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Introduction 

68000  Assembly  Language  Programming,  Second  Edition,  describes  assembly  language 

programming  for  the  68000  family  of  microprocessors  —  the  68008, 68010, 68012,  and  68020.  It 
assumes  that  you  are  familiar  with  microprocessor  principles  and  have  a  basic  understanding 

of  one  or  more  high-level  programming  languages.  A  good  introductory  book  on  micropro- 
cessors is  An  Introduction  to  Microcomputers  by  Adam  Osborne  (Berkeley:  Osborne/ 

McGraw-Hill,  1980).  You  can  find  additional  68000-specific  information  in  68000  Micro- 
processor Handbook,  Second  Edition,  by  Cramer  and  Kane  (Berkeley:  Osborne,  McGraw- 

Hill,  1986). 

We  divide  our  discussion  of  assembly  languages  into  five  sections:  Section  I  describes 
assembly  languages  in  general  and  introduces  you  to  the  68000  family  of  microprocessors.  In 

Section  II  we  begin  writing  assembler  programs  to  solve  some  simple  (but  common)  program- 
ming problems  such  as  looping  and  arithmetic.  In  Section  111  we  introduce  you  to  more 

advanced  topics,  such  as  input  output  and  exception  processing.  Section  IV  presents  tools  for 
software  development  that  are  particularly  appropriate  to  programming  in  assembly  language. 
Finally,  Section  V  enumerates  the  instructions  available  on  the  68000  family  of  processors, 
paying  particular  attention  to  the  unique  68020  instructions. 

PRINTING  AND  WORDING 

INFORMATION 

As  you  can  see  from  the  text  on  this  page,  this  book  contains  both  boldface  and  lightface 
type.  The  material  in  boldface  type  provides  the  most  important  information  on  a  given  topic; 
the  text  in  lightface  type  expands  on  the  topic.  Therefore,  depending  on  the  level  of  detail  you 
want,  you  may  choose  to  read  only  the  boldface  text  or  both  the  boldface  and  the  lightface. 

This  book  discusses  all  members  of  the  68000  family.  From  a  software  perspective,  the 

microprocessors  are  nearly  identical,  particularly  when  they  are  used  in  normal  applications. 
However,  in  some  of  the  advanced  areas  (particularly  with  68020  instructions),  certain  family 
members  differ  slightly  from  others.  We  explicitly  identify  these  differences  in  the  text;  if  you 

don't  read  anything  to  the  contrary,  you  may  assume  that  a  concept  is  valid  for  all  family 
members. 

xi 





Fundamental  Concepts 

The  chapters  in  this  section  provide  basic  information  on  assembly  language  in  general 
and  the  MC68000  processors  in  particular.  Chapter  1  discusses  the  purpose  of  assembly 

language  programming  and  compares  it  with  programming  in  high-level  languages.  Chapter  2 
discusses  general  assembler  syntax  and  the  program  development  sequence.  Chapter  3  de- 

scribes the  architecture  and  the  instruction  set  of  the  MC68000  microprocessor  family. 
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Introduction  to 

Assembly  Language  Programming 

If  you  are  familiar  with  programming  in  a  high-level  language,  you've  probably  seen  a 
statement  similar  to  this  one: 

BALANCE  =  BALANCE  +  AMOUNT 

To  a  programmer  who  uses  high-level  languages,  this  statement  is  self-explanatory.  Unfortu- 
nately, computer  design  is  not  yet  sufficiently  sophisticated  for  a  machine  to  understand  this 

command  directly.  To  execute  this  statement,  the  computer  must  first  convert  it  into  a  form  it 
understands;  that  is,  into  machine  language.  The  conversion  is  made  by  means  of  a  translation 

program:  either  a  "compiler"  or  an  "interpreter." 
From  the  high-level  language  programming  point  of  view,  it  doesn't  matter  how  this 

translation  takes  place  or  what  form  the  final  output  of  the  translation  takes.  However,  to  the 
computer  executing  this  compiled  program,  the  form  of  the  output  matters  greatly.  The  output 
of  a  program  compiled  on  an  Apple  Macintosh,  for  example,  differs  substantially  from  the 

output  produced  by  compiling  the  same  high-level  program  on  an  IBM  PC.  If  you  try  to  run 
the  Macintosh  version  of  the  program  on  the  PC,  or  vice  versa,  you  will  end  up  with  a  very 
confused  computer! 

3 
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MACHINE  LANGUAGES 

The  reason  for  this  problem  is  that  although  two  computers  may  support  the  same 

high-level  language,  each  may  be  built  around  a  different  "processor"  —  for  example,  the 
Macintosh  is  built  on  the  Motorola  MC68000,  and  the  PC  AT  on  the  Intel  80286.  Each 

processor  has  its  own  "architecture,"  or  set  of  circuits,  and  its  own  set  of  primitive  "instruc- 
tions" for  manipulating  data  in  and  around  these  circuits. 

The  basic  unit  of  measurement  commonly  used  in  today's  computers  is  a  "switch,"  which 
can  register  one  of  two  possible  states,  ON  or  OFF,  at  any  given  time.  Machine  instructions 
consist  of  sets  of  such  switches.  The  computer  responds  to  the  condition  of  these  switches  by 
opening  or  closing  electrical  gates  within  its  internal  circuitry.  The  opening  and  closing  of  the 
circuits  has  some  desired  effect,  such  as  adding  one  number  to  another. 

Because  switches  have  only  two  conditions,  ON  or  OFF,  it  is  convenient  to  express  their 

values  in  "binary"  (base  2)  terms,  where  OFF=0  and  ON=l.  We  can  express  machine 
instructions  as  sets  of  "binary  digits"  (or  "bits").  One  combination  of  bits  represents  one 
machine  instruction;  another  combination  represents  a  second  instruction. 

Programming  in  a  high-level  language  is  all  well  and  good  for  most  applications;  writing 
an  accounts-receivable  business  package,  for  example,  is  best  accomplished  through  use  of  a 
high-level  language.  However,  at  some  point,  you  need  to  be  able  to  write  programs  aimed 
specifically  at  the  machine  level;  for  example,  the  compiler  for  the  high-level  language  is 
probably  written  at  the  machine-specific  level. 

So  how  do  you  write  programs  at  the  machine  level?  Clearly,  defining  bit  patterns  for 

instructions  becomes  tedious.  The  preceding  simple  high-level  program  statement  may  trans- 
late into  anywhere  from  8  bits  to  200  or  more  bits,  depending  on  the  computer  being  used. 

One  way  of  simplifying  bit  patterns  is  to  group  the  bits.  If  you  are  familiar  with  mathe- 

matic  "radices,"  or  "bases,"  you  know  that  a  binary  number  (base  2)  can  be  grouped  evenly 
into  an  octal  number  (base  8)  or  into  a  hexadecimal  number  (base  16).  Unfortunately,  base  2 

doesn't  convert  easily  into  base  10,  the  radix  with  which  we  are  most  famliar.  Binary  numbers 
map  into  octal  and  hexadecimal  numbers,  as  shown  in  Table  1-1.  From  this  table,  you  can  see 
that  a  24-bit  number  can  be  grouped  into  an  eight-digit  octal  number  or  a  six-digit  hexadecimal 
number: 

001  001  011  101  001  011  100  101  =  11351345  (octal) 
0010  0101  1101  0010  1110  0101  =  25D2E5  (hexadecimal) 

ASSEMBLY  LANGUAGE 

Using  octal  or  hexadecimal  notation  simplifies  the  representation  of  bit  patterns.  How- 
ever, many  programs  consist  of  thousands  of  instructions  and  would  be  extremely  difficult  to 

write  even  using  hexadecimal  notation.  Further,  nothing  in  the  notation  would  tell  you  whether 
an  instruction  requests  an  addition,  a  subtraction,  or  some  other  machine  function. 

Assembly  language  serves  as  an  intermediate  step  between  machine-level  instructions, 
which  are  directly  understood  by  the  machine,  and  high-level  language  designed  to  be  read 

easily  by  humans.  "Mnemonics, "abbreviations  representing  the  function  of  a  machine  instruc- 
tion, make  this  possible.  Programs  may  be  written  using  mnemonics  and  then  translated  into 

the  appropriate  bit  patterns  of  machine  instructions.  For  example,  the  MC68000  assembly 
instruction 
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ADD  D0,D1 

translates  to  the  machine  instruction 

1101  0010  0100  0000. 

Performing  this  translation  by  hand,  while  less  tedious  than  generating  bit  patterns,  still 
represents  a  fairly  difficult  task.  However,  a  computer  does  repetitive  translation  very  well.  A 

program  for  translating  assembly-language  programs  into  binary  machine  instructions  is 

called,  quite  appropriately  enough,  an  "assembler/' 
Software  developers  write  assemblers  for  a  new  computer  on  existing  computers  and  then 

transfer  the  generated  code  to  the  new  machine.  In  time,  developers  can  write  "utilities"  (such 
as  operating  systems,  assemblers,  disk  drivers,  and  printer  drivers)  that  allow  direct  program 

development  on  the  new  computer  —  thus  the  machine  actually  contributes  to  its  own 
maturity. 

WHY  ASSEMBLY  LANGUAGE? 

You  may  have  noted  from  this  discussion  that  an  assembler  works  suspiciously  like  a 

high-level-language  compiler.  This  is  quite  true:  both  convert  statements  readable  by  humans 
into  instructions  executable  by  a  computer.  There  are  two  main  differences  between  the 
assembler  and  the  compiler,  however,  that  deal  with  the  formats  of  the  statements  themselves: 

•  Assembly-level  statements  address  the  architecture  of  the  microprocessor  directly. 

They  often  deal  with  storage  circuits  called  "registers"  and  manipulate  data  at  the  bit 
level.  High-level  languages  usually  deal  with  data  on  a  more  abstract  level  as  "vari- 
ables"and  "constants,"  whose  internal  location  and  bit  encryption  is  of  no  importance 
to  the  programmer. 

•  Assembly-level  statements  correspond  one-to-one  with  machine-level  instructions.  A 
high-level  language  statement  may  translate  into  one,  two,  or  many  machine-level 
instructions. 

Table  1  - 1 .  Binary  /  Octal/  Hexadecimal  Conversion  Table 

Hexadecimal  Digit Binary  Equivalent Octal  Equivalent 
0 0000 0 
1 0011 1 
2 0010 2 
3 0011 

3 
4 0100 4 
5 0101 5 
6 01 10 6 
7 

01 1 1 
7 

8 1000 
10 

9 1001 1 1 
A 1010 

12 

B 101 1 

13 

C 1 100 14 
D 1101 

15 

E 1110 
16 

F 1111 17 
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If  you  were  to  make  a  decision  based  on  these  facts  alone,  you  would  most  likely  choose  to 

program  in  a  high-level  language.  And  indeed,  high-level  languages  have  many  positive 
features,  including: 

•  Simple  formula  statement.  A  complex  mathematical  formula  may  translate  into  many 

machine  statements  but  can  be  written  as  a  single  statement  in  a  high-level  language. 
One  of  the  first  high-level  languages,  FORTRAN,  was  designed  specifically  to  facili- 

tate "formula  translation." 
•  Block-structured  code.  Modern  programming  theory  shows  that  the  most  readable 

and  maintainable  code  consists  of  programs  that  are  broken  into  "logical  blocks"  that 
perform  specific  tasks.  High-level  languages  provide  constructs  that  make  block- 
structured  code  easier  to  write. 

•  Productivity.  Studies  show  that  the  average  programmer  produces  ten  lines  of 
debugged  code  per  day.  This  figure  holds  true  regardless  of  whether  the  source 

language  is  assembly  or  a  high-level  language.  If  one  high-level  statement  converts  to 
three  machine-executable  statements,  this  means  that  the  high-level  language  pro- 

grammer is  three  times  as  prolific  as  the  assembly  programmer. 

•  Level  of  complexity.  Clearly,  if  the  programmer  must  deal  with  hardware  details,  he  or 

she  must  be  much  more  technically  oriented  than  a  programmer  working  in  a  high- 
level  language.  For  some  tasks  this  technical  orientation  is  good;  however,  a  technical 
person  may  not  be  acquainted  with  the  business  processes  needed  to  write  a  good 

data-processing  package.  In  such  a  situation,  the  programmer  has  enough  to  worry 
about  without  the  added  complexity  of  manipulating  bits  inside  the  computer. 

•  Portability.  As  stated  at  the  start  of  this  chapter,  high-level  compilers  are  available  for  a 
variety  of  languages  on  a  variety  of  machines.  Most  programs  written  on  one  computer 
will  run  with  little  or  no  modification  on  any  other  computer;  programmers  simply 

recompile  the  program  using  the  new  computer's  compiler.  This  works  because  most 
high-level  languages  have  "standards"  that  compiler  writers  adhere  to  when  writing  a 
new  compiler. 

Assembly  programs  are  machine-specific;  you  can't  simply  reassemble  an  8088 
program  with  a  MC68000  assembler  and  expect  it  to  run.  Some  attempts  have  been 

made  to  standardize  assembly  language;  however,  these  generally  result  in  hard-to- 
understand  code  that  doesn't  make  efficient  use  of  instructions  or  data. 

•  Abstract  data  types.  Most  modern  high-level  languages  allow  you  to  define  and 
manipulate  many  data  types,  such  as  floating-point  values,  records  and  arrays  (groups 
of  simpler  data  types),  and  high-precision  values.  Assembly-language  programs  are 
restricted  to  use  of  the  data  types  provided  by  the  processor  and,  oftentimes,  the 
processor  supplies  only  16-bit  integer  data. 

Readability.  Most  high-level  languages  are,  to  some  extent,  self-documenting,  in  that  a 
newcomer  to  the  programmer  can  read  the  code  and  get  a  general  idea  of  its  function. 
Assembly  code  is  terse  and  deals  in  primitive  instructions  that  may  tell  little  about  the 
function  of  the  program. 

High-level  language  programs  are  not  without  their  faults,  however.  Areas  in  which 
assembly-language  programs  may  outperform  their  high-level  counterparts  include: 

•  Size.  In  most  cases,  the  amount  of  machine  code  produced  by  a  high-level  language 
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compiler  exceeds  the  amount  required  to  write  the  program  in  assembly  language. 
This  is  because  the  compiler  must  create  code  general  enough  to  work  in  all  cases; 
assembly  language  programmers  can  take  shortcuts  because  they  deal  directly  with  the 
machine.  For  example,  some  compilers  may  use  memory  (external  to  the  processor) 
for  counter  variables,  while  an  assembly  program  can  make  use  of  registers  (internal  to 
the  processor). 

•  Speed.  Since  assembly  programs  deal  directly  with  the  processor,  they  can  make  use  of 

high-speed  instructions  that  may  not  be  available  directly  through  the  high-level 
language.  For  example,  requesting  division  by  two  from  a  compiled  language  often 
generates  a  Divide  instruction,  while  an  assembly  programmer  knows  that  a  division 
by  two  can  be  accomplished  by  a  Left  Shift  instruction,  which  executes  much  faster 
than  a  Divide  instruction. 

•  Overhead.  Since  they  allow  for  abstract  data  types,  most  high-level  languages  perform 

"typechecking"  on  variables,  to  make  sure  that  the  programmer  has  used  the  data  type 
correctly.  While  typechecking  can  be  very  useful  in  many  instances,  it  adds  overhead  in 
both  size  and  speed  of  execution. 

Advanced  high-level  language  compilers  provide  for  varying  amounts  of  "optimization." 
Such  compilers  look  for  certain  usage  patterns,  just  as  an  assembly  programmer  might,  and 
make  substitutions  of  faster  or  more  compact  code.  However,  even  the  best  compilers  cannot 
produce  code  as  efficient  as  that  produced  in  assembly  language. 

APPLICATIONS  FOR  DIFFERENT 

LANGUAGES 

As  is  clear  from  the  preceding  discussion,  different  languages  lend  themselves  to  different 

applications.  Applications  for  high-level  languages  include: 

•  Scientific  problems.  Since  they  permit  high-precision  and  floating-point  capabilities, 
high-level  languages  allow  the  programmer  to  deal  with  values  commonly  found  in 
scientific  applications. 

•  Record-oriented  problems.  Again,  since  high-level  languages  allow  the  user  to  define 
records,  they  permit  the  programmer  to  deal  with  data  in  logical  groups  rather  than 
primitive  data  types. 

•  Business  applications.  Many  business  applications  require  that  data  be  moved  between 

memory  and  disk  storage,  that  data  from  multiple  sources  be  combined,  and  that 

printed  reports  be  generated.  Assembly  language  requires  far  too  much  internal  detail 
to  produce  such  programs  efficiently. 

•  Portable  programs.  Often,  a  software  house  may  want  to  produce  a  program  that  will 

run  on  many  different  host  computers.  Generally,  such  a  program  can  be  produced 

from  a  single  version  of  a  high-level  language  program  that  is  recompiled  for  the 
required  host. 

•  Maintainability.  Studies  show  that  as  much  as  70%  of  the  work  on  a  program  is  done  in 

modifying  its  function.  Because  assembly-language  programs  often  take  shortcuts, 

they  become  difficult  to  understand  and  especially  difficult  to  modify.  High-level 
programs,  because  they  are  easier  to  understand,  are  usually  easier  to  modify. 
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•  Special-purpose  programs.  Many  languages  have  been  designed  to  solve  a  specific  type 
of  problem.  For  example,  a  model  simulation  problem  is  best  solved  with  a  language 

that  facilitates  the  use  of  queues  and  random-event  generation. 

Applications  that  require  assembly-language  code  include: 

•  Input/ output  intensive  programs.  When  a  program  is  designed  to  move  a  high  volume 
of  data  into  and  out  of  the  computer,  assembly  language  may  be  appropriate.  Such 
programs  generally  need  little  heavy  computation,  and  the  speed  gained  with  assembly 
programming  often  justifies  its  use.  An  example  of  an  I/O  intensive  program  is  a 

"device  handler,"  which  might  interface  the  computer  to  a  peripheral  such  as  a  disk 
drive.  If  the  disk  handler  cannot  read  incoming  data  fast  enough,  the  data  may  be  lost. 

•  Time-dependent  applications.  Certain  applications  require  very  precise  timing  con- 
trol. For  example,  process  control  (using  a  computer  to  control  peripheral  devices, 

such  as  valves  and  sensors  in  a  manufacturing  plant)  requires  that  events  take  place  at 

specific  intervals.  High-level  languages  may  sometimes  add  just  enough  overhead  to 
cause  a  malfunction  in  the  process. 

•  Graphics  displays.  Graphics  programs  require  manipulations  of  "pixels,"  or  picture 
elements.  In  most  implementations,  pixels  correspond  directly  to  bits  (through  "bit 
maps").  Since  assembly  code  provides  direct  access  to  individual  bits,  it  allows  rapid 
generation  of  displays. 

With  the  development  of  new  medium-level  languages,  the  choice  between  assembly 
language  and  a  higher-level  language  becomes  more  difficult.  Medium-level  languages  provide 
high-level  data  structures  and  block-oriented  code,  while  allowing  the  programmer  to  use 

many  machine-level  instructions.  An  example  of  a  medium-level  language  is  the  "C"  language. 

HIGH  LEVEL  ASSEMBLY,  OR  BOTH 

Clearly,  the  trend  in  program  development  is  toward  specialized  high-level  languages. 
However,  there  will  always  be  a  need  for  assembly-language  programming  for  the  specialized 
applications  discussed  earlier.  Even  the  advent  of  medium-level  languages  will  not  make 
assembly  language  obsolete;  some  applications  need  to  save  every  instruction  or  memory 
location  possible,  and  this  can  be  accomplished  only  with  assembly  language. 

Many  applications  are  or  will  become  "hybrids"  in  their  use  of  programming  languages. 
After  studying  the  executing  patterns  of  a  program  written  in  a  high-level  language,  a  system 
analyst  may  determine  that  a  particular  piece  of  code  is  executed  repeatedly;  rewriting  that 

particular  piece  of  the  program  in  assembly  language  may  speed  the  program's  execution  by 
several  orders  of  magnitude. 

Another  argument  for  learning  assembly  language  is  that  while  a  high-level  language 
routine  is  simpler  to  code  and  understand,  inevitably  a  piece  of  code  comes  along  that  just 

doesn't  work  as  you  think  it  should.  Looking  at  the  assembly  code  produced  by  the  compiler 
(when  available)  often  reveals  the  hidden  bugs  in  your  program. 
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Assemblers 

In  this  chapter  we  discuss  the  functions  performed  by  assemblers.  We  start  by  defining  just 
what  an  assembler  does.  We  then  describe  some  of  the  more  common  features  of  assembler 

"source  code."  Some  of  the  material  described  in  this  chapter  may  seem  foreign  to  you  until  you 
have  a  little  assembler  experience  under  your  belt.  Feel  free  to  skim  this  chapter  for  now.  You 
may  want  to  come  back  to  it  after  writing  a  few  programs  while  working  through  later 
chapters. 

FUNCTIONS  OF  ASSEMBLERS 

As  stated  in  Chapter  1,  assemblers  allow  you  to  write  machine-level  programs  using 
mnemonic  commands  instead  of  strings  of  bits.  However,  assemblers  do  more  than  convert 
mnemonics  to  machine  instructions.  An  instruction  must  perform  its  function  on  some  piece  of 

data;  this  datum  is  called  an  "operand."  The  location  of  the  operand  is  specified  by  the  operand 
portion  of  the  instruction  code.  The  assembler  must  be  capable  of  evaluating  the  operand  field 
and  including  it  as  part  of  the  machine  instruction.  Depending  on  the  addressing  modes 
allowed  by  the  processor,  this  evaluation  may  be  simple  or  quite  complex. 

Assembly  programs,  like  high-level  programs,  require  memory  space  not  only  for  storing 
their  instructions  but  also  for  storing  variables.  An  assembler  must  be  capable  of  defining 

9 
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memory  storage.  Ultimately,  machine  instructions  refer  to  data  and  code  stored  in  other 
locations  in  memory  by  the  memory  address  (a  binary  number).  However,  to  make  the  code 

more  readable  and  easier  to  modify,  assemblers  let  you  define  "labels."  Labels  are  like  variable 
and  function  names  in  high-level  languages.  The  assembler  translates  these  labels  into  binary 
memory  addresses  so  that  programs  can  refer  to  the  location  by  its  logical  name  rather  than  its 

physical  number. 

Assemblers  produce  "object  code."  In  most  cases,  however,  this  object  code  isn't  in  a 
format  that  the  system  can  load  into  memory  and  run.  A  "linker"  converts  this  object  code  into 
a  load  module  or  task  image  that  the  system  can  load  into  memory.  The  linker  also  permits  you 
to  combine  the  object  code  of  several  modules  into  one  program.  This  lets  you  keep  the  size  of 
your  source  files  to  a  minimum. 

Assemblers  let  you  pass  along  commands  to  the  linker  through  "directives."  Directives  let 
you  define  the  starting  memory  location  of  your  program,  the  location  of  the  first  instruction  of 

your  program,  sections  of  your  program  that  are  "read  only,"  and  many  other  attributes.  We 
will  discuss  linkers  and  their  associated  assembler  directives  in  more  detail  later  in  this  chapter. 

TYPES  OF  ASSEMBLERS 

Assemblers  come  in  many  packages.  In  the  optimum  case,  your  assembler  runs  on  the 
same  machine  for  which  it  produces  code.  However,  this  is  not  always  possible.  New  computers 
may  not  have  the  operating  system  features  required  to  run  an  assembler.  Some  computers, 

particularly  microprocessors,  are  "embedded"  within  other  systems;  a  printer,  for  example, 
often  has  an  embedded  microprocessor.  In  such  cases,  program  development  (editing,  assem- 

bling, and  linking)  is  done  on  another  computer  and  then  transferred  to  the  final  host. 

Assemblers  used  for  these  applications  are  called  "cross  assemblers." 
Another  type  of  assembler  is  the  "macro  assembler."  In  addition  to  the  primary  purpose  of 

an  assembler  (that  is,  translating  mnemonics  into  machine  instructions),  these  assemblers  let 

you  use  "macros."  Macros  are  another  form  of  mnemonic.  Unlike  assembly  mnemonics, 
however,  macros  translate  into  more  than  one  machine  instruction. 

Macros  serve  a  number  of  purposes.  For  example,  when  you  use  the  same  string  of 
instructions  several  times  in  a  program,  you  can  avoid  retyping  by  defining  the  entire  string  as  a 
macro.  Then,  each  time  you  want  to  perform  this  function,  you  can  simply  type  in  the  macro 
name  and  the  assembler  will  expand  the  macro  into  the  predefined  set  of  instructions. 

ASSEMBLY  LANGUAGE  FORMAT 

Now  that  we  have  discussed  some  of  the  features  of  assemblers,  let's  look  at  a  typical 
assembly  language  program.  (Remember,  however,  that  not  all  assemblers  are  alike.  The 
format  of  your  assembler  may  differ  slightly  from  that  shown  here.) 

Assembly  language,  unlike  many  high-level  languages,  is  line-oriented.  This  means  that, 
by  and  large,  one  complete  statement  fits  on  a  single  line.  Assembly  language  is  further 

restricted  in  that  it  expects  the  components  of  the  statement  to  lie  in  specific  "fields"  on  the  line. 
Assembly  instructions  are  made  up  of  three  such  fields:  the  label  field,  the  instruction  field, 
and  the  opcode  field. 

While  some  early  assemblers  required  that  you  start  fields  in  specific  columns,  most 

assemblers  let  you  separate  labels  from  instruction  mnemonics  and  operands  with  "delimiters." 
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Delimiters  are  special  characters  such  as  blanks,  tab  characters,  commas,  and  semicolons. 
The  assembler  often  assumes  that  a  statement  consists  of  a  label  (if  present)  always 

starting  in  column  I,  followed  by  a  delimiter,  followed  by  the  mnemonic,  followed  by  a 
delimiter,  followed  by  one  or  more  operands.  For  example: 

Label     Mnemonic  Operand 

START        CLR.L  DO 

The  statement  may  have  more  than  one  operand;  again,  the  operands  are  separated  by 
delimiters  (usually  commas).  For  example: 

START       ADD.L  D0.D1 

LABELS 

Let's  look  at  the  components  of  an  assembler  statement  in  detail,  starting  with  labels.  You 
use  labels  to  assign  named  values  to  memory  locations  such  as  variables  and  the  start  of  a 
subroutine.  Writing  code  that  refers  to  a  variable  as  TOTAL  makes  much  more  sense  than 
referring  to  the  variable  by  its  binary  memory  location.  Likewise,  labeling  a  subroutine  as 
COSINE  is  infinitely  clearer  than  calling  it  000110010011000. 

When  the  assembler  encounters  a  new  label  in  a  program,  it  stores  the  value  in  a  special 

table  called  a  "symbol  table."  When  it  finds  a  reference  to  the  label  later  in  the  assembly  process, 
it  knows  that  TOTAL  is  actually  address  0010100101100110,  for  example,  and  inserts  this 
address  into  the  instruction. 

Different  assemblers  have  different  rules  for  label  names.  In  general,  label  names  must 
consist  of  only  certain  characters,  must  be  less  than  a  certain  number  of  characters  long,  and 

must  be  unique;  you  can't  give  the  same  label  name  to  two  locations.  For  example,  an  assembler 
may  require  that  labels  consist  of  uppercase  letters  and  numbers  and  must  be  eight  characters 
or  less  in  length.  In  this  context,  START,  FUNC2,  and  C 12345  are  all  valid  labels,  while  Z**2F, 
jki3##,  and  PROGRAM  _N AM E  are  illegal. 

In  addition  to  the  assemblers  rules  for  labels,  some  commonsense  rules  also  apply  to 
selecting  label  names.  These  rules  include: 

•  Use  meaningful  names.  "DDD"  and  "F$"  may  be  legal,  but  they  say  little  about  the 
variable  or  code  they  represent. 

•  Don't  use  label  names  that  are  the  same  as  instruction  mnemonics.  The  assembler  may 
permit  this,  but  it  makes  the  code  difficult  to  understand. 

•  Make  each  label  obviously  different  from  all  others.  Labels  such  as  SYSCOM  and 
SYSCON  may  be  legal,  but  they  are  easily  confused. 

These  are  recommendations,  not  rules.  You  needn't  follow  them,  but  if  you  don't,  you  may 
find  yourself  wasting  time  correcting  needless  errors. 

INSTRUCTION  MNEMONICS 

One  primary  task  of  the  assembler  is  to  transform  mnemonics  into  their  equivalent 

machine-readable  instructions.  The  assembler  keeps  a  table  of  legal  assembler  mnemonics; 

when  it  reads  a  mnemonic  in  your  source  code,  it  looks  up  the  instruction  code  in  the  table.  The 

table  also  lists  the  number  and  type  of  operand  associated  with  the  mnemonic. 
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Instruction  mnemonics  are  thus  standard  within  the  assembler.  For  the  most  part,  you 
have  no  choice  in  selecting  mnemonic  names. 

OPERANDS 

Operands  come  in  many  shapes  and  sizes.  The  particular  format  of  an  operand  depends 

on  the  "addressing  mode."  The  addressing  mode  determines  where  in  memory  the  operand  is 
located.  Common  addressing  modes  include 

Immediate.  The  instruction  names  the  operand(s)  explicitly  (the  operand  directly 
follows  the  instruction). 

Register  direct.  The  operand  resides  in  a  special  location  in  the  processor  (a  register). 

•  Absolute.  The  operand  resides  in  a  memory  location  specified  by  an  address  following 
the  instruction. 

Relative.  The  operand  resides  in  a  memory  location  specified  by  the  sum  of  an  address 
following  the  instruction  and  a  processor  register  (such  as  the  program  counter). 

•  Indirect.  The  address  of  the  operand  (in  memory)  is  specified  by  a  processor  register  or 
an  intermediate  memory  location. 

Indexed.  The  address  of  the  operand  (in  memory)  is  specified  by  the  sum  of  two 

processor  registers  (one  specifying  a  "base"  and  the  other  specifying  an  "index"). 

MC68000-family  addressing  modes  will  be  discussed  further  in  Chapter  3. 

DIRECTIVES 

Directives  are  a  special  type  of  assembly  instruction.  They  don't  translate  into  machine 
code;  rather,  they  instruct  the  assembler  on  "how"  to  perform  the  assembly.  Several  common 
assembly  directives  will  be  discussed  in  this  section. 

Data  Definition 

Commonly,  an  assembly  program  must  define  a  good  deal  of  space  in  the  computer's 
memory.  Such  storage  space  may  contain  text,  loop  counters,  memory  "commons, "tables,  and 
temporary  workspace.  Typically,  the  assembler  allows  the  program  to  set  aside  memory  for 
single  data  items  (bytes,  words,  longwords),  text  strings,  arrays  (homogenous  groups  of  strings 
or  single  data  items),  and  records  (heterogenous  groups  of  single  data  items,  text,  and  arrays). 

In  addition,  most  assemblers  permit  the  programmer  to  "initialize"  (assign  values)  to  the 
defined  memory  locations. 

Labels  are  often  associated  with  data-definition  directives.  When  the  assembler  encoun- 

ters these  directives  in  a  program,  it  allocates  a  portion  of  the  produced  object  code  to  the 
defined  data  (the  amount  of  allocated  code  is  specified  by  the  directive).  If  the  statement  line 
includes  a  label,  the  assembler  includes  the  address/ label  name  in  the  symbol  table.  When  the 
assembler  finds  a  reference  to  this  item  (through  an  operand  in  an  instruction  statement),  it 
inserts  the  corresponding  address  into  the  instruction. 

Constant  Definition 

While  assembly  language  permits  you  to  specify  exact  values  in  instruction  statements 
(with  immediate  addressing),  common  sense  dictates  that  named  values  are  more  meaningful 
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than  numeric  values.  For  example, 
ADD  #RECORD_SIZE,DO 

is  clearer  than 

ADD  #120,D0 

even  though  the  assembler  produces  the  same  object  code  for  each. 

Assemblers  typically  let  you  define  named  constants  (also  known  as  "equates").  Whenever 
an  assembler  encounters  a  named  constant  in  your  source  code,  the  assembler  substitutes  the 
numeric  value  before  translating  the  line  into  a  binary  instruction. 

In  addition  to  making  code  more  readable,  constants  make  your  code  easier  to  modify. 
You  might  often  use  the  same  constant  several  times  in  a  program.  If  for  some  reason  you  need 
to  change  this  constant  value,  you  can  use  equates  to  change  the  value  at  the  point  of  definition, 
and  all  references  to  the  equate  (by  name)  are  unchanged. 

External  Definition 

If  you  have  ever  written  a  large  program,  you  know  that  it  is  good  programming  practice 
to  break  the  program  into  several  logical  pieces,  each  of  which  is  stored  in  a  discrete  file  and 
assembled  separately.  As  we  have  said,  the  assembler  creates  a  symbol  table  of  all  labeled 
addresses  in  the  source.  However,  if  a  value  (a  function  name,  for  example)  is  defined  in  a 
different  source  file,  the  assembler  has  no  knowledge  of  it. 

Most  assemblers  permit  you  to  define  "external"  or  "global"  names.  After  the  assembler 
has  completed  the  translation  of  your  source,  it  places  such  "unresolved  references"  into  a 
second  symbol  table.  When  you  link  the  modules  of  the  program,  the  linker  resolves  all  of  the 
references  in  this  symbol  table. 

Program  Sections 

In  many  instances,  you  will  find  it  convenient  to  keep  all  of  your  data  together,  separated 
from  all  of  your  code.  You  may  wish  to  combine  together  all  data  from  each  source  code  file.  In 

some  cases,  you  will  want  the  code  to  be  "read  only"  so  that  the  system  hardware  will  protect 
your  program  code  from  being  written  over.  In  other  cases,  you  might  need  the  code  or  data  to 
begin  on  a  specific  memory  address  boundary. 

Program  sections  permit  you  to  divide  your  code  into  discrete,  named  segments,  each  of 

which  can  have  separate  characteristics,  including  read/ write  protection,  memory-address 
origin,  and  memory  alignment. 

Macros 

As  we  have  said,  assembly  language  is  line-oriented.  Since  even  simple  functions  may 

require  several  lines  of  code,  your  source  file  may  grow  quite  large  and  cumbersome.  One 

convenient  way  of  slimming  down  your  program  is  to  combine  commonly  used  lines  of  code 

into  a  single  macro.  Macros,  like  machine-instruction  mnemonics,  often  have  operand  fields. 

Macros  are  typically  used  to  set  up  a  call  to  a  system  routine,  a  routine  to  handle  printing  a 

string  of  characters,  for  example.  A  subroutine  called  "PRINT"  may  require  you  to  provide 
certain  parameters  (address  of  the  string,  length  of  the  string,  and  so  on).  Setting  up  these 

parameters  may  require  several  lines  of  code.  Here  is  an  example: 

MOVE.L  #STRING,-(SP) 
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MOVE.W    //STRING __LENGTH,  -  (SP) 
JSR  PRINT 

However,  because  you  may  make  many  calls  to  this  routine,  you  may  define  a  macro 

"PRINT    STRING"  that  lets  you  code: 

PRINT  STRING    ^STRING, //STRING  _LENGTH 

When  the  assembler  encounters  this  statement,  it  checks  its  list  of  defined  macros  and 

expands  PRINT    STRING  into  the  appropriate  code. 
Macros  are  a  powerful  tool  in  writing  assembly  language.  However,  each  assembler  has  its 

own  syntax  for  creating  macros;  we  won't  use  macros  in  this  book,  to  avoid  confusion  with  real 
machine  instructions.  Be  aware,  however,  that  they  can  be  a  real  aid  in  writing  assembly 

programs. 

Conditional  Assembly 

When  writing  a  general  program  utility,  or  writing  a  function  that  may  run  in  a  variety  of 
environments,  you  may  often  need  to  add  instructions,  delete  instructions,  or  use  different 
versions  of  instructions.  For  example,  you  may  wish  to  write  a  program  that  can  display  data 
on  several  types  of  terminals,  each  of  which  requires  different  commands  to  perform  the  same 
function. 

"Conditional  assembly"  permits  you  to  define  a  constant  (through  use  of  an  equate)  and 
then  generate  different  pieces  of  code  based  on  the  value  of  the  constant.  For  example,  you  may 
define  a  constant  called  TERM,  whose  value  may  be  NORMAL  or  KEYPAD.  Your  code  may 
then  read 

.if  TERM=NORMAL 

MOVE  B  #'  [,  DO .else 

MOVE  B  #'_,  DO .endif 

Note  here  that  the  syntax  for  the  conditional  assembly  (".if",  ".else",  and  ".endif")  will 
differ  from  assembler  to  assembler;  these  are  only  examples.  Further,  note  that  the  decision  on 
which  line  of  code  to  generate  is  made  at  assembly  time,  not  at  run  time. 

File  Inclusion 

For  large-scale  projects,  it  is  often  necessary  for  everyone  working  on  the  project  to  use  the 
same  set  of  constants;  also,  system  calls  often  require  that  you  define  specific  constants  before 

making  the  call.  Most  assemblers  permit  you  to  "include"  library  files  in  the  assembly  process. 
These  included  files  may  contain  constant  definitions,  macro  definitions,  and  other 

pertinent  data.  The  assembler  treats  these  files  as  though  they  were  physically  present  in  your 
source  code. 

Listing  Control 

Most  assemblers  are  capable  of  providing  a  variety  of  listings  based  on  the  results  of  the 
assembly.  For  example,  the  assembler  may  produce  no  listings  at  all,  listings  with  just  the  source 
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given,  listings  with  the  object  given,  listings  including  the  symbol  table,  listings  showing  macro 
expansions,  and  so  on.  You  can  specify  the  format  of  the  listing  file  by  using  assembler 
directives. 

COMMENTS 

While  technically  not  required,  comments  contribute  immeasurably  to  an  assembly 
program.  Comments  may  lie  on  separate  lines,  or  they  may  occur  after  the  operand  field  of  an 
assembly  statement.  Often  the  comment  must  begin  with  a  special  character  (such  as  a 
semicolon  or  apostrophe)  so  that  the  assembler  can  recognize  it  as  a  comment  rather  than  a 
translatable  statement.  For  example: 

;  Function  CHECK  TEMP  reads  the  fuel  tank  temperature  sensors 
;  and  calculates  the  temperature  in  Celsius. 

CHECK  TEMP:     MOVE.B     SENSOR1.D0  ;  get  sensor  value 

We  will  discuss  commenting  along  with  documentation  in  a  later  chapter,  but  here  are 
some  guidelines  on  when  and  how  to  use  comments: 

•  Use  comments  to  describe  what  the  code  is  doing  in  the  "big  picture" — that  is, 
comments  should  say  things  such  as  "is  temperature  over  limit?"  or  "bump  loop 
counter."  Don't  use  comments  that  repeat  the  assembly  statement:  for  example,  "jump 
to  START"  or  "increment  Dl." 

•  Avoid  using  abbreviations.  Comments  should  be  as  descriptive  as  possible. 

•  Comment  all  instructions  whose  purpose  may  not  be  immediately  clear;  instructions 
dealing  with  registers  rather  than  memory  are  often  difficult  to  understand  since  they 
deal  with  register  data  rather  than  named  memory  data. 

•  You  needn't  necessarily  comment  every  line;  in  some  cases,  a  single  comment  may 
apply  to  several  statements. 

•  Comment  major  sections  of  code  (for  example,  subroutines)  with  several  lines  of 

comments.  Don't  rely  solely  on  the  comments  following  the  instruction  operand. 

•  Make  all  comments  uniform  in  both  appearance  and  terminology.  All  in-line  com- 
ments should  start  in  the  same  column.  Don't  refer  to  the  same  variable  as  "route 

distance"  in  one  comment  and  "location  delta"  in  another. 

•  Be  especially  careful  to  document  instructions  or  algorithms  that  you  found  difficult  to 
understand  or  write.  Such  code  will  be  equally  difficult  for  a  newcomer  to  you  code  to 

understand.  (Ignore  the  old  adage,  "It  was  difficult  to  write,  so  by  golly  it  should  be 
difficult  to  read!"). 

PROGRAM  DEVELOPMENT 

Now  that  we  have  described  the  basic  functions  of  assemblers,  let's  look  at  how  they  fit 
into  the  "big  scheme"  of  program  development.  There  are  several  steps  required  to  create  a 
working  program.  These  steps  include  designing,  editing,  assembling,  linking,  and  loading. 
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DESIGN 

The  first  thing  to  do  when  you  begin  to  write  a  program  is  turn  off  your  terminal.  Studies 
have  shown  that  a  rule  of  thumb  for  projecting  the  time  requirements  for  a  project  is  40/  20/40; 
that  is,  40%  of  the  time  is  spent  in  design,  20%  in  coding,  and  40%  in  testing  and  integration. 

Many  different  methodologies  are  available  for  designing  a  program.  We  will  present  some 
of  these  in  Section  IV. 

EDITING 

After  you  have  designed  the  program  to  your  satisfaction,  you  may  begin  to  enter  source 

code  into  the  computer.  To  do  this,  you  need  some  sort  of  "editor."  Editors  come  in  a  variety  of 
flavors.  "Character-oriented"  editors  are,  at  best,  cumbersome  to  work  with.  They  provide 
basic  data  entry  capabilities,  but  often  require  that  you  move  a  character  pointer  to  the  position 
where  you  want  to  edit  or  insert  material,  and  they  do  not  automatically  provide  visual 
feedback. 

On  the  other  end  of  the  spectrum,  "full  screen"  editors  let  you  treat  a  program  as  though  it 
were  printed  on  a  long  sheet  of  paper.  This  allows  you  to  look  at  and  edit  any  part  of  the 
program  at  any  time.  Such  editors  provide  continuous  visual  feedback;  for  example,  if  you 
want  to  insert  a  character  into  a  line,  you  simply  move  the  cursor  (usually,  by  pressing  the  arrow 
keys  on  the  keyboard)  to  the  point  of  insertion  and  press  the  desired  characters.  The  editor  puts 
them  into  the  text  and  they  appear  on  the  screen.  Often,  such  screen  editors  require  that  you  use 
a  specific  type  of  terminal  so  that  the  editor  can  give  the  proper  commands  to  control  the 
display. 

ASSEMBLY 

Once  you  have  a  source  file  entered  into  the  computer  (and  saved  onto  disk),  you  must 
assemble  the  program.  As  we  discussed  earlier,  the  assembler  translates  the  source  code  into  an 

"object  file"  containing  the  machine-instruction  code  as  well  as  the  symbol  table  entries  of  any 
"global"  data  defined  in  the  source  file. 

LINKAGE 

Often,  a  single  program  is  made  up  of  several  modules,  each  of  which  resides  in  a  separate 

source  file.  Also,  many  programs  will  refer  to  "library  functions."  Library  functions  are 
common  utility  programs  that  may  be  called  from  your  program.  In  order  to  resolve  the 

addresses  defined  as  "unresolved"  by  the  assembler,  you  must  "link"  all  of  the  modules  (and 
library)  together. 

The  linker  looks  through  all  of  the  symbol  tables  of  the  object  files.  When  it  finds  an 
unresolved  symbol  in  one  object  file  defined  in  another  object  file,  it  replaces  the  unresolved 
value  with  its  true  value. 

In  addition  to  resolving  addresses,  the  linker  also  builds  a  "load  module."  Since  the 
assembler  is  aware  of  only  a  single  source  module,  it  often  produces  an  object  module 
beginning  at  address  0.  The  linker  must  concatenate  each  of  the  object  modules;  to  do  this,  it 
must  modify  all  address  references  so  that  Module  l  precedes  Module  2,  which  precedes 
Module  3,  and  so  on. 
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Some  linkers  are  more  powerful  than  others.  In  advanced  systems,  the  linker  lets  you 
create  overlaid  programs,  multiuser  programs,  and  programs  that  share  code  or  data  with 
other  programs. 

LOADERS 

The  product  of  the  linker  is  a  "load  module."  This  module  is  almost  a  program;  however,  it 
needs  a  "loader"  to  move  the  load  module  from  disk  to  memory.  Typically,  the  load  module 
contains  some  information  other  than  the  code  and  data  produced  by  the  assembler.  This 

information  is  often  called  the  "header,"  and  tells  the  loader  where  to  load  the  remainder  of  the 
module,  what  data  and  devices  the  program  may  need  prior  to  running  the  program,  and  other 

system-dependent  information. 
Once  loaded,  the  program  is  ready  to  run.  Depending  on  the  system,  you  simply  tell  the 

computer  to  begin  execution  by  typing  "RUN"  or  perhaps  by  entering  the  program  name. 
Often,  the  RUN  instruction  tells  the  system  to  load  the  program  into  memory  if  it  isn't  already 
there. 

ALTERNATIVES 

These  program  development  steps  just  outlined  are  required  in  most  cases.  However,  in 
some  systems,  one  or  more  of  these  steps  may  be  combined.  For  example,  some  assemblers 
produce  a  loadable  image;  that  is,  they  perform  both  the  assembly  and  the  linkage.  Other 

systems  use  a  "linking-loader,"  which  performs  the  necessary  linking  at  the  time  that  the 
program  is  loaded  into  memory. 

Both  of  these  alternatives  were  common  in  early  systems,  whose  programs  were  smaller 
and  less  modular  than  those  of  current  systems.  However,  in  these  times  of  cheap  memory  and 
advanced  software  engineering  techniques,  only  the  most  rudimentary  programs  can  be 
conveniently  produced  with  these  tools.  Most  modern  systems  follow  the  basic  development 
steps  we  have  described. 
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MC68000  Machine  Architecture 

In  this  chapter,  we  describe  the  architecture  of  the  MC68000  family  in  terms  of  the 
accessible  internal  components  of  the  central  processor,  memory  characteristics,  instruction 
sets,  and  addressing  modes. 

THE  CENTRAL  PROCESSING  UNIT 

As  its  name  implies,  the  central  processing  unit,  or  CPU,  serves  as  the  chief  component  of 
the  computing  portion  of  the  computer.  The  CPU  handles  both  functions  that  the  user  requests 
explicitly  and  functions  that  its  own  internal  components  and  peripherals  request  implicitly. 

The  CPU  performs  explicit  functions  as  directed  by  your  program.  Such  functions 

may  include  arithmetic  (adding  two  numbers  together,  for  example),  decision-making 

("if. .  .  then . . .  else"  constructs),  and  data  storage  and  retrieval.  The  CPU  also  handles  certain 
types  of  errors  generated  by  your  programs;  for  example,  division  by  zero  (an  illegal  operation). 

Besides  directly  executing  the  instructions  of  your  programs,  the  CPU  is  also  responsible 
for  controlling  the  peripherals  that  are  connected  to  it.  In  this  context,  such  peripherals  include 
main  memory  (for  example,  random  access  memory,  or  RAM),  controllers  (for  example, 

disk-drive  controllers),  and  support  processing  units  (for  example,  floating-point  processors). 
Whenever  your  program  accesses  one  of  these  peripherals,  the  CPU  must  perform  certain 

"handshaking"  functions  to  ensure  that  the  data  transfer  between  itself  and  the  peripheral 
follows  standard  rules. 

Many  peripherals  are  capable  of  "interrupting"  normal  program  execution  within  the 
CPU.  Such  interruptions  may  occur  when  the  peripheral  needs  to  transfer  some  data;  for 
example,  when  you  press  a  key  on  the  keyboard.  The  CPU  must  arbitrate  interrupts  between 
different  peripherals  and  also  determine  what  actions  it  needs  to  take  in  regard  to  servicing  the 
interrupt.  Typically,  the  CPU  stops  execution  of  the  current  program  and  begins  execution  of 

another  program  called  an  "interrupt  handler  routine." 

CPU  COMPONENTS 

The  CPU  consists  of  several  discrete  components.  These  components  include  address  registers, 
data  registers,  and  status/ control  registers,  all  of  which  your  program  can  access.  In  addition, 

the  CPU  contains  many  control  registers  that  contain  current  instruction  information,  proces- 
sor status  information,  and  data  buffers.  Normally,  your  program  cannot  access  these  registers. 
Typically,  an  instruction  will  ask  the  CPU  to  take  a  value  (from  a  register  or  memory), 

perform  some  operation  on  it,  and  then  store  it  into  a  destination  location  (either  a  register  or 
memory).  The  arithmetic  logic  unit,  or  ALU,  is  responsible  for  performing  all  such  operations. 

The  CPU  provides  pathways  on  which  data  can  move  between  registers,  external  memory, 

and  the  ALU.  These  pathways  are  called  "buses."  CPUs  have  address  buses  (for  specifying 
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Figure  3-1.  Simplified  Computer  System  Block  Diagram 

memory  addresses),  data  buses  (for  moving  data  around  the  CPU),  and  control  buses  (for 
handling  data  transfers  and  manipulating  the  peripherals  attached  to  the  CPU). 

Figure  3-1  shows  how  these  CPU  components  relate  to  one  another. 

MODES  OF  OPERATION 

Most  advanced  microprocessors,  like  larger  mainframe  processors,  have  more  than  one 
mode  of  operation.  The  MC68000  family  of  microprocessors  has  two  modes,  the  user  mode 
and  the  supervisor  mode.  Most  of  the  programs  that  you  will  write  operate  in  the  user  mode. 

Operating-system  functions  operate  in  the  supervisor  mode. 

The  supervisor  mode  provides  the  operating  system  with  special  instructions  that  aren't 
necessary  for  normal  application  programs.  These  "privileged"  instructions  give  the  operating 
system  access  to  data  and  registers  that  are  associated  with  task  scheduling  and  interrupt 
handling.  When  the  system  includes  a  memory  management  unit,  or  MMU,  supervisor 
programs  may  have  access  to  all  of  memory.  User  programs,  on  the  other  hand,  have  access 
only  to  the  memory  that  contains  their  code  and  data.  This  limited  access  protects  the 

operating  system  and  other  programs  from  corruption  by  out-of-control  user  programs. 
The  supervisor  can  change  the  CPU  mode  to  user  mode.  The  opposite  is  naturally  not 

possible;  the  user  cannot  put  the  CPU  into  supervisor  mode.  The  only  way  for  the  processor  to 
change  from  user  mode  to  supervisor  mode  is  through  an  exception.  Exceptions  include 
peripheral  interrupts  and  illegal  instructions.  When  these  occur,  the  processor  changes  to 
supervisor  mode  and  begins  program  execution  at  an  address  typically  known  only  by  the 

operating  system.  It  is  virtually  impossible  for  a  user-mode  program  to  gain  access  to 
supervisor-mode  data. 

Most  of  the  programs  in  this  book  are  intended  to  be  run  in  user  mode. 
The  supervisor  modes  of  the  various  MC68000  family  members  differ  in  their  capabilities. 

Their  register  structures  also  differ  slightly  from  one  another.  Because  of  these  differences,  we 
will  discuss  the  supervisor  mode  registers  separately  from  the  user  mode  registers. 

USER  MODE  REGISTERS 

The  MC68000  processor  family  members  have  a  common  set  of  user-mode  data  registers, 
address  registers,  program  counters,  and  condition  code  registers,  as  shown  in  Figure  3-2. 
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Data  Registers 

The  MC68000  has  eight  32-bit  data  registers,  DO  through  D7.  Programs  use  data  registers 

to  hold  arithmetic  values  (such  as  sums,  counters,  increments,  and  so  on),  as  well  as  "indexes" 
(which  we  will  discuss  later  in  this  chapter).  Data  registers  can  hold  1-bit  values,  8-bit  bytes, 
16-bit  words,  and  32-bit  long  words.  It  is  important  to  note  here  that  byte  and  word  operations 
on  data  registers  affect  only  the  lower  portion  of  the  register.  That  is,  a  byte-sized  movement 
into  a  data  register  affects  only  the  least  significant  8  bits  of  the  register.  The  upper  24  bits  are 
unaffected. 

The  various-sized  operands  are  positioned  within  the  data  registers  as  shown  by  Figure 
3-3. 

Address  Registers 

The  MC68000  has  eight  32-bit  address  registers,  AO  through  A7.  Programs  use  these 
values  to  hold  memory  pointers;  the  registers  may  also  contain  index  values.  Since  they  hold 
addresses,  they  are  limited  to  storing  16-bit  words  and  32-bit  long  words  (no  bit  or  byte  data). 
Operations  that  move  values  into  an  address  register  affect  the  entire  32  bits;  in  a  word 

movement,  the  CPU  "sign  extends"  the  word  into  the  whole  32  bits  of  the  register  (that  is,  it 
replicates  bit  15  into  bits  16  through  31). 
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Not  all  of  the  MC68000  processors  permit  32-bit  addresses;  the  actual  number  of  bits  used 
depends  on  the  size  of  the  address  bus.  Table  3-1  summarizes  the  size  of  the  address  buses  on 
each  of  the  processors.  When  fetching  or  writing  data  via  an  address  register,  the  CPU  uses 
only  as  much  of  the  address  register  as  corresponds  to  the  address  bus.  It  ignores  any 

additional  high-order  bits. 
Seven  of  the  address  registers  ( A0-A6)  are  general  purpose  registers.  The  eighth,  A  7,  is  the 

user  stack  pointer,  or  USP.  (The  supervisor  mode  uses  A7  as  a  separate  stack  pointer,  as  will  be 
discussed  later  in  this  chapter.)  A  stack  is  a  special  data  structure  in  memory  whose  function  is 

to  store  temporary  data.  It  operates  in  a  "last  in,  first  out"  ("UFO")  method;  that  is,  the  last 
datum  "pushed"  onto  the  stack  will  be  the  first  datum  "pulled"  off  of  the  stack. 

The  MC68000  fills  a  stack  from  high  memory  to  low  memory.  For  example,  on  a 
subroutine  call,  the  processor  decrements  the  stack  pointer,  pushes  the  program  counter  onto 
the  stack,  and  branches  to  the  subroutine.  On  return  from  the  subroutine,  the  processor  pulls 

the  program  counter  from  the  stack  and  then  increments  the  stack  pointer.  Figure  3-4  shows 
this  operation. 

Program  Counter 

The  program  counter,  or  PC,  keeps  track  of  the  address  of  the  next  instruction  to  execute. 
Each  time  the  CPU  requires  a  new  instruction,  it  reads  the  instruction  pointed  to  by  the  PC  and 
then  increments  the  PC.  If  the  instruction  is  more  than  one  word  long,  the  CPU  reads  the  next 

Table  3-1 .  MC68000  Family  Address  Buses 

Processor Bus  Width Address  Space 
MC68000 

24 
16  megabytes 

MC68008 
20 

1  megabyte 
MC68010 

24 
16  megabytes 

MC68012 
31 2  gigabytes MC68020 
32 4  gigabytes 
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word  pointed  to  by  the  program  counter. 
Like  the  address  registers,  the  PC  is  32  bits  long;  however,  the  actual  maximum  address 

depends  on  the  size  of  the  address  bus  of  the  particular  processor. 

Condition  Code  Register 

After  completing  most  operations,  the  CPU  must  indicate  certain  results;  for  example, 
after  comparing  two  values,  the  CPU  must  be  able  to  indicate  whether  they  were  equal.  The 

user  portion  of  the  status  register,  or  SR,  contains  bit-sized  flags,  or  "condition  codes,"  which 
may  be  true  (value  1)  or  false  (value  0);  this  portion  of  the  status  register  is  also  known  as  the 

"condition  code  register,"  or  CCR. 
The  Carry  bit  (C)  holds  the  carry  from  the  most  significant  bit  produced  by  arithmetic 

operations  or  shifts.  For  example,  if  the  sum  of  two  numbers  is  larger  than  the  destination  can 
hold,  the  Carry  bit  is  set  to  true  (1);  likewise,  if  in  a  subtraction,  the  second  number  is  larger 

than  the  first,  the  Carry  bit  is  set  to  true.  In  this  context,  the  bit  functions  as  a  "borrow"  bit. 
The  Zero  bit  (Z)  is  true  (1)  when  the  operation  results  in  a  zero  value.  It  is  false  (0)  when  the 

operation  produces  a  nonzero  result. 
The  negative  bit  (N)  takes  on  the  most  significant  bit  of  a  result.  Thus,  a  true  (1)  value 

means  that  the  result  was  negative,  and  a  false  (0)  value  means  the  result  was  positive  or  zero. 
The  overflow  bit  (O)  is  true  (1)  when  the  result  of  an  operation  has  a  magnitude  greater 

than  can  be  represented  by  the  destination  and  Carry  bit. 
The  Extend  bit  (X)  is  always  the  same  as  the  Carry  bit. 

SUPERVISOR  MODE  REGISTERS 

FOR  THE  MC68000  AND  MC68008 

The  supervisor  mode  on  the  MC68000  and  MC68008  processors  has  access  to  two 

registers  in  addition  to  the  user  mode  registers,  as  shown  in  Figure  3-5. 

Status  Register 

The  status  register  for  the  MC68000  and  MC68008  consists  of  the  condition  codes,  which 
lie  in  the  lower  byte  and  are  accessible  by  the  user  mode,  and  the  upper  byte,  which  is  accessible 
only  by  the  supervisor  mode  (the  supervisor  mode  has  access  to  both  bytes). 

The  Supervisor  bit,  (S),  specifies  the  execution  mode  of  the  processor.  If  true  (1),  the 
processor  is  in  supervisor  mode;  if  false  (0),  the  processor  is  in  user  mode. 

The  Trace  bit,  (T),  when  true  (1),  specifies  that  the  processor  is  operating  in  trace  mode.  In 

this  mode,  after  executing  an  instruction,  the  processor  automatically  "traps"  to  a  supervisor 
routine.  The  trace  mode  implements  a  single-step  mode  of  execution.  This  allows  a  debugger 

program  to  monitor  the  results  of  an  application  program  on  an  instruction-by-instruction 
basis. 

The  MC68000  processors  can  operate  at  any  one  of  eight  levels,  or  "priorities."  The 
interrupt  mask  bits,  (10,11,12),  form  a  binary  number  that  specifies  the  current  operation  level. 

External  devices  may  attempt  to  interrupt  the  processor  by  asserting  signals  on  three  input 
lines  connected  to  the  processor.  When  the  processor  receives  an  interrupt  request,  it  compares 
the  bits  of  the  interrupt  mask  to  the  values  on  the  interrupt  lines. 
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If  the  CPU  priority  is  equal  to  or  greater  than  the  interrupt  level,  the  CPU  ignores  the 
interrupt  (for  the  time  being)  and  continues  execution.  Later,  if  and  when  the  CPU  lowers  its 
priority,  the  device  can  interrupt  the  processor.  If  the  CPU  priority  is  less  than  the  incoming 
interrupt  level,  the  CPU  responds  to  the  interrupt  request  by  suspending  the  execution  of  the 

current  program  and  jumping  to  an  interrupt-handler  routine.  When  this  happens,  the 
processor  raises  its  priority  to  the  level  indicated  by  the  interrupt  lines. 

Normally,  application  programs  run  at  priority  0  (lo^Ii^b^O).  This  gives  all  peripherals 
the  ability  to  interrupt  the  processor.  Since  the  CPU  raises  its  priority  for  interrupts,  it  can 

"prioritize"  the  peripherals.  For  example,  the  system  clock  usually  has  the  highest  priority  (that 
is,  level  7),  while  a  terminal  port  may  have  a  lower  priority;  say,  level  4.  In  this  instance,  the 
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clock  can  interrupt  an  applications  program  as  well  as  the  interrupt  handler  for  the  terminal 

port.  The  terminal-port  interrupt  can  interrupt  the  applications  program  but  cannot  interrupt 
the  clock-interrupt  routine.  This  ensures  that  time-dependent  functions  (like  the  clock  or  disk 
input/ output)  occur  without  the  chance  of  corruption. 

Stack  Pointer 

The  MC68000  and  MC68008  use  two  stacks,  the  user  stack  and  the  supervisor  stack.  Naturally, 
this  means  that  they  require  two  stack  pointers,  the  user  stack  pointer  (abbreviated  USP  or  A7) 

and  the  supervisor  stack  pointer  (abbreviated  SSP  or  A7').  The  CPU  uses  the  stack  that 
matches  the  current  mode.  Since  the  stack  selection  is  made  internally,  each  mode  has  access 
only  to  its  own  stack  pointer.  In  an  assembler  program,  a  reference  to  A7  (either  explicitly  as 
A7,  or  implicitly  through  a  subroutine  call  or  return)  decodes  to  the  same  machine  instruction; 
at  execution  time,  the  CPU  selects  the  appropriate  stack.  The  MC68000  processors  include  a 
special  instruction  to  a  supervisor  mode  program  to  access  the  user  mode  stack  pointer. 

SUPERVISOR  MODE  REGISTERS 

FOR  THE  MC68010  AND  MC68012 

The  MC68010  and  MC68012  processors  both  have  supervisor  stack  pointers  and  status 
registers  identical  to  those  in  the  earlier  models.  These  processors  have  three  additional 

registers.  The  supervisor  mode  register  set  is  shown  in  Figure  3-6. 
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31 VBR  Vector 
Base  Register 

SFC    Source  Function  Code  Register 

DFC    Destination  Function  Code  Register 

2    1  0 

2    1  0 

Figure  3-6.  Additional  Registers  Available  in  Supervisor  Mode  (MC68010.  MC680I2) 
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Vector  Base  Register 

The  MC68000  processors  use  a  specially  defined  block  of  memory  called  a  "vector  table." 
This  table  defines  the  starting  addresses  (or  vectors)  of  interrupt  handlers,  illegal  instruction 

code  handlers,  system-reset  routines,  and  other  operating  system-oriented  vectors. 
In  the  MC68000  and  MC68008,  this  table  always  starts  at  address  0000H.  The  MC68010 

and  MC68012  permit  the  operating  system  to  redefine  the  starting  address  by  use  of  a  32-bit 
vector  base  register,  or  VBR.  At  system  reset,  the  vector  table  resides  at  0000H.  After  reset, 
however,  the  operating  system  may  modify  this  address  through  the  VBR. 

Alternate  Function  Code  Registers 

The  MC68000  processors  have  three  function  code  output  lines  (called  FCO,  FC1,  and 
FC2).  Whenever  the  processor  reads  or  writes  to  memory,  these  function  codes  reflect 
information  about  the  state  of  the  processor.  Specifically,  they  show  the  CPU  mode  (user  or 
supervisor)  and  the  contents  of  the  memory  accessed  (instruction  or  data).  Often,  these  lines 
are  connected  to  the  memory  management  unit  (MMU)  and  permit  the  program  to  define 

separate  memory  for  each  CPU  mode  and  memory-access  type. 
In  normal  execution,  the  processor  sends  well-defined  data  function  codes.  Certain 

instructions,  however,  permit  the  program  to  send  out  alternate  codes.  The  source  function 
code  register,  or  SFC,  specifies  the  code  for  memory  reads.  The  destination  function  code 
register,  or  DFC,  specifies  the  code  for  memory  writes. 

SUPERVISOR  MODE  REGISTERS  FOR  THE  MC68020 

The  supervisor  mode  of  the  MC68020  offers  several  registers  that  are  not  available  in  the 

earlier  MC68000-family  processors.  Some  of  these  registers  are  completely  new  and  others  are 
redefined  versions  of  old  registers.  These  registers  are  shown  in  Figure  3-7. 

Status  Register 

The  supervisor  byte  of  the  status  register  for  the  MC68020  has  new  bit  definitions  in 

addition  to  those  of  its  predecessors,  as  shown  in  Figure  3-7. 
The  MC68020  defines  a  second  trace  bit  (TO)  in  addition  to  the  one  found  in  the  earlier 

processors  (Tl).  These  two  bits  combine  to  allow  more  specific  tracing  than  the  single  trace  bit 
permitted.  When  the  trace  bits  are  equal  to  00,  no  tracing  takes  place.  When  they  are  equal  to 
01 ,  a  tracing  trap  takes  place  only  on  a  change  of  program  flow  (such  as  execution  of  a  branch 
or  subroutine  call).  When  the  trace  bits  are  equal  to  10,  the  processor  traps  after  every 
instruction  (as  do  the  other  processor  models).  The  11  bit  value  is  undefined. 

The  MC68020  divides  the  supervisor  mode  into  two  submodes,  master  and  interrupt, 
through  the  use  of  a  Master  bit,  (M),  which  functions  in  conjunction  with  the  Supervisor  bit, 
(S).  The  only  difference  between  the  two  is  in  the  selection  of  stack  pointer. 

The  interrupt  mask  bits  in  the  MC68020  status  register  function  identically  to  the  mask  in 
the  other  processors. 
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Stack  Pointers 

As  indicated  previously,  the  MC68020  supervisor  mode  can  use  one  of  two  supervisor 
stacks.  These  are  called  the  interrupt  stack  pointer,  or  ISP  ( A7'),  and  the  master  stack  pointer, 
or  MSP  (A7").  When  the  M  bit  is  0,  the  processor  uses  the  ISP,  just  as  the  other  MC68000 processors  do.  When  the  M  bit  is  1,  the  MC68020  uses  the  MSP. 

Having  two  supervisor  stacks  may  seem  redundant  to  you  if  you  are  new  to  systems 
programming.  However,  in  some  situations  (for  example,  multitasking),  a  second  supervisor 
stack  provides  a  "cleaner"  interface.  The  master  stack  can  hold  task-dependent  information 
and  provide  temporary  storage  for  operating-system  routines.  The  interrupt  stack  then  holds 
information  associated  with  hardware  interrupts. 

This  distinction  may  not  be  evident  to  you  yet.  For  now,  suffice  it  to  say  that  the  CPU 
automatically  chooses  which  stack  to  use  based  on  its  current  operating  status  (defined  by  the 
M  and  S  bits  of  the  status  register). 

Cache  Control 

Most  programs  spend  the  better  part  of  execution  time  running  in  loops.  While  in  these 
loops,  they  execute  the  same  set  of  instructions  over  and  over.  Each  time  the  processor  needs  to 
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Figure  3-7.  Additional  Registers  Available  in  Supervisor  Mode  (MC68020) 
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execute  an  instruction,  it  must  fetch  it  from  memory. 

The  MC68020  processor  includes  a  256-byte  instruction  cache,  which  contains  the  most 
recently  executed  instructions.  In  the  case  of  a  looping  segment  of  code,  the  processor  only  has 
to  fetch  the  instruction  from  memory  once.  It  stores  the  instruction  in  the  cache,  displacing  an 

instruction  that  hasn't  been  used  lately.  Subsequent  memory  requests  for  the  instruction  are 
canceled  because  the  processor  already  has  the  instruction  in  the  cache. 

The  operation  of  the  instruction  cache  is  transparent  to  user  programs.  However,  running 
programs  through  the  cache  may  not  always  be  appropriate.  Since  the  cache  can  hold  only  a 
limited  number  of  instructions,  nonlooping  code  may  displace  looping  code.  The  supervisor 
mode  has,  therefore,  the  ability  to  enable,  disable,  and  otherwise  manipulate  the  cache  through 
two  registers,  the  cache  address  register,  or  CAAR,  and  the  cache  control  register,  or  CACR. 

MEMORY 

The  MC68000  memory  is  arranged  as  a  single,  linear,  logically  contiguous  block  of  storage 
cells.  At  any  given  time,  a  program  can  access  any  point  in  the  total  address  space  of  the  system 
(as  defined  by  the  width  of  the  address  bus).  In  practice,  however,  the  operating  system  uses  the 
memory  management  unit  to  limit  a  program  to  accessing  only  as  much  memory  as  it  needs; 
this  may  be  10K  bytes,  100K  bytes,  or  1M  byte. 

This  linear  arrangement  differs  from  that  of  some  popular  microprocessors,  where  the 
CPU  may  access  memory  in  64K  byte  segments;  such  microprocessors  must  set  up  segment 
registers  that  point  to  the  starting  addresses  of  these  segments.  To  access  an  instruction  or 
datum  outside  the  current  segments,  the  programmer  must  explicitly  instruct  the  CPU  to 
change  its  segment  registers. 

All  peripheral  devices  appear  to  the  MC68000  processor  as  unique  memory  locations.  In 

this  sense,  the  processor  uses  memory-mapped  input/  output  to  the  peripherals;  a  program  can 
use  the  same  instruction  to  move  data  to  a  peripheral  as  it  does  to  move  data  to  a  memory 

location.  This  contrasts  with  other  processors  that  connect  peripherals  to  "ports,"  which 
require  special  instructions  for  interfacing. 

ACCESS  SIZES 

The  basic  unit  of  memory  access  on  the  MC68000  processors  is  the  byte  (8  bits).  Each  byte 
of  memory  has  its  own  address.  The  processors  may  also  access  words  ( 16  bits)  and  long  words 

(32  bits).  On  all  processors  but  the  MC68020,  word  and  long-word  operands  must  reside  on 
even-address  boundaries;  that  is,  the  address  must  be  evenly  divisible  by  two. 

On  the  MC68020,  words  and  long  words  can  start  on  odd  addresses.  However,  the 
processor  accesses  them  by  making  two  or  three  consecutive  accesses  to  memory;  this  increases 
accessing  time.  For  maximum  efficiency,  you  should  always  keep  words  aligned  on  even 
boundaries  and  long  words  aligned  on  address  boundaries  divisible  by  four,  regardless  of  the 
particular  processor  in  use. 

On  all  processors,  instructions  must  begin  on  word  boundaries.  This  simplifies  the 
instruction-fetch  logic  of  the  CPU. 

BYTE  ORDERING 

The  MC68000  processors  store  data  in  memory  exactly  as  they  do  in  registers,  as  shown  in 

Figure  3-8.  This  implies  that  the  most  significant  bit  of  a  long  word  (bit  31)  stored  in  a  register 
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resides  as  the  first  bit  at  its  address  in  memory.  This  storage  setup  contrasts  with  those  of  other 
processors,  which  reverse  the  byte  order  of  words  and  long  words  in  memory.  That  is,  they 
store  a  word  in  memory  so  that  the  least  significant  byte  resides  at  the  address  of  the  word  and 
the  most  significant  byte  resides  at  the  address  plus  one. 

INSTRUCTION  SET 

The  MC68000  processors  have  a  rich  instruction  set  that  allows  for  data  movement, 
arithmetic,  logical  testing,  bit  manipulation,  and  program  flow  control.  The  instructions  are 

upwardly  compatible  in  that  programs  written  and  assembled  on  a  lower-end  product,  such  as 
the  MC68000,  will  run  unaltered  on  an  upper-end  product,  such  as  the  MC68020.  The  opposite 
is  not  true,  however;  programs  written  for  the  MC68020  will  not  necessarily  run  on  the 
MC68000.  This  is  because  there  are  more  instructions  and  addressing  modes  available  on  the 
MC68020  than  on  the  other  processors. 

The  MC68000  processors'  instruction  sets  are  "regular."  This  means  that  most  instruc- 
tions follow  the  same  format  and  may  use  any  combination  of  address  modes.  For  example,  the 

same  machine  op-code  may  request  data  movement  between  two  registers,  between  a  register 
and  memory,  between  two  memory  locations,  or  between  a  register  and  a  peripheral.  The  only 
difference  between  the  two  requests  lies  in  the  operand  portion  of  the  instructions.  The 
regularity  of  the  MC68000  instruction  set  contrasts  with  other  microprocessors,  which  limit 
many  instructions  to  specific  addressing  modes. 

This  regularity  of  the  instruction  set  has  several  important  implications  for  you,  the 

assembly-level  programmer.  First,  it  means  that  you  needn't  memorize  all  sorts  of  different 
instructions  and  formats;  most  instructions  look  the  same  except  for  the  instruction  mnenonic. 
For  example,  many  processors  have  separate  LOAD  and  STORE  instructions.  The  MC68000 
processors  have  only  a  MOVE  instruction;  the  direction  of  the  movement  depends  on  the 
ordering  of  the  operands. 

Second,  the  basic  instruction  operates  on  all  sizes  of  data.  In  MC68000  assembly  lan- 
guage, the  size  of  the  operation  (that  is,  byte,  word,  or  long  word)  is  specified  by  a  suffix  to  the 

mnemonic  —  either  .B, .  W,  or  .L.  In  the  machine  code,  the  size  is  specified  by  special  bits  in  the 
instruction  code. 

Finally,  this  simplification  means  that  you  needn't  worry  about  keeping  registers  free  for 
specific  operations.  You  can  use  any  of  the  eight  data  registers  for  any  operation  requiring  a 
data  register;  you  can  use  any  of  the  seven  general  purpose  address  registers  for  an  operation 
requiring  an  address  register. 

We  will  introduce  each  of  the  instructions  in  subsequent  chapters  by  using  them  in  sample 
programs.  For  now,  we  will  give  you  an  overview  of  the  MC68000  instruction  set. 

DATA  MOVEMENT 

Data  movement  instructions  provide  for  movement  of  data  between  registers,  between  a 
register  and  a  memory  location,  and  directly  between  two  memory  locations.  The  instructions 
allow  for  data  movement,  address  movement,  register  data  exchange,  multiple  register  loading 
and  storing,  and  stack  frame  linking  and  unlinking. 

Table  3-2  lists  the  data-movement  instructions. 

