DO

M2,D1

#0 , DO

DONE

Dal le

#1 ,D0O

LOOP

#1,A

THEN

#2,A

ELSE

A,B

NEXT

B,A

A,DO

B,DO

THEN

#0 ,B

DONE

#0,A

Solutions to Exercises 159

160 Solutions to Exercises

4.17

MOVE.L A,DO

CMP.L 8B,DO

BLS THEN

MOVE.L #0,B

BRA DONE

THEN MOVE.L #0,A

DONE

4.18

MOVE.L A,DO

CMP.L 8B,DO

BGT THEN

MOVE.L #0,B

BRA DONE

THEN MOVE.L #0,A

DONE

4.19

MOVE.L A,DO

CMP.L B,DO

BLE THEN

MOVE.L #0,B

BRA DONE

THEN MOVE.L #0,A

DONE

4.20

ADD.L D3,D7

ADDX.L D2,D6

ADDX.L D1,D5

ADDX.L DO,D4

4.21

SUB.L D3,D7

SUBX.L D2,D6

SUBX.L D1,D5

SUBX.L DO,D4

4.22

4.23

4.24

4.25

4.26

4.27

4.28

LOOP

LOOP

ROR.L #5,D0

ROL.B #2,D0

ROR NUM

ASR NUM

ASL NUM

MOVEA.L #$100,A0

MOVE.B #2,D0

MOVE .W (A0)+,D2

ADD .W (AO) +,D2

SUBI.B #1,D0

BNE LOOP

MOVE.W D2, (AO)

MOVEA.L #$100,A0

MOVE.B #N,DO

MOVE.W (A0)+,D2

ADD .W (A0)+,D2

SUBI.B #1,D0

BNE LOOP

MOVE.W D2, (AO)

Solutions to Exercises 161

162 Solutions to Exercises

4.29

4.30

4.31

4.32

LOOP

LOOP

MAX

DONE

LOOP

MOVEA.L

MOVE.B

MOVE. W

ADDA.L

ADD .W

ADDA.L

SUBI.B

BNE

MOVE.W

MOVEA.L

MOVE.B

MOVE.L

MOVE .W

ADDI.L

ADD .W

ADDI.L

SUBI.B

BNE

MOVE.W

CMP.L

BLS

#$0, AO

#N ,DO

$100(A0) ,D2

#2, A0

$100(A0) ,D2

#2, AO

#1,D0

LOOP

D2,$100(A0)

#$100, AO

#N ,DO

#0,D1

0(AO,D1) ,D2

#2,D1

0(A0,D1) ,D2

#2,D1

#1,D0

LOOP

D2,0(A0,D1)

DO,D1

DONE

MOVE.L D1,DO

RTS

MOVEA.L

MOVE.L

MOVE.L

MOVE.L

BSR

SUBI.L

BNE

#VEC , AO

#N+1,D2

#0, DO

(AO)+,D1

MAX

=r, 5) DW

LOOP

4.33

4.34

4.35

4.36

4.37

DIV2

LOOP

ASR DIDO:

RTS

Solutions to Exercises

MOVEA.L #VEC,AO

#0 ,D1 MOVE.L

MOVE.L

MOVE.L

BSR

ADD.L

ADDI.L

CMPL.L

BNE

#0,

(AO
DIV

D2

y+, DO

2

DO ,D2

#1,D1

#N+ a 5 DNL

LOOP

a) DC85 b) D63C 00B6 c) D479 0005 3254

a) DF92 b) D41B c) D44A

a) 6002 b) 60FC c) 60EE

163

owl

5.2

ITEM

RETRIEVE

THEN

NEXT

DS.L

RTS

MOVE.L

CMP .L

BET

MOVE.L

BRA

CLR.L

L

L

Ib

IL

A,DO

B,DO

THEN

#1,A

NEXT

A

MOVEA.L #INBUF,AO

MOVE.

MOVE.

ADDI.

SUBI.

FIRST(AO) ,DO

LIST(AO,DO), ITEM ; ITEM:=LIST[FIRST] ;

#4, FIRST (AO) 5 UMS SSN SEP

#1, COUNT (AO) ; COUNT: =COUNT-1;

164 Solutions to Exercises

5.3

5.4

5.5

5.6

THEN

NEXT

THEN

NEXT

FOR

TEST

NEXT

WHILE

TEST

NEXT

MOVE.

CMP .L

BCS

MOVE.

BRA

CLR.L

CMP IT

BLT

CMPI.

BGT

CLR.L

BRA

MOVE.

MOVE.

BRA

ADDI.

ADDI.

CMPI.

BLS

MOVE.

BRA

ADDI.

CMPI.

BCS

L

IG.

L

L

IE,

ES

#1,D0

TEST

#1,J

#1,D0

#10,D0

FOR

#0 ,I

TEST

#1,1

#10,1

WHILE

>

’

’

’

>

>

Fe EAE

; goto TEST

Feo bat

I:=I+1

if I <= 10 then

; goto FOR

- Te=0

; goto TEST

3} RES

lt TOR Oxthen

; goto WHILE

5.7

5.8

5.9

5.10

MOVE.L

REPEAT ADDI.L

CMPI.L

BLE

NEXT

CONVERT CMPI.B

BCS

CMPI.B

BHI

SUBI.B

OUT RTS

CSTR

FINE RTS

N EQU

TAB DC.W

MOVEA.L

MOVE.W

MOVE.L

ADD .W

SUBI.L

BNE

RTS

ADDF

ADDL

Solutions to Exercises

#0,I1 ss =05

#1,1 OIL GE a iepike

#20,1 if le <=" 20

REPEAT ; then goto REPEAT

#$61,D0

OUT

#$7A,DO

OUT

#$20,DO

#NUL, (AO)

FINE

(AO) , DO

CONVERT

DO, (AO) +
CSTR

5

OPE ose

#TAB , AO

#0,DO

#N,D1

(AO) +,DO

#1,D1

ADDL

165

166 Solutions to Exercises

5.11 Example solution:

AOLD := 1;

A:=1;

repeat

TEMP :=A;

A:=A+AOLD;

PUTINT(A) ;

AOLD : =TEMP ;

until A > 65535;

AOLD ODS.L 1

A DS.L 1

TEMPS Dom il

FIB MOVE.W #1,A0LD

MOVE.W #1,A

REP MOVE.W A,TEMP

MOVE.W AOLD,DO

ADD.W A,DO

BSR PUTINT

MOVE.W DO,A

MOVE.W TEMP,AOLD

CMPI.W #65535,A

BLS REP

’

?

’

AOLD:=1

A:=1

TEMP: =A

DO: =A+AOLD

PUTINT (A)

; AOLD:=TEMP

Solutions to Exercises 167

5.12

; NAME: PRSEX

; DESCRIPTION: Prints all persons with a specific sex

; INPUT: None

SOULEUT: None

; REGISTERS: AO,A1,DO

PRSTR2 DC.B ?Input sex’, $0D,$0A,0

EVEN

PSEX DSae 1

PRSEX MOVEA.L #PRSTR2,A0

BSR PRSTR ; PRSTR(’? Input sex’);

MOVEA.L #PSEX,A0

BSR READINT ; SEX:=READINT;

MOVEA.L #DATABASE,A1 ; REC:= "First record";

BRA WIEST2

WLOOP2 MOVE.L PSEX , DO

CMP .L MALE(A1) ,DO ; if PSEX = REC.MALE then

BNE CONT2

LEA FNAME (A1) , AO

BSR PRSTR ; PRSTR(REC.FNAME) ;

LEA LNAME(A1) , AO

BSR PRSTR ; PRSTR(REC.LNAME) ;

CONT2 MOVEA.L NEXT(A1),A1 ; REC:=REC.NEXT;

WTEST2 CMPA.L LAST, Ai ite ECe—s GASlm<2n ON then

BNE WLOOP2 ; goto WLOOP2

RTS ; end;

6.1

MOVE.B $FFF100,D0

ASL.B #2 ,DO

MOVE.B DO,$FFF102

168 Solutions to Exercises

6.2

IN1i EQU $FFF100

IN2 EQU $FFF102

OUT EQU $FFF104

LOOP MOVE.B IN1,DO

AND.B IN2,D0

MOVE.B DO,OUT

BRA LOOP

6.3

INDEV EQU $FFFO00O

STATUS EQU $FFFO08

MEM EQU $9000

START MOVEA.L #INDEV, AO

MOVEA.L #MEM,A1

MOVE.L #0 , DO

LOOP BTST DO, STATUS

BNE COPY

ADDA.L #1, A0

ADDA.L #1,A1

TEST ADDI.L #1,D0

CMPI.L #8 , DO

BNE LOOP

BRA START

COPY MOVE.B (AO) +, (A1)+

BRA TEST

6.4 We use DO to pass N to the subroutine and D1 to return the function

value NSUM.

NSUM MOVE.L DO,D1 ; NSUM:=N;

CMPI.L #1,D0 ; if N=1 then

BEQ NEND ; return

MOVE.L DO,-(SP) ; Push DO

SUBI.L #1,D0

BSR NSUM ; D1:=NSUM(N-1) ;
MOVE.L (SP)+,DO ; Pop DO
ADD.L DO,D1 ; NSUM:=N+NSUM(N-1) ;

NEND RTS

6.5

6.6

(a) SP1 shows the content of the stack and the stack pointer the first

Solutions to Exercises

time SUBI .L is executed, SP2 the second time etc.

Content Address

0001

0000

801C

Se2-—> 0000

0002

0000

801C

Sloe 0000

0003

0000

8004

(b) (D1) = 3.

PREGS MOVEA.L

ROR

BCC

MOVE.L

REG1 ROR

BCC

MOVE.L

REG2 ROR

BCC

MOVE.L

REG3 ROR

BCC

MOVE.L

REG4

REG7 ROR

BCC

MOVE.L

FINE ADDA.L

MOVE.L

RTS

(SP)+,A0

(AO)
REG1

DO,-(SP)

(AO)
REG2

Di,=tSP)

(AO)
REG3

D2,-(SP)

(AO)
REG4

D3,-(SP)

(AO)
FINE

Di tor)

#2, AO

AO,-(SP)

’

?

’

’

?

Get address to the word

; Shift one step to the right

Check least significant bit

If set, push DO

Modify return address

169

170

Ons

6.8

6.9

Solutions to Exercises

ENTER MOVE.L DO,-(AO)

RTS

ADDSTACK ADD.L (AO) +,D0O

RTS

SUBSTACK SUB.L (A0)+,DO

RTS

POPSTACK MOVE.L (A0)+,D0

RTS

ENTER ENTER ADDSTACK

7FF8 === LOOC 1000

7FFA 0006 0006

CRG ==> OOS 1000 ea O OY

(GHEE 0005 0005 0005

8000

(AO)=7FFC (AO)=7FF8 (AO)=7FFC

The interrupt service routine:

SWITCH MOVE.L #0,TICK

MOVE.L #0,SEC

MOVE.L #0,MIN

MOVE.L #0,HOUR

RTE

We need to modify the main program as follows:

MAIN

MOVE.L #SWITCH,$68

MOVE.L #TIME,$74

MOVE #$2100,SR ; ...and modify

SUBSTACK

1000
0006
1000
0005

-->

(A0) =8000

Add this) Jaine® . .

this one.

6.10

6.11

NUL

STRING

DISPLAY

POSITION

MCHAR

MLOOP

NEXT

NEXT1

GOBACK

COUNT

PRINT

POPREG

DS.L

MOVE.

MOVE.

MOVEA.L

MOVEA.L

CMPI.

BHI

CMPI.

BNE

MOVE.

MOVE.

ADDI.

ADDI.

BRA

ADDI.

CMPI.

BLT

MOVE.

RTS

DS.B

EVEN

MOVEM.L

ADDI.B

CMPI.B

BNE

MOVE.B

BSR

MOVEM.L

RTE

B

Ib

B

B

Solutions to Exercises 171

#0 , DO sL3=0

POSITION ,D1

#DISPLAY , AO

#STRING, At

#14,D0 etOresl= Oto: 14do

NEXT1

#NUL,0(A1,D1) ; if STRING[POINTER] = NUL

NEXT

#0 ,D1 ; then POINTER:=0

OGAWT, Di) PACA) ee BD ESPIEAY iti

; STRING [POINTER]

#1,D1 ; POINTER: =POINTER+1

#1,D0

MLOOP

#1, POSITION

#14, POSITION

GOBACK

#0, POSITION

DO-D1/A0-A1,-(SP)

#1, COUNT

#10, COUNT

POPREG

#0 , COUNT

MCHAR

(SP)+,D0-D1/A0-A1

172 Solutions to Exercises

6.12

MAIN MOVE.L #0,POSITION ; POSITION:=0

MOVE.B #0,COUNT ; COUNT:=0

MOVE.L #PRINT,$74 ; Exception vector

MOVE #$2400,SR

(fol

PGCR EQU $FFFOOO

PACR EQU $FFFO06

PADDR EQU $FFFO02

INIT MOVE.B #%00000000,PGCR ; Mode 0

MOVE.B #%10000000,PACR ; Bit-I/0 submode

MOVE.B #%11110000,PADDR ; Bits 0-3 inputs and

; bits 4-7 outputs

Uo?