A  few  things  to  note  here  about  the  data-movement  instructions:  First,  there  are  no 
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explicit  stack  push  or  pull  instructions.  This  is  in  keeping  with  the  instruction  set  uniformity. 
System  stack  operations  use  the  general  MOVE  instruction  in  combination  with  register  A7 
(the  stack  pointer). 

Second,  there  are  no  block  movement  instructions.  On  other  processors,  such  instructions 
tell  the  CPU  to  move  a  certain  number  of  bytes  (or  words  or  long  words)  starting  at  some 
address  to  a  block  of  memory  starting  at  another  address.  Again,  in  keeping  with  uniformity, 

the  processor  allows  block  movement  through  a  combination  of  simple  movement  instruc- 
tions, addressing  modes,  and  loop  instructions.  We  will  discuss  such  looping  in  detail  in 

Chapter  5. 
Finally,  the  word  move  is  somewhat  of  a  misnomer  here.  The  processor  actually  copies  the 

data  from  one  place  to  another.  After  the  operation,  the  data  resides  in  two  places,  the  source 
and  the  destination.  However,  in  keeping  with  convention,  we  will  use  the  term  move. 

The  MC68000  processors  provide  for  the  basic  four  integer  arithmetic  functions  of  add, 
subtract,  multiply,  and  divide.  Also  provided  for  are  aids  useful  in  arithmetic  operations  for 
comparing  two  integers,  zeroing  an  integer,  negating  an  integer,  and  performing  multiprecision 
arithmetic. 

Table  3-3  summarizes  the  integer-arithmetic  instructions. 

The  MC68000  processors  allow  for  the  Boolean  (logical)  operations  of  AND,  OR, 
Exclusive  OR,  and  NOT.  Boolean  arithmetic  treats  its  operands  on  a  true/ false  (or  on/ off) 

basis,  in  much  the  same  way  that  the  computer's  internal  circuitry  does.  These  instructions  are 
useful  for  creating  and  manipulating  masks,  testing  status  words,  and  setting  bit  patterns  for 
graphics  applications. 

Table  3-4  summarizes  the  Boolean  operations. 

INTEGER  ARITHMETIC 

BOOLEAN  ARITHMETIC 

Table  3-2.  Data  Movement  Instructions 

Mnemonic 
Operation 

EXG 

LEA 
LINK 
MOVE 
MOVE  A 
MOVEC 
MOVEM 
MOVEP 
MOVEQ 
MOVES 
PEA 
UNLK 

Exchange  registers 
Load  effective  address 
Link  and  allocate  stack 
Move  source  to  destination 
Move  source  to  address  register 
Move  control  register 
Move  multiple  registers 
Move  to  peripheral 
Move  short  data  to  destination 
Move  address  space 
Push  effective  address 
Unlink  stack 
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Table  3-3.  Integer  Arithmetic  Instructions 

Mnemonic 
Operation 

ADD Add  source  to  destination 
ADDA Add  source  to  address  register 
ADDI Add  immediate  data  to  destination 
Anno muu  biiun  udid  to  Ucoiindiion 
ADDX Add  with  extend  bit  to  destination 

CLR Clear  operand 
CMP Compare  source  to  destination 
CMPA C^r~\ m naro  c^i  irro  tr\  aHHrocc  ronictor uum  ipai  c  ouui  Lc  iu  duuicsb  i  cy  isici 
CMPI Compare  immediate  data  to  destination 
CMPM Compare  memory 

CMP2* 

Compare  register  to  upper/lower  bounds 
DIVS 

Signed  divide 
DIVU Unsigned  divide 

DIVSL* 
Long  signed  divide 

DIVUL* 
Long  unsigned  divide 

EXT Sign  extend 
EXTB Sign  extend  byte 

MULS Signed  multiply 
MULU Unsigned  multiply 
NEG 

Negate 
NEGX Negate  with  extend 

SUB Subtract  source  from  destination 
SUBA Subtract  source  from  address  register 
SUBI Subtract  immediate  from  destination 
SUBQ Subtract  short  from  destination 
SUBX Subtract  with  extend  bit  from  destination 

*68020  only 

SHIFT  AND  ROTATE 

The  MC68000  processors  permit  you  to  shift  and  rotate  the  bits  of  an  integer.  Like 
Boolean  operations,  Shift  and  Rotate  instructions  are  helpful  in  creating  and  evaluating 
masks.  Shifts  are  also  a  handy  means  of  performing  simple  multiplication  and  division.  While 
the  MC68000  has  multiplication  and  division  instructions,  the  Shift  instruction  operates  much 
faster  than  these  instruction  types. 

Table  3-5  summarizes  the  Shift  and  Rotate  instructions. 

INDIVIDUAL  BIT  MANIPULATION 

The  MC68000  permits  you  to  test,  clear,  set,  and  logically  NOT  an  individual  bit  of  an 
operand.  Such  operations  are  useful  when  you  need  to  manipulate  bit  flags;  a  single  word  can 
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Table  3-4.  Boolean  Instructions 

Mnemonic Operation 

AMR AND AND  source  to  destination 
ANDI AND  immediate  data  to  destination 
EOR Exclusive  OR  source  to  destination 
FORI Exclusive  OR  immediate  data  to  destination 
NOT NOT  destination 

OR OR  source  to  destination 

ORI OR  immediate  data  to  destination Sec 

Test  condition  codes  and  set  operand 
TST Test  operand  and  set  condition  codes 

Table  3-5.  Shift  and  Rotate  Instructions 

Mnemonic 
Operation 

ASL Arithmetic  shift  left 
ASR Arithmetic  shift  right 
LSL Logical  shift  left 
LSR Logical  shift  right 
ROL Rotate  left 
ROR Rotate  right 
ROXL Rotate  left  with  extend  bit 
ROXR Rotate  right  with  extend  bit 
SWAP Swap  words  of  a  long  word 

contain  several  true/ false  flags. 

Table  3-6  summarizes  the  individual  bit-manipulation  instructions. 

BIT  FIELD  MANIPULATION 

Besides  allowing  you  to  manipulate  individual  bits,  the  MC68020  processor  lets  you 

manipulate  strings  of  consecutive  bits,  called  "fields."  These  fields  may  be  up  to  32  bits  in 
length.  Using  them  allows  you  to  compress  your  data  into  the  minimum  storage  space  needed 
for  a  given  variable.  To  reach  the  bit  field,  you  specify  any  of  the  MC68000  addressing  modes. 

In  addition,  you  must  suffix  the  addressing  mode  with  the  start  bit  and  the  number  of  bits  in  the 
field. 

Table  3-7  summarizes  the  bit  field  manipulation  instructions. 
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Table  3-6.  Bit  Manipulation  Instructions 

Mnemonic Operation 

BCHG Change  bit 
BCLR Clear  bit 
BSET Set  bit 
BTST Test  bit 

Table  3-7.  Bit  Field  Instructions 

Mnemonic 
Operation 

BFCHG* 
Change  bit  field 

BFCLR* 

Clear  bit  field 

BFEXTS* 
Extract  and  sign  extend  bit  field 

BFEXTU* 
Extract  and  zero  extend  bit  field 

BFFFO* 

Find  first  set  bit  in  bit  field 

BFINS* 

Insert  bit  field 

BFSET* 
Set  bit  field 

BFTST* 

Test  bit  field 

*68020  only 

BINARY-CODED  DECIMAL 

The  MC68000  processors  allow  you  to  perform  addition  and  subtraction  on  binary-coded 
decimal,  or  BCD,  numbers,  so  they  provide  a  simple  means  of  manipulating  numbers  without 

first  converting  these  numbers  to  binary.  Binary-coded  decimal  notation  is  a  form  of  internal 
coding  in  which  decimal  numbers  (0-9)  are  stored  as  separate  digits  (as  with  ASCII  coding), 
but  the  numbers  are  in  4-bit  binary  format.  For  example, 

1234  (10)  =  0001  0010  0011  0100  (BCD) 

PROGRAM  FLOW  CONTROL 

For  a  program  to  be  of  much  use,  it  must  be  able  to  test  conditions  and  skip  instructions 
based  on  results  of  the  test.  It  must  also  be  able  to  make  calls  to  subroutines  and  return  from 

those  subroutines.  The  MC68000  processors  allow  for  several  conditional  and  unconditional 
branches  and  subroutine  calls,  as  shown  in  Table  3-9. 
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Table  3-8.  Binary-Coded  Decimal  Instructions 

Mnemonic O  Deration 

ABCD Add  source  to  destination 
NBCD Negate  destination 

PACK* 

Pack  source  to  destination 
SBCD Subtract  source  from  destination 

UNPK* 
Unpack  source  to  destination 

*68020  only 

SYSTEM  CONTROL 

In  some  instances,  a  user  mode  program  needs  to  gain  access  to  the  supervisor  mode.  To 
do  this,  it  may  execute  certain  instructions  that  change  the  state  of  the  supervisor  bit  (in  the 
status  word)  and  branch  through  the  vector  table  to  a  special  handler  (usually  in  the  operating 
system).  The  supervisor  mode  program  must  then  be  able  to  change  back  to  user  mode  upon 

completion  of  the  user  mode  program's  request.  Table  3-10  summarizes  the  instructions  that 
affect  the  supervisor  bit. 

Table  3-9.  Program  Flow  Instructions 

Mnemonic 
Operation 

BCc 

Branch  conditionally 
BRA Branch  unconditionally 
BSR Branch  to  subroutine 

CALLM* 
Call  module DBCC 
Test,  decrement,  and  branch 

JMP Jump  to  address 
JSR Jump  to  subroutine 
NOP No  operation 

RTD** 

Return  and  deallocate  stack 
RTE+ Return  from  exception 

RTM* 

Return  from  module 
RTR Return  and  restore  condition  codes 
RTS Return  from  subroutine 

+  privileged  instruction 

*68020  only 
**68010-68020  only 
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Table  3-10.  System  Control  Instructions 

Mnemonic 
Operation 

ANDI AND  immediate  to  status  register/condition 
code  register 

BKPT Breakpoint  trap 

CHK Trap  on  upper  out-of-bounds  operand 

CHK2* 
Trap  on  out-of-bounds  operand 

EORI Exclusive  OR  immediate  to  status 
ILLEGAL Illegal  instruction  trap 
MOVE Move  to/from  status  register/condition  code 

register 
MOVFr-f- iviuv i fV/lowo   ir\/irr\tx\   n  nr^t  rr\  I  ronictor iviuvt  iu/  nuni  lui in ui  rt?yibifc?r 
MOVES+ Move  to/from  address  space 
RESET+ Assert  RESET  line 
STOP+ Stop  processor 
TRAP Trap  unconditionally 

TRAPCc* 
Trap  on  condition 

TRAPV Trap  on  overflow 

+  privileged  instruction 
*68020  only 

MULTIPROCESSOR/COPROCESSOR 

COMMUNICATIONS 

A  MC68000-based  computer  system  may  consist  of  more  than  one  processor.  Systems  of 

this  sort  are  called  "multiprocessor  systems."  In  order  to  prevent  one  processor  from  accessing 
a  memory  location  at  the  same  time  as  another  processor,  certain  instructions  use  a  read- 
modify-write  cycle,  which  gives  a  processor  sole  use  of  the  system  bus  for  the  duration  of  its 
execution. 

In  addition  to  its  multiprocessor  capabilities,  the  MC68020  also  permits  a  system  to 

include  coprocessors.  From  the  user's  point  of  view,  these  coprocessors  appear  to  be  integral  to 
the  CPU.  Motorola  currently  supports  two  coprocessors:  the  MC68881,  a  high-precision, 
floating-point  unit,  and  the  MC68851,  a  memory  management  unit. 

Table  3-ll  lists  the  multiprocessor/coprocessor  instructions. 

ADDRESSING  MODES 

As  we  have  stated  in  previous  sections,  associated  with  nearly  every  instruction  is  one  or 
more  operand(s).  An  operand  may  reside  in  one  of  two  places:  internal  to  the  CPU  (in  a 
register),  or  external  to  the  CPU  (in  memory).  The  addressing  mode  determines  how  the  CPU 

will  compute  the  "effective  address"  of  the  operand,  either  in  a  register  or  in  memory. 
In  some  addressing  modes,  the  operand  is  part  of  the  instruction  itself.  In  other  addressing 
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Table  3-11 .  Multitask/  Multiprocessor  Instructions 

Mnemonic 
Operation 

LAo Compare  and  swap  with  operand 

CAS2* 
Compare  and  swap  with  operands 

cpBcc* 
Branch  on  coprocessor  condition 

cpDBcc* 
Test  coprocessor,  decrement,  and  branch 

cpGEN* 
General  coprocessor  instruction 

cpRESTORE* 
Restore  coprocessor  state 

cpSAVE* 
Save  coprocessor  state 

CpScc* 
Test  coprocessor  condition 

cpTRAPcc* 
Trap  on  coprocessor  condition 

TAS Test  and  set  operand 

*  68020  only 

modes,  the  effective  address  is  a  sum  of  several  registers  and  displacement  values  determined 
by  the  operand  field  portion  of  the  instruction.  Some  of  the  addressing  modes  are  difficult  to 
understand;  we  will  explain  why  these  more  complex  modes  are  useful  and  describe  typical 

examples  from  real  applications.  You  should  try  to  trace  these  examples,  since  an  understand- 
ing of  the  use  of  the  various  addressing  modes  is  essential  to  writing  good  programs. 
In  our  discussion  of  addressing  modes,  we  will  use  the  MOVE  instruction  exclusively  to 

show  how  the  CPU  evaluates  an  effective  address.  The  MOVE  instruction  simply  moves  a 
value  from  a  source  address  to  a  destination  address,  where  the  first  operand  specifies  the 
source  and  the  second  operand  specifies  the  destination.  We  will  use  the  dollar  sign 

("$")  to  denote  hexadecimal  numbers.  Note  that  we  use  standard  Motorola  syntax  for  our 
addressing  modes.  Your  assembler  may  use  a  slightly  different  syntax. 

IMPLICIT  ADDRESSING 

Most  instructions  let  you  specify  one  or  more  operands.  A  few  instructions,  however, 
always  work  on  the  same  operand.  For  example,  the  Return  from  Subroutine  instruction 
(RTS)  always  fetches  its  operand  (the  return  address)  from  the  top  of  the  stack.  Similarly,  the 
Trap  on  Overflow  instruction  (TRAPV)  uses  the  system  stack  and  a  predefined  address  in  the 
vector  table.  Some  instructions,  such  as  RESET  and  NOP,  have  no  operands  at  all. 

Instructions  of  this  type  use  implicit  addressing,  since  the  location  of  their  operands  is 

determined  by  the  instruction  operation  codes.  Several  other  instructions  use  implicit  address- 
ing along  with  one  of  the  other  addressing  modes.  For  example,  a  branch  instruction  (BRA) 

always  affects  the  program  counter.  In  addition,  it  requires  a  second  explicit  operand  to  specify 
the  branch  address. 

DIRECT  ADDRESSING  MODES 

In  the  direct  addressing  modes,  the  assembly  instruction  explicitly  gives  the  location  of  the 
operand. 
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Data  Register  Direct 

In  this  addressing  mode,  a  data  register  contains  the  operand.  You  specify  this  mode  by 

using  the  mnemonic  Dn,  where  "D"  means  that  the  operand  is  a  data  register  and  "n"  is  a 
number  from  0  to  7  that  specifies  the  particular  data  register.  An  illustration  of  this  follows: 

Data  register: 

Assembler  syntax:  Dn 

operand 

For  example,  DO  may  contain  a  subtotal.  You  may  want  to  perform  additional  arithmetic 
on  this  subtotal  but  keep  the  original  value;  hence,  you  will  need  to  copy  the  value  to  another 
register.  If  the  data  registers  contain  the  following: 

'egister 
DO 
D3 

then  after  execution  of  the  instruction 

MOVE.L 

the  registers  will  contain 

contents 
10204FFF 
1034F88A 

D0,D3 

register DO 
D3 

contents 
10204FFF 
10204FFF 

Address  Register  Direct 

Address  register  direct  mode  is  similar  to  data  register  direct,  except  that  the  register  in  use 

is  an  address  register.  You  specify  this  mode  with  the  mnemonic  An,  where  "A"  specifies  address 
register  and  "n"  is  a  number  from  0  through  7,  giving  the  register  number.  An  illustration  of  this 
follows: 

Address  register: 

Assembler  syntax:  An 
operand 

For  example,  AO  may  contain  the  base  address  of  some  table  in  memory.  You  may  need  to 
copy  this  address  to  another  address  register.  If  the  address  registers  contain  the  following: 

register  contents 
AO  00200000 
A3  0004F88A 

then  after  execution  of  the  instruction 

MOVE.L A3,A0 

the  registers  will  contain 

register AO 
A3 

contents 
00200000 
00200000 
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Immediate 

In  immediate  addressing,  the  operand  is  part  of  the  instruction;  the  data  follows  the 
operation  code  in  memory.  In  assembler  code,  you  specify  this  addressing  mode  by  preceding 
the  operand  with  the  "#"  character;  for  example,  #123.  Optionally,  you  may  follow  the  operand 
with  a  length  descriptor  of  .B,  .W,  or  .L.  If  you  omit  this  suffix,  the  assembler  will  pick  a  size 
based  on  the  value  magnitude.  An  illustration  of  this  mode  follows: 

Extension  word(s). 
operand 

Assembler  syntax:  #xxxx.size 

Many  times  in  a  program  you  must  load  a  register  with  a  constant  value.  If  the  registers 
look  like  this 

then  the  instruction 

results  in 

register DO 

MOVE.L 

contents 
012309FF 

#$1FFFF,D0 

register DO contents 
0001 FFFF 

Good  programming  practice  dictates  that  the  constant  value  be  named.  For  example,  if 
the  value  in  the  example  was  actually  a  bit  mask  for  an  operation,  we  might  define  a  constant 

"STATU S__  MASK"  and  give  it  the  value  S1FFFF.  Then,  our  instruction  might  read 

MOVE.L       tfSTATUS  — MASK,  DO 

Absolute  Addressing 

In  this  addressing  mode,  the  address  of  the  operand  follows  the  instruction  word.  The 
address  may  be  16  or  32  bits  long.  If  it  is  only  16  bits  long,  then  the  CPU  sign  extends  the  value 
before  using  it.  The  assembler  syntax  for  this  mode  is  the  address  value  followed  optionally  by 
.L  or  .W.  The  assembler,  if  it  knows  the  value  of  the  address,  can  decide  whether  the  address 

should  be  16  or  32  bits  long.  An  illustration  of  this  mode  follows: 

Extension  word: 

Memory: 

sign-extended  memory  address 

operand 
points  to 

Assembler  syntax:    xxxx  W 

Usually  you  will  write  programs  so  that  they  are  "position-independent."  This  means  that 
you  must  treat  addresses  as  relative  to  some  other  value  (see  the  address  register  and  program 
counter  indirect  modes).  However,  there  are  times  that  you  may  need  to  access  a  location  by  its 
exact  value.  For  example,  a  device  driver  may  be  loaded  anywhere  in  memory;  however,  it  must 
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access  a  port  (located  at  a  fixed  address  in  memory)  that  it  knows  only  by  its  physical  location. 

A  second  example  is  the  operating  system's  manipulation  of  the  vector  table.  This  table  has  a 
specific  location  in  memory,  and  hence  must  be  accessed  by  its  physical  location. 

If  memory  looks  like 

address  contents 
00000008  00 
00000009  .  00 
0000000A  00 
0000000B  00 

then  the  instruction 

MOVE.L  #$10030,8 

uses  an  effective  destination  address  of  00000008  and  results  in 

address  contents 
00000008  00 
00000009  01 
0000000A  00 
OOOOOOOB  30 

Again,  good  programming  practice  dictates  that  you  use  named  values  instead  of  literal 
numbers,  so  your  instruction  may  read 

MOVE.L       #BUS_ERROR_ROUTINE,  BUS_ERROR_VECTOR 

REGISTER  INDIRECT  ADDRESSING  MODES 

In  register  indirect  addressing,  the  operand  is  pointed  to  by  an  address  register  or  the 
program  counter.  In  some  modes,  the  CPU  includes  additional  offsets  or  indexes  to  calculate 
the  operand  in  memory. 

Address  Register  Indirect 

In  this  addressing  mode,  the  operand  is  located  in  memory;  an  address  register  contains 
the  operand  address.  To  specify  this  addressing  mode,  you  enclose  the  address  register  in 
parentheses;  for  example,  (A3).  An  illustration  of  this  mode  follows: 

Address  register: 

Memory: 

Assemble  syntax:  An 

memory  address 

operand 
points  to 

For  example,  A3  may  contain  the  address  of  a  database  record  where  you  want  to  move  a 
value  from  DO.  If  the  registers  and  memory  are 

register                contents                   memory  contents 
AO                 00001000                00001000  AO 
DO                  1043834F                00001001  02 

00001 002  3F 
00001 003  00 



MC68000  Machine  Architecture  41 

after  execution  of  the  instruction 

MOVE.L  DO,(AO) 

the  effective  address  for  the  destination  is  $1000  and  the  registers  and  memory  will  contain 

register  contents  memory  contents 
AO  00001000  00001000  10 
DO  1043834F  00001001  43 

00001002  83 
00001003  4F 

Address  Register  Indirect 

With  Predecrement 

In  this  addressing  mode,  as  in  simple  address  register  indirect,  an  address  register  contains 
an  address  in  memory.  However,  before  determining  the  address  of  the  operand,  the  CPU 
subtracts  a  value  from  the  address  register,  leaving  the  actual  address  in  memory.  The  value 
subtracted  depends  on  the  size  of  the  operation:  1  for  a  byte  operation,  2  for  a  word  operation, 

and  4  for  a  long-word  operation. 
After  the  subtraction,  the  CPU  stores  the  new  value  into  the  address  register  and  uses  its 

new  value  as  the  effective  address  of  the  operand.  In  an  assembler  statement,  this  mode  is 

specified  by  preceding  the  parenthesized  address  register  with  a  minus  sign,  as  in  —  (A5).  An 
illustration  of  this  mode  follows: 

Address  register: 

Operand  size  (1,  2,  or  4): 

Memory: 

Assembler  syntax:  -(An) 

memory  address 

operand points  to 

This  mode  is  most  commonly  used  to  implement  a  push  onto  a  memory  stack.  If  registers 
and  memory  are 

register 
A7 
DO 

contents 
00001002 
00000143 

memory 

00001000 
00001001 
00001002 
00001003 

contents 10 
12 

83 
4F 

then  the  operation 

MOVE.W  D0,-(A7) 

uses  an  effective  address  of  $1000  for  the  destination  and  leaves  the  registers  and  memory  as 

register 
A7 
DO 

contents 
00001000 
00000143 

memory 

00001000 
00001001 
00001002 
00001003 

contents 

01 

43 

83 

4F 
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Address  Register  Indirect 
With  Postincrement 

In  this  addressing  mode,  as  in  the  predecrement  mode,  an  address  register  contains  an 
address  in  memory,  and  the  CPU  modifies  the  address  register  according  to  the  size  of  the 
operation.  However,  in  this  case,  the  CPU  uses  the  value  currently  in  the  address  register  as  the 
effective  address  of  the  operand.  After  storing  this  value  internally,  the  CPU  adds  the  operation 
size  to  the  address  register.  The  assembler  syntax  for  this  mode  is  the  parenthesized  address 
register  followed  by  a  plus  sign,  as  in  (A5)+.  An  illustration  of  this  mode  follows: 

Address  register: 

Operand  size  (1,  2,  or  4): 

Memory: 

Assembler  syntax:  (An)+ 

memory  address 

operand 

points  to 

This  mode  is  commonly  used  to  move  through  a  table  or  string  of  data.  It  is  also  used  to 

implement  a  pull  (also  called  a  "pop")  of  data  from  a  memory  stack.  If  the  registers  and 
memory  are 

register 
A7 DO 

contents 
00001000 
0000FFFF 

memory 

00001000 
00001001 
00001002 
00001003 

contents 10 12 

83 
4F 

then  the  operation 

MOVE.W  (A7)  +  ,D0 

uses  an  effective  address  of  $  1000  for  the  source  operand  and  leaves  the  registers  and  memory  as 

register 
A7 
DO 

contents 
00001002 
00000143 

memory 

00001000 
00001001 
00001002 
00001003 

contents 

01 

43 

83 4F 

The  system  does  not  allow  a  program  to  push  or  pull  a  single  byte  from  the  system  stack 
(A7).  If  you  attempt  to  do  so,  the  CPU  will  automatically  increment  or  decrement  the  stack 
pointer  by  2  instead  of  1.  Since  the  CPU  uses  the  system  stack  to  store  the  program  counter 

during  subroutine  calls,  this  ensures  that  the  stack  is  always  aligned  on  an  even-address 
boundary  (remember  that  word  and  long-word  access  to  odd  addresses  is  prohibited  on  the 
MC68000-MC68012  and  is  inefficient  on  the  MC68020).  User-defined  stacks  (using  A0-A6) 
allow  byte-sized  operations. 

Address  Register  Indirect 

With  Displacement 

In  this  addressing  mode,  the  effective  address  of  the  operand  is  the  sum  of  a  fixed  16-bit 

signed  "displacement"  and  the  contents  of  an  address  register.  Before  the  CPU  adds  the 
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displacement  to  the  value  from  the  address  register,  it  "sign  extends"  the  displacement;  that  is, 
it  replicates  the  value  in  bit  15  into  bits  16  through  31 .  This  allows  a  program  to  have  both  positive 
and  negative  displacements. 

Like  the  other  register  indirect  modes,  the  assembler  syntax  for  this  mode  uses  the  address 
register  enclosed  in  parentheses.  The  displacement  value  precedes  the  address  register;  for 
example,  10(A1).  The  value  of  the  displacement  is  a  constant,  while  the  value  of  the  address 
may  vary  during  program  execution.  An  illustration  of  the  calculation  of  the  effective  address 
for  this  mode  follows: 

Address  register: 

16-bit  displacement: 

Memory: 

Assembler  syntax:    (die,  An) 

memory  address 

sign-extended  displacement 

operand points  to 

This  addressing  mode  is  particularly  useful  for  accessing  an  entry  in  a  record-data 
structure.  For  example,  a  vehicle-information  record  may  consist  of  a  license  number,  year, 
color  code,  and  serial  number.  To  access  a  particular  field  in  the  record,  you  first  load  an 
address  register  so  that  it  points  to  the  start  of  the  record.  Now,  if  you  know  that  year  entry  is 
word  value  offset  $6  bytes  from  the  start  of  the  address,  you  can  use  address  register  indirect 
with  displacement  to  access  this  field.  If  the  registers  and  memory  look  like 

register contents 
memory 

contents 
AO 00001020 00001020 

31 

DO 00000000 00001021 
34 00001022 35 

00001023 

31 
00001024 4A 
00001025 

4C 

00001026 
07 00001027 BF 

then  the  instruction 

MOVE.W  $6(A0),D0 

uses  an  effective  address  of  $1026  for  the  source  and  leaves  memory  and  the  registers  as 

register  contents  memory  contents 
AO  00001020  00001020  31 
DO  000007BF  00001021  34 

00001022  35 
00001023  31 
00001024  4A 
00001025  4C 
00001026  07 
00001027  BF 

You  seldom  use  numeric  constants  for  the  displacement;  rather,  you  use  symbolic  con- 
stants defined  through  equate  statements.  In  the  preceding  example,  you  could  have  defined  a 

constant  called  "YE  AR"  and  given  it  the  value  $6.  Then,  your  assembler  statement  would  have 
read 

MOVE.W  YEAR(A0),D0 

This  substitution  makes  for  code  that  is  descriptive  and  easy  to  modify.  It  makes 
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absolutely  no  difference  in  the  machine  code  produced. 

Address  Register  Indirect  With  Index  and  Displacement 

In  this  addressing  mode,  the  effective  address  is  the  sum  of  the  value  in  the  address  register, 
a  second  index  register,  and  a  signed  displacement.  The  index  register  may  be  any  of  the  data 
registers  or  address  registers.  The  CPU  may  use  either  16  or  32  bits  of  the  index  register.  If  only 
16  bits  are  used,  the  CPU  sign  extends  the  value  before  adding  it  to  the  value  from  the  address 

register.  The  displacement  may  be  either  16  or  32  bits;  again,  the  CPU  sign  extends  any  16-bit 
value. 

Indexing  provides  an  additional  degree  of  variation  in  indirect  addressing.  This  mode  is 

often  used  for  complex  data  structures.  A  two-dimensional  array  can  be  described  quite  well 
with  this  mode;  the  address  register  may  define  the  address  of  start  of  the  first  subscript;  the 
index  register  may  then  define  the  offset  needed  to  reach  the  entry  (that  is,  the  second 
subscript). 

In  the  assembler  syntax  for  this  mode,  the  address  register  and  index  register  are  enclosed 
within  parentheses;  the  address  register  is  specified  first,  followed  by  a  comma,  and  then  by  the 
index  register  specification.  To  specify  the  size  of  the  value  in  the  index  register,  you  follow  its 
name  with  .W  or  .L.  The  displacement  precedes  the  parenthetical  expression.  For  example,  in 
the  expression  20(A3,A6.L),  20  is  the  displacement,  A3  is  the  address  register,  and  A6  is  the 
index  register,  while  .L  tells  the  CPU  to  use  all  32  bits  of  A6. 

The  MC68020  processor  adds  further  capabilities  to  this  addressing  mode.  With  this 

processor,  you  may  specify  8-bit  displacements  as  well  as  16-  and  32-bit  displacements.  In 

addition,  the  MC68020  allows  you  to  "scale"  the  value  in  the  index  register.  Scaling  tells  the 
processor  to  multiply  the  value  in  the  index  register  by  1,2,  4,  or  8  before  adding  it  to  the 

effective  address.  If  you  have  a  two-dimensional  array,  scaling  lets  you  use  true  subscripts  in 
your  index  register.  For  example,  if  the  array  contains  word  entries,  you  might  scale  by  2;  if  it 

contains  long-word  entries,  you  would  set  the  scale  to  4. 
The  syntax  for  this  advanced  form  of  indexing  is  similar  to  that  on  the  other  MC68000 

processors.  To  specify  the  scale  of  the  index  register,  you  follow  it  with  an  asterisk  and  the  scale; 
for  example,  10(A0,A3.L*4).  The  calculation  of  the  effective  address  is 

Address  register: memory  address 

8-bit  displacement: sign-extended  displacement 

Index  register sign-extended  index 

Scale  (68020  only— 1,  2,  4,  or  8) 
scale 

points  to Memory: operand 

Assembler  syntax: 
68020: 

(d8,An,  Xn.size) 

(d8,An,  Xn.size*scale) 
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If  you  have  defined  a  two-dimensional  table  starting  at  address  1000,  which  was  four  rows 

(0-3)  by  five  columns  (0-4)  and  contained  byte  values,  then  to  access  the  element  at  (2,2),  you 
would  load  an  address  register  with  $A  (row  number  2,  times  the  number  of  columns  per  row, 
5)  and  an  index  register  with  the  column  number,  12.  If  the  registers  and  memory  look  like 

register  contents  memory  contents 
AO  OOOOOOOA  00001 OOA  C3 
DO  00000002  00001 00B  A4 
D1  00000000  00001 00C  25 

then  the  instruction 

MOVE.B  $1000(A0,D0),D1 

uses  an  effective  source  address  of  S100C  ($1000  +  $A  +  $2)  and  leaves  the  registers  and 
memory  as 

register  contents  memory  contents 
AO  OOOOOOOA  00001 OOA  C3 
DO  00000002  00000002  A4 
D1  00000025  00000025  25 

If  you  were  using  the  MC68020,  and  the  table  contained  long  words  rather  than  bytes,  then 
to  access  the  element  at  (2,3),  you  would  load  the  address  register  with  $28  (row  2  times  5 
columns  per  row  times  4  bytes  per  entry)  and  an  index  register  with  the  column  number  (3).  If 
memory  and  the  registers  look  like 

register               contents                   memory  contents 
AO                  00000028                00001034  C3 
A3                  00000003                00001035  A4 
D1                   FFFFFFFE                00001036  25 

00001037  30 

then  the  instruction 

MOVE.L  D1,$1000(A0,A3.L*4) 

will  result  in  an  effective  destination  address  of  $1034  ($28  +  3*4)  and  yield 

register  contents  memory  contents 
AO  00000028  00001034  FF 
A3  00000003  00001035  FF 
D1  FFFFFFFE  00001036  FF 

00001037  FE 

Program  Counter  Indirect 

With  Displacement 

This  addressing  mode  functions  identically  to  address  register  indirect  with  displacement, 

except  that  the  effective  address  is  a  displacement  from  the  current  contents  of  the  program 

counter  instead  of  an  address  register.  The  PC  value  used  is  the  address  of  the  operand  word 

portion  of  the  instruction.  The  displacement  in  this  mode  is  a  16-bit  signed  value.  To  signify  this 

mode,  you  enclose  the  displacement  and  the  PC  mnemonic  in  parentheses,  for  example,  10(PC). 
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The  calculation  of  the  effective  address  is 

Program  counter: 

16-bit  displacement: 

Memory: 

Assembler  syntax: 

address  of  extension  word 

sign-extended  displacement 

operand 

(die,  PC) 

points  to 

If  the  registers  and  memory  look  like 

register PC 
DO 

then  the  instruction 

contents 
00001020 
00000000 

MOVE.B 

memory 

00001000 
00001001 

(-$22,PC),D0 

uses  an  effective  address  of  $1000  ($1022  H — $22),  which  results  in 

contents 
05 

43 

register PC 
DO 

contents 
00001024 
00000005 

memory 

00001000 
00001001 

contents 
05 

43 

Usually  you  use  a  label  name  as  the  displacement;  for  example,  (HEAD, PC).  At  assembly 
time  (or  at  link  time,  depending  on  the  system),  the  system  evaluates  the  value  of  the  label  (that 

is,  its  address)  and  calculates  the  relative  displacement  from  the  instruction's  location. 

Program  Counter  Indirect  With  Index 

And  Displacement 

In  this  mode,  as  with  the  indexed/displaced  mode  using  an  address  register,  the  effective 
address  of  the  operand  is  the  sum  of  a  register  (in  this  case,  the  program  counter),  the  value  of 

the  displacement,  and  the  value  in  the  index  register.  As  with  the  former  version,  the  displace- 
ment may  be  16  or  32  bits  long  (or,  on  the  MC68020,  8  bits  long),  and  the  index  register  may  be 

a  data  or  address  register  whose  value  is  16  or  32  bits  long  (and  may  be  scaled  on  the  MC68020). 
To  signify  this  mode,  you  enclose  the  mnemonic  PC  and  the  index  register  name  in 

parentheses  and  precede  this  expression  with  the  displacement  value;  for  example,  ( 10, PC, DO). 
The  calculation  of  the  effective  address  is 

Program  counter: 

8-,  16-,  or  32-bit  displacement 

Index  register: 

address  of  extension  word 

sign-extended  displacement 

sign-extended  index 

Scale  (68020  only— 1,  2,  4,  or  8) 

Memory: 

scale 

operand 

nts  to 

Assembler  syntax:    (dn,  PC,  Xn.size) 
68020:  (dn,  PC,  Xn.size*scale) 
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This  mode  is  useful  for  accessing  an  array  of  data  using  position-independent  code.  For 

example,  if  you  have  a  table  of  bytes,  labeled  "TABLE,"  which  starts  at  address  $1000,  then  if 
the  registers  and  memory  look  like 

register  contents  memory  contents 
PC  00001024  00001000  05 
DO  00000002  00001001  43 
D1  00000000  00001002  FF 

00001003  FC 

then  the  instruction 

MOVE.B         (TABLE, PC, DO),  D1 

uses  an  effective  address  of  $1002  ($1026  -  $26  +  $2)  and  results  in 

register  contents  memory  contents 
PC  00001028  00001000  05 
DO  00000002  00001001  43 
D1  000000FF  00001002  FF 

00001003  FC 

MEMORY  INDIRECT  MODES 

In  the  memory  indirect  addressing  modes,  the  processor  must  evaluate  two  effective 
addresses  before  coming  up  with  the  operand.  Unlike  the  register  indirect  modes,  where  a 
register  points  to  the  operand,  in  this  mode  a  location  in  memory  points  to  the  operand.  The 
memory  indirect  modes  are  available  only  on  the  MC68020  processor. 

Memory  Indirect  Postindexed 

In  this  mode,  the  CPU  must  use  five  values  in  order  to  come  up  with  the  effective  address 

of  the  operand:  the  contents  of  an  address  register,  a  16-  or  32-bit  base  displacement,  the  value 
in  an  intermediate  memory  location,  the  scaled  value  from  an  index  register,  and  a  second  16-  or 
32-bit  outer  displacement. 

Both  displacement  values,  as  well  as  the  index  register,  are  sign  extended  if  necessary.  The 
address  register,  displacements,  and  index  register  are  all  optional;  you  may  use  any  or  all  of 

them  to  specify  your  operand.  The  assembler  syntax  for  this  mode  encloses  the  base  displace- 
ment and  address  register  in  square  brackets,  followed  by  the  index  register  and  scale,  followed 

by  the  outer  displacement,  with  the  whole  expression  enclosed  in  parentheses;  for  example, 
([$10,A0],D0.L*4,$20).  If  you  want  to  omit  one  of  the  entries,  leave  it  blank;  for  example, 
([,A0],D1*4,)  leaves  both  of  the  displacements  out  of  the  calculation. 

The  calculation  of  the  effective  address  is  as  follows. 
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Address  register: 

16-  or  32-bit  base  displacement: 

Memory: 

memory  address 

sign-extended  displacement 

memory  address points  to 

1 

Index  register: 

Scale  (1,  2,  4  or  8): 

16-  or  32-bit  outer  displacement 

Memory: 

sign-extended  index 

scale 

value  at  indirect 
memory  address 

sign-extended  displacement 

operand 
points  to 

Assembler  syntax:  ([bd,An],  Xn.size*scale,  od) 

Typically,  you  won't  use  all  of  the  potential  fields  in  the  effective  address  calculation. 
However,  for  the  sake  of  demonstration,  if  the  registers  and  memory  look  like 

register AO 
DO 

D1 

then  the  instruction 

contents 
00001000 
00000002 
0000FFCC 

MOVE.W 

memory 

00001010 
00001011 
00001012 
00001013 
0000200A 
0000200B 

([$10,A0],D0*2,$6),  D1 

contents 
00 
00 20 

00 
FF 
CC 

uses  an  effective  address  of  $200 A  ($  10  +  $  1000  gives  the  intermediate  address  of  $  1010.  This 
address  contains  the  value  $2000  to  which  the  outer  displacement  of  $6  and  the  scaled  index 
value  of  2*2  are  added.)  This  results  in 

register AO 
DO 
D1 

contents 
00001000 
00000002 
0000FFCC 

memory 

00001010 
0000101 1 
00001012 
00001013 
0000200A 
0000200B 

contents 
00 
00 20 

00 
FF 
CC 

You  will  normally  use  named  values  for  the  displacements. 

Memory  Indirect  Preindexed 

This  mode  uses  the  same  values  in  determining  the  effective  address  of  the  operand  as  does 

the  postindexed  version.  The  difference  between  the  two  modes  is  in  the  order  of  the  evalua- 
tion. The  postindexed  version  added  the  scaled  index  value  to  the  value  at  the  intermediate 

address;  the  preindexed  version  uses  the  scaled  index  value  as  part  of  the  calculation  to  get  the 
intermediate  address.  An  illustration  of  this  mode  follows. 
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Address  register: 

16-  or  32-bit  base  displacement 

Index  register: 

Scale  (1,  2,  4,  or  8) 

Memory: 

memory  address 

sign-extended  displacement 

sign-extended  index 

1 scale 

memory  address 

©
5
 

points  to 

16-  or  32-bit  outer  displacement:     sign-extended  displacement 

Memory. operand 

Assembler  syntax:    ([bd,An,Xn.size*scale],  od) 

If  the  registers  and  memory  look  like 

register AO 
DO 
D1 

then  the  instruction 

contents 
00001000 
00000002 
0000F000 

memory 

00001014 
00001015 
00001016 
00001017 
00002006 
00002007 

value  at  indirect 
memory  address 

contents 
00 00 
20 

00 
FF CC 

points  to 

MOVE.W ([$10,A0,D0*2],$6),  D1 

uses  an  effective  address  of  $2006  for  the  source  operand.  ($10  +  $1000  +  2*2  gives  $1014,  the 
address  of  the  intermediate  address.  $1014  contains  the  value  $2000,  to  which  the  outer 

displacement  of  $6  is  added.)  This  gives 

register AO 
DO 
D1 

contents 
00001000 
00000002 
OOOOFFCC 

memory 

00001014 
00001015 
00001016 
00001017 
00002006 
00002007 

contents 
00 
00 
20 
00 
FF 
CC 

Program  Counter  Memory  Indirect 

With  Postindex 

In  this  addressing  mode,  like  the  other  memory  indirect  modes,  the  CPU  uses  an 
intermediate  memory  location  to  determine  the  actual  address  of  the  operand.  In  this  case, 
however,  rather  than  using  an  address  register,  the  CPU  uses  the  current  value  of  the  PC  (when 
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it  is  pointing  to  the  extension  word  following  the  op-code  word).  The  assembler  syntax  is 
similar,  with  substitution  of  the  program  counter  mnemonic  for  the  address  register  name;  for 
example,  ([$10,PC],D0*2,$20).  The  calculation  of  the  effective  address  is 

Program  counter: 

16-  or  32-bit  base  displacement: 

Memory: 

address  of  extension  word 

sign-extended  displacement 

memory  address 
points  to 

Index  register: 

Scale  (1,  2,  4,  or  8): 

16-  or  32-bit  outer  displacement 

Memory: 

sign-extended  index 

le  ♦(*>■ 

value  at  indirect 
memory  address 

sign-extended  displacement 

operand 
points  to 

Assembler  syntax:    ([bd,  PC],Xn.size*scale,od) 

If  you  have  a  table  of  pointers  labeled  PTRS  that  begins  at  $1000,  and  if  the  registers  and 
memory  look  like 

register PC 
DO 
D1 

then  the  instruction 

contents 
00001020 
00000002 
00000000 

memory 

00001000 
00001001 
00001002 
00001003 
00002012 

contents 
00 
00 
20 
00 

FF 

MOVE.B       ([PTRS,PC],D0»1,$10),  D1 

affects  address  $2012.  ($  1022  +  -$22  gives  the  intermediate  address  $  1000.  $  1000  contains  the 
value  $2000,  to  which  the  CPU  adds  the  index  register  value  of  $2  and  the  outer  displacement 
value  of  $10.).  This  yields 

register PC 
DO 
D1 

contents 
00001028 
00000002 
000000FF 

memory 

00001000 
00001001 
00001002 
00001003 
00002010 

contents 
00 
00 
20 
00 

FF 

Program  Counter  Memory  Indirect 
With  Preindex 

Like  the  previous  addressing  mode,  the  CPU  uses  the  value  from  an  intermediate  memory 
location  (pointed  to,  in  part,  by  the  PC)  to  reach  the  operand.  However,  instead  of  adding  the 
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index  register  to  the  intermediate  value,  in  this  mode  the  CPU  includes  the  index  register  in 
finding  the  address  of  the  intermediate  value.  The  assembler  syntax  is  similar  to  address 
register  memory  indirect;  for  example,  ([$10,PC,D0*2],$20).  The  calculation  of  the  effective 
address  is 

Program  counter: 

16-  or  32-bit  base  displacement: 

Index  register: 

Scale  (1,  2,  4,  or  8) 

Memory: 

address  of  extension  word 

sign-extended  displacement 

sign-extended  index 

scale 
1 

memory  address 

16-  or  32-bit  outer  displacement:  sign-extended  displacement 

Memory: 
operand 

w  )  points  to 

value  at  indirect 
memory  address 

points  to 

Assembler  syntax:    ([bd,  PC,  Xn.size*scale],od) 

If  you  have  a  table  of  pointers  labeled  PTRS  that  begins  at  $1000,  and  if  the  registers  and 
memory  look  like 

register                contents                   memory  contents 
PC                  00001020                00001004  00 
DO                  00000001                 00001005  00 
D1                  00000001                 00001006  20 

00001007  00 
00002010  FF 

then  the  instruction 

MOVE.B       D1,  ([PTRS,PC,D0*4],$10) 

affects  address  $2010.  ($1022  +  -$22  +  $2  gives  the  intermediate  address  of  $1002,  which 

contains  the  value  $2000.  To  this  value,  the  CPU  adds  the  outer  displacement  value  of  $10.) 
This  yields 

register                contents                   memory  contents 
PC                  00001028                00001004  00 
DO                  00000001                 00001005  00 
D1                  00000001                 00001006  20 

00001007  00 
00002010  FF 
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CONCLUSION 

Various  documentation  sources  describe  the  architecture,  instruction  set,  and  addressing 
modes  of  the  MC68000  family  from  differing  points  of  view.  For  example,  some  documentation 

separates  the  16-bit  version  of  absolute  addressing  from  the  32-bit  version,  calling  the  modes 

"absolute  short" and  "absolute  long."  Some  documentation  groups  the  absolute  short  and  long 
modes  together  with  the  immediate  mode  as  "program  counter  relative  modes."  Some  docu- 

mentation groups  the  processor  instructions  in  groups  other  than  the  way  we  grouped  them 

here  in  this  chapter;  for  example,  by  the  numeric  order  of  the  op-code. 
While  none  of  these  documentation  methods  is  better  or  worse  than  another,  each  aims  at 

a  certain  audience.  This  book  is  directed  at  the  novice  assembly  programmer.  As  you  become 

more  familiar  with  the  MC68000,  we  would  encourage  you  to  read  some  of  the  more  hardware- 
oriented  books  on  the  processors;  such  books  will  give  you  a  slightly  different  perspective  from 
the  one  put  forth  here  on  the  architecture  of  the  device. 

A  further  note:  some  of  the  addressing  modes  and  instructions  may  seem  complex. 
Fortunately,  assemblers  know  what  instructions  and  syntax  to  look  for,  and  they  can  generate 
the  correct  instruction  codes  and  addressing  details  for  you.  In  some  cases,  however,  you  may 
need  to  know  the  format  of  instructions  and  addressing  modes;  Appendix  A  describes  the 
internal  format  of  instructions  and  addressing  modes. 



II 

Introductory  Problems 

The  only  way  to  learn  assembly  language  is  to  work  with  it.  The  chapters  of  Section  1 1  con- 
tain examples  of  simple  programs  that  perform  common  programming  chores.  You  should  read 

each  example  carefully  and  try  to  execute  the  programs  on  a  MC68000-based  computer.  Work 
the  problems  at  the  end  of  each  chapter  and  run  the  resulting  programs  to  ensure  that  you 
understand  the  material. 

GENERAL  FORMAT  OF  EXAMPLES 

Each  program  example  contains  the  following  parts: 

•  A  title  that  describes  the  general  problem. 

•  A  statement  of  purpose  that  describes  the  task  that  the  program  performs  as  well  as  the 
variables  (memory)  required  to  perform  that  task. 

•  A  sample  problem  with  data  and  results. 

•  A  flowchart  (if  the  program  logic  is  complex). 

•  An  assembler  listing  of  the  program  (showing  the  source  as  well  as  the  generated 
hexadecimal  code). 

•  A  discussion  of  the  finer  points  of  the  program. 

For  ease  of  reference,  we  have  named  each  of  the  program  examples  according  to  their 
occurrence  in  the  chapter,  as  follows: 

This  is  the  Yth  program  example  in  the  chapter 

Underscore  character  is  commonly  used  in  names  where 
space  characters  (which  are  not  allowed  within 
a  name)  might  otherwise  appear 

The  program  example  appears  in  Chapter  X 

All  program  names  begin  with  these  three  characters 

By  this  convention, 

PGM_6_3, 

names  the  third  program  example  in  Chapter  6. 
This  convention  is  useful  for  our  purpose  of  clearly  naming  sample  programs.  You  might 

want  to  store  the  programs  in  disk  files  of  the  same  name.  However,  we  don't  want  to  give  you 
the  impression  that  you  should  use  such  naming  conventions  in  real-life  applications.  Clearly,  a 

Program 
Name 

PGM_X  _  Y 

53 
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name  like  COSINE  has  more  meaning  in  a  large  application  than  does  an  internally  coded 
name  like 

MOD_1  _A. 

Always  use  meaningful  names  for  your  programs  and  modules. 

NOTATION  CONVENTIONS 

Many  companies  offer  MC68000-based  systems  and  products.  Since  we  don't  know  which 
of  these  products  you  have  at  your  disposal,  we  chose  to  write  our  sample  programs  in  a  generic 
format.  We  use  only  the  simplest  of  assembler  directives,  labels,  and  radices,  so  that  you  can 
concentrate  on  learning  MC68000  assembly  language.  We  aim  our  notation  at  the  simplest  of 
systems.  If  your  system  is  more  powerful,  we  encourage  you  to  experiment  with  its  advanced 
features. 

NAMES  AND  LABELS 

All  variables,  constants,  and  labels  consist  of  one  to  eight  characters,  the  first  of  which 
must  be  an  uppercase  letter.  The  characters  that  follow  that  initial  character  may  be  uppercase 
letters,  or  numbers,  or  the  special  characters  .,  $,  or  _ .  Labels  start  in  column  1  of  the  program 
line.  Each  label  is  separated  from  the  remainder  of  the  line  by  either  a  colon  or  a  space. 

Your  system  may  permit  you  to  use  longer  names  than  we  use  and  allow  "local"  labels. 
Both  concepts  are  useful,  and  if  your  system  permits,  we  encourage  you  to  experiment  with 
them. 

MNEMONICS 

We  use  the  standard  Motorola  mnemonics  throughout  this  book.  Because  many  operators 
can  operate  on  various  sizes  of  data,  the  size  of  the  operator  is  indicated  by  a  suffix  of .  B  (byte), 
.W  (word),  or  .L  (long).  We  use  uppercase  letters  for  all  operator  mnemonics. 

COMMENTS 

Comments  may  appear  on  the  same  line  as  an  assembler  statement  or  on  lines  of  their 

own.  In-line  comments  must  follow  the  assembler  statement  and  are  separated  from  that 
statement  by  one  or  more  spaces.  For  comments  appearing  alone  on  a  line,  we  start  the  line 
with  an  asterisk  in  column  1  of  that  line. 

Your  system  may  require  you  to  use  special  characters  to  indicate  the  start  of  comments, 
such  as  a  semicolon  (;)  or  a  slash  (/).  Consult  your  assembler  manual  for  its  requirements. 
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CONSTANTS  AND  RADICES 

Differing  circumstances  often  call  for  different  formats  for  constant  data.  For  example,  if 
a  constant  represented  an  ASCII  character,  we  would  want  to  use  that  character  rather  than  a 
hexadecimal  number.  Similarly,  we  might  want  to  use  the  binary  radix  to  represent  a  bit  mask. 
We  will  use  the  following  convention  for  representing  data  and  constants: 

•  Decimal.  A  number  with  no  prefix  or  suffix.  For  example: 
12345 

•  Hexadecimal.  A  number  prefixed  with  a  dollar  sign.  For  example: 
$1234 

•  Binary.  A  number  (all  Os  and  Is)  prefixed  with  a  percent  sign.  For  example: 
%00101001 

•  ASCII.  A  character  or  string  of  characters  enclosed  in  single  or  double  quotes.  For 
example: 

"Test  #0" 

EXPRESSIONS 

Most  assemblers  permit  you  to  use  certain  logical  and  arithmetic  operators  in  constant 
expressions.  The  assembler  will  evaluate  the  expression  and  insert  the  appropriate  constant 
value  into  the  object  code.  The  operators  our  assembly  programs  will  use  are 

+  addition 
—  subtraction 
*  multiplication 
/  division 

»  shift  right 
«  shift  left 
&  logical  AND 
I  logical  OR 

~  logical  NOT 
<.  .>  parenthetical  expression 

Note,  however,  that  you  can  only  combine  constants  in  these  expressions.  Also  note  that 
expressions  must  result  in  values  of  32  or  fewer  bits. 

DIRECTIVES 

Our  assembly  programs  will  use  only  the  most  simple  directives  so  you  can  pay  more 
attention  to  the  MC68000  instructions.  The  directives  we  use  include 

DC  Define  data.  This  directive  defines  a  location  in  memory  and  initializes  that  data 

with  some  constant  value.  To  indicate  the  size  of  the  memory  location  reserved  for  the 

data,  you  suffix  the  DC  mnemonic  with  B,  W,  or  .L.  For  example: 

FILE  CNT:  DC.B  4 
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defines  a  byte  in  memory  (labeled  FINECNT)  and  initializes  it  with  the  value  4.  You 

can  also  initialize  several  consecutive  locations  in  memory  with  a  single  DC  instruc- 
tion. For  example: 

POWER _  10:  DC.W         1,  10,  100,  1000,  10000 

defines  five  words  in  memory.  The  first  word,  1,  has  the  memory  label  POWER  10. 
The  most  common  use  of  this  directive  is  to  initialize  strings  of  text.  For  example, 

ERR  MSS:  DC.B         "File  not  found  — create?" 

defines  25  consecutive  bytes  in  memory  and  initializes  them  to  the  given  characters. 

DS  Define  storage.  The  directive  lets  you  define  one  or  more  units  of  memory  (but 
leaves  them  uninitialized).  As  with  DC,  you  specify  the  size  of  the  data  by  suffixing  the 
mnemonic.  You  specify  the  repetition  of  the  unit  as  an  operand  to  the  DS  mnemonic. 
For  example: 

COUNTER:  DS  L  1 

defines  one  long  word  of  memory  and  gives  it  the  label  COUNTER. 

OUTBUF:  DS.B  20 

defines  20  bytes  of  memory,  labeling  the  first  as  OUTBUF. 

EQU  Equate.  This  directive  equates  a  constant  value  to  a  constant  name.  For  example: 

BUFF_CNT  EQU  10 

defines  a  constant  called  BUFF  CNT  and  gives  it  the  value  of  10. 

ORG  Origin.  This  directive  defines  the  origin,  or  starting  address,  of  a  block  of  code  or 
data.  When  the  assembler  produces  object  code,  it  will  use  this  value  as  the  basis  for 
evaluating  label  addresses  and  offsets. 

END  End  of  program.  This  directive  signals  the  end  of  the  assembly  program. 

Note  that  each  of  the  directives  has  one  or  more  arguments  or  operands.  These  operands 
can  be  literal  constants,  named  constants,  or  program/code  labels.  In  the  example 

BUF_SIZE  EQU  10 
BUFFER  DS.BBUF_SIZE 
BUF_PTR   DC.L  BUFFER 

the  assembler  allocates  10  bytes  of  data,  which  it  labels  BUFFER.  It  then  allocates  one  long 
word  labeled  BUF  PTR,  which  it  initializes  to  the  address  of  BUFFER. 
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PROGRAM  FORMAT 

We  will  use  a  standard  format  for  presenting  each  of  our  sample  programs.  For  example: 

00006000 
00004000 

DATA  EQU  $6000 
PROGRAM     EQU  $4000 

00006000 
006000  00000002 
006002  00000002 

00004000 

004000  30386000 
004004  31C06002 

004008  4E75 

VALUE 

RESUL" 

ORG 
D5  .  W 
DS  .  W 
ORG 

DATA 
1 
1 

PROGRAM 

VALUE   TO  TRANSFER 
STORAGE   FOR  TRANSFERRED  DATA 

PGM_4_1      MOVE.W     VALUE, DO       GET  DATA  TO  BE  MOVED 
MOVE.W     DO, RESULT     SAVE  DATA 
RTS 

END PGM  4  1 

Note  several  things  about  this  listing: 

•  We  define  the  starting  locations  of  the  code  and  data  segments  in  equates  and  then  use 
the  ORG  directive  to  pass  this  information  along  to  the  assembler.  The  numbers  in  the 
far  left  column  represent  the  addresses  of  the  code  and  data. 

•  The  second  column  of  numbers  represents  the  hexadecimal  code  for  the  command 
given  by  the  source  line.  For  directives,  this  data  may  be  address,  constant,  or  data 
values.  For  MC68000  instructions,  this  data  is  the  object  code  produced  by  the 
instruction  operator  and  operand(s). 

•  The  third  column  and  those  columns  to  the  right  represent  the  source  code.  This  is  the 
data  that  you  will  type  into  your  computer  (via  its  editor). 

RUNNING  THE  PROGRAMS 

In  our  examples,  the  last  executable  statement  is  always  a  Return  from  Subroutine  (RTS) 
instruction.  Depending  on  your  computer  and  operating  system,  this  may  or  may  not  be  an 
appropriate  way  to  end  your  program.  You  might  prefer  to  end  the  program  with  a  STOP 
instruction  or  with  a  call  to  the  operating  system,  which  will  signal  it  that  you  want  to  return 

control  to  its  monitor.  This  is  machine-  and  operating-system  dependent;  you  must  look  through 

your  system's  manuals  to  find  the  system  call  and  syntax. 
If  your  system  includes  a  machine-level  debugger,  we  urge  you  to  use  it.  Such  debuggers 

allow  you  to  single-step  interactively  through  a  program;  that  is,  they  let  you  execute  instruc- 
tions one  at  a  time.  After  the  computer  has  executed  an  instruction,  the  debugger  lets  you 

examine  memory  and  the  registers.  You  therefore  have  a  valuable  tool  for  learning  how 
instructions  execute. 





4 

Beginning  Programs 

This  chapter  contains  some  very  elementary  programs.  They  will  introduce 
some  fundamental  features  of  the  MC68000.  In  addition,  these  programs  demonstrate 
some  primitive  tasks  that  are  common  to  assembly  language  programs  for  many 
different  applications. 

PROGRAM  EXAMPLES 

4-1 .    1 6-BIT  DATA  TRANSFER 

Purpose:    Move  the  contents  of  one  16-bit  variable  VALUE  at  location  6000  to 
another  16-bit  variable  RESULT  at  location  6002. 

Sample  Problem: 

Input:    VALUE-(6000)  =  2E56 
Output:    RESULT-(6002)  =  2E56 

59 
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Program  4-1 : 

00006000  DATA  EQU  $6000 
00001+00  0  PROGRAM     EQU  $4000 

00006000 
006000  00000002 
006002  00000002 

VALUE 
RESULT 

ORG 
DS.W 
DS  .  W 

DATA 
1 
1 

VALUE   TO  TRANSFER 
STORAGE   FOR   TRANSFERRED  DATA 

00004000 ORG PROGRAM 

004000  30386000 
004004  31C06002 

MOVE.W  VALUE, DO 
MOVE.W     DO, RESULT 

GET  DATA  TO  BE  MOVED 
SAVE  DATA 

004008  4E75 
RTS 

END 

This  program  solves  the  problem  in  two  simple  steps.  The  first  instruction  loads 

data  register  DO  with  the  16-bit  value  in  location  VALUE.  The  next  instruction  saves 
the  16-bit  contents  of  data  register  DO  in  location  RESULT. 

Remember  —  if  you  want  to  try  this  program  with  some  sample  data,  you  must 
first  load  the  data  that  is  to  be  transferred  into  the  variable  VALUE  at  memory  location 
6000.  If  your  system  does  not  allow  this,  use  the  Define  Constant  directive. 

During  the  execution  of  this  program,  only  the  least  significant  16  bits  of  the  32- 
bit  data  register  DO  are  affected.  The  most  significant  16  bits  are  not  modified,  since 

both  instructions  specified  an  operation  size  of  word  (16  bits)  by  using  the  \W  instruc- 
tion suffix.  If  a  data  transfer  of  one  byte  (8  bits)  or  one  long  word  (32  bits)  is  desired,  a 

size  suffix  of  \ET  or  \L\  respectively,  should  be  used. 
The  MC68000  combines  three  classes  of  instruction  provided  by  most 

microprocessors  —  load  register,  store  register,  and  transfer  between  registers  —  into  a 
single  class  of  instructions  —  MOVE.  Using  a  register  as  the  source  operand  (first 

operand)  with  a  MOVE  instruction  is  similar  to  a  typical  microprocessor's  store  register 
operation.  Using  a  register  specified  as  a  destination  operand  with  the  MOVE  instruc- 

tion is  similar  to  a  typical  microprocessor's  load  register  operation.  Using  internal 
registers  to  provide  both  the  source  and  destination  operands  with  a  MOVE  instruction 

accomplishes  the  same  function  as  a  typical  microprocessor's  register  transfer  instruc- tion. 

When  you  use  the  MOVE  instruction  to  accomplish  the  LOAD,  STORE,  or 
TRANSFER  function,  it  generally  affects  the  status  flags  in  the  status  register.  The 
execution  of  most  MOVE  instructions  sets  or  clears  the  Negative  (N)  and  Zero  (Z)  flags 
depending  on  the  value  moved,  while  clearing  the  Overflow  (V)  and  Carry  (C)  flags. 
The  Extend  (X)  flag  is  not  affected. 

In  addition  to  moving  data  between  registers,  and  between  registers  and  memory, 
the  MOVE  instruction  can  also  be  used  to  move  data  between  two  memory  locations.  As 

a  result,  the  two  MOVE  instructions  in  PGM  4-1  can  be  replaced  by  the  single  instruc- 
tion: 

MOVE  W  VALUE,  RESULT 

This  version  of  the  MOVE  instruction  moves  the  16-bit  word  contained  in 
memory  location  VALUE  to  memory  location  RESULT  without  utilizing  any  of  the  data 
or  address  registers.  The  status  register  is  still  affected. 

If  you  examine  the  instruction  set  of  the  MC68000  you  will  see  that  a  number  of 
other  instructions  are  capable  of  operating  on  memory  in  this  same  manner. 
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4-2.    ONE'S  COMPLEMENT 

Purpose:     Form  the  bitwise  complement  of  the  contents  of  the  16-bit  variable  VALUE 
at  location  6000. 

Sample  Problem: 

Input.    VALUE-(6000)  =  7F3E 
Output:    VALUE-(6000)  =  80C1 

Program  4-2: 

00006000 DATA EQU $6000 
00004000 PROGRAM EQU $4000 

00006000 ORG DATA 006000 00000002 VALUE DS  .W 1 VALUE   TO  BE  COMPLEMENTED 

00004000 ORG PROGRAM 

004000 30386000 PGM_4_2 MOVE . W VALUE, DO FETCH  VALUE 
004004 4640 NOT.  W DO LOGICAL   COMPLEMENT  OF  VALUE 
004006 31C06000 MOVE . W DO, VALUE STORE   COMPLEMENTED  RESULT 

00400A 4E75 RTS 

END PGM  4  2 

This  program  solves  the  problem  in  three  steps.  The  first  instruction  moves  the 
contents  of  location  VALUE  into  data  register  DO.  The  next  instruction  takes  the  logical 
complement  of  data  register  DO.  Finally,  in  the  third  instruction  the  result  of  the  logical 
complement  is  stored  in  VALUE. 

Note  that  any  data  register  may  be  referenced  in  any  instruction  that  uses  data 
registers.  (The  same  is  true  of  address  registers  although  you  must  pay  special  attention 
to  register  A7  which  the  processor  uses  as  the  stack  pointer.)  Thus,  in  the  MOVE 

instruction  we've  just  illustrated,  any  of  the  eight  data  registers  could  have  been  used. 
The  two  MOVE  instructions  in  this  program,  like  those  in  Program  4-1,  demon- 

strate two  of  the  MC68000,s  addressing  modes.  The  data  reference  to  VALUE  as  either 
a  source  or  destination  operand  is  an  example  of  absolute  addressing.  In  absolute 
addressing  the  address  for  the  data  being  referenced  is  contained  in  the  extension 

word(s)  following  the  operation  word  of  the  instruction.  As  shown  in  the  assembly  list- 
ing, the  address  (6000)  corresponding  to  VALUE  is  found  in  the  extension  word  for  the 

MOVE  instructions. 

Since  the  address  of  VALUE  requires  only  one  extension  word,  the  MC68000 
refers  to  this  form  of  absolute  addressing  as  short  absolute.  Addresses  in  the  ranges 
from  00000000  to  00007FFF  and  FFFF8000  to  FFFFFFFF  may  be  referenced  using 
short  absolute  addressing.  This  range  may  appear  somewhat  different  than  expected, 

but  it  is  consistent  with  the  MC68000,s  treatment  of  16-bit  addresses  and  address  dis- 
placements which  are  always  sign-extended  to  32  bits.  This  technique  of  addressing 

memory  allows  the  system  designer  to  organize  his  or  her  memory  map  so  as  to  permit 
the  usage  of  efficient  short  absolute  addressing  for  both  memory  and  peripheral  device 
references.  One  way  of  achieving  this  would  be  to  organize  random  access  memory 
(RAM)  starting  at  address  0  and  peripheral  devices  In  the  upper  64K  memory  bytes. 

Another  form  of  absolute  addressing  is  long  absolute.  This  form  is  similar  to  short 
absolute  except  that  two  extension  words  are  required  to  reference  the  data.  Therefore 
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to  reduce  your  program  size,  you  should  strive  to  keep  your  frequently  referenced  varia- 
bles in  the  short  absolute  addressing  range. 
Most  programs  in  this  book  use  short  absolute  addressing.  Try  modifying  the 

value  of  DATA  to  a  value  outside  the  short  absolute  addressing  range  such  as  9000|(i. 
What  happens  to  the  generated  object  code?  To  ensure  that  the  assembler  generates  the 
short  absolute  form  whenever  possible,  you  should  try  to  define  all  data  references  prior 

to  their  use.  Try  moving  the  two  assembler  psuedo-instructions  ORG  DATA  and 
VALUE  DS.W  1  to  the  end  of  the  program.  Note  the  resulting  object  code. 

The  other  addressing  mode  used  in  all  instructions  in  Program  4-2  is  data  register 
direct.  In  this  mode,  the  contents  of  the  data  register  are  directly  affected.  The  contents 
are  either  loaded,  modified,  or  stored  as  specified  by  the  instruction. 

The  MOVE  instruction  allows  any  of  the  processor's  14  different  addressing 
modes  to  be  used  to  specify  the  source  operand.  However,  the  destination  operand  must 

be  specified  using  addressing  modes  which  reference  memory  locations  that  are  "altera- 
ble.11 Thus  you  cannot  use  program  counter  relative  or  immediate  addressing  modes 

since  such  memory  locations  may  be  located  in  nonalterable,  read-only  memory. 
If  you  want  to  perform  a  MOVE-type  instruction  with  an  address  register  as  the 

destination,  the  MOVEA  instruction  must  be  used.  The  MOVEA  instruction  performs 
the  same  function  as  the  MOVE  instruction,  but  it  does  not  affect  the  status  register. 

Motorola's  MC68000  assemblers  allow  you  to  specify  an  address  register  as  the  destina- 
tion operand  in  a  MOVE  instruction.  However,  in  this  case  the  assembler  actually 

generates  the  machine  code  for  a  MOVEA  instruction;  thus  the  status  flags  are 
unchanged. 

Program  4-2  is  another  example  where  a  single  instruction  may  replace  two  or 
more  instructions.  The  three  instructions  in  this  program  may  be  replaced  by  the  single 
instruction: 

NOT.W  VALUE 

With  this  instruction,  the  contents  of  the  variable  VALUE  are  complemented 
without  using  the  data  or  address  registers.  The  operation  is  performed  directly  on  the 
designated  memory  location  VALUE. 

4-3.    16-BIT  ADDITION 

Purpose:  Add  the  contents  of  the  16-bit  variable  VALUE1  at  location  6000  to  the 
contents  of  the  16-bit  variable  VALUE2  at  location  6002  and  place  the 
result  in  the  16-bit  variable  RESULT  at  location  6004. 

Sample  Problem: 

Input:  VALUE1-(6000)  =  10F5 
VALUE2-(6002)  =  2621 

Output:  RESULT-(6004)  =  3716 

Program  4-3a: 
00006000  DATA  EQU  $6000 
00004000  PROGRAM     EQU  $4000 

00006000 
006000  00000002 
0  06  00?  00000  00  2 
006004  00000002 

ORG 
VALUE1  DS.W 
VALUE  2  DS.W 
RESULT  DS.W 

DATA 
1 
1 
1 

FIRST  VALUE 
SECOND  VALUE 
16   BIT   STORAGE  FOR ADDITION  RESULT 
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00004000 ORG PROGRAM 

004000  30386000 
004004  D0786002 
004008  31C06004 

PG, M_4_3A  MOVE.W  VALUE  1, DO 
ADD . W  VALUE2,D0 
MOVE.W     DO, RESULT 

GET  FIRST  VALUE 
ADD  SECOND  VALUE  TO  FIRST  VALUE 
STORE   RESULT  OF  ADDITION 

00400C  4E75 
RTS 

END PGM_4_3A 

The  ADD  instruction  in  this  program  is  another  example  of  a  two-operand 

instruction.  However,  unlike  the  MOVE  instruction,  this  instruction's  second  operand 
not  only  represents  the  instruction's  destination  but  also  is  operated  upon  to  calculate the  result.  The  format 

is  common  to  many  of  the  MC68000,s  instructions. 
We  should  note  at  this  point  that  the  MC68000  processor  provides  an  external  16- 

bit  data  bus  for  data  accesses  to  memory.  Internally,  however,  the  processor  also  sup- 

ports 8-  and  32-bit  data  operations.  Therefore,  the  ADD  instruction,  just  like  the 
MOVE  and  most  other  MC68000  instructions,  permits  data  operations  on  all  three  data 
sizes.  By  simply  changing  the  .W  suffix  to  .B  or  .L  anywhere  in  the  programs  we  have 

shown,  the  programs  would  be  converted  to  8-bit  or  32-bit  addition  programs. 
As  we  noted  in  Program  4-1,  the  MC68000  allows  many  instructions  to  have  both 

operands  in  memory.  You  should  note,  however,  that  this  capability  is  not  available 
with  all  instructions;  for  example,  the  ADD  instruction  only  allows  the  source  or 
destination  operand  to  reference  memory.  Thus  you  could  not  add  the  contents  of  one 
memory  location  directly  to  the  contents  of  another  memory  location. 

As  with  any  microprocessor,  there  are  many  instruction  sequences  you  can 

execute  with  the  MC68000  which  will  solve  the  same  problem.  Program  4-36,  for  exam- 
ple, is  a  modification  of  Program  4-3a  and  uses  address  register  indirect  addressing 

instead  of  absolute  short  addressing.  If  you  use  address  register  indirect  addressing,  the 
address  of  the  actual  operand  may  not  (need  not)  be  known  until  execution  time. 

Program  4-3b: 
00006000 DATA EQU $6  000 
00004000 PROGRAM EQU $4000 

00006000 ORG 
DATA 006000 00000002 VALUE  1 DS  .  W 1 FIRST  VALUE 

006002 00000002 VALUE  2 DS.W 1 SECOND  VALUE 
006004 00000002 RESULT DS  .  W i 16   BIT   STORAGE   FOR  ADDITION  RESULT 

00004000 ORG PROGRAM 
004000 207C00006000 PGM_4_3B MOVE A  .  L #VALUE1,A0 INITIALIZE  AO   WITH  ADDRESS   OF  VALUE 
004006 3010 MOVE .W (AO), DO GET  FIRST  VALUE    IN  DO 
004008 D1FC00000002 ADDA .  L #2,  AO INCREMENT  ADDRESS   REGISTER  AO   BY  2 
00400E D050 ADD.  W (AO), DO ADD  SECOND  VALUE   TO  FIRST  VALUE 
00401  0 D1FC00000002 ADDA . L #  2 ,  AO INCREMENT  AO   BY   2  AGAIN 
0040  16 30  80 MOVE  .  W DO, (AO) STORE   RESULT  OF  ADDITION 
00401  8 4E75 RTS 

The  MOVEA  instruction  introduces  two  addressing  modes  —  immediate  and 
address  register  direct,  which  we  have  not  used  previously.  Immediate  addressing  lets 

you  define  a  data  constant  and  include  that  constant  in  the  instruction's  associated 

SOURCE  Operation  DESTINATION  —  DESTINATION 

END PGM  4_3B 
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object  code.  Motorola  assembler  format  identifies  immediate  addressing  with  a  pound 
sign  (#)  preceding  the  data  constant.  The  size  of  the  data  constant  varies  depending  on 
the  instruction.  Immediate  addressing  is  extremely  useful  when  small  data  constants 
must  be  referenced. 

The  second  addressing  mode  —  address  register  direct  —  is  similar  to  data  register 
direct  except  the  address  register  is  affected  instead  of  the  data  register.  Only  word  or 
long  word  references  are  permitted  with  address  direct.  When  word  size  operands  are 

used  to  modify  an  address  register,  the  16-bit  operand  is  always  sign-extended  to  32  bits. 
Program  4-36  also  demonstrates  the  use  of  address  register  indirect  addressing.  In 

this  mode  the  address  of  the  operand  is  contained  in  the  specified  32-bit  address  register. 
Since  an  extension  word  is  not  required,  the  address  register  indirect  mode  of  address- 

ing is  more  memory-efficient  than  absolute  addressing.  Because  of  the  need  to  set  up  the 
address  register,  several  references  must  be  made  to  a  particular  data  item  before  this 

mode  really  becomes  more  memory-efficient. 
Another  advantage  of  this  addressing  mode  is  its  faster  execution  time  as  com- 
pared to  absolute  addressing.  This  improvement  occurs  because  the  address  extension 

word(s)  does  not  have  to  be  fetched  from  memory  prior  to  the  actual  data  references. 
A  final  advantage  is  the  flexibility  provided  by  having  the  reference  address  in  an 

address  register  instead  of  fixed  as  part  of  the  instruction.  This  flexibility  allows  the 
same  code  to  be  used  for  more  than  one  address.  Thus  if  you  wanted  to  add  the  values 
contained  in  consecutive  variables  VALUE3  and  VALUE4,  you  could  simply  change 
the  contents  of  AO. 