PGCR EQU $FFFOOO

PBCR EQU $FFFOO7

PBDDR EQU $FFFOO3

INIT MOVE.B #%00000000,PGCR ; Mode 0

MOVE.B #%10000000,PBCR ; Bit-I/0 submode

MOVE.B #%11110000,PBDDR ; Bits 0-3 inputs and

; bits 4-7 outputs

eo

PGCR EQU $FFFOOO

PACR EQU $FFFOO6

PADDR EQU $FFFOO2

INIT MOVE.B #%00010010,PGCR ; Mode 0, H1 asserts to 0

; but H2 asserts to 1

MOVE.B #%01110000,PACR ; Output submode

MOVE.B #%11111111,PADDR ; Bits 0-7 outputs

7.4

7.5

7.6

Tek

7.8

PGCR

PBCR

PBDDR

INIT

PSR

PADR

CHRIN

CR

INIT

CR

INIT

CR

INIT

EQU
EQU
EQU

MOVE.B

MOVE.B

MOVE.B

EQU

EQU

BIST

BNE

MOVE.B

RTS

EQU

MOVE.B

MOVE.B

EQU

MOVE.B

MOVE .B

EQU

MOVE.B

MOVE.B

$FFFO0O
$FFFOO7
$FFFO03

#7,00101100,

#7,01110000,

#7,11111111,PBDDR

$FFFOOD

$FFFO08

#0,PSR :

PADR,DO- ;

$FFFO0O

#7,00000011,

#7,00001001,

$FFFO0O

#7%,00000011,

#7%,00000010,

$FFFOOO

#7,00000011,

#7,00010001,

PGCR

PBCR

Solutions to Exercises

; Mode 0, H3 and H4

; assert to i

; Output submode

jEbits OR outputs

if Hi is not asserted

CHRIN ; goto CHRIN

Read from Port A

CRaae

CRae

CRs

CRY

CRees

Chas

>

Master reset

7 bits, even parity,

1 stop bit, 16 samples

Master reset

7 bits, even parity,

2 stop bits, 64 samples

Master reset

8 bits, no parity,

2 stop bits, 16 samples

173

174 Solutions to Exercises

7.9

SR EQU $FFFOOO ; Status Register

DATA EQU $FFFOO1 ; Data Register

POLL Bist #0 ,SR ; Test RDRF in the SR

BEQ PORE ; If not asserted,

; try again

BIST #6,5SR ; Parity error?

BNE PERROR ; Yes, branch to PERROR

BTST #5,5SR ; Overrun error?

BNE OERROR ; Yes, branch to OERROR

BTST #4,5SR ; Framing error?

BNE FERROR ; Yes, branch to FERROR

MOVE.B DATA,DO ; Read from the ACIA

MOVE.B #0,D1 ; No error

RTS

PERROR MOVE.B #1,D1 har ibyee Gros

RTS

OERROR MOVE.B #2,D1 ; Overrun error

RTS

FERROR MOVE.B #3,D1 ; Framing error

RTS

Appendix B

68000 Instruction Set

This appendix provides detailed information on the use of most instructions avail-

able for the M68000. For additional information, please refer to M68000 User’s

Manual issued by Motorola.

For each instruction, information is provided about the syntax, including the

available: addressing modes and the operand size; a description of the operation

that is carried out; and how the condition codes are affected. The example below

shows the information that is available for each instruction.

ADD Add

Syntax: ADD. S° ap, , ‘or ADDVS"D; a3 j

Operand size: S.= (BB. W,b)

Operation: (a,) + (D;) — D; or (Dj) + (a3) — az

Condition codes: EGE

The syntax specifies the name of the instruction and the addressing modes avail-

able by means of either a register name (e.g. D; or A;) or a set of addressing modes

(e.g. a) that are applicable to the source or destination operand of the instruc-

tion. The operation is described either using the notation in Chapter 3, or verbally.

Moreover, it is shown how the instruction affects the condition codes using special

symbols. In the following, we will present the shorthand notations used in the

instruction summaries.

In Table B.1, we show all addressing modes treated in the textbook and an

abbreviation for each of them. Since only a subset of all available addressing modes

are applicable to a specific operand in an instruction, we define nine addressing-

mode subsets (a1, @2,..-,@9) in Table B.2 using the abbreviations from Table B.1.

An ‘X’ in a specific position means that the corresponding addressing mode is

available. For example, a, means that all addressing modes can be used to specify

176 68000 Instruction Set

Table B.1 All addressing modes introduced in the text.

DRD

ARD

ABS

IMM

IND

IDI

IDD

AID

All

PID

Abbreviation Addressing mode Example

Data register direct MOVE.B D1i,DO

Address register direct MOVE.L AO,DO

Absolute MOVE.B 1,D0

Immediate MOVE.B #1,D0

Indirect MOVE.B (AO) ,DO

Indirect with MOVE.B (A0)+,D0

postincrement

Indirect with MOVE.B -(AO) ,DO

predecrement

Address register indirect MOVE.B 10(A0) ,DO

with displacement

Address register indirect MOVE.B 10(A0,D1) ,DO

with index

Program counter indirect MOVE.B 10(PC) ,DO

with displacement

Program counter indirect MOVE.B 10(PC,A0) ,DO Pat

with index

Table B.2 Addressing-mode subsets as used by various instructions.

DRD ARD ABS IMM IND IDI IDD AID AII PID PII
aes Xx Xx xX Xx x Xx Xx Xx X Xx

Xx xX Xx X X X Xx

x Xx Xx Xx Xx Xx
Xx Xx X Xx X X Xx Xx Xx x

xX xX Xx Xx Xx
Xx Xx xX X X X Xx
Xx Xx Xx Xx Xx X

oe Xx X Xx Xx Xx X Xx
x x Xx X Xx X X X x

68000 Instruction Set 177

Table B.3 Notation for how the condition codes are affected by each instruction.