4-4.    SHIFT  LEFT  ONE  BIT 

Purpose:     Shift  the  contents  of  the  16-bit  variable  VALUE  at  location  6000  to  the  left 
one  bit.  Store  the  result  back  in  VALUE. 

Sample  Problem: 

Input:    VALUE-(6000)  =  57B6  0101  01  1  1  101  1  01 102 
Output:    VALUE-(6000)=AF6C  1010  1  1  1  1  01  10  1  1002 

Program  4-4: 
00006000 DATA EQU $6000 
00004000 PROGRAM EQU $4000 

00006000 ORG DATA 006000 00000002 VALUE DS.W 1 VALUE    TO   BE    SHIFTED  LEFT 

00004000 ORG PROGRAM 

004000 30386000 PGM_4_4 MOVE  .  W VALUE, DO GET  VALUE   TO   BE  SHIFTED 
004004 E348 LSL.  W HI, DO SHIFT   LEFT  LOGICALLY  ONE 
004006 31C06000 MOVE . W DO, VALUE STORE   SHIFTED  RESULT 

00400A 4E75 RTS 

END PGM  4  4 

The  LSL  instruction  is  used  to  perform  a  logical  shift  left.  Using  the  operand  for- 
mat of  the  LSL  instruction  shown  in  Program  4-4,  a  data  register  can  be  shifted  from  1 

to  8  bits  on  either  a  byte,  word  or  long  word  basis.  Another  form  of  the  LSL  instruction 
allows  a  shift  count  (modulo  64)  to  be  specified  in  another  data  register.  A  final  form  of 
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the  LSL  instruction,  which  uses  only  one  operand,  allows  the  contents  of  a  memory 
location  to  be  shifted  one  bit  to  the  left  without  the  use  of  a  data  register. 

Except  for  different  status  register  results,  the  following  sequences  all  could 
replace  the  instruction  LSL  #1,  DO,  and  produce  the  same  results  in  DO: 

MOVE  «1,D1 
LSL  D1,D0 

LSL  VALUE 
MOVE  VALUE, DO 

ROL  #1,00 
BCLR  HO, DO 

ADD  DO, DO 

How  many  others  can  you  find?  Which  of  those  presented  will  execute  the 
fastest? 

4-5.    BYTE  DISASSEMBLY 

Purpose:  Divide  the  least  significant  byte  of  the  8-bit  variable  VALUE  at  location 
6000  into  two  4-bit  nibbles  and  store  one  nibble  in  each  byte  of  16-bit  varia- 

ble RESULT  at  location  6002.  The  low-order  four  bits  of  the  byte  will  be 
stored  in  the  low-order  four  bits  of  the  least  significant  byte  of  RESULT. 
The  high-order  four  bits  of  the  byte  will  be  stored  in  the  low-order  four  bits 
of  the  most  significant  byte  of  RESULT. 

Sample  Problem: 

Input:    VALUE-(6000)  =  5F 
Output:  RESULT-(6002)=050F 

Progra m  4-5a: 

00006000 DATA EQU $6  000 
00004000 PROGRAM EQU $4000 

00006000 ORG DATA 0000000F MASK EQU $0  0  0F MASK   FOR   LOWER  NIBBLE 
006000 00000001 VALUE DS.B 1 BYTE   TO  BE  DISASSEMBLED 
006001 00000001 DS.B 1 ALIGN   RESULT  ON  WORD  BOUNDARY 
006002 00000002 RESULT DS  .  W 1 STORAGE   FOR   DISASSEMBLED  BYTE 

00004000 ORG PROGRAM 

004000 10386000 PGM_4_5A MOVE .B VALUE, DO GET   BYTE   TO  BE  DISASSEMBLED 
004004 0200000F AND .  B #MASK,D0 ISOLATE   LOWER  NIBBLE   OF  BYTE 004008 1  1C0600  3 MOVE.B DO, RESULT+1 SAVE   LOWER  ORDER  NIBBLE 
00400C 10386000 MOVE  .  B VALUE, DO GET  BYTE   TO  BE  DISASSEMBLED 
004010 E808 LSR.B #4,  DO ISOLATE   HIGH  NIBBLE 
0040  1  2 11C06002 MOVE  .B DO, RESULT SAVE   HIGH  ORDER  NIBBLE 

004016 4E75 RTS 

END 
PGM_4_5 

This  is  an  example  of  byte  manipulation.  The  MC68000  allows  most  instructions 

which  operate  on  words  also  to  operate  on  bytes.  Thus,  by  using  the  .B  suffix,  all  the 

instructions  in  Program  4-5a  perform  byte  operations. 

Remember  that  the  MOVE  instruction,  in  addition  to  performing  register-to- 

memory  and  memory-to-register  transfers  also  performs  register-to-register  transfers. 
This  use  of  the  MOVE  instruction  is  quite  frequent. 
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Generally,  it  is  more  efficient  in  terms  of  program  memory  usage  and  execution 

time  to  minimize  references  to  memory.  Program  4-5b  is  a  modification  of  the  above 
problem  which  demonstrates  this. 

Program  4-5b: 
00006000 DATA EQU $6  000 
00004000 PROGRAM EQU $4000 

00006000 ORG DATA 
006000 00000001 VALUE DS.B 1 BYTE   TO  BE  DISASSEMBLED 
006001 00000001 DS.B 1 ALIGN   RESULT   ON   WORD  BOUNDARY 
006002 00000002 RESULT DS.W 1 STORAGE   FOR   DISASSEMBLED  BYTE 

00004000 
ORG 

PROGRAM 

004000 4240 PGM_4_5B CLR.W 
DO 

CLEAR   DATA  REGISTER  D0(0:15) 
004002 10386000 MOVE  .  B VALUE, DO BYTE   TO  BE   DISASSEMBLED    IN  D0(0:7) 
004006 E958 ROL  .  W #4, DO MOVE   BYTE   TO  D0(4 : 1 1 ) 
004008 E808 L5R.B H4,D0 SHIFT  D0(4: 7)   TO  D0(0: 3) 
00400A 31C06002 MOVE  .  W DO , RESULT STORE   DISASSEMBLED  BYTE 
00400E 4E75 

RTS 

END PGM_4_5B 

The  CLR.W  instruction  is  required  to  clear  the  least  significant  16  bits  of  data 
register  DO.  Only  the  least  significant  byte  of  DO  is  affected  by  the  byte  transfer  from 
VALUE.  The  ROL  instruction  rotates  the  least  significant  word  of  DO  such  that  the 

high-order  nibble  of  VALUE  is  in  the  second  byte  of  DO.  Could  the  ROXL  instruction 
be  used  in  place  of  the  ROL  instruction? 

Although  the  MC68000  allows  manipulation  of  various  data  sizes,  you  must  take 

care  when  you  define  a  program's  data.  All  of  the  processor's  instructions,  when  making 
memory  references  to  16-bit  or  32-bit  data,  assume  the  least  significant  bit  of  the 
memory  address  to  be  zero  —  that  is,  an  even  address.  For  this  reason,  an  additional 
byte  of  memory  storage  is  required  to  align  the  variable  RESULT  on  an  even  address 

(60021())  instead  of  at  the  next  available  memory  location  which  would  be  6001 16.  Would 
the  results  of  Program  4-5a  have  been  the  same  if  the  memory  addresses  associated  with 

RESULT  had  been  6001 16?  What  about  Program  4-5/?? 

4-6.    FIND  THE  LARGER  OF  TWO  NUMBERS 

Purpose:  Find  the  larger  of  two  32-bit  variables  VALUE1  (at  location  6000)  and 
VALUE2  (at  location  6004).  Place  the  results  in  the  variable  RESULT  at 
location  6008.  Assume  the  values  are  unsigned. 

Sample  Problems: 

Input: VALUE  1  - (6000) 12345678 

VALUE2 - 
(6004) 87654321 

Output: RESULT  - 
(6008) 87654321 

Input: VALUE  1  - 
(6000) 12345678 

VALUE2  - (6004) OABCDEF1 
Output: RESULT  - 

(6008) 12345678 
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Program  4-6: 
00006000  DATA  EQU  $6000 
00004000  PROGRAM     EQU  $4000 

00006000  ORG  DATA 
006000    00000004  VALUE1  DS.L  1  FIRST  VALUE 
0C6004   0  0  00  0  0  04  VALUE  2  DS.L  1  SECOND  VALUE 
006008    00000004  RESULT  DS.L  1  RESERVE   LONG  WORD  STORAGE 

00004000  ORG  PROGRAM 

004000  4CF800036000   PGM_4_6  MOVEM.L  VALUE1,D0/D1  LOAD  VALUES   TO  BE  COMPARED 
004006  B280  CMP.L  D0,D1  COMPARE    32   BIT  VALUES 
004008  6  2000004  BHI  STORE  IF   VALUE 2   >=  VALUE1    THEN  GOTO  STORE 
00400C  2200  MOVE.L  D0,D1  ...ELSE   Dl    =  VALUE1 
00400E  21C16008  STORE  MOVE.L  Dl , RESULT  STORE   LARGER  VALUE 

004012   4E75  RTS 

END  PGM_4_6 

The  MOVE  Multiple  instruction,  MOVEM,  used  in  Program  4-6,  lets  us  transfer 
the  contents  of  selected  address/data  registers  to  or  from  a  block  of  consecutive  memory 

locations.  In  Program  4-6,  DO  and  Dl  are  loaded  via  the  MOVEM  instruction  with  the 
contents  of  the  variables  VALUE1  and  VALUE2,  respectively. 

While  you  can  specify  which  registers  are  to  be  selected  with  the  MOVEM  instruc- 
tion, the  order  in  which  the  register  contents  are  transferred  is  not  subject  to  your 

control.  The  transfer  order  is  always  data  register  DO  (or  the  lowest  data  register  number 
you  have  specified)  through  data  register  D7  (or  the  highest  data  register  you  have 
specified)  and  then  address  registers  AO  through  A7  (once  again,  with  the  same 

limitations).  The  only  exception  to  this  sequence  occurs  when  you  use  the  predecre- 
ment addressing  mode;  in  this  case,  the  order  is  just  the  reverse  of  that  which  we  have 

described.  For  details  on  the  register  specification  and  sequence,  refer  to  the  description 
of  the  MOVEM  instruction  in  Chapter  22. 

The  Compare  instruction,  CMP,  in  Program  4-6  sets  the  status  register  flags  as  if 
the  source,  DO,  were  subtracted  from  the  destination,  Dl.  The  order  of  the  operands  is 
the  same  as  the  operands  in  the  subtract  instruction,  SUB. 

The  conditional  transfer  instruction  BHI  transfers  control  to  the  statement  labeled 

FINI  if  the  unsigned  contents  of  Dl  are  greater  than  or  equal  to  the  contents  of  DO. 
Otherwise,  the  next  instruction,  (MOVE.L  D0,D1)  is  executed.  At  STORE,  register 
Dl  will  always  contain  the  larger  of  the  two  values. 

The  BHI  instruction  is  one  of  fourteen  conditional  branch  instructions.  To  change 

the  program  to  operate  on  signed  numbers,  simply  change  the  BHI  to  BGE: 

CMP.L  D0,D1 
BGE  ',TOKL" 

You  can  use  the  following  table  to  determine  which  conditionals  to  use  when  perform- 
ing signed  and  unsigned  comparisons: 

Compare  Condition Signed  Unsigned 
greater  than  or  equal BGE BCC 

greater  than BGT BHI 

equal 
BEQ BEQ 

not  equal BNE BNE 
less  than  or  equal BLE BLS 
less  than 

BLT 
BCS 
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Note  that  the  same  instructions  are  used  for  signed  and  unsigned  addition, 
subtraction,  or  comparison;  however,  the  comparison  operations  are  different. 

The  branch  conditionally  instructions  are  an  example  of  program  counter  relative 

addressing.  In  other  words,  if  the  branch  condition  is  satisfied,  control  will  be  trans- 
ferred to  an  address  relative  to  the  current  value  of  the  program  counter.  The  MC68000 

permits  two  sizes  of  relative  displacement,  either  8-bit  or  16-bit.  Since  the  displacement 

is  a  two's  complement  byte  displacement,  and  the  displacement  is  from  the  program 
counter  after  it  has  been  incremented,  the  branch  instructions  permit  a  maximum  back- 

ward reference  of  either  126  or  32766  bytes,  or  a  maximum  forward  reference  of  either 
128  or  32768  bytes. 

Dealing  with  compares  and  branches  is  an  important  part  of  programming  the 

MC68000.  Don't  confuse  the  sense  of  the  CMP  instruction.  After  a  compare,  the  rela- 
tion tested  is: 

DESTINATION  condition  SOURCE. 

For  example,  if  the  condition  is  "less  than,"  then  you  test  for  destination  less 
than  source.  Become  familiar  with  all  of  the  conditions  and  their  meanings. 
Unsigned  compares  are  very  useful  when  comparing  two  addresses. 

4-7.    64-BIT  ADDITION 

Purpose:  Add  the  contents  of  two  64-bit  variables  VALUE1  (at  location  6000)  and 
VALUE2  (at  location  6008).  Store  the  result  in  RESULT  (at  location 
6010). 

Sample  Problem: 
Input:  VALUE1 

VALUE2 

Output:  RESULT 

Program  4-7: 
00006000 
00004000 

DATA 
PROGRAM 

(6000)  =  12A2 
(6002)  =  E640  12A2E640F210123 
(6004)  =  F210 
(6006)  =  0123 
(6008)  =  0010 
(600A)  =  19BF  00101  9BF40023F51 
(600C)  =  4002 
(600E)  =  3F51 
(6010)  =  12B3 
(6012)  =  0000 
(6014)  =  3212 
(6016)  =  4074 

12B30000321 24074 

EQU 
EQU 

$6  000 
$4000 

00006000  ORG  DATA 
006000   00000008  VALUE1        DS.L  2  FIRST  VALUE 
006008   00000008  VALUE  2       DS.L  2  SECOND  VALUE 
006010    00000008  RESULT       DS.L  2  RESERVE   64   BITS   FOR  RESULT 

00004000  ORG  PROGRAM 

004000   4CF8  00  0F6  00  0   PGM_4_7     MOVEM.L   VALUE1,D0-D3  D0-D1    :=   VALUE1   AND  D2-D3    :=  VALUE  2 
004006   D283  ADD . L       D3,D1  ADD  LEAST   SIGNIFICANT  LONG  WORD 
004008   D182  ADDX.L     D2,D0  ADD  MOST   SIG.    LONG  WORD  WITH  EXTEND 
00400A  48F800036010  MOVEM.L   D0-D1, RESULT  STORE   64   BIT  ADDITION  RESULT 
004010   4E75  RTS 

END  PGM  4  7 
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The  usefulness  of  the  Move  Multiple  (MOVEM)  instruction  is  again  demon- 
strated in  this  128-bit  transfer  to  data  registers  DO  through  D3.  The  status  register  flags 

are  not  affected  by  the  transfer.  Both  the  Carry  and  Extend  flags  are  affected  by  the 
ADD  instruction.  The  condition  of  the  Extend  flag  is  used  in  the  ADDX  (Add  with 

Extend)  instruction  to  include  in  the  addition  the  carry  from  the  previous  32-bit  addi- 
tion operation. 

4-8.    TABLE  OF  FACTORIALS 

Purpose:  Calculate  the  factorial  of  the  8-bit  variable  VALUE  at  location  6010  from  a 
table  of  factorials  FTABLE  which  occupies  memory  locations  6000  through 
600F.  Store  result  in  the  16-bit  variable  RESULT  at  location  6012.  Assume 
VALUE  has  a  value  between  0  and  7. 

Sample  Problem: 

Input:    FTABLE-     (6000)  =  0000  0!  =  1  1 Q 
(6002)  =0001  1!  =  11Q 
(6004)  =  0002  2!  =  21Q 
(6006)  =  0006  3!  =  6.0 
(6008)  =0018  4!  =  24 
(600A)  =0078  5!  =  1201Q 
(600C)  =  02D0  6!  =  7201Q 
(600E)  =  13B0  7!  =  50401Q 

VALUE-      (6010)  =05 
Output:    RESULT-    (601  2)  =  0078  5!  =  1  201Q 

Program  4-8a: 
00006000 DATA EQU $6  000 
00004000 PROGRAM EQU $4000 

00006000 ORG 
DATA 

-  TABLE OF  FACTORIALS 

006000 000  1 FTABLE DC 1 
0  ! 

=  1 

006002 000  1 DC 1 1  ! 

=  1 

006004 0  00  2 DC 2 2  ! 

=  2 

006006 0006 DC 
6 

3! 

=  6 

006008 0018 DC 
24 

4  ! 
r  24 

00600A 0  0  7  8 
DC 120 

5  ! 

=  120 

00600C 02D0 DC 
720 6  ! 

=  720 
00600E 13B0 

DC 
5040 

7  ! 

=  5040 

006010 00000001 VALUE DS.B 1 DETERMINE   FACTORIAL   FOR   THIS  VALUE 006011 00000001 DS.B 1 ALIGNMENT  STORAGE 006012 00000002 RESULT DS.W 1 RESULT  OF  FACTORIAL 
00004000 ORG PROGRAM 

004000 4240 PGM_4_8A CLR  .  W DO DOCO  :  15)   :=  0 
004002 10386010 MOVE  .B VALUE, DO 

GET 
VALUE 

004006 D000 ADD .  B DO, DO DO  (  0  :  7  )    :=   2   ::  VALUE 004008 307C6000 MOVEA. W ttFTABLE,  AO INITIALIZE   POINTER   TO  FACTORIAL  TABLE 
00400C 31F000006012 MOVE  .  W 0(A0, DO), RESULT STORE  FACTORIAL  RESULT 
0040  1  2 4E75 RTS 

END  PGM_4_8A 

The  approach  to  this  table  lookup  problem,  as  implemented  in  Program  4-8a, 
demonstrates  the  use  of  the  address  register  indirect  addressing  mode  with  index.  The 

first  two  instructions,  CLR  and  MOVE,  load  the  index  register  DO  with  the  contents  of 
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VALUE.  The  CLR  instruction  is  required  since  the  data  size  of  VALUE  is  byte  and  the 
index  register  size  used  in  this  addressing  mode  is  either  word  or  long  word.  The 
MC68000  allows  either  a  data  register  or  an  address  register  to  be  used  as  the  index 
register. 

The  Move  Address  (MOVEA)  instruction  initializes  address  register  AO  with  the 
address  of  the  factorial  table.  All  32  bits  of  the  address  register  are  affected  by  the  move 

regardless  of  the  instruction's  data  size.  When  the  data  size  is  word,  as  in  Program  4-8a, 
the  source  operand  is  sign-extended  to  32  bits. 

The  actual  calculation  of  the  entry  in  the  table  is  determined  by  the  first  operand 
of  the  MOVE.W  instruction.  The  long  word  contents  of  address  register  AO  are  added  to 

the  sign-extended  word  contents  of  data  register  DO  to  form  the  effective  address  used 
to  address  the  table  entry.  When  DO  is  used  in  this  manner,  it  is  referred  to  as  an  index 
register.  As  in  most  MC68000  addressing  modes,  the  usage  of  an  address  or  data 
register  in  determining  the  effective  address  does  not  alter  the  contents  of  the  register. 
The  direct,  postincrement,  and  predecrement  addressing  modes  are  exceptions  to  this 
rule. 

The  address  register  indirect  with  index  mode  permits  either  the  16-bit  or  32-bit 
contents  of  the  index  register  to  be  used  in  the  calculation  of  the  effective  address.  The 
size  of  the  index  register  to  be  used  is  specified  by  the  size  suffix  of  the  index  register 
operand  specification.  As  in  the  specification  of  the  instruction  size,  the  default  suffix  is 

\W'  or  word.  Why  can't  the  suffix  .L  be  used  for  index  register  DO  in  Program  4-8a? 
In  addition  to  allowing  the  effective  address  to  be  determined  by  the  contents  of 

the  address  and  index  registers,  the  address  register  indirect  with  index  mode  also  per- 
mits a  small  displacement.  The  displacement  field  allows  for  an  8-bit  value.  However, 

like  the  16-bit  index,  this  displacement  is  sign-extended.  Thus,  displacements  of  from 

—  126  bytes  to  +129  bytes  are  possible. 

Program  4-8b: 
00006000 DATA  EQU $60  00 
00004000 PROGRAM  EQU $4000 

00006000 ORG DATA 
::     TABLE   OF  FACTORIALS 

006000 0  0  0  1 F  TABLE  DC 1 0  ! 

=  1 

006002 0  00  1 
DC 

1 
1  ! 

=  1 

006  001+ 0  00  2 
DC 

2 2  ! 

=  2 

006006 0  006 
DC 

6 

3  ! 

=  6 

006008 0018 
DC 

24 

4  ! =  24 

00600A 0  0  78 
DC 

1  20 

5  ! 

=  120 

00600C 02D0 
DC 

720 6  ! 
=  720 

00600E 1  3B0 

DC 

5040 
7  ! =   5  040 

006010 0000000  1 VALUE  DS.B 1 DETERMINE   FACTORIAL   FOR  THIS 
00601 1 00000001 D5.B 1 ALIGNMENT  STORAGE 
006012 00000002 RESULT  DS.W 1 RESULT   OF  FACTORIAL 

00004000 0  R  G PROGRAM 

004000 4240 PGM_4    8B  CLR.W 
DO 

D0C0  :  1  5)    : =  0 
004002 10386010 MOVE .B VALUE, DO 

GET 

VALUE 
004006 D000 ADD .  B DO, DO D0(0:7)    :=   2   ::  VALUE 004008 3  040 MOVEA. W DO,  AO MOVE    TABLE   OFFSET   TO  ADDRESS 
00400A 31E860006012 MOVE . W FTABLE(AO), RESULT STORE   FACTORIAL  RESULT 

0040  10 4E75 RTS 

END  PGM48B 
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Program  4-8/?  performs  the  same  function  as  Program  4-8a  except  it  demonstrates 
the  use  of  another  addressing  mode  —  it  uses  address  register  indirect  with  displace- 

ment addressing.  In  this  addressing  mode,  the  effective  address  of  the  operand  is  the 

sum  of  the  address  register  and  the  sign-extended  16-bit  displacement.  The  displace- 
ment is  stored  in  the  extension  word  following  the  instruction  in  program  memory. 

In  Program  4-8/7,  the  "displacement"  is  actually  the  base  of  the  table,  while  the 
address  register  is  the  offset  into  the  table.  It  is  very  important  to  remember  that  the  16- 
bit  displacement  is  sign-extended  when  used.  Therefore,  if  FTABLE  had  been  located  at 

any  address  of  8000)6  or  higher,  the  sign  extension  of  bit  15  (=1)  would  cause  an 
address  of  FF800016  through  FFFFFFlb  to  be  loaded  as  the  table  base  address.  Thus,  for 

example,  Program  4-86  would  not  work  if  FTABLE  were  located  at  address  015000|6. 

This  method  of  using  the  "displacement1'  as  a  base  address  is  only  useful  in  the  address 
range  of  0-7FFF,6  or  FF800016  through  FFFFFF16. 

Program  4-86  usage  of  address  register  indirect  with  displacement  addressing  is 
not  a  typical  example  of  this  addressing  mode.  Generally,  the  address  register  will  con- 

tain the  address  of  a  table  or  data  structure  while  the  displacement  will  represent  a  fixed 
offset  from  the  base  of  the  table  or  structure. 

PROBLEMS 

4-1 .    64-BIT  DATA  TRANSFER 

Purpose:  Move  the  contents  of  memory  locations  6000  through  6006  to  locations 
6800  through  6806. 

Sample  Problem: 

Input:  (6000)  =  3E2A 
(6002)  =  42A1 
(6004)  =  21F2 
(6006)  =  60A0 

Output.  (6800)  =  3E2A 
(6802)  =  42A1 
(6804)  =  21  F2 
(6806)  =  60A0 

4-2.    1 6-BIT  SUBTRACTION 

Purpose:  Subtract  the  contents  of  the  16-bit  variable  VALUE1  at  location  6000  from 

the  contents  of  the  16-bit  variable  VALUE2  at  location  6002  and  store  the 
result  back  in  VALUE1. 

Sample  Problem: 

Input:    VALUE1  -    (6000)  =  3977 
VALUE2  -    (6002)  =  2182 

Output:    VALUE1  -    (6000)  =  1  7F5 
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4-3.    SHIFT  RIGHT  THREE  BITS 

Purpose:     Shift  the  contents  of  the  16-bit  variable  VALUE1  at  location  6000  right 
three  bits.  Clear  the  three  most  significant  bit  positions. 

Sample  Problem: 

a       Input:  VALUE1  -  (6000)  =  41  5D 
Output:  VALUE1  -  (6000)  =  082B 

b       Input  VALUE1  -  (6000)  =  C15D 
Output:  VALUE1  -  (6000)  =  182B 

4-4.    WORD  ASSEMBLY 

Purpose:  Combine  the  low  four  bits  of  each  of  the  four  consecutive  bytes  beginning  at 

location  6000  into  one  16-bit  word.  The  value  at  6000  goes  into  the  most 
significant  nibble  of  the  result;  the  value  at  6003  becomes  the  least  signifi- 

cant nibble.  Store  the  result  in  location  6004. 

Sample  Problems: 

Input:     (6000)  =  OC 
(6001)  =  02 
(6002)  =  06 
(6003)  =  09 

Output:    (6004)  =  C269 

4-5.    FIND  SMALLEST  OF  THREE  NUMBERS 

Purpose:     Locations  6000,  6002,  and  6004  each  contain  an  unsigned  number.  Store 
the  smallest  of  these  numbers  in  location  6006. 

Sample  Problem: 

Input:     (6000)  =  9125 
(6002)  =  102C 
(6004)  =  7040 

Output:    (6006)  =  102C 

4-6.    SUM  OF  SQUARES 

Purpose:  Calculate  the  squares  of  the  contents  of  word  VALUE  1  at  location  6000 
and  word  VALUE2  at  6002  and  add  them  together.  Place  the  result  into 
the  long  word  RESULT  at  location  6004.  Use  signed  arithmetic. 

Sample  Problem: 

Input:    VALUE1  -  (6000)  =  0007 
VALUE2  -  (6002)  =  0032 

Output:    RESULT  -  (6004)  =  000009F5 

That  is,  72  +  502  =  49  +  2500  =  2549  (decimal) 
72  +  322  =  31  +  9C4  =  9F5  (hexadecimal) 
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Sample  Answer: 
MOVE.W  VALUE  1, DO 
MULS.W  VALUE1,D0 
MOVE.W  VALUE2,D1 
MULS.W  VALUE2,D1 
ADD . L  D0,D1 
MOVE.L  01, RESULT 

4-7.    SHIFT  LEFT  VARIABLE  NUMBER  OF  BITS 

Purpose:  Shift  the  contents  of  the  word  VALUE  at  memory  location  6000  left.  The 
number  of  positions  to  shift  is  contained  in  the  word  COUNT  at  memory 
location  6002.  Assume  that  the  shift  count  is  less  than  32.  The  low-order 
bits  should  be  cleared. 

Sample  Problems: 

a.  Input:    (6000)  =  182B 
(6002)  =  0003 

Output:    (6000)  =  C158 

b.  Input:    (6000)  =  182B 
(6002)  =  0010 

Output:    (6000)  =  0000 

Sample  Answer: 

MOVEM.W  VALUE, D0/D1 
LSL.W  D1,D0 
MOVE . W  DO, VALUE 

shift  left  3  positions 

shift  left  1  6  positions 
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Simple  Program  Loops 

The  program  loop  is  the  basic  structure  that  forces  the  CPU  to  repeat  a 
sequence  of  instructions.  Loops  have  four  sections: 

1.  The  initialization  section,  which  establishes  the  starting  values  of  counters, 
pointers,  and  other  variables. 

2.  The  processing  section,  where  the  actual  data  manipulation  occurs.  This  is  the 
section  that  does  the  work. 

3.  The  loop  control  section,  which  updates  counters  and  pointers  for  the  next 
iteration. 

4.  The  concluding  section,  that  may  be  needed  to  analyze  and  store  the  results. 

The  computer  performs  Sections  1  and  4  only  once,  while  it  may  perform  Sections 
2  and  3  many  times.  Therefore,  the  execution  time  of  the  loop  depends  mainly  on  the 
execution  time  of  Sections  2  and  3.  Those  sections  should  execute  as  quickly  as  possible, 
while  the  execution  times  of  Sections  1  and  4  have  less  effect  on  overall  program  speed. 

Figure  5-1  and  5-2  contain  two  alternative  flowcharts  for  a  typical  program 
loop.  Following  the  flowchart  in  Figure  5-1  results  in  the  computer  always  executing 
the  processing  section  at  least  once.  On  the  other  hand,  the  computer  may  not  execute 

the  processing  section  in  Figure  5-2  at  all.  The  order  of  operations  in  Figure  5-1  is 
more  natural,  but  the  order  in  Figure  5-2  is  often  more  efficient  and  eliminates  the  prob- 

lem of  the  computer  going  through  the  processing  sequence  once  even  where  there  is  no 
data  for  it  to  handle. 

The  computer  can  use  the  loop  structure  to  process  large  sets  of  data  (usually 

called  "arrays").  The  simplest  way  to  use  one  sequence  of  instructions  to  handle  an 
array  of  data  is  to  have  the  program  increment  a  register  (usually  an  index  register  or 

75 
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Q         Start  ̂  

Initialization 
Section 

Processing 

Section 
The  computer  always  executes  the 
processing  section  at  least  once. 

Loop  Control 
Section 

Concluding 

Section 

Figure  5-1.  Flowchart  of  a  Program  Loop 

stack  pointer)  after  each  iteration.  Then  the  register  will  contain  the  address  of  the 
next  element  in  the  array  when  the  computer  repeats  the  sequence  of  instructions.  The 
computer  can  then  handle  arrays  of  any  length  with  a  single  program. 

Register  indirect  addressing  is  the  key  to  processing  arrays  with  the  MC68000 
microprocessor,  since  that  mode  allows  you  to  vary  the  actual  address  of  the  data  (the 

"effective  address'1)  by  changing  the  contents  of  a  register.  In  the  absolute  addressing 
modes,  the  instruction  completely  determines  the  effective  address;  that  address  is 

therefore  fixed  if  program  memory  is  read-only. 

The  MC68000's  autoincrementing  mode  is  particularly  convenient  for  process- 
ing arrays  since  it  automatically  updates  the  address  register  for  the  next  iteration.  No 

additional  instruction  is  necessary.  You  can  even  have  an  automatic  increment  by  2  or  4 

if  the  array  contains  16-bit  or  32-bit  data  or  addresses. 
Although  our  examples  show  the  processing  of  arrays  with  autoincrementing 

(adding  1,  2,  or  4  after  each  iteration),  the  procedure  is  equally  valid  with  autodecre- 
menting  (subtracting  1,  2,  or  4  before  each  iteration).  Many  programmers  find  moving 

backward  through  an  array  somewhat  awkward  and  difficult  to  follow,  but  it  is  more  effi- 
cient in  many  situations.  The  computer  obviously  does  not  know  backward  from  for- 
ward. The  programmer,  however,  must  remember  that  the  MC68000  increments  an 

address  register  after  using  it  but  decrements  an  address  register  before  using  it.  This 
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f         Start  J 

Initialization 
Section 

Loop  Control 
Section 

^*ihe  task  been*^ 

>V completedx^^ 
•  No 

Processing 
Section 

The  computer  need  not  execute  the  processing 
section  at  all  if  it  finds  that  there  is 
nothing  to  be  done. 

Yes 

Concluding 

Section 

c 
End 

Figure  5-2.  An  Alternative  for  a  Program  Loop 

difference  affects  initialization  as  follows: 

1.  When  moving  forward  through  an  array  (autoincrementing),  start  the  address 
register  at  the  lowest  address  occupied  by  the  array. 

2.  When  moving  backward  through  an  array  (autodecrementing),  start  the 
address  register  one  step  (1,  2,  or  4)  beyond  the  highest  address  occupied  by 
the  array. 

PROGRAM  EXAMPLES 

6-1.    16-BIT  SUM  OF  DATA 

Purpose:  Calculate  the  sum  of  a  series  of  numbers.  The  length  of  the  series  (in  words) 
is  defined  by  the  variable  LENGTH  at  location  6000.  The  starting  address  of 

the  series  is  contained  in  the  long-word  variable  START  at  location  6002. 
Store  the  sum  in  the  variable  TOTAL  at  location  6006.  Assume  that  the 

sum  is  a  16-bit  number  so  that  you  can  ignore  carries. 
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Sample  Problem: 

Flowchart  5-1 : 

Input: LENGTH 
-  (6000) =  0003 

START 
-  (6002) =  00005000 

(5000) 
=  2040 

(5002) 
=  1C22 

(5004) 
=  0242 

Output: TOTAL -  (6006) 
=    (5000)  +  (5002)  +  (5004) 
=    2040  +  1C22  +  0242 =  3EA4 

c Start J 

Pointer =  START 

Sum  = 
0 

Count  = 
=  LENGTH 

i 

Pointer  = Pointer  +  2 

Sum  = Sum  +  (Pointer) 

Count  = Count  -  1 

TOTAL 

Sum 

c 

I End 
J 

Program  5-1a: 

00006000  DATA  EQU  $6000 
00004000  PROGRAM     EQU  $4000 

00006000 
006000  00000002 
006002  00000004 
006006  00000002 

00004000 

004000  20786002 
004004  7000 
004006  32386000 

00400A  D058 
00400C  5341 
00400E  66FA 

004010  31C06006 

004014  4E75 

LENGTH 
START TOTAL 

ORG  DATA 
DS.W  1 
DS.L  1 
DS  .W  1 
ORG PROGRAM 

PGM_5_1A  MOVE A . L   START, AO 
MOVEQ  #0,D0 
MOVE.W     LENGTH, Dl 

LOOP ADD.  W 
SUBQ. W 
BNE 

MOVE .  W 
RTS 

END 

(A0)+,D0 
S1,D1 LOOP 

DO, TOTAL 

PGM    5  1A 

NUMBER   OF    DATA  ELEMENTS 
ADDRESS   OF    DATA  ELEMENTS 
SUM  OF   DATA  ELEMENTS 

INITIALIZE   POINTER  REGISTER 
INITIALIZE   SUM   TO  ZERO 
INITIALIZE   ELEMENT  COUNT 

SUM   NEXT  ELEMENT 
UPDATE   ELEMENT  COUNT 
IF   COUNT  NOT  ZERO   THEN  GOTO  LOOP 

STORE  SUMMATION 
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The  initialization  section  of  the  program  consists  of  the  first  three  instructions, 
which  set  the  data  pointer,  sum,  and  counter  to  the  appropriate  initial  values.  In  this 
program  we  encounter  the  first  example  of  parameter  passing  where  the  parameters 
include  an  address  (the  contents  of  START)  along  with  such  parameters  as  size  or  count 
(LENGTH)  which  we  have  encountered  in  previous  programs.  The  first  MOVE  instruc- 

tion in  the  program  loads  the  beginning  address  (from  location  START)  of  the  data  ele- 
ments into  address  register  AO.  Once  again  we  will  defer  a  detailed  discussion  of 

parameter  passing  until  Chapters  10  and  11;  at  this  point,  you  must  simply  ensure  that 
the  required  starting  address  is  in  the  long  word  at  location  6002  prior  to  attempting  to 
execute  this  program. 

Frequently  in  programming,  you  must  initialize  a  data  register  with  a  small  data 

value  as  we  have  done  in  Program  5-\a.  For  values  in  the  range  —128  to  +127,  you 
should  use  the  MOVEQ  instruction.  The  MOVEQ  instruction  encodes  the  value  within 
the  instruction  word,  thus  eliminating  an  additional  operand  word  that  would  otherwise 
be  needed  to  define  the  initial  value.  You  should  note  that  the  MOVEQ  instruction, 
unlike  most  other  MC68000  instructions,  only  has  a  data  size  of  long  word.  We  could 
have  used  the  CLR  instruction  to  initialize  the  sum  to  zero;  both  the  MOVEQ  and  CLR 
instructions  require  the  same  number  of  bytes  and  microprocessor  cycles.  In  what  cases 
is  the  use  of  the  CLR  instruction  preferred? 

The  processing  section  of  Program  5- la  consists  of  the  single  instruction  ADD.W 

(A0)-l-,D0  which  adds  the  contents  of  the  memory  location  addressed  by  address 
register  AO  to  the  contents  of  data  register  DO.  This  instruction  does  all  the  real  work  of 
the  program  and  is  the  first  example  of  the  address  register  indirect  with  postincrement 
mode  of  addressing.  You  probably  noticed  that  the  program  contained  no  explicit 
instruction  to  update  the  address  register  to  the  next  word  in  the  series.  Instead,  the 
address  register  is  implicitly  updated  by  execution  of  the  ADD  instruction.  Thus,  this 
instruction  is  also  part  of  the  loop  control  section.  In  the  postincrement  addressing 
mode,  the  processor  increments  the  contents  of  the  address  register  after  the  address 
register  has  been  used  to  determine  the  effective  address  of  the  data  references.  The 
contents  of  the  address  register  are  incremented  by  either  1,  2,  or  4  depending  on  the 
size  of  the  data  being  referenced.  An  increment  of  1  is  used  for  byte  references,  2  for 
word  references  and  4  for  long  word  references.  Thus,  the  instruction  ADD.W 

(A0)-l-,D0  results  in  the  contents  of  address  register  AO  being  incremented  by  2.  This 
addressing  mode  is  extremely  useful  when  you  are  performing  operations  on  data  tables. 

The  loop  control  section  of  the  program  consists  of  the  single  instruction 
SUBQ.W,  since  the  instruction  ADD.W  (A0)  +  ,D0  updates  the  pointer  automatically. 

The  SUBQ  instruction  decrements  the  counter  that  keeps  track  of  the  number  of  itera- 
tions the  processor  has  left  to  perform.  The  Subtract  Quick  (SUBQ)  instruction  is 

another  instruction  which  you'll  find  useful  in  reducing  the  size  of  your  programs.  Like 
the  MOVEQ  instruction,  SUBQ  allows  the  encoding  of  small  data  values  within  a  single 
instruction  word.  Unlike  the  MOVEQ  instruction,  SUBQ  only  allows  data  values  in  the 
range  from  1  to  8.  However,  you  can  use  the  SUBQ  instruction  to  operate  on  byte,  word 
or  long  word  data  and  SUBQ  can  be  used  to  operate  on  memory  directly,  or  on  any 
address  register  as  well  as  a  data  register. 

The  instruction  BNE  causes  a  branch  if  the  Zero  (Z)  flag  is  reset  (that  is,  if  the 

result  of  decrementing  Dl  was  not  zero).  The  offset  part  of  the  BNE  instruction  is  a 

two's  complement  number,  determined  by  the  distance  between  the  destination  and  the 
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instruction.  In  this  case,  the  distance  is  from  memory  location  4010  (the  address  of  the 
BNE  instruction +  2)  to  memory  location  400A  (the  destination).  So  the  offset  (using 

two's  complement  arithmetic)  is: 

400A  400A 
-(400E  +  2)       =  +BFFO 

FFFA 

The  offset  of  $FA  corresponds  to  a  negative  six  (  —  6)  bytes  which  is  the  number 
of  bytes  to  the  label  LOOP  from  the  location  of  the  branch  instruction  plus  two.  This 

single  byte  sign-extended  form  of  the  branch  instruction  allows  offsets  in  the  range  —63 
words  to  +64  words  from  the  location  of  the  branch  instruction.  The  address  range  is 
described  in  words  rather  than  bytes  since  all  MC68000  instructions  must  start  on  a 
word  boundary  and  have  sizes  which  are  word  multiples.  Another  form  of  the  branch 

instruction  allows  a  16-bit  sign-extended  offset,  thus  providing  a  branching  range  of 

—  16383  words  to  +  16384  words.  When  you  use  this  form,  an  additional  operand  word 
is  required. 

If  the  Zero  flag  is  1  (that  is,  if  the  result  of  decrementing  Dl  was  zero),  the  pro- 
cessor continues  its  normal  sequence.  Thus  the  result  of  executing  BNE  is: 

LOOP  if  the  result  of  decrementing  D1  is  zero 

PC  = (PC)  +  2  if  the  result  of  decrementing  D1  is  zero 

The  extra  2,  as  usual,  comes  from  the  two  bytes  occupied  by  the  BNE  instruction  itself. 
This  is  true  for  either  form  of  the  branch  instruction  since  the  PC  is  incremented  by  two 

in  either  case,  before  adding  the  offset.  With  the  16-bit  offset,  the  PC  is  incremented  by 
another  two  if  the  branch  is  not  taken.  The  result  is  the  same  for  both  the  8-bit  and  the 

16-bit  offset;  the  instruction  following  the  conditional  branch  will  be  executed  if  the  test 
fails. 

Most  programmers  make  computer  loops  count  down  rather  than  up  so  that 
they  can  use  the  setting  of  the  Zero  flag  as  an  exit  condition.  Remember  that  the  Zero 
flag  is  1  if  the  most  recent  result  was  zero  and  0  if  that  result  was  not  zero.  Try  rewriting 
the  program  so  that  it  loads  register  Dl  with  zero  initially  and  increments  it  after  each 
iteration.  Which  approach  is  more  efficient? 

Program  5-la  executes  correctly  for  all  initial  values  unless  the  number  of  ele- 
ments is  zero.  This  problem  is  solved  by  modifying  Program  5-\a  to  include  a  specific 

check  for  this  condition  prior  to  the  loop  processing  as  shown  in  Program  5-16. 

Program  5-1  b: 
00006000 DATA EQU $6  0  0  0 
00004000 PROGRAM EQU $4000 

00006000 ORG DATA 006000 00000002 LENGTH 
DS.W. 

1 NUMBER   OF   DATA  ELEMENTS 
006002 00000004 START DS.L 1 ADDRESS   OF   DATA  ELEMENTS 
006006 00000002 TOTAL DS.W 1 SUM  OF   DATA  ELEMENTS 

00004000 ORG PROGRAM 

001+000 20786002 PGM_5_1B MOVE A . L START, AO INITIALIZE   POINTER  REGISTER 
004004 70  0  0 

MOVEQ 
#  0 ,  DO INITIALIZE   SUM   TO  ZERO 

004006 32386000 MOVE . W LENGTH, Dl INITIALIZE   ELEMENT  COUNT 

00400A  6706 BEQ.  S DONE IF   LENGTH   r   0   THEN  DONE 
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00400C   D058  LOOP  ADD . W  (A0)+,D0  SUM  NEXT  ELEMENT 
00400E    5341  SUBQ.W  #1,D1  UPDATE   ELEMENT  COUNT 
004010   66FA  BNE  LOOP  IF   COUNT  NOT  ZERO  THEN  GOTO  LOOP 

004012    31C06006  DONE  MOVE.W  DO, TOTAL  STORE  SUMMATION 

004016  4E75  RTS 
END  PGM   5  IB 

In  this  program,  the  single  instruction  BEQ  is  used  to  check  for  number  of 

elements  equal  to  zero,  and  it  will  cause  the  program's  flow  of  control  to  be 
transferred  to  DONE  if  there  are  no  numbers  in  the  series.  You  may  have  noticed  that 

the  BEQ  branch  instruction  had  a  suffix  of  ".S"  This  suffix  is  used  by  the  assembler  to 
determine  which  offset  form  of  the  branch  instruction  should  be  used.  This  suffix  is 

only  necessary  when  the  label  in  the  operand  field  is  a  forward  reference  and  the 
assembler  default  is  the  long  offset  form. 

The  order  in  which  the  processor  executes  instructions  is  often  very  important.  In 

Program  5-\b,  BEQ  must  come  immediately  after  the  MOVE.W  LENGTH, Dl  instruc- 
tion; otherwise,  an  intervening  instruction  might  change  the  Zero  flag.  Similarly,  the 

SUBQ  instruction  must  be  followed  immediately  by  the  BNE  instruction. 

5-2.    32-BIT  SUM  OF  DATA 

Purpose:  Calculate  the  sum  of  a  series  of  unsigned  16-bit  numbers.  The  length  of  the 

series  (in  words)  is  defined  by  the  variable  LENGTH  at  location  6000.  The 

starting  address  of  the  series  is  contained  in  the  long-word  variable  START 

at  location  6002.  Store  the  sum  in  the  long  word  (32-bit)  variable  TOTAL  at 
location  6006.  Take  carries  into  account. 

Sample  Problem: 

Input: LENGTH 
START 

Output:  TOTAL 

(6000)    =  0003 
(6002)    =  00005000 
(5000)    =  2040 
(5002)    =  1C22 
(5004)    =  E242 
(6006)    =  (5000)  +  (5002)  +  (5004) 

=  2040  +  1C22  +  E242 
=  0001 1EA4 

Program  5-2a: 

00006000 
00004000 

DATA  EQU  $6000 
PROGRAM     EQU  $4000 

00006000 
006000  00000002 
005002  0000000*+ 
006006  00000004 

00010000 

ORG 
LENGTH  DS.W 
START  DS.L 
TOTAL  DS.L 
CARRYBIT  EQU 

DATA 1 
1 
1 
$10000 

NUMBER  OF   DATA  ELEMENTS 
ADDRESS   OF   DATA  ELEMENTS 
SUM  OF   DATA  ELEMENTS 
CARRY   BIT  VALUE 

00004000 

004000  20786002 
004004  7000 
004006  32386000 

00400A  670E 

ORG 

PGM_5_2A  MOVE A . L MOVEQ 

MOVE  .  W 

BEQ.S 

PROGRAM 

START, AO 
«0,D0 LENGTH, Dl 

DONE 

INITIALIZE   POINTER  REGISTER 
INITIALIZE   SUM  TO  ZERO 
INITIALIZE   ELEMENT  COUNT 

IF   LENGTH   =   0   THEN  DONE 
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00400C  D0  58  LOOP  ADD .  W  (A0)  +  ,D0  SUM  NEXT  ELEMENT 
00400E  6^+06  BCC.S  LOOPTEST  IF   CARRY   =   0   THEN  GOTO  LOOPTEST 

0040  1  0  0680000  1  0000  ADD  I  . L  #CARR YB I T, DO  ...ELSE   ADD   16-BIT  CARRY 

004016  5341  LOOPTEST  SUBQ.W  #1,D1  UPDATE   ELEMENT  COUNT 
004018  66F2  BNE  LOOP  IF   COUNT  NOT  ZERO   THEN  GOTO  LOOP 

00401A  21C06006  DONE  MOVE . L  DO, TOTAL  STORE  SUMMATION 

0040  1E  4E75  R  TS 

END  PGM   5  2A 

Flowchart  5-2: 

Pointer  =  START 
Sum  =  O 
Count  =  LENGTH 

Pointer  = Pointer  +  2 

Sum  = Sum  +  (Pointer) 

1 

Count  = Count  -  1 

TOTAL  = 
Sum 

(      E"d  ) 

This  program  differs  only  slightly  from  the  16-bit  addition  program.  Since  a  32-bit 
sum  is  to  be  generated,  we  must  now  handle  the  carry  generated  by  the  ADD  instruc- 

tion. The  two  new  instructions  (BCC  and  ADDI)  test  for  the  carry  during  addition  and 
add  the  carry  bit  back  into  the  sum  when  a  carry  occurs. 
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The  instruction  BCC  causes  a  jump  to  memory  location  LOOPTEST  if  the  Carry 

(C)  flag  =  0.  Thus,  if  there  is  no  carry  from  the  16-bit  addition,  the  program  jumps 
around  the  statement  that  increments  the  most  significant  16  bits  of  the  sum.  The  rela- 

tive offset  for  BCC  LOOPTEST  is: 

4016 
(400E  +2) 

The  relative  offset  for  BNE  LOOP  is: 

4016 
-4010 

06 

400C 

(4018+2)  = 

400C 
401A 

-  OE 

FFF2 

The  relative  offset  for  BEQ.S  DONE  is: 

401A 
-(400A+2) 

401 A 
-400C 

OE 

The  long  word  form  of  the  ADD  instruction  might  simplify  this  program. 

However,  since  the  series  consists  of  16-bit  values  we  must  do  some  extra  work  to  make 
these  values  into  long  words.  Program  S-2b  accomplishes  this. 

Program  5-2b: 

00006000 
00004000 

DATA  EQU  $6000 
PROGRAM     EQU  $4000 

00006000 
006000  00000002 
006002  00000004 
006006  00000004 

00004000 

004000  20786002 
004004  7000 
004006  2400 
004008  32386000 

00400C  6708 

00400E  3418 
004010  D082 
004012  5341 
004014  66F8 

004016  21C06006 

00401A  4E75 

ORG  DATA 
LENGTH       DS.W  1 
START          DS.L  1 
TOTAL          DS.L  1 

ORG 

PGM_5_2B  MOVE A . L MOVEQ 

MOVE .L 
MOVE  .  W 

LOOP 

PROGRAM 

START, AO 
ao,oo D0,D2 
LENGTH, Dl 

BEQ.S  DONE 
MOVE.W  (A0)+,D2 
ADD . L  D2,D0 
SUBQ.W  H,D1 
BNE  LOOP 

MOVE.L  DO, TOTAL 
RTS 

END  PGM_5_2B 

NUMBER   OF   DATA  ELEMENTS 
ADDRESS   OF   DATA  ELEMENTS 
SUM  OF   DATA  ELEMENTS 

INITIALIZE   POINTER  REGISTER 
INITIALIZE   SUM   TO  ZERO 
CLEAR   TEMPORARY  REGISTER 
INITIALIZE   ELEMENT  COUNT 

IF   LENGTH   =   0   THEN  DONE 

D2[  1  5-0]    : =   DATA  ELEMENT 
ADD  DATA  ELEMENT   TO  SUM 
UPDATE   ELEMENT  COUNT 
IF   COUNT  NOT   ZERO   THEN  GOTO  LOOP 

STORE  SUMMATION 

We  clear  the  most  significant  16-bits  of  register  D2  during  the  initialization  sec- 

tion; since  these  bits  will  never  change,  we  don't  need  to  clear  them  each  time  through 
the  loop.  The  16-bit  values  from  memory  are  then  loaded  into  the  low-order  16  bits  of 
D2  and  then  a  long  add  (ADD.L)  is  used  to  add  the  32-bit  contents  of  D2  to  register  DO. 
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Because  the  purpose  said  the  values  were  unsigned  numbers,  the  high-order  16  bits  will 
always  be  zero. 

Note  that  we  need  not  check  for  carry  in  the  loop  processing  section  since,  with  a 

32-bit  operation,  any  carry  from  the  low-order  16  bits  will  automatically  be  propagated 
into  the  high-order  portion  of  DO.  The  changes  in  the  loop  processing  section  reduced 
the  number  of  instructions  in  the  loop  and  perhaps  make  the  program  easier  to  under- 

stand. The  number  of  bytes  in  the  loop  is  also  reduced.  However,  does  this  make  the 

loop  execute  faster?  The  processing  section  in  Program  5-2a  takes  18  or  36  cycles: 

ADD        8  cycles 
BCC        10  cycles  (12  if  branch  not  taken) 
ADDI.L    (16)  cycles  (not  always  executed) 

18  (36)  cycles  (if  BCC.S  used  -  18  (32)  cycles) 

The  second  version  takes  16  cycles: 

MOVE      8  cycles 
ADD.L     (8)  cycles 

1  6  cycles 

The  second  version  is  both  smaller  and  faster.  However,  you  may  not  always  find  this  to 
be  the  case.  A  single  more  powerful  instruction  may  take  longer  to  execute  than  two  or 
more  simpler  instructions  that  perform  the  same  task.  Can  you  find  an  example  of  this? 

5-3.    NUMBER  OF  NEGATIVE  ELEMENTS 

Purpose:  Determine  the  number  of  negative  elements  in  a  series  of  signed  16-bit 
numbers.  Negative  elements  are  identified  by  a  1  in  the  most  significant  bit 
position  (bit  15).  The  length  of  the  series  is  defined  by  the  variable 
LENGTH  at  location  6000.  The  starting  address  of  the  series  is  defined  by 

the  long  word  variable  START  at  location  6002.  Store  the  number  of  nega- 
tive elements  in  the  variable  TOTAL  at  location  6006. 

Sample  Problem: 

Input. LENGTH    -    (6000)  =  0003 
START     -    (6002)  =  00005000 

(5000)  =  F1  DC 
(5002)  =  7E0A 
(5004)  =  824B 

Output:    TOTAL     -    (6006)  =  0002,  since  memory  locations  5000  and 
5004  contain  negative  numbers 

Program  5-3: 
00006000 
00004000 

DATA 
PROGRAM 

EQU 
EQU 

$6  0  0  0 
$4000 

00006000 
006000  00000002 
006002  00000004 
006006  00000002 

LENGTH 
START 
TOTAL 

ORG 
D5  .  W 
DS  .L 
DS  .W 

DATA 
1 
1 
1 

NUMBER   OF    DATA  ELEMENTS 
ADDRESS   OF    DATA  ELEMENTS 
SUM   OF    DATA  ELEMENTS 

00004000 
or:, PROGRAM 

004000  20786002 
004004   7000  . 
004006  32386000 

PGM_5_3     MOVE  A . L   START, AO 
MOVEQ  #0,D0 
MOVE.W     LENGTH, D 1 

INITIALIZE  POINTER  REGISTER 
NNEG    :=  0 
INITIALIZE   ELEMENT  COUNT 
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00400A  670A BEQ.S  DONE IF   LENGTH   =   0   THEN  DONE 

00400C  4A58 
00400E  6A02 

004010  5240 

004012  5341 
004014  66F6 

LOOP 

004016  31C06006 

00401A  4E75 

TST.  W 
BPL.  S 

DONE 

CA0)  + LOOPTEST 

ADDQ.W  #1,D0 

LOOPTEST  SUBQ.W  #1,D1 
BNE  LOOP 

MOVE.W  DO, TOTAL 
RTS 

END  PGM   5  3 

TEST  DATA  ELEMENT 
IF     >   0   THEN  GOTO  LOOPTEST 

.  .  .ELSE   NNEG    : =  NNEG   +  1 

UPDATE  ELEMENT  COUNT 
IF  COUNT  NOT  ZERO  THEN  GOTO  LOOP 

STORE   NUMBER  OF   NEGATIVE  ELEMENTS 

Flowchart  5-3: 

Q         Start  ̂  

Pointer  =  START 
Nneg  =  O 
Count  =  LENGTH 
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The  TST  instruction  is  used  to  determine  if  the  next  element  in  the  series  is  a 

negative  number.  TST  compares  the  operand  with  zero  and  sets  the  status  flags  accord- 
ingly. Thus,  the  operation  of  the  TST  instruction  is  essentially  equivalent  to: 

SUBQ#0,(A0)  + 

Why  should  you  use  TST  instead  of  SUBQ  in  cases  like  this?  Because  it  provides  clearer 
documentation. 

While  testing  the  operand,  TST  sets  the  Negative  (N)  and  Zero  (Z)  flags  accord- 
ing to  the  results  of  the  comparison.  The  Carry  (C)  and  Overflow  (V)  flags  are  always 

reset  to  zero. 

The  Negative  (N)  flag  simply  reflects  the  value  of  bit  15  of  the  most  recent  result. 

If  you  are  using  signed  numbers,  bit  15  is,  in  fact,  the  sign  (0  for  positive,  1  for  nega- 
tive); the  mnemonics  for  Branch  if  Plus  (BPL)  and  Branch  if  Minus  (BMI)  assume  that 

you  are  using  signed  numbers.  However,  you  can  use  equally  well  bit  15  for  other  pur- 
poses, such  as  the  status  of  peripherals  or  other  1-bit  data.  In  these  cases  you  can  still 

test  bit  15  with  BMI  (bit  15  =  1)  or  BPL  (bit  15  =  0);  although  the  mnemonics  no 
longer  make  sense,  the  operations  work.  The  computer  performs  its  operations  without 
considering  whether  the  user  thinks  they  are  sensible  or  meaningful.  The  interpretation 

of  the  results  is  the  programmer's  problem,  not  the  computer's. 
Negative  signed  numbers  all  have  a  most  significant  bit  of  1  and  thus  are  actually 

larger,  when  considered  as  unsigned  numbers,  than  positive  numbers. 

In  Program  5-3,  the  BPL  (Branch  if  Plus)  instruction  causes  a  branch  if  the  Nega- 
tive flag  is  0.  Which  other  branch  instructions  could  you  use  in  place  of  BPL? 
We  could  also  replace: 

TST  (A0)  + 
BPL  LOOPTEST 

with 

MOVE  (A0)  +  .D3 
BTST  #15,D3 
BEQ  LOOPTEST 

The  BTST  instruction  tests  a  specific  bit  in  the  destination.  If  the  bit  is  zero,  the 
Zero  (Z)  flag  is  set;  if  the  bit  is  one,  the  Zero  (Z)  flag  is  reset  to  zero.  This  instruction  is 
most  useful  in  testing  bits  other  than  the  sign  bit;  for  example,  when  you  need  to  test 
the  status  of  a  peripheral  device.  Although  the  BTST  instruction  allows  you  to  directly 
test  the  contents  of  memory,  only  bits  within  a  single  byte  can  be  tested  in  this  mode. 

How  could  you  rewrite  Program  5-3  so  that  BTST  tests  the  most  significant  byte  of  a  16- 
bit  element  in  memory? 

5-4.    FIND  MAXIMUM  VALUE 

Purpose:  Find  the  largest  element  in  a  series  of  16-bit  unsigned  binary  numbers.  The 
length  of  the  series  is  defined  by  the  variable  LENGTH  at  location  6000  and 
the  starting  address  of  the  series  is  defined  by  the  long  word  variable 
START  at  location  6002.  Store  the  maximum  (largest  unsigned  element)  in 
the  value  MAXNUM  at  location  6006. 
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Sample  Problem: 

Input:   LENGTH    -    (6000)  =  0004 
START     -    (6002)  =  00005000 

(5000)  =  A48E 
(5002)  =  71  AC 
(5004)  =  34F1 
(5006)  =  E57A 

Output:  MAXNUM  -    (6006)  =  E57A,  since  this  is  the  largest  of 
the  four  unsigned  numbers. 

Flowchart:  5-4a: 
c Start j 

Pointer  =  START 
Max  =  0 
Count  =  LENGTH 

Count  =  0 
? 

Yes 

1  ►¥  No 
Temp  =  (Pointer) 
Pointer  = Pointer  +  2 

Temp  >  Max 
? 
Yes 

Max  =  Temp 
J 

Count  = 
Count  -  1 

MAXNUM 
Max 
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Program  5-4a: 
00006000 DATA EQU $6000 
00004000 PROGRAM EQU $4000 

00006000 ORG DATA 006000 00000002 LENGTH DS.W 1 NUMBER  OF   DATA  ELEMENTS 
006002 00000004 START DS.L 1 ADDRESS   OF   DATA  ELEMENTS 
0  06  0  06 00000002 MAXIMUM DS.W 1 MAXIMUM  NUMBER    IN  SERIES 

00004000 ORG PR  OGR  AM 

004000 20786002 PGM_5_4A MOVE A . L START, AO INITIALIZE  POINTER  REGISTER 
0  040  04 7000 

MOVEQ 

#  0  ,  D  0 MAX    : r  0 
004006 32386000 MOVE . W LENGTH, Dl INITIALIZE   ELEMENT  COUNT 

00400A 6  70C BEQ.S DONE IF   LENGTH  =   0   THEN  DONE 

00400C 3418 LOOP MOVE . W (A0)+,D2 TEMP    :=  NEXT   DATA  ELEMENT 
00400E B042 CMP.W D2,D0 COMPARE   TEMP  WITH  MAX,  "MAX-TEMP 004010 6402 BCC.S LOOPTEST IF   MAX   >   OR   =   TEMP  GOTO  LOOPTEST 

004012 300  2 MOVE . W D2,D0 ...ELSE   NEW  MAX,    MAX    :=  TEMP 

004014 5341 LOOPTEST SUBQ.  W 11, Dl UPDATE   ELEMENT  COUNT 
004016 66F4 BNE LOOP IF   COUNT  NOT  ZERO  THEN  GOTO  LOOP 

004018 31C06006 DONE MOVE.W DO, MAXNUM STORE  MAXIMUM  NUMBER    IN  SERIES 

00401C 4E75 RTS 

END PGM_5_4A 

The  first  three  instructions  of  this  program  form  the  initialization  section. 
In  this  program  we  take  advantage  of  the  fact  that  zero  is  the  smallest  unsigned 

binary  number.  If  you  make  zero  the  initial  estimate  of  the  maximum,  then  the  program 
will  set  the  maximum  to  a  larger  value  unless  all  elements  in  the  array  are  zeros.  The 
maximum  will  also  be  set  to  zero  if  the  series  contains  no  elements. 

The  two  instruction  sequence  MOVE.W  (A0)  +  ,D2  and  CMP.W  D2,D0 
compares  the  next  element  in  the  series  with  the  current  maximum  value.  The  CMP 
instruction  affects  the  Carry  and  Zero  flags  as  follows  (TEMP  is  the  value  of  the  current 
element  and  MAX  is  the  current  maximum  value): 

Carry  =  O  if  MAX  >  TEMP  (Higher  or  Same) 
Carry  =  1  if  MAX  <  TEMP  (Lower) 
Zero  =  0  if  MAX  =  TEMP  (Not  Equal) 
Zero  =  1  if  MAX  =  TEMP  (Equal) 

The  program  uses  the  branch  BCC  (Carry  Clear)  instruction  which  tests  both  the  Carry 
and  Zero  flags.  If  either  flag  is  set,  the  program  replaces  the  maximum  with  the  current 
element  using  the  instruction  MOVE.W  D2,D0.  The  branch  instruction  BHI  could  have 

been  used  instead  of  BCC  and  would  have  been  easier  to  understand.  Why  is  BCC  a  bet- 
ter choice  of  branch  instructions? 

The  program  does  not  work  properly  if  the  numbers  are  signed,  because  negative 

numbers  all  appear  to  be  larger  than  positive  numbers.  You  must  use  the  Sign  (Nega- 
tive) flag  instead  of  the  Carry  in  the  comparison.  However,  you  must  also  consider  the 

fact  that  two's  complement  overflow  can  affect  the  sign;  that  is,  the  magnitude  of  a 
signed  result  could  overflow  into  the  sign  bit.  The  MC68000  has  special  instructions  — 
BGT,  BGE,  BLE  and  BLT  —  which  perform  signed  comparison  branches  and  automat- 

ically handle  two's  complement  overflow. 
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As  we  have  seen  before,  the  MC68000  allows  for  some  operations  to  be 
performed  directly  on  memory  without  requiring  the  use  of  an  additional  data  register. 

Program  5-46  uses  this  feature  to  eliminate  the  MOVE.W  (AO)  +  ,D2  instruction  in  Pro- 
gram 5-4a. 

Program  5-4b: 
00006000 DATA EQU $6000 
00004000 PROGRAM EQU $40  0  0 

00006000 ORG DATA 
006000 00000002 LENGTH DS.W 1 NUMBER   OF   DATA  ELEMENTS 
006  002 00000004 START DS  .  L I AnnPPQQ     HP     Pi  A  TA     CI  CMCMTC nUUKC  j  j    Ur     UA  1  A  CLtritNIb 
006006 00000002 MAXNUM DS.W 1 MAXIMUM  NUMBER    IN  SERIES 

00004000 ORG PROGRAM 

004000 20786002 PGM_5_4B MOVE A . L START, AO INITIALIZE   POINTER  REGISTER 
004004 7000 

MOVEQ 

H0, DO 
MAX    : =  0 

004006 32386000 MOVE  .W LENGTH, Dl INITIALIZE   ELEMENT  COUNT 

00400A 6  70C BEQ.S DONE IF   LENGTH   =   0   THEN  DONE 

00400C B058 LOOP CMP.W (A0)+,D0 COMPARE   DATA  ELEMENT  WITH  MAX 
00400E 6404 BCC.S LOOPTEST IF  MAX   >  OR   =  ELEMENT  GOTO  LOOPTEST 

004010 3028FFFE MOVE  .  W -2(A0),D0 ...ELSE   NEW  MAX,    MAX    :=  ELEMENT 

004014 5341 LOOPTEST SUBQ.W 
n,Di 

UPDATE   ELEMENT  COUNT 
004016 66F4 BNE LOOP IF   COUNT  NOT  ZERO   THEN  GOTO  LOOP 

004018 31C06006 DONE MOVE  .  W DO, MAXNUM STORE   MAXIMUM  NUMBER    IN  SERIES 

00401C 4E75 RTS 

END PGM_5_4B 

Although  the  CMP.W  (A0)  +  ,D0  instruction  appears  to  simplify  this  program,  it 

does  cause  one  slight  problem  —  it  increments  register  AO  while  performing  the  com- 
pare. Now,  when  updating  the  maximum  value,  the  new  maximum  is  no  longer  in  any 

data  register  or  pointed  to  by  any  address  register.  The  address  register  indirect  with  dis- 
placement addressing  mode  can  be  used  to  overcome  this  problem.  By  using  a  displace- 

ment of  -2,  we  essentially  back  the  pointer  up  to  the  element  we  just  compared.  The 
effective  address  for  the  instruction  MOVE  -2(A0),D0  is  calculated  as  follows: 

Effective  Address  of  -2  (AO)  =  (AO)  -2 

The  contents  of  register  AO  are  not  changed  by  this  calculation. 
At  first  glance  CMP.W  (AO)  +  ,D0  may  appear  not  to  optimize  the  loop  processing 

since  the  loop  processing  of  Program  5-46  requires  the  same  number  of  words  as  Pro- 
gram 5-4a.  However,  the  execution  cycles  for  program  5-4a  are  17  or  20  cycles: 

MOVE     8  cycles 
CMP      4  cycles 
BCC       5  cycles  (4  if  branch  not  taken) 
MOVE    (4)  cycles  (not  always  executed) 

1  7  (20)  cycles 

compared  to  13  or  24  cycles  for  Program  5-46: 

CMP       8  cycles 
BCC        5  cycles  (4  if  branch  not  taken) 
MOVE  (12)  cycles  (not  always  executed) 

13  (24)  cycles 
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Although  both  programs  require  the  same  number  of  loop  cycles  to  update  the  max- 
imum, the  second  program  is  slightly  more  efficient  when  no  update  is  required. 

5-5.    NORMALIZE  A  BINARY  NUMBER 

Purpose:     Shift  a  32-bit  binary  number  until  the  most  significant  bit  of  the  number  is  1. 
The  address  of  the  numbenis  defined  by  the  long  word  variable  NUMBER 
at  location  6000.  Store  the  normalized  number  (shifted  number)  in  the 
variable  NORMNUM  at  location  6004.  Store  the  number  of  left  shifts 

required  in  the  byte  variable  SHIFTNUM  at  location  6008.  If  the  number  is 
zero,  clear  both  variables  NORMNUM  and  SHIFTNUM. 

The  processing  is  just  like  converting  a  number  to  a  scientific  notation;  for 
example: 

00057       5  7 
10 

-3 

Sample  Problems: 

a.  Input:  NUMBER 

Output:    NORMNUM  - 
SHIFTNUM  - 

b.  Input:  NUMBER 

Output:    NORMNUM  - 
SHIFTNUM  - 

c.  Input:  NUMBER 

Output:    NORMNUM  - 
SHIFTNUM  - 

d.  Input:  NUMBER 

Output.    NORMNUM  - 
SHIFTNUM  - 

(6000) 
(5000) 
(6004) 
(6008) 
(6000) 
(5000) 
(6004) 
(6008) 
(6000) 
(5000) 
(6004) 
(6008) 
(6000) 
(5000) 
(6004) 
(6008) 

00005000 
30001000 
C0004000 

02 00005000 
00000001 
80000000 1F 

00005000 
00000000 
00000000 
00 
00005000 
C1234567 
C1234567 
00 

Program  5-5: 

00006000 
00004000 

DATA 
PROGRAM 

EQU 
EQU 

$6  000 
$4000 

006000 
006004 
006008 

00006000 
00000004 
00000004 
00000001 

NUMBER 
NORMNUM 
SHIFTNUM 

ORG 
DS.L 
DS.L 
DS.B 

DATA 1 
1 
1 

00004000 ORG PROGRAM 

004000 
004002 
004006 
004008 

7000 
20786000 
2210 
6F06 

PGM_5_5 
MOVEQ 

MOVE  A .  L 
MOVE  .  L 
BLE.  S 

«0,D0 NUMBER, AO 
CA0),D1 
DONE 

00400A 
00400C 
00400E 

5240 E389 
6AFA 

JUSTIFY ADDQ. W 
LSL.L BPL 

#1,D0 
#1,D1 
JUSTIFY 

004010 
004014 

1 1C06008 
21C16004 DONE MOVE .B 

MOVE  .  L DO, SHIFTNUM Dl ,  .NORM 

004018 4E75 RTS 

ADDRESS   OF   NUMBER   TO  BE  NORMALIZED 
NORMALIZED  NUMBER 
NUMBER  OF   SHIFT  REQUIRED   TO  NORMALIZE 

INITIALIZE   SHIFT  COUNT 
GET  ADDRESS  OF   NUMBER   TO  NORMALIZE 
GET  NUMBER   TO  BE  NORMALIZED 
IF   ZERO  OR   NORMALIZED   THEN  DONE 

INCREMENT   SHIFT  COUNT 
SHIFT  NUMBER    1    BIT  TO  THE  LEFT 
AGAIN    IF   MSB   =  0 

STORE   SHIFT  COUNT 
STORE   NORMALIZED  NUMBER 

PGM   5  5 
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Flowchart  5-5: 

C  Start 

T
 
 ' 

Shift  Count  =  0 

Numb  = NUMBER 

Yes 

^JLNo 

Nshift  = Nshift  +  1 
Shift  Numb 

left  1  bit 

No 
Is  >v C  MSB  of  Numb  > 

=  I  ? 
Yes 

NORMNUMB  - Numb 

SHIFTNUM  = 
Shift  Count 

c 
End 

The  BLE  instruction  performs  both  the  test  for  number  being  zero  and  being 

already  justified.  The  status  conditions  for  the  branch  are  set  during  the  MOVE  instruc- 
tion which  loads  the  number  into  data  register  DO.  BLE  causes  a  branch  to  DONE  if  the 

Zero  flag  is  1.  If  the  number  is  already  normalized,  the  most  significant  bit  will  be  1  and 
the  Negative  flag  will  be  set  by  the  MOVE.  In  this  case,  BLE  causes  a  branch  to  DONE  if 
the  Negative  flag  is  1.  Why  can  BLE  be  used  to  perform  this  last  test,  since  the  state  of 
the  Overflow  (V)  flag  must  also  be  taken  into  consideration  when  you  use  the  BLE 
instruction? 

LSL.L  #1,D0  (Logical  Shift  Left  Long)  shifts  the  contents  of  the  specified  data 
register  DO  left  one  bit  and  clears  the  least  significant  bit.  The  most  significant  bit  ends 
up  in  the  Carry  flag  and  the  old  Carry  value  is  lost.  This  use  of  LSL  is  equivalent  to 
adding  DO  to  itself;  the  result  is,  of  course,  twice  the  original  number. 

BPL  causes  a  branch  to  JUSTIFY  if  the  Negative  flag  is  0.  This  condition  may 
mean  that  the  result  was  a  positive  number,  or  it  may  just  mean  that  the  most  significant 

bit  of  the  result  was  0;  the  microprocessor  simply  performs  the  operation;  only  the  pro- 
grammer can  provide  the  interpretation.  Since  the  LSL  instruction  affects  the  state  of 

the  Carry  flag,  how  could  you  modify  this  program  to  use  BCC  (Branch  if  Carry  Clear) 
instead  of  BPL? 
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PROBLEMS 

5-1.    CHECKSUM  OF  DATA 

Purpose:  Calculate  the  checksum  of  a  series  of  8-bit  numbers.  The  length  of  the  series 
is  defined  by  the  variable  LENGTH  at  location  6000.  The  starting  address  of 

the  series  is  contained  in  the  long-word  variable  START  at  location  6002. 
Store  the  checksum  in  the  variable  CHECKSUM  at  location  6006.  The 

checksum  is  formed  by  Exclusive-ORing  all  the  numbers  in  the  list. 

Note:  Checksums  are  often  used  by  paper  tape  and  cassette  systems  to  ensure  that  data 
has  been  correctly  read.  A  checksum  calculated  when  reading  the  data  is  compared  to  a 
checksum  that  is  stored  with  the  data  on  the  tape.  If  the  two  checksums  do  not  agree,  the 
system  will  usually  indicate  an  error,  or  automatically  read  the  data  again. 

Sample  Problem: 

Input:  LENGTH 
START 

Output:  CHECKSUM 

-  (6000)    =  0003 
-  (6002)    =  00005000 
(5000)  =  28 
(5001)  =  55 
(5002)  =  26 

-  (6006)    =  (5000)0(5001)0(5002) =    28-055  0  26 
01101000 

=  001010101 
01111101 

000100110 
01011011 

5B 

5-2.    NUMBER  OF   ZERO,   POSITIVE,   AND  NEGATIVE 
NUMBERS 

Purpose:  Determine  the  number  of  zero,  positive  (most  significant  bit  zero,  but 
entire  number  not  zero),  and  negative  (most  significant  bit  1)  elements  in  a 

series  of  signed  16-bit  numbers.  The  length  of  the  series  is  defined  by  the 
variable  LENGTH  at  location  6000  and  the  starting  address  is  defined  by 
the  contents  of  the  long  word  variable  START  at  location  6002.  Place  the 
number  of  negative  elements  in  variable  NUMNEG  at  location  6006,  the 
number  of  zero  elements  in  variable  NUMZERO  at  location  6008,  and  the 
number  of  positive  elements  in  variable  NUMPOS  at  location  600A. 

Sample  Problem: 

Input:    LENGTH    -    (6000)  =  0006 
START     -    (6002)  =  00005000 

(5000)  =  7602 
(5002)  =  8D48 
(5004)  =  2120 
(5006)  =  0000 
(5008)  =  E605 
(500A)  =  0004 
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Output:       2  negative,  1  zero,  3  positive,  so 

NUMNEG      -    (6006)  =  0002 
NUMZERO    -    (6008)  =  0001 
NUMPOS     -    (600A)  =  0003 

5-3.    FIND  MINIMUM 

Purpose:  Find  the  smallest  element  in  a  series  of  unsigned  byte  data.  The  length  of 
the  series  is  defined  by  the  variable  LENGTH  at  location  6000  and  the  start- 

ing address  of  the  series  is  contained  in  the  long-word  variable  START  at 
location  6002.  Store  the  minimum  byte  value  in  the  variable  NUMMIN  at 
location  6006. 

Sample  Problem: 

LENGTH  - (6000)  = 
=  0005 

START  - (6002)  = 
=  00005000 

(5000)  = 

=  65 

(5001)  = 

=  79 

(5002)  = 

=  15 

(5003)  = 

=  E3 

(5004)  = 

=  72 

NUMMIN  - (6006)  = =    1  5,  since  this  is  the  smallest of  five  unsigned  numbers 

5-4.    COUNT  1  BITS 

Purpose:  Determine  the  number  of  bits  which  are  one  in  the  16-bit  variable  NUM  at 
location  6000,  and  store  the  result  in  the  variable  NUMBITS  at  location 
6002. 

Sample  Problem: 

Input:    NUM  -(6000)  =  B794  =  101  101 1 1 10010100 
Output:    NUMBITS  -  (6002)  =  09 

5-5.    FIND  ELEMENT  WITH  MOST  1  BITS 

Purpose:  Determine  which  element  in  a  series  of  16-bit  numbers  has  the  largest  num- 
ber of  bits  that  are  one.  The  length  of  the  series  is  defined  by  the  variable 

LENGTH  at  location  6000  and  the  starting  address  of  the  series  is  contained 

in  the  long-word  variable  START  at  location  6002.  Store  the  value  with  the 
most  1  bits  in  the  variable  NUM  at  location  6006.  If  two  or  more  elements 

have  the  same  number  of  1  bits,  use  the  value  of  the  earliest  element  in  the 
series. 

Sample  Problem: 

Input: LENGTH 
START 

Output:  NUM 

(6000)  =  0005 
(6002)  =  00005000 
(5000)  =  6779  =  0110011101111001 
(5002)  =  15E3  =  00010101 1 1 10001 1 
(5004)  =  68F2  =  01 1010001 1 1 10010 
(5006)  =  8700  =  1000011100000000 
(5008)  =  592A  =  0101 100100101010 
(6006)  =  6779,  since  this  element  is  the  first  element 

in  the  series  to  have  ten  bits  =  1 
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Character-Coded  Data 

Microprocessors  often  handle  data  which  represents  printed  characters  rather 
than  numeric  quantities.  Not  only  do  keyboards,  teletypewriters,  communications 

devices,  displays,  and  computer  terminals  expect  or  provide  character-coded  data,  but 
many  instruments,  test  systems,  and  controllers  also  require  data  in  this  form. 

ASCII  (American  Standard  Code  for  Information  Interchange)  is  the  most  com- 
monly used  code;  others  include  Baudot  (telegraph)  and  EBCDIC  (Extended  Binary- 

Coded-Decimal  Interchange  Code). 
Throughout  this  book,  we  will  assume  all  of  our  character-coded  data  to  be 

seven-bit  ASCII,  as  shown  in  Table  6-1;  the  character  code  occupies  the  low-order 
seven  bits  of  the  byte,  and  the  most  significant  bit  of  the  byte  holds  a  0  or  a  parity  bit. 

HANDLING  DATA  IN  ASCII 

Here  are  some  principles  to  remember  in  handling  ASCII-coded  data: 

1.  The  codes  for  the  numbers  and  letters  form  ordered  sequences.  Since  the 

ASCII  codes  for  the  numbers  0  through  9  are  3016  through  3916,  you  can  con- 
vert a  decimal  digit  to  the  equivalent  ASCII  characters  (and  ASCII  to  decimal) 

by  means  of  a  simple  additive  factor:  3016  =  ASCII  0.  Since  the  codes  for  the 
upper-case  letters  (41 16  through  5A16)  are  ordered  alphabetically,  you  can 
alphabetize  strings  by  sorting  them  according  to  their  numerical  values. 

2.  The  computer  does  not  distinguish  between  printing  and  non-printing 
characters.  Only  the  I/O  devices  make  that  distinction. 

3.  An  ASCII  I/O  device  handles  data  only  in  ASCII.  For  example,  if  you  want 

an  ASCII  printer  to  print  the  digit  7,  you  must  send  it  3716  as  the  data;  0716  is 
the  bell  character.  Similarly,  if  an  operator  presses  the  9  key  on  an  ASCII 

keyboard,  the  input  data  will  be  3916;  0916  is  the  horizontal  tab  character. 

95 
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Table  6-1.  Hexadecimal  ASCII  Character  Codes 

\MSBs 

LSBs\ 
0 1 2 3 4 5 6 7 Control  Characters 

0 NUL DLE CD 
or 

(J 

(S) 

P P NUL Null DC1 Device  control  1 
1 SOH DC1 1 A Q a q SOH 

Start  of  heading DC2 Device  control  2 
2 STX 

DC2 Z, B R b r CTV 
O  I  A 

otari  ot  text Device  control  3 
3 ETX DC3 

44- Tf 
3 C S c s ETX End  of  text DC4 Device  control  4 

4 EOT DC4 $ 4 D T d t EOT End  of  transmission NAK Negative  acknowledge 
5 ENQ NAK % 5 E U e u 

ENQ Enquiry 
SYN Synchronous  idle 

6 ACK SYN & 6 F V f V ACK Acknowledge ETB End  of  transmission  block 
7 BEL ETB 7 G W 9 w BEL 

Bell,  or  alarm CAN Cancel 
8 BS CAN ( 8 H X h X 

BS 

Backspace 
EM 

End  of  medium 
9 HT EM ) 9 I Y i y 

HT 
Horizontal  tabulation SUB 

Substitute 
A LF SUB * J Z j z 

LF 
Line  feed ESC 

Escape 

B VT 
ESC + > K [ k VT Vertical  tabulation 

FS 

File  separator 
C FF 

FS 
l < L \ I I FF Form  feed 

GS 
Group  separator 

D CR 
GS M ] m 

CR Carriage  return 

RS 

Record  separator 
E SO 

RS 
> N n 

SO 
Shift  out 

US 
Unit  separator 

F SI 
US / ? 0 0 DEL 

SI 

Shift  in 

SP 

Space DLE Data  link  escape DEL Delete 

4.  Many  ASCII  devices  do  not  use  the  entire  character  set.  For  example, 

devices  may  ignore  many  control  characters  and  may  not  print  lower-case 
letters. 

5.  ASCII  control  characters  often  have  widely  varying  interpretations.  Each 
ASCII  device  typically  uses  control  characters  in  a  special  way  to  provide 
features  such  as  cursor  control  on  a  CRT,  and  to  allow  software  control  of 
characteristics  such  as  rate  of  data  transmission,  print  width,  and  line  length. 

6.  Some  widely  used  ASCII  control  characters  are: 

0AIA    line  feed  (LF) 

0Dl6    carriage  return  (CR) 

08 l6  backspace 
7F|6     rubout  or  delete  character  (DEL) 

7.  Each  ASCII  character  occupies  eight  bits.  This  allows  a  large  character  set  but 
is  wasteful  when  only  a  few  characters  are  actually  being  used.  If,  for  example, 
the  data  consists  entirely  of  decimal  numbers,  the  ASCII  format  (allowing  one 
digit  per  byte)  requires  twice  as  much  storage,  communications  capacity,  and 
processing  time  as  does  the  BCD  format  (allowing  two  digits  per  byte). 

Most  assembly  languages  have  features  that  make  character-coded  data  easy  to 

handle.  In  Motorola's  assembly  language,  quotation  marks  around  a  character  indicate 
the  character's  ASCII  value.  For  example, 

MOVE.B  #  'A', DO is  the  same  as 
MOVE.B  #  $41, DO 

The  first  form  is  preferable  for  several  reasons.  It  increases  the  readability  of  the 
instruction;  it  also  avoids  errors  that  may  result  from  looking  up  a  value  in  a  table.  The 
program  does  not  depend  on  ASCII  as  the  character  set,  since  the  assembler  handles  the 
conversion  using  whatever  code  has  been  designed  into  it. 
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PROGRAM  EXAMPLES 

6-1.    LENGTH  OF  A  STRING  OF  CHARACTERS 

Purpose:  Determine  the  length  of  a  string  of  characters.  The  starting  address  is  con- 
tained in  the  32-bit  variable  START  at  location  6000.  The  end  of  the  string  is 

marked  by  an  ASCII  carriage  return  character  (0Dl6).  Place  the  length  of  the 
string  (excluding  the  carriage  return)  in  the  variable  LENGTH  at  location 
6004. 

Sample  Problems: 

Input: START 
-  (6000) 00005000 

(5000) OD 

Output: LENGTH -  (6004) 0000 
Input: START 

-  (6000) 00005000 
(5000) 4D  W 

(5001) 

43  *C 
(5002) 

36  '6' 

(5003) 

38  '8' 

(5004) 

30  '0' 

(5005) 

30  '0' 

(5006) 

30  '0' 

(5007) OD  CR 
Output. LENGTH 

-  (6004) 
07 

Flowchart  6-1  a: C         Start  J 

Pointer  =  (START) 

Length  =  0 

Yes 

Length  =Length  +  1 
Pointer  =  Pointer  +  1 (LENGTH)  =  Length 

C End 

Program  6-1a: 
00006000 
00004000 

DATA  EQU 
PROGRAM  EQU 

$6000 
$4000 

00006000  ORG  DATA 
006000   00000004  START         DS.L         1  ADDRESS  OF  STRING 
006004   00000002  LENGTH       DS.W  1  NUMBER  OF   CHARACTERS    IN  STRING 
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0000000D 
C  R 

E  Q  U 

$  0D 
ASCII   VALUE   FOR  CARRIAGE  RETURN 

00004000 

0  R  r> 

r K Uh K AM 

004000 
004004 

20786000 
7  00  0 

PGM_6_ 
1A  MOVEA.L MOVEQ START, AO 

HO,  DO 
POINTER   TO   START  OF  STRING 
INITIALIZE   LENGTH  COUNTER 

004006 
00400A 

0C18000D 
6  7  04 

LOOP CMPI .B 
BEQ.  5 

KCR, (A0)+ 
DONE 

IS   CURRENT  CHAR   A  CARRIAGE  RETURN? 
IF    YES   THEN  DONE 

00400C 
00400E 

5240 
60F6 

ADDQ.W 
BRA 

#1,D0 
LOOP 

...ELSE    INCREMENT  LENGTH  COUNTER 
CONTINUE  SCAN 

004010 31C06004 DONE MOVE . W DO, LENGTH SAVE   STRING  LENGTH 

004014 4E75 RTS 

END PGM_6_1A 

As  far  as  the  processor  is  concerned,  the  carriage  return  (CR)  is  just  another 

ASCII  code  (0D16).  The  fact  that  the  carriage  return  can  cause  an  output  device  to  per- 
form a  control  function  rather  than  print  a  symbol  does  not  affect  the  processor.  The 

processor  simply  treats  0D16  as  a  value  that  is  to  be  searched  for. 
The  search  is  performed  using  the  compare  instruction  CMPI.  This  instruction 

sets  the  flags  as  if  the  immediate  operand,  the  carriage  return  (0D16)  character,  had  been 
subtracted  from  the  destination  operand.  The  destination  operand  (the  next  character  in 
the  string)  is  not  affected.  In  this  program  the  CMPI  instruction  affects  the  Zero  (Z)  flag 
as  follows: 

Z  =  1  if  the  character  in  the  string  is  a  carriage  return. 
Z  =  O  if  it  is  not  a  carriage  return. 

In  addition  to  performing  the  compare,  the  CMPI  instruction  also  uses  the  post- 
incrementing  address  mode  to  update  the  string  character  pointer.  Thus,  a  portion  of  the 

loop  control  processing  shown  in  Flowchart  6-\a  has  been  completed.  Normally,  com- 
bining several  instructions  like  this  makes  a  program  more  efficient.  However,  how 

would  the  results  of  the  flowchart  and  program  differ  if  you  also  needed  to  save  the 
pointer  to  the  carriage  return? 

The  postincrementing  address  mode  is  another  variation  of  the  MC68000  address 
register  indirect  modes.  Like  the  address  register  indirect  mode,  the  contents  of  the 
specified  address  registers  are  used  to  determine  the  address  of  operand.  However  after 
the  data  reference,  the  processor  updates  the  contents  of  the  register  by  incrementing  it 
by  the  size  associated  with  the  data  reference.  Incrementing  is  by  one,  two,  or  four  bytes 
depending  on  whether  the  data  reference  size  is  byte,  word,  or  long  word,  respectively. 
The  only  exception  to  this  occurs  when  address  register  A7  (the  stack  pointer)  is  used 
and  the  data  size  is  byte.  In  this  case  the  stack  pointer  is  incremented  by  two  bytes  to 
ensure  that  the  pointer  is  properly  aligned  on  a  word  boundary. 

The  instruction  ADDQ  adds  1  to  the  string  length  counter  in  data  register  DO. 
This  counter  was  initialized  to  zero  before  the  loop  began  by  the  MOVEQ  #0,D0 
instruction.  You  must  remember  to  initalize  variables  before  using  them  in  a  loop; 
failure  to  do  so  is  a  common  programming  error. 

By  rearranging  the  logic  and  changing  the  initial  conditions,  you  can  shorten  the 

program  and  decrease  the  execution  time.  If  we  rearrange  the  flowchart  so  that  the  pro- 
gram increments  the  string  length  before  it  checks  for  the  carriage  return,  only  one 

branch  instruction  is  needed  instead  of  two. 



Character-Coded  Data  99 

Program  6-1  b: 
00006000 
00004000 

DATA 
PROGRAM 

EQU 
EQU 

$6000 
$4000 

006000 
006004 

00006000 
00000004 
00000002 

START 
LENGTH 

ORG 
DS.L 
DS  .  W 

DATA 
1 
1 

0000000D 
CR 

EQU 
$0D 

00004000 ORG PROGRAM 

004000 
004004 
004006 

20786000 
70FF 
7  20D 

PGM_6_1B MOVEA. L MOVEQ 
MOVEQ 

START, AO #-l,D0 
#CR,D1 

004008 
00400A 
00400C 

5240 
B218 
66FA 

LOOP ADDQ. W 
CMP.B 
BNE 

H,D0 (A0)+,D1 
LOOP 

00400E 31C06004 MOVE . W DO, LENGTH 
0040  1  2 4E75 R  rs 

END PGM  6  IB 

Flowchart  6-1  b: 

c Start 

I 

Pointer  =  (START) 

Length  =  —  1 

Length  =  Length  +  1 

Yes 

Pointer=Pointer  +  1 

ADDRESS  OF  STRING 
NUMBER   OF    CHARACTERS    IN  STRING 

ASCII    VALUE   FOR  CARRIAGE  RETURN 

POINTER   TO   START  OF  STRING 
INITIALIZE   LENGTH  COUNT 
INITIALIZE   WITH  ASCII    VALUE   OF  CR 

INCREMENT   LENGTH  COUNT 
IS  CURRENT  CHAR  A  CARRIAGE  RETURN? 
IF    NO   THEN   CONTINUE  SCAN 

...ELSE   DONE,    SAVE   LENGTH  COUNT 

(LENGTH)  =  Length 

C 

I 
End 

J 

As  you  can  see  in  Program  6-\b,  incrementing  the  string  length  at  the  beginning 
of  the  loop  rather  than  at  the  end  allows  elimination  of  one  of  the  branch  instructions. 

We  have  made  another  less  obvious  change  in  the  loop  of  Program  6-\b  that  further 
decreases  execution  time  of  the  loop:  we  have  used  data  register  direct  addressing  for 
the  source  operand  of  the  Compare  instruction  instead  of  using  immediate  data  as  we 

did  in  Program  6-\a.  This  change  reduces  the  object  code  for  the  Compare  instruction 
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by  two  bytes  and  saves  the  microprocessor  from  loading  the  ASCII  value  for  carriage 
return  each  time  through  the  loop.  In  general,  eliminating  the  use  of  the  immediate 

operands  within  loops  can  improve  the  loop  efficiency.  The  family  of  "quick"  instruc- 
tions such  as  MOVEQ  and  ADDQ  is  an  exception  to  this  general  rule.  You  should  also 

note  that  the  use  of  immediate  operands  does  provide  for  better  program  documenta- 
tion. 

Neither  of  the  preceding  programs  has  loops  which  terminate  by  decrementing  a 
counter  to  zero  or  by  incrementing  a  counter  to  reach  a  maximum  value.  In  fact,  the 
processor  will  simply  continue  examining  characters  until  it  finds  a  carriage  return. 
Obviously,  this  will  create  a  problem  if  the  string,  because  of  an  error  or  an  omission, 
does  not  contain  a  carriage  return.  It  is  good  programming  practice  to  place  a  maximum 
count  in  a  loop  like  this  even  though  it  does  not  appear  to  be  necessary.  What  would 
happen  if  the  example  programs  were  used  on  a  string  which  does  not  contain  a  carriage 

return?  Program  6-lc  corrects  this  problem. 

Program  6-1  c: 
00006000  DATA  EQU  $6000 
000040  0  0  PROGRAM     EQU  $1+000 

00006000  ORG  DATA 
006000    00000004  START         DS.L  1  ADDRESS   OF  STRING 
006004   00000002  LENGTH       DS.W  1  NUMBER   OF   CHARACTERS    IN  STRING 

0000000D  CR  EQU  $00  ASCII    VALUE   FOR   CARRIAGE  RETURN 

00004000  ORG  PROGRAM 

004000    20786000  PGM  6    1C   MOVE A . L  START, AO  POINTER   TO   START  OF  STRING 
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004004  74FF 
004006  3002 
004008  720D 

MOVEQ       #2  56-1  , D2 MOVE.W  D2,D0 
MOVEQ  #CR,D1 

INITIALIZE  MAX   STRING  LENGTH  =  256 
LENGTH  COUNT   :=  MAX  STRING  LENGTH 
INITIALIZE   WITH  ASCII    VALUE   OF  CR 

SCAN  STRING  FOR  CARRIAGE  RETURN.  STOP  SCAN  WHEN 
CARRIAGE   RETURN  FOUND  OR   256   CHARACTERS  SCANNED. 

00400A  B218 
00400C  57C8FFFC 

LOOP CMP.B DBEQ 
(A0)+,D1 
DO, LOOP 

IS  CURRENT  CHAR  A  CARRIAGE  RETURN? 
IF   NO  AND   NOT  END  OF    STRING   -  CONT. 

004010  9440 
004012  31C26004 

SUB.W  D0,D2 
MOVE.W     D2 , LENGTH 

DETERMINE  STRING  LENGTH 
SAVE   STRING  LENGTH 

004016  4E75 
RTS 

END PGM  6  1C 

This  program  makes  use  of  one  of  the  Test  Condition,  Decrement  and  Branch 

instructions,  DBcc.  This  set  of  instructions  can  be  very  useful  in  loop  or  array  process- 
ing. The  DBcc  instructions  have  the  form 

and  perform  the  following  steps: 

1.  If  the  condition  being  tested  is  satisfied,  control  passes  to  the  instruction 
following  the  DBcc. 

2.  If  the  condition  is  not  satisfied  then 

a.  The  lower  16-bits  of  the  specified  data  register  are  decremented  by  one. 

b.  If  the  result  is  a  —  1,  control  passes  to  the  instruction  following  the  DBcc. 

c.  If  the  result  is  not  —  1,  control  is  transferred  to  the  specified  branch  loca- 
tion. The  location  must  be  within  a  sign-extended  16-bit  displacement 

from  the  current  PC  value. 

The  conditional  tests  allowed  by  the  DBcc  instructions  are  identical  to  the  tests 

allowed  by  the  Bcc  instructions  except  that  DBcc  also  permits  the  conditions  "never 
true"  or  "false"  (F)  and  "always  true"  (T).  The  Motorola  MC68000  assembler  allows 
DBRA  as  well  as  DBF. 

With  the  DBEQ  instruction,  the  two  instruction  sequences  CMP  and  DBEQ  will 
scan  a  string  with  a  maximum  length  of  256  bytes  for  a  carriage  return  character.  The 
scan  will  terminate  either  when  a  carriage  return  is  found  or  when  the  entire  256 

character  string  has  been  searched.  You  will  note  that  in  either  termination,  the  instruc- 
tion immediately  following  the  DBEQ  will  always  be  executed.  In  this  program  the  same 

calculation  will  be  performed  regardless  of  the  cause  of  termination.  However,  in  some 
programs  you  may  want  to  perform  different  operations  based  on  which  condition 
caused  the  termination.  When  this  is  necessary,  you  can  follow  the  DBcc  instruction 
with  an  appropriate  Bcc  branch  instruction  to  transfer  control  to  the  program  associated 
with  the  conditional  test  that  caused  termination. 

When  using  the  DBcc  instructions,  you  must  be  careful  to  properly  initialize  data 

counters.  In  Program  6-lc,  the  counter  was  initialized  to  256—1  (255),  since  the  loop 
terminates  when  the  counter  reaches  -1,  not  zero.  The  operand  form  256-1  instead 
of  255  was  used  in  order  to  more  clearly  document  this  initialization  condition. 

After  the  loop  terminates,  the  counter  does  not  contain  the  length  of  the  string: 

we  must  calculate  the  string  length  by  subtracting  the  counter  contents  from  the  max- 
imum string  length  minus  1.  (Remember  the  termination  condition!) 

DBcc  Dn,  <  label  > 
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6-2.    FIND  FIRST  NON-BLANK  CHARACTER 

Purpose:  Search  a  string  of  ASCII  characters  for  a  non-blank  character.  The  starting 
address  of  the  string  is  contained  in  the  32-bit  variable  START  at  location 
6000.  Store  the  address  of  the  first  non-blank  character  in  the  32-bit  variable 
POINTER  at  location  6004.  A  blank  character  is  the  same  as  a  space  and  the 
ASCII  code  for  this  character  is  20li:. 

Sample  Problems: 
a.  Input: 

Flowchart  6-2: 

START      -   (6000)  =  00005000 

Output:  POINTER 
Input:  START 

Output:  POINTER 

(5000)  =  37  '7' (6004)  =  00005000 
(6000)  =  5000 
(5000)  =  20  blank 
(5001)  =  20  blank 
(5002)  =  20  blank 

(5003)  =  46  'F' (5004)  =  20  blank 
(6004)  =  00005003.  since  the  previous 
memory  locations  all  contained  blanks. 

C         Start  J 

T
 
 4 

Pointer  =  (START) 

Program  6-2: 

Pointer  = 
Pointer  +  1 (POINTER)  =  Pointer 

C 

J 
End 

00006000 
00004000 

DATA  EQU  $6000 
PROGRAM     EQU  $4000 

00006000 
006000  00000004 
006004  00000004 

00000020 

00004000 

004000  20786000 
004004  7220 

START 
ORG 
DS.L DATA 1 

1 POINTER  DS.L 

BLANK  EQU.B  1  ' 
ORG  PROGRAM 

PGM_6_2     MOVE A . L  START, AO 
MOVEQ  tt BLANK ,  D  1 

ADDRESS  OF  STRING 
ADDRESS   OF   FIRST  NON-BLANK 

ACSII    VALUE    FOR  BLANK/SPACE 

POINTER   TO   START  OF  STRING 
INITIALIZE   WITH  ASCII    VALUE  FOR 

004006  B21 CMP.B  (A0)+,D1 
S   CURRENT   CHAR   A  BLANK' 
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004008   67FC  BEQ  LOOP  IF    YES   THEN  CONTINUE  SCAN 

00400A   5388  SUBQ.L  «1,A0  ..ELSE   ADJUST   POINTER   TO  CURRENT  CHAR 
OO^OOC   2 1 C  86  0  01+  MOVE  A .  L  AO, POINTER  SAVE   ADDRESS  OF   FIRST  NON-BLANK 
004010  4E75  RTS 

END  PGM  6  2 

Note  the  use  of  the  apostrophes  0)  or  single  quotation  marks  before  and  after  the 
ASCII  character.  You  can  place  a  single  ASCII  character  in  an  MC68000  assembly 
language  program  by  preceding  it  and  following  it  with  an  apostrophe  C)  as  in  the  EQU 
statements.  The  EQU  is  not  a  MC68000  instruction  but  rather  an  assembly  language 
directive  which  assigns  the  expression  in  the  operand  field  to  the  label  in  the  label  field. 

The  .B  suffix  is  required  to  put  the  ASCII  code  in  the  low-order  byte;  otherwise  the 
assembler  puts  the  ASCII  value  in  the  high-order  byte  of  a  16-bit  value  and  fills  out  the 
16-bit  value  with  zero  bits. 

You  can  place  a  string  of  ASCII  characters  in  memory  by  using  the  DC  (Define 
Constant)  directive  of  the  MC68000  assembler.  Like  the  EQU  directive,  the  string  is 
placed  within  apostrophes  in  the  DCs  operand  field.  If  an  apostrophe  is  contained 
within  the  string,  the  apostrophe  must  be  preceded  by  another  apostrophe.  Examples 
of  some  string  definitions  are: 

DC    'ABCD'  Defines  string  ABCD 
DC    'IT"S'    Defines  string  IT'S 

Each  ASCII  character  requires  eight  bits  of  storage,  as  compared  to  four  bits  for  a 
BCD  digit.  Therefore,  ASCII  is  a  relatively  inefficient  format  in  which  to  store  or 
transmit  numerical  data. 

Looking  for  spaces  in  strings  is  a  common  task  in  microprocessor  applications. 
Programs  often  reduce  storage  requirements  by  removing  spaces  that  serve  to  increase 

readability  or  fit  data  in  particular  formats.  Storing  and  transmitting  extra  space  charac- 
ters obviously  can  waste  memory,  communications  capacity,  and  processor  time. 

However,  operators  find  it  easier  to  enter  data  and  programs  when  the  computer  accepts 
extra  spaces;  the  entry  is  then  said  to  be  in  free  format  rather  than  fixed  format.  One  use 
for  microcomputers  is  to  convert  data  and  commands  between  the  forms  that  are  easy 

for  people  to  handle  and  the  forms  that  are  most  efficient  for  computers  and  com- 
munication systems. 

The  autoincrement  addressing  mode  used  in  the  CMP  (AO)  +  ,D1  instruction  pro- 
vides us  with  a  fast  and  simple  way  to  step  to  the  next  character.  However,  once  we  have 

found  the  first  non-blank  character,  we  must  remember  that  the  pointer  has  already 
been  incremented  past  the  address  we  want  to  save.  We  must  therefore  explicitly 
subtract  the  increment  of  1  with  the  instruction  SUBQ  #1,A0.  This  instruction  would 
not  be  necessary  if  we  were  working  backwards  instead  of  forward,  since  the  MC68000 
autodecrements  before  using  the  address.  However,  as  we  noted  earlier,  if  you  use 
autodecrementing  you  must  use  a  starting  address  that  is  one  beyond  the  end  of  the 
string. 

6-3.    REPLACE  LEADING  ZEROS  WITH  BLANKS 

Purpose:  Edit  a  string  of  ASCII  decimal  characters  by  replacing  all  leading  zeros  with 

blanks.  The  starting  address  of  the  string  is  contained  in  the  long-word  varia- 
ble START  at  location  6000.  The  first  two  bytes  of  the  string  represent  the 

length  of  the  string  in  bytes.  The  actual  string  of  characters  starts  in  the  third 

byte. 
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a.  Input:      START         -      (6000)  =  00005000 
(5000)  =  0002    Length  of  the  string  in  bytes 

(5002)  =  36  '6' 
(5003)  =  39  '9' 

The  program  leaves  the  string  unchanged,  since  the  leading  digit  is  not  zero. 

b.  Input:  START (6000) 00005000 
(5000) 0008 

(5002) 

30  '0' 

(5003) 

30  '0' 

(5004) 

38  '8' 

(5002) 20  Space 
(5003) 20  Space 
(5004) 

38  '8' 

The  program  replaces  the  two  leading  zeros  with  ASCII  spaces.  The  printed 

result  would  be  '  8...1  instead  of  4008...\ 

Flowchart  6-3: 

c Start J 

Pointer =  (START) 
Count =  (Pointer) 
Pointer =  Pointer+2 
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Program  6-3: 
00006000 DATA EQU $6  000 
00004000 PROGRAM EQU $4000 

00006000 ORG DATA 
006000 00000004 START DS  .  L ADDRESS   OF  STRING 

00000030 CHAR_0 
EQU.  B 

'  0  1 ASCI  I    VALUE   FOR  ZERO 
00000020 BLANK EQU .  B ASCII    VALUE   FOR  BLANK/SPACE 

00004000 ORG PROGRAM 

004000 20786000 PGM_6_3 MOVE  A . L START, AO POINTER   TO   START  OF  STRING 
n  n  u  n  n  u 7  0  3  0 M  O  W  F  r» TrLrlMK    U  ;  UU INITIALIZE     WITH  ASCII  ZERO 
004006 7220 

MOVEQ 
ft B LANK,  D 1 INITIALIZE   WITH  ASCII  BLANK 

0  040  0  8 3418 MOVE  .  W (AO )+  D2 ctd  [Mr    1  FMrTH   Tn  rio 
00400A 6  70E BEQ.S DONE IF   LENGTH   =   0   THEN  DONE 
00400C 5  342 SUBQ. W #1,D2 ADJUST   STRING  COUNTER   FOR  DBRA 

00400E B018 LOOP CMP.B (A0)+,D0 IS   CURRENT  CHAR   A  ZERO? 
0040  10 6608 BNE  .  S DONE IF   NO   THEN  DONE 

004012 1  141FFFF MOVE  .B D1,-1(A0) REPLACE   ZERO  BY   BLANK    IN  CURR  CHAR 
004016 5 1CAFFF6 DBRA D2, LOOP STOP   SCAN    IF   ALL   CHAR   =  '0* 

0000401A DONE EQU DONE 

00401A 4E75 RTS 

END 
PGM_6_3 

The  string  storage  format  with  the  length  of  the  string  immediately  preceding  the 
actual  string  is  quite  frequently  used  in  microprocessor  applications.  With  this  format 

the  length  is  known;  thus  you  don't  have  to  scan  for  a  carriage  return  and  can  easily 
move  strings  in  memory. 

Editing  strings  of  decimal  digits  to  improve  their  appearance  is  a  common  task 
in  microprocessor  programs.  Typical  procedures  include  the  removal  of  leading  zeros, 

justification,  the  addition  of  signs  (-1-  or  — ),  delimiters  or  symbols  for  units  (such  as  $, 
%,  or  #),  and  rounding.  Programs  should  print  numbers  in  the  form  that  the  user 

wants  and  expects;  results  like  "0006",  "$27. 34382",  or  "135000000"  are  annoying 
and  difficult  to  interpret. 

This  loop  has  two  exits  —  one  if  the  processor  finds  a  non-zero  digit  and  the  other 
if  it  scans  the  entire  string.  In  an  actual  application,  you  would  have  to  be  careful  to  leave 
one  zero  if  all  the  digits  in  the  string  are  zero.  How  would  you  modify  the  program  to  do 
this? 

We  have  assumed  that  all  the  digits  in  the  string  are  in  ASCII;  that  is,  the  digits 

used  are  3016  through  3916  rather  than  the  binary  representation  of  the  numbers  0  to  9. 
Converting  a  digit  from  BCD  to  ASCII  is  simply  a  matter  of  adding  30 16  (ASCII  zero), 
while  converting  from  ASCII  to  decimal  involves  subtracting  the  same  number. 

The  instruction  MOVE.B  Dl,-  1(A0)  places  an  ASCII  space  (2016)  in  a  memory 
location  that  previously  contained  an  ASCII  zero.  Address  register  indirect  addressing 

with  a  displacement  of  —  1  is  used  to  make  up  for  the  +  1  that  was  added  to  register  AO 
by  the  CMP.B  (A0)  +  ,D0  instruction. 

The  DBRA  instruction  ensures  that  the  program  does  not  continue  beyond  the 
end  of  the  string.  DBRA  is  a  form  of  the  DBcc  instruction  for  which  the  conditional  test 
is  never  true.  DBRA,  or  its  equivalent  form  DBF,  is  functionally  equal  to  the  instruction 
sequence: 

SUBI.W  #1,D2 
BNE  LOOP 
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The  DBRA  instruction  thus  always  causes  a  branch  back  to  LOOP  unless  the 

entire  string  has  been  processed  (D2=  — 1). 

6-4.    ADD  EVEN  PARITY  TO  ASCII  CHARACTERS 

Purpose:  Add  even  parity  to  a  string  of  7-bit  ASCII  characters.  The  starting  address  of 
the  string  is  contained  in  the  long  word  START  at  location  6000.  The  first 
word  of  the  string  represents  the  string  length  in  bytes.  The  actual  string  of 
characters  starts  in  the  third  byte.  The  parity  bit  is  the  most  significant  bit  of  a 
byte;  for  even  parity  the  bit  is  set  to  1  if  that  makes  the  total  number  of  1  bits 
in  the  byte  an  even  number;  otherwise  it  is  set  to  0.  In  either  case  the  final 
number  of  1  bits  is  even. 

Sample  Problem: 

Input: START  - (6000)  = 
00005000 

(5000)  = 
0006 string  length 

(5002)  = 31 001 1 0001 
(5003)  = 32 001 1 0010 

(5004)  = 
JO 001 1 001 1 

(5005)  = 
34 

001 1 0100 

(5006)  = 35 001 1 0101 
(5007)  = 

36 001 1 01 10 
Output (5002)  = B1 

101 1 0001 
(5003)  = 

B2 101 1 0010 

(5004)  = 
33 001 1 001 1 

(5005)  = 
B4 101 1 01 00 

(5006)  = 
35 001 1 0101 

(5007)  = 
36 

001 1 
01 10 

Progra m  6-4: 
00006000 DATA EQU $6  000 
00004000 PROGRAM EQU $4000 

00006000 ORG DATA 
006000 00000004 START DS.L 1 ADDRESS  OF  STRING 

00004000 ORG PROGRAM 

004000 20786000 PGM_6_4 MOVEA. L START, AO POINTER   TO   START  OF  STRING 
004004 3418 MOVE . W (A0)+,D2 STRING  LENGTH  TO  D2 
004006 6  7  20 BEQ.S DONE IF   LENGTH   =   0   THEN  DONE 
004008 5342 5UBQ.W #1,D2 ADJUST   STRING  COUNTER   FOR  DBRA 
00400A 76  0  0 

MOVEQ 
#0,D3 CONSTANT   ZERO  FOR  ADDX  INSTRUCTION 

0000400C MAIN  LOOP  EQU 
00400C 1218 MOVE.B (A0)+, Dl GET  CURRENT  CHARACTER 
00400E 7  000 

MOVEQ 
#0,D0 CLEAR   BIT  COUNTER 

00004010 PAR  I TY_ LOOP  EQU 
004010 E309 LSL.B #1,D1 SHIFT  MSB   OF   CHAR    INTO  C   &  X-BITS 004012 D103 ADDX.B D3,D0 ADD   X-BIT   TO  BIT  COUNT 
004014 4A01 TST.B Dl TEST    IF   ALL   BITS   =    1  COUNTED 
004016 66F8 BNE PAR  I TY_LOOP IF   NO   THEN  CONTINUE  COUNTING 

004018 08000000 BTST.B HO, DO ...ELSE   CHECK  FOR  ODD  PARITY 
00401C 6  706 BEQ.  S NEXT_CHAR IF   EVEN   THEN  PROCESS  NEXT  CHAR 
0040  1E 08E80007FFFF BSET.B #7, -1(A0) . . .ELSE   SET   PARITY  BIT 

00004024 NEXT  CHAR  EQU 
004024 51CAFFE6 DBRA D2,MAIN_LOOP CONTINUE    IF   CHAR   LEFT    IN  STRING 

00004028 DONE EQU STRING  NOW   HAS   EVEN  PARITY 

004028 4E75 RTS 

END  PGM  6_4 
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Flowchart  6-4: 

c Start 

Pointer =  (START) 
Count =  (Pointer) 

Pointer =  Pointer  +  2 

Bit  Count  =  0 
Data  =  (Pointer) 

Pointer  =  Pointer  +  1 

Shift  Data  Left 
One  Bit  Logically 

(LSB  =  0) 

Bit  Count  = Bit  Count  + Extend  Flag 

Parity Loop 

Yes 

Is1 

Bit  Count" 
Jven(LSB±OL ? 

Set  MSB  of 
(Pointer  -  1 )  to  1 

Count  =  Count  -  1 

Is 

Count 
Yes 
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Parity  provides  a  simple  means  of  checking  for  errors  on  noisy  communications 
lines.  If  the  transmitter  sends  parity  along  with  the  actual  data,  the  receiver  can  then 
check  for  correct  parity  of  the  data  that  it  receives.  If  the  parity  is  not  correct,  the 
receiver  can  request  retransmission  of  the  data.  If  there  is  a  single  bit  in  error,  the  parity 
will  be  incorrect,  since  the  number  of  1  bits  in  the  data  will  clearly  change  from  even  to 
odd  or  odd  to  even.  However,  two  bit  errors  will  just  as  obviously  result  in  the  same 
parity  as  the  original  data.  Thus  we  say  that  parity  detects  single  but  not  double  bit 
errors.  Of  course,  single  bit  errors  are  usually  more  common  than  are  double  bit  errors, 
so  the  test  is  still  useful. 

A  more  serious  problem  with  parity  is  that  it  provides  no  way  to  correct  errors. 

An  error  in  any  bit  position  will  produce  the  same  change  in  parity,  so  the  receiver  can- 
not determine  which  bit  is  wrong.  More  advanced  coding  techniques  provide  for  error 

correction  as  well  as  error  detection.  Parity,  however,  is  easy  to  calculate  and  ade- 
quate in  situations  in  which  retransmission  of  data  is  tolerable. 
The  procedure  for  calculating  parity  is  to  count  the  number  of  1  bits  in  each  byte 

of  data.  If  that  number  is  odd  and  even  parity  is  desired,  the  program  sets  the  most 

significant  bit  (MSB)  of  the  data  byte  to  1  to  make  the  parity  even.  One  of  th6  advan- 
tages of  the  7-bit  ASCII  code  is  that  it  leaves  the  most  significant  bit  available  for  parity; 

the  8-bit  EBCDIC  code  does  not. 
The  LSL  instruction  clears  the  least  significant  bit  of  the  data  register  or  memory 

location  that  it  is  shifting.  Therefore,  a  series  of  LSL  instructions  will  eventually 

result  in  a  zero  value,  regardless  of  the  original  data.  (Try  it!)  The  bit  counting  pro- 
cedure in  the  example  program  does  not  use  a  counter  for  termination  since  it  stops  as 

soon  as  all  the  remaining  data  bits  are  zero.  This  procedure  is  simple  and  reduces  execu- 
tion time  in  most  cases. 

Note  that  Program  6-4  assumes  that  the  most  significant  bit  (the  parity  bit)  of 
each  8-bit  data  byte  being  processed  is  set  to  0  at  the  outset;  if  this  bit  were  initially  set  to 
1,  then  Program  6-4  would  generate  odd  parity  instead  of  even. 

In  addition  to  clearing  the  least  significant  bit  of  the  data  byte,  the  LSL  instruction 
affects  the  Carry  (C)  and  Extend  (X)  flags  as  follows: 

C=X=1  if  MSB  of  data  =  1  prior  to  shift 
C=X=0  if  MSB  of  data  =  0  prior  to  shift 

The  state  of  the  Extend  flag  is  used  in  the  ADDX.B  D3,D0  instruction  which  has  the 
same  affect  as: 

DO=DO+D3+X=DO+0+X=DO+X 

Thus  the  number  of  1  bits  in  the  byte  is  counted  in  register  DO. 
Like  the  other  Add  instructions,  ADDX  affects  the  status  flags,  so  the  TST 

instruction  is  used  to  determine  if  the  LSL  instruction  cleared  the  data  register.  TST.B 

Dl  compares  the  contents  of  the  low-order  byte  of  register  Dl  with  zero  and  sets  the 
status  flags  accordingly  without  modifying  the  data  register  contents.  The  TST  instruc- 

tion is  thus  an  optimized  form  of  the  Compare  Immediate  instruction  CMPI#0,  Dl. 

Bit  Manipulation  Instructions 

The  MC68000  allows  operations  on  individual  bits  within  a  single  byte  or  long  word. 
The  Bit  Clear  (BCLR)  instruction  is  used  to  clear  a  single  bit.  Bit  Change  (BCHG)  is 
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used  to  change  the  state  of  a  specified  bit.  The  Bit  Set  (BSET)  instruction  is  used  to  set  a 
specific  bit  to  1.  Finally,  you  may  use  the  Bit  Test  (BTST)  instruction  to  test  the  state  of 
a  single  bit  without  altering  its  state.  All  of  these  bit  operation  instructions  perform  an 
implicit  Bit  Test  (BTST)  instruction  prior  to  operating  on  the  specified  bit. 

6-5.    PATTERN  MATCH 

Purpose:  Compare  two  strings  of  ASCII  characters  to  see  if  they  are  the  same.  The  start- 
ing addresses  of  the  strings  are  contained  in  the  long  word  variables  START1 

at  location  6000  and  START2  at  location  6004.  The  first  byte  of  each  string 
contains  the  string  length  (in  bytes)  and  is  followed  by  the  string.  If  the  two 
strings  match,  clear  the  variable  MATCH  at  location  6008;  otherwise  set  its 

value  to  —  1  (all  ones  =  FFFF16). 

Sample  Problems: 

Input:    START  1 
START2 

Output:     MATCH  - 

Input:    START  1  - 
START2  - 

Output:  MATCH 

c.      Input:  START1 
START2 

Output:     MATCH  - 

(6000) 
(6004) 
(5000) 
(5001) 
(5002) 
(5003) 
(5400) 
(5401) 
(5402) 
(5403) 
(6008) 
match 
(6000) 
(6008) 
(5000) 
(5001) 
(5002) 
(5003) 
(5400) 
(5401) 
(5402) 
(5403) 
(6008) 

00005000 
00005400 
03 

43  'C 

41  'A' 

54  T 
03 

43  'C 

41  'A' 

54  T 
0000    0,  since  the  strings 

00005000 
00005400 
03 43 

41 

54 03 

52 
41 

54 FFFF  -1,    since  the  first 
characters  differ 
(6000)  =  00005000 
(6004)  =  00005400 
(5000)  =  03 
(5400)  =  04 
(6008)  =  FFFF  -1,  since  the  strings  are 
not  the  same  length 

Note:  the  matching  process  ends  as  soon  as  we  find  a  difference.  The  rest  of  the  string  is 
not  examined. 
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Flowchart  6-5a: 

^         Stert  ̂  

Pointer1=(START1) 
Pointer2=(START2) 
Match  Flag  =  FFFF 
Length  =  (Pointer  1) 
Pomterl  = Pointerl  +  1 

Pomter2  = Pointer  2  +  2 

Yes 

Length  =  Length  -  1 

LOOP 

Pointer  1  = Pomterl  +  1 
Pointer  2  = Pointer2  +  1 

Length  =  Length ■ 

Match  Flag  =  0000 

(MATCH)  = Match  Flag 
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Program  6-5a: 
00006000 DATA EQU $6  000 
00004000 PROGRAM EQU $4000 

00006000 ORG DATA 
006000 00000004 START  1 DS.L 1 ADDRESS   OF   FIRST  STRING 
nnfinnii UUUUUUUH c  T  A  D  T  O D 1 AK 1 L DS.L 1 ADDRESS  OF   SECOND  STRING 
006008 00000002 MATCH DS  .W 1 MATCH  FLAG 

nnnniinnn UUUUHUUU nor D  D  r\C  D  AW rKUbK An 

nnLnnn uutuuu ZU/oDUUU PGM  6  5A nU V t  A . L CTADT1  AH b 1 AR 1 1 , AO POINTER   TO  FIRST  STRING 
004004 22786004 MOVE A . L START2, Al POINTER   TO  SECOND  STRING 
004008 72FF 

MOVEQ 
#-l,Dl ASSUME   NO  MATCH 

nnunnA 7  0  0  0 fy  Q  QQ 
00400C 1018 MOVE .B (A0)+,DO INITIALIZE   LENGTH  COUNTER 
nouooF U  U  "T  U  U  L_ B  0  1  9 CMP .  B ctdtm("    i  c  kit  rue    criHAi  o 3  1  K  1  IN  tj    L  L  l\Hj  1  n  3  tyUAL: 
004010 6610 BNE.S DONE IF   NOT   =   THEN  NO  MATCH 

004012 4A00 TST.B DO STRING  LENGTHS   =  0? 
U  U  4  U  1  4 6  7  0  A B  E  Q .  S SAME IF   =   0   THEN   STRINGS  MATCH 

004016 5340 SUBQ.W #1,D0 ADJUST  COUNTER  FOR  DBNE 

004018 B308 LOOP CMPM.B (A0)+,(A1)+ COMPARE   CURRENT   STRING  ELEMENTS 
00401A 56C8FFFC DBNE D0,LOOP IF   MATCH  AND  NOT  END  OF   STR I NG-CONT 

00401E 6602 BNE.S DONE IF   NO  MATCH  AND   END  THEN  DONE 

004020 4641 SAME NOT.  W Dl STRING  MATCH 

004022 31C16008 DONE MOVE  .  W Dl, MATCH SAVE   MATCH  STATE 

004026 4E75 RTS 

END  PGM_6_5A 

Matching  strings  of  ASCII  characters  is  an  essential  part  of  recognizing  names  or 
commands,  identifying  variables  or  operation  codes  in  assemblers  and  compilers, 
accessing  named  files,  and  many  other  tasks. 

The  MOVEQ  #— 1,D1  instruction  has  the  effect  of  assuming  there  will  be  no 
match.  If  a  match  is  found,  the  match  flag  is  cleared  by  using  the  NOT.W  Dl  instruction 
which  complements  the  state  of  each  bit  in  the  destination  operand;  thus  a  zero  bit 
becomes  1  and  a  one  bit  becomes  0.  Had  we  not  initialized  the  match  flag  in  this  way,  the 
end  of  the  program  would  have  been  more  complicated: 

BNE DONE 
SAME : MOVE 

#-1, 

MATCH 
BRA 

DONE 
FINI  : MOVE 

#0, 

MATCH DONE  : RTS 

Assuming  a  result  is  true  until  proven  false,  or  false  until  proven  true,  is  a  com- 
mon technique  that  simplifies  many  programs. 
The  Compare  Memory  instruction  CMPM  allows  data  in  memory  to  be  compared 

directly  without  first  moving  one  of  the  data  elements  into  a  data  register.  The  CMPM 
instruction  is  extremely  useful  and  efficient  in  performing  string  comparisons.  Note  that 
only  the  postincrementing  address  mode  can  be  used  with  this  instruction  to  specify  the 
operands.  Of  course,  this  is  exactly  the  mode  that  is  most  useful  for  comparing  strings 
since  the  addresses  are  automatically  incremented  to  point  to  the  next  elements  to  be 
compared. 

When  control  is  passed  to  the  instruction  following  the  DBNE  instruction,  we 
know  that  either  a  match  did  not  occur  on  a  given  pair  of  string  elements,  or  that  the  two 
strings  are  identical.  The  BNE  instruction  is  used  to  determine  which  condition  caused 
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the  exit  from  DBNE.  The  correct  execution  of  the  BNE  instruction  depends  on  the  fact 
that  the  DBNE  instruction  does  not  affect  the  status  flags. 

Why  must  the  instruction  MOVEQ  #0,D0  be  used  prior  to  loading  the  lower  byte 
of  DO  with  the  string  length? 

This  program  is  much  more  complicated  than  it  need  be.  We  can  treat  the  length 
bytes  of  the  strings  as  if  they  were  part  of  the  string.  If  the  lengths  are  unequal,  the 
strings  are  unequal. 

Flowchart  6-5b: 

r  Start 
i  ; 

Pointer1  =  (START1) 
Pointer2=(START2) 
Match  Flag  =  FFFF 
Length  =  (Pointerl ) 

Pointer1=Pointer1+1 

Pointer2  = Pointer2  +  1 

Length  =  Length  -  1 

Match  Flag  =  OOOO 

J 

(MATCH)  = Match  Flag 

C    End  ) 

Program  6-5b: 
00006000  DATA  EQU  $6000 
00004000  PROGRAM     EQU  $4000 

00006000  ORG  DATA 
006  000    0  0  00  0  0  04  START  1        DS.L  1  ADDRESS   OF   FIRST  STRING 
006004   00000004-  START2       DS.L  1  ADDRESS   OF    SECOND  STRING 
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006008   00000002  MATCH         DS.W  1  MATCH  FLAG 
00004000  ORG  PROGRAM 

004000    20786000  PGM_6_5B   MOVE A . L  START1 , AO  POINTER   TO  FIRST  STRING 
004004   22786004                             MOVE A . L  START2, Al  POINTER   TO  SECOND  STRING 
004008    72FF                                       MOVEQ  #-l,Dl  ASSUME   NO  MATCH 
00400A   7000                                       MOVEQ  «0,D0  LENGTH  COUNTER    :=  0 
00400C    1010                                       MOVE.B  (AO), DO  INITIALIZE   LENGTH  COUNTER 

00400E   B308  LOOP            CMPM.B  (A0)+,(A1)+  COMPARE   CURRENT   STRING  ELEMENTS 
004010    56C8FFFC                               DBNE  DO, LOOP  IF   MATCH  AND  NOT   END  OF    STR I NG-CONT 

004014  6602                                       BNE.S  DONE  IF   NO  MATCH  AND   END   THEN  DONE 

004016    4641  SAME            NOT.W  Dl  STRING  MATCH 

004018    31C16008  DONE            MOVE.W  Dl, MATCH  SAVE   MATCH  STATE 

00401C  4E75  RTS 

END  PGM_6_5B 

If  the  string  lengths  are  unequal,  the  program  will  terminate  after  the  first  itera- 
tion. Why  can  we  use  the  string  length  as  a  loop  counter  without  first  decrementing  it 

by  1? 

PROBLEMS 

6-1.    LENGTH  OF  A  TELETYPEWRITER  MESSAGE 

Purpose:  Determine  the  length  of  an  ASCII  message.  AH  characters  are  7-bit  ASCII 
with  MSB  =  0.  The  string  of  characters  in  which  the  message  is  embedded  has 
a  starting  address  which  is  contained  in  the  variable  START  at  location  6000. 

The  message  itself  starts  with  an  ASCII  STX  character  (02 16)  and  ends  with 

ETX  (03 16).  Save  the  length  of  the  message  (the  number  of  characters  be- 
tween the  STX  and  the  ETX  but  including  neither)  in  the  variable  LENGTH 

at  location  6004. 

Sample  Problem: 

Input:  START 

Output:  LENGTH 

-  (6000)    =  00005000 
(5000)  =    02  STX 

(5001)  =    47  'G' 
(5002)  =    4F  *0' (5003)  =    03  ETX 

—  (6004)    =    02,  since  there  are  two 
characters  between  the  STX  in 
location  5000  and  ETX  in 
location  5003. 

6  2.    FIND  LAST  NON-BLANK  CHARACTER 

Purpose:  Search  a  string  of  ASCII  characters  for  the  last  non-blank  character.  Starting 
address  of  the  string  is  contained  in  the  variable  START  at  location  6000  and 
the  string  ends  with  a  carriage  return  character  (0D,6).  Place  the  address  of  the 
last  non-blank  character  in  the  variable  ADDRESS  at  location  6004. 
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Sample  Problems: 

a.  Input:        START      -       (6000)  =  00005000 

(5000)  =  37  '7' (5001)  =  OD  CR 
Output:     ADDRESS  -       (6004)  =  5000 

Since  the  last  (and  only)  non-blank  character  is  in  memory  location  5000. 

b.  Input:        START      -      (6000)  =  5000 

(5000)  =  41  'A' (5001)  =  20  SP 

(5002)  =  48  'H' 
(5003)  =  41  'A' (5004)  =  54  T' (5005)  =  20  SP 
(5006)  =  20  SP 
(5007)  =  OD  CR 

Output:     ADDRESS  -       (6004)  =  5004 

6-3.    TRUNCATE  DECIMAL  STRING  TO  INTEGER  FORM 

Purpose:  Edit  a  string  of  ASCII  decimal  characters  by  replacing  all  digits  to  the  right  of 

the  decimal  point  with  ASCII  blanks  (2016).  The  starting  address  of  the  string 
is  contained  in  the  variable  START  at  location  6000  and  the  string  is  assumed 

to  consist  entirely  of  ASCII-coded  decimal  digits  and  a  possible  decimal  point 
(2El6).  The  length  of  the  string  is  stored  in  the  variable  LENGTH  at  location 
6004.  If  no  decimal  point  appears  in  the  string,  assume  that  the  decimal  point 
is  at  the  far  right. 

Sample  Problems: 

(6000)  =  00005000 
(6004)  =  0004    Length  of  string 

(5000)  =  37  '7* (5001)  =  2E  7 

(5002)  =  38  '8' (5003)  =  31  *r 

(5000)  =  37  '7' 
(5001)  =  2E  '.' (5002)  =  20  SP 
(5003)  =  20  SP 
(6000)  =  00005000 
(6004)  =  0003    Length  of  string 

(5000)  =  36  '6' 
(5001)  =  37  'I' (5002)  =  31  'V 

Output:  Unchanged,  as  number  is  assumed  to  be  671. 

Input:  START 
LENGTH 

Output: 

Input:  START 
LENGTH 

6-4.    CHECK  EVEN  PARITY  AND  ASCII  CHARACTERS 

Purpose:  Check  for  even  parity  in  a  string  of  ASCII  characters.  A  string's  starting 
address  is  contained  in  the  variable  START  at  location  6000.  The  first  byte  of 
the  string  is  its  length  which  is  followed  by  the  string  itself.  If  the  parity  of  all 
the  characters  in  the  string  is  correct,  clear  the  variable  PARITY  at  location 
6004;  otherwise,  place  all  ones  (FFFF.J  into  PARITY. 
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Sample  Problems: 

a.  Input:     START      -     (6000)  =  00005000 
(5000)  =  03    Length  of  string 
(5001)  =  B1  =  101 1  0001 
(5002)  =  B2  =  101 1  0010 
(5003)  =  33  =  001 1    001 1 

Output:  PARITY      -     (6004)  =  0000,  since  all  the 
characters  have  even  parity. 

b.  Input:     START      -     (6000)  =  5000 
(5000)  =  03    Length  of  string 
(5001)  =  B1  101 1  0001 
(5002)  =  B6  101 1    01 10 
(5003)  =  33  001 1    001 1 

Output:  PARITY     —     (6004)  =  FFFF,  since  the  character  in  memory  location 
5002  does  not  have  even  parity. 

6-5.    STRING  COMPARISON 

Purpose:  Compare  two  strings  of  ASCII  characters  to  see  which  is  larger  (that  is,  which 
follows  the  other  in  alphabetical  ordering).  Both  strings  have  the  same  length 

as  defined  by  the  variable  LENGTH  at  location  6000.  The  strings'  starting 
addresses  are  defined  by  the  variables  START1  at  location  6002  and  START 
at  location  6006.  If  the  string  defined  by  START  1  is  greater  than  or  equal  to 
the  other  string,  clear  the  variable  GREATER  at  location  600A;  otherwise,  set 

GREATER  to  all  ones  (FFFF)6). 

Sample  Problems: 

a.  Input:      LENGTH      -     (6000)  =  0003    Length  at  each  string 
START1  -  (6002)  =  00005000 
START        -     (6006)  =  00005400 

(5000)  =  43  'C 

(5001)  =  41  'A' (5002)  =  54  T 

(5400)  =  42  'B' 
(5401)  =  41  'A' (5402)  =  54  'T 

Output:   GREATER     -     (600A)  =  0000,  since  CAT  is 
"larger"  than  BAT. 

b.  Input:      LENGTH      -    (6000)  =  0003    Length  at  each  string 
START  1  -  (6002)  =  00005000 
START        -     (6006)  =  00005400 

(5000)  =  43  'C 

(5001)  =  41  'A' (5002)  =  54  'T 
(5400)  =  43  'C 

(5401)  =  41  'A' 
(5402)  =  54  T* Output:   GREATER     -     (600A)  =  0000,  since  CAT  is  not 
"larger"  than  CAT 
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C.  Input:  LENGTH 
START1 
START 

(6000)  =  0003    Length  of  each  string 
(6002)  =  00005000 
(6006)  =  00005400 

(5000)  =  43  'C 

(5001)  =  41  'A' (5002)  =  54  T 

(5400)  =  43  'C 

(5401)  =  55  'U' (5402)  =  54  T' Output:   GREATER     -     (600A)  =  FFFF,  since  CUT  is 
'larger'  than  CAT 



7 

Code  Conversion 

Code  conversion  is  a  continual  problem  in  microcomputer  applications.  Peri- 
pherals provide  data  in  ASCII,  BCD,  or  various  special  codes.  The  microcomputer 

must  convert  the  data  into  some  standard  form  for  processing.  Output  devices  may 

require  data  in  ASCII,  BCD,  seven- segment,  or  other  codes.  Therefore,  the 
microcomputer  must  convert  the  results  to  the  proper  form  after  it  completes  the  pro- 
cessing. 

There  are  several  ways  to  approach  code  conversion: 

1.  Some  conversions  can  easily  be  handled  by  algorithms  involving  arithmetic 
or  logical  functions.  The  program  may,  however,  have  to  handle  special  cases 
separately. 

2.  More  complex  conversions  can  be  handled  with  lookup  tables.  The  lookup 
table  method  requires  little  programming  and  is  easy  to  apply.  However,  the 
table  may  occupy  a  large  amount  of  memory  if  the  range  of  input  values  is 
large. 

3.  Hardware  is  readily  available  for  some  conversion  tasks.  Typical  examples 

are  decoders  for  BCD  to  seven-segment  conversion  and  Universal 
Asynchronous  Receiver/Transmitters  (UARTs)  for  conversion  between 
parallel  (ASCII)  and  serial  (teletypewriter)  formats. 

In  most  applications,  the  program  should  do  as  much  as  possible  of  the  code  con- 
version work.  This  approach  reduces  parts  counts  and  power  dissipation,  saves  board 

space,  and  increases  reliability.  Furthermore,  most  code  conversions  are  easy  to  pro- 
gram and  require  little  execution  time. 

117 
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PROGRAM  EXAMPLES 

7-1 .    HEXADECIMAL  TO  ASCII 

Purpose:  Convert  the  contents  of  the  variable  DIGIT  at  location  6000  to  an  ASCII 

character  representing  the  hexadecimal  value  of  the  variable.  DIGIT  con- 
tains a  single  hexadecimal  digit  (the  four  most  significant  bits  are  zero). 

Store  the  ASCII  character  in  the  variable  CHAR  at  location  6001. 

Sample  Problems: 

a.  Input:    DIGIT  -  (6000)  =  OC 
Output:    CHAR  -  (6001)  =  43  X' 

b.  Input:    DIGIT  -  (6000)  =  06 
Output:    CHAR  -  (6001)  =  36  '6' 

Flowchart  7-1 : 

CHAR  =  Result 



Code  Conversion  119 

Program  7-1 : 
onoofi  oon DATA EQU $6000 
00004000 PROGRAM EQU $4000 

00006000 DIGIT EQU $6  000 MUUKt j j    Ur     Ulbl 1 
n  n  n  nft  n  n  i U  U  U  U  U  \J  V  1 CHAR EQU $6  00  1 ADDRESS   OF  CHAR 

nnnnunnn ORG pr  nr,R  am 

004000 10386000 PGM  7  1 MOVE . B r>  i  c  t  t  n  n 
004004 0C00000A CMP.B #10, DO IS  DIGIT   <  10? 
004008 6D02 BLT.  S 

ADD_0 
IF    YES   THEN  ADD    '0'  ONLY 

00400A 5E00 ADD .  B #  'A'- »0'-10,D0 . . .ELSE   ADD  OFFSET  FOR  'A 
00400C 06000030 ADD_0 ADD .  B #  '  0  ■  ,D0 CONVERT   TO  ASC I  I 
004010 1 1C06001 MOVE .B 

DO, CHAR STORE   ASC II  DIGIT 

004014 4E75 RTS 

END PGM_7  1 

The  basic  idea  of  this  program  is  to  add  ASCII  0  (3016)  to  all  the  hexadecimal 
digits.  This  addition  converts  the  digits  0  through  9  to  ASCII  correctly.  However,  the 
letters  A  through  F  do  not  follow  immediately  after  the  digit  9  in  the  ASCII  code; 
instead,  there  is  a  break  between  the  ASCII  code  for  9  (39,  ,)  and  the  ASCII  code  for  A 

1  0 

(41 ,6),  so  that  the  conversion  must  add  a  further  constant  to  the  values  greater  than  9 
(A,  B,  C,  D,  E,  and  F)  to  account  for  the  break.  The  first  ADD  instruction  does  this  by 

adding  'A'  —  *(T  —  10  to  data  register  DO.  Can  you  explain  why  the  extra  factor  for  let- 
ter digits  has  the  value  'A1  —  '0'  —  10?  Note  that  this  value  is  small  enough  to  fit  into 

the  3-bit  data  field  of  an  ADDQ  instruction.  The  assembler  discovers  this  and  automat- 
ically generates  the  ADDQ  object  code  (even  though  the  instruction  mnemonic  does 

not  indicate  this).  How  can  you  force  the  assembler  to  create  the  object  code  for  ADDI? 
We  have  used  the  ASCII  forms  for  the  addition  factors  in  the  source  program;  a 

single  quotation  mark  (apostrophe)  before  and  after  a  character  indicates  the  ASCII 
equivalent.  We  have  also  left  the  offset  for  the  letters  as  an  arithmetic  expression  to 
make  its  meaning  as  clear  as  possible.  The  extra  assembly  time  is  a  small  price  to  pay  for 
the  great  increase  in  clarity.  A  routine  like  this  is  necessary  in  many  applications;  for 
example,  monitor  programs  must  convert  hexadecimal  digits  to  their  ASCII  equivalents 
in  order  to  display  the  contents  of  memory  locations  in  hexadecimal  on  an  ASCII  printer 
or  CRT  display. 

7-2.    DECIMAL  TO  SEVEN-SEGMENT 

Purpose:  Convert  the  contents  of  the  variable  DIGIT  at  location  6000  to  a  seven-seg- 
ment code  and  store  in  the  variable  CODE  at  location  6001.  If  DIGIT  does 

not  contain  a  single  decimal  digit,  clear  CODE. 

Figure  7-1  illustrates  the  seven-segment  display  and  our  representation  of  it  as  a 
binary  code.  The  segments  are  usually  assigned  the  letters  a  through  g  as  shown  in 

Figure  7-1.  We  have  organized  the  seven-segment  code  as  shown:  segment  g  is  in  bit 
position  6,  segment  fin  bit  position  5,  and  so  on.  Bit  position  7  is  always  zero.  The  seg- 

ment names  are  standard,  but  the  assignment  of  segments  to  bit  positions  is  arbitrary;  in 
actual  applications,  this  assignment  is  a  hardware  function. 

The  table  in  Figure  7-1  is  a  typical  example  of  those  used  to  convert  decimal  num- 
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bers  to  seven-segment  code;  it  assumes  positive  logic,  that  is,  1  =  on  and  0  =  off.  Note 
that  the  table  uses  7D  for  6  rather  than  the  alternative  7C  (top  bar  off)  to  avoid  confu- 

sion with  lower-case  b,  and  6F  for  9  rather  than  67  (bottom  bar  off)  for  symmetry  with 
the  6. 

Sample  Problems: 

a.  Input:  DIGIT  -  (6000)  =  03 
Output:  CODE  -  (6001)  =  4F 

b.  Input:  DIGIT  -  (6000)  =  28 
Output:  CODE  -  (6001)  =  00 

c.  Input:  DIGIT  -  (6000)  =  OA 
Output:  :C0DE  -  (6001)  =  00 

Flowchart  7-2: 

Data  =  DIGIT 

Note  that  the  addition  of  base  address  (SSEG)  and  index  (Data)  produces  the 
address  that  contains  the  answer. 
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Digit Code 

o 
3F 1 06 

2 5B 
3 4F 
4 66 
5 6D 6 7D 
7 

07 8 7F 
9 

6F 

6     5  4 Bit  Number 

Code 

Figure  7-1.  Seven-Segment  Arrangement 

Program  7-2: 
00006000  DATA  EQU  $6000 
00004000  PROGRAM     EQU  $4000 

00006000 ORG DATA 
006000 00000001 DIGIT DS.B 1 DIGIT 
006001 00000001 CODE DS.B 1 BCD  CODE 
006002 

3F 
SSEG DC.B $3F, $06, $5E J,$4F,$66,$6D,$7D,$0  7,$7F,$6F 

00004000 ORG PROGRAM 

004000 
004006 
004008 
00400C 
004010 

207C00006002 
4201 
10386000 
0C000009 
6206 

PGM_7_2 MOVEA.L 
CLR.B 
MOVE.B 
CMP.B 
BHI  .S 

#SSEG,A0 
Dl 
DIGIT, DO 
#9, DO 
DONE 

POINTER  TO  CONVERSION  TABLE 

GET  DIGIT 
VALID  DIGIT? 
IF  NOT  VALID  THEN  CLEAR  RESULT 

004012 
004014 

4880 
12300000 

EXT.W 
MOVE .B 

DO 
0(A0,D0),D1 

MAKE   INDEX  BYTE  LOOK  LIKE  A  WORD 
GET  SEVEN-SEGMENT  CODE  FROM  TABLE 

004018 11C16001 DONE MOVE.B Dl,CODE SAVE  BCD  CODE 

00401C 4E75 RTS 

END  PGM_7_2 

The  Clear  instruction  (CLR) ,  like  the  MOVEQ  +  instruction,  can  be  used  to  clear 

all  32  bits  of  a  data  register  and  requires  only  one  instruction  word.  However,  CLR, 

unlike  MOVEQ  +,  can  also  be  used  to  clear  just  the  lower  byte  or  word  of  a  data 

register.  (In  this  program,  we  use  CLR.B  Dl  to  clear  the  least  significant  8  bits  of  Dl). 

In  addition,  we  can  clear  a  memory  location  directly  with  CLR.  Why  does  the  MC68000 
have  several  means  of  clearing  memory  or  registers? 

The  program  calculates  the  memory  address  of  the  seven-segment  code  by 

adding  an  index  -  the  digit  to  be  converted  -  to  the  base  address  of  the  seven-seg- 

ment code  table.  This  procedure  is  known  as  a  "table  lookup."  The  addition  does  not 
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require  any  explicit  instructions,  since  the  processor  performs  it  automatically  as  part  of 
the  calculation  of  the  effective  address  in  the  indexed  addressing  mode.  Since  all  32  bits 

of  the  address  register  are  used  in  this  indexing  addition,  we  can  place  the  table  any- 
where in  memory. 
When  indexed  addressing  is  used,  all  32  bits  of  the  primary  address  register  are 

involved  in  the  address  calculation,  but  only  the  least  significant  word  of  the  specified 
index  register  (or  offset  register)  is  used.  In  the  program,  the  offset  into  the  table  is  a 
byte  value  and  loading  this  byte  offset  into  a  data  register  affects  only  the  least  significant 

8  bits  of  the  register.  The  other  24  bits  of  the  register  are  not  affected.  Bits  8-15  of  the 
data  register  must  be  cleared  in  order  for  the  register  to  be  used  as  an  index  register. 
This  is  accomplished  by  using  the  EXT  instruction  which  extends  the  most  significant 
bit  (MSB)  of  the  byte  or  word  data  in  the  data  register  to  a  word  or  long  word.  If  the  MSB 
is  0,  all  bits  to  the  left  of  the  data  are  cleared;  if  the  bit  is  1,  all  bits  are  set  to  one. 

Using  the  Define  Constant  (DC)  Directive 

The  assembler  directive  DC  (Define  Constant)  places  constant  byte-length  data  in 
program  memory.  Such  data  may  include  tables,  headings,  error  messages,  prompting 
messages,  format  characters,  threshold  values,  and  mathematical  constants.  The 

optional  label  attached  to  a  DC  pseudo-operation  is  assigned  the  value  of  the  address  in 
which  the  assembler  places  the  first  byte  of  data. 

The  assembler  assigns  the  data  from  the  DC  directive  to  consecutive  memory 
addresses,  with  no  changes  other  than  numerical  conversions.  One  DC  directive  can  fill 

many  bytes  of  memory;  all  the  programmer  must  do  is  separate  the  entries  with  com- 
mas. 

Tables  are  a  simple,  fast,  and  convenient  approach  to  code  conversion  problems 

that  are  more  complex  than  our  hexadecimal-to-ASCII  example.  The  required  lookup 
tables  simply  contain  all  the  possible  results  organized  by  input  value;  that  is,  the  first 
entry  is  the  code  for  input  value  zero  and  so  on. 

Seven-segment  displays  provide  recognizable  forms  of  the  decimal  digits  and  a 
few  letters  and  other  characters.  They  are  relatively  inexpensive  and  easy  to  handle 

with  microprocessors.  However,  many  people  find  seven-segment  coded  digits  some- 
what difficult  to  read.  Their  widespread  use  in  calculators  and  watches  has  made  them 

more  familiar. 

7-3.    ASCII  TO  DECIMAL 

Purpose:  Convert  the  contents  of  the  variable  CHAR  at  location  6000  from  an  ASCII 
character  to  a  decimal  digit  and  store  the  result  in  the  variable  DIGIT  at 
location  6001.  If  the  contents  of  CHAR  are  not  the  ASCII  representation  of 

a  decimal  digit,  set  the  contents  of  DIGIT  to  FF,6. 

Sample  Problems: 

a       Input     CHAR  -  (6000)  =  37  T 
Output:    DIGIT  -  (6001)  =  07 

b       Input     CHAR  -  (6000)  =  55        'U'    (an  invalid  code,  since  it  is  not 
an  ASCII  decimal  digit) 

Output:    DIGIT  -  (6001)  =  FF 
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Flowchart  7-3: 

Program  7-3: 

C         Start  J 

Data  =  CHAR 

I 

Result  =  FF16 

Result  = 
Data  -  ASCII  0 DIGIT  =  Result 

c 
End 

3 

00006000 
00004000 

DATA  EQU  $6000 
PROGRAM     EQU  $4000 

004000 
004002 
004006 
00400A 

00400C 
004010 

004012 

004014 

004018 

00006001 
00006000 

00004000 

72FF 10386000 
04000030 
6  508 

0C000009 
6  20  2 

C141 

1  1C  16  00  1 

4E75 

DIGIT 
CHAR 

PGM  7  3 

EQU 
EQU 

ORG 
MOVEQ 

MOVE .B 
SUB  .B 
BCS.  S 

CMP.B 
BHI  .  S 

EX& 

MOVE . B 
RTS 

END 

$6  00  1 
$6000 

PROGRAM 
#-l,Dl 
CHAR, DO 
#  '0  ■  ,D0 
DONE 

#9,  DO DONE 

DO,  Dl 

Dl, DIGIT 

PGM   7  3 

ADDRESS  OF  DIGIT 
ADDRESS   OF  CHAR 

SET  ERROR  FLAG 
GET  CHARACTER 
IS  CHARACTER  BELOW  ASCII  ZERO? 
IF    YES   THEN  NOT  A  DIGIT 

IS  CHARACTER  ABOVE  ASCII  NINE? 
IF    YES   THEN  NOT  A  DIGIT 

GET  NUMBER   VALUE   OF  CHARACTER 

SAVE   DIGIT  OR   ERROR  FLAG 
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This  program  handles  ASCII-coded  characters  just  like  ordinary  numbers.  Since 
ASCII  assigns  an  ordered  sequence  of  codes  to  the  decimal  digits,  we  can  identify  an 
ASCII  character  as  a  digit  by  determining  if  it  falls  within  the  proper  range  of 
numerical  values.  We  could  use  the  order  of  ASCII  codes  similarly  to  determine  if  a 
character  is  in  a  particular  group  of  letters  or  symbols,  such  as  A  through  F.  This 
approach  assumes  detailed  knowledge  of  a  particular  code  and  would  not  necessarily 
be  valid  for  other  codes. 