Description Notation

Common case .
Not affected

The flag is set

The flag is cleared

The flag is undefined

Special meaning —-ador |

Table B.4 The common case for how the condition codes are affected.

Flag Condition

Set if the C-flag is set. Cleared otherwise.

Set when the result is negative. Cleared otherwise.

Set when the result is zero. Cleared otherwise.

Set when two’s complement operation results in overflow. Cleared otherwise.

Set when carry/borrow is generated. Cleared otherwise. Oe <u 2 Ps

an operand whereas aq means that all addressing modes are available except for

ARD (address register direct).
To specify how the condition codes are affected by each instruction, we use the

symbols found in Table B.3. The common case (denoted by an asterisk ‘*’) means

that the flags are set in a way that conforms to their meaning. We specify precisely

what the common case means in Table B.4. For some instructions, a flag can be

set according to special rules. We denote this case by an exclamation mark and

will describe the special setting of the flag in the instruction summary.

ADD Add J

Syntax: ADD.S a,,D; or ADD.S D;,as

Operand size: S = (B,W,L)

Operation: (a,)+(D;) — D; or (Di) + (a3) > ag

Condition codes: ae [= Fr]

178 68000 Instruction Set

ADDA Add Address

Syntax: ADDA.S a,,A;

Operand size: = WV)

Operation: (a,;) + (A;) > A;

Xe NeAVEe
Condition codes:

ADDI Add Immediate

Syntax: ADDI.S #n,a

Operand size: Se (Wels)

Operation: n+(ad2) — ae

Condition codes: SEE Fr]

ADDQ Add Quick

Syntax: ADDQ.S #n,axg

Operand size: S = (B,W,L)

Operation: n+(ag) — ag, where] <n <8

XEN ZV. C
Condition codes:

Remark: This instruction occupies one word only.

ADDX Add Extended

Syntax: ADDX.S D;,D; or

Operand size:

Operation:

Condition codes:

ADDX.S —(A;), —(A;)

S = (B,W,L)

(D;) SF (D;) i (X) > ID or

where k depends on

ANZYVC

68000 Instruction Set 179

AND And

Syntax: AND.S a4,D; or AND.S D,,a3

Operand size: 5 =a(6.W,)

Operation: (a4) \(D;) — D; or (Dj) A (a3) > ag

KIN ZV G
Condition codes: ETE [o10
ANDI And Immediate

Syntax: ANDI.S #n,a9

Operand size: oo NV)

Operation: nf (a2) > ag

XONE ZV.
Condition codes:

ANDI to CCR

-TlTofo}
And Immediate to Condition Codes

Syntax:

Operand size:

ANDI #n,CCR

Byte

Operation: nA(CCR) — CCR

oN VC

ANDI to SR And Immediate to Status Register

Syntax: ANDI #n,SR

Operand size: Word

Operation: nA (SR) — SR

x N-ZV ©
* | x | x

Remark: Privileged instruction

180 68000 Instruction Set

ASL Arithmetic Shift Left

Syntax:

Operand size:

Operation:

Condition codes:

ASR

ASL.S D;,D; or

ASL.S #n,D; or

ASL a3

S=(B,W,L). The last form assumes Word.

Shifts the bits in the destination operand to the

left the number of steps denoted by the source

operand. If the source operand is a data regis-

ter, the shift count is (D;) mod 64. If the source
operand is a constant, the shift count is n = [1, 8},
and if the destination is a memory word (last

form), the shift count is one. Zeros are shifted

into the least significant bits.

A ONEZEVEG
*l ele] 1]

V_ Set iff the most significant bit is

changed at any time during the

shift operation.
C Set according to the last bit shifted out.

Arithmetic Shift Right

Syntax:

Operand size:

Operation:

Condition codes:

ASR.S D;,D,; or

ASR.S #n,D; or

ASR ag

S=(B,W,L). The last form assumes Word.

Shifts the bits in the destination operand to the

right the number of steps denoted by the source

operand. If the source operand is a data regis-

ter, the shift count is (D;) mod 64. If the source

operand is a constant, the shift count is n = [1,8],
and if the destination is a memory word (last

form), the shift count is one. Zeros are shifted
into the most significant bits.

XNZVC
Abe tor
C Set according to the last bit shifted out.

68000 Instruction Set 181

Bec Branch Conditionally

Syntax: Bcc label

Operation: If Condition cc then label — PC. Condition cc

specifies one of the following conditions:

COL CC)"

Compe,
NE (Z)’

EQ (Z)
VE uy):
vs (V)

PL O(N}

MI (N)
Ts. (GC) (Z)
Hii(@) AZ)

LT ((N) A (V)’) v ((N)’ A (V))
LE (Z) A (((N) A (V)’) Vv ((N)’ A (V)))
GTM A UENO ON). AE)
GE ((N) A(V)) V ((N)’ A (V))

Condition codes: “ Bere

BCHG Test a Bit and Change

Syntax: BCHG D,;,a2 or

Operand size:

Operation:

Condition codes:

BCHG #n, a2

When the destination is a data register, the

operand size is Long word; otherwise it is Byte.

Tests the bit in the destination operand denoted by

the source operand and sets the Z-flag accordingly.

The tested bit is then inverted.

Xx NEA WAG

TEE]
Z See operation above.

182 68000 Instruction Set

BCLR Test a Bit and Clear

Syntax:

Operand size:

Operation:

Condition codes:

BRA

BCLR D;,a@2 or

BCLR #n, a9

When the destination is a data register, the

operand size is Long word. Otherwise it is Byte.

Tests the bit in the destination operand denoted by

the source operand and sets the Z-flag accordingly.

The tested bit is then cleared.

X NSA VEG

Z See operation above.

Branch Unconditionally

Syntax:

Operation:

Condition codes:

BSET

BRA label

label => PC

XN Vie ©

Test a Bit and Set

Syntax:

Operand size:

Operation:

Condition codes:

BSET D;, a2 Or

BSET #n, a2

When the destination is a data register, the

operand size is Long word. Otherwise it is Byte.

Tests the bit in the destination operand denoted by

the source operand and sets the Z-flag accordingly.

The tested bit is then set.

Aol ch VEG

Z See operation above.

68000 Instruction Set 183

BSR Branch to Subroutine

Syntax: BSR label

Operation: (SP) —4 — SP;

(PC) — (SP);
label — PC

Condition codes: aT] 2 ET

BTST Test a Bit

Syntax: BTST D;,a2 or

BIST #n, dg

Operand size:

Operation:

Condition codes:

When the destination is a data register, the

operand size is Long word. Otherwise it is Byte.