Subtracting  ASCII  0  (30,6)  from  any  ASCII  decimal  digit  gives  the  decimal 
value  of  that  digit.  An  ASCII  character  is  a  decimal  digit  if  its  value  lies  between  30|6 
and  39[b  (including  the  endpoints).  How  would  you  determine  if  an  ASCII  character  is  a 
valid  hexadecimal  digit?  ASCII-to-decimal  conversion  is  necessary  in  applications  in 
which  decimal  data  is  entered  from  an  ASCII  device  such  as  a  teletypewriter  or  terminal. 

The  program  performs  one  comparison  —  to  the  lower  limit  —  with  an  actual 

subtraction  (SUB  '0\D0)  since  the  subtraction  is  necessary  for  the  ASCII-to-decimal 
conversion.  It  performs  the  other  comparison  with  an  implied  subtraction 
(CMP.B#9,D0)  to  avoid  destroying  the  possible  decimal  digit  in  data  register  DO. 
Implied  subtractions  (CMP)  are  far  more  common  than  actual  subtractions  (SUB)  in 
programs,  since  the  numerical  value  of  the  result  of  the  comparison  is  often  not  of 
interest. 

The  instruction  EXG  can  exchange  the  contents  of  any  32-bit  register  with  the 
contents  of  any  other  32-bit  register.  Long  word  exchanges  can  be  made  between  any 
two  data  registers,  any  two  address  registers,  or  between  a  data  register  and  an 
address  register. 

7-4.    BINARY-CODED  DECIMAL  TO  BINARY 

Purpose:  Convert  four  BCD  digits  in  the  variable  STRING  at  location  6000  to  a  bin- 
ary number  in  the  variable  NUMBER  at  location  6004.  The  most  significant 

BCD  digit  is  in  memory  location  6000.  There  is  one  BCD  digit  in  each  byte 
of  STRING. 

Sample  Problems: 

a.       Input:  STRING 

Output:  NUMBER 

Input:    STRING - 

Output:  NUMBER 

(6000)  =  02 
(6001)  =  09 
(6002)  =  07 
(6003)  =  01 
(6004)  =  0B9B 

(6000)  =  09 
(6001)  =  07 
(6002)  =00 
(6003)  =  02 
(6004)  =  25E6 

16 

=  2971 10 

=  9702. 

Program  7-4a: 
00006000 
00004000 

DATA  EQU  $6000 
PROGRAM     EQU  $4000 

00006000 
00006004 

STRING 
RESULT 

EQU 
EQU 

$6000 
$6004 

ADDRESS  OF  FOUR  DIGIT  BCD  STRING 
ADDRESS  OF  RESULT 

00004000 
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004000 307C6000 PGM_7_4A MOVEA.W #STR ING, AO POINTER   TO  FIRST  BCD  DIGIT 
004004 7003 

MOVEQ 
#4-1, DO NUMBER   OF   DIGITS(-l)   TO  PROCESS 

004006 4281 CLR.L Dl 
CLEAR   FINAL   RESULT   -  Dl n  04n  n  r u  u  ̂   u  u  o 4  2  8  2 CLR  .  L u  z 
CLEAR   DIGIT  REGISTER 

00400A 6008 BRA.S NOMULT SKIP  MULTIPLY   FIRST  TIME 

00400C D241 LOOP ADD.  W D1,D1 
2X UU4UUC 36  0  1 MOVE  .  W 01,03 

004010 E54B LSL.W #2,D3 8X   =   2X   -  4 004012 D243 ADD.  W D3,D1 10X   =   8X   +  2X 

004014 1418 NOMULT MOVE.B (A0)+,D2 NEXT  BCD  DIGIT, (D2( 15-8]  UNCHANGED) 004016 D242 ADD.  W D2,D1 ADD  NEXT  DIGIT 
004018 51C8FFF2 DBRA DO, LOOP CONTINUE   PROCESSING    IF   STILL  DIGITS 

00401C 31C16004 MOVE . W Dl, RESULT STORE  RESULT 

004020 4E75 RTS 

END PGM_7  4A 

Flowchart  7-4a: 

Pointer  =  STRING 

Counter  =  4-1 Result  =  O 

Result  = Result  X2 
+  Result  x  8 

Result  = Result  +  (Pointer) 

Pointer  = 
Pointer  +  1 

Counter  = 
Counter  -  1 

(RESULT)  =  Result 

Program  7-4a  multiplies  each  intermediate  result  by  10  using  the  formula  lOx  = 
8x  +  2x.  Multiplying  by  2  requires  one  logical  shift  left  (LSD,  and  multiplying  by  8 
requires  three  such  shifts. 
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BCD  entries  are  converted  to  binary  in  order  to  take  advantage  of  the  inherent 
binary  operators  provided  by  the  processor.  In  addition,  a  binary  representation  requires 
less  storage  than  the  equivalent  BCD  form.  However,  in  some  cases,  the  program  time 
and  space  required  for  conversion  may  affect  some  of  the  advantages  of  binary  storage 
and  arithmetic. 

Program  7-4a  uses  a  word  length  ADD  to  add  the  BCD  digit  to  the  accumulated 
result  in  register  Dl.  Had  we  used  ADD.B  D2,D1,  the  program  would  not  have  worked 
for  all  values.  Consider  the  value  0257.  Before  adding  the  lowest  digit,  Dl  would  contain 

0250l0  or  00FAl6.  Adding  7  to  the  low  byte  of  Dl  yields  FA  4-  07  =  01,  and  the  high 
byte  is  still  0.  Since  we  cannot  directly  add  a  byte  value  to  a  word  value,  we  chose  to  load 

the  value  into  a  data  register  prior  to  the  addition.  Why  don't  we  have  to  perform  an 
extend  operation  prior  to  the  addition? 

This  program  skips  the  first  multiply,  since  we  know  the  initial  value  of  D2  is  0. 

However,  if  we  eliminated  the  branch  instructions,  we'd  still  get  the  same  result. 
There  are  often  several  ways  to  perform  a  function  using  assembly  language 

instructions.  In  this  program,  we  used  the  ADD  instruction  to  shift  a  value  left  one  place 
since  this  is  the  fastest  means  of  performing  this  operation  in  the  MC68000.  Two  ADD 

instructions  would  also  be  faster  than  the  LSL  instruction  but  would  require  two  addi- 
tional bytes  of  storage. 
We  could  also  use  one  of  the  MC68000  multiply  instructions.  The  multiply 

instructions  perform  a  multiplication  operation  on  two  16-bit  operands  to  produce  a  32- 
bit  result  in  one  of  the  data  registers.  At  least  one  of  the  16-bit  operands  must  be  in  a 
data  register.  The  MC68000  allows  for  both  signed  and  unsigned  multiplication.  If 
signed  multiplication  (MULS)  is  used,  operands  are  treated  as  signed  values  and  the 

result  is  signed.  For  unsigned  multiplication  (MULU),  all  values  are  unsigned.  In  pro- 
gram 7-4b,  we  have  modified  program  7-4a  to  use  the  MULU  instruction  instead  of  the 

ADD  and  shift  (LSL)  instructions: 

Program  7-4b: 

00006000 DATA EQU $6  000 
00004000 PROGRAM EQU $4000 

00006000 STR ING EQU $6000 ADDRESS   OF   FOUR   DIGIT  BDC  STRING 
00006004 CODE EQU $6  004 ADDRESS   OF  RESULT 

00004000 ORG PROGRAM 

004000 307C6000 PGM_7_4B MOVE A . W ttSTRING, AO POINTER   TO  FIRST  BCD  DIGIT 
004004 700  3 

MOVEQ 
14-1 , DO NUMBER   OF   DIGITS(-l)   TO  PROCESS 004006 428  1 CLR.L Dl CLEAR   FINAL   RESULT   -  Dl 004008 4282 CLR.L 
D2 

CLEAR   DIGIT  REGISTER 
00400A 6  004 BRA.S NOMULT SKIP   MULTIPLY   FIRST  TIME 

00400C C2FC000A LOOP MULU  .  W #10, Dl Dl    =   Dl    ::  10 
0040  1  0 1418 NOMULT MOVE . B (A0)+,D2 NEXT   BCD   DIGI T(D2 [ 1 5-8]  UNCHANGED) 
004012 D242 ADD.  W D2,D1 ADD  NEXT  DIGIT 
004014 51C8FFF6 DBRA DO, LOOP CONTINUE   PROCESSING    IF   STILL  DIGITS 

004018 31C16004 MOVE . W 
Dl , CODE STORE  RESULT 

00401C 4E75 RTS 

END PGM_7_4B 
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7-5.    BINARY  NUMBER  TO  ASCII  STRING 

Purpose:  Convert  the  16-bit  binary  number  in  the  variable  NUMBER  at  memory 
location  6000  into  16  ASCII  characters  (either  ASCII  0  or  ASCII  1).  Store 
the  ASCII  characters  in  the  16-character  string  variable  STRING  located  at 
memory  location  6002. 

Sample  Problem: 

Input:    NUMBER-    (6000)  =  3 1  D2  =  001  1  0001  1 1 01  001 0 
Output: STRING -  (6002) 

=  30 '0' 

(6003) 

=  30 
'O' 

_  11 
=  ol 

'  1 ' 

(6005) 
=  31 

'  1 ' 

(6006) 

=  30 

'O' 
(6007) 

=  30 

'O' 
\OKJKJOI 

=  30 
'O' 

(6009) 
=  31 

'  1 ' 

(600A) 

=  31 

'V 

loUUb) 

=  31 

•y 

(600C) 
=  30 

'0' 
=  31 

'  1 ' 

(600E) 

=  30 

'O' 
(600F) 

=  30 
'O' 

(bUl  U) 
=  31 

'  1 ' 

(601 1) 

=  30 
•0' 

Program  7-5: 

00006000 DATA EQU $6  000 
00004000 PROGRAM EQU $4000 

00006000 NUMBER EQU $6  000 ADDRESS   OF    16   BIT  NUMBER 
00006002 STRING EQU $6  002 ADDRESS   OF   EQUIVALENT  ASCII 
00004000 ORG PROGRAM 

004000 207C00006012 PGM_7_5 MOVEA.L #STRING+16 . AO POINTER   TO  END  OF  STRINGC+1) 
004006 700F 

MOVEQ 
#1 5, DO LOOP  COUNT(-l) 

004008 123C0030 MOVE .B #'0'  Dl 
00400C 34386000 MOVE  .  W NUMBER 

,D2 

GET  NUMERIC  DATA 

004010 1101 LOOP MOVE .B Dl, -(AO) ASSUME   CURRENT  LSB    IS  ZERO 
004012 E2  5A ROR  .  W #1,D2 TEST  CURRENT  LSB 
004014 6404 BCC.S LOOPEND IF   ZERO   THEN   TRY   NEXT  BIT 

004016 06100001 ADD  I  .B n,(Ao) CHANGE   ASCI  I    '0 '    TO  ASCI  I    1 1 
00401A 51C8FFF4 LOOPEND DBRA DO, LOOP PROCESS   ALL  BITS 

00401E 4E75 RTS 

END 
PGM_7_ 

5 

The  ASCII  digits  form  a  sequence  so  ASCII  1  =  ASCII  0+1.  The  ADD  instruc- 
tion can  be  used  to  directly  increment  the  contents  of  a  memory  location.  As  a  result,  no 

explicit  instructions  are  required  to  load  the  data  from  memory  into  a  register  or  to  store 
the  result  back  into  memory.  Nor  are  any  registers  disturbed. 

Note  that  the  string  pointer,  AO,  starts  at  the  end  of  the  string  +  1  (6002+  1610) 
and  is  decremented  at  the  beginning  of  each  step.  When  accessing  data  in  this  manner, 

note  that  the  end-of-the-string  address  is  actually  the  address  of  the  first  byte  not  in  the 
string.  For  example,  the  byte  at  6002  +  1610  is  not  in  the  string  of  ASCII  digits.  Finally, 

note  that  6002  +  16l0  is  more  easily  identified  with  a  16-byte  string  than  6002  +  1510. 
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Binary-to-ASCII  conversion  is  necessary  if  numbers  are  to  be  printed  in  binary 
on  an  ASCII  device.  Binary  outputs  are  helpful  in  debugging  and  testing  when  each 
bit  has  a  separate  meaning;  typical  examples  are  inputs  from  a  set  of  panel  switches  or 
outputs  to  a  set  of  LEDs.  If  the  programmer  can  only  obtain  the  value  in  some  other 

number  system  (such  as  octal  or  hexadecimal),  he  or  she  must  perform  an  error-prone 
hand  conversion  to  check  the  bits. 

Flowchart  7-5: 

Q  Start  ̂  

Pointer  = STRING  +  16 
Count  =  1  5 
Data  =  (NUMBER) 

Pointer  =  Pointer  - 1 
(Pointer)  =  ASCII  0 
Rotate  Data 

Right  1  bit 

(Pointer)  = 
(Pointer)  +  1 

Count  =  Count  -1 

No 
Count  =  -1 ? 

Yes 
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PROBLEMS 

7-1.    ASCII  TO  HEXADECIMAL 

Purpose:  Convert  the  contents  of  the  variable  A  DIGIT  at  memory  location  6000 
from  an  ASCII  character  to  a  hexadecimal  digit  and  store  the  result  in  the 
variable  H  DIGIT  at  memory  location  6001.  Assume  that  A  DIGIT  con- 

tains the  ASCII  representation  of  a  hexadecimal  digit  (7  bits  with  MSB  =  0). 

Sample  Problems: 

a.  Input:    A  DIGIT  -  (6000)  =  43  'C 
Output:    H  DIGIT  -  (6001)  =  0C 

b.  Input:    A  DIGIT  -  (6000)  =  36  '6' 
Output:    H  DIGIT  -  (6001)  =  06 

7-2.    SEVEN-SEGMENT  TO  DECIMAL 

Purpose:  Convert  the  contents  of  the  variable  CODE  at  memory  location  6000  from  a 

seven-segment  code  to  a  decimal  number  and  store  the  result  in  the  variable 
NUMBER  at  location  6001.  If  CODE  does  not  contain  a  valid  seven-seg- 

ment code,  set  NUMBER  to  FF16.  Use  the  seven-segment  table  given  in 
Figure  7-1  and  try  to  match  codes. 

Sample  Problems: 

a.  Input:        CODE  -  (6000)  =  4F 
Output:    NUMBER  -  (6001)  =  03 

b.  Input:        CODE  -  (6000)  =  28 
Output:    NUMBER  -  (6001)  =  FF 

7-3.    DECIMAL  TO  ASCII 

Purpose:  Convert  the  contents  of  the  variable  DIGIT  at  memory  location  6000  from  a 
decimal  digit  to  an  ASCII  character  and  store  the  result  in  the  variable 
CHAR  at  memory  location  6001.  If  the  number  in  DIGIT  is  not  a  decimal 

digit,  set  the  contents  of  CHAR  to  an  ASCII  space  (20,6). 

Sample  Problems: 

a.  Input:    DIGIT  -  (6000)  =  07 
Output:    CHAR  -  (6001)  =  37  'T 

b.  Input:     DIGIT  -  (6000)  =  55 
Output:    CHAR  -  (6001)  =  20  space 
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7-4.    BINARY  TO  BCD 

Purpose:  Convert  the  contents  of  the  variable  NUMBER  at  memory  location  6000  to 
four  BCD  digits  in  the  variable  STRING  at  location  6002  (most  significant 

digit  in  6002).  The  16-bit  number  in  NUMBER  is  unsigned  and  less  than 
10,000. 

Sample  Problem: 

Input:  NUMBER-  (6000)=1C52  (7250  decimal) 
Output:    STRING  -      (6002)  =  07 

(6003)  =  02 
(6004)  =  05 
(6005)  =  00 

7-5.    ASCII  STRING  TO  BINARY  NUMBER 

Purpose:  Convert  the  eight  ASCII  characters  in  the  variable  STRING  starting  at  loca- 
tion 6000  to  an  8-bit  binary  number  in  the  variable  NUMBER  at  location 

6008  (the  most  significant  bit-character  is  in  location  6000).  Clear  the  byte 
variable  ERROR  at  location  6009  if  all  the  ASCII  characters  are  either 

ASCII  1  or  ASCII  0;  otherwise  set  ERROR  to  all  ones  (FF16). 

Sample  Problems: 

Input:  STRING (6000) 

31 

'V 

(6001) 

31 

•v 

(6002) 30 
0' 

(6003) 

31 

'V 

(6004) 30 '0' 
(6005) 

30 

0' 

(6006) 

31 

r 
(6007) 30 

'0' (6008) D2 
(6009) 0 

Output:  NUMBER 

Input:    Same  as  (a) 
above 
except 

(6005)  =  37 
Output:    ERROR  -       (6009)  =  FF 

REFERENCES 

Other  BCD-to-binary  conversion  methods  are  discussed  in  M.L.  Roginsky  and  J.  A. 

Tabb,  "Microprocessor  Algorithms  Make  BCD-Binary  Conversions  Super-fast/1 
EDN,  January  5,  1977,  pp.  46-50,  and  in  J.B.  Peatman,  Microcomputer-based  Design. 
New  York:  McGraw-Hill,  1977,  pp.  400-06. 
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Arithmetic  Problems 

MULTIPLE-WORD  AND  DECIMAL  ARITHMETIC 

Much  of  the  arithmetic  in  some  microprocessor  applications  consists  of 

multiple-word  binary  or  decimal  manipulations.  A  decimal  correction  (decimal 
adjust)  or  some  other  means  for  performing  decimal  arithmetic  is  frequently  the  only 
arithmetic  instruction  provided  besides  basic  addition  and  subtraction.  When  this  is 

the  case,  you  must  implement  other  arithmetic  operations  with  sequences  of  instruc- 
tion. The  MC68000,  however,  provides  both  signed  and  unsigned  multiply  and  divide 

instructions  for  16-bit  binary  arithmetic,  as  well  as  decimal  addition  and  subtraction 
instructions. 

The  MC68000  provides  for  both  signed  and  unsigned  binary  arithmetic.  Signed 

numbers  are  represented  in  two's  complement  form.  This  means  that  the  operations  of 
addition  and  subtraction  are  the  same  whether  the  numbers  are  signed  or  unsigned. 
Different  instructions  are  needed  for  signed  and  unsigned  multiplication  and  division, 
but  not  for  addition  and  subtraction.  Try  some  examples  to  convince  yourself  this  is 
true. 

Multiple-precision  binary  arithmetic  requires  simple  repetitions  of  the  basic 
instructions.  The  Extend  bit  transfers  information  between  words.  It  is  set  when  an 

addition  results  in  a  carry  or  a  subtraction  results  in  a  borrow.  Add  with  Extend  and 
Subtract  with  Extend  use  this  information  from  the  previous  arithmetic  operation.  You 
must  be  careful  to  clear  the  Extend  bit  before  operating  on  the  first  words.  (Obviously 
there  is  no  carry  into  or  borrow  from  the  least  significant  bits.) 

131 
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Decimal  arithmetic  is  a  common  enough  task  for  microprocessors  that  most  have 
special  instructions  for  this  purpose.  These  instructions  may  either  perform  decimal 
operations  directly  or  correct  the  results  of  binary  operations  to  the  proper  decimal  form. 

Decimal  arithmetic  is  essential  in  such  applications  as  point-of-sale  terminals,  check 
processors,  order  entry  systems,  and  banking  terminals.  The  MC68000  provides 
instructions  for  decimal  addition  and  subtraction.  Since  the  MC68000  performs  decimal 
arithmetic  directly,  there  is  no  need  for  a  decimal  adjust  instruction  such  as  is  found  in 
many  other  microprocessors. 

You  can  implement  decimal  multiplication  and  division  as  series  of  additions  and 

subtractions,  respectively.  Extra  storage  must  be  reserved  for  results,  since  a  multiplica- 
tion produces  a  result  twice  as  long  as  the  operands.  A  division  contracts  the  length  of 

the  result.  Multiplications  and  divisions  are  time-consuming  when  done  in  software 
because  of  the  repeated  operations  that  are  necessary. 

PROGRAM  EXAMPLES 

8-1.    64-BIT  BINARY  ADDITION 

Purpose:  Add  two  four-word  (64-bit)  binary  numbers.  The  first  number  is  the  64-bit 
variable  NUM1  and  occupies  memory  locations  6000  through  6007,  the  sec- 

ond is  the  64-bit  variable  NUM2  and  occupies  locations  6200  through  6207. 
Place  the  sum  in  NUM1  at  locations  6000  through  6007. 

Sample  Problem: 

Input:  NUM1 

NUM2 

Output:  NUM1 

(6000)  =  6A4D 
(6002)  =  ED05  6A4DED05A937641416isthe 
(6004)  =  A937    first  number 
(6006)  =  6414 
(6200)  =  56C8 
(6202)  =  46E6  56C846E676C84AEA 
(6204)  =  76C8    second  number 
(6206)  =  4AEA 
(6000)  =  C1 16 
(6002)  =  33EC    C1  1  633EC1  FFFAEFE 

16 

is  the 

(6004)  =  1FFF 
(6006)  =  AEFE 

16 

Program  8-1a: 
00006000  DATA  EQU  $6000 
0  000400  0  PROGRAM     EQU  $1+000 

00006  000  NUM1  EQU  $6  000  ADDR .    OF    1  :  ST   64-BIT  BINARY  NUMBER 
00006200  NUM2  EQU  $6200  ADDR.    OF    2 : ND   64   BIT  BINARY  NUMBER 
00000008  BYTECOUNT   EQU         $8  NUMBER   OF   BYTES   TO  ADD 

00004000  ORG  PROGRAM 

004000  207C00006008  PGM_8_1A  MOVEA.L  #NUM 1 +B YTECOUNT, AO  ADDRESS   BEYOND   END  OF   FIRST  NUMBER 
004006  227C00006208  MOVEA.L  KNUM2+B YTECOUNT, Al  ADDRESS   BEYOND   END  OF   SECOND  NUMBER 
00400C  44FC000O-  MOVE         #0,CCR  CLEAR   EXTEND   FLAGCAND  OTHER  FLAGS) 
004010  7407  MOVEQ       #B YTECOUNT-1 , D2  LOOPCOUNTER,    ADJUSTED  FOR  DBRA 
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004012  1.020 
00<40m  1221 
004016  D101 
004018  1080 
00401A  51CAFFF6 

00401E  4E75 

LOOP MOVE . B 
MOVE  .  B 
ADDX.B 
MOVE  .B 
DBRA 
RTS 

END 

-(AO), DO 
-(A1),D1 
01,00 
DO, (AO) 
D2,LOOP 

D0[0-7]:=  D0[0-7]    +  Dl[0-7]    +  (EXT) STORE  RESULT 
CONTINUE 

PGM 

1A Flowchart  8-1 

C         Start  ) 

Pointer1=NUM1  +8 
Pointer2=NUM2+8 

Extend  =  0 

Count  =  8-1 

Pointerl  = 
Pointerl  -  1 

Pointer2  = 
Pointer  2  -  1 

I 

(Pointerl)  = (Pointerl) 
+  (Pointer2) 
+  Extend 

Count  =  Count  -  1 

Clearing  and  Setting  Flags 

The  instruction  MOVE  TO  CCR  sets  all  the  condition  codes  in  the  processor's 
status  register  according  to  the  contents  of  the  source  operand.  Although  the  source 

operand  is  always  a  16-bit  word,  only  the  least  significant  byte  is  used  to  set  the  condi- 
tion codes.  Therefore  MOVE  #0,CCR  clears  all  the  conditions  (Negative,  Zero,  Over- 

flow, Carry  and  Extend).  This  instruction  is  used  to  clear  the  Extend  flag  in  preparation 
for  the  first  ADDX  instruction. 

MOVE  TO  CCR  is  not  the  only  instruction  which  can  explicitly  modify  the  con- 
tents of  condition  codes.  The  immediate  instructions  ANDI,  EORI,  and  ORI  can  also  be 

used  to  selectively  clear,  complement,  and  set  individual  condition  codes.  For  example, 
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by  using  the  instruction  ANDI  #$EF,CCR  we  could  clear  only  the  Extend  flag  without 
modifying  the  other  condition  codes.  The  format  for  the  immediate  operand  when 
modifying  condition  codes  is: 

7      6      5      4      3      2      1  0 ^  Bit  No. 

I 
X N Z V 

Carry 

Overflow 
Zero 

Negative Extend 

Add  with  Extend 

The  ADDX  instruction,  Add  with  Extend,  adds  the  contents  of  the  two  registers. 
If  the  Extend  flag  is  set,  then  1  is  added  to  the  sum.  Besides  performing  the  addition, 
ADDX  sets  the  Extend  flag  appropriately  for  future  operations.  Note  that  no  other 

instruction  in  this  program's  loop  affects  the  state  of  the  Extend  flag. 
The  Extend  flag  is  similar  to  the  Carry  flag  found  in  most  other  microprocessors. 

The  MC68000  has  both  a  Carry  and  Extend  flag.  As  a  general  rule,  the  Carry  flag  is  set  if 
a  carry  occurs  out  of  the  most  significant  bit  of  the  result  for  addition  or  if  a  borrow 
occurs  during  subtraction;  otherwise  it  is  cleared.  The  Extend  flag  is  generally  set  to  the 
same  state  as  the  Carry  flag,  except  during  data  movement,  when  the  state  of  the  Extend 
flag  is  not  affected. 

Adding  Memory  Operands 

A  quicker  and  more  elegant  version  of  this  addition  program  is  shown  in  Program 

8-16.  This  program  uses  the  second  form  of  the  Add  with  Extend  instruction,  the 
powerful  MC68000  memory-to-memory  form.  This  format  requires  the  use  of  two 
address  registers  which  point  to  the  two  operands  in  memory.  The  address  registers  are 
decremented  according  to  the  operand  size  prior  to  being  used  to  fetch  the  operands.  Note 

that  the  ADD  with  Extend  instruction  may  be  used  to  operate  on  8-,  16-,  or  32-bit  data. 

Program  8-1  b: 
00006000  DATA  EQU  $6000 
00004000  PROGRAM     EQU  $4000 

00006  000  NUM1  EQU  $6000  ADDR .    OF    1 : ST  64-BIT  BINARY  NUMBER 
00006200  NUM2  EQU  $6  200  ADDR.    OF    2  :  ND  64-BIT   BINARY  NUMBER 
00004000  ORG  PROGRAM 

004000 207C00006008 PGM   8    IB   MOVE A . L #NUM1+ 
8,  AO 

ADDRESS   BEYOND   END  OF   64-BIT  NUMBER 004006 227C00006208 MOVE A . L MNUM2+ 
8,A1 

ADDRESS   BEYOND   END  OF   SECOND  NUMBER 
00400C 44FC0000 MOVE 

#0,CCR CLEAR   EXTEND  F LAG (AND  OTHER  FLAGS) 

004010 D189 ADDX  .  L 

-CA1), -(AO) 

ADD  LOWER   LONG  WORDS, RESULT    IN  NUM1 004012 D189 ADDX  .  L 

-CA1), -(AO) 

ADD  HIGHER   LONG  WORDS,    RES    IN  NUM1 
004014 4E75 RTS 

END PGM  8 
IB 
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In  addition  to  the  Add  with  Extend  (ADDX)  instruction,  the  MC68000  also  sup- 
ports binary  addition  with  the  ADD  instruction.  ADD  is  similar  to  ADDX  except  that 

the  state  of  the  Extend  flag  is  not  used  in  the  addition  operation.  The  ADD  instruction 
also  requires  at  least  one  of  its  operands  to  be  in  a  data  register.  How  could  we  modify 
Program  8-la  to  use  the  ADD  instruction  instead  of  ADDX? 

Decimal  Precision  in  Binary  Representation 

Storing  data  in  a  binary  format  as  opposed  to  decimal  requires  less  memory.  For 

example,  ten  bits  correspond  to  approximately  three  decimal  digits  since  2 10  =  1024. 
So  you  can  calculate  the  approximate  number  of  bits  required  to  give  a  certain 
accuracy  in  decimal  digits  from  the  formula: 

Number  of  bits   (10/3)  X  Number  of  decimal  digits 

Thus,  twelve  decimal  digit  accuracy  requires: 

12  X  10/3  =  40  bits 

8-2.    DECIMAL  ADDITION 

Purpose:  Add  two  multiple-byte  packed  BCD  numbers.  The  length  of  the  numbers  (in 
bytes)  is  defined  by  the  variable  LENGTH  at  location  6000.  The  first  number 
(most  significant  bits  first)  is  contained  in  the  variable  BCDNUM1  at  location 
6001.  The  second  number  is  contained  in  the  variable  BCDNUM2  at  location 

6101.  The  sum  replaces  the  number  at  BCDNUM1.  Each  byte  of  the  BCD 
numbers  contains  two  decimal  digits. 

Sample  Problem: 

Input:  LENGTH 
BCDNUM1 

BCDNUM2 

Output:  BCDNUM1 

(6000) 
(6001) 
(6002) 
(6003) 
(6004) 
(6101) 
(6102) 
(6103) 
(6104) 

04 
36 70 
19 

85 12 

66 

34 59 

Number  of  bytes  in  each  number 

36701985  is  first  number 

12663459  is  second  number 

(6001)  =  49 
(6002)  =  36    49365444  is  decimal  sum 
(6003)  =  54 
(6004)  =  44 

That  is. 36701985 
12663459 
49365444 

Program  8-2a: 

00006000  DATA  EQU  $6000 
00004000  PROGRAM     EQU  $4000 

00006000  LENGTH  EQU 
00006001  BCDNUM1  EQU 
00006101           BCDNUM2  EQU 

$6000 
$600  1 $6101 

LENGTH  OF   BCD  NUMBER    IN  BYTES 
ADDRESS   OF   FIRST  BCD  NUMBER 
ADDRESS   OF   SECOND  BCD  NUMBER 
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00004000 
001+000 4242 
n  n  fi  a  a  o 0  0  4  0  0  2 14386000 
004006 3442 
004008 41EA6001 
00400C 43EA6 101 

004010 5  342 
004012 44FC0000 

004016 C109 
004018 5 1CAFFFC 

00401C 4E75 

ORG 

PGM_8_2A  CLR.W 
MOVE . B 
MOVE . W 
LEA 
LEA 5UBQ 

MOVE 

ABCD.B 
DBRA 

LOOP 

RTS 

END 

PROGRAM 
D2 
LENGTH, D2 
D2,  A2 BCDNUM1 (A2 ) , AO 
BCDNUM2 ( A2 ) , Al 

#1,D2 
#0,CCR 
-(A1),-(A0) 
D2, LOOP 

PGM   8  2A 

A2[0-31]    =  BYTES    IN  BCD  NUMBER 
POINTS  BEYOND  END  OF  BCDNUM1 
POINTS  BEYOND  END  OF  BCDNUM2 

ADJUST  LENGTH  FOR  LOOP  TERMINATION 
CLEAR  EXTEND  FLAG  FOR  ABCD 

BCD  ADDITION  WITH  EXTEND 
CONTINUE 

Flowchart  8-2: 
C         Start  J 

T 
Count  =  LENGTH 

Pointer1=BCDNUM1 
+  Count 

Pointer2=BCDNUM2 
+  Count 

Count  =  Count  -  1 

Extend  =  O 

i 

Pointer1=Pointer1-1 
Pointer2=Pointer2-1 

I 

(Pointed)  = (Pointed) 
+  (Pointer2) 
+  (Extend) 

Count  =  Count  -  1 

Yes 



Arithmetic  Problems  137 

The  MC68000,  unlike  most  microprocessors,  implements  decimal  addition  in  a 
single  instruction  ABCD,  Add  Decimal  with  Extend.  Like  the  ADDX  instruction, 
ABCD  performs  addition  using  the  state  of  the  Extend  flag.  However,  the  addition  is 

performed  using  binary-coded  decimal  arithmetic.  This  eliminates  the  need  for  the  typi- 

cal decimal  adjust  instruction  such  as  the  DAA  instruction  on  Motorola's  6809 
microprocessor.  The  MC68000  also  provides  a  decimal  subtraction  instruction,  SBCD. 

Program  8-2  uses  the  Load  Effective  Address,  LEA,  instruction  to  calculate  the 

address  of  the  decimal  number's  last  byte  plus  one.  This  instruction  calculates  an  effec- 
tive address  in  the  normal  way,  but  then  simply  places  that  address  in  the  specified 

address  register  rather  than  using  it  to  transfer  data.  The  effective  address  is  available  for 
later  use  and  need  not  be  recalculated. 

We  should  note  that  use  of  the  register  indirect  with  displacement  mode  of 

addressing  with  the  LEA  instruction  results  in  some  restrictions  being  placed  on  Pro- 
gram S-2a:  since  the  displacement  (BCDNUM1)  that  is  part  of  the  operand  can  only  be 

16-bits  in  length,  the  full  addressing  space  of  the  processor  cannot  be  utilized.  We  can 
make  Program  8-16  more  general  purpose  so  that  it  can  utilize  the  full  addressing  space, 
although  this  will  require  several  additional  instructions.  Program  8-26  provides  this 
more  general  solution. 

Program  8-2b: 

00006000 DATA EQU $6  000 
00004000 PROGRAM EQU $4000 

00006000 LENGTH EQU $6  000 LENGTH  OF   BCD  NUMBER    IN  BYTES 
00006001 BCDNUM1 EQU $600  1 ADDRESS   OF   FIRST  BCD  NUMBER 
00006101 BCDNUM2 EQU $6101 ADDRESS   OF    SECOND   BCD  NUMBER 

00004000 ORG PROGRAM 

001+000 4242 PGM_8_2B CLR 
D2 

004002 14386000 MOVE . B LENGTH, D2 
004006 207C00006001 MOVE A . L BCDNUM1 , AO POINTER   TO   START  OF  BCDNUM1 
00400C 227C00006101 MOVE A . L #BCDNUM2, Al POINTER   TO   START  OF  BCDNUM2 
004012 41F02000 LEA 0(A0,D2.W),A0 ADJUST   TO   POINT  BEYOND   END  OF  VALUE 
004016 43F12000 LEA 0(A1 ,D2 . W), Al ADJUST   TO   POINT  BEYOND   END  OF  VALUE 

00401A 5342 SUBQ. W 

ttl,'D2 

ADJUST   LENGTH  FOR   LOOP  TERMINATION 
00401C 44FC0000 MOVE ftO,  CCR CLEAR   EXTEND  FLAG   FOR  ABCD 

004020 C109 LOOP ABCD . B -CA1),-(A0) BCD  ADDITION  WITH  EXTEND 
004022 5 1CAFFFC DBRA D2, LOOP CONTINUE 
004026 4E75 RT5 

END PGM_8_2B 

The  procedure  used  in  both  of  these  programs  can  add  decimal  (BCD)  numbers  of 

any  length  (up  to  131,072  digits!).  Since  each  decimal  digit  requires  four  bits,  twelve 
digit  precision  requires 

12  x  4  =  48  bits 

as  compared  to  40  bits  using  binary  addition.  This  is  six  bytes  instead  of  five,  a  20% 
increase. 

Note  that  if  we  replaced  the  ABCD  instruction  in  Program  8-2o  or  8-26  with  an 

ADDX  instruction,  these  programs  would  provide  a  more  general  solution  to  the  binary 

addition  problem  presented  in  Program  8-1. 
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8-3.    16-BIT  BINARY  MULTIPLICATION 

Purpose:  Multiply  the  16-bit  unsigned  number  in  the  variable  NUM1  at  location  6000 
by  the  16-bit  unsigned  binary  number  in  the  variable  NUM2  at  location  6002. 
Place  the  32-bit  result  in  the  long  word  variable  RESULT  at  location  6004  with 
the  16  most  significant  bits  of  the  result  in  location  6004  and  the  16  least  sig- 

nificant bits  in  location  6006. 

Sample  Problems: 

a.  Input: 

Output: 

b.  Input: 

Output: 

NUM1 
NUM2 

RESULT 

NUM1 
NUM2 

RESULT 

(6000)  =  0003 
(6002)  =  0005 
(6004)  =  0000 
(6006)  =  OOOF 
or  in  decimal,  3  x  5 
(6000)  =  706F 
(6002)  =  0161 
(6004)  =  009B 
(6006)  =  090F 
or  in  decimal,  28783 

15 

x  353  =  10160399 

Program  8-3a: 
00006000 
00004000 

DATA 
PROGRAM 

EQU 
EQj 

$6000 
$4000 

00006000 
006000  00000002 
006002  00000002 
006004  00000004 

NUM1 
NUM2 
RESULT 

ORG 
DS.W 
DS.W 
DS.L 

DATA 
1 
1 
1 

16-BIT  MULTIPLICAND 
16-BIT  MULTIPLIER 
32-BIT     MULTIPLICATION  RESULT 

00004000 ORG 

004000  30386000 
004004  C0F86002 
004008  21C06004 

00400C  4E75 

PGM_8_3A  MOVE.W  NUM1,D0 
MULU  NUM2,D0 
MOVE.L  DO, RESULT 
RTS 

END  PGM   8  5A 

MULTIPLICAND 
UNSIGNED  MULTIPLICATION 
STORE    32-BIT  MULTIPLICATION  RESULTS 

The  MC68000  supports  signed,  as  well  as  unsigned,  binary  multiplication  or  divi- 
sion. To  multiply  two  signed  16-bit  binary  numbers,  you  simply  replace  MULU  with 

MULS,  the  Signed  Multiply  instruction. 

Besides  its  obvious  uses  in,  for  example,  point-of-sale  terminals,  multiplica- 
tion is  also  a  key  part  of  many  mathematical  algorithms.  The  speed  at  which  a  pro- 

cessor can  perform  multiplication  determines  its  usefulness  in  process  control,  adap- 
tive control,  signal  detection,  and  signal  analysis. 

Multidimensional  Arrays 

Another  common  use  of  multiplication  is  in  locating  elements  in  multidimen- 
sional arrays.  For  example,  if  we  have  an  array  of  sensor  readings  organized  by  remote 

station  number  and  sensor  number,  we  can  refer  to  the  reading  from  the  seventh  sensor 
at  station  number  5  as  R(5,7),  where  R  is  the  name  of  the  entire  array.  The  usual 
method  of  storing  such  an  array  is  to  start  at  address  RBASE  with  R(0,0)  and  continue 



Arithmetic  Problems  139 

with  R  (0, 1 ) ,  etc.  If  there  are  three  stations  (0, 1 ,  and  2)  and  four  sensors  at  each  station 
(0,  1,  2,  and  3),  we  keep  the  readings  in  the  following  memory  locations: 

Memory  Location 
Reading 

RBASE R(O.O) 
RBASE  + 1 R(0,1) 
RBASE  + 2 R(0,2) 
RBASE  + 3 R(0,3) 
RBASE  + 4 R(1.0) 
RBASE  + 5 R(1,1) 
RBASE  + 6 R(1,2) 
RBASE  + 7 R(1.3) 
RBASE  + 8 

R(2,0) 

RBASE  + 9 R(2,1) 
RBASE  + 

10 
R(2,2) 

RBASE  + 1  1 R(2,3) 

In  general,  if  we  know  the  station  number  I  and  the  sensor  number  J,  the  reading 
R(I,J)  is  located  at  address 

RBASE  +  (N  *  I)  +  J 

where  N  is  the  number  of  sensors  at  each  station.  Thus,  locating  a  particular  reading  in 
order  to  update  it,  display  it,  or  perform  some  mathemetical  operations  on  it  requires  a 
multiplication.  For  example,  the  operator  might  want  an  instrument  to  print  the  current 
reading  of  sensor  03  at  station  02.  To  find  that  reading,  the  processor  must  calculate  the 
address 

RBASE  +  (4  x  2)  +  3  =  RBASE  +  1 1 

Even  more  multiplications  are  necessary  if  the  array  has  more  dimensions.  For 
example,  we  might  organize  the  sensors  by  station  number,  position  in  the  X  direction, 
and  position  in  the  Y  direction.  (Each  station  thus  has  sensors  at  regular  positions  on  a 

two-dimensional  surface.)  Now  we  can  describe  a  reading  R(2,3,l),  which  refers  to  the 
reading  of  the  sensor  at  station  02,  X  position  03,  and  Y  position  01.  We  can  add  even 
more  dimensions,  such  as  vertical  position,  type  of  sensor,  or  time  of  reading.  Each 
added  dimension  means  that  the  processor  must  perform  more  multiplications  to  locate 

elements  in  the  essentially  one-dimensional  memory. 

A  Binary  Multiplication  Algorithm 

It  is  interesting  to  look  at  a  binary  multiplication  routine  for  two  reasons:  first,  we 
can  compare  the  execution  time  of  the  routine  with  the  MULU  or  MULS  instruction; 

and  second,  some  other  microprocessors  don't  have  multiply  instructions  and  under- 
standing multiplication  is  important. 

You  can  perform  multiplication  on  a  computer  in  the  same  way  that  you  do  long 
multiplication  by  hand.  Since  the  numbers  are  binary,  you  will  only  multiply  by  0  or  1; 
multiplying  by  zero  obviously  give  zero  as  a  result,  while  multiplying  by  one  produces 

the  same  number  you  started  with  (the  multiplicand).  So  each  step  in  binary  multiplica- 
tion can  be  reduced  to  the  following  operation:  if  the  current  bit  in  the  multiplier  is  1, 

add  the  multiplicand  to  the  partial  product. 
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The  only  remaining  problem  is  to  ensure  that  you  line  everything  up  correctly 
each  time.  The  following  operations  perform  this  task. 

1.  Shift  the  multiplier  left  one  bit  so  that  the  bit  to  be  examined  is  placed 
in  the  Carry. 

2.  Shift  the  product  left  one  bit  so  that  the  next  addition  is  lined  up  correctly. 

To  keep  things  simple,  we  will  multiply  two  8-bit  values  to  produce  a  16-bit  result. 

Step  1  -  Initialization 

Product  =  0 
Counter  =  8 

Step  2  -  Shift  Product  so  as  to  line  up  properly 

Product  =  2  x  Product  (LSB  =  0) 

Step  3  -  Shift  Multiplier  so  bit  goes  to  Carry 

Multiplier  =  2  x  Multiplier 

Step  4  -  Add  Multiplicand  to  Product  if  Carry  is  1 

If  Carry  =  1,  Product  =  Product  +  Multiplicand 

Step  5  -  Decrement  Counter  and  check  for  zero 

Counter  =  Counter  -  1 
If  Counter  >  0  go  to  Step  2 

Assuming  the  multiplier  is  61 16  and  the  multiplicand  is  6F16,  the  algorithm  works 
as  follows. 

Initialization: 
Product  OOOO 

Multiplier  61 
Multiplicand  6F 

Counter  08 

After  first  iteration  of  steps  2-5: 
Product  0000 

Multiplier  C2 
Multiplicand  6F 

Counter  07 
Carry  from 
Multiplier  0 

0000000000000000, 
011 00001 \ 
01 101 1 \\\ 

0000000000000000, 
1 1000010^ 
01 101 1 \\\ 

After  second  iteration: 

Product 006F 
Multiplier 

84 Multiplicand 

6F Counter 06 
Carry  from 
Multiplier 1 

=  0000000001101111, 

10000100' 

0110111U 

After  third  iteration: 
Product 014D 

Multiplier 08 
Multiplicand 

6F 
Counter 05 

Carry  from 
Multiplier 1 

0000000101001 101. 
00001000! 
01 101 1 11! 
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After  fourth  iteration: 

Product  029A 
Multiplier  1 0 

Multiplicand  6F 
Counter  04 

Carry  from 
Multiplier  0 

000000101001 1010, 
00010000! 
01 101 1 11! 

After  fifth  iteration: 

Product  0534 
Multiplier  20 

Multiplicand 
Counter 

Carry  from 
Multiplier 

6F 03 

=  0000010100110100, 

00100000' 
01101111' 

After  sixth  iteration: 

Product  0A68 
Multiplier  40 

Multiplicand  6F 
Counter  02 

Carry  from 
Multiplier  0 

After  seventh  iteration: 

0000101001 101000, 
01000000! 
01 101 1 11! 

Product  14D0 
Multiplier  80 

Multiplicand  6F 
Counter  01 

Carry  from 
Multiplier  0 

000101001 1010000, 

1 OOOOOOO' 

01 101 1 1 1 

After  eighth  iteration: 

Product  2A0F 
Multiplier  00 

Multiplicand  6F 
Counter  00 

Carry  from 
Multiplier  1 

=  0010101000001111, 

00000000' 
01101111' 

Program  8-3b: 

00006000 
00004000 

DATA  EQU  $6000 
PROGRAM     EQU  $4000 

00006000 
006000  00000002 
006002  00000002 
006004  00000004 

ORG 
NUM1  DS 
NUM2  DS 
RESULT  DS.L 

DATA 
1 
1 
1 

16-BIT  MULTIPLICAND 
16-BIT  MULTIPLIER 
32-BIT     MULTIPLICATION  RESULT 

00004000 

004000  4280 
004002  2200 
004004  32386000 
004008  34386002 
00400C  760F 

00400E  D080 
004010  D442 
004012  6402 

PGM  8 

LOOP 

ORG 

3B  CLR.L 
MOVE . L 
MOVE . W 
MOVE .W MOVEQ 

DO 

D0,D1 NUM1,D1 
NUM2,D2 
#16-1, D3 

ADD . L  DO, DO 
ADD .  W  D2,D2. 
BCC.S  STEP 

CLEAR    32-BIT  PRODUCT 
UPPER  WORD  MUST  BE   CLEAR   FOR  ADD . L 
16-BIT  MULTIPLICAND 
16-BIT  MULTIPLIER 
LOOP  COUNT    :=    16    (-1    FOR  DBRA) 

SHIFT   PRODUCT  LEFT   1  BIT 
SHIFT  MULTIPLIER  LEFT   1  BIT 
IF   MULT  I  PL  I ER [ 15]    WAS  1 

004014  D081 ADD.  L D1,D0 .THEN  ADD  MULTIPLICAND 
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004016    5 1CBFFF6  STEP  DBRA  D3,LOOP  ...ELSE  CONTINUE 
00401A   21C06004  MOVE.L  DO, RESULT  STORE  RESULT 

00401E   <+E75  RTS 

END  PGM_8_3B 

Flowchart  8-3b: 

Product  =  O 
Count  =16-1 

Multiplicand=(NUM1) 
Multiplier  =  (NUM2) 

Product=2xProduct 
(Shift  left  1  bit) 
Multiplier  =  2  x Multiplier 
(Shift  left  1  bit) 

(RESULT)  =  Product 

C  End  ) 

This  program  performs  the  same  16-bit  multiplication  operation  as  Program  %-3a. 
If  you  count  clock  cycles  for  the  two  versions,  you  will  find  the  expected  results:  the 

MULU  version  takes  less  than  109  cycles  while  the  long  version  (Program  8-36  )  takes 
58  cycles  outside  the  loop,  and  516  +  6n  (n  =  number  of  1  bits  in  multiplier)  cycles 
inside  the  loop. 
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8-4.    32-BIT  BINARY  DIVIDE 

Purpose:  Divide  the  32-bit  unsigned  number  in  variable  NUMl  at  location  6000  by  the 
16-bit  unsigned  binary  number  in  variable  NUM2  at  location  6004.  Place  the 
16-bit  remainder  in  the  variable  REMAINDER  at  location  6006  and  the  16-bit 
quotient  in  the  variable  QUOTIENT  at  location  6008. 

Sample  Problem: 

Input: NUM1 - (6000)  =  0074 
(6002)  =  CBB1 32-bit  dividend 

NUM2 (6004)  =  0141 1 6-bit  divisor 

Output: REMAINDER — (6006)  =  004C 
QUOTIENT (6008)  =  5D25 

or  in  decimal,  7654321  321  =  23845  with 
remainder  of  76 

Program  8-4: 

00006000 DATA  EQU $6  000 
00004000 PROGRAM  EQU $4000 

00006000 ORG DATA 
006000 00000004 NUMl  DS.L 1 32-BIT  DIVIDEND 
00600<+ 00000002 NUM2  DS.W 1 16-BIT  DIVISOR 
006006 00000002 REMAIND  DS.W 1 16-BIT  REMAINDER 
006008 00000002 QUOTIENT  DS.W 1 16-BIT  QUOTIENT 

00004000 ORG PROGRAM 

004000 20386000 PGM_8_4  MOVE L NUMl, DO 32  BIT  DIVIDEND 
004004 80F86004 DIVU NUM2, DO UNSIGNED  DIVIDE   -  NUM1/NUM2 
004008 21C06006 MOVE L DO, REMAIND STORE   RESULTS-REMAINDER   £  QUOTIENT 
00400C 4E75 RTS 

END PGM  8  4 

The  MC68000  provides  two  instructions  (DIVU  and  DIVS)  which  perform  a 

divide  operation  using  a  32-bit  binary  dividend  and  a  16-bit  binary  divisor.  The  opera- 
tion results  in  a  16-bit  binary  quotient  as  well  as  a  16-bit  binary  remainder.  The  DIVU 

instruction  should  be  used  for  unsigned  arithmetic,  while  the  DIVS  instruction  is  used 
with  signed  numbers.  When  performing  a  signed  divide,  the  sign  of  the  remainder  will 
be  the  same  as  the  sign  of  the  dividend.  The  sign  of  the  quotient  is  positive  if  both 
operands  have  the  same  sign  and  negative  if  they  have  different  signs.  Both  instructions 
place  the  remainder  in  the  16  most  significant  bits  of  the  destination  data  register  while 
the  quotient  is  placed  in  the  16  least  significant  bits  of  the  destination  data  register. 

Two  special  conditions  can  occur  when  executing  either  of  the  Divide  instruction. 

First,  if  the  divisor  equals  zero,  the  processor  will  cause  a  zero  divide  trap.  (A  descrip- 
tion of  traps  and  of  trap  processing  will  be  delayed  until  Chapter  15.)  Secondly,  the 

microprocessor  may  detect  an  overflow  condition.  In  this  case,  the  Overflow  (V)  bit  in 
the  status  register  will  be  set  and  the  operands  will  be  unaffected. 
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PROBLEMS 

8-1.    MULTIPLE  PRECISION  BINARY  SUBTRACTION 

Purpose:  Subtract  one  multiple-word  number  from  another.  The  length  in  words  of 
both  numbers  is  in  the  variable  LENGTH  at  location  6000.  The  numbers 

themselves  are  stored  (most  significant  bits  first)  in  the  variables  NUM1  and 
NUM2  at  locations  6002  and  6102,  respectively.  Subtract  the  number  in 
NUM2  from  the  one  in  NUM1.  Store  the  difference  in  NUM1. 

Sample  Problem: 

Input:  LENGTH 
NUM1 

NUM2 

Output:  NUM 1 

(6000) 
(6002) 
(6004) 
(6006) 
(6102) 
(6104) 
(6106) 
(6002) 
(6004) 
(6006) 

0003 
2F5B 
47C3 

306C 
14DF 
85B8 
03BC 
1A7B 
C20B 
2CBO 

That  is: 2F5B47C3306C 
-  14DF85B803BC 
1A7BC20B2CB0 

8-2.    DECIMAL  SUBTRACTION 

Purpose:  Subtract  one  multiple-byte  packed  decimal  (BCD)  number  from  another.  The 
length  in  bytes  of  both  numbers  is  in  the  byte  variable  LENGTH  at  location 

6000.  The  numbers  themselves  (most  significant  digits  first)  are  in  the  varia- 
bles NUM1  and  NUM2  at  locations  6001  and  6101,  respectively.  Subtract  the 

number  contained  in  NUM2  from  the  one  starting  in  NUM1.  Store  the 
difference  in  NUM1. 

Sample  Problem: 

LENGTH (6000) 
04 NUM1 (6001) 36 

(6002) 70 
(6003) 

19 

(6004) 
85 NUM2 (6101) 12 

(6102) 66 
(6103) 

34 
(6104) 

59 NUM  1 (6001) 
24 (6002) 
03 

(6003) 85 
(6004) 

26 

That  is: 36701985 
-  12663459 
24038526 
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8-3.    32-BIT  BY  32-BIT  MULTIPLY 

Purpose:  Multiply  the  32-bit  value  in  the  variable  NUM1  which  begins  in  memory  loca- 
tion 6000  (high-order)  by  the  32-bit  value  in  variable  NUM2  at  location  6004. 

Do  the  multiply  twice:  first  use  the  MULU  instruction  and  place  the  results  in 
the  64-bit  variable  PRODI  starting  at  location  6008;  then  use  a  shift  and  add 
method  as  illustrated  in  Program  8-3/?  and  place  the  result  in  the  64-bit  varia- 

ble PROD2  starting  at  location  6010. 

Sample  Problem: 

Input:         NUM1         -      (6000)  =  0024 
(6002)  =  68AC 

NUM2        -      (6004)  =  0328 
(6006)  =  1088 

Output:  PROD1  —  (6008)  =  0000 
(600A)  =  72EC 
(600C)  =  BBC2 
(600E)  =  5B60 

PROD2  -  (6010)  =  0000 
(6012)  =  72EC 
(6014)  =  B8C2 
(6016)  =  5B60 
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Tables  and  Lists 

Tables  and  lists  are  two  of  the  basic  data  structures  used  with  all  computers. 
We  have  already  seen  tables  used  to  perform  code  conversions  and  arithmetic.  Tables 
may  also  be  used  to  identify  or  respond  to  commands  and  instructions,  provide  access 

to  files  or  records,  define  the  meaning  of  keys  or  switches,  and  choose  among  alter- 
nate programs.  Lists  are  usually  less  structured  than  tables.  Lists  may  record  tasks 

that  the  processor  must  perform,  messages  or  data  that  the  processor  must  record,  or 

conditions  that  have  changed  or  should  be  monitored.  Tables  are  a  simple  way  of  mak- 
ing decisions  or  solving  problems,  since  no  computations  or  logical  functions  are  necess- 
ary. The  task,  then,  is  reduced  to  organizing  the  table  so  that  the  proper  entry  is  easy  to 

find.  Lists  allow  the  execution  of  sequences  of  tasks,  the  preparation  of  sets  of  results, 
and  the  construction  of  interrelated  data  (or  data  bases).  Problems  include  how  to  add 
elements  to  a  list  and  remove  elements  from  it. 

PROGRAM  EXAMPLES 

9-1.    ADD  ENTRY  TO  LIST 

Purpose:  Add  the  contents  of  the  word  variable  ITEM  at  memory  location  6000  to  a  list 
if  it  is  not  already  present  in  the  list.  The  list  is  comprised  of  word  elements 

and  the  starting  address  of  the  list  is  in  the  long-word  variable  LIST  at 

memory  location  6002.  The  first  word  of  the  list  contains  the  list's  length  in words. 

147 
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Sample  Problems: 

Input: ITEM 
LIST 

Output: 

(6000) 
(6002) 
(5000) 
(5002) 
(5004) 
(5006) 
(5008) 

(5000) 

16B2 
00005000 
0004 5376 
7618 
138A 
21  DC 
0005 

List's  address 
Length  of  list 

Length  of  list 

(500A)  =  16B2 
Input:      ITEM  -       (6000)  =  1 6B2 

LIST  -       (6002)  =  00005000 
(5000)  =  0003 
(5002)  =  5376 
(5004)  =  16B2 
(5006)  =  7431 

Output:     No  change  to  list,  since  the  item  is  already  in 
the  list  at  location  5004. 

Flowchart  9-1a: 

Entry  =  (ITEM) 
Pointer  =  (LIST) 
CountLoc  =  Pointer 
Count  =  (CountLoc) 
Pointer  = Pointer  +  2 

T 

Count  =  Count  -  1 

LOOP 

(Pointer)  =  Entry 
(CountLoc)  = (CountLoc)  +  1 
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Program  9-1a: 
00006000  DATA  EQU  $6000 
00004000  PROGRAM     EQU  $4000 

00006000 
00006002 

ITEM  EQU 
LIST  EQU 

$6000 
$600  2 

SEARCH  ITEM 
POINTER   TO   START  OF  LIST 

00004000 ORG PROGRAM 

004000   30386000  PGM_9_1A  MOVE.W     ITEM, DO  GET  SEARCH  ITEM 
004004 20786002 MOVE A . L LIST, AO AO   -   POINTER  TO  LIST 
004008 2248 MOVE A , L A0,A1 SAVE   POINTER   TO  LIST  COUNT 
00400A 3218 MOVE . W (A0)+,D1 Dl.W   -  NUMBER  OF   ELEMENTS  IN 
00400C 5341 SUBQ.W H,D1 ADJUST  FOR  DBEQ 

00400E B058 LOOP CMP.W (A0)+,D0 TEST  NEXT   ELEMENT  FOR  MATCH 
004010 57C9FFFC 

DBEQ 

Dl,LOOP CONTINUE  UNTIL  MATCH  OR  LIST 
004014 6  704 BEQ.S 

DONE IF   MATCH   THEN  DONE 

004016 3  08  0 MOVE . W DO, (AO) ...ELSE   ADD   ELEMENT   TO  LIST 
004018 525  1 ADDQ. W 

H,(A1) INCREMENT  LIST  COUNT 

00401A 4E75 DONE RTS 

END PGM_9_1A 

In  this  program,  we  use  the  autoincrement  mode  of  addressing  to  access  the  list 
indirectly  via  register  AO.  When  we  move  the  length  of  the  list  to  register  Dl,  the 
pointer  in  AO  was  also  autoincremented  so  that  it  points  to  the  first  item  in  the  list  when 
LOOP  is  begun.  When  we  exit  from  the  loop  due  to  no  match  being  found,  the  pointer 

will  have  already  been  incremented  to  point  to  the  location  beyond  the  last  item  cur- 

rently in  the  list;  thus  we  don't  have  to  adjust  the  pointer  in  order  to  add  the  new  entry 
to  the  end  of  the  list.  You  should  compare  this  program  to  Program  5-46  to  clarify  those 
situations  that  require  pointers  to  be  adjusted  and  those  that  do  not. 

Clearly,  the  method  of  adding  elements  used  in  this  program  is  very  inefficient  if 
the  list  is  long.  We  could  improve  the  procedure  by  limiting  the  search  to  part  of  the  list 
or  by  ordering  the  list.  We  could  limit  the  search  by  using  the  entry  to  get  a  starting  point 
in  the  list.  This  method  is  called  hashing,  and  is  much  like  selecting  a  starting  page  in  a 

dictionary  or  directory  on  the  basis  of  the  first  letter  in  an  entry.1  We  could  order  the  list 
by  numerical  value.  The  search  could  end  when  the  list  values  went  beyond  the  entry 
(larger  or  smaller,  depending  on  the  ordering  technique  used).  A  new  entry  would  have 
to  be  inserted  properly,  and  all  the  other  entries  would  have  to  be  moved  down  in  the 
list. 

The  program  could  be  restructured  to  use  two  tables.  One  table  could  provide  a 
starting  point  in  the  other  table;  for  example,  the  search  point  could  be  based  on  the 

most  or  least  significant  4-bit  digit  in  the  entry. 
The  program  does  not  work  if  the  length  of  the  list  is  zero.  (What  happens?)  We 

could  avoid  this  problem  by  checking  the  length  initially.  The  initialization  procedure 

and  other  program  changes  required  are  shown  in  Program  9-\b. 

Program  9-1  b: 
00006000  DATA  EQU  $6000 
00004000  PROGRAM     EQU  $4000 

00006000 
00006002 I  TEM 

LIST 
EQU 
EQU 

$6000 
$6002 

SEARCH  ITEM 
POINTER  TO  START  OF  LIST 

00004000 ORG PROGRAM 
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004000 
004004 
004008 
00400A 
00400C 

30386000 
20786002 
2248 
3218 
670A 

PGM_9_.1B MOVE  .  W 
MOVEA.L 
MOVEA.L 
MOVE . W 
BEQ.  S 

I TEM, DO 
LIST, AO 
AO,  Al 
(A0)+,D1 
INSERT 

GET   SEARCH  OBJECT 
AO   -   POINTER   TO  LIST 
SAVE   POINTER   TO  LIST  COUNT 
Dl.W   -   NUMBER   OF    ELEMENTS    IN  LIST 
IF   LENGTH   =   0   THEN    INSERT  ITEM 

00400E 5  341 SUBQ. W #1,D1 
ADJUST   FOR  DBEQ 

004010 
004012 
004016 

B058 
57C9FFFC 
6  7  04 

LOOP CMP.  W 
DBEQ 

BEQ.  S 

(A0)+,D0 
Dl,LOOP 
DONE 

TEST  NEXT   ELEMENT  FOR  MATCH 
CONTINUE   UNTIL   MATCH  OR   LIST  END 
IF    MATCH   THEN  DONE 

004018 
00401A 3080 

5251 
INSERT MOVE . W 

ADDQ. W 
DO, (AO) 
HI, CAD 

ELSE    ADD   ELEMENT   TO  LIST 
INCREMENT   LIST  COUNT 

00401C 4E75 
DONE 

RTS 

END  PGM_9_1B 

If  the  length  of  the  list  is  zero,  it  means  that  there  are  currently  no  elements  in  the 
list.  Therefore,  the  element  in  ITEM  cannot  be  in  the  list  and  must  be  inserted  (as  the 
first  element  of  the  list). 

9-2.    CHECK  AN  ORDERED  LIST 

Purpose:  Check  the  contents  of  the  word  variable  ITEM  at  memory  location  6000  to 

see  if  it  is  in  an  ordered  list.  The  list  consists  of  16-bit  unsigned  binary  num- 
bers in  increasing  order.  The  address  of  the  first  element  in  the  list  is  in  the 

variable  LIST  at  location  6004.  The  first  entry  in  the  list  is  the  list's  length  in 
words.  If  the  contents  of  ITEM  are  in  the  list,  place  the  index  of  its  entry  in 

the  variable  INDEX  at  6002;  otherwise,  set  INDEX  to  FFFF16. 

Sample  Problems: 

Input: 
ITEM  - 

(6000) 
=  5376 

LIST  - 
(6004) =  00005000 
(5000) =    0004                 List's  length 
(5002)  - 

=  138A 

(5004) 
=    21  DC 

(5006)  ■ 

=  5376 

(5008) 
=  8613 

Output: INDEX  - 
(6002) =    0004,  since  the  search  item  is  at 

location  5006  =  (5002+0004) 
Input: 

ITEM  - (6000)  = 

=  46B2 

LIST  - (6004)  ■ 

=  00005000 

(5000)  = 

=  0002 

(5002)  = 

=  138A 

(5004)  = 
=    71  DC 

Output: INDEX  - (6002)  = 
=    FFFF,    since  the  search  item  is 

not  in  the  list 



Flowchart  9-2a: 

I 

Entry  = 
(ITEM) 

Pointer =  (LIST) 

Length =  (Pointer) 

Index  = 
Length 

Index  =  Index  -  2 

(INDEX)  =  Index 
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Program  9-2a: 
00006000 DATA 

EQll 
$6  000 

00004000 PROGRAM EQU $4000 
UUUObOOO I  TEM EQU $6  000 
00006002 INDEX EOU $600  2 
00006004 LIST EQU $6004 
00004000 ORG PROGRAM 

004000 30386000 PGM_9_2A MOVE . W I TEM, DO GET   SEARCH  OBJECT 
004004 20786004 MOVE A . L LIST, AO GET   START  ADDRESS   OF  LIST 
0  0  4  0  0  8 7  2  0  0 

MOVEQ 
#  0  ,  D  1 CLEAR   THE   ELEMENT  COUNT 

00400A 3210 MOVE  .  W (A0),D1 GET  THE   ELEMENT  COUNT 
0  04  0  0C 6  710 BEQ .  S M I SS I NG IF   LENGTH  =   0, OBJECT    IS  NOT    IN  LIST 

0  040  0E D2  4 1 ADD .  W D 1 ,  D  1 EACH  ELEMENT  CONSISTS  OF   TWO  BYTES 
004010 5541 SUBQ. W #2,01 INDEX   RANGE   =   0   -   (LENGTH-2   -   2)  ! 
0040  1  2 B0701002 LOOP CMP.  W 2(A0,D1 .W),D0 SEARCH  FROM  END  OF   LIST   TO  START 
004016 6  708 BEQ.S DONE OBJECT    IS    IN  LIST,    Dl   HOLDS  INDEX 
004018 6204 BHI  .  S MISSING LIST   ELEM.    SMALLER,    OBJ   NOT    IN  LIST 
00401A 5  541 SUBQ. W «2,D1 INDEX  FOR   NEXT   SMALLER  ELEMENT 
00401C 64F4 BCC LOOP INDEX   >=   0      -  CONTINUE 

00401E 72FF MISSING 
MOVEQ 

#  $F  F  ,  D  1 "NOT  FOUND'"-INDEX 

004020 31C16002 DONE MOVE . W Dl , I NDEX SAVE  INDEX 

004024 4E75 
RTS 

END PGM  9  2A 

The  searching  process  of  this  program  takes  advantage  of  the  fact  that  the  ele- 
ments are  ordered.  We  begin  the  search  with  the  last  element  in  this  list  which  will  also 

be  the  largest.  Once  we  find  an  element  smaller  than  the  entry,  the  search  is  over,  since 
subsequent  elements  will  be  even  smaller.  You  may  want  to  try  an  example  to  convince 
yourself  that  the  procedure  works. 

As  in  the  previous  problem,  any  method  of  choosing  a  good  starting  point  will 
speed  up  the  search.  One  such  method  starts  in  the  middle  of  the  list,  determines  which 
half  of  the  list  the  entry  is  in,  then  divides  the  half  into  halves,  and  so  on.  This  method  is 
called  a  binary  search  since  it  divides  the  remaining  part  of  the  list  into  halves  each 

time.2,3 
Program  9-2a  works  if  the  length  is  zero  since  we  test  for  zero  length  when  form- 

ing the  word  index.  Note  the  addressing  mode  used  with  the  CMP.W  instruction  in  the 
loop.  This  is  a  good  example  of  how  to  use  the  indexed  addressing  with  displacement 

mode.  Address  register  AO  points  to  the  "base"  of  a  data  structure,  which  in  this  case  is 
an  ordered  list  with  the  list's  length  being  the  first  element  in  the  list.  The  displacement 
is  used  to  address  a  substructure,  in  this  case  the  first  number  in  the  list.  Register  Dl  is 

used  as  an  index  register  to  dynamically  access  the  objects  within  the  list.  This  address- 
ing method  can  be  illustrated  as  follows: 
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Remember  that  the  displacement  is  interpreted  as  a  two's  complement  number:  it 
is  possible  to  have  a  negative  displacement.  The  size  of  the  displacement  is  eight  bits, 

and  since  the  displacement  is  sign-extended,  this  allows  for  displacements  in  the  range 
-128  bytes  to  +127  bytes. 

The  effective  address  is  calculated  by  adding  the  sign-extended  displacement  to 
the  32-bit  contents  of  the  address  register  and  the  index  register.  The  value  in  the  index 
register  is  treated  as  a  signed  number.  If  you  define  the  index  register  size  to  be  word,  as 

we  have  done  in  this  program  with  Dl,  the  value  in  the  index  register  is  sign-extended 
to  32  bits  for  the  effective  address  calculation.  The  actual  contents  of  the  index  register 
are  not,  however,  affected  by  the  address  calculation. 

Because  the  index  register  may  contain  a  negative  number,  the  final  effective 
address  may  be  before  or  after  the  base  address  in  the  address  register. 

Note  that  an  unsigned  comparison,  BHI,  is  used  in  this  program.  In  the  sample 
problems,  a  comparison  using  GT  will  not  work  correctly  since  the  last  entry  in  the  list, 
8613,  has  its  sign  bit  set.  Unsigned  compares  are  particularly  useful  when  dealing  with 
addresses,  which  are  always  unsigned. 

The  two  branch  instructions  (BEQ.S  and  BHI.S)  in  this  program  can  be  replaced 

by  a  single  branch  instruction  which  will  speed  up  execution  of  the  loop.  Program  9-2b  is 
the  resultant  program: 

Program  9-2b: 
00006000 DATA EQU $6  000 
00004000 PROGRAM EQU $4000 

00006000 I  TEM EQU $6  000 
00006002 INDEX EQU $6  00  2 
00006004 LIST EQU $6  004 

00004000 ORG PROGRAM 
0  040  00 30386000 PGM_9_2B MOVE . W ITEM, DO GET   SEARCH  OBJECT 
004004 20786004 MOVE A . L LIST, AO GET   START   ADDRESS   OF  LIST 
004008 7200 

MOVEQ 
»0,D1 CLEAR    THE    ELEMENT  COUNT 

00400A 3210 MOVE . W (A0),D1 GET   THE   ELEMENT  COUNT 00400C 6710 BEQ.  S MISSING IF    LENGTH   r    0, OBJECT    IS   NOT    IN  LIST 
00400E D241 ADD.  W D1,D1 EACH  ELEMENT  CONSISTS   OF    TWO  BYTES 
004010 5  54  1 SUBQ. W #2,D1 INDEX   RANGE    =   0    -   (LENGTH" 2   -   2)  ! 
004012 B0701002 LOOP CMP  .  W 2(A0,D1 .W),D0 SEARCH  FROM  END  OF   LIST   TO  START 
004016 6404 BCC  .  S LPEXI T DONE    IF    FOUND  OR    ITEM   >   LIST  ELEM. 
004018 5541 SUBQ. W «2,D1 INDEX   FOR   NEXT    SMALLER  ELEMENT 
00401A 64F6 BCC LOOP INDEX    >=    0      -  CONTINUE 
00401C 6  702 LPEXI T BEQ.  S DONE OBJECT    IS    IN  LIST,    Dl    HOLDS  INDEX 
00401E 72FF MISSING 

MOVEQ 
«$FF,D1 "NOT  FOUND"-INDEX 

004020 31C16002 DONE MOVE  .  W 
Dl, INDEX SAVE  INDEX 

004024 4E75 RTS 

END PGM_9_2B 

In  this  program,  the  first  branch  instruction  in  the  loop  transfers  control  to  LPEXIT  if 

the  entry  is  equal  to  or  greater  than  the  list  element  being  compared.  There  is  one  dan- 

gerous aspect  that  has  been  introduced  in  this  program,  however.  Take  a  look  at  the 
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BEQ  instruction  at  LPEXIT.  There  are  two  different  ways  in  which  the  program  can 
arrive  at  this  instruction: 

1.  the  BCC.S  LPEXIT  instruction  in  the  loop  can  cause  a  branch  to  LPEXIT  and 
in  this  case  the  status  flags  are  set  according  to  the  result  of  the  CMP.W 
instruction  in  the  loop. 

2.  if  all  elements  in  the  list  have  been  tested  without  finding  the  entry  item,  then 
the  loop  is  exhausted  and  the  instruction  immediately  following  BCC  LOOP  is 
executed.  In  this  case,  the  status  flags  are  set  according  to  the  results  of  the 
SUBQ  instruction  in  the  loop. 

Thus,  the  BEQ  instruction  at  LPEXIT  tests  the  status  flags  that  have  been  set  by 
one  of  two  possible  instructions.  You  must  be  very  careful  to  ensure  that  there  are  not 
conflicting  conditions  which  will  give  you  unexpected  results  and  errors  that  are  very 
difficult  to  find.  The  surest  way  to  avoid  errors  is  to  make  up  a  table  to  see  what  happens 

for  all  possible  situations.  Such  a  table  for  Program  9-2b  would  look  like  this: 

N z V c 

After item  <  (list) ? 0 ? 1 
CMP.W item  =  (list) 0 1 0 0 

item  >  (list) ? 0 ? 0 

After D1  >  0 ? ? ? 0 
SUBQ D1  =  -2 1 0 0 1 

These  should  cause  exit  from 
the  loop  Use  BCC  to  exit. 

This  should  cause  loop  to 
terminate  Use  BCC  to  loop. 

As  you  can  see  from  this  table,  the  Z  flag  will  always  be  0  when  the  loop  is 
exhausted.  Thus,  when  the  BEQ  instruction  at  LPEXIT  is  executed  following  the  BCC 
LOOP  instruction,  the  branch  to  DONE  will  not  be  taken. 