Tests the bit in the destination operand denoted by

the source operand and sets the Z-flag accordingly.

NNT VEG

“EET
Z See operation above.

CHK Check Register Against Bounds

Syntax: CHK a4, D;

Operand size: Word

Operation:

Condition codes:

if (D;)< 0 or (D;) > (a4), a trap (vector number

6) occurs.

x NZ

[- |! fululu)
N_ Set if (D,;)< 0; cleared if (D;) > (as).

Undefined otherwise.

CLR Clear an Operand

Syntax: CLR.S ao

Operand size: 5S = (BW-b)

Operation: 0 — ag

XNZVC
Condition codes:

-Jofifolo|

184 68000 Instruction Set

CMP Compare

Syntax: CMP.S a,,D;

Operand size: S =(B,W,L)

Operation: (D;)—(a1)

Condition codes:

CMPA Compare Address

Syntax: CMPA.S a,,A;

Operand size: S = (W,L)

Operation: (A;)—(a1)

vi RAN Zev €
Condition codes:

CMPI Compare Immediate

Syntax: CMPI.S #n,d9

Operand size: Si=1(BW. 15)

Operation: (ag)—n

Condition codes: SAE | aE

CMPM Compare Memory

Syntax: CMPM.S (A;)+,(A;)+

Operand size: 5 =(B,W,L)

Operation: (A;)—(A5); (Ai)+k — Aj; (Aj)+k > A;

where k depends on the operand size

XIN EA Wale Condition codes: 5 [[* | [*

DBcc

68000 Instruction Set 185

Test Condition, Decrement, and Branch

Syntax:

Operand Size:

Operation:

Condition codes:

DIVS

Syntax:

Operand Size:

Operation:

Condition codes:

DBcc D;, label

Word

If Condition cc nothing is done. Otherwise,

(D;)-1 — D,; if (D;) # —1 then
label — PC.

Condition cc is one of those listed under the Bcc

instruction and in addition the following:

F always FALSE

T always TRUE

Xx NZAVIG

Signed Divide

DIVS.W a4,D;

Word

Divides the signed destination operand (32 bits)
by the signed source operand (16 bits). The result
is a signed quotient in the least significant 16 bits

and the remainder in the most significant 16 bits.

The sign of the remainder is the same as the sign

of the dividend. The instruction results in a trap

if the divisor is zero.

KeNiuZeV. @
ee eat lsh O

N Common case but undefined

when overflow occurs.
Z Common case but undefined

when overflow occurs. hee
V Common case but undefined if di-

vide by zero occurs.

186 68000 Instruction Set

DIVU Unsigned Divide

Syntax: DIVU.W a4,D;

Operand Size: Word

Operation:

Condition codes:

Divides the unsigned destination operand (32 bits)

by the unsigned source operand (16 bits). The re-

sult is an unsigned quotient in the least significant

16 bits and the remainder in the most significant

16 bits. The instruction results in a trap if the

divisor is zero.

KANE. VEC
-[! Tt] to]
N Common case but undefined

when overflow occurs.
Z Common case but undefined

when overflow occurs.
V Common case but undefined if di-

vide by zero occurs.

EOR Exclusive OR

Syntax: EOR.S D;, a2

Operand size: S = (B,W,L)

Operation: (D;) ® (a2) > ag

XNZVOC
Condition codes:

= 1*{*{0] 0)

EORI Exclusive OR Immediate

Syntax: EORI.S #n,ao

Operand size: Sv=.(B, Wi)

Operation: n@® (a2) > ag

eh KUNZE VAG
Condit des: ondition codes -T*[*[o10]

EORI to CCR

68000 Instruction Set 187

Exclusive OR Immediate to Condition

Codes

Syntax:

Operand size:

Operation:

Condition codes:

EORI to SR

EORI #n,CCR

Byte

n® (CCR) — CCR

KLIN LEV CC

Exclusive OR Immediate to Status Register

Syntax:

Operand size:

Operation:

Condition codes:

EORI #n,SR

Word

n@® (SR) — SR

x NZL
CEeEE

Remark: Privileged instruction

EXG Exchange Registers

Syntax: EXG. DD, 22), or

EXG ds Jal or

EXG (wiels or

EXG. A,, D,

Operand size: Long word

Operation:

Condition codes:

Exchanges the contents of the source and the des-

tination operands.

XN ZA: VO

[EEL
EXT Sign Extend

Syntax: EXD). oD;

Operand size: 5S=(W,L)

Operation:

Condition codes:

Extends the sign bit of the operand. If the operand

size is Word, the least significant 8 bits are sign

extended to a Word, and if operand size is Long

word, the least significant 16 bits are sign extended

to a Long word.

XEN Ze VC

-[[*ToT0

188 68000 Instruction Set

JMP Jump

Syntax: JMP az

Operation: az — PC

MING Zev
Condition codes:

ae es al
JSR Jump to Subroutine

Syntax: JSR a7

Operation: (SP) —4 — SP;

_ Condition codes:

LEA

(PC) — (SP);

Ghee = PC

x NEVE

Load Effective Address

Syntax:

Operand size:

Operation:

Condition codes:

LEA a7, A;

Long word

dz >A;

ao Na ZaVec

68000 Instruction Set 189

LSL Logical Shift Left

Syntax: ESL. SD); or

LSL.S #n,D,; or

LSL az

Operand size: S=(B,W,L). The last form assumes Word.

Operation: Shifts the bits in the destination operand to the

left the number of steps denoted by the source

operand. If the source operand is a data regis-

ter, the shift count is (D;) mod 64. If the source

operand is a constant, the shift count is n = [1,8],

and if the destination is a memory word (last

form), the shift count is one. Zeros are shifted

into the least significant bits.

SNC.
Condition codes: T*[*folh

C Set according to the last bit shifted out.

LSR Logical Shift Right

Syntax: USK. ee), OF

LSR.S #n,D; or

LSR az

Operand size: S=(B,W,L). The last form assumes Word.

Operation: Shifts the bits in the destination operand to the

right the number of steps denoted by the source

operand. If the source operand is a data regis-

ter, the shift count is (D;) mod 64. If the source

operand is a constant, the shift count is n = [1,8],

and if the destination is a memory word (last

form), the shift count is one. Zeros are shifted

into the most significant bits.

Condition codes: Ar ane

C Set according to the last bit shifted out.

190 68000 Instruction Set

MOVE Move Data from Source to Destination

Syntax: MOVE.S aj1,@2

Operand size: Ss =(B WL)

Operation: (a1) — a

AN AV ae
Condition codes:

MOVEA

fe) 1 ole

Move Address

Syntax:

Operand size:

Operation:

Condition codes:

MOVEA.S aj, A;

5 (Wak)

(a1) — A;

XON ZV eC

MOVE Move to Condition Code Register

Syntax: MOVE a4,CCR

Operand size: Word

Operation: (a4) — CCR

X NEZW-G
Condition codes:

ete Slee

MOVE Move to Status Register

Syntax: MOVE a4,SR

Operand size: Word

Operation: (a4) — SR

XNZVC
Condition codes:

Remark: Privileged instruction

68000 Instruction Set 191

MOVE Move User Stack Pointer

Syntax: MOVE A;,USP or MOVE USP,4A;

Operand size: Long word

Operation: (A;) — USP or (USP) — A;

XNZVC
Condition codes: -EEEE
Remark: Privileged instruction

MOVEM Move Multiple Registers

~ Syntax: MOVEM.S register list,a5 or

Operand size:

Operation:

MOVEM.S ag, register list

S=(W,L)

Moves the contents of the selected registers to (first

form) or from (second form) consecutive memory

locations.

Condition codes:

MOVEQ Move Quick

Syntax: MOVEQ #n,D;

Operand size: Long word

Operation:

Condition codes:

n — D,, where n is an 8-bit two’s complement

number which is sign extended in the destination.

XNZVC

[-]*[*]o[o|
Remark: This instruction occupies one word only.

MULS Signed Multiply

Syntax: MULS.W a4,D;

Operand Size: Word

Operation:

Condition codes:

Multplies two signed 16-bit operands yielding a

signed 32-bit result.

xX Nese ViG

-[+[*[ofo]

192 68000 Instruction Set

MULU Unsigned Multiply

Syntax: MULU.W a4,D;

Operand Size: Word

Operation: Multplies two unsigned 16-bit operands yielding

an unsigned 32-bit result.

by XiINSAaV GC
Condition codes: : | [*[o [0

NEG Negate

Syntax: NEG.S ag

Operand size: SN)

Operation: 0 — (a2) > ag

aie Noa VS
Condition codes:

NEGX Negate with Extend

Syntax: NEGX.S ag

Operand size: Reece (1 ANE

Operation: 0 — (ag) -(X) > ag

Condition codes: Le Fae

Z Cleared if the result is non-zero.

Unaffected otherwise.

NOP No Operation

Syntax: NOP

Operation: Performs no operation.

Condition codes: a x see

NOT Logical Inverse

Syntax: NOT.S ap

Operand size: S'= (BsW,L)

Operation: Inverts all bits in the destination.

A NEL Ve Condition codes:

L-]*[*]o[o

OR

68000 Instruction Set 193

Inclusive OR

Syntax:

Operand size:

Operation:

Condition codes:

OR.S a4, D; or OR.S D;, as

S = (B,W,L)
(a4) V(D;) — D; or (D,) V (as) > as

ANTONE ©

-[*[*fofo
ORI Inclusive OR Immediate

Syntax: ORI.S #n,a9

Operand size: 5 ='"(B.W,5)

Operation: nV (a2) > ag

xX NeZaV eC
Condition codes:

-[*[*[oJo}
ORI to CCR Inclusive OR Immediate to Condition

Codes

Syntax: ORI #n,CCR

Operand size: Byte

Operation: nV (CCR) — CCR

KONGZ Vv ve
Condition codes:

ORI to SR OR Immediate to Status Register

Syntax: ORI #n,SR

Operand size: Word

Operation: nV (SR) — SR

XANGA, ©
Condition codes:

Remark: Privileged instruction

194 68000 Instruction Set

PEA Push Effective Address

Syntax: PEA az

Operand size: Long word.

Operation: (SP)—4 — SP; a7 — (SP)

Condition codes:

ROL

XNZVC

mei)
Rotate Left

Syntax:

Operand size:

Operation:

Condition codes:

ROL.) 2D 201

ROL.S #n,D; or

ROL ag

S=(B,W,L). The last form assumes Word.

Rotates the bits in the destination operand to the

left the number of steps denoted by the source

operand. If the source operand is a data regis-

ter, the shift count is (D;) mod 64. If the source

operand is a constant, the shift count is n = [1, 8},
and if the destination is a memory word (last

form), the shift count is one. Bits shifted out from

the most significant bit are shifted into the least

significant bit.

XNA WS

SRGIE
C Set according to the last bit shifted out.

ROR

68000 Instruction Set 195

Rotate Right

Syntax:

Operand size:

Operation:

Condition codes:

ROXL

ROR OL) On

ROR.S #n,D, or

ROR a3

S=(B,W,L). The last form assumes Word.

Rotates the bits in the destination operand to the

right the number of steps denoted by the source

operand. If the source operand is a data regis-

ter, the shift count is (D;) mod 64. If the source

operand is a constant, the shift count is n = (1, 8},

and if the destination is a memory word (last

form), the shift count is one. Bits shifted out from

the least significant bit are shifted into the most

significant bit.

XNZVC
SRE
C Set according to the last bit shifted out.

Rotate Left with Extend

Syntax:

Operand size:

Operation:

Condition codes:

ROMS 1), -0r

ROXL.S #n,D; or

ROXL a3

S=(B,W,L). The last form assumes Word.

Rotates the bits in the destination operand to the

left the number of steps denoted by the source

operand. If the source operand is a data regis-

ter, the shift count is (D;) mod 64. If the source

operand is a constant, the shift count is n = [1,8],

and if the destination is a memory word (last

form), the shift count is one. Bits shifted out from

the most significant bit are shifted into the X-flag

and the X-flag is shifted into the least significant

bit.

PP TIO.
a C Set according to the last bit shifted out.

196 68000 Instruction Set

ROXR Rotate Right with Extend

Syntax:

Operand size:

Operation:

Condition codes:

RTE

ROXR.S D;,D; or

ROXR.S #n,D; or

ROXR az

S=(B,W,L). The last form assumes Word.

Rotates the bits in the destination operand to the

right the number of steps denoted by the source

operand. If the source operand is a data regis-

ter, the shift count is (D;) mod 64. If the source
operand is a constant, the shift count is n = {1, 8],

and if the destination is a memory word (last

form), the shift count is one. Bits shifted out from
the least significant bit are shifted into the X-flag

and the X-flag is shifted into the most significant
bit.