It  is  possible  to  speed  up  this  program  a  bit  more.  Since  the  fastest  loop  in  this  case 

is  the  one  that  makes  use  of  a  CMP  instruction  with  predecrement  and  the  DBcc  instruc- 
tion, it  may  be  worth  the  effort  to  write  a  program  based  on  this  construction.  The 

changes  required  are  shown  in  Program  9-2c. 

Program  9-2c: 
00006000 
00004000 

DATA  EQU 
PROGRAM  EQU 

$6  0  0  0 $4000 

00006000 I  TEM EQU $6000 
00006002 I  NDEX EQU $60  02 
00006004 LIST EQU $6004 

0000 't  U00 0  R  G 
PROGRAM 

0  040  0  0  2  0  7  86  0  04  PGM_9_2C   MOVE  A . L  LIST, AO  GET   START  ADDRESS  OF  LIST 
004004  3210  MOVE.W  (A0),D1  GET   THE   ELEMENT  COUNT 
004006  6718  BEQ.S  MISSING  IF   LENGTH   =   0,OBUECT    IS   NOT    IN  LIST 

004008  5341  SUBQ.W  #1,D1  ADUUST  FOR   DBCC   AND    INDEX  RANGE 
00400A  3401  MOVE.W  D1,D2  D2    IS   THE   LOOP  COUNTER 
00400C D241 ADD.  W D1,D1 EACH  ELEMENT  CONSISTS   OF   TWO  BYTES 
00400E 5441 ADDQ. W 

»2,D1 ADUUST  FOR    1 : ST   PREDECREMENT    IN  LOP 
004010 41F01002 LEA 2(A0,D1 .W), AO POINTER   BEYOND   END  OF  LIST 

004014 30386000 MOVE . W I TEM, DO GET   SEARCH  OBUECT 

004018 B060 LOOP CMP.W -(AO), DO SEARCH  FROM  END  OF  LIST 
00401A 54CAFFFC DBCC 

D2,LOOP TEST  NEXT    IF   ELEM>OBU  AND   ELEM  LEFT 
00401E 6  704 BEQ.S MATCHING OBUECT    IS    IN  LIST,    D2   HAS  INDEX 
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0040  2  0    74FF  MISSING     MOVEQ  tt$FF,D2  "NOT  FOUND"-INDEX 004022   6002  BRA.S  DONE 

004024   D442  MATCHING   ADD . W  D2,D2  ADJUST    INDEX   TO  WORD  SIZE 
004026    31C26002  DONE  MOVE . W  D2, INDEX  SAVE  IT 

00402A   4E75  RTS 

END  PGM   9  2C 

Flowchart  9-2c: 

Q  Start  ̂  

Pointer =  (LIST) 
Length =  (Pointer) 

Loop  Count  = Loop  Count  x  2 

MATCHING 
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Besides  changing  the  loop  in  the  program,  we  have  made  some  subtle  changes  to 
the  initialization  portion.  First  of  all,  note  that  we  do  not  get  the  search  object  (entry) 
until  we  have  first  checked  for  length  equal  zero.  There  is  no  need  to  get  the  entry  until 
we  are  sure  that  we  have  to  perform  a  search. 

The  LEA  instruction  is  used  in  this  program  to  construct  the  address  of  the  first 

element  in  the  data  structure  in  the  same  way  as  in  Programs  9-2a  and  9-2b,  but  in  this 
case  we  form  the  starting  address  before  we  enter  the  loop. 

Also  note  that  Program  9-2c  avoids  the  problem  with  the  status  flag  that  we  dis- 
cussed following  Program  9-2/?.  Since  the  DBcc  instruction  does  not  affect  the  Condition 

codes,  they  are  still  set  according  to  the  result  of  the  CMP.W  instruction  when  the  loop 
is  exhausted  and  we  can  feel  free  to  test  in  any  way  we  want. 

If  you  compare  the  clock  cycles  required  to  execute  the  loop  in  Program  9-2c  you 
will  see  that  it  is  more  than  twice  as  fast  as  the  one  in  Program  9-2a.  If  it  is  possible  that  a 
loop  may  be  executed  many  times,  it  is  often  worth  the  extra  effort  to  reduce  the  execu- 

tion time  of  the  loop. 
The  average  execution  time  of  this  simple  search  technique,  regardless  of  which  of 

the  three  programs  you  use,  increases  linearly  with  the  length  of  the  list.  In  comparison, 
the  average  execution  time  for  a  binary  search  increases  logarithmically.  For  example,  if 
the  length  of  the  list  is  doubled,  the  simple  technique  takes  twice  as  long  on  the  average 
while  the  binary  search  method  only  requires  one  extra  iteration. 

9-3.    REMOVE  AN  ELEMENT  FROM  A  QUEUE 

Purpose:  The  variable  QUEUE  at  memory  location  6000  contains  the  address  for  the 
head  of  a  queue.  Save  the  address  of  the  first  element  (head)  of  the  queue  in 
the  variable  POINTER  at  memory  location  6002.  Update  the  queue  to 

remove  the  element.  Each  element  in  the  queue  is  one  word  long  and  con- 
tains the  address  of  the  next  element  in  the  queue.  The  last  element  in  the 

queue  contains  zero  to  indicate  that  there  is  no  next  element. 

Queues  are  used  to  store  data  in  the  order  in  which  it  will  be  used,  or  tasks  in  the 

order  in  which  they  will  be  executed.  The  queue  is  a  first-in,  first-out  (FIFO)  data  struc- 
ture; that  is,  elements  are  removed  from  the  queue  in  the  same  order  in  which  they  were 

entered.  Operating  systems  place  tasks  in  queues  so  that  they  will  be  executed  in  the 
proper  order.  I/O  drivers  transfer  data  to  or  from  queues  to  ensure  that  the  data  will  be 
transmitted  or  handled  in  the  proper  order.  Buffers  may  be  queued  so  that  it  becomes 
easy  to  find  the  next  available  buffer  in  a  storage  pool.  Queues  may  also  be  used  to  link 
requests  for  storage,  timing,  or  I/O  to  ensure  that  requests  are  satisfied  in  the  correct 
order. 

In  real  applications,  each  element  in  the  queue  would  typically  contain  a  large 
amount  of  information  and/or  storage  space  in  addition  to  providing  the  address  which 
links  each  element  to  the  next  one. 

Linked  Lists 

One  way  to  implement  a  queue  is  to  make  use  of  a  linked  list.  Note  that  there  is  a 
difference  between  a  data  structure  and  the  implementation  of  that  data  structure.  For 
example,  a  queue  is  a  data  structure,  and  there  are  many  different  ways  that  you  can 
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implement  a  queue.  However,  the  basic  function  of  the  queue  (first-in,  first-out)  is 
always  the  same  regardless  of  the  way  in  which  you  implement  this  data  structure. 

The  basic  principle  of  a  linked  list  is  that  each  entry  in  the  list  contains  the  address 
to  the  next  entry  in  the  list,  in  addition  to  any  data  that  may  be  found  in  a  particular  ele- 

ment. This  can  be  illustrated  as  follows: 

Pointer  to 
start  of  list 

Element Element Element 
No  1 No  2 No  3 

Pointer  to Pointer  to 
(Last  Element! Element  #2 Element  *3 

Data  space Data  space Data  space 
for for 

for Element Element Element 
No  1 No  2 No  3 

One  advantage  of  this  technique  is  that  the  elements  in  the  list  do  not  have  to  be 
stored  sequentially  in  memory,  since  each  entry  contains  the  address  pointing  to  the 
next  entry.  To  change  the  order  of  two  elements  in  a  linked  list,  all  you  have  to  do  is 

move  the  pointers  —  the  data  associated  with  each  element  need  not  be  moved.  Thus, 
to  remove  the  first  element  in  a  queue  we  simply  move  a  couple  of  pointers  and  the  task 

is  done;  we  don't  have  to  move  a  single  bit  of  data,  just  addresses.  Linked  lists  require 
extra  storage  as  compared  to  sequential  lists,  but  elements  are  far  easier  to  add,  delete, 
or  insert. 

Sample  Problems: 

Input: 

Output: 

QUEUE  - (6000)  - 
=  00006020 Address  of  first 

element  in  queue 
(6020) =  00006060 First  element  in  queue 
(6060) =  000060A0 
(60A0) =  00000000 Last  element  in  queue 

QUEUE  - (6000)  = 
=  00006060 Address  of  new  first 

element  in  queue 

POINTER  - (6004) =  00006020 Address  of  element 
removed  from  queue 

F,rsl 
Element Second 

Elemeni Last Element 
6060 

'  ^-6060 

60A0 
"*      ̂   60A0 

0000 

New  First Element Last Element 
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Empty  queue 

No  element  available 
from  queue 

POINTER  = (QUEUE) 

Address  = (Pointer) 

I 

Queue  = (Address) 

C  End  ) 
Program  9-3: 

00006000  DATA  EQU  $6000 
00001+00  0  PROGRAM     EQU  $4000 

b  Input:     QUEUE  -     (6000)     =  OOOOOOOO 
Output:     QUEUE  -      (6000)    =  0000 

POINTER  -      (6004)    =  0000 

Flowchart  9-3: 

Start  ~J 
c 

00006000  QUEUE  EQU  $6000  ADDRESS   OF   QUEUE  HEAD 
00006004  POINTER     EQU  $6004  ADDRESS  OF   FORMER   QUEUE  HEAD 

00004000  ORG  PROGRAM 

004000    21F860006004   PGM_9_3     MOVE.L  QUEUE , PO I NTER  SAVE   OLD   HEAD  OF  QUEUE 
004006   6708  BEQ.S  DONE  IF   QUEUE   EMPTY   THEN  DONE 

004008    20786004  MOVE.L  POINTER, AO  ...ELSE   REMOVE   FIRST  ELEMENT 
00400C   21D06000  MOVE.L  (AO), QUEUE  AND   REPLACE   WITH  SECOND 
004010   4E75  DONE  RTS 

END  PGM   9  3 

Doubly  Linked  Lists 

Sometimes  you  may  want  to  maintain  links  in  both  directions.  Then  each  ele- 
ment in  the  queue  must  contain  the  addresses  of  both  the  preceding  and  the  following 

elements.4-5  Such  doubly  linked  lists  allow  you  to  retrace  your  steps  easily  (e.g.,  repeat- 
ing the  previous  task  if  an  error  occurs  in  the  current  one)  or  access  elements  from 
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either  end  (e.g.,  allowing  you  to  remove  or  change  the  last  two  elements  without  having 
to  go  through  the  entire  queue).  The  data  structure  may  then  be  used  in  either  a  first- 

in,  first-out  manner  or  in  a  last-in,  first-out  manner,  depending  on  whether  new  ele- 
ments are  added  to  the  head  or  to  the  tail. 

Empty  Queue 

If  there  are  no  elements  in  the  queue,  the  program  clears  POINTER  at  location 
6004.  A  program  that  requests  an  element  from  the  queue  must  check  this  memory 
location  to  see  if  its  request  has  been  satisfied  (i.e.,  if  there  was  anything  in  the  queue). 
Can  you  suggest  other  ways  to  indicate  to  the  requesting  program  whether  the  queue  is 
empty? 

Another  way  of  implementing  a  queue  is  as  a  list  in  sequential  memory  positions. 
The  MC68000  architecture  is  well  suited  to  manipulation  of  such  queues.  You  can  use 

any  pair  of  address  registers  (AO  —  A6)  and  the  postincrement  or  predecrement  mode 
of  addressing  to  implement  the  queue.  If  the  queue  is  to  go  from  low  to  high  memory, 
then  the  postincrement  addressing  mode  is  used,  and  if  the  queue  goes  from  high  to  low 
memory,  the  predecrement  mode  would  be  used.  For  example,  a  queue  going  from  low 
memory  to  high  memory  could  be  implemented  using  address  registers  AO  and  Al  as 
shown  in  the  following  illustration: 

Next  Get 
AO 

Address 

Next  Put 

Address 

Low  Memory 

(free) 

Next  entry  out 

Last  entry  in 

Next  entry  in  (free) 

High  Memory 

AO  points  to  the  first  or  oldest  entry  in  the  queue  while  Al  points  to  the  location 
where  the  next  or  newest  entry  in  the  queue  will  be  mads.  If  you  use  the  postdecrement 

mode  of  addressing  when  accessing  this  queue,  then  AO  will  always  hold  the  next  "get1' 
address  and  register  Al  will  always  hold  the  next  "put"  address  for  the  queue. 
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Stack  Operations 

Another  form  of  data  structure  similar  to  the  queue  is  the  stack:  a  stack  is  a  last-in 

first-out  (LIFO)  list.  Most  microprocessors  provide  special  push  and  pull  instructions  to 
manipulate  stacks.  In  the  MC68000,  however,  you  can  simply  use  the  powerful  MOVE 
instructions  with  predecrement  or  postincrement  addressing  to  manipulate  stacks. 

You  can  implement  a  stack  using  a  single  address  register  in  the  predecrement  or 
postincrement  addressing  mode.  In  fact,  the  processor  itself  uses  address  register  A7  to 

maintain  special  system  and  user  stacks.  We  will  discuss  the  processor's  use  of  these 
stacks  further  in  Chapter  10. 

Using  Data  Structures 

The  various  indexed  and  indirect  addressing  modes  allow  us  to  use  data  struc- 
tures in  a  very  flexible  way.  If,  for  example,  an  address  register  contains  the  starting 

address  of  a  block  of  information,  we  can  refer  to  elements  in  the  block  with  constant 
offsets. 

How  would  we  use  such  data  structures?  For  example,  we  might  want  a  piece  of 
test  equipment  to  execute  a  series  of  tests  as  specified  by  the  operator.  Using  entries 
from  a  control  panel,  we  will  make  up  a  queue  of  blocks  of  information,  one  for  each  test 
that  the  operator  will  eventually  want  to  run.  Each  block  of  information  contains: 

1.  The  starting  address  of  the  next  block  (or  0  if  there  is  no  next  block). 

2.  The  starting  address  of  the  test  program. 

3.  The  address  of  the  input  device  (e.g.,  keyboard,  card  reader,  or  communica- 
tions line)  from  which  data  will  be  read  during  the  test. 

4.  The  address  of  the  output  device  (e.g.,  printer,  CRT  terminal,  or  communica- 
tions line)  to  which  the  results  will  be  sent  as  the  test  is  run. 

5.  The  number  of  times  the  test  will  be  repeated. 

6.  The  starting  address  of  the  data  area  to  be  used  for  storing  temporary  data. 

7.  A  flag  that  indicates  whether  failing  a  test  should  preclude  continuing  to  the 
next  test. 

Clearly  the  block  could  contain  even  more  information  if  there  were  more  options 
for  the  operator  to  specify  while  setting  up  the  test  sequence.  Note  that  some  elements 

in  the  block  contain  data,  others  contain  addresses,  while  still  others  may  be  1-bit  flags. 
Consider  what  we  mean  by  flexibility  in  this  example.  Some  of  the  procedures  that 

the  operator  can  easily  implement  are: 

1.  Run  the  same  test  with  different  sets  of  I/O  devices.  A  trial  run  might  use  data 
from  a  local  keyboard  and  send  the  results  to  the  CRT,  while  a  production  run 
might  use  data  from  a  remote  communications  line  and  produce  a  permanent 
record  on  a  printer. 

2.  Execute  tests  in  any  order,  just  by  changing  the  order  in  the  queue. 

3.  Place  temporary  data  in  an  area  where  it  can  easily  be  displayed  or  retrieved  by 
a  debugging  program. 

4.  Make  alternative  decisions  as  to  whether  tests  should  be  continued,  errors  re- 
ported, or  procedures  repeated.  Here  again,  trial  or  debugging  runs  may  use 

one  option,  while  production  runs  use  another. 
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5.  Delete  or  insert  tests  merely  by  changing  the  links  which  connect  a  test  to  its 
successor.  The  operator  can  thus  correct  errors  or  make  changes  without  reen- 

tering the  entire  list  of  tests. 

For  example,  assume  that  the  operator  enters  the  sequence  TEST  1,  TEST  2, 
TEST  4,  and  TEST  5,  accidentally  omitting  TEST  3.  The  blocks  are  linked  as  follows: 

Block  1  (for  TEST  1)  contains  the  starting  address  for  block 
2  (for  TEST  2). 

Block  2  (for  TEST  2)  contains  the  starting  address  for  block 
3  (for  TEST  4). 

Block  3  (for  TEST  4)  contains  the  starting  address  for  block 
4  (for  TEST  5). 

Block  4  (for  TEST  5)  contains  a  link  address  of  zero  to  indicate 
that  it  is  the  last  block. 

To  insert  TEST  3  between  TEST  2  and  TEST  4  merely  involves  the  following 
changes: 

Block  2  (for  TEST  2)  must  now  contain  the  starting  address 
for  block  5  (for  TEST  3). 

Block  5  (for  TEST  3)  must  contain  the  starting  address  for 

block  3  (for  TEST  4). 

No  other  changes  are  necessary  and  no  blocks  have  to  be  moved.  Note  how  much 

simpler  it  is  to  insert  or  delete  using  linked  lists  than  to  use  lists  that  are  stored  in  con- 
secutive memory  locations.  There  is  no  problem  of  moving  elements  up  or  down  to 

remove  or  create  empty  spaces. 

9-4.    8-BIT  SORT 

Purpose:  Sort  a  list  of  unsigned  binary  8-bit  numbers  into  descending  order.  The 
address  of  the  start  of  the  list  is  in  the  variable  LIST  at  memory  location  6000. 

The  first  entry  in  the  list  is  the  number  of  remaining  elements  in  the  list  — 
that  is,  the  length  of  the  list  beyond  this  first  entry.  Thus,  the  list  has  255  or 
fewer  elements. 

Sample  Problem: 

input:  LIST 

Output:  LIST 

(6000) =  00005000 Address  of  beginning  of  list 
(5000) 

=  06 
Number  of  elements  in  list 

(5001) 
=  2A 

First  element  in  list 

(5002)  ■ 

=  B5 

(5003) 
=  60 

(5004) 
=  3F 

(5005) 
=  D1 

(5006) 
=  19 

(6000)  = 
=  00005000 

(5000)  ■ 

=  06 

(5001)  = 

=  D1 
Largest  element  in  list 

(5002)  - 

=  B5 

(5003)  = 

=  60 

(5004) 
=  3F 

(5005)  = 

=  2A 

(5006)  ■ 

=  19 
Smallest  element  in  list 
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Simple  Sorting  Algorithm 

A  simple  sorting  technique  works  as  follows: 

Step  1.  Clear  a  flag  named  EXCHANGE. 

Step  2.  Examine  each  consecutive  pair  of  numbers  in  the  list.  If  any  are  out  of 
order,  exchange  them  and  set  EXCHANGE. 

Step  3.  If  EXCHANGE  is  set  after  the  entire  list  has  been  examined,  return  to 
Step  1. 

EXCHANGE  will  be  set  if  any  consecutive  pair  of  numbers  is  found  out  of  order. 
Therefore,  if  EXCHANGE  is  clear  at  the  end  of  a  pass  through  the  entire  list,  the  list  is 
in  proper  order. 

This  sorting  method  is  referred  to  as  a  "bubble  sort."  It  is  an  easy  algorithm  to 
implement.  However,  it  is  slow;  other  sorting  techniques  should  be  considered  when 

sorting  long  lists  where  speed  is  important.6  8 
The  technique  operates  as  follows  in  a  simple  case.  Let  us  assume  that  we  want  to 

sort  a  list  into  descending  order;  the  list  has  four  elements  —  12,  03,  15,  08. 

1st  Iteration: 

Step  1.  EXCHANGE  =  0 
Step  2.  Final  order  of  the  array  is: 

12 

15 
08 
03 

since  the  second  pair  (03,  15)  is  exchanged  and 
so  is  the  third  pair  (03,  08). 

EXCHANGE  =  1 

2nd  Iteration: 

Step  1.  EXCHANGE  =  0 
Step  2.  Final  order  of  the  array  is: 

15 

12 
08 
03 

since  the  first  pair  (12,  15)  is  exchanged. 

EXCHANGE  =  1 

3rd  Iteration: 

Step  1.  EXCHANGE  =  0 
Step  2.  The  elements  are  already  in  order,  so  no  exchanges  are  necessary 

and  EXCHANGE  remains  0. 

This  approach  always  requires  one  extra  iteration  to  ensure  that  the  elements  are 
in  the  proper  order.  No  exchanges  are  performed  in  the  last  iteration,  so  it  does  not 
really  accomplish  anything.  Tracing  through  the  examples  shows  that  many  of  the 
comparisons  are  wasted  and  even  repetitive.  Thus  the  method  could  be  improved 
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greatly,  particularly  if  the  number  of  elements  is  in  the  thousands  or  millions,  as  it 
commonly  is  in  large  data  processing  applications.  New  sorting  techniques  are  an 

important  area  of  current  research.9 

Flowchart  9-4: 

^  Start  J 

Start  =  (LIST) 
Length  =  (Start) 
Start  =  Start  +  1 
End  =  Start  + 

Length  -  1 SORT 

Exchange 

=  0 

Pointer  = Start 

NEXT 

Temp  0  =  (Pointer) 

Temp  1  =  (Pointer) 
(Pointer  -  1)  = Temp  1 

(Pointer)  =  Temp  0 

i 

Exchange  = 
Exchange  +  1 

Yes 



164    68000  Assembly  Language  Programming 

Program  9-4a: 
00006000  DATA  EQU  $6000 
00004000  PROGRAM     EQU  $4000 

UUUUOUUU LIST EQU $  6  0  0  0 AfM>QCC  c      T  r\     CTADT     r\c     1  TCT ADDRESS    10   5  1  AR  1    Or  LISI 

j  ■)  p  r 

DDnf  0  AM 
1    r\  VJ  \J  1\  M 1" 

004000 20786000 
PGM_ 

9_4A.  MOVE  A.  L LIST, AO POINTER   TO   START  OF  LIST 
n  n  u  n  n  u u  u  ̂   u  u  ̂  4240 C LR .  W D  0 
n  n  k  n  n  t i  n  i  p 1  U  1  o MOVE . B AU  )  +  ,  DU i  cMrru    r\c    i  tct LtlNb  In   Ur    L  1  b  1 
n  n  u  n  n  Q U  U  H  U  U  O DrUUUrr LEA -  1  (.  AU  ,  D  U  .  W  J  ,  A  1 On  1  KITCD      Tn     I    ACT     1     TCT     CI  CMCMT POINIbR    10   LAb T    LIbl  ELtMbN! 

00400C 4241 SORT CLR.W Dl COUNTER   FOR  EXCHANGES 
00400E 2448 MOVE A . L AO,  A2 POINTER   TO   START  OF  LIST 

0040  1  0 101A NEXT MOVE.B (A2)+,D0 GET  NEXT  ELEMENT 
004012 B012 CMP.B (A2),D0 COMPARE    IT  WITH  FOLLOWING  ELEMENT 
004014 640A BCC.S 'NSWITCH 

IF   PREVIOUS   ELEMENT   >=   THEN  DO  NEXT 

004016 1212 MOVE .B (A2),D1 ...ELSE   EXCHANGE  ELEMENTS 
004018 1541FFFF MOVE .B D1,-1(A2) 
00401C 1480 MOVE  .B D0,(A2) 
0040  1E 5241 ADDQ. W «1,D1 INCREMENT  EXCHANGE  COUNT 

004020 B3CA NSWI TCH  CMPA.L A2,  Al END  OF  LIST 
004022 62EC BHI NEXT IF   NOT   THEN  LOOK  AT  NEXT  ELEMENT 
004024 4A41 TST.  W 

Dl 
EXCHANGE  OCCURRED? 

004026 66E4 BNE SORT YES,    CONTINUE  SORT 
004028 4E7  5 RTS 

END PGM_9_4A 

The  program  must  reduce  the  end  pointer  Al  by  1  because  the  last  element  has  no 

successor.  The  final  comparison  is  between  the  next  to  last  element  and  the  last  ele- 
ment. Before  starting  each  sorting  pass,  we  must  be  careful  to  reinitialize  the  pointer  and 

the  Exchange  flag. 
Previous  examples  in  this  chapter  used  counters  to  control  loops.  In  this  example 

we  compare  addresses.  This  avoids  decrementing  a  counter  on  each  step.  It  is  interesting 
to  note  what  happens  if  there  are  fewer  than  two  elements  in  the  list.  Although  the 
results  are  not  as  tragic  as  they  would  be  if  we  used  counters,  the  results  are  incorrect 
nevertheless.  Actually,  checking  for  this  case  is  quite  simple.  We  simply  insert  BRA.S 
NSWITCH  before  the  statement  labeled  NEXT. 

Two  equal  elements  in  the  array  must  not  be  exchanged;  if  they  are,  the  exchange 
will  occur  on  every  pass  and  the  program  will  never  end. 

There  are  many  ways  to  code  this  bubble  sort  program  using  the  MC68000 

instruction  set.  The  memory-to-memory  compare  instruction  can  be  used  to  reduce  the 

program's  size  and  improve  loop  processing.  This  variation,  as  well  as  others,  are  shown 
in  Program  9-46.  What  are  the  advantages  and  disadvantages  of  using  the  bit  operate 

instructions  to  set  the  program's  exchange  flag?  What  happens  if  you  don't  test  for  zero 
elements  in  the  list?  Remember  that  DBRA  tests  for  counter  value  =  —  1. 

Program  9-4b: 
00006000  DATA  EQU  $6000 
00004000  PROGRAM     EQU  $4000 

00006000 

00004000 

004000  20786000 
004004  4280 

LIST  EQU  $6000 

ORG  PROGRAM 

PGM_9_4B   MOVE A . L  LIST, AO 
CLR.L  DO 

START  OF  LIST 

POINTER  TO  LIST  LENGTH 
CLEAR   ALL    32   BITS  OF  DO 
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004006 1018 MOVE . B (AO )+, DO LENGTH  OF  LIST 
004008 6  7  24 BEQ.  S DONE IF   LENGTH   =   0   THEN  DONE 
0  040  OA 43E80001 LEA .  L 1  ( AO ) , Al POINTER   TO  SECOND  ELEMENT 
00400E 08810000 BCLR.B #0,D1 EXCHANGE   FLAG    :=  0 
004012 5340 SUBQ.W Hi, do ADJUST  COUNTER  FOR  DBCC  INSTRUCTION 
0040  14 6  OOE BRA .  S NSW  I TCH CHECK   FOR   ONLY    1  ENTRY 

004016 B308 NEXT  CMPM.B (A0)+,(A1)+ COMPARE   ADJACENT  ENTRIES 
0040  18 6  30A BL5.  S NSWI TCH IF   FIRST   <=   SECOND   THEN  NO  SWITCH 
0  040  1 A 14  2  0 MOVE . B -(AO ) , D2 EXCHANGE 
00401C 10E1 MOVE .B -(A1),(A0)+ ...  ENTRIES 
00401E 12C2 MOVE .B D2,(A1)+ 
004020 08C10000 BSET.B #0,D1 SET   EXCHANGE  FLAG 

004024 51C8FFF0 NSWITCH  DBRA DO , NEXT COMPARE   ALL  ENTRIES 
004028 08010000 BTST.B #0,D1 EXCHANGE   FLAG  SET? 
00402C 66D2 BNE PGM  9  4B IF   YES  THEN  REPEAT  TESTING 

00402E 4E75 DONE  RTS 

END  PGM_9_4B 

There  have  been  entire  books  written  on  sorting  and  searching,  so  a  discussion  of 
sorting  methods  would  be  beyond  our  scope.  However,  there  is  one  variation  that 
should  be  considered.  At  the  end  of  every  step,  we  know  that  the  smallest  element  is  at 
the  end  of  the  list.  Therefore  the  number  of  pairs  we  need  to  compare  decreases  by  one 
each  step.  (Try  a  few  examples  to  convince  yourself  this  is  true.  Do  you  see  how  the 
method  gets  its  name?)  What  changes  to  the  program  would  take  advantage  of  this? 

9-5.    USING  AN  ORDERED  JUMP  TABLE 

Purpose:  Use  the  contents  of  the  variable  INDEX  at  location  6000  as  an  index  to  a 
jump  table  starting  at  TABLE  (location  6002).  Each  entry  in  the  jump  table 

contains  a  16-bit  address.  The  program  should  transfer  control  to  the  address 
with  the  appropriate  index;  that  is,  if  the  index  is  6,  the  program  jumps  to 
address  entry  number  6  in  the  table.  (Note  that  we  start  counting  with  entry 
number  0,  the  zeroth  element  in  the  table.) 

Sample  Problem: 

INDEX  -      (6000)  =  0002 
TABLE  —      (6002)  =  4740  Zeroth  element  in  jump  table 

(6004)  =  47A6 
(6006)  =  47DO 
(6008)  =  4620 
(600A)  =  4854  Fourth  element  in  jump  table 

Result:  (PC)  =  0047D0  since  that  is  entry  number  2  (starting  from  zero)  in  the  jump  table. 
The  next  instruction  to  be  executed  will  be  the  one  located  at  that  address 

Flowchart  9-5:  (      ~  ) 

Index  = (INDEX)  X  2 

~~ F 

(PC)  =  (TABLE  + 
Index) 

i 
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The  last  box  in  the  flowchart  results  in  a  transfer  of  control  to  the  address  obtained 

from  the  table.  No  ending  block  is  necessary.  Such  transfers  do  not  bother  the  processor 

at  all,  but  you  may  want  to  add  special  notes  to  your  flowchart  and  program  documenta- 

tion so  that  the  sequence  does  not  appear  to  be  a  "dead-end  street11  to  the  reader. 

Program  9-5a: 
00006000  DATA  EQU  $6000 
00004000  PROGRAM  EQU  $4000 

00006000  INDEX  EQU  $6000  INDEX    INTO  TABLE 
00006002  TABLE  EQU  $6002  START  OF  TABLE 
00004000  ORG  PROGRAM 

004000    30786000  PGM_9_5A  MOVEA.W    INDEX, AO  GET   TABLE  INDEX 
004004   D0C8  ADDA . W     AO, AO  ADJUST    INDEX   FOR   WORD  OFFSET 
004006    32686002  MOVEA.W   TA3LE(A0),A1  GET  ADDRESS   FROM  TABLE 
00400A   4ED1  JMP  (Al)  TRANSFER   TO  ADDRESS 

END  PGM_9_5A 

When  you  run  this  program,  be  sure  to  place  some  executable  code  (such  as  a 
TRAP  instruction)  at  each  address  to  which  control  could  be  transferred.  Otherwise  the 

processor  will  be  executing  random  code  and  you  will  have  no  way  to  tell  which  branch 
was  taken. 

Jump  Tables 

Jump  tables  are  very  useful  in  situations  where  the  processor  must  select  one  of 
several  routines  for  execution.  Such  situations  arise  in  decoding  commands  (entered, 
for  example,  from  a  control  keyboard),  selecting  test  programs,  choosing  alternative 

methods  or  units,  or  selecting  an  I/O  configuration.  For  example,  a  four-position 
switch  on  the  front  of  an  instrument  or  test  system  may  select  among  the  remote,  self- 
test,  automatic,  or  manual  modes  of  operation.  The  processor  reads  the  switch  and 

selects  the  appropriate  routine  from  a  jump  table.  References  10  and  11  contain  addi- 
tional examples  of  the  use  of  jump  tables. 
The  jump  table  thus  replaces  a  whole  series  of  compare  and  jump  operations.  The 

program  is  compact,  efficient  and  easily  changed  or  extended. 
The  index  into  the  jump  table  must  be  multiplied  by  2  to  give  the  correct  word 

offset  since  each  entry  in  the  table  is  a  16-bit  address  occupying  two  bytes  of  memory. 
This  assumes  that  the  addresses  in  the  table  are  short  absolute  references.  What  else 

does  the  program  assume  in  regard  to  the  length  of  the  jump  table? 

If  addresses  in  the  table  could  reference  anywhere  in  the  processor's  16-megabyte 
address  space,  then  each  entry  would  require  at  least  three  bytes.  By  using  entries  of  five 
bytes,  this  case  could  be  handled  by  simply  inserting  an  additional  ADDA  instruction 
and  modifying  the  MOVE.W  TABLE(A0),A1  to  a  MOVE.L  instruction.  However,  you 

will  encounter  difficulties  if  you  try  to  place  the  jump  table  in  9-5a  at  addresses  greater 
than  7FFF.  Why? 

Program  9-56  illustrates  another  method  of  implementing  the  jump  table  using 
indexed  addressing. 
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Program  9-5b: 
00006000  DATA  EQU  $6000 
00004000  PROGRAM     EQU  $4000 

00006000  INDEX         EQU  $6000  INDEX   INTO  JUMP  TABLE 
00006002  TABLE         EQU  $6002  START  OF   JUMP  TABLE 

00004000  ORG  PROGRAM 

004000   207C00006002  PGM_9_5B  MOVE A . L  #TABLE,A0  GET  TABLE  ADDRESS 
004006    30386000  MOVE.W  INDEX, DO  GET  TABLE  INDEX 
00400A  E540  ASL.W  #2, DO  ADJUST  FOR  4  BYTE  ENTRY 
00400C   22700000  MOVE A . L  0 ( AO , DO . W) , A 1  GET  ADDRESS   FROM   JUMP  TABLE 
004010   4ED1  JMP  (Al) 

END  PGM  9  5B 

In  both  of  these  programs,  the  instruction  JMP  (Al)  is  an  indirect  jump  which 
transfers  the  contents  of  register  Al  to  the  program  counter.  This  instruction  sometimes 

causes  confusion  because  of  the  "level  of  indirection."  To  clarify  this,  compare  the 
action  of  JMP  (Al)  with  MOVEA  (A1),A0.  In  the  case  of  JMP  (Al),  the  program 
counter  receives  the  value  held  in  Al.  In  the  MOVEA  (A1),A0  instruction,  AO  receives 
the  value  pointed  to  by  Al. 

This  is  an  apparent  inconsistency  in  the  assembly  language  syntax.  It  can  be 
resolved  by  reading  the  instruction  JMP  (Al)  as: 

"Jump  to  the  location  pointed  to  by  Al." 

What  would  happen  if  we  had  replaced  the  last  two  instructions  in  Program  9-5a 
with  JMP  TABLE(AO)? 

How  could  you  modify  Program  9-56  to  accept  the  address  of  the  table  in  the 
variable  TABLE,  instead  of  the  beginning  of  the  table  itself? 

PROBLEMS 

9-1.    REMOVE  ENTRY  FROM  LIST 

Purpose:  Remove  the  value  in  the  variable  ITEM  at  memory  location  6000  from  a  list  if 
the  value  is  present.  The  address  of  the  list  is  in  the  variable  LIST  at  location 

6002.  The  first  entry  in  the  list  is  the  number  (in  words)  of  elements  remain- 
ing in  the  list.  Move  entries  below  the  one  removed  up  one  position  and 

reduce  the  length  of  the  list  by  1. 

Sample  Problems: 

a.  Input:      ITEM  -       (6000)  =  D010 
LIST  -       (6002)  =  00005000 

(5000)  =  0004 
(5002)  =  C121 
(5004)  =  A346 
(5006)  =  3A64 
(5008)  =  6C20 

Entry  to  be  removed 
Address  of  list 
Length  of  list 
First  element  in  list 

Result: No  change  to  list  since  the  entry  is  not  in  the  list 
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Input: ITEM 
LIST 

Result 

(6000) = D010 
(6002) = 00005000 
(5000) = 

0004 
(5002) C121 
(5004) D010 
(5006) 3A64 
(5008) 6C20 

(5000) 0003 
(5002) C121 
(5004) 3A64 
(5006) 6C20 

Entry  to  be  removed 
Address  of  list 
Length  of  list 
First  element  in  list 

Length  of  list  reduced  by  1 

Other  elements  in  list 
moved  up  one  position 

9-2.    ADD  ENTRY  TO  ORDERED  LIST 

Purpose:  Insert  the  value  in  the  variable  ITEM  at  location  6000  into  an  ordered  list  if  it 
is  not  already  there.  The  address  of  the  list  is  in  the  variable  LIST  at  location 

6002.  The  first  entry  in  the  list  is  the  list's  length  in  words.  The  list  itself  con- 
sists of  unsigned  binary  numbers  in  increasing  order.  Place  the  new  entry  in 

the  correct  position  in  the  list,  adjust  the  elements  below  it  down,  and 
increase  the  length  of  the  list  by  1. 

Sample  Problems: 

Input: ITEM 
LIST 

Result: 

Input: 
ITEM 
LIST 

(6000) 7010 Entry  to  be  added  to  list 
(6002) 00005000 Address  of  list 
(5000) 0004 Length  of  list 
(5002) 0037 First  element  in  list 
(5004) 5322 
(5006) A101 
(5008) C203 
(5000) 005 Length  of  list  increased 
(5002) 0037 

by  1 
(5004) 5322 
(5006) 7010 New  entry 
(5008) A101 Other  elements  moved 
(500A) C203 down  one  position 
(6000) 7010 Entry  to  be  added  to  list 
(6002) 00005000 Address  of  list 
(5000) 0004 Length  of  list 
(5002) 0037 First  element  in  list 
(5004) 5322 
(5006) 7010 
(5008) C203 

Result: No  change  in  the  list  since  entry  is  already  in 
the  list. 

9-3.    ADD  ELEMENT  TO  QUEUE 

Purpose:  Add  the  value  in  the  variable  ITEM  at  memory  location  6000  to  a  queue.  The 
address  of  the  first  element  in  the  queue  is  in  the  variable  QUEUE  at  location 
6002.  Each  element  in  the  queue  contains  either  the  address  of  the  next  ele- 

ment in  the  queue  or  zero  if  there  is  no  next  element.  The  new  element  is 

placed  at  the  end  (tail)  of  the  queue;  the  new  element's  address  will  be  in  the 
element  that  was  at  the  end  of  the  queue.  The  new  element  will  contain  zero 
to  indicate  that  it  is  now  the  end  of  the  queue. 
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Sample  Problem: 
Input: ITEM  - (6000)  - 

=  000060A0 

QUEUE  - (6002)  : 
=  00006020 

(6020)  = 
=  00006030 

(6030)  ■ 
=  0000 

Result: 
QUEUE  - (6002)  = 

=  00006020 
(6020) =  00006030 

(6030)  ■ 
=  000060A0 

(60A0) 
=  0000 

Pointer  to  head  of  queue 

Last  element  in  queue 

Old  last  element  points 
to  new  last  element 
New  last  element 

How  would  you  add  an  element  to  the  queue  if  memory  location  6006  contained 

the  address  of  the  tail  of  the  queue  (the  last  element)  ?  Remember  to  update  this  end-of- 
queue  pointer. 

9-4.    4-BYTE  SORT 

Purpose:  Sort  a  list  of  4-byte  entries  into  descending  order.  The  first  three  bytes  in  each 
entry  are  an  unsigned  key  with  the  first  byte  being  the  most  significant.  The 
fourth  byte  is  additional  information  and  should  not  be  used  to  determine  the 
sort  order,  but  should  be  moved  along  with  its  key.  The  number  of  entries  in 
the  list  is  defined  by  the  word  variable  LENGTH  at  location  6000.  The  list 
itself  begins  at  location  6002  (LIST). 

Sample  Problem 

Input LENGTH 

LIST  - 

Result:      LIST  - 

(6000) 
=  0004 

4  entries  in  list 

(6002)  s 

=  41 
Beginning  of  first  entry  key 

(6003) 
=  42 

(6004)  - 

=  43 
End  of  first  entry  key 

(6005)  = 

=  07 
First  entry  additional 
information 

(6006) 
=  4A 

Beginning  of  second  entry 
(6007) 

=  4B 

(6008) 
=  4C 

(6009) 
=  13 

(600A) 
=  4A 

Beginning  of  third  entry 
(600B) 

=  4B 

(600C) 
=  41 

(600D) 
=  37 

(600E) 
=  44 

Beginning  of  fourth  entry 
(600F) 

=  4B 

(6010) 
=  41 

(601  1) 
=  3F 

(6002) 
=  4A 

(6003) 
=  4B 

(6004) 

=  4C 

(6005) 
=  13 

End  of  first  entry 
(6006) 

=  4A 

(6007) 
=  4B 

(6008) 
=  41 

(6009) 
=  37 

End  of  second  entry 
(600A) 

=  44 

(600B) 

=  4B 

(600C) 
=  41 

(600D) 
=  3F 

End  of  third  entry 
(600E) 

=  41 

(600F) 
=  42 

(6010) 
=  43 

(601 1) 
=  07 

End  of  last  entry 
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The  data  in  the  unsorted  entries  are  'ABC\$07;  lJKL\$13;  'JKA',$37; 
kDKA\$3F. 

9-5.    USING  A  JUMP  TABLE  WITH  A  KEY 

Purpose:  Use  the  value  in  the  variable  INDEX  at  memory  location  6000  as  a  key  to  a 
jump  table  (TABLE)  starting  at  location  6002.  Each  entry  in  the  jump  table 
contains  a  16-bit  identifier  followed  by  a  32-bit  address  to  which  the  program 
should  transfer  control  if  the  key  is  equal  to  that  identifier. 

Sample  Problem: 

Input:  INDEX 
TABLE 

(6000) 
(6002) 
(6004) 
(6008) 
(600A) 
(600E) 
(6010) 

4142 
4348 
00004900 
4142 
00004940 
4558 
00004A20 

First  key 

First  transfer  address 
Second  entry 

Third  entry 

Result (PC)  —  004940  since  that  address  corresponds  to 
key  value  4142. 
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Advanced  Topics 

The  following  chapters  discuss  more  advanced  areas  of  assembly  language  programming. 
Chapters  10  and  11  deal  with  subroutines,  an  important  aspect  of  all  levels  of  programming. 
Chapter  12  describes  some  of  the  advanced  features  found  on  the  MC68020.  In  Chapter  13,  we 
cover  many  basic  principles  of  connecting  the  MC68000  to  peripherals.  Chapters  14  and  15 
describe  interrupts  and  exception  processing;  Chapter  14  provides  an  overview  of  all  family 
members,  while  Chapter  15  concentrates  on  the  MC68000. 
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Parameter  Passing  Techniques 

None  of  the  examples  that  we  have  shown  thus  far  is  a  typical  program  that  would 
stand  by  itself.  Most  real  programs  perform  a  series  of  tasks,  many  of  which  may  be  used 
a  number  of  times  or  be  common  to  other  programs. 

SUBROUTINES 

The  standard  method  of  producing  programs  which  can  be  used  in  this  manner  is 

to  write  subroutines  that  perform  particular  tasks.  The  resulting  sequences  of  instruc- 
tions can  be  written  once,  tested  once,  and  then  used  repeatedly. 
In  order  to  be  really  useful,  a  subroutine  must  be  general.  For  example,  a 

subroutine  that  can  perform  only  a  specialized  task,  such  as  looking  for  a  particular  letter 
in  an  input  string  of  fixed  length,  will  not  be  very  useful.  If,  on  the  other  hand,  the 
subroutine  can  look  for  any  letter,  in  strings  of  any  length,  it  will  be  far  more  helpful. 

In  order  to  provide  subroutines  with  this  flexibility,  it  is  necessary  to  provide  them 
with  the  ability  to  receive  various  kinds  of  information.  We  call  data  or  addresses  that  we 

provide  the  subroutine  parameters.  An  important  part  of  writing  subroutines  is  provid- 
ing for  transferring  the  parameters  to  the  subroutine.  This  process  is  called  Parameter 

Passing. 
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GENERAL  PARAMETER  PASSING  TECHNIQUES 

There  are  three  general  approaches  to  passing  parameters: 

1.  Place  the  parameters  in  registers. 

2.  Place  the  parameters  immediately  after  the  subroutine  call  in  program 
memory. 

3.  Transfer  the  parameters  and  results  on  the  hardware  stack. 

The  registers  often  provide  a  fast,  convenient  way  of  passing  parameters  and  returning 

results.  The  limitations  of  this  method  are  that  it  cannot  be  expanded  beyond  the  num- 
ber of  available  registers;  it  often  results  in  unforeseen  side  effects;  and  it  lacks 

generality. 

The  trade-off  here  is  between  fast  execution  time  and  a  more  general  approach. 
Such  a  trade-off  is  common  in  computer  applications  at  all  levels.  General  approaches 
are  easy  to  learn  and  consistent;  they  can  be  automated  through  the  use  of  macros.  On 
the  other  hand,  approaches  that  take  advantage  of  the  specific  features  of  a  particular 
task  require  less  time  and  memory.  The  choice  of  one  approach  over  the  other  depends 
on  your  application,  but  you  should  take  the  general  approach  (saving  programming 

time  and  simplifying  documentation  and  maintenance)  unless  time  or  memory  con- 
straints force  you  to  do  otherwise. 

Passing  Parameters  In  Registers 

The  first  and  simplest  method  of  passing  parameters  to  a  subroutine  is  via  the 
registers.  After  calling  a  subroutine,  the  calling  program  can  load  memory  addresses, 
counters,  and  other  data  into  registers.  For  example,  suppose  a  subroutine  operates  on 
two  data  buffers  of  equal  length.  The  subroutine  might  specify  that  the  length  of  the  two 
data  buffers  be  in  the  register  DO  while  the  two  data  buffer  beginning  addresses  are  in 
the  registers  AO  and  Al.  The  calling  program  would  then  call  the  subroutine  as  follows: 

MOVE.W  tt  B  U  F  L  ,  D  ( 
M.OVEA.L  BUF A,  AO 
MOVE  A . L  BUF  B , A  1 
J5R  SUBR 

LENGTH   OF   BUFFER    IN  DO 
BUFFER   A   BEGINNING   ADDRESS    IN  AO 
BUFFER   B   BEGINNING   ADDRESS    IN  Al 
CALL  SUBROUTINE 

Using  this  method  of  parameter  passing,  the  subroutine  can  simply  assume  that  the 

parameters  are  there.  Results  can  also  be  returned  in  registers,  or  the  addresses  of  loca- 
tions for  results  can  be  passed  as  parameters  via  the  registers.  Of  course,  this  technique 

is  limited  by  the  number  of  registers  available.  Such  MC68000  features  as  register 
indirect  addressing,  indexed  addressing,  the  ability  to  use  any  address  register  as  a  stack 
pointer,  and  the  LEA  instruction  provide  far  more  powerful  and  more  general  ways  of 
passing  parameters. 

Passing  Parameters  In  Program  Memory 

Parameters  that  are  to  be  passed  to  a  subroutine  can  also  be  placed  directly  after 
the  subroutine  call.  The  subroutine  must  then  modify  the  return  address  at  the  top  of 
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the  stack  in  addition  to  fetching  the  parameters.  Using  this  technique,  our  example 
would  be  modified  as  follows: 

JSR 
DC  .W 
DC  .L 
DC  .L 

SUBR 
BUFL 
BUFA 
BUFB 

BUFFER  LENGTH 
BUFFER  A  STARTING  ADDRESS 
BUFFER   B   STARTING  ADDRESS 

The  subroutine  saves  prior  contents  of  CPU  registers,  then  loads  parameters  and  adjusts 
the  return  address  as  follows: 

SUBR  MOVEM.L  DO /A0-A2 , -( A7 ) 
MOVE A . L  16(A7),A2 
MOVE.W  (A2)+,D0 
MOVE A . L  (A2)+,A0 
MOVE A . L  (A2)+,A1 
MOVE  A . L  A2, 16(A7) 

SUBROUTINE   USES  D0,A0,A1,A2 
RETURN  ADDRESS   POINTS   TO  BUFL 
BUFL   TO  DO 
BUFA  TO  AO 
BUFB   TO  Al 
ADJUST   RETURN  ADDRESS 

The  constant  16  is  to  adjust  for  the  change  in  A7  when  the  four  registers  DO,  AO, 
Al,  and  A2  are  saved  on  the  stack. 

This  parameter  passing  technique  has  the  advantage  of  being  easy  to  read.  It  has, 

however,  the  disadvantage  of  requiring  parameters  to  be  fixed  when  the  program  is  writ- 
ten. A  modification  which  allows  parameters  to  vary  uses  an  address  pointer  following 

the  subroutine  call.  The  pointer  addresses  an  area  of  data  memory  where  the  parameters 
are  actually  found.  This  may  be  illustrated  as  follows: 

PL  1ST 

JSR DC  .L 

DC  .W 
DC  .L 
DC  .L 

SUBR PLI  ST 

BUFL 

BUFA BUFB 

BEGINNING   ADDRESS   OF  PARAMETERS 

SUBR  MOVEM.L  D0/A0-A2,' 
MOVE A . L  16(A7),A1 
MOVE A . L  (A1)+,A2 
MOVE A . L  Al , 16CA7) 
MOVE.L  (A2)+,D0 
MOVE A . L  (A2)+,A0 
MOVE  A . L  (A2)+.A1 

CA7) SUBROUTINE   USES  D0,A0,A1,A2 
RETURN  ADDRESS   POINTS   TO  PLIST 
GET  ADDRESS   OF   PARAMETER  LIST 
...    AND  UPDATE   RETURN  ADDRESS 
BUFL    IN  DO 
BUFA    IN  AO 
BUFB    IN  Al 

Parameters  held  in  a  separate  area  of  memory  are  frequently  referred  to  as  a 

"parameter  block."  In  the  illustration  above,  we  stored  the  beginning  address  for  a 
three  word  parameter  block  after  the  JSR.  The  address  of  the  parameter  block  could  also 
be  passed  to  the  subroutine  as  follows: 

MOVE.L      #PLIST,-(A7)  PUSH  ADDRESS   OF   PARAMETER  BLOCK JSR  SUBR 

The  subroutine  would  fetch  parameters  as  follows: 

SUBR  MOVEM.L   D 0 / A 0 - A 2 , - ( A 7 )  SUBROUTINE   USES  D0,A0,A1,A2 
MOVE  A . L   20(A7),A2  GET   PARAMETER  ADDRESS 
MOVE.W     (A2)+,D0  BUFL    IN  DO 
MOVE A . L    (A2)+,A0  BUFA    IN  AO 
MOVE A . L   (A2)+,A1  BUFB    IN  Al 

No  adjustment  of  the  stack  pointer  is  required  when  this  method  is  used. 
Results  can  be  returned  by  storing  them  in  the  same  parameter  block,  or 

addresses  for  storing  results  can  also  be  passed  as  parameters. 
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Passing  Parameters  On  The  Stack 

Another  common  method  of  passing  parameters  to  a  subroutine  is  to  push  the 
parameters  onto  the  stack.  Using  this  parameter  passing  technique,  the  subroutine  call 
illustrated  above  would  occur  as  follows: 

MOVE.W      #BUFL,-(A7)  PUSH   BUFFER  LENGTH 
MOVE  A . L   8UFA,-(A7)  PUSH   TWO   BUFFER   STARTING  ADDRESSES 
MOVE  A . L   BUFB,-(A7)  ...    ONTO  STACK 
JSR  SUBR 

The  subroutine  must  begin  by  loading  parameters  into  CPU  registers  as  follows: 

SUBR  MOVEM.L  D 0 / A 0 / A 1 , - ( A 7 )  SAVE   PRIOR   REGISTER  CONTENTS 
MOVE  A . L  12(A7),A1  BUFFER   B   STARTING   ADDRESS    IN  Al 
MOVE  A . L  16(A7),A0  BUFFER   A   STARTING  ADDRESS    IN  AO 
MOVE.W  20(A7),D0  BUFFER   LENGTH    IN  DO 

In  this  approach,  all  parameters  are  passed  and  results  are  returned  on  the  stack. 
The  MC68000  stack  grows  downward  (toward  lower  addresses).  This  occurs 

because  elements  are  pushed  onto  the  stack  using  the  predecrement  address  mode.  The 
use  of  the  predecrement  mode  causes  the  stack  pointer  to  always  contain  the  address  of 
the  last  occupied  location,  rather  than  the  next  empty  one  as  on  some  other 
microprocessors,  such  as  the  6800.  This  implies  that  you  must  initialize  the  stack  pointer 
to  a  value  higher  than  the  largest  address  in  the  stack  area. 

When  passing  parameters  on  the  stack,  the  programmer  must  implement  this 
approach  as  follows: 

1.  Decrement  the  system  stack  pointer  to  make  room  for  parameters  on  the 
system  stack,  and  store  them  using  offsets  from  the  stack  pointer;  or  simply 
push  the  parameters  on  the  stack. 

2.  Access  the  parameters  by  means  of  offsets  from  the  system  stack  pointer, 
remembering  that  JSR  places  the  return  address  at  the  top  of  the  stack. 

3.  Store  the  results  on  the  stack  by  means  of  offsets  from  the  systems  stack 

pointer. 
4.  Clean  up  the  stack  before  or  after  returning  from  the  subroutine,  so  that  the 

parameters  are  removed  and  the  results  are  handled  appropriately. 

TYPES  OF  PARAMETERS 

Regardless  of  our  approach  to  passing  parameters,  we  can  specify  the  parameters 
in  a  variety  of  ways.  For  example,  we  can: 

1.  Place  the  actual  values  in  the  parameter  list.  This  method  is  sometimes  referred 

to  as  call-by-value,  since  only  the  values  of  the  parameters  are  of  concern. 
2.  Place  the  addresses  of  the  parameters  in  the  parameter  list.  This  method  is 

sometimes  referred  to  as  call-by-name,  since  we  are  concerned  with  the  loca- 
tions of  the  parameters  as  well  as  their  values. 



11 

Subroutines 

Most  microprocessors  have  special  instructions  for  transferring  control  to 
subroutines  and  restoring  control  to  the  main  program.  We  often  refer  to  the  special 
instruction  that  transfers  control  to  a  subroutine  as  Call,  Jump-to-Subroutine, 
Jump-and-Mark  Place,  or  Jump-and-Link.  The  special  instruction  that  restores 
control  to  the  main  program  is  usually  called  Return. 

On  the  MC68000  microprocessor,  the  Jump-to-Subroutine  (JSR)  or  Branch-to- 
Subroutine  (BSR)  instructions  save  the  old  value  of  the  program  counter  on  the  stack 
before  placing  the  starting  address  of  the  subroutine  in  the  program  counter;  the 

Return-from-Subroutine  (RTS)  instruction  gets  the  old  value  from  the  stack  and  puts  it 
back  in  the  program  counter.  The  effect  is  to  transfer  program  control,  first  to  the 
subroutine  and  then  back  to  the  main  program.  Clearly,  the  subroutine  may  itself 
transfer  control  to  a  subroutine,  and  so  on. 

TYPES  OF  SUBROUTINES 

Sometimes  a  subroutine  must  have  special  characteristics.  A  subroutine  is 
relocatable  if  it  can  be  placed  anywhere  in  memory.  You  can  use  such  a  subroutine 
easily,  regardless  of  other  programs  or  the  arrangement  of  the  memory.  A  relocating 
loader  is  necessary  to  place  the  program  in  memory  properly;  the  loader  will  start  the 
program  after  other  programs  and  will  add  the  starting  address  or  relocation  constant 

to  all  addresses  in  the  program.  Position  independent  code  does  not  require  a  relocat- 

ing loader  —  all  program  addresses  are  expressed  relative  to  the  program  counter's 
current  value.  Data  addresses  are  held  in  registers  at  all  times.  We  will  discuss  the 
writing  of  position  independent  code  later  in  this  chapter. 

A  subroutine  is  reentrant  if  it  can  be  interrupted  and  called  by  the  interrupting 
program  and  still  give  the  correct  results  for  both  the  interrupting  and  interrupted 
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programs.  Reentrancy  is  important  for  standard  subroutines  in  an  interrupt-based 
system.  Otherwise  the  interrupt  service  routines  cannot  use  the  standard  subroutines 
without  causing  errors.  Microprocessor  subroutines  are  easy  to  make  reentrant  since  the 
Call  instruction  uses  the  stack  and  use  of  the  stack  is  automatically  reentrant.  The  only 
remaining  requirement  is  that  the  subroutine  use  only  the  registers  and  the  stack  rather 
than  fixed  memory  locations  for  temporary  storage. 

A  subroutine  is  recursive  if  it  calls  itself.  Such  a  subroutine  clearly  must  also  be 
reentrant. 

SUBROUTINE  DOCUMENTATION 

Most  programs  consist  of  a  main  program  and  several  subroutines.  This  is 
advantageous  because  you  can  use  proven  routines  when  available  and  you  can  debug 
and  test  the  other  subroutines  properly  and  remember  their  exact  effects  on  registers 
and  memory  locations. 

Subroutine  listings  must  provide  enough  information  that  users  need  not 

examine  the  subroutine's  internal  structure.  Among  necessary  specifications  are: 

•  A  description  of  the  purpose  of  the  subroutine 

•  A  list  of  input  and  output  parameters 

•  Registers  and  memory  locations  used 

•  A  sample  case,  perhaps  including  a  sample  calling  sequence 

The  subroutine  will  be  easy  to  use  if  you  follow  these  guidelines. 

PROGRAM  EXAMPLES 

Examples  in  this  chapter  assume  that  the  stack  and  stack  pointer  have  already 
been  initialized.  Instructions  that  load  an  address  into  the  stack  pointer  or  clear  the 
stack  prior  to  use  are  not  shown.  If  you  wish  to  establish  your  own  stack  area, 
remember  to  save  any  prior  stack  pointer  and  to  restore  it  in  order  to  produce  a  proper 
return  at  the  end  of  your  program.  Since  the  MC68000  allows  any  address  register  to 
be  used  as  a  stack  pointer,  it  is  better  to  use  a  stack  for  your  needs  and  not  change  the 
system  stack  pointer  (A7). 

The  MC68000  has  no  special  instructions  to  load  or  save  the  current  stack  value. 
Instead  you  use  the  MOVEA  instruction  to  alter  the  stack  register  as  shown  in  the 
following  program. 

00006000 
DATA 

EQU S6  0  0  0 
00004000 PROGRAM EQU $4000 

00006000 PSTACK EQU DATA 00008000 STACK EQU $  8  00  0 

00004600 MAIN EQU $4600 

00004000 

004000  21CF6000 

ORG  PROGRAM 

MOVEA. L   A7, PSTACK SAVE   PRIOR  STACK 
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004001+    2E7C0  000  800  0  MOVE  A .  L   #STACK,A7  SET  UP  OUR  STACK 00400A   4E884600  JSR  MAIN 
00400E    2E  7  86  000  MOVE  A .  L   PSTACK,A7  RESTORE   PRIOR  STACK 
004012    4E75  RTS 

END 

The  program  illustrated  above  saves  the  prior  stack  pointer,  sets  up  the  main  pro- 

gram's stack  pointer,  and  then  calls  the  main  program.  The  stack  base  for  the  main  pro- 
gram is  then  8000.  When  the  main  program  has  completed  execution,  it  can  execute  an 

RTS  to  transfer  control  to  the  setup  routine,  which  restores  the  prior  stack  pointer  and 
then  returns  control  to  the  prior  program. 

11-1.    CONVERTING  HEXADECIMAL  TO  ASCII 

Purpose:  Convert  the  contents  of  data  register  DO  from  a  hexadecimal  digit  to  an  ASCII 
character.  Assume  that  the  original  contents  of  data  register  DO  are  less 
than  16. 

Sample  Problems: 

Input: 
Result: 

Input: 
Result: 

DO 

DO 
DO 

DO 

=  oc 
=  43 

'C 

06 

36  '6' 
The  JSR  instruction  saves  the  program  counter  (the  address  of  the  instruction 

following  the  JSR)  on  the  system  stack  and  then  places  the  subroutine  starting 
address  in  the  program  counter.  The  procedure  is: 

Step  1.    Decrement  the  stack  pointer  by  4. 

Step  2.    Save  the  program  counter  in  the  top  word  of  the  stack. 

Step  3.    Place  the  subroutine  start  address  in  the  program  counter. 

For  program  11-1,  the  following  occurs  as  a  result  of  executing  the  JSR  instruc- 
tion: 

Before  JSR 
PC  =  004604 
A7  =  7FFC 

After  executing  the  JSR 
PC       =  00460E 
A7       =  7FF8 
(7FF8)  =  00004608 

The  stack  pointer  is  always  adjusted  by  four  since  all  addresses  are  stored  on  the 

stack  as  32-bit  values,  even  if  the  return  addresses  can  be  referenced  with  short  absolute 
addressing.  Since  the  processor  has  fetched  the  entire  JSR  instruction,  the  program 
counter  has  been  incremented  to  address  the  instruction  following  the  JSR.  This  is  the 
address  that  is  saved  as  a  32-bit  value  on  the  stack. 

The  JSR  instruction  is  similar  to  the  JMP  instruction  except  that  JSR 

"remembers"  where  it  came  from.  In  this  regard,  the  JSR  instruction  can  call  any- 
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where  in  memory.  Like  the  JMP  and  its  related  instruction  BRA,  JSR  has  a  relationship 
with  the  BSR  instruction.  BSR,  like  JSR,  is  used  to  call  a  subroutine  and  place  the  return 
address  on  the  stack.  However,  the  addressing  modes  of  BSR  are  similar  to  the  BRA 

instruction  in  that  only  instructions  within  an  8-bit  or  16-bit  displacement  may  be 
referenced  by  BSR. 

The  RTS  instruction  reverses  the  process: 

Place  the  value  on  the  top  of  the  stack  in  the  program  counter, 

Increment  the  stack  pointer  by  4. 

Step  1 

Step  2 

For  11-1  the  RTS  instruction  then  causes  the  following  to  occur: 
Before  RTS 

PC     =    00461 A 
A7     =  7FF8 

(7FF8)     =  00004608 

Flowchart  11-1: 

Start Is 

<    Val  < 

10^> 

^S,^  ? 

No 

Val  = 
Val  + "A" 

-"0" 

-10 

Yes 

E 

Val  = 

Val  +  "0" 

c 
End 

The  calling  program  gets  the  data  from  the  variable  HDIGIT  at  memory  loca- 
tion 6000,  calls  the  conversion  subroutine,  and  stores  the  result  in  the  variable 

ACHAR  at  memory  location  6001. 

Program  11-1: 

00006000 DATA EQU $6000 
0  0  0  046  00 PROGRAM EQU $4600 

00006000 ORG DATA 
006000 00000001 HDIGIT DS.B 1 HEX  DIGIT TO  E 5E  CONVERTED 
006001 00000001 ACHAR D5  .  B 1 CONVERTED 

ASC 

I  CHARACTER 

0  00  046  0  0. ORG PROGRAM 
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0046  0  0    1  0  3  86  0  0  0  MAIN  MOVE . B     HD I G I T , D 0  GET  DATA:    RANGE    IS   00   -  OF 004604   4EB8460E  JSR  HEXDIGIT  CONVERT   TO  ASCII  CHARACTER 
004608   11C06001  MOVE . B     DO , ACHAR 
00460C  4E75  RTS 

::  SUBROUTINE  HEXDIGIT 

::  PURPOSE:    HEXDIGIT  CONVERTS   A  HEXADECIMAL   DIGIT   TO  AN  ASCII  CHARACTER 

::  INITIAL   CONDITIONS:      D0.B   CONTAINS   VALUE    IN   RANGE    00    -  OF 

::  FINAL   CONDITIONS:  D0.B   CONTAINS   AN  ASCII    CHARACTER    IN  THE 
::  RANGE    '  0  *  -  1  9  *    OR    'A'    -    '  F  ' 

::  REGISTERS   CHANGED:        DO  ONLY 

-  SAMPLE   CASE:  INITIAL   CONDITIONS:    D0.B   =  6 
::  FINAL   CONDITIONS:        D0.B   =    36  ('6') 

00460E   0C00000A  HEXDIGIT  CMP.B  #$0A,D0  DECIMAL   DIGIT  OR   HEX  LETTER? 
004612   6D02  BLT.S  ADDZ  IF   DIGIT  GOTO  ADDZ 

0046  14    5E00  ADD . B  # ' A ' - ' 0 ' - 5 0 A , D 0  OFFSET  FOR  LETTERS 
0046  16    0600  00  30  ADDZ  ADD .  B  IPO', DO  CONVERT   TO  ASCII 
00461A  4E75  RTS 

END  HEXDIGIT 

After  executing  RTS 
PC  =  004608 
A7  =  7FFC 

The  MC68000  always  increments  the  stack  pointer  after  pulling  data  from  the 

stack,  so  the  procedure  is  the  same  as  in  the  postincrement  addressing  mode.  RTS  bal- 
ances the  JSR  or  BSR.  The  action  of  the  RTS  instruction,  however,  is  simply  to  take  the 

top  four  bytes  in  the  stack  and  place  them  in  the  program  counter.  The  programmer 

must  be  certain  that  these  four  bytes  contain  a  legitimate  return  address  —  the  pro- 
cessor does  not  examine  them. 

This  subroutine  has  a  single  parameter  and  produces  a  single  result.  A  data 
register  is  the  obvious  place  to  put  both  the  parameter  and  the  result. 

The  calling  program  consists  of  three  steps: 

•  Placing  the  data  into  the  data  register. 

•  Calling  the  subroutine. 

•  Storing  the  result. 

The  overall  initialization  program  must  also  load  the  stack  pointer  with  the 
appropriate  address. 

This  program  is  reentrant  since  it  uses  no  data  memory,  and  it  is  relocatable  since 
the  address  ADDZ  is  referenced  relative  to  the  program  counter.  Using  BSR  (Branch  to 
Subroutine)  instead  of  JSR  (Jump  to  Subroutine)  would  make  the  calling  program 
relocatable  as  well. 

The  JSR  instruction  results  in  the  execution  of  four  or  five  instructions,  taking 
either  44  or  48  clock  cycles.  A  subroutine  call  may  take  a  long  time  even  though  it 
appears  to  be  only  a  single  instruction  in  the  program.  Calling  a  routine  always  involves 
some  overhead,  since  both  the  JSR  and  the  BSR  instructions  take  time.  In  fact,  a  JSR 
takes  10  clock  cycles  longer  than  the  corresponding  JMP  (with  the  same  addressing 
mode)  because  JSR  must  save  the  current  program  counter  in  the  stack.  RTS  takes  16 
clock  cycles. 
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1 1  -2.    HEX  WORD  TO  ASCII  STRING 

Purpose:  Convert  the  value  in  the  variable  NUMBER  at  memory  location  6000  to  four 

ASCII  hex  digits  in  the  four-byte  array  STRING  starting  at  memory  location 
6002.  Perform  the  task  using  a  subroutine  with  the  hex  value  and  the  string 
address  as  parameters. 

Sample  Problem: 

Input: 
Results: 

NUMBER 
STRING 

(6000) 
(6002) 
(6003) 
(6004) 
(6005) 

4CD0 

34  '4' 
43  'C 

44  'D' 

30  '0' 
Program  1 1-2: 

0  0  0  0  6  0  0  0 
00004500 DATA PROGRAM 

EQU EQU 
$6  0  0  0 
$4600 

0  0  006000 

OOoOOO  0  0  000002 
0060  0  2   0  0000004 

NUMBER STR [ NG DS  .  W 
DS.B 

DATA 
1 NUMBER  TO  BE  CONVERTED  TO  ASCII  HEX 

CHARACTER    STRING   FOR   ASCII    HEX  DIG! 

00004 6 0C 

>RG 

PROGRAM 

004600    2F3C00006002  MAIN 
0  046  06    3F  3  86  0  00 
00460A  4EB84610 

MOVE.L  $STRING,-(A7) 
MOVE.W     NUMBER, -(A7) 
JSR  BINHEX 

PUSH   ADDRESS   OF    STRING   ON  STACK 
PUSH    16    BIT   NUMBER    TO   BE  CONVERTED 
BINARY   TO   ASCI  I/HEX 

00460E  4E75 RTS 

SUBROUTINE  BINHEX 

PURPOSE:    CONVERT   A  16 T   VALUE    TO   4    ASCII    HEX  DIGITS 

NITIAL  CONDITIONS 

FINAL  CONDITIONS: 

REGISTER  USAGE 

SAMPLE  CASE: 

THE    FIRST    PARAMETER   ON    THE    STACK    IS  THE 
VALUE;    THE    SECOND   PARAMETER    IS  THE 
ADDRESS   OF    THE    STRING    TO   BE  BUILT 

THE   HEX    STRING   OCCUPIES   4  SUCCESSIVE 
BYTES   BEGINNING   WITH   THE    ADDRESS  PASSED 
AS   THE    SECOND  PARAMETER 

NO   REGISTERS    ARE  AFFECTED 

INITIAL   CONDITIONS:    4CD0    AT   TOP   OF  STACK, THEN  00006002 
FINAL   CONDITIONS:        THE    STRING    '4CD0'    IN  ASCII 

OCCUPIES   MEMORY  6002-5 

004610  48E7E080 
004614  7203 
004616  342F0014 
00461A  206F0016 
00461E  D1FC00000004 

MOVEM.L  D0-D2/A0, -(A7) MOVEQ  #3,01 
MOVE.W  16+4(A7),D2 
MOVE  A . L  16+6(A7),A0 
ADDA . L  #4. AO 

SAVE    REGISTERS   USED    IN  BINHEX 
LOOP   COUNTER : =  4-1 GET  VALUE 
GET   STRING  ADDRESS 
ADUUST   POINTER    PAST   END   OF  STRING 

004624  1002 
004626  0200000F 
00462A  4EB84646 
00452E  1100 
0  0  4630  E84A 
004632  51C9FFF0 

LOOP 
MOVE  .B 
AND  I  .  B 

USR MOVE .B 
LSR  .  W 
DBRA 

D2,D0 
#$0F,D0 
HEXDIGI T 
DO, -(AO) #4,D2 
Dl  , LOOP 

GET   LOW  NIBBLE 
CONVERT   TO   ASCII  CHARCTER 
SAVE    ASCI  I  DIGIT 
SHIFT   D2    TO   GET   NEXT  NIBBLE 
REPEAT   FOR   ALL   4  DIGITS 

004636  4CDF0107 
00463A  2F570006 
00463E  DFFC00000006 

MOVEM.L 
MOVE . L 
ADDA  .L 

(A7)+,D0-D2/A0 
(A7),6(A7) 
#6,  A7 

RESTORE    INITIAL   REGISTER  VALUES 
MOVE    RETURN   ADDRESS  DOWN 
ADJUST   STACK    POINTER    TO   RETURN  ADDR 
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00<+6<+4  4E75 
r  rs 

00461+6   0C0  0  0  0  0A 
00464A  6D02 
00464C  5E00 
00<46<+E   0  6  0  0  0  0  3  0 

HEXDIGIT  CMP.B 
BLT.  S 
ADD .  B 

ADDZ  ADD . B 

#$0A,D0 ADDZ 
ft  "  A  »  -  •  0  '  -SOA,  DO 
tt  '  0  '  ,DO 

DECIMAL   DIGIT  OR   HEX   LETTER  ? 
IF   DIGIT  GOTO  ADDZ 
OFFSET  FOR  LETTERS 
CONVERT   TO  ASC I  I 

004652  4E75 
RTS 

END B  I  NHEX 

This  program  demonstrates  another  method  of  passing  parameters.  Instead  of 
passing  the  two  parameters  in  registers,  the  parameters  are  passed  on  the  stack. 
Therefore,  upon  entry  to  the  subroutine,  the  stack  would  look  like  this: 

The  system  stack  pointer  (A7)  usually  operates  like  any  other  register.  However, 
since  all  word  and  long  word  references  must  be  aligned  on  a  word  boundary,  the 
MC68000  takes  special  precautions  to  ensure  proper  alignment.  Thus,  all  data  pushed 

or  pulled  from  the  system  stack  is  word-aligned  —  even  byte  data.  In  the  case  of  byte 
data,  the  data  is  stored  in  the  high-order  (most  significant)  byte  of  the  word,  the  lower 
order  (least  significant)  byte  is  left  unchanged. 

Unlike  our  first  subroutine  example,  BIN  HEX  modifies  the  contents  of  data 
and  address  registers  other  than  those  which  are  used  to  pass  subroutine  results.  In 
some  cases,  the  unexpected  modification  of  registers  by  a  subroutine  may  cause 
unpredictable  results  in  the  calling  program.  It  is  good  programming  practice  to  define 
which  registers  are  being  affected  by  the  execution  of  the  subroutine.  This  has  been 
done  for  subroutine  BINHEX  in  its  introductory  description  block. 