Ken ZAveC
ERG re
C Set according to the last bit shifted out.

Return from Exception

Syntax:

Operation:

Condition codes:

RTE

((SP)) — SR; (SP) +2 — SP;
((SP)) — PC; (SP) +4 — SP

KINZ NAG

PPT
Remark: Privileged instruction

RTR Return and Restore Condition Codes

Syntax: RTR

Operation:

Condition codes:

P)) — CCR; (SP) +2 — SP;
P)) — PC; (SP) +4 — SP

68000 Instruction Set 197

RTS Return from Subroutine

Syntax: RTE

Operation: ((SP))' — PC; (SP) +4 — SP

Condition codes: Ss a : ul C

Scc Set According to Condition

Syntax: Scc ag

Operand Size: Byte

Operation: If Condition cc then 1111111ly — ag

else 0 — ag

Condition cc is one of those listed under the DBcc

instruction.

Condition codes: ae E ate

STOP Load Status Register and Stop

Syntax: STOP #n

Operation: n — SR; execution stops. An exception resumes

execution.

an RINGING SC
Condition codes:

SUB Subtract

Syntax: SURFS ute slik SUBS 2D; 5a

Operand size: 5S = (B3W31)

Operation: (D;) — (a,) — Dj; or (a3) — (Di) > a3

N WC
Condition codes: OE fs | fs |

SUBA Subtract Address

Syntax: SUBA.S a,,A;

Operand size: pr (Wall)

Operation: (A;) — (a1) — A;

Condition codes: ae Ee i 2

198 68000 Instruction Set

SUBI Sub Immediate

Syntax: SUBI.S #n,de

Operand size: S = (BiwsL)

Operation: (ag) -n — ag

Condition codes: ae aan

SUBQ Sub Quick

Syntax: SUBQ.S #n,as

Operand size: S:=.(B, WL)

Operation: (ag) -n — ag, wherel<n<8

XN ZV C
Condition codes:

eta ed
Remark: This instruction occupies one word only.

SUBX Subtract Extended

Syntax: SUBX.S D;,D; cor

Operand size:

Operation:

Condition codes:

SUBX.S. —(A.)—(A,)

5 = (Bs Va)

(Dj) — (Di) — (X) — Dj or

(Aj)—k — Aj; (Aj)—& — Aj; ((Aj)) — (Ai)
Oo)
where & depends on the operand size

ANZ VOC
* i] *K) * |] *K)] x

SWAP Swap Register Halves

Syntax: SWAP D;

Operand size: Word

Operation:

Condition codes:

Exchanges the contents of the 16 most significant

bits and the 16 least significant bits.

SENeZ, Vac

a uO

68000 Instruction Set 199

TRAP Trap

Syntax: TRAP #n

Operation: Causes a trap to exception with vector number n,

Condition codes:

where n = (0, 15].

XON TZ VC

TRAPV Trap on overflow

Syntax: TRAPV

Operation: If (V)=1 then cause a trap to exception with vector

Condition codes:

number 7.

SONGZ VG

BEEES

TST Test an Operand

Syntax: TSE.S Og

Operand size: S303, W.D)

Operation: (ag) —O

XIN ZV G
Condition codes:

[-]*[*[ofo

Appendix C

ASCII Table

A. DLE

& SYN

CAN
D
N

e
e
?

d
m
M
o
d
a
a

eed SS] ee a

SUB

ESC

DEL US SI

200

Index

The index consists of two parts. The

first part lists all important concepts

that are used in the book. The second

part lists all 68000-instructions that

are discussed and/or used in the book.
For index terms that have multiple en-

tries, the first entry usually corresponds

to where the term is introduced or used

in an important way. Exceptions to

this rule are marked by typing the sec-

ond or any subsequent entries in bold-

face type.

Concepts

(immediate operand) 28

$ (hexadecimal representation) 24
% (binary representation) 24
® (EOR operation) 16