A  common  practice  used  to  prevent  any  inadvertent  effects  due  to  modification  of 
the  registers  is  to  save  all  registers  used  in  a  subroutine  and  to  restore  them  upon 
subroutine  exit.  The  Move  Multiple  (MOVEM)  instruction  provides  an  efficient 
means  of  saving  or  restoring  registers.  Whenever  two  or  more  index  registers 

(address  or  data  register)  are  to  be  saved  or  restored,  it  is  always  more  memory-effi- 
cient to  use  MOVEM.  In  terms  of  execution  performance,  it  is  generally  better  to  use 

MOVEM  when  saving  two  or  more  index  registers  and  when  restoring  three  or  more. 
The  order  in  which  index  registers  are  transferred  via  MOVEM  is  dependent  upon  the 
effective  address  mode.  If  the  effective  address  is  the  postincrement  mode,  the  registers 
are  stored  starting  with  data  register  0  through  data  register  7,  then  address  register  0  to 
address  register  7.  If  the  effective  address  is  the  predecrement  mode,  the  registers  are 

loaded  in  the  reverse  order  starting  with  address  register  7.  Therefore,  after  the  execu- 
tion of  the  first  MOVEM  instruction  in  BINHEX,  the  system  stack  will  be  as  follows: 

Address  Parameter 
Hex  Digit  Parameter 
Return  Address 

(32  bits) 
(16  bits) 
(32  bits)    System  Stack  Pointer  (A7) 

Address  Parameter 
Hex  Digit  Parameter 
Return  Address AO 
D2 
D1 
DO  (3  2  bits) 

(32  bits) 
(16  bits) 
(32  bits) 
(32  bits) 
(32  bits) 
(32  bits) 
System  Stack  Pointer  (A7) 

The  parameters  are  not  passed  in  registers;  they  must  be  retrieved  from  the 
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system  stack.  We  must  take  care  in  retrieving  the  parameters  from  the  stack,  because 
other  elements  have  been  pushed  onto  the  stack.  The  MOVEM  instruction  pushed  16 

bytes  onto  the  stack  while  JSR  pushed  the  4-byte  return  address  (0000460E  in  our 
example).  The  MOVE.W  16  +  4(A7),A0  is  used  to  load  AO  with  the  32-bit  string 
address.  The  order  of  these  two  instructions  makes  no  difference  since  the  system  stack 
register  is  not  affected. 

Both  these  MOVE  instructions  are  examples  of  address  register  indirect  with  dis- 
placement addressing.  This  addressing  mode  is  similar  to  the  program  counter  with  dis- 
placement mode  used  by  the  branch  instruction,  but  it  has  two  main  differences.  First, 

an  address  register  is  used  instead  of  the  program  counter.  And  second,  only  a  16-bit 
displacement  is  allowed  although  it  is  still  sign-extended.  In  program  11-2  the  system 
stack  pointer  contains  $7FFC  upon  MAIN  entry.  Thus  the  address  referenced  in  the 
first  MOVE  is: 

(A7)  +16  +  4 
=  $7FE2  +16  +  4 
=  $7FF6  (the  address  of  the  digit  value) 

Prior  to  returning  control  back  to  program  MAIN,  the  system  stack  must  be 

restored.  First,  the  saved  registers  are  pulled  by  MOVEM  (A7)  +  ,D0-D2/A0.  At  this 
point  we  could  return  to  MAIN  by  using  an  RTS  instruction  since  the  return  address  is 
on  top  of  the  system  stack.  However,  this  would  leave  the  parameters  still  on  the  stack 
and  the  calling  program  would  have  to  adjust  the  stack.  This  adjustment  would  have  to 
be  performed  after  each  subroutine  call  to  BINHEX.  Instead,  the  system  stack  is 
adjusted  in  BINHEX  by  the  instruction  sequence: 

MOVE!  (A7),6(A7) 
ADDA  06.A7 

Using  the  memory-to-memory  move  capability,  the  return  address  is  stored  at  the 
system  stack  entry  previously  occupied  by  the  address  parameter.  The  system  stack  is 
then  modified  to  point  to  this  new  return  address  entry.  The  same  results  could  be 

obtained  faster  by  substituting  the  instruction  LEA  6(A7),A7  for  the  ADDA  instruc- 
tion. A  picture  of  the  stack  before  and  after  the  MOVE  and  ADDA  instructions  is: 

Before: 

(A7)  -  7FF2  -  0000460E  (return  address) 
7FF6  —  4CD0  (value  parameter) 
7FF8  -  00006002  (address  parameter) 

After: 
7FF2  -  0000460E 
7FF6  -  4CD0 

(A7)  —  7FF8  -  0000460E  (return  address) 

If  results  were  to  be  returned  on  the  stack,  a  different  adjustment  would  be  made. 

This  subroutine  is  both  reentrant  and  position-independent  since  it  uses  no  fixed 
memory  addresses  and  only  relative  branches. 

The  BSR  and  JSR  instructions  allow  the  nesting  of  subroutines,  since  subsequent 
subroutine  calls  will  place  their  return  addresses  further  down  the  stack.  No  addresses 
are  ever  lost  and  the  RTS  instruction  always  returns  control  to  the  instruction  just  after 
the  most  recent  BSR  and  JSR. 
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11-3.    64  BIT  ADDITION 

Purpose:  Add  two  64-bit  (4-word)  values  and  return  the  results  in  data  registers  DO  and 
Dl.  DO  shall  contain  the  most  significant  word  of  the  result. 

Sample  Problem 

Input: Value  1 
Value  2 

Result:  DO 
D1 

$04201 47AEB529CB8 
$3020EB8520473118 
34410000 
0B99CDD0 

Program  1 1-3a: 

00006000 
00004600 

00006000 

DATA  EQU 
PROGRAM  EQU 

ORG 

$6000 
$4600 

DATA 

00004600 

004600  4EB84616 
004604  00000001 
00460C  00000001 
004614  4E75 

MAIN 

ORG 

JSR DC.L 
DC  .L RTS 

PROGRAM 
ADD64 
$1, $12345678 
$1, $12345 

SUBROUTINE  ADD64 

PURPOSE 

INITIAL  CONDITIONS 

FINAL  CONDITIONS: 

REGISTER  USAGE 

SAMPLE  CASE 

64  BIT  ADDITION 
FIRST  PARAMETER 
SECOND  PARAMETER 

ADD  TWO  64  BIT  VALUES 

THE  TWO  PARAMETER  VALUES  ARE  PASSED 
IMMEDIATELY  FOLLOWING  THE   SUBROUTINE  CALL 

THE   SUM  OF   THE   TWO  64  BIT  PARAMETERS 
IS  RETURNED   IN  D0.L  AND  DLL.   THE  EXTEND 
CONDITION  CODE   =   1    IF  OVERFLOW,   ELSE   =  0 

NO  REGISTERS  ARE  AFFECTED  EXCEPT  DO  AND  Dl 

INITIAL  CONDITIONS:    1ST  PARAMETER   =  $112345678 
2ND  PARAMETER   =  $100012345 

FINAL  CONDITIONS  D0.L  =  $00000002 
DLL  =  $1  23  579BD 
CC.X  =  0 

004616  48E73080  ADD64         MOVEM.L  D2-D3/A0, -(A7) 
00461A   206F000C  MOVE A . L  12(A7),A0 
00461E   4CD8000F  MOVEM.L  (A0)+,D0-D3 

SAVE   D2,D3  AND  AO 
AO   -  ADDRESS  OF  FIRST  PARAMETER 
D0-D1   =  FIRST  VALUE,   D2-D3   =  SECOND 

004622  D283 
004624  D182 

ADD.L 
ADDX.L D3,D1 

D2,D0 
ADD  LEAST   SIGNIFICANT  WORD 
ADD  MOST  SIGNIFICANT   16   BIT  WITH  EX 

004626  4CDF010C 
00462A  40E7 
00462C  06AF00000010 

0002 
004634  4E77 

MOVEM.L  (A7)+,D2-D3/A0 
MOVE.W  SR,-(A7) 
ADD  I  .  L  U6,2(A7) 
RTR 

RESTORE  D2,D3  AND  AO 
SAVE   EXTEND  FLAG 

ADJUST  RETURN  ADDRESS 
RETURN  AND  RESTORE  EXTEND  FLAG 

END ADD64 

In  Program  11  -3a  the  parameters  for  the  subroutine  ADD64  are  passed 
immediately  following  the  subroutine  call.  Upon  entry  to  ADD64,  the  address  of  this 
parameter  block  may  be  found  on  top  of  the  system  stack,  since  it  is  the  return  address 
for  the  JSR  instruction.  The  MOVEA.L  instruction  loads  address  register  AO  with  this 
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parameter  block  address.  The  displacement  of  12  in  this  instruction  is  necessary  because 

of  the  three  32-bit  registers  pushed  onto  the  system  stack. 
The  actual  addition  process  is  quite  simple  and  was  demonstrated  in  Chapter  8. 

Prior  to  returning  to  the  calling  program,  MAIN,  the  return  address  must  be  adjusted 
since  it  points  to  the  address  following  the  JSR.  An  adjustment  of  16  bytes  is  necessary 

to  jump  around  the  two  8-byte  parameters.  This  adjustment  is  performed  via  the  ADDI 
instruction  on  the  return  address  without  first  having  to  move  it  into  a  register.  The 
system  stack  (before  and  after  the  ADDI  instruction)  is  pictured  as  follows: 

After  the  addition  to  adjust  the  stack  pointer,  the  status  register  is  pushed  onto  the 
stack  in  order  to  preserve  the  condition  codes.  This  allows  the  calling  program  to  test  for 

overflow  or  carry  as  a  result  of  the  64-bit  addition.  Such  a  test  would  normally  be  per- 

formed by  a  "branch  conditional"  instruction  following  the  JSR  or  the  JSR  parameter 
list.  In  this  instance  the  condition  codes  had  to  be  saved  since  their  state  could  have 

been  changed  by  the  ADDI.  To  accomplish  this  the  MC68000  provides  a  special  return 
instruction:  RTR  (return  and  restore  condition  codes).  RTR  pulls  both  the  condition 
codes  and  the  return  address  from  the  stack.  The  supervisor  portion  of  the  status 
register  is  not  affected  by  this  instruction.  The  RTR  instruction  can  be  extremely  useful 
when  error  conditions  from  subroutines  are  indicated  by  the  condition  codes. 

Generally  you  may  assume  that  a  subroutine  call  changes  the  condition  codes 
unless  it  is  specifically  stated  otherwise.  If  the  main  program  needed  the  old  condition 
codes  (for  checking  later),  it  could  have  saved  them  on  the  system  stack  using  MOVE 

SR,  — (A7)  before  calling  the  subroutine.  It  would  then  be  able  to  restore  them  after- 
wards using  MOVE  (A7)  +  ,CCR. 

This  program  lacks  some  generality  since  the  values  associated  with  the 
parameters  are  passed  following  the  call.  For  example,  if  the  program  were  placed  in 

read-only  memory  the  parameters  could  not  be  modified.  To  overcome  this  problem, 
the  addresses  of  the  parameters  could  have  been  passed  instead  of  their  values. 

Program  1 1-36  shows  how  we  might  modify  the  program  to  pass  addresses  instead 
of  values. 

Program  1 1-3b: 

00006000  DATA  EQU  $6000 
00004600  PROGRAM     EQU  $4600 

Before: 
(A7)  (7FF6)  =  Status  Register  (16  bits) 

(7FF8)  =  4604 
After: 
(A7)  (7FF6)  =  Status  Register 

(7FF8)  =  4614 

00006000 
ORG 

DATA 

006000  00000008 
006008  00000008 

VALUE  1 
VALUE  2 

D5  .L 
DS  .L F  I  RST  6  4-B I T  VALUE 

SECOND  64-BIT  VALUE 

00004600 ORG PROGRAM 

004600  4EB8460E 
004604  00006000 
004608  00006008 
00460C  4E75 

MA  I  N 
JSR DC  .L 
DC  .L RTS 

ADD64 
VALUE1 
VALUE  2 

64   B IT  ADDITION 
ADDRESS   OF    FIRST  PARAMETER 
ADDRESS   OF    SECOND  PARAMETER 
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SUBROUTINE  ADD64 

PURPOSE : 

INITIAL  CONDITIONS 

FINAL  CONDITIONS 

REGISTER   USAGE : 

SAMPLE  CASE: 

ADD   TWO   64   BIT  VALUES 

THE   TWO   PARAMETERVALUES   ARE  PASSED 
IMMEDIATELY   FOLLOWING   THE    SUBROUTINE  CALL 

THE   SUM  OF   THE   TWO  64  BIT  PARAMETERS 
IS   RETURNED    IN  DO.L   AND  Dl.L.    THE  EXTEND 
CONDITION  CODE   =    1    IF   OVERFLOW,    ELSE   =  0 

NO   REGISTERS   ARE   AFFECTED  EXCEPT  DO   AND  Dl 

INITIAL  CONDITIONS 1ST   PARAMETER   =  $00006000 
2ND   PARAMETER   =  $00006004 

($6  000  )   =  $0420147AEB529CB8 
($6  004)   r   $3020EB85204731 18 

FINAL  CONDITIONS: DO.L 
Dl.L 
cc.x 

$34410000 
$0B99CDD0 
0 

00460E 48E730C0  ADD64 MOVEM.L D2-D3/A0-A1 , -(A7) 
0  046  1  2 206F0010 MOVE  A . L 16(A7), AO 

0  046  16 2  2  5  8 MOVEA. L (A0)+, Al 
0046  18 20290000 MOVE  .L 0(A1),D0 
0046  1C 22290004 MOVE . L 4(A1),D1 

0  0  4620 2  2  5  8 MOVEA. L (A0)+, Al 
004622 24290000 MOVE . L 0(A1  ), D2 
004626 26290004 MOVE  .  L 4(A1 ),D3 

00462A 2F4800  1  0 MOVEA. L AO, 16CA7) 
00462E D283 ADD  .  L D3,D1 
0046  30 Dl  82 ADDX . L D2,D0 

004632 4CDF030C MOVEM.L (A7)+,D2-D3/A0-A1 
0  046  36 4E75 R  rs 

AO   -   ADDRESS   OF    PARAMETER  BLOCK 

Al    -  FIRST   PARAMETER  ADDRESS 
MOST   SIGNIFICANT  WORD  OF   FIRST  VALUE 
..    AND  LEAST  SIGNIFICANT 

Al    -   SECOND   PARAMETER  ADDRESS 
MOST   SIGNIFICANT  WORD  OF    SECOND  VALUE 
.  .  .    AND  LEAST   S IGNIF ICANT 

UPDATE    RETURN  ADDRESS 
ADD   LEAST   SIGNIFICANT  WORD 
ADD  MOST   SIGNIFICANT  WORD 

END ADD64 

The  initial  instructions  in  1 1-36  are  essentially  the  same  as  those  found  in  1  l-3a. 
However,  once  the  address  of  the  parameter  block  is  determined  (MOVE.L 
16(A7),A0)),  another  instruction  must  be  performed  to  obtain  the  parameter  values: 

MOVEA. L     (AO)  +  ,A1       Get  address  of  parameter 
MOVEL       0(A1).DO       Get  value 
MOVE  L       4(A1),D1        ...of  parameter 

The  use  of  the  predecrement  mode  in  fetching  the  parameter  addresses  also  aids 

in  updating  the  return  address.  After  the  two  MOVE.L  (AO)  + , A 1  instructions,  AO  con- 
tains the  correct  return  address  which  is  used  to  modify  the  return  address  on  the  system 

stack:  (MOVEA. L  A0,16(A7)).  This  means  of  updating  the  return  address  eliminates 
the  ADDI  instruction  and  therefore  the  need  to  push  the  condition  codes  onto  the 
system  stack. 

1 1  -4.    FACTORIAL  OF  A  NUMBER 

Purpose:  Determine  the  factorial  of  the  number  in  the  variable  NUMB  at  memory  loca- 
tion 6000.  Store  the  result  in  the  variable  FNUMB  at  memory  location  6002. 

Assume  the  number  is  less  than  nine  but  greater  than  zero. 
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Sample  Problems: 

a  Input:  NUMB-(6000)  =  0002 

Result:  FNUMB-(6002)  =  0002 

b  Input:  NUMB- (6000)  =  0005 

Result:  FNUMB- (6002)  =  0078(12010) 

Flowchart: 

f         Factor  J 

SAVE  NUMB  on 
stack 

NUMB=NUMB- 1 

^      Return  ̂ ) 

Yes 

CALL  FACTOR 
NUMB=value  of 
top  of  stack 

♦ 

NUMB=NUMB  x 
(value  on  top 

of  stack) 

4- 

Program  1 1-4a: 

00006000 
00004600 

00006000 

DATA PROGRAM  EQU 
ORG 

$6  0  0  0 
$4600 

DATA 
006000  00000002 
006002  00000002 

NUMB  DS.W  1 
F   NUMB       DS.W  1 

NUMBER 
FACTORIAL   OF  NUMBER 

00004600 ORG PROGRAM 

004600  30386000 
004604  6106 
004606  31C06002 

MAIN  MOVE.W     NUMB, DO 
BSR.S  FACTOR 
MOVE . W     D0,F  NUMB 

GET  NUMBER FIND  FACTORIAL 
STORE  FACTORIAL 

00460A  4E75 
RTS 
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::   SUBROUTINE  FACTOR 
»  PURPOSE:  DETERMINE   THE   FACTORIAL   OF   A  GIVEN  NUMBER 

5:    INITIAL   CONDITIONS:    DO.W   =  NUMBER   WHOSE   FACTORIAL    IS   TO  BE 
"  DETERMINED.    DO.W   >    0   AND   <  9 

-  FINAL   CONDITIONS:      DO.W   =   FACTORIAL   OF    INPUT  NUMBER 

«  REGISTER  USAGE:  NO  REGISTERS  EXCEPT  DO  AFFECTED 
"  SAMPLE CASE  : INITIAL  CONDITIONS 

FINAL  CONDITIONS 
:   DO.W  =  5 
:    DO.W  =  120 

00460C 
00460E 
004610 

3F00 
5  340 
6604 

FACTOR MOVE . W 
SUBQ. W 
BNE.S 

D0,-CA7) 
#1,00 
F_CONT 

PUSH  CURRENT  NUMBER   TO  STACK 
DECREMENT  NUMBER 
NOT   END  OF   FACTORIAL  PROCESS 

004612 
004614 301F 6  004 

MOVE  .  W 
BRA.S 

(A7)+,D0 
RETURN 

FACTORIALS  1 

004616 
004618 

61F4 
CODF F_CONT BSR MULU 

FACTOR 
(A7)+,D0 FACTORIAL:    =   N   »  (N-l) 

00461A 4E75 RETURN RTS 

END FACTOR 

This  subroutine  is  reentrant  since  it  does  not  use  any  fixed  data  storage  area. 
Instead,  all  temporary  data  is  allocated  space  on  the  stack.  In  addition,  this 
subroutine  is  recursive  because  it  invokes  itself  via  the  BSR  FACTOR  instruction. 

Recursive  subroutines  are  a  special  case  of  subroutine  nesting.  Like  any  other 
subroutine  call  using  a  BSR  or  JSR  instruction,  the  return  address  is  placed  on  top  of  the 
stack.  In  this  case,  the  processor  does  not  care  if  identical  return  addresses  appear  at  the 
top  of  the  stack. 

Subroutine  FACTOR  is  a  simple  example  of  a  recursive  routine  because  it  is  easy 
to  see  that  FACTOR  calls  itself.  However,  a  subroutine  can  still  be  recursive  if  a  routine 
it  calls  eventually  invokes  the  calling  subroutine.  For  example,  FACTOR  would  still  be 
recursive  if: 

F  CONT:  BSR  FACTOR 
MULU  (A7)+.DO 

were  replaced  with: 

F  CONT:  BSR  MULTIPLY 

where  MULTIPLY  was  a  subroutine  like: 

MULTIPLY:        BSR  FACTOR 
MULU  (A7)  +  ,DO 
RTS 

Like  any  subroutine  which  uses  the  stack  for  temporary  storage,  FACTOR  must 
ensure  that  no  data  is  left  on  the  stack  prior  to  the  execution  of  return.  Both  the 

MOVE.W  (A7)  +  ,D0  and  MULU  (A7)  +  ,D0  instructions  ensure  that  the  stack  is  pro- 
perly restored. 
In  many  instances,  you  may  not  be  sure  of  the  exact  state  of  the  stack  prior  to 

return.  This  could  be  especially  true  if  you  practice  good  programming  techniques  and 
use  only  one  exit  or  return  statement  per  program  (as  in  subroutine  FACTOR).  More 
important,  the  execution  of  a  subroutine  frequently  will  not  save  temporary  data  on 
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the  stack  in  an  orderly  manner.  For  these  reasons,  the  MC68000  has  implemented 
the  LINK  and  UNLK  instructions. 

Subroutine  FACTOR  has  been  rewritten  in  Program  11-4A  using  LINK  and 
UNLK.  With  the  aid  of  the  LINK  instruction,  we  are  able  to  dynamically  reserve  up 
to  32,768  bytes  of  storage  on  the  stack,  as  well  as  set  up  a  pointer  to  the  top  of  the 
reserved  area.  In  addition,  the  LINK  instruction  saves  the  current  value  of  the 

pointer. 

Program  1 1-4b: 

00006000 
00004500 

DATA  EQU 
PROGRAM  EQU 

$6  0  0  0 
$4600 

00006000 0  R  G 

006000  00000002 
006002  00000002 

NUMB  DS.W 
F   NUMB  DS.W 

NUMBER 
FACTORIAL   OF  NUMBER 

00004600 ORG PROGRAM 

004600  30386000 
004604  6106 
004606  31C06002 

00460A  4E75 

MOVE . W 
BSR.  S 
MOVE . W 

RTS 

NUMB, DO 
FACTOR 
D0,F  NUMB 

GET  NUMBER 
FIND  FACTORIAL 
STORE  FACTORIAL 

SUBROUTINE  FACTOR 
PURPOSE : DETERMINE    THE    FACTORIAL   OF    A  GIVEN  NUMBER 

NITIAL   CONDITIONS:    D0.W   =  NUMBER   WHOSE   FACTORIAL    IS   TO  BE 
DETERMINED.    D0.W   >   0   AND   <  9 

FINAL  CONDITION: 

REGISTER  USAGE: 

SAMPLE  CASE: 

D0.W  =  FACTORIAL  OF  INPUT  NUMBER 

NO   REGISTERS   EXCEPT  DO  AFFECTED 

INITIAL   CONDITIONS:    D0.W   =  5 
FINAL  CONDITIONS      :    D0.W   =  120 

00460C 4E50FFFE FACTOR LINK 
AO,  *t-2 

ALLOCATE   TEMPORARY   STACK  STORAGE 
004610 3140FFFE MOVE . W D0,-2(A0) SAVE  NUMBER 
004614 5  340 SUBQ. W til  , DO DECREMENT  NUMBER 
0046  16 6604 BNE  .  S 

F_CONT 
NOT   END   OF    FACTORIAL  PROCESS 

004618 7  0  0  1 
MOVEQ 

#1,D0 FACTORIAL    :  =  1 
0046 1A 6  0  06 BRA.S RETURN RETURN   TO   CALLING  ROUTINE 
0046 1C 6  1EE F_CONT BSR FACTOR CONTINUE   FACTORIAL  PROCESS 
00461E C0E8FFFE MULU -2(A0),D0 

FACTORIALS   N   ::  (N-l) 
004622 4E58 RETURN UNLK 

AO 

FREE   TEMPORARY  STORAGE 

004624 4E75 RTS 

END FACTOR 

In  Program  11-4Z>,  the  instruction  LINK  A0,_2  has  the  following  effect: 

sp 

Return  Address 

Before 

Return  Address 

Old  value  of  AO 

Temporary  storage 

AO 

SP 

After 



Subroutines  191 

The  UNLK  instruction  reverses  the  results  of  the  LINK  instruction,  thus  restor- 
ing the  stack  and  address  registers. 
When  using  these  two  instructions,  remember  that  the  displacement  for  data 

storage  is  a  negative  displacement,  since  the  stack  expands  toward  low  address  memory. 
Offsets  to  the  pointer  register  should  also  be  negative,  since  the  address  register  points 
to  the  top  of  the  temporary  data  area. 

PROBLEMS 

Write  both  a  calling  program  for  the  sample  problem  and  at  least  one  properly 
documented  subroutine  for  each  problem. 

11-1.    ASCII  Hex  to  Binary 

Purpose:  Convert  the  least  significant  eight  bits  in  data  register  DO  from  the  ASCII 

representation  of  a  hexadecimal  digit  to  the  4-bit  binary  representation  of  the 
digit.  Place  the  result  back  into  DO. 

Sample  Problems: 

a.  Input:  DO  =  43  'C 
Result:  DO  =  OC 

b.  Input:  DO  =  36  '6' 
Result:  DO  =  06 

1 1  -2.    ASCII  Hex  String  to  Binary  Word 

Purpose:  Convert  the  four  ASCII  characters  in  the  variable  STRING  starting  in 

memory  location  6002  into  a  16-bit  binary  value.  Store  the  value  in  the  varia- 
ble VALUE  at  memory  location  6000.  Write  a  subroutine  that  takes  the  string 

address  from  the  stack  and  returns  the  value  on  the  stack. 

Sample  Problem: 

Input:       STRING  -  (6002)  =  42  'B' 
(6003)  =  32  T 

(6004)  =  46  'F' 
(6005)  =  30  '0' Result:        VALUE  -  (6000)  =  B1F0 

1 1-3.    Test  for  Alphabetic  Character 

Purpose:  If  the  ASCII  character  in  the  variable  CHAR  at  memory  location  6000  is  an 

alphabetic  (upper-  or  lower-case),  set  the  variable  FLAG  at  memory  location 

6001  to  FF,  •  otherwise  set  FLAG  to  0.  Write  a  subroutine  that  finds  its 
parameter  in  a  register  and  returns  its  result  using  the  condition  code  flags. 
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Sample  Problems: 
a Input: CHAR 

-  (6000) 47 
'G' 

Results: FLAG -  (6001) 

FF b Input: CHAR 
-  (6000) 36 

'6' 
Results: FLAG -  (6001) 

00 
c Input: CHAR 

-  (6000) 

6A 

T 
Results: 

FLAG -  (6001) 

FF 

11-4.    Scan  to  Next  Nonalphabetic 

Purpose:  The  variable  STRING  at  memory  location  6000  contains  the  address  of  an 
ASCII  string.  Place  the  address  of  the  first  nonalphabetic  character  in  this 
string  in  the  variable  ADDRESS  at  memory  location  6002.  Write  a  subroutine 
that  takes  the  string  address  from  a  register  and  returns  the  result  in  the  same 

register. 

Sample  Problems: 

Input: STRING  -  (6000) 
=  6100 

(6100) =     43  C 
(6101) 

=     61  'a' 
(6102) =     74  T 
(6103) =     OD  CR 

Result: ADDRESS  -  (6002) 
=  6103 

Input: STRING  -  (6000) 
=  6100 

(6100) 

=     32  '2' 
(6101) 

=     50  'P' 
(6102) =     49  T 

(6103) =     OD  CR 
Result: ADDRESS  -  (6002) 

=  6100 

11-5.    Check  Even  Parity 

Purpose:  The  variable  LENGTH  at  memory  location  6001  contains  the  length  in  bytes 
of  a  string  variable  STRING  that  begins  at  location  6002.  If  each  byte  in  the 
string  has  even  parity,  set  the  variable  FLAG  at  location  6000  to  0;  if  one  or 

more  bytes  have  odd  parity,  set  FLAG  to  FF16.  Write  a  subroutine  that 
obtains  length  and  location  from  the  stack  and  returns  its  result  on  the  stack. 

Sample  Problems: 

a.  Input: LENGTH  -  (6001) 3 
STRING  -  (6002) 

47 

(6003) AF 
(6004) 

18 

Result: FLAG  -  (6000) 00 
b.  Input: LENGTH  -  (6001) 3 

STRING  -  (6002) 
47 (6003) 
AF (6004) 

19 

Result: FLAG  -  (6000) 

FF, 

has  odd  parity 
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1 1  -6.    Compare  Two  Strings 

Purpose:  Write  a  subroutine,  and  a  main  program  that  tests  it,  to  compare  two  ASCII 
strings.  The  first  byte  in  each  string  is  its  length.  Return  the  information  in  the 
condition  codes;  i.e.,  the  S  flag  will  be  set  if  the  first  string  is  lexically  less  than 
(prior  to)  the  second,  the  Z  flag  will  be  set  if  the  strings  are  equal,  no  flags  are 
set  if  the  second  is  prior  to  the  first.  Note  that  ABCD  is  lexically  greater  than 
ABC. 
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Advanced  MC68020  Addressing 

And  Instructions 

The  MC68000  processor  line  is  upwardly  compatible;  that  is,  any  program  written  for  a 

lower-end  model,  such  as  the  MC68008,  will  run  on  an  upper-end  product,  such  as  the 
MC68020.  In  addition  to  supporting  the  instructions  and  addressing  modes  of  lower-end 
products,  the  MC68020  also  supports  several  new  instructions  and  addressing  modes  not 

found  on  the  lower-end  processors.  This  chapter  highlights  many  of  these  added  features. 

PROGRAM  EXAMPLES 

12-1.  SCALED  INDEXES 

The  MC68020  processor  allows  you  to  specify  a  scale  factor  when  you  use  indexed 
addressing.  This  addressing  method  is  particularly  useful  when  you  need  to  access  arrays.  With 

the  processors  MC68000  through  MC68012,  you  might  use  code,  as  shown  in  Program  12-1  A. 

Purpose:  Move  the  contents  of  the  32-bit  variable  VAL1  into  the  long  word  array  ARRAY 
(subscripted  from  0-99)  at  the  element  indicated  by  the  word  variable 
SUBSCR. 

Sample  Problem: 

Input:      ARRAY[10]  (6040)  =  0 
SUBSCR  (6250)  =  10 
VAL1  (6252)  =  179224 

Output:      ARRAY[10]   (6040)  =  179224 

Program  12-1  A: 

00006000 DATA EQU $6000 
00004000 PR0GRAM1 EQU $4000 00005000 PR0GRAM2 EQU $5000 

00006000 ORG DATA 006000 00000000 ARRAY DS.L 100 ARRAY 
006250 .0000000A SUBSCR DC.W 

10 

SUBSCRIPT 006252 00179224 VAL1 DC.L $179224 NEW  VALUE 

00004000 ORG PR0GRAM1 004000 207C00006000 P6M_12_1 A M0VEA.  L ARRAY,  AO 
004006 303900006250 M0VE.W SUBSCR,  DO 00400C E540 ASL.U #2,  DO 
00400E 21B900006252 M0VE.L VAL1,  (AO, DO.W) 004004 4E75 RTS 

195 
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With  the  MC68020's  scaled  indexing,  you  can  eliminate  the  Shift  instruction.  Since  you 
are  dealing  with  an  array  of  long  words,  you  can  specify  a  scale  of  4,  as  indicated  by  Program 
12-lB. 

Program  12-1  B: 
00006000 DATA EQU $6000 
00004000 PROG  RAMI EQU $4000 
00005000 PR0GRAM2 EQU $5000 

00006000 ORG DATA 006000 00000000 ARRAY DS.L 
100 ARRAY 

006250 0000000A SUBSCR DC  .W 

10 

SUBSCRIPT 006252 00179224 VAL1 DC.L $179224 NEW  VALUE 

00005000 ORG PR0GRAM2 
005000 207C00006000 PGM_12_1B MOVEA. L ARRAY,  AO 
005006 303900006250 MOVE.W SUBSCR,  DO 
00500C 21B900006252 MOVE.L VAL1,  (AO, D0.W*4) 
005012 4E75 RTS 

12-2.  MEMORY  INDIRECT  ADDRESSING 

Normal  address  register  indirect  addressing  provides  you  with  a  means  of  pointing  to 
data.  Memory  indirect  expands  on  that  concept  and  allows  a  value  in  memory  to  point  to  data. 

While  the  full  syntax  of  the  memory  indirect  addressing  mode  allows  pre-  or  postindexing,  two 
displacements,  and  an  address  register  all  to  contribute  to  the  final  data  address,  you  more 
commonly  will  use  only  one  or  two  of  these  features  at  a  time. 

A  common  application  for  memory  indirect  addressing  is  for  a  function  table.  A  function 
table  contains  the  addresses  of  various  functions.  Typically,  a  program  requests  one  of  the 
functions  through  a  user  menu,  message  number,  or  token  number.  For  example,  you  may 
present  the  user  with  a  menu  of  six  entries  and  tell  him  or  her  to  enter  a  number  from  l  to  6.  By 
using  memory  indirect  addressing  you  can  directly  call  a  function  from  the  function  table.  This 

process  is  shown  in  Program  12-2. 

Purpose:     Call  the  function  listed  in  FUNC  TBL  as  indicated  by  the  variable  SELECT 

(valued  1  =  6).  For  simplicity,  the  functions  will  move  a  value  into  D5;  FUNC  1 
will  load  a  1,  FUNC  _ 2  will  load  a  2,  and  so  on. 

Sample  Problem: 

Input:      FUNC  TBL  (6000)  =  00005000 
(6004)  =  00005200 
(6008)  =  00005400 
(600C)  =  00005600 
(6010)  =  00005750 
(6014)  =  00005A00 

SELECT       (6018)  =3 
D5  =0 

Output:      D5  =3 

Program  12-2: 
00006000 
00004000 

DATA  EQU  $6000 
PR0GRAM1  EQU  $4000 
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00006000 
006000  FUNC  TBL 
006004 
006008 
00600C 
006010 
006014 
006018  SELECT 

00004000 
004000  303900006018       PGM   12   2         MOVE.W         SELECT,  DO 004006  5340 
004008   4EB005B100006000  JSR  (CFUNC   TBL,    ZAO,  D0.W*4]) 004010  4E75 
004012  3A3C0001  FUNC  1 
004016  4E75 
004018  3A3C0002  FUNC_2 00401C  4E75 
00401E  3A3C0003  FUNC  3 
004022  4E75 
004024  3A3C0004  FUNC  4 
004028  4E75 
00402A  3A3C0005  FUNC_5 00402E  4E75 

ORG DATA 
DC.L 

FUNC_1 
DC.L FUNC  2 
DC.L FUNC  3 DC.L FUNC  4 
DC.L FUNC  5 
DC.L FUNC  6 
DC.U 3 
ORG PROGRAM 
MOVE. W 

SELECT, 
SUBQ.W DO 

JSR 
(CFUNC_ 

RTS 
MOVE. u #1,  D5 RTS 
MOVE. w #2,  D5 RTS 
MOVE. w #3,  D5 RTS 
MOVE. w #4,  D5 RTS 
MOVE. w #5,  D5 
RTS 

If  the  user  selected  menu  item  3,  the  program  would  convert  this  value  to  2  (the  subscript 

entry  into  CMDTBL).  The  program  then  calls  FUNC3  indirectly;  using  CMDTBL's  address 
plus  the  scaled  index  in  DO,  which  loads  D5  with  a  3. 

Note  that  the  ZAO  term  appears  in  the  effective  address.  This  tells  the  assembler  to  omit 
the  address  register  contribution  to  the  effective  address.  Also  note  that  we  omitted  the  outer 
displacement;  by  default,  the  assembler  knew  to  omit  this  term.  These  conventions  are 

assembler-dependent;  consult  your  assembler  documentation  for  specific  details  on  how  to 
omit  optional  terms. 

12-3.  BIT  FIELD  INSTRUCTIONS 

Bit  fields  represent  a  new  data  type  for  the  MC68000  family.  They  allow  you  to  group  a 
series  of  bits  together  as  a  single  entity,  without  regard  to  byte  alignment.  This  grouping  allows 

you  to  pack  your  data  more  tightly  —  a  useful  tool  if  you  work  with  large  data  bases  or  data 
communications. 

MC68020  bit  fields  range  from  a  single  bit  up  to  32  bits  in  length.  The  processor 
understands  bit  fields  in  terms  of  starting  byte,  offset  from  that  byte,  and  field  width.  The 
standard  assembler  syntax  for  this  is 

base  _  byte{off  set:  width  | 

You  may  specify  the  base  byte  using  almost  any  of  the  standard  addressing  modes.  The 
offset  can  be  any  value  from  8000  0000  to  7FFF  FFFF.  When  you  use  a  data  register  for  the 
base  byte,  the  offset  is  naturally  limited  to  32.  Width  can  be  a  value  from  l  to  32. 

Since  bit  fields  have  no  formal  byte  boundaries,  the  way  that  the  starting  address  and 
offset  combine  to  form  the  starting  bit  is  unlike  the  way  that  normal  byte,  word,  and  long  words 
align.  Instead  of  counting  from  the  least  significant  bit  to  the  most  significant  bit,  the  offset 
starts  counting  from  the  most  significant  bit. 
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Bit  field  offset 2    3    4    5    6  7 8    9  19  11   12  13  14  15 16  17  18  19  20  21  22  23 24  25  26  27  28  29  30  31 

Byte  offset 5    4    3    2    1  0 7    6    5    4    3    2     1  0 7    6    5    4    3    2     1  0 7    6    5    4    3    2  10 

Address 1000 1001 1002 
1003 

As  you  can  see,  the  bit  specified  by  the  notation  1000,25:3}  corresponds  to  memory 
address  1003,  bits  4,  5,  and  6. 

At  first  inspection,  this  may  seem  like  an  awkward  method  to  get  to  the  start  of  a  bit  field. 
However,  since  the  point  of  bit  fields  is  to  construct  a  tightly  packed  record,  you  normally  will 
have  several  fields  stored  adjacently.  The  byte  boundaries  within  the  set  of  bit  fields  are 

irrelevant;  your  only  concern  as  far  as  byte  boundaries  go  is  the  total  size  of  the  bit-field  data. 

Let's  look  at  a  common  application  for  bit  fields.  Often  in  computer  applications,  you 
need  to  insert  a  "time  tag"  along  with  some  transaction  data.  For  example,  if  you  are  writing  a 
program  for  an  automatic  teller  machine,  you  might  keep  an  audit  of  all  transactions  done 

through  the  machine.  Associated  with  each  audit  record  may  be  the  user's  ID  number,  the  teller 
ID,  the  transaction  performed,  and  the  time  and  date. 

You  can  choose  to  use  a  long  word  for  the  user  ID  and  short  words  for  the  teller  ID  and 
transaction  type.  These  sizes  should  be  sufficient  regardless  of  the  ultimate  size  of  the  data  base 
(allowing  for  expansion).  The  time  and  date  information  is  different,  however,  in  that  these 
entries  are  fixed  in  size;  there  will  never  be  more  than  60  seconds  in  a  minute,  and  so  on. 

If  you  only  need  to  store  a  few  dozen  records  a  day,  you  might  go  ahead  and  use  bytes  for 
the  hour,  minute,  second,  month,  day,  and  year.  However,  if  you  need  to  store  a  few  thousand 
records  each  day,  the  storage  requirements  for  your  audit  trail  may  make  the  data  base 
unmanageably  large.  If  you  can  somehow  cut  down  on  the  size  of  the  time/ date  tag,  you  can 
keep  the  data  base  size  under  control. 

There  are  two  common  solutions  to  this  problem.  The  first  is  to  convert  the  time  and  date 
data  into  an  offset  (in  seconds)  from  some  arbitrary  point  in  the  recent  past.  A  long  word  can 
contain  the  number  of  seconds  for  more  than  100  years,  so  this  is  a  viable  alternative.  However, 
to  convert  between  a  count  in  seconds  and  a  real  time  and  date  requires  substantial  CPU  time. 

The  second  alternative  for  storing  the  time/ date  tag  makes  use  of  bit  fields.  Since  each 
element  of  the  time/ date  tag  has  a  fixed  maximum,  you  can  compact  the  binary  values  of  the 
tag  into  a  single  long  word  entry. 

0     1     2     3     4      5    6   7   8   9    10     11    12   13   14   15   16      17    18    19    20    21     22    23    24    25     26    27    28    29    30  31 

Year 
(since  1980) 

If  you  were  using  any  of  the  other  MC68000-family  processors,  converting  between  these 
bit  fields  and  the  expanded  version  of  the  time  and  date  would  require  a  series  of  masking  and 

shifting.  With  the  MC68020's  bit-field  manipulation  instructions,  you  can  insert  and  extract 
the  time/ date  information  from  the  bit  fields  with  a  few  simple  instructions.  Program  12-3A 
packs  a  table  of  time/ date  information  into  a  long  word;  Program  12-3B  unpacks  a  long  word 
of  time/ date  information  back  into  tabular  format. 
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Purpose:    Convert  the  time/ date  information  stored  in  the  byte  buffer  TIM  DAT  into  a 
single  long  word  TIMTAG. 

Sample  Problem: 
Input:  TIMDAT 

Output:  TIMTAG 

(6000)  =  13  hours 
(6001)  =  52  minutes 
(6002)  =  1 9  seconds 
(6003)  =   3  month 
(6004)  =  1 8  day 
(6005)  =   6  year  (since  1980) 

(6006)  =  514A40C5 

Program  12-3A: 
00006000 DATA EQU $6000 
00004000 PR0GRAM1 EQU $4000 
00005000 PR0GRAM2 EQU $5000 

00006000 ORG DATA 
006000 0000000D TIMDAT DC.B 

13 HOURS 
006001 00000034 DC.B 

52 
MINUTES 

006002 00000013 DC.B 
19 

SECONDS 
006003 00000003 DC.B 3 MONTHS 
006004 00000012 DC.B 

18 DAYS 
006005 00000006 DC.B 6 YEARS    (SINCE  1980) 
006006 00000000 TIMTAG DC.L 0 PACKED   TIME  TAG 

00004000 ORG PR0GRAM1 004000 207C00006000 PGM_12_3A MOVE A .  L TIMDAT/  AO ADDRESS   OF   UNPACKED  TIME/DATE 
004006 227C00006006 MOVEA.L TIMTAG/  A1 ADDRESS   OF   PACKED  TIME/DATE 
00400C 2018 MOVE.B (AO)*,  DO PACK  HOURS 
00400E EFD10005 BF  INS DO,  (A1X0: 

5> 004012 2018 MOVE .  B (AO)*/  DO PACK  MINUTES 
004014 EFD10146 BFINS DO/  (A1X5: 

6> 004018 2018 MOVE.B (A0)+/  DO PACK  SECONDS 
00401A EFD102C6 BFINS DO/  (A1X11 :6> 
00401 E 2018 MOVE.B (A0)+/  DO PACK  MONTHS 
004020 EFD10444 BFINS DO/  (A1X17 :4> 
004024 2018 MOVE.B (A0)+/  DO PACK  DAYS 
004026 EF010545 BFINS DO/  (A1X21 :  5> 00402A 2018 MOVE.B (A0)+/  DO PACK  YEARS 
00402C EFD10686 BFINS DO/  (A1X26 

:6> 
004030 4E75 RTS 

Purpose:    Convert  the  packed  long  word  at  TI MTAG  into  its  time  and  date  components  and 
store  this  information  into  the  byte  table  at  TIMDAT. 

Sample  Problem: 
Input: TIMTAG (6006) =  514A40C5 

Output: TIMDAT (6000) 
=  13  hours 

(6001) =  52  minutes 

(6002) =  19  seconds 
(6003) =   3  month 

(6004) 

=  18  day 

(6005) =  6  year  (since  1980) 
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Program  12-3B: 
00006000 DATA EQU $6000 
00004000 PR06RAM1 EQU $4000 
00005000 PR0GRAM2 EQU $5000 

00006000 ORG DATA 
006000 0000000D TIMDAT DC.B 

13 
HOURS 

006001 00000034 DC.B 
52 

MINUTES 
006002 00000013 DC.B 19 SECONDS 
006003 00000003 DC.B 3 MONTHS 
006004 00000012 DC.B 

18 
DAYS 

006005 00000006 DC.B 6 YEARS    (SINCE  1980) 
006006 00000000 TIMTAG DC.L 0 PACKED TIME  TAG 

ORG PR0GRAM2 
005000 207C00006000 PGM_12_3B MOVEA.L TIMDAT,  AO ADDRESS OF   UNPACKED  TIME/DATE 
005006 227C00006006 MOVEA.L TIMTAG,  A1 ADDRESS OF   PACKED  TIME/DATE 
00500E E9D10005 BFEXTU <A1 >{0:5>, 

DO 

EXTRACT HOURS 
005012 10C0 MOVE.B 

DO,  (A0)+ 00501 4 E9D10146 BFEXTU <A1X5:6>, 

DO 

EXTRACT MINUTES 
005018 10C0 MOVE.B 

DO,  (A0)+ 00501  A E9D102C6 BFEXTU (A1X11  :6>, 
DO 

EXTRACT SECONDS 
00501 E 10C0 MOVE.B 

DO,  (A0)+ 005020 E9D10444 BFEXTU (A1X17:4>, 
DO 

EXTRACT MONTHS 
005024 10C0 MOVE.B 

DO,  (A0)+ 005026 E9D10545 BFEXTU (A1 )<21  :5>, 
DO 

EXTRACT DAYS 
00502A 10C0 MOVE.B 

DO,  (A0)+ 00502C E9D10686 BFEXTU (A1  X26:6>, 
DO 

EXTRACT YEARS 
005030 10C0 MOVE.B 

DO,  (A0)+ 005032 4E75 RTS 

CONCLUSION 

This  chapter  introduced  some  of  the  advanced  features  of  the  MC68020  processor.  We 
could  not  give  examples  of  all  of  the  new  instructions  and  addressing  modes.  However,  we  hope 
we  have  presented  enough  examples  to  show  you  where  to  begin. 
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Connecting  to  Peripherals 

Thus  far  in  our  programming  examples,  we  have  highlighted  the  internal  workings  of  the 
processor.  Our  programs  work  on  data  stored  in  memory  and  return  the  result  of  the 
computation  to  some  other  location  in  memory. 

This  type  of  programming  is,  of  course,  not  truly  representative  of  real-life  computing 
needs.  A  computer  system,  as  you  know,  consists  not  only  of  the  CPU  but  also  of  displays,  disk 

drives,  keyboards,  printers,  and  other  "peripheral"  devices.  This  chapter  deals  with  the  basics 
of  how  the  CPU  and  these  peripherals  interact. 

TYPES  OF  PERIPHERALS 

The  term  peripheral  applies  to  a  broad  range  of  devices.  These  devices  may  be  large  or 
small;  they  may  be  contained  in  the  same  cabinet  as  the  CPU  or  they  may  be  located  in  another 
building.  They  may  consist  of  a  complex  system  of  circuitry  or  they  may  consist  of  a  single 
chip.  For  our  needs,  consider  a  peripheral  to  be  any  part  of  the  computer  system  other  than  the 
CPU. 

STORAGE  DEVICES 

The  CPU  has  space  for  only  a  limited  amount  of  storage  in  its  registers.  Storage  devices 
provide  a  means  of  holding  data  while  you  use  the  CPU  registers  for  other  data. 

On-Line  Memory 

The  storage  device  that  you  are  probably  most  familiar  with  is  the  on-line  memory  in  the  form 
of  random  access  memory,  or  RAM.  RAM  offers  short-term  storage  for  our  data  and 
programs.  The  word  random  tells  you  that  you  can  access  any  part  of  memory  without  regard 

to  the  location  of  the  previous  or  next  access.  On-line  memory  on  the  MC68000  systems  is 
byte-addressable;  that  is,  each  byte  has  its  own  address  and  can  be  accessed  individually. 

There  are  many  varieties  of  system  memories  (for  example,  static  random  access  memory, 

SRAM,  and  read-only  memory,  ROM).  They  all  interface  closely,  both  physically  and  electri- 
cally, to  the  CPU.  Like  the  CPU,  the  system  memories  consist  of  integrated  circuits  of  the  same 

type  as  those  that  make  up  the  CPU.  The  connection  between  the  CPU  and  memory  is  the 
system  bus. 

For  the  CPU  to  fetch  and  store  data  between  itself  and  memory,  it  applies  a  low  voltage  to 
the  lines  on  the  bus;  memory,  in  turn,  interprets  the  voltages  as  requests  for  fetches  or  storage  of 
data.  The  delay  between  the  CPU  request  and  the  memory  response  is  minimal;  depending  on 
the  system  configuration,  the  CPU  may  need  to  wait  only  an  instant  for  memory  to  respond,  or, 
in  the  optimal  system,  not  at  all. 

201 
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Off-Line  Storage 

In  the  ideal  system,  the  on-line  memory  supplies  all  of  the  storage  needs.  In  reality, 
however,  this  is  not  the  case.  Even  though  the  price  of  memory  keeps  dropping  while  the 
storage  capacity  of  individual  chips  keeps  rising,  some  applications  require  more  data  than  can 
be  economically  or  physically  put  into  the  system. 

A  second  problem  exists  with  relying  solely  on  on-line  memory:  it  requires  constant 
power  in  order  to  keep  its  internal  circuitry  from  forgetting  its  contents.  If  power  should  for 
some  reason  fail  (for  example,  if  you  turn  off  the  computer),  the  computer  will  forget  what  it 
was  doing. 

To  handle  this  situation,  computer  systems  incorporate  various  off-line  storage  devices. 
Such  devices  include  hard  disks,  floppy  disks,  and  magnetic  tape.  By  using  technologies 

different  from  those  employed  by  on-line  memory,  these  devices  can  store  data  more  densely 

than  on-line  memory  can.  The  trade-off,  however,  is  that  the  CPU  can't  access  individual  bytes 
stored  on  off-line  memory  as  it  can  with  on-line  memory.  It  must  read  blocks  of  data  (typically 
256,  512,  or  1024  bytes  at  a  time)  from  the  off-line  storage  device  into  on-line  memory  and  then 
search  for  the  appropriate  byte. 

In  addition  to  the  time  overhead  required  to  read  in  blocks  of  data,  these  devices  also 

introduce  a  mechanical  delay.  While  access  to  the  on-line  memory  meant  dealing  only  with 
electrical  signaling  (very  fast),  off-line  devices  require  certain  mechanical  actions  to  read  or 
write  a  block  of  data.  For  example,  when  your  data  is  stored  at  the  end  of  a  magnetic  tape,  for 
the  CPU  to  access  that  data,  the  tape  drive  must  unwind  the  tape  before  it  can  find  the  data. 

To  combat  the  problem  of  storing  data  for  long  periods,  the  off-line  storage  devices  use 

technologies  to  store  the  data  that  don't  require  constant  electrical  power.  Because  the 
electrical  and  mechanical  methods  used  by  these  devices  differ  from  those  making  up  the 

circuitry  of  the  CPU  (and  on-line  memory),  the  CPU  cannot  directly  access  the  data  via  the 
system  bus;  it  must  work  through  some  translator.  This  requirement  adds  access  overhead  as 
well  as  circuit  complexity. 

COMMUNICATIONS  DEVICES 

Along  with  its  storage  requirements,  the  CPU  must  have  some  means  for  the  user  to  enter 

data  and  see  the  results  of  the  CPU's  computations.  Devices  that  give  the  user  this  ability 
include  video  terminals,  keyboards,  and  printers,  as  well  as  some  more  exotic  devices  such  as 
mice,  joysticks,  plotters,  and  analog/ digital  converters. 

As  we  said  earlier,  the  CPU  and  its  on-line  memory  use  specific  voltages  to  communicate 
with  each  other.  To  keep  power  consumption  and  heat  to  a  minimum,  these  voltages  are 
typically  very  low.  For  the  sake  of  speed,  the  transitions  between  a  binary  1  and  a  binary  0 
occur  quickly,  as  shown  in  the  following: 

Timeframe    TO  T1  T2  T3         T4  T5  T6  T7 

Voltage 

Value  0  110  10  0 

These  voltage  levels  and  signal  speeds  require  that  the  CPU  and  memory  reside  close  to 
each  other,  within  an  enclosure  that  protects  the  signals  from  outside  interference  (such  as 
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radio  and  television  signals,  radiation  from  fluorescent  light  bulbs,  and  so  on).  Special  wiring 

on  printed  circuit  boards  ensures  that  the  signal  level  doesn't  drop  as  it  would  with  the  different 
resistance  and  capacitance  of  ordinary  wire. 

Our  input  and  output  devices  however,  may  reside  some  distance  away  from  the  actual 

computer  enclosure  —  in  a  different  room,  on  a  different  floor,  or  even  in  a  different  city.  If  we 
were  to  simply  connect  the  system  bus  to  the  terminal  or  printer  via  a  cable,  by  the  time  the 
electrical  signals  reached  the  other  end  of  the  cable,  they  might  look  like  this: 

Timeframe      TO        T1       12        13         14         T5         T6  T7 

Voltage 

Value  ?  ?  ?  ?  ?  ?  ?  ? 

It  isn't  practical  to  build  a  network  of  enclosed  printed  circuit  boards  between  the 
computer  and  its  peripherals,  so  the  next  best  thing  to  do  is  to  use  some  signaling  convention 
that  is  less  affected  than  these  boards  by  radiation  and  other  interference.  As  when  you  use 

off-line  storage  devices,  you  must  pay  a  price  for  this  convenience.  To  prevent  the  intrinsic 
capacitance  of  the  wire  and  the  outside  radiation  of  the  environment  from  ruining  signals,  you 
must  make  the  transitions  between  binary  Is  and  Os  much  more  pronounced. 

To  do  this,  you  must  slow  down  the  transitions.  The  VMEbus  (a  common  system  bus  used 

within  MC68000-based  systems)  transmits  data  at  up  to  10  million  bits  per  second  over  each  of 
its  32  data  lines  (for  a  net  of  320  million  bits  per  second).  Data  traveling  to  a  terminal  typically 

travels  at  speeds  no  greater  than  9600  bits  per  second  —  and  its  cable  has  only  one  data  line! 

CPU  SUPPORT  PERIPHERALS 

In  addition  to  communicating  with  peripherals  outside  of  the  computer  enclosure,  the 
CPU  must  also  interface  with  circuitry  that  supports  the  functions  of  the  CPU.  Such  support 
peripherals  include  timers  (for  programming  delays  as  well  as  maintaining  the  system  time), 

special-purpose  processors  (such  as  units  that  perform  floating-point  arithmetic),  and  memory 
management  units  (which  control  memory  accesses  in  multiuser  systems). 

These  support  chips  generally  work  at  the  same  voltages  as  do  the  CPU  and  on-line 

memory.  Problems  arise  in  that  while  these  support  chips  are  "intelligent,"  they  need  direction 
from  the  CPU  as  to  how  they  should  work. 

CPU  — PERIPHERAL  INTERFACE 

We  have  discussed  several  types  of  peripherals  and  the  problems  associated  with  connect- 
ing the  CPU  with  them.  In  summary,  these  are  the  problems: 

•  Peripherals  may  be  slower  than  the  CPU 

•  Peripherals  may  use  different  internal  electrical  technologies 

•  Peripherals  may  need  instructions  on  how  to  do  their  work 

•  Peripherals  may  use  different  basic  storage  sizes  (for  example,  blocks  instead  bytes). 

Computer  designers  have  overcome  these  interface  problems  by  creating  special  circuits, 

often  known  as  "device  controllers."  Often,  these  circuits  fit  on  a  single  integrated  circuit  chip. 
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Device  controllers  form  a  two-sided  interface  that  connects  the  CPU  to  the  dissimilar  peri- 
pheral, as  shown: 

System 
External 

bus cable CPU Controller Peripheral 

On  one  side  of  the  interface,  device  controllers  operate  at  the  well-defined  signal  levels 
found  on  the  system  bus,  as  do  on-line  memories  and  other  CPU  support  chips.  On  the  other 
side  of  the  device  controller,  the  signal  levels  and  protocols  are  appropriate  for  the  particular 
attached  peripheral. 

Device  controllers  typically  have  one  or  more  registers.  Depending  on  the  function  of  the 
controller  and  on  the  complexity  of  the  peripheral  it  interfaces,  there  may  be  only  a  few 
registers  or  there  may  be  100  or  more.  These  registers  differ  from  the  address  and  data  registers 
found  in  the  CPU  in  that  they  are  generally  highly  specialized. 

Often,  a  single  bit  within  these  registers  may  control  or  show  the  status  of  a  particular 

aspect  of  the  peripheral.  Such  registers  are  called  "control"  registers  and  "status"  registers, 
respectively.  So  that  the  CPU  can  pass  data  between  itself  and  the  peripheral,  the  controller 

usually  has  one  or  more  "data"  registers. 
Since  the  device  controller  chips  have  the  same  electrical  characteristics  as  does  the  CPU, 

and  since  the  registers  are  sized  like  memory  (that  is,  in  bytes,  or  in  some  cases,  in  words  or  long 
words),  the  controller  attaches  directly  to  the  system  bus.  To  the  CPU,  the  controller  appears  at 
some  specific  address  in  memory,  just  as  if  it  were  standard  RAM.  This  means  that  the  CPU 
can  use  regular  MOVE  instructions  to  read  and  write  to  the  controller. 

In  most  systems,  the  designers  dedicate  a  certain  portion  of  the  address  space  to  corre- 
spond to  device  controllers.  For  example,  addresses  $00000000  to  S007FFFFF  may  be  RAM; 

addresses  $00800000  to  $80000FFF  may  correspond  to  the  various  device  controllers  in  the 

system.  This  simplifies  the  system-control  circuitry  and  lessens  the  chance  that  you  will 
inadvertently  try  to  use  device-controller  addresses  as  normal  address  space. 

Figure  13-1  shows  the  registers  associated  with  a  primitive  parallel-printer  controller  and 
how  they  relate  to  the  CPU  /  printer  interface.  While  this  controller  is  oversimplified  compared 
to  one  you  would  find  in  a  real  application,  it  does  help  describe  how  a  controller  works. 

The  function  of  the  data  register  may  be  obvious  to  you:  through  it  the  CPU  passes 
characters  to  the  printer  for  printing.  The  control  register  passes  commands  from  the  CPU  to 
the  printer.  In  our  illustration  case,  we  have  two  control  bits:  the  data  ready  bit  and  the 
interrupt  enable  bit.  When  the  CPU  sets  the  data  ready  bit,  the  printer  knows  that  the  data  lines 
contain  valid  data.  (We  will  discuss  the  meaning  of  the  interrupt  enable  bit  later.)  The  status 
register  has  just  one  bit  that  shows  whether  the  printer  is  ready  to  print  a  character. 

The  scenario  for  printing  a  character  is  as  follows: 

1.  The  CPU  checks  the  printer  ready  bit  in  the  status  register. 

2.  If  the  printer  is  ready  (if  the  ready  bit  is  "true"),  the  CPU  loads  the  data  register  with  a 
character. 

3.  The  CPU  signals  the  printer  by  setting  the  data  ready  bit.  In  the  meantime,  the  device 
controller  has  already  copied  the  data  onto  the  data  lines.  When  the  CPU  sets  the  data 

ready  bit,  the  controller  raises  a  "true"  signal  on  the  data  ready  line. 
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X X X X X X 
IE 

DR 

X X X X X X IE 
PR 

Data  Register 

Control  Register 

Status  Register 

IE  =  Interrupt  Enable 
DR  =  Data  Ready 
PR  =  Printer  Ready 
X  =  Unused 

Figure  13-1.  Printer  Controller  Registers 

4.  The  printer,  sensing  that  the  data  ready  line  has  become  true,  reads  the  data  lines  and 
begins  processing  the  character  (doing  whatever  printers  do  in  order  to  print  a 

character).  So  that  the  CPU  doesn't  try  to  send  another  character  while  the  printer  is 
still  thinking  about  the  first,  the  printer  sends  a  "false"  signal  on  the  printer  ready  line. 

5.  If  the  CPU  wants  to  send  another  character,  it  repeats  the  procedure  from  step  l . 

The  program  performs  the  interface  chores  described  in  the  preceding  print  example. 

Program 

Purpose:     Print  a  string  of  characters  starting  at  PRT_  STRING.  The  string  ends  in  a 
NULL  character  (ASCII  code  0). 

Sample  Problem: 

Input:      PRT  STRING  (6000)  =  "Text  0" Output:      (on  the  printer) 

00006000 DATA EQU $6000 
00004000 PROGRAM EQU $4000 
00800000 PTR  DATA EQU $800000 
00800001 PTR  CTRL EQU $800001 00800002 PTR  STAT EQU $800002 
00000001 DATA  RDY EQU 0 
00000001 PTR  RDY EQU 0 
00000002 I NT_ENB EQU 1 
00006000 ORG DATA 006000 5465787400 PTR_STRIN6 DC.B "Text\0" DATA   TO  PRINT 
00004000 ORG PROGRAM 

004000 207C00006000 PGM   13  1 MOVE A . L #PRT   STRING/  AO GET  ADDRESS   OF  STRING 004006 4A10 LOOP TST.B (AO) END   OF  STRING? 
004008 67000022 BEQ DONE IF   SO,    THEN  DONE 00400C 0C3900010000 TST_STAT CMP.B PTR_STAT,  #PTR_RDY PRINTER   READY   TO  PRINT 

6000 
004014 6600FFEA BNE TST  STAT IF   NOT,   KEEP  CHECKING 004018 130800800000 M0VE.B (A0T+,    PTR  DATA LOAD   DATA  REGISTER 00401E 13FC00010080 M0VE.B 

#DATA_RDY,~PTR_CTRL 
INFORM  PRINTER 

0000 
004026 6003FFDE 

BR LOOP AND   CONTINUE  ... 
00402A 4E75 DONE RTS 
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Accesses  to  all  types  of  device  controllers,  whether  they  be  printer  interfaces,  disk 

interfaces,  or  floating-point  units,  work  similarly  to  our  example,  in  that  the  device  controllers 
all  have  status,  control,  and  data  registers.  Particular  devices  vary  from  one  another  according 
to  their  functions;  most  devices  require  more  of  each  type  of  register  than  does  the  device  in  the 

example  and  have  many  status-  and  control-bit  definitions.  In  all  cases,  however,  each  register 
has  a  specific  address  (defined  by  the  system  designers),  which  is  accessed  by  the  CPU  through 
MOVE  instructions. 

ALTERNATIVE  PERIPHERAL 

ACCESS  METHODS 

The  program  shows  one  means  of  accessing  a  device  controller.  As  you'll  note,  we  kept 
testing  the  status  register  until  the  printer  indicated  that  it  was  ready  for  another  character.  This 

method  of  I/O  is  called '  polled  I/O,"  because  the  CPU  continually  checks,  or  polls,  the  device 
to  see  if  it  is  ready. 

As  you  might  guess,  if  someone  has  left  the  printer  off-line  (or  powered  off  or  unplugged 
from  the  system),  the  CPU  will  loop  indefinitely,  waiting  for  the  printer  to  say  that  it  is  ready.  If 

you  are  in  a  single-user  environment  (that  is,  if  your  computer  supports  only  one  user  at  a  time), 

this  may  not  seem  too  important;  you'll  realize  right  away  that  something  is  wrong  because  the 
printer  isn't  printing. 

However,  if  your  system  supports  several  simultaneous  users,  you  will  soon  make  enemies 
among  your  fellow  users  because  no  one  can  work  while  your  program  is  in  this  tight  loop. 
Moreover,  your  program  may  need  to  monitor  the  status  of  several  devices  at  the  same  time, 

particularly  if  you  are  using  a  real-time  system.  You  may  lose  valuable  information  from 
another  device  (say,  a  temperature  sensor)  because  you  are  waiting  on  the  printer. 

To  handle  this  problem,  most  processors  (including  the  MC68000  and  its  associated 

device  controllers)  support  two  alternate  means  of  accessing  peripherals;  "interrupts"  and 
"direct  memory  access"  (DMA). 

Interrupts 

As  you  know,  a  telephone  has  a  ringing  mechanism  to  alert  you  to  incoming  calls.  If  it  were 
not  so,  you  would  be  forced  to  pick  up  the  receiver  continually  to  check  whether  anyone  was  on 
the  other  end.  This  clearly  would  pose  a  great  inconvenience! 

This  constant  checking  of  the  telephone  is  analogous  to  using  polled  I/O.  While  in  theory 
it  works,  in  most  cases  it  proves  to  be,  at  best,  cumbersome.  Fortunately,  most  CPUs  and  device 
controllers  (including  the  MC68000  and  its  associated  controllers)  have  a  mechanism  similar  to 

the  bell  on  a  telephone,  called  the  "interrupt". 
A  device  that  supports  interrupts  can  be  configured  (through  the  control  register)  to  send 

a  special  signal  to  the  CPU  when  it  encounters  certain  conditions.  In  our  printer  example,  the 
printer  ready  state  is  one  such  condition.  When  the  CPU  receives  this  signal,  it  knows  it  should 
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stop  whatever  it  is  doing  because  some  device  in  the  system  wants  its  attention. 

As  you  will  recall  from  our  discussions  in  Chapter  3,  the  MC68000  dedicates  a  1024-byte 

block  of  memory  as  the  "vector  table."  Certain  entries  in  this  table  are  reserved  for  "interrupt 
vectors."  When  a  device  sends  the  interrupt  signal  to  the  CPU,  the  CPU  responds  by  sending  an 
"acknowledged"  signal  to  the  device.  The  device  then  loads  a  vector  number  onto  the  system 
bus. 

This  vector  number  corresponds  to  an  entry  in  the  vector  table.  Prior  to  enabling  the 

device  controller,  your  program  must  have  loaded  this  vector  with  the  address  of  an  "interrupt 
handler. "  The  CPU  reads  the  vector  number  sent  to  it  by  the  device,  looks  up  the  vector  and  its 
corresponding  handler  address,  and  jumps  to  the  interrupt  handler  subroutine. 

The  interrupt  handler  subroutine  then  performs  some  processing  with  the  device.  In  the 
example  of  the  printer,  the  handler  might  load  the  controller  data  register  with  the  next 
character  to  print.  When  it  has  completed  what  it  has  to  do,  it  executes  a  special  Return  from 
Exception  instruction  (RTE),  and  the  CPU  can  continue  with  the  program  that  it  was 
executing  prior  to  the  interrupt. 

Program: 

Purpose:     Print  a  null-terminated  string  of  characters  starting  at  PRT_STRING.  The 
interrupt  vector  for  the  printer  is  number  64  (address  $100). 

Sample  problem: 
Input: 

PRT  STRING  =  "Text\0" Output: (on  the  printer) 

00006000 DATA EQU 
$6000 

00004000 PROGRAM EQU $4000 
00800000 PTR  DATA EQU $800000 
00800001 PTR  CTRL EQU $800001 00800002 PTR  STAT EQU $800002 
00000001 DATA  RDY EQU 0 
00000001 PTR  RDY EQU 0 
00000002 INT  EN8 EQU 2 
00000100 PTR_VEC EQU 64 

00006000 ORG DATA 
006000 00000000 NXT  CHAR DS.L 1 POINTER    TO   NEXT  CHAR 
00600A 00000000 DONE  FLAG DS.L 1 POINTER   TO   DONE  FLAG 006008 5465787400 STRING DC  .B "Text\0" STRING   TO  PRINT 
00600D 00 COMPLETE DS.B 1 COMPLETION  FLAG 

00004000 ORG PROGRAM 
004000 2F3C00006000 PGM_13_2 MOVE.L ^COMPLETE,  -(SP) PUSH   ADDRESS   OF    COMPLETION  FLAG 
004006 2F3C00006008 M0VE.L #STRING,  -(SP) PUSH   ADDRESS   OF  STRING 
00400C 4EBD00004020 

JSR 
PRINT SETUP  PRINT 004012 508F ADDQ  .  L #8,  SP CLEAN  STACK 

004014 4A790000600D WAITF0R TST.B COMPLETE WAIT   TILL   PRINT  COMPLETE 
00401  A 6700FFF8 BE  Q WAIT  FOR 
00401E 4E75 RTS 

004020 23FC00004048 PRINT MOVE . L #PRT_XRPT,  PRT_VEC SET   UP  VECTOR   TABLE  ENTRY 
00000100 

00402A 23EF00040000 MOVE.L 4(SP>,  NXT_CHAR GET   ADDRESS    OF  STRING 
6000 

004032 206F0008 M0VE.L 8(SP),  AO GET   ADDRESS   OF    DONE  FLAG 
004036 4210 CLR.B (AO) INITIALIZE    DONE    FLAG   TO  FALSE 
004038 23C800006004 MOVE.L AO,   DONE  FLAG SAVE   ADDRESS    OF    DONE  FLAG 
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00403E  08F900010080 
0001 

004046  4E75 

004048   2F08  PRT_XRPT 00404A  207900006000 
004050  13D800800000 
004056  08F900000080 

0001 
00405E  23C800006000 
004064  4A10 
004066  66000012 
00406A  08B900010080 

0001 
004072  207900006004 
004078  4610 
00407A   205F  WRAPUP 
00407C  4E73 

BSET  # I N  T_E  NB ,  PTR_CTRL 
RTS 

MOVE.L  AO,  -(SP) 
MOVE.L  NXT_CHAR,  AO 
MOVE.B  (A0)+,  PTR_DATA 
BSET  #DATA_RDY,  PTR_CTRL 

MOVE.L  AO,  NXT_CHAR TST.B  (AO) 
BNE  WRAPUP 
BCLR  U I NT_ENB,  PTR_CTRL 
MOVE.L  0ONE_FLAG,  AO 
NOT . B  (AO) 
MOVE.L  (SP)+,  AO RTE 

ENABLE  INTERRUPTS 

SAVE   OFF  AO 
GET   POINTER   TO   NEXT  CHAR 
MOVE   CHAR   TO   DATA  REGISTER 
INFORM   PRINTER    ABOUT    NEW  DATA 
SAVE   NEW   STRING  POINTER 
IS    NEW    CHAR   A  NULL? 
IF   NOT,   THEN  WRAPUP 
IF    NULL,    THEN    DISABLE  INTERRUPTS 
GET   USER'S   DONE  FLAG 
SET   DONE    FLAG   TO  -1 RESTORE  AO 

Direct  Memory  Access 

Direct  memory  access,  or  DMA,  gives  us  another  alternative  to  polled  I/O.  While  DMA 

isn't  a  complete  substitute  for  polled  I/O  or  even  interrupt-driven  I/O,  it  does  let  you  move 
data  without  using  the  CPU  for  every  transfer. 

The  CPU  often  uses  DMA  when  it  performs  DMA  disk  reads  and  writes.  As  we  stated 
earlier  in  this  chapter,  disks  store  their  data  in  blocks.  Whether  we  use  polled  I/O  or 

interrupt-driven  I/O,  the  CPU  must  explicitly  move  data  into  or  out  of  the  disk  device  data 
register.  DMA  lets  us  tell  the  device  to  read  a  block  or  more  of  data  from  the  disk  and  store  it 

starting  at  some  particular  address  in  on-line  memory.  While  the  device  is  handling  this  block 
transfer,  the  CPU  is  free  to  execute  other  sections  of  your  program  or  other  programs  in  the 
system. 

A  device  controller  that  supports  DMA  must  have  a  bit  more  intelligence  than  one  that 
does  not.  Internally,  it  must  check  its  various  status  bits  and  maintain  a  memory  pointer  that 
shows  where  to  read  or  write  the  data.  Typically,  a  program  interfacing  a  DMA  device  must  tell 
the  device: 

1.  The  starting  memory  address  where  the  data  should  go  or  come  from, 

2.  The  function  you  want  it  to  perform  (for  example,  a  disk  read  from  disk  block  #  100), 
and 

3.  The  number  of  bytes  or  words  to  transfer. 

Once  the  device  is  set  up,  your  program  tells  it  to  perform  the  function.  For  a  read,  the 
device  waits  for  the  ready  signal  from  the  peripheral,  receives  a  byte  or  word  from  the 
peripheral,  stores  the  data  into  memory,  increments  its  memory  pointer,  and  decrements  its 
transfer  count.  When  the  device  has  completed  transferring  the  requested  number  of  bytes,  it 
sets  appropriate  status  bits  in  its  status  register  (and  usually  sends  an  interrupt  signal  to  the 
CPU).  While  the  device  was  handling  the  transfer,  the  CPU  was  executing  some  other  piece  of 
related  or  unrelated  code. 

DMA  relieves  the  CPU  (and  programmer)  of  the  burden  of  repetitive  data  movement. 

Also,  while  few  devices  move  data  faster  than  the  CPU,  if  several  high-speed  devices  are 
present  in  the  system,  the  CPU  may  not  be  able  to  keep  up  with  all  of  them,  and  hence  runs  the 
risk  of  losing  data.  DMA  lessens,  if  not  removes,  the  chance  of  this  happening. 
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CONCLUSION 

We  have  only  touched  on  the  surface  of  the  interesting  task  of  interfacing  peripherals  with 
the  CPU.  Pursuing  the  topic  in  further  detail,  however,  is  difficult  because  of  the  wide  variety  of 
devices  available. 

For  the  purposes  of  learning  assembly  language,  be  comforted  in  knowing  that  even  the 

most  primitive  operating  systems  usually  provide  you  with  device  handlers.  By  using  subrou- 
tine calls  to  the  system,  we  can  effectively  move  data  in  and  out  of  the  computer  system  without 

regard  to  the  particular  status  and  control  bits  for  a  particular  device. 
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Exception  Processing 

In  the  last  chapter,  we  introduced  the  concept  of  interrupt-driven  I/O  and  said  that  it  fell 
under  the  broad  category  of  exception  processing.  Many  seemingly  unrelated  topics  fall  into 

the  category  of  exception  processing,  including  instruction  executions,  hardware  configura- 
tions, operating  systems,  and  array  boundary  checking.  The  common  factor  in  all  of  these 

exceptions  is  in  how  the  CPU  responds  when  they  occur. 
In  this  chapter,  we  will  discuss  other  types  of  exception  processing  and  go  into  greater 

detail  about  how  the  processor  handles  various  exceptions.  Toward  the  end  of  the  chapter,  we 
will  discuss  a  concept  closely  related  to  exception  processing:  virtual  memory. 