V (OR operation) 15
A (AND operation) 15

absolute addressing 23, 28, 49

ACTIVE (process state) 148
address 19

address error 142

address register 44

addressing modes 23

absolute 23, 28, 49

201

displacement 47, 49

immediate 23, 28, 49

index 47, 49

indirect 45, 49

register direct 23, 28, 49

AND (operation) 15
architecture 18

ASCII 9, 200

assembler 23

assembler directives 59

assembly language 23

assembly-time error 83

asynchronous serial communication 125

autovector 103

baud rate 125

bidirectional 117

binary codes 5

binary number system 1

binary operation 16

bit 1

bit I/O 113

BLOCKED (process state) 148

blocked queue 148

branch-instruction 33

conditional 33

unconditional 33

breakpoint 83

busy-waiting 89

byte 6

202 Index

C-flag 36

call-by-reference 68

call-by-value 68

carriage return 9

carry 12

CCR (condition code) 35
communications protocol 112

condition code (CCR) 35
context 102, 139

context-switch 138

CPL (current priority level) 103

current priority level (CPL) 103

data register 27

DC (define constant) 60
debug mode 83

debugger 83

debugging 83

decimal number system |

device driver 91

displacement 47

displacement addressing 47, 49

double-precision arithmetic 39

DS (define space) 60

echoing 91

enable interrupt 104

END (end directive) 60
EQU (equate) 60
EVEN (even directive) 60
exception 142

exception handler 144

exception vector table 103

exclusive-or 16

explicit traps 142

flag 36

for-loop 65

framing error 130

handshake lines 114

handshaking 114

hexadecimal number system 1

I/O-ports 87

if-then-else 63

illegal instruction 142

inclusive-or 15

index addressing 47, 49

index register 47

indirect addressing 45, 49

input ports 87

instruction 21

instruction coding 52

instruction cycle 20

instruction format 52

interrupt 101

interrupt service routine 101

interrupt vector 113

Kb (Kilo byte) 20

least significant bit 3

line feed 9

logical operations 14

long word 6

mask 89

Mb (Mega byte) 20

memory map 88

memory model 19

memory read 19

memory write 19

memory-mapped I/O 88

MIPS 99

most significant bit 3

N-flag 36

nibble 6

non-maskable interrupt 103

NOT (operation) 15

NULL (process) 148
numeric value 2

operand 22

operand size 6, 29

byte (B) 29

long word (L) 29
word (W) 29

operating system 144

ORG (Originate) 60

output ports 87

overflow, 11

two’s complement 14

unsigned 11

parallel interface 112

parity bit 126

PC (program counter) 22
polling 89

POP (operation) 94
postincrement 45, 49

predecrement 46, 49

privileged instruction 139

process 138

process control block 140

processor 18

program counter, PC 22

programmable interface 113

programming methodology 59

programming model 18

pseudo-code 71

PUSH (operation) 94

radix 1

range 6

READY (process state) 148
ready queue 148

real-time control 148

register 27

register direct addressing 23, 28, 49

relational operator 63

repeat-loop 65

return address 92

round-robin 138

run-time error 83

scheduler 141

serial interface 113

shift instructions 41

sign extension 42

signed integers 7

Index 203

single step 83

SP (stack pointer) 95
SR (status register) 36
stack 94

stack pointer 94

stack pointer (SP) 95
start bit 126

status register (SR) 35
stop bit 126

subroutine call 50

subroutine return 50

supervisor mode 137

symbolic names 31

system call 148

time-sharing 138

time-slice 138

top-down design 71

trace bit 143

trap 142

trap handler 142

truth table 15

two’s complement inverse 13

two’s complement representation 7

UART 127

unary operation 16

unidirectional 116

unsigned integers 6

user mode 137

V-flag 36

vectored interrupt 133

while-loop 65

word 6

word length 5

X-flag 36

Z-flag 36

204 Index

68000-instructions

ADD (add) 27, 177
ADDA (add address) 44, 178
ADDI (add immediate) 30, 178
ADDQ (add quick) 178
ADDX (add extended) 39, 178
AND (and) 27, 179
ANDI (and immediate) 30, 179

ASL (arithmetic shift left) 41, 180
ASR (arithmetic shift right) 41, 180

BCC (branch carry clear) 37, 181
BCHG (test a bit and change) 181
BCLR (test a bit and clear) 182
BCS (branch carry Set) 37, 181
BEQ (branch equal) 37, 181
BGE (branch greater or equal) 37, 181

BGT (branch greater than) 37, 181
BHI (branch high) 37, 181
BLE (branch less or equal) 37, 181
BLS (branch lower or same) 37, 181
BLT (branch less than) 37, 181
BMI (branch minus) 37, 181
BNE (branch not equal) 33, 37, 181
BPL (branch plus) 37, 181
BRA (branch unconditional) 33, 182
BSET (test a bit and set) 182
BSR (branch to subroutine) 51, 183
BTST (test a bit) 89, 183
BVC (branch overflow clear) 37, 181
BVS (branch overflow set) 37, 181 (

CHK (check register) 183

CLR (clear an operand) 27, 183
CMP (compare) 33, 184

CMPA (compare address) 44, 184
CMPI (compare immediate) 33, 184
CMPM (compare memory) 184

DBcc (test condition) 185

DIVS (signed division) 143, 185
DIVU (unsigned division) 143, 186

EOR (exclusive OR) 27, 186

EORI (exclusive OR immediate) 30, 186
EXG (exchange registers) 187

EXT (sign extend) 187

JSR (jump to subroutine) 55, 188

LEA (load effective address) 79, 188

LSL (logical shift left) 41, 189

LSR (logical shift right) 41, 189

(
(

JMP (jump) 55, 188

(

(
(

MOVE (move data) 27, 190

MOVEA (move address) 44, 190
MOVEM (move multiple) 108, 191

MOVEQ (move quick) 191

MULS (signed multiply) 81, 191

MULU (unsigned multiply) 81, 192

NEG (negate) 27, 192

NEGX (negate with extend) 192

NOP (no operation) 192
NOT (logical inverse) 28, 192

OR (inclusive OR) 27, 193

ORI (inclusive OR immediate) 30, 193

PEA (push effective address) 194

ROL (rotate left) 41, 194

ROR (rotate right) 41, 195

ROXL (rotate left with extend) 195
ROXR (rotate right with extend) 196

RTE (return from exception) 102, 196

RTR (return and restore CCR) 196

RTS (return from subroutine) 51, 197

Scc (set according to CCR) 197

STOP (load SR and stop) 33, 197

SUB (subtract) 27, 197
SUBA (subtract address) 44, 197

SUBI (subtract immediate) 30, 198

SUBQ (subtract quick) 198

SUBX (subtract extended) 39, 198
SWAP (swap register halves) 42, 198

TRAP (trap) 143, 199
TRAPV (trap on overflow) 143, 199
TST (test an operand) 199

~

ec

7

eh

‘il oe
_ =

= / Gave) <

ocd O74 i

”

THIS. BOOK IS AN INTRODUCTION to microcomputer system organization and

assembly language programming, in particular for the Motorola 68000.

Experience in high-level language programming, such as an introductory

course in Pascal, is all that is needed to learn how a computer works that

is stripped of all the layers of software it is usually clothed in. From this
starting point, the book systematically introduces the programming model

and organization of microcomputers.

The instruction set model of a state-of-the-art microprocessor is often

difficult to understand mainly because of its complexity. This book aims to
dispel this difficulty by starting with a simple model of a computer, in

essence a 68000-based system, and then successively refining this model
to include more functionality. When the complete instruction set model

has been introduced, the book shows how high-level language constructs,

essentially Pascal-constructs, can be translated into sequences of

assembly language instructions.

Control systems play an important role as embedded systems in
microcomputers. This book emphasizes this application area by

examining the concepts of I/O (polling, interrupts and programmable

interfaces) and the design of I/O drivers. A case study provides an

introduction to designing schedules for time-sharing and real-time

operating systems.

This textbook contains several worked examples to highlight the basic
ideas, and in addition there are a large number of exercises. The

appendices contain solutions to all these exercises, a summary of most

instructions for the Motorola 68000, and an ASCII asi

« Basic mechanisms needed to support time-sharing and redtiiine
operating systems. |

= Symbol representation and elementary computer arithmetic

« “Assembly-language programming methodology based on high-level
language (HLL) programming techniques

« Low-level communication schemes between computer systems sea

external devices using programmable interfaces
|
|

PER STENSTROM is an assistant professor in computer engineering at Lund

University, Sweden. He has taught computer organization and
architecture since 1981 and has published more than ten articles on

advanced topics in computer architecture.

ISBN O-13-584855-5

PRENTICE HALL |

> COVER DESIGN BY DESIGNERS AND PARTNERS, OXFORD.