The  various  members  of  the  MC68000  family  differ  from  one  another  in  the  ways  they 
handle  exception  processing.  Fortunately,  all  exception  processing  is  handled  at  the  supervisor 

level;  if  you  are  writing  user-level  programs,  you  needn't  worry  about  the  differences  in  the 
processors.  In  fact,  if  you  are  content  with  user-level  programming,  you  may  choose  to  skip 
this  chapter  entirely;  your  programs  will  function  quite  well  without  your  having  to  know  the 
details  of  exception  processing,  because  the  operating  system  takes  care  of  it  for  you.  However, 

if  you  are  writing  operating-system  programs,  the  information  in  this  chapter  is  a  necessity. 

THE  EXCEPTION  VECTOR  TABLE 

In  Chapter  13,  we  learned  that  an  interrupting  device  controller  sends  a  vector  number  to 
the  CPU.  The  CPU,  in  turn,  transfers  control  to  the  address  stored  in  the  vector  table  slot 

specified  by  the  vector  number.  The  vector  table  contains  more  than  just  interrupt-handler 
addresses;  it  contains  addresses  of  handler  routines  for  all  types  of  exceptions.  Whenever  the 
CPU  must  handle  an  exception,  it  fetches  the  address  of  the  appropriate  handler  from  the 
exception  vector  table. 

There  is  nothing  special  about  the  vector  table  itself;  it  resides  in  regular  memory,  and  you 
must  load  its  contents  just  as  you  would  load  any  other  data  structure.  If  you  are  using  the 
MC68010,  MC68012,  or  MC68020,  you  can  even  change  the  starting  address  of  the  table  from 
its  default  base  of  $00000000  to  anywhere  in  memory,  via  the  vector  base  register  (VBR). 

Table  14-1  shows  the  various  assignments  of  the  slots  of  the  exception  vector  table.  Some 
slot  locations  have  well-defined  definitions,  for  example,  the  bus  error  exception.  Other  slots 

are  user-defined,  for  example,  device  interrupts.  Still  other  slots  are  labeled  as  "reserved"; 
Motorola  may  use  these  in  future  MC68000  products. 

Depending  on  what  your  system's  configuration  is,  not  all  of  the  slots  will  be  of  use  to  you; 
for  example,  the  floating-point  exception  slots  are  relevant  only  if  you  have  a  computer  with  an 
MC68020  central  processor  and  an  MC68881  floating-point  coprocessor. 

Under  some  advanced  operating  systems,  users  are  prevented,  through  hardware  and 
software  means,  from  accessing  the  exception  vector  table;  clearly,  randomly  loading  data  into 
the  vector  table  can  cause  system  failure  or  lost  data.  In  these  systems,  the  operating  system 
takes  responsibility  for  initializing  the  vectors  and  handling  the  exception  processing. 

If  your  system  limits  your  access  to  the  exception  vector  table,  you  may  not  be  able  to  try 
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Table  14-1 .  Exception  Table  Assignments 

Vector  Number Offset Assignment 

0 000 Reset:  Initial  interrupt  stack  pointer 
1 

004 
Reset:  Initial  program  counter 

2 008 Bus  error 
3 OOC Address  error 
4 010 lliegal  instruction 
5 

014 
Divide  by  zero 

6 018 CHK,  CHK2  instruction 
7 01  C cpTRAPcc,  TRAPcc,  TRAPV  instruction 
8 020 Privilege  violation 
9 024 

Trace 
10 028 A-line  emulator 
11 02C F-line  emulator 
12 030 Reserved 
13 

034 Coprocessor  protocol  violation 
14 038 Format  error 
15 03C Unitialized  interrupt 
16-23 040-05C Reserved 

24 060 Spurious  interrupt 
25 064 Autovector  (level  1 ) 
26 068 Autovector  (level  2) 
27 06C Autovector  (level  3) 
28 070 Autovector  (level  4) 
29 074 Autovector  (level  5) 
30 078 Autovector  (level  6) 

31 
07C Autovector  (level  7) 

32-47 080 -0BC TRAP  #0-15 48 OCO FPCP  Branch  or  set  on  unordered  condition 
49 0C4 FPCP  Inexact  result 
50 0C8 FPCP  Divide  by  zero 
51 OCC FPCP  Underflow 
52 0D0 FPCP  Operand  error 
53 0D4 FPCP  Overflow 

CppD  Qmnali  nn  MAM 
rrur  oignanng  inmi\j 

55 ODC Reserved 
56 0E0 PMMU  configuration 
57 0E4 PMMU  illegal  operation 
58 0E8 PMMU  access  level 
59-63 OEC-OFC Reserved 
64-255 100-3FC User  defined  vectors 

FPCP-floating  point  coprocessor PMMU  =  paged  memory  management  unit 

out  everything  we  talk  about  in  this  chapter.  Do  check,  however,  in  your  system's  manuals. 
Usually,  the  system  designers  leave  enough  "hooks"  in  the  system  so  that  you  can  write  your 
own  exception  handlers. 



Exception  Processing  213 

TYPES  OF  EXCEPTIONS 

Exceptions  fall  into  two  broad  categories:  exceptions  that  originate  from  within  the  CPU 
and  those  that  come  from  outside  the  CPU.  Interrupts  are  an  example  of  the  latter.  The 
external  exceptions  include 

Interrupts 

Bus  errors 

•  System  reset. 

Exceptions  may  originate  internally  also,  coming  from  the  execution  of  certain  instruc- 
tions. Some  instructions  always  produce  exceptions.  Other  instructions  may  cause  an  excep- 

tion if  they  are  executed  incorrectly.  The  internal  exceptions  include 

•  Odd  addressing  errors 

•  Illegal  instructions  (invalid  op-codes) 

•  Illegal  operations  (such  as  divide  by  zero) 

•  Invalid  use  of  a  coprocessor 

•  Execution  tracing 

•  Privilege  violations. 

When  one  exception  occurs  while  another  exception  is  still  pending,  the  CPU  arbitrates 

according  to  the  priorities,  as  shown  in  Table  14-2. 

EXCEPTION  PROCESSING  SEQUENCES 

All  of  the  various  exceptions  cause  the  CPU  to  follow  a  basic  pattern  of  execution  on  all  of 
the  MC68000  processors.  However,  the  specific  details  of  a  particular  exception  on  a  particular 
processor  vary  enough  that  we  will  discuss  each  type  of  exception  separately,  noting  when  one 
processor  functions  differently  from  another. 

The  general  pattern  followed  by  the  CPU  when  starting  exception  processing  is 

1.  Copy  the  status  register  to  a  temporary  internal  register. 

2.  Set  the  supervisor  bit  and  clear  the  trace  bit(s)  in  the  status  register  (depending  on 
what  the  current  machine  mode  is,  they  may  already  be  in  this  state). 

3.  Fetch  the  appropriate  exception  handler  address  from  the  vector  table.  Depending  on 
what  the  exception  type  is,  the  CPU  will  either  know  intrinsically  what  vector  location 
to  use,  or,  in  the  case  of  interrupts,  it  will  ask  the  peripheral  for  the  vector  number. 

4.  Depending  on  the  exception  and  processor  type,  push  additional  internal  informa- 
tion onto  the  stack. 

5.  Push  the  old  version  of  the  status  register  onto  the  supervisor  stack. 

6.  Push  the  current  program  counter  value  onto  the  supervisor  stack. 

7.  Begin  execution  in  the  exception  handler  program. 

After  the  exception  handler  completes  what  it  has  to  do,  it  may  take  one  of  two  actions.  If 
the  exception  was  the  result  of  an  error  (hardware  failure  or  serious  programming  error),  the 
exception  handler  may  transfer  control  to  the  operating  system,  which  will  take  further  action 
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Table  14-2.  Exception  Priorities 

Group/ Priority Characteristics 

0.0  Reset Aborts  all  processing  (does  not  save  old  contents) 

1 .0  Address  error Suspends  processing  (saves  old  contents) 

1 .1  Bus  error 

2.0  BKPT,  CALLM,  CHK, 
CHK2,  cp  Mid  instruction, 
cp  Protocol  violation, 
cpTRAPcc,  Divide  by 
zero,  RTE,  RTM,  TRAP, 
TRAPV 

Exception  processing  is  part  of  instruction 
execution 

3.0  Illegal  instruction,  F-line, 
A-line,  privilege  violation, 
cp  preinstruction 

Exception  processing  begins  before  instruction  is 
executed 

4.0  cp  post  instruction Exception  processing  begins  when  current 
instruction  or  previous  exception  processing  is 
completed 

4.1  Trace 

4.2  Interrupt 

(such  as  aborting  your  program  and  returning  you  to  the  monitor).  If  the  exception  was  not  due 
to  a  fatal  error,  but  rather  part  of  normal  processing  (as  in  the  case  of  an  interrupt),  the 

exception  handler  executes  a  special  instruction,  RTE  (Return  from  Exception).  This  instruc- 
tion tells  the  CPU  to 

1 .  Pull  the  old  program  counter  address  from  the  supervisor  stack  and  return  it  to  the 
program  counter  register. 

2.  Pull  the  old  status  value  from  the  supervisor  stack  and  return  it  to  the  status  register. 

3.  Pull  any  other  stacked  information  back  into  the  internal  registers  from  which  it  was 
copied. 

4.  Continue  execution  at  the  point  where  the  program  was  interrupted. 

STACK  FRAMES 

We  said  that  the  CPU  pushes  certain  information  onto  the  supervisor  stack  at  the 
beginning  of  the  exception.  Depending  on  which  CPU  and  exception  type  are  involved,  the 
amount  of  this  information  may  vary  from  3  words  of  data  to  as  many  as  90  words.  The  data 

structure  on  the  stack  is  called  the  "stack  frame."  The  MC68000  and  MC68008  use  two 
unnamed  stack  frames,  while  the  MC68010,  MC68012,  and  MC68020  use  stack  frames  that  are 
named  according  to  a  format  field  included  in  the  stacked  data. 
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Figures  14-1  through  14-9  show  the  various  types  of  stack  frames.  For  now,  just  take  a 
glance  at  these  different  stack  frames.  We  will  tell  you  which  ones  are  used  with  which 
exceptions  later  in  this  chapter. 

INSTRUCTION  TRAPS 

Instruction  traps  occur  when  your  program  executes  certain  instructions.  Your  program 
can  request  exception  processing  explicitly  through  the  TRAP  instruction.  Often,  the  operating 
system  provides  you  with  some  standard  functions,  such  as  input  and  output  services,  timing 
services,  and  intertask  communications.  Typically,  these  are  implemented  through  TRAPs. 

Certain  other  instructions  cause  exception  processing  when  you  attempt  to  execute  those 
instructions  incorrectly.  For  example,  if  you  attempt  to  divide  by  zero  (which  would  result  in  an 
undefined  quotient),  the  CPU  considers  the  action  reason  to  perform  exception  processing. 
Instructions  that  may  cause  exception  processing  (in  some  instances)  include  TRAPV,  CHK, 
CHK2,  DIVS,  DIVU,  CALLM,  and  RTM.  Your  processor  may  not  include  all  of  these 
instructions. 

On  the  MC68000  and  the  MC68008,  the  processor  builds  a  three-word  stack  frame,  as 
shown  in  Figure  14- 1 .  On  the  MC68010  and  the  MC68012,  the  processor  builds  a  four-word 

stack  frame  (called  "format  $0"),  as  shown  in  Figure  14-3.  On  the  MC68020,  a  TRAP 
instruction  causes  a  format  $0  stack  frame  (Figure  14-3),  while  all  other  instruction  exceptions 
push  a  format  $2  stack  frame  (Figure  14-5). 

ILLEGAL/UNIMPLEMENTED 

INSTRUCTIONS 

As  we  pointed  out,  MC68000  instructions  are  one  word  long  (plus  any  additional 

operands).  Since  a  word  is  16  bits,  this  gives  a  potential  of  216  (65536)  instructions.  The 
processor,  however,  implements  far  fewer  instructions  than  this  —  something  on  the  order  of 
300  to  500  instructions  (60  or  so  basic  instructions,  with  variations  due  to  addressing  modes). 
Clearly,  this  leaves  many  instruction  combinations  undefined. 

The  MC68000  makes  a  distinction  between  illegal  and  undefined  instructions.  By  defini- 
tion, all  instruction  codes  that  have  the  binary  patterns  1010  and  1111  in  their  high  bits  are 

defined  as  "unimplemented"  instructions  rather  than  illegal  instructions.  These  instructions 
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(known  as  "A-line"  and  "F-line,"  respectively)  allow  you  to  create  new  instructions  that  are  not 
in  the  standard  MC68000  instruction  set;  for  example,  floating-point  instructions. 

Whenever  you  execute  an  unimplemented  instruction,  the  CPU  vectors  through  the 

A-line  or  F-line  vector-table  entry.  For  illegal  instructions,  the  CPU  vectors  through  the  illegal 
instruction  vector.  The  MC68000  and  MC68008  both  create  a  three-word  stack  frame  (Figure 
14-1).  The  other  processors  create  a  four-word  format  $0  stack  frame  (Figure  14-3). 

The  exception  handler  can  then  perform  whatever  steps  it  needs  to  emulate  or  reject  the 
instruction.  Since  the  stack  contains  the  address  of  the  faulting  instruction,  the  emulation 
routine  knows  where  to  look  for  the  instruction  code  and  operands.  When  it  has  completed  its 
emulation,  it  then  modifies  the  stacked  program  counter  so  that  it  points  to  the  next  instruction 
past  the  emulated  instruction  and  returns  control  to  the  user  program. 
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The  MC68020  processor  carries  this  process  a  step  further.  Since  it  can  interface  to  a 

coprocessor  (such  as  the  MC68881  floating-point  processor),  it  considers  all  F-line  instructions 
as  potential  coprocessor  instructions.  After  deciding  that  it  cannot  execute  the  instruction  by 
itself,  it  looks  for  any  attached  coprocessor  that  may  execute  the  instruction.  If  the  MC68020 
finds  a  coprocessor,  that  coprocessor  will  execute  the  instruction;  the  CPU  does  not  perform 

the  exception.  If  no  coprocessor  responds,  the  CPU  traps  through  the  F-line  vector. 

ADDRESS  ERRORS 

All  instructions  must  lie  on  word  (even-byte)  boundaries.  Also,  on  all  processors  except 
the  MC68020,  word  and  long-word  operands  must  also  lie  on  even-byte  boundaries.  If  your 
program  attempts  one  of  these  illegal  memory  accesses,  the  CPU  traps  through  the  address 

error  vector.  The  MC68000  and  MC68008  create  a  seven-word  stack  frame  (Figure  14-2),  the 
MC68010  and  MC68012  build  a  format  $8  stack  frame  (Figure  14-6),  and  the  MC68020  builds 
a  format  $A  stack  frame  (Figure  14-8). 
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TRACING 

Recall  from  Chapter  3  that  the  MC68000  status  register  has  a  bit  defined  as  the  trace  bit 
(the  MC68020  has  trace  two  bits).  When  tracing  is  enabled  (that  is,  when  this  bit  is  set),  the 
CPU  executes  an  instruction.  Then,  before  executing  the  next  instruction,  it  traps  through  the 

trace  vector  to  an  exception  handler.  When  the  CPU  begins  exception  handling,  it  automati- 
cally disables  the  trace  bit  so  that  the  exception  handler  can  run  unhindered. 
The  MC68020  gives  you  a  more  selective  form  of  tracing,  since  you  can  configure  it  (by  the 

right  combination  of  trace  bits)  to  trace  after  every  instruction  or  else  trace  only  after  executing 
a  change  of  flow  instruction,  such  as  a  branch,  jump,  or  subroutine  call. 

The  MC68000  and  MC68008  use  the  three-word  stack  frame  (Figure  14-1 ).  The  MC68010 
and  MC68012  use  the  format  $0  stack  frame  (Figure  14-3).  The  MC68020  uses  the  format  $2 
stack  frame  (Figure  14-5). 

With  the  proper  exception  handler,  tracing  can  provide  a  means  of  debugging  programs. 
The  exception  handler  can  be  written  to  accept  commands  from  the  keyboard,  display  registers 

and  data,  and  return  back  to  your  program.  This  isn't  the  only  way  to  implement  a  debugger, 
however;  other  methods  involve  insertion  of  instructions  (for  example,  a  TRAP)  into  your 
program.  Using  this  method,  you  can  execute  many  instructions  before  entering  the  exception 
handler. 

BREAKPOINTS 

In  certain  hardware-emulation  schemes,  it  may  be  useful  for  you  to  notify  external 
hardware  that  the  CPU  has  reached  a  certain  point  in  a  program.  On  the  MC68000  and 
MC68008,  you  can  do  this  by  inserting  an  illegal  instruction  into  the  program  and  installing 
hardware  that  monitors  the  address  bus  lines,  waiting  for  an  access  to  the  illegal  instruction 
vector  address.  The  hardware  can  then  take  whatever  action  it  sees  fit. 

The  other  processors,  however,  don't  allow  you  to  follow  this  procedure  since  they  allow 
you  to  redefine  the  vector  table  base  address  (through  the  vector  base  register,  VBR).  These 

processors  define  a  special  instruction  group  called  "breakpoint"  instructions  (codes  $4848 
through  $484F).  When  the  CPU  attempts  to  execute  these  instructions,  it  traps  through  the 

illegal  instruction  vector  but  also  issues  a  special  signal  over  the  bus  called  a  "breakpoint  bus 
cycle,"  which  external  hardware  can  look  for. 

The  MC68020  offers  additional  flexibility  with  the  breakpoint  instructions.  After  it 
attempts  to  execute  the  breakpoint  instruction,  it  sends  the  breakpoint  bus  cycle.  If  external 
hardware  chooses,  it  may  load  a  new  instruction  into  the  processor.  If  this  happens,  processing 
continues  without  the  exception  occurring;  if  the  hardware  instead  signals  a  bus  error,  the 
MC68020  processes  the  exception. 

Breakpoints  represent  a  sophisticated  use  of  the  MC68000.  In  normal  applications,  you 
will  probably  never  use  them. 

FORMAT  ERROR 

The  MC68020  has  three  instructions  that  perform  error  checking  on  stack-frame  data. 
These  instructions  are  Call  Module  (CALLM),  Return  from  Module  (RTM),  and  Coprocessor 
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Restore  (cpRESTORE).  These  instructions,  when  executed,  expect  the  stack  frame  to  contain 
certain  descriptors  and  format  numbers;  if  an  error  exists,  the  CPU  will  trap  through  the 
format  error  exception  vector  using  a  format  $0  stack  frame  (Figure  14-3). 

INTERRUPTS 

We  have  already  discussed  interrupts  in  some  detail.  What  we  will  cover  in  the  following 
paragraphs  is  what  the  processor  does  when  it  receives  an  interrupt. 

The  CPU  can  run  at  any  of  eight  levels,  as  defined  by  the  interrupt  mask  in  the  status 
register.  I  nterrupts  are  also  prioritized;  the  interrupting  device  indicates  its  priority  by  raising  a 

signal  on  one  or  more  of  three  interrupt-request  lines. 
If  the  value  of  the  interrupt  mask  is  less  than  the  value  on  the  interrupt-request  lines,  the 

CPU  begins  service  on  the  interrupt.  If  the  value  of  the  interrupt  mask  is  greater  than  or  equal 
to  the  value  on  the  interrupt  request  lines,  the  CPU  ignores  the  request.  A  special  case  occurs 

when  the  interrupt  request  lines  are  all  set.  This  is  called  a  "nonmaskable"  interrupt,  and  the 
CPU  will  service  the  interrupt  regardless  of  the  state  of  its  interrupt  mask. 

Unlike  other  exception  types  where  the  vector  number  is  determined  by  the  particular 
exception,  with  interrupts  the  requesting  device  specifies  the  vector  number.  It  may  do  so  in  one 
of  two  ways:  explicitly,  by  giving  the  processor  a  vector  number,  or  implicitly,  by  using 

"autovectoring." 
When  the  CPU  is  ready  to  service  the  interrupt,  it  sets  its  interrupt  mask  (in  the  status 

register)  to  the  value  of  the  interrupt  request  lines.  It  then  sends  a  special  signal,  called 

"interrupt  acknowledge,"  to  all  devices.  The  interrupting  device  may  then  load  a  vector  number 
onto  the  data  bus.  In  some  cases,  you  can  program  the  device  to  provide  a  specific  vector 
number;  in  other  cases,  external  circuitry  associated  with  the  device  determines  the  vector 
number. 

In  some  simple  computer  systems,  there  may  be  only  a  few  devices  capable  of  interrupting 
the  CPU.  In  such  cases,  it  may  be  undesirable  to  build  external  circuitry  for  providing  the 
vector  number.  To  handle  this  case,  the  MC68000  processors  provide  autovectoring.  After  the 
CPU  acknowledges  the  device,  the  device  may  signal  the  CPU  to  use  one  of  eight  vectors 
reserved  in  the  vector  table  for  autovectoring.  The  CPU  then  chooses  one  of  these  eight  based 
on  the  priority  of  the  interrupt  lines. 

A  special  case  arises  when  no  device  responds  to  the  interrupt-acknowledge  signal.  In  this 

case,  the  CPU  traps  through  the  "spurious  interrupt"  vector.  Another  special  case  arises  when  a 
device  with  a  programmable  vector  interrupts  the  CPU,  but  the  operating  system  has  not  yet 
programmed  its  vector  number.  In  this  case,  the  device  produces  a  special  vector  number  and 
the  CPU  traps  through  the  uninitialized  vector. 

After  obtaining  a  vector  number,  the  CPU  creates  a  stack  frame  on  the  supervisor  stack. 

The  MC68000  and  MC60008  create  a  three-word  stack  frame,  as  shown  in  Figure  14-1.  The 
MC68010  and  M68012  create  a  format  $0  stack  frame,  as  shown  in  Figure  14-3.  If  it  is 
interrupted  between  main  processor  instructions,  the  MC68020  also  creates  a  format  $0  stack 
frame;  if  it  is  interrupted  while  a  coprocessor  is  executing  an  instruction,  the  CPU  creates  a 

format  $9  stack  frame  (Figure  14-7). 
Recall,  too,  that  the  MC68020  has  two  supervisor  bits:  the  S  bit,  present  in  all  family 

members,  and  the  M  bit,  found  only  on  this  processor.  If  the  M  bit  is  set,  the  CPU  builds  the 

stack  frame  on  the  master  stack;  it  also  builds  a  "throwaway"  stack  frame  (format  $l ,  Figure 
14-4)  on  the  interrupt  stack. 
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BUS  ERRORS  AND  VIRTUAL  MEMORY 

Whenever  the  CPU  reads  or  writes  to  memory,  it  expects  memory  to  respond  with  a 

"transfer  acknowledged"  signal.  If,  however,  the  memory  referenced  does  not  exist,  it  cannot 
acknowledge  the  transfer.  Typically,  a  system  will  make  use  of  a  programmable  clock  that  starts 
at  the  beginning  of  the  memory  cycle.  If,  after  a  certain  time  period,  the  addressed  memory  does 

not  respond,  the  clock  will  "time  out"  and  generate  a  bus  error  signal  to  the  CPU.  In  systems 
that  include  a  memory  management  unit  (MMU),  the  MMU  will  verify  that  the  addressed 
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memory  exists.  If  it  does  not  exist,  the  MMU  will  generate  the  bus  error  signal  to 
the  CPU. 

On  the  MC68000  and  MC68008,  upon  receipt  of  the  bus  error  signal,  the  processor  will 

build  a  seven-word  stack  frame  on  supervisor  stack  (Figure  14-2)  and  trap  through  the  bus 
error  vector. 

The  MC68010,  MC68012,  and  MC68020  implement  "virtual  memory."  In  a  virtual 
memory  system,  a  program  can  access  more  memory  than  is  physically  present  in  the  system; 
the  data  may  reside  in  memory  or  on  disk.  When  external  hardware  signals  the  bus  error,  these 
processors  save  additional  data  onto  the  stack  frame.  This  data  includes  certain  internal  CPU 
registers  and  other  information  that  permit  it  to  continue  execution  of  an  instruction  after  the 
bus  error  has  been  corrected. 

The  MC68010  and  MC68012  create  a  format  $8  stack  frame  (Figure  14-6).  The  MC68020 
creates  one  of  two  stack  frames;  either  a  format  $A  stack  frame  (Figure  14-8),  if  the  bus  error 
occurred  during  an  instruction  fetch,  or  a  format  $B  stack  frame  (Figure  14-9),  if  the  bus  error 
occurred  during  instruction  execution. 

After  trapping  through  the  bus  error  vector,  if  the  system  does  not  implement  virtual 
memory,  the  operating  system  takes  normal  steps  to  notify  the  user  of  the  error.  However,  if  the 
system  permits  virtual  memory,  the  operating  system  determines  whether  the  requested 
memory  resides  on  disk.  If  it  does,  the  operating  system  can  swap  old  data  back  out  to  disk  and 
read  in  new  data.  After  the  data  has  been  brought  into  memory,  the  CPU  can  restore  the 
stacked  data  and  pick  up  execution  of  the  instruction  where  it  left  off. 

Virtual  memory  is  useful  in  large  (many  user)  systems.  It  is  also  useful  when  dealing  with  a 
large  data  set  since  it  allows  you  to  deal  with  the  data  base  as  though  it  was  memory  resident. 
Also,  since  the  disk  I  /  O  for  swapping  pages  in  and  out  of  memory  is  hidden  from  your  program 

(it's  handled  by  the  operating  system)  if  you  get  more  memory  for  your  computer  at  some  later 
point,  your  program  remains  unchanged. 
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RESET 

The  reset  exception  is  unique  among  the  various  exception  types  in  that  it  does  not  bother 

to  save  any  information  on  the  stack.  In  this  context,  "reset"  refers  to  a  hardware  reset  rather 
than  execution  of  the  RESET  instruction.  Your  system  probably  has  a  reset  switch  somewhere 
on  it,  or  else  reset  may  be  connected  to  the  on  off  switch. 

When  an  external  reset  occurs,  current  processing  is  aborted  and  the  following  happens: 

1.  In  the  status  register,  the  supervisor  bit  is  set,  the  master  bit  is  cleared  (MC68020 
only),  the  trace  bit(s)  is  cleared,  and  the  interrupt  mask  is  set  to  level  7. 

2.  The  vector  base  register  is  set  to  $0000  (MC68010-MC68020  only). 

3.  The  cache  control  register  is  cleared  (MC68020  only). 

4.  The  processor  loads  the  supervisor  stack  pointer  with  the  address  at  vector  entry  0, 
and  the  program  counter  with  the  address  at  vector  entry  1. 

5.  The  processors  assert  signals  to  the  peripherals  to  reset  themselves. 
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6.  The  CPU  begins  execution  at  the  new  program  counter.  Typically,  code  is  contained 

in  a  read  only  memory  (ROM)  that  "bootstraps"  the  system  (that  is,  it  reads  the 
operating  system  from  disk  into  memory). 

Note:  The  vector  fetches  for  the  stack  pointer  and  program  counter  occur  in  what  is  called 

"supervisor  program  space,"  while  normal  fetches  occur  in  "supervisor  data  space."  This 
permits  external  hardware  to  break  up  memory.  Normal  vectors  can  reside  in  regular  system 
memory  (RAM),  while  the  reset  vectors  can  be  stored  in  a  physically  separate  ROM. 
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Interrupts  And  Other  Exceptions 

The  previous  chapter  presented  an  overview  of  exception  processing  for  the  MC68000 
family.  This  chapter  explores  the  same  subject  in  greater  detail,  concentrating  on  the  most 

common  family  member,  the  MC68000  itself.  While  some  of  this  material  may  seem  redun- 
dant, exceptions  play  such  an  important  role  in  MC68000-based  systems  that  we  feel  they  merit 

the  level  of  detail  included  here. 

Interrupts  are  inputs  that  the  CPU  examines  as  part  of  each  instruction  cycle. 
These  inputs  allow  the  CPU  to  react  to  asynchronous  events  more  efficiently  than  by 
polling  devices.  Trie  use  of  interrupts  generally  involves  more  hardware  than  does 

ordinary  (programmed)  I/O,  but  interrupts  provide  a  faster  and  more  direct  response.' 
In  the  MC68000,  interrupts  are  but  one  category  of  events  described  as  exceptions. 

Although  this  nomenclature  is  not  used  in  other  microprocessors,  it  is  rather  appropri- 
ate with  the  MC68000  since  the  number  and  types  of  events  that  can  initiate  exception 

processing  extend  well  beyond  the  typical  external  interrupt  requests.  None- 
theless, before  proceeding  to  describe  the  complete  exception  processing  system  pro- 

vided by  MC68000,  let  us  discuss  some  general  characteristics  and  considerations  of 
interrupts  since  these  are  the  most  commonly  encountered  exceptions. 

Why  use  interrupts?  Interrupts  allow  events  such  as  alarms,  power  failure,  the 
passage  of  a  certain  amount  of  time,  and  peripherals  having  data  or  being  ready  to 
accept  data  to  get  the  immediate  attention  of  the  CPU.  The  program  does  not  have  to 
examine  (poll)  every  potential  source,  nor  need  the  programmer  worry  about  the 
system  missing  events. 

An  interrupt  system  is  like  the  bell  on  a  telephone  —  it  rings  when  a  call  comes  in 

so  that  you  don't  have  to  pick  up  the  receiver  occasionally  to  see  if  someone  is  on  the 
line.  The  CPU  can  go  about  its  normal  business  (and  get  a  lot  more  done).  When  some- 

thing happens,  the  interrupt  alerts  the  CPU  and  forces  it  to  service  the  input  before 

resuming  normal  operations.  Of  course,  this  simple  description  becomes  more  compli- 
cated (just  like  a  telephone  switchboard)  when  there  are  many  interrupts  of  varying 

importance  and  when  there  are  tasks  that  cannot  be  interrupted. 

225 
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CHARACTERISTICS  OF  INTERRUPT  SYSTEMS 

The  implementation  of  interrupt  systems  varies  greatly.  Among  the  questions 
that  characterize  a  particular  system  are: 

1.  How  many  interrupt  inputs  are  there? 

2.  How  does  the  CPU  respond  to  an  interrupt? 

3.  How  does  the  CPU  determine  the  source  of  an  interrupt  if  the  number  of 
sources  exceeds  the  number  of  inputs? 

4.  Can  the  CPU  differentiate  between  important  and  unimportant  interrupts? 

5.  How  and  when  is  the  interrupt  system  enabled  and  disabled? 

There  are  many  different  answers  to  these  questions.  The  aim  of  all  the  imple- 
mentations, however,  is  to  have  the  CPU  respond  rapidly  to  interrupts  and  resume  nor- 

mal activity  afterwards. 
The  number  of  interrupt  inputs  on  the  CPU  chip  determines  the  number  of 

different  responses  that  the  CPU  can  produce  without  any  additional  hardware  or 
software.  Each  input  can  produce  a  different  internal  response. 

The  ultimate  response  of  the  CPU  to  an  interrupt  must  be  to  transfer  control  to 
the  correct  interrupt  service  routine  and  to  save  the  current  value  of  the  program 

counter.  The  CPU  must  therefore  execute  the  equivalent  of  a  Jump-to-Subroutine  or 
Call  instruction  with  the  beginning  of  the  interrupt  service  routine  as  its  address.  This 

action  will  save  the  return  address  in  the  stack  and  transfer  control  to  the  interrupt  ser- 
vice routine.  The  amount  of  external  hardware  required  to  produce  this  response  varies 

greatly.  Some  CPUs  internally  generate  the  instruction  and  the  address;  others  require 
external  hardware  to  form  them.  The  CPU  can  generate  a  different  instruction  or 
address  only  for  each  different  input. 

Polling  and  Vectoring 

If  the  number  of  interrupting  devices  exceeds  the  number  of  inputs,  the  CPU  will 
need  extra  hardware  or  software  to  identify  the  source  of  the  interrupt.  In  the 
simplest  case,  the  software  can  be  a  polling  routine  which  checks  the  status  of  the 
devices  that  may  be  interrupting.  The  only  advantage  of  such  a  system  over  normal 
polling  is  that  the  CPU  knows  that  at  least  one  device  is  active.  The  alternative  solution 

is  for  additional  hardware  to  provide  a  unique  data  input  (or  "vector")  for  each 
source.  The  two  alternatives  can  be  mixed;  the  vectors  can  identify  groups  of  inputs 
from  which  the  CPU  can  identify  a  particular  one  by  polling. 

Priority 

An  interrupt  system  that  can  differentiate  between  important  and  unimportant 

interrupts  is  called  a  "priority  interrupt  system."  Internal  hardware  can  provide  as 
many  priority  levels  as  there  are  inputs.  External  hardware  can  provide  additional  levels 
through  the  use  of  a  priority  register  and  comparator.  The  external  hardware  does  not 
allow  the  interrupt  to  reach  the  CPU  unless  its  priority  is  higher  than  the  contents  of  the 
priority  register.  A  priority  interrupt  system  may  need  a  special  way  to  handle  low 
priority  interrupts  that  may  be  ignored  for  long  periods  of  time. 
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Enabling  and  Disabling 

Most  interrupt  systems  can  be  enabled  or  disabled.  In  fact,  most  CPUs  automat- 
ically disable  interrupts  when  a  RESET  is  performed  (so  the  startup  routine  can  initialize 

the  interrupt  system)  and  when  they  accept  an  interrupt  (so  that  another  interrupt  will 
not  interrupt  the  same  service  routine).  The  programmer  may  wish  to  disable  interrupts 
while  preparing  or  processing  data,  performing  a  timing  loop,  or  executing  a  multibyte 
operation. 

An  interrupt  that  cannot  be  disabled  (sometimes  called  a  "nonmaskable  inter- 

rupt") may  be  useful  to  warn  of  power  failure,  an  event  that  obviously  must  take  pre- 
cedence over  all  other  activities. 

Disadvantages  of  Interrupts 

The  advantages  of  interrupts  are  obvious,  but  there  are  also  disadvantages. 
These  include: 

1.  Interrupt  systems  may  require  a  large  amount  of  extra  hardware. 

2.  Interrupts  still  require  data  transfers  under  program  control  through  the  CPU. 
There  is  no  speed  advantage  as  there  is  with  DMA. 

3.  Interrupts  are  random  inputs,  which  make  debugging  and  testing  difficult. 
Errors  may  occur  sporadically,  and  therefore  may  be  very  hard  to  locate  and 

correct.2 
4.  Interrupts  may  involve  a  large  amount  of  overhead  if  many  registers  must  be 

saved  and  the  source  must  be  determined  by  polling. 

THE  MC68000  EXCEPTION  PROCESSING  SYSTEM 

The  MC68000  provides  extensive  exception  processing  logic  including  a  very 
complete  set  of  external  interrupts  as  well  as  internally  initiated  exceptions  upon 
detection  of  various  faults,  traps,  and  so  on. 

OPERATING  MODES 

Before  proceeding  to  describe  the  exception  processing  system,  let  us  discuss 
the  operating  modes  of  the  MC68000,  since  these  affect  exception  processing.  As  we 
mentioned  previously,  the  MC68000  can  operate  in  either  a  supervisor  mode  or  a  user 
mode.  When  the  MC68000  is  reset  using  the  RESET  input,  it  starts  operating  in  the 
supervisor  mode.  The  processor  operates  in  supervisor  mode  until  one  of  the  following 
instructions  is  executed:  Return  from  Exception  (RTE),  Move  to  status  register 
(MOVE  word  to  SR),  AND  Immediate  to  status  register  (ANDI  word  to  SR),  and 

Exclusive  OR  Immediate  to  status  register  (EORI  word  to  SR).  None  of  these  instruc- 
tions automatically  causes  the  transition  to  the  user  mode  of  operation  —  rather,  they 

are  capable  of  changing  the  state  of  the  S-bit  in  the  status  register.  If  one  of  these 
instructions  resets  the  S-bit,  the  MC68000  will  begin  operating  in  the  user  mode. 
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Once  the  MC68000  is  operating  in  the  user  mode,  the  only  thing  that  can  cause 

a  transition  back  to  the  supervisor  mode  is  an  exception.  All  initial  exception  process- 
ing is  performed  in  supervisor  mode  regardless  of  the  current  setting  of  the  S-bit  of  the 

status  register  at  the  time  of  the  exceptions.  When  the  exception  processing  has  been 
completed,  the  Return  from  Exception  (RTE)  instruction  allows  return  to  the  User 
mode. 

A  number  of  instructions,  designated  as  "privileged, 11  are  reserved  for  the  super- 
visor mode.  An  attempt  to  execute  one  of  these  instructions  in  the  user  mode  results  in 

a  "privilege  violation11  which  is  one  type  of  exception.  We  will  discuss  these  instructions 
and  the  privilege  violation  response  later  in  this  chapter. 

EXCEPTION  TYPES 

The  response  of  the  MC68000  to  the  various  types  of  exceptions  is  similar.  Before 
we  describe  this  response,  let  us  look  at  the  sources  of  exceptions  since  they  go  well 
beyond  those  provided  by  other  microprocessors. 

Exceptions  originate  in  a  variety  of  ways  which  can  be  divided  into  two  general 
categories: 

1.  Internally  generated  exceptions  that  result  from  the  execution  of  certain 
instructions,  or  from  internally  detected  errors. 

2.  Externally  generated  exceptions  which  include  bus  errors,  reset,  and  inter- 
rupt requests. 

Internally  Generated  Exceptions 

The  internally  generated  exceptions  to  which  the  MC68000  responds  can  be 
further  subdivided  into  three  categories:  internally  detected  errors,  instruction  traps, 
and  the  trace  function. 

The  following  are  the  internally  detected  errors  which  will  cause  the  MC68000 
to  initiate  exception  processing: 

1.  Addressing  errors.  Any  attempt  by  the  MC68000  attempts  to  access  word 
data,  long  word  data,  or  an  instruction  at  an  odd  address  is  an  address  error, 
since  all  such  accesses  must  be  on  even  address  boundaries. 

2.  Privilege  violations.  Again,  some  instructions  are  reserved  for  use  only  in  the 
supervisor  mode.  Exception  processing  will  be  initiated  if  you  attempt  to 
execute  any  of  the  following  instructions  when  in  the  User  mode:  STOP, 
RESET,  RTE,  MOVE  to  SR,  AND  (word)  Immediate  to  SR,  EOR  (word) 
Immediate  to  SR,  OR  (word)  Immediate  to  SR,  MOVE  USP. 

3.  Illegal  and  unimplemented  opcodes.  If  an  instruction  is  fetched  whose  bit  pat- 
tern is  not  one  of  the  defined  instruction  bit  patterns  for  the  MC68000,  excep- 
tion processing  will  be  initiated.  Two  bit  patterns  are  defined  as  unimple- 

mented rather  than  illegal;  if  bits  15-12  are  1010  or  1111,  these  are  treated  as 
unimplemented  instruction  opcodes.  If  these  opcodes  are  fetched,  special 

exception  processing  is  initiated  which  can  allow  you  to  simulate  unimple- 
mented instructions  in  your  own  software. 

Instruction  traps  are  exceptions  which  are  caused  by  the  execution  of  instruc- 
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tions  in  your  program.  There  is  a  standard  TRAP  instruction  which  is  similar  to  the 

Z8000  System  Call  instruction.  There  are  four  other  instructions  -  TRAPV,  CHK, 
DIVS,  and  DIVU  —  which  will  cause  exception  processing  to  be  initiated  if  certain 
conditions,  such  as  arithmetic  overflows  or  divide  by  zero,  are  detected. 

The  third  type  of  internally  generated  exception  occurs  when  the  MC68000  is 

operating  with  the  trace  function.  If  the  T-bit  in  the  Status  register  is  set,  exception 
processing  will  be  performed  after  each  instruction.  The  Trace  function  is  used  for  pro- 

gram debugging  since  you  can  analyze,  by  stepping  through  the  program,  the  results  of 

each  instruction's  execution. 

Externally  Generated  Exceptions 

There  are  three  different  types  of  externally  generated  exceptions: 

1.  Bus  errors.  When  the  BERR  signal  is  asserted  by  external  logic  (and  the  pro- 
cessor is  not  halted),  exception  processing  is  initiated. 

2.  Reset.  When  the  RESET  signal  is  asserted  by  external  logic,  exception  pro- 
cessing is  initiated. 

3.  Interrupt  request.  This  is  the  most  familiar  form  of  exception  processing  and 
is  initiated  by  external  logic  via  the  three  interrupt  request  lines  (IPLO,  IPL1, 
and  IPL2). 

Exception  Priorities 

The  different  types  of  exceptions  have  different  priorities,  and  processing  of  an 
exception  depends  on  its  priority.  The  following  table  lists  the  types  of  exceptions 
according  to  their  relative  priorities,  and  also  defines  when  processing  of  each  type 
begins. 

Group Priority Exception  Source Exception  Processing  Response 

0 Highest 

Reset 
Bus  Error 
Address  Error 

Abort  current  cycle,  then 
process  exception 

1 

Trace 
Interrupt  Request 
Illegal/Unimplemented  Opcode 
Privilege  Violation 

Complete  current  instruction,  then 
process  exception 

2 Lowest 
TRAP,  TRAPV 
CHK 
Divide-by-zero 

Instruction  execution  initiates 
exception  processing 

The  highest  priority  types  of  exceptions  are  Reset,  Bus  Error,  and  Address  Error. 
Any  of  these  exceptions  will  cause  immediate  termination  of  the  current  instruction, 

even  within  a  bus  cycle.  The  next  group  of  exceptions  —  trace,  interrupt  requests, 
illegal/unimplemented  instructions,  and  privilege  violations  —  allow  completion  of  the 
current  instruction  before  initiating  exception  processing.  Note  that  interrupt  requests 
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include  an  additional  prioritization  which  we  will  discuss  later.  The  lowest  priority  of 

exceptions  are  those  that  are  caused  by  trap-type  instructions.  These  instructions  can 
initiate  exception  processing  as  part  of  their  formal  execution.  All  of  the  instruction  trap 
exceptions  have  equal  priority  since  it  is  impossible  for  two  instructions  to  be  executed 
at  the  same  time. 

Exception  Vector  Table 

Central  to  the  MC68000  exception  processing  sequence  is  a  vector  table  that 

occupies  1024  bytes  (512  sixteen-bit  words)  of  memory.  This  table  occupies  memory 

addresses  000000|6  through  0003FF16.  Figure  15-1  illustrates  the  exception  vector 
table.  The  table  is  organized  as  256  four-byte  vectors.  Each  vector  is  a  32-bit  address 
which  will  be  loaded  into  the  program  counter  as  part  of  the  exception  processing 
sequence. 

As  you  can  see,  a  number  of  the  vector  table  entries  serve  the  defined  types  of 
exceptions  which  we  have  discussed.  Other  entries  of  the  vector  table  are  reserved  for 
use  by  Motorola  and  should  not  be  used  by  your  program  if  compatibility  with  future 

Motorola  software  and  hardware  is  desired.  The  first  64  exception  vectors  have  pre- 
defined uses;  this  leaves  192  vectors  available  to  user  defined  external  interrupt 

requests  —  this  should  be  more  than  enough  for  most  applications.  (Of  course,  in  this 

case,  "user11  means  the  microcomputer  designer,  not  the  assembly  language  pro- 
grammer.) However,  the  first  64  vector  locations  are  not  protected  by  the  MC68000; 

thus  they  can  be  used  by  external  interrupts  if  a  system  requires  it. 

EXCEPTION  PROCESSING  SEQUENCES 

The  general  sequence  of  events  performed  by  the  MC68000  in  response  to  an 
exception  is  the  same  regardless  of  the  source  of  the  exception.  There  are,  however, 
some  differences.  Let  us  begin  by  examining  the  response  to  internally  generated 
exceptions. 

Internally  Generated  Exception  Processing 

If  exception  processing  is  initiated  as  a  result  of  either  the  trace  function,  a 
TRAP  instruction,  an  illegal  or  unimplemented  opcode,  or  a  privilege  violation,  the 
following  steps  occur: 

1.  The  status  register  contents  are  copied  into  an  internal  register. 

2.  The  S-bit  in  the  status  register  is  set,  thus  placing  the  MC68000  in  the  super- 
visor mode  of  operation. 

3.  The  T-bit  in  the  status  register  is  reset  to  disable  tracing  to  allow  for  continuous 
execution  of  the  interrupt  service  routine  when  debugging  using  TRACE. 

4.  The  program  counter  contents  are  pushed  onto  the  supervisor  stack. 

5.  The  previously  copied  status  register  contents  are  pushed  onto  the  supervisor 
stack. 

6.  The  new  program  counter  contents  are  taken  from  the  appropriate  location  in 
the  interrupt  vector  table. 
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Memory  Addresses (Hex) 
000000 
000002 
000004 
000006 
000008 
00000A 
00000C 
OOOOOE 
000010 
000012 
000014 
000016 
000018 
00001 A 
0000 1C 
0000 1E 000020 
000022 
000024 
000026 
000028 
00002A 
00002C 
00002E 
000030 
000032 

00005C 
00005E 
000060 
000062 
000064 
000066 
000068 
00006A 
00006C 
00006E 
000070 
000072 
000074 
OOOC76 
000078 
00007A 
00007C 
00007E 
000080 
000082 

OOOOBC 
OOOOBE 
OOOOCO 
0000C2 

OOOOFC 
OOOOFE 
000100 
000102 

0003FC 
0003FE 

SSP  (High) 

PCO  (High) 

PC2  (High) 

PC3  (High) 

PC4  (High) 

PCS  (High) 
PC5  (Low) 
PC6  (High) 
PC6  (Low) 
PC7  (High) 
PC7  (Low) 
PC8  (Highl 

PC9  (High) 

PC  10  (High) 

PC  11  (High) 

PC  12  (High) 

PC23  (High) 
PC23  (Low) 
PC24  (H.gh) 
PC24  (Low) 
PC25  (High) 
PC25  (Low) 
PC26  (High) 
PC26  (Low) 
PC27  (High) 
PC27  (Low) 
PC28  (High) 
PC28  (Low) 
PC29  (High) 

PC30  (High) 
PC30  (Low) 
PC31  (High) 
PC31  (Low) 
PC32  (High) 
PC32  (Low) 

PC47  (High) 
PC47  (Low) 
PC48  (High) 
PC48  (Low) 

PC63  (High) 

PC64  (High) 

PC255  (High) 

Reset  -  Initial  SSP 

Reset  -  Initial  PC 

Vector  2  -  Bus  Error 

Vector  3  -  Address  Error 

Vector  4  -  Illegal  Instruction 

Vector  5  -  Divide  by  0 

Vector  6  -  CHK  Instruction 

Vector  7  -  TRAPV  Instruction 

Vector  8  -  Privilege  Violation 

Vector  9  -  Trace 

Vector  1 0 ,  o  -  Opcode  1010  Emulation 

Vector  1 1 10  -  Opcode  1111  Emulation Vector  1  210  ̂  

1  Reserved  by 

|  Motorola 

Vector  2310 

Vector  24,0  -  Spurious  Interrupt 

Vector  2510  -  Level  1  Interrupt  v 

Vector  26,o  -  Level  2  interrupt 

Vector  27,o  -  Level  3  Interrupt 

Vector  28,o  -  Level  4  Interrupt 

Vector  29,o  -  Level  5  interrupt 

Vector  30,0-  Level  6  Interrupt 

Vector  31,0-  Level  7  Interrupt 
Vector  32 

\  Auto-Vector /  Interrupts 

;10 

Vector  48,0 

TRAP 
Instruction 
Vectors 

Reserved  by 
Motorola 

User  Interrupt  Vectors 

Figure  15-1.  Exception  Vector  Table 
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7.  Instruction  execution  then  begins  at  the  location  indicated  by  the  new  contents 

of  the  program  counter;  this  will  be  the  first  instruction  of  the  exception  pro- 
cessing program  you  have  provided  for  that  particular  type  of  exception. 

Bus  and  Address  Error  Exception  Processing 

The  way  in  which  the  MC68000  responds  to  an  exception  caused  by  a  bus  error 
or  address  error  includes  several  steps  in  addition  to  those  described  in  the  preceding 
paragraphs.  First,  either  of  these  errors  causes  immediate  termination  of  the  bus 
cycle  in  progress.  The  next  steps  are  the  following: 

1.  The  contents  of  the  status  register  are  copied  into  an  internal  register. 

2.  The  S-bit  in  the  status  register  is  set,  placing  the  MC68000  in  the  supervisor 
mode. 

3.  The  T-bit  in  the  status  register  is  reset  to  disable  trace  operations. 
4.  The  contents  of  the  program  counter  are  pushed  onto  the  supervisor  stack. 

5.  The  previously  copied  contents  of  the  status  register  are  pushed  onto  the 
supervisor  stack. 

6.  The  contents  of  the  MC6800(Ts  instruction  register,  which  constitute  the  first 
word  of  the  instruction  that  was  in  progress  when  the  bus  error  occurred,  are 
pushed  onto  the  supervisor  stack. 

7.  The  32-bit  address  that  was  being  used  for  the  bus  cycle  which  was  terminated 
is  also  pushed  onto  the  supervisor  stack. 

8.  A  word  which  provides  information  as  the  the  type  of  cycle  that  was  in 
progress  at  the  time  of  the  error  is  pushed  onto  the  supervisor  stack. 

9.  The  program  counter  contents  are  taken  from  the  appropriate  interrupt  vec- 
tor —  either  the  bus  error  vector  or  address  error  vector  of  the  exception  vec- 
tor table. 

10.  Instruction  execution  resumes  at  the  location  indicated  by  the  new  contents 
of  the  program  counter. 

Figure  15-2  shows  the  order  in  which  information  is  pushed  onto  the  supervisor 
stack  as  part  of  the  exception  processing  for  bus  and  address  errors.  The  value  saved 
for  the  program  counter  is  advanced  two  to  ten  bytes  beyond  the  address  of  the  first 

word  of  the  instruction  where  the  error  occurred  according  to  the  length  of  that  instruc- 
tion and  its  addressing  information,  if  any. 

If  the  error  occurs  during  the  fetch  of  the  next  instruction,  the  value  saved  for  the 
program  counter  is  near  the  current  instruction,  even  if  the  current  instruction  is  a 
jump,  branch  or  return  instruction.  This  feature,  missing  from  most  computers,  will 
make  the  detection  of  many  errors  easier. 

As  you  can  see  in  Figure  15-2,  the  five  least  significant  bits  of  the  last  word 
pushed  onto  the  stack  provide  information  as  to  the  type  of  access  that  was  in 
progress  when  the  bus  error  or  address  error  occurred.  The  three  least  significant  bits 
are  a  copy  of  the  function  code  outputs  during  the  aborted  bus  cycle.  Bit  3  indicates  the 
type  of  processing  that  was  in  progress  when  the  error  occurred.  This  bit  is  set  for  Group 

0  or  1  exception  processing  and  reset  for  Group  2  exception  and  normal  instruction  pro- 
cessing (see  the  exception  priority  table  shown  earlier).  Bit  4  indicates  whether  a  read 
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I  0  =  Write  cycle  aborted 
<  1  =  Read  cycle  aborted 

(  0  =  Instruction  in  progress 
I  1  =  Exception  processing 
Function  Code 
(FC2,  FC1 ,  FCO) 

Bit  No 

Access  Type  — •  I 
Current  Cycle  Address  (high-order) 
Current  Cycle  Address  (low-order) 

Instruction  Register 
Status  Register 

PC  (high-order  word) 
PC  (low-order  word) 

16-Bit  Words 

Function 
Code Type  of  Cycle 

0 Unassigned 
1 User  Data 
2 User  Program 
3 Unassigned 
4 Unassigned 
5 Supervisor  Data 
6 Supervisor  Program 
7 Interrupt  Acknowledgment 

Figure  15-2.  System  Stack  After  Bus  Error  or  Address  Error  Exception 

SSP  after 4    3   2  10 
Lower 

Address 

SSP  before  .  ... ..  Higher exception       .  .  r 

(bit  4  set)  or  write  (bit  4  reset)  cycle  was  in  progress  when  the  error  occurred.  If  an  error 
occurs  during  the  exception  processing  of  a  preceding  bus  error,  address  error,  or  reset 
operation,  the  MC68000  will  enter  the  Halt  state  and  remain  there. 

All  of  the  information  that  is  pushed  onto  the  supervisor  stack  as  part  of  the 

bus  and  address  error  exception  processing  sequence  is  intended  to  aid  you  in  analyz- 
ing possible  sources  of  the  error.  Either  of  these  errors  implies  a  serious  system  failure 

and  it  is  not  likely  that  you  will  be  able  to  return  to  normal  program  execution. 

Reset  Exception  Processing 

An  external  reset  causes  a  special  type  of  exception  processing.  After  an  exter- 
nal RESET  has  been  signalled  the  following  steps  occur: 

1.  The  S-bit  in  the  status  register  is  set,  placing  the  MC68000  in  the  supervisor 
mode. 

2.  The  T-bit  in  the  status  register  is  reset  to  disable  the  trace  function. 
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3.  All  three  interrupt  mask  bits  in  the  status  register  are  set,  thus  specifying  the 
interrupt  priority  mask  at  level  seven. 

4.  The  supervisor  stack  pointer  is  loaded  with  the  contents  of  the  first  four  bytes 

of  memory  (addresses  000000-000003). 
5.  The  program  counter  is  loaded  from  the  next  four  bytes  of  memory  (addresses 

00004-00007). 

6.  Instruction  execution  commences  at  the  address  indicated  by  the  new  contents 

of  the  program  counter,  which  should  reference  your  power-up/reset  initializa- 
tion program. 

Interrupt  Request  Exception  Processing 

The  last  type  of  exception  processing  we  will  discuss  is  the  sequence  initiated 

by  the  standard  interrupt  request.  An  external  device  requests  an  interrupt  by  encod- 
ing an  interrupt  request  level  on  the  interrupt  inputs.  The  MC68000  compares  these 

inputs  to  the  interrupt  mask  bits  in  the  status  register.  If  the  encoded  priority  level  is  less 

than  or  equal  to  the  one  specified  by  the  three-bit  mask,  the  interrupt  request  will  not  be 
recognized  by  the  MC68000.  If  the  encoded  interrupt  level  is  higher  priority  than  the 
level  established  by  the  interrupt  mask  (or  if  a  level  seven  interrupt  request  is  input) 
then  the  interrupt  will  be  processed.  The  MC68000  responds  to  the  allowed  interrupt 
request  as  soon  as  it  completes  the  instruction  execution  currently  in  progress.  Upon 
completion  of  the  current  instruction,  the  following  steps  occur: 

1.  The  contents  of  the  status  register  are  saved  internally. 

2.  The  S-bit  in  the  status  register  is  set,  placing  the  MC68000  in  the  supervisor 
mode. 

3.  The  T-bit  in  the  status  register  is  reset  to  disable  the  trace  function. 
4.  The  interrupt  mask  bits  in  the  status  register  are  changed  to  the  level  of  the 

interrupt  request  that  is  encoded  on  the  interrupt  inputs.  This  allows  the  cur- 
rent interrupt  to  be  processed  without  being  interrupted  by  lower  priority 

events  or  events  at  the  same  level. 

5.  The  MC68000  then  performs  an  interrupt  acknowledgement  bus  cycle.  This 
cycle  serves  two  functions;  first,  the  processor  lets  the  requesting  device  know 
that  its  interrupt  request  is  being  serviced,  and  second,  the  processor  fetches  an 
exception  vector  byte  from  the  requesting  device.  After  the  vector  byte  has 

been  read  from  the  interupting  device,  the  MC68000  proceeds  with  the  follow- 
ing exception  processing  steps. 

6.  The  contents  of  the  program  counter  are  pushed  onto  the  supervisor  stack. 

7.  The  contents  of  the  previously  saved  status  register  are  pushed  onto  the  super- 
visor stack. 

8.  The  program  counter  is  loaded  with  four  bytes  of  data  from  the  appropriate 
location  in  the  exception  vector  table  as  defined  by  the  exception  vector  byte. 

After  the  program  counter  has  been  loaded  with  the  new  value  from  the  exception 

vector  table,  instruction  execution  commences  at  the  location  indicated  by  the  new  con- 
tents of  the  program  counter;  this  will  be  the  first  instruction  of  your  interrupt  process- 

ing routine  for  the  particular  device  requesting  the  interrupt. 
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Autovector  Interrupt  Response 

A  variation  on  interrupt  request  processing  is  the  autovector  response.  If  you 

refer  back  to  Figure  15-1,  you  will  see  that  seven  vector  locations  are  provided  in  the 
exception  vector  table  for  autovectors,  corresponding  to  the  seven  interrupt  priority 
levels.  These  vectors  will  be  used  if  the  device  requesting  an  interrupt  responds  to  the 
interrupt  acknowledge  bus  cycle  by  asserting  the  Valid  Peripheral  Address  (VPA) 
signal  to  the  CPU  instead  of  supplying  a  byte  of  vector  data.  The  processor  will  then 
use  the  autovector  from  the  exception  vector  table  which  corresponds  to  the  interrupt 
level  to  obtain  a  new  program  counter  value.  This  autovector  response  was  provided 
specifically  to  emulate  the  interrupt  sequence  expected  by  6800  family  peripheral 

devices.  Of  course  a  non-6800  family  device  in  the  system  could  also  exploit  this 
autovector  capability  should  it  be  advantageous. 

PROGRAM  EXAMPLE 

15-1.  STARTUP 

Purpose:  Power  up  the  computer  and  wait  for  a  PIA  interrupt  to  occur  before  starting 
actual  operation. 

When  power  is  applied  to  an  MC68000  system,  the  processor  is  reset  and  starts  its 
initialization  process.  On  RESET,  the  processor  is  placed  in  supervisor  state  and  the 
interrupt  priority  mask  is  set  to  inhibit  all  interrupts  except  level  seven.  The  supervisor 
stack  pointer  is  loaded  with  the  first  two  words  of  the  reset  exception  vector  at  memory 
location  0.  The  program  counter  is  loaded  with  the  next  two  words  from  low  memory 
and  execution  then  starts  at  the  instruction  whose  address  is  contained  in  the  program 
counter. 

Flowchart: 

c Start J 

Enable  startup 
interrupt  in  the PIA 

Initialize 

appropriate interrupt  vectors 

Enable  CPU 
interrupts 
and  wait  for interrupt 

Continue  Program 
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Program  15-1 : 
00004000 POWER  : EQU $4000 
00004600 SERVICE : EQU $4600 
00005100 STACK : 

EQU $5100 00006000 DATA : EQU $6  000 
0  0  0  3FF40 P 1  ADDA : EQU $3FF40 DATA  DIRECTION  REGISTER  A 
0003FF40 P 1  ADA : EQU $  3FF40 DATA  REGISTER  A 
0  00  3FF44 PIACA: E  Q  U $  3  F  F  44 CONTROL   REGISTER  A 
00000005 P1A  EN : EQU 

$05 
PIA    INTERRUPT  ENABLE 

00002000 IMSKO : EQU 
$  2  0  0  0 SUPERVI SOR/ INTERRUPT  LEVEL  0 

00000064 SVECTOR : EQU $64 ADDRESS   OF    INTERRUPT  VECTOR 

00000000 ORG 0 

000000 00005100 DC  .L STACK ADDRESS   OF  STACK 
000004 00004000 DC  .L PGM15_1 ADDRESS   OF   RESET  PROGRAM 

00004000 0  R  G POWER 
004000 1  3FC0005 

00003FF44 PGM1 5_1 : MOVE  .  B #P I A_EN, PIACA ENABLE    INTERRUPT  FROM   STARTUP  PIA 
004008 21FC00004600 

0064 MOVE.L ^STARTUP 
, SVECTOR 

INITIALIZE   PIA  VECTOR 
004010 4E722000 STOP # IMSKO ENABLE    INTERRUPTS  AND  WAIT  FOR    i  NTE 

»     STARTUP    INTERRUPT  SERVICE ROUTINE 
00004600 ORG SERVICE 

004600 4A390003FF40 STARTUP : TST.B P  I  ADA CLEAR   STARTUP  INTERRUPT 
004606 4E73 RTE RETURN   TO    INTERRUPTED  ROUTINE 

END PGM1 5_1 

If  this  program  is  stored  in  Read  Only  Memory  (ROM)  or  Programmable  ROM 
(PROM),  when  a  power  on  RESET  occurs,  the  supervisor  stack  will  be  loaded  with  5100 
and  the  program  counter  with  4000,  the  address  of  the  startup  program.  The  status 
register  will  have  its  supervisor  and  interrupt  level  bits  set.  Once  these  three  registers 

have  been  set  up,  program  execution  commences  at  location  4000  just  as  in  the  exam- 
ples in  previous  chapters. 
Unlike  other  exception  vectors,  the  reset  vector  must  be  in  ROM  or  PROM.  The 

same  is  true  for  the  initial  program  to  be  executed.  You  must  ensure  that  valid  RAM 
and  ROM  addresses  are  referenced  by  the  stack  pointer  and  program  counter  entries  in 
the  reset  vector. 

All  other  exception  vectors  may  be  located  in  either  RAM  or  ROM.  The  design  of 
your  system  determines  which  is  best  for  you.  In  our  example,  the  exception  vectors  are 
in  RAM.  Therefore,  they  must  be  initialized  with  the  addresses  of  the  associated  service 
routines  prior  to  the  occurrance  of  any  exception. 

The  instruction  MOVE.L  #STARTUP, SVECTOR  initializes  the  exception  vector 
associated  with  the  PIA.  In  our  example,  interrupts  from  the  PIA  are  of  low  priority  and 

have  been  assigned  a  priority  of  level  1.  Since  the  PIA  (and  also  the  ACIA)  do  not  sup- 

port vector  numbers,  their  interrupts  are  handled  by  the  MC68000's  autovectoring.  As 
shown  in  Figure  15-1,  the  autovectors  start  at  address  64.  Address  64  is  the  location  of 
Level  1  autovector  interrupts  and  this  is  the  vector  in  which  we  store  the  address  of  our 
service  routine. 

If  you  forget  to  initialize  an  exception  vector,  the  processor  will  still  use  the  con- 
tents of  the  vector  to  determine  the  starting  address  of  the  exception  handler.  However, 

this  address  will  be  invalid  and  the  processor  would  continue  execution  at  this  invalid 
address.  You  must  initialize  exception  vectors,  just  as  you  initialize  certain  program 
data  before  use. 

In  addition  to  setting  up  the  exception  vector,  the  program's  only  other  action  is 
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to  enable  the  interrupt  from  the  startup  PIA.  The  program  enables  that  interrupt  by  set- 
ting bit  0  of  the  PIA  control  register  and  then  enabling  processor  interrupts. 

Finally,  the  program  is  ready  to  wait  for  the  start-up  interrupt.  Instead  of  waiting 
for  the  interrupt  by  executing  an  endless  loop  such  as  jump-to-self  (  LOOP:  JMP 
LOOP  ),  the  instruction  STOP  could  be  executed.  STOP  causes  the  processor  to  stop 
executing  instructions  and  wait  for  an  interrupt  or  exception  (  TRACE  or  RESET  ).  The 

STOP  instruction  also  allows  you  to  change  the  processor's  interrupt  level,  since  the 
data  word  following  the  STOP  is  loaded  into  the  status  register.  In  order  to  allow  inter- 

rupts, the  interrupt  level  must  be  changed  from  level  7  (set  during  RESET)  to  level  0 

(one  level  less  than  the  startup  PIA's  level  1).  Priority  level  0  allows  the  processor  to 
recognize  interrupts  at  any  level.  The  data  word  must  also  have  the  bit  corresponding  to 

the  status  register's  Supervisor  Mode  (S)  bit  set. 
The  STOP  instruction  is  one  of  the  few  MC68000  instructions  which  can  only  be 

executed  in  supervisor  mode.  If  executed  in  user  mode,  a  privilege  violation  exception 

will  occur.  (Generally,  instructions  which  attempt  to  change  the  processor's  interrupt 
level,  supervisor/user  state,  or  user  stack  pointer  are  privileged  instructions.) 

When  an  interrupt  is  generated  from  the  PIA,  the  exception  process  is  initiated. 
First,  the  contents  of  the  full  status  register  are  saved  on  top  of  the  supervisor  stack 
followed  by  the  contents  of  the  program  counter.  The  program  counter  is  pointing  to  the 
next  instruction  to  be  executed,  in  this  example  the  address  of  the  instruction  following 
the  STOP  instruction.  The  processor  is  set  to  supervisor  state  and  the  priority  interrupt 
level  is  set  to  the  level  of  the  interrupt  being  processed.  Next  the  processor  fetches  the 
address  of  the  interrupt  handler  from  the  associated  interrupt  vector.  Since  we  are 
expecting  an  autovector  level  1  interrupt,  the  associated  vector  is  located  at  address  64. 

Upon  entry  to  the  interrupt  service  routine  at  location  STARTUP,  the  priority 
level  will  be  1  and  the  processor  will  be  in  supervisor  mode.  Since  the  priority  level  has 
now  changed,  other  interrupts  of  level  1  priority  will  be  masked  from  interrupting  the 
processor.  What  would  happen  if  the  STOP  instruction  had  set  the  priority  level  to  1? 

The  service  routine  clears  the  startup  interrupt  by  reading  the  appropriate  PIA 
data  register.  This  operation  is  necessary,  even  though  no  data  transfer  is  required. 
Otherwise  the  startup  interrupt  would  remain  active  and  would  interrupt  again  as  soon 
as  level  1  interrupts  were  reenabled. 

The  TST  instruction  is  used  to  clear  the  interrupt  since  it  does  not  modify  any 
registers  except  the  condition  code  register.  The  exception  process  does  not  save  any 
data  or  address  registers.  If  the  exception  service  routine  needs  to  use  any  registers, 
they  must  be  saved  upon  entry  and  restored  upon  exit  from  the  routine. 

RTE  restores  control  to  the  interrupted  program  sequence  at  the  instruction 
following  the  STOP.  As  part  of  the  restoration  process,  the  supervisor/user  state  and 

interrupt  priority  level  are  reset  to  their  states  prior  to  the  interrupt  by  pulling  the  pre- 
viously copied  status  register  contents  from  the  stack.  Next,  the  previous  value  of  the 

program  counter  is  pulled  from  the  stack  and  loaded  into  the  program  counter.  No  other 
registers  except  the  program  counter  and  status  register  are  modified  by  RTE.  Like 
STOP,  RTE  is  a  privileged  instruction  and  can  only  be  executed  in  supervisor  state. 

This  program  assumes  that  there  are  no  other  level  1  interrupts  being  generated. 
If  other  level  1  interrupts  can  occur,  a  polling  routine  would  have  to  be  added  to  the 
interrupt  handler  and  the  main  program  would  have  to  be  modified.  How  would  you  do 
this? 



238    68000  Assembly  Language  Programming 

15-2.    A  KEYBOARD  INTERRUPT 

Purpose:  The  main  program  clears  the  variable  FLAG  at  memory  location  6000  and 
waits  for  a  keyboard  interrupt.  The  interrupt  service  routine  sets  FLAG  to  1 

and  places  the  data  from  the  keyboard  in  the  variable  KEY  at  memory  loca- 
tion 6001. 

Sample  Problem: 

Keyboard  data  =  43 
Result:    FLAG  -  (6000)  =  01    Flag  indicating  new 

keyboard  data 
KEY  -  (6001)  =  43    Keyboard  data 

Flowchart: 

Main  Program: 

^         Start  ̂  

Flag  =  0 Initialize  PIA 

Enable  Keyboard 
interrupt  on  PIA 
Enable  CPU 
interrupts 

Interrupt  Service  Routine: 

FLAG  =  1 
KEY  =  Keyboard Data 
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Program  15-2a: 
00004000 PROGRAM : EQU $4000 
00004600 1  NT  .2  5: EQU $46  00 
00006000 DATA: EQU $6  000 

000  3FF40 P I  ADDA : EQU $3FF40 DATA  DIRECTION  REGISTER  A 
0003FF40 P I  ADA : EQU $3FF40 DATA  REGISTER  A 
0  0  0  3FF44 P IACA: EQU $3FF44 CONTROL   REGISTER  A 
00000005 P I A  EN : EQU 

$05 
PIA   INTERRUPT  ENABLE 

00002000 1MSKO : EQU $2000 SUPERVI SOR/ INTERRUPT  LEVEL  0 

00006000 ORG DATA 006000 
oooooooi- 

FLAG : DS.B 1 DATA  READY  FLAG 
006001 00000001 KEY  : DS.B 1 INPUT  KEY  DATA 

00004000 ORG PROGRAM 

004000 42386000 PGM1 5_2A : CLR .  B FLAG CLEAR  DATA  READY  FLAG 
004004 42390003FF44 CLR.B PIACA ADDRESS  DATA  DIRECTION  REGISTER 
00400A 42390003FF40 CLR.B PI  ADDA MAKE  ALL  DATA  LINES  INPUTS 
0  04010 1  3FC0  00  5 

0003FF44 MOVE.B ttPIA  EN, PIACA ENABLE    INTERRUPT  FROM  KEYBOARD  PIA 
0  04018 46FC2000 MOVE HMSK0,  SR ENABLE  ALL  INTERRUPTS 
0040  1C 4A386000 WTRDY : TST.B FLAG IS  THERE  DATA  FROM  THE  KEYBOARD 
004020 67FA 

BEQ 

WTRDY NO,  WAIT 
004022 4E75 RTS 

::      INTERRUPT  SERV CE  ROUTINE 

00004600 ORG INT_25 

004600 11FC00016000 MOVE . B #1, FLAG 
SET  DATA   READY  FLAG 

004606 11F90003FF40 
600  1 MOVE  .  B P I  ADA, KEY SAVE   KEYBOARD  DATA 

00460E 4E73 RTE 
RETURN   TO    INTERRUPTED  ROUTINE 

END  PGM15_2A 

You  must  initialize  the  PIA  completely  before  enabling  interrupts.  This 
includes  establishing  the  directions  of  ports  and  control  lines  and  determining  the 
transitions  to  be  recognized  on  input  strobes. 

The  main  program  clears  the  Data  Ready  flag  (FLAG)  and  then  simply  waits  for 

the  interrupt  service  routine  to  set  it.  The  main  program  and  the  service  routine  com- 
municate through  two  fixed  memory  addresses: 

The  variable  FLAG  indicates  whether  new  data  has  been  received  from  the 

keyboard. 

The  variable  KEY  is  a  single-location  data  buffer  used  to  hold  the  value  received 
from  the  keyboard. 

Note  the  similarity  between  the  Data  Ready  flag  in  memory  and  the  status  bit  in 
the  control  register  of  the  keyboard  PIA.  The  program  does  not  have  to  test  bit  7  of  the 
PIA  control  register,  because  there  is  a  direct  hardware  (interrupt)  connection  between 
that  bit  and  the  CPU.  Of  course,  we  have  also  assumed  that  the  keyboard  is  the  only 
source  of  interrupts. 

Unlike  our  previous  example,  we  don't  use  the  privileged  instruction  STOP. 
Instead,  we  monitor  the  variable  FLAG  to  determine  when  an  interrupt  has  occurred. 
Remember,  however,  that  the  STOP  instruction,  besides  waiting  for  an  interrupt  to 

occur,  also  sets  the  desired  interrupt  priority  level  in  the  status  register.  In  program  15- 
2a,  we  use  the  MOVE  to  Status  Register  instruction  (  MOVE#IMSK0,SR  )  to  set  the 
desired  interrupt  level.  The  data  word  ($2000  in  this  program)  following  the  instruction 
opcode  word  defines  the  new  interrupt  priority  level.  Note  that  this  instruction  also 
defines  the  state  of  all  condition  codes  in  the  status  register.  The  MOVE  to  Status 
Register  instruction  is  a  privileged  instruction. 

Sometimes  you  may  want  to  temporarily  accept  interrupts  of  a  lower  level  than  are 
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currently  being  permitted  by  the  status  register  interrupt  mask.  If  you  do  this,  you  would 
probably  want  to  save  the  current  interrupt  mask  before  enabling  lower  level  interrupts. 
You  could  then  restore  the  previous  mask  after  the  lower  level  interrupts  have  been 
processed.  The  MOVE  from  Status  Register  instruction  can  be  used  to  save  the  current 

interrupt  mask  (along  with  the  rest  of  the  status  register  contents)  and  it  is  not  a  pri- 
vileged instruction. 

Remember  that  upon  entry  to  the  interrupt  service  routine,  the  interrupt  mask  in 
the  status  register  has  already  been  set  automatically  by  the  CPU  to  the  level  associated 
with  the  interrupt  being  processed.  This  inhibits  additional  interrupts  at  this  level  or 
lower.  Only  interrupts  of  a  higher  level  can  interrupt  the  CPU. 

The  RTE  instruction  at  the  end  of  the  service  routine  transfers  control  back  to  the 

main  program.  If  you  want  to  transfer  control  somewhere  else  (perhaps  to  an  error 
routine),  you  can  change  the  program  counter  in  the  supervisor  stack  using  the  methods 
outlined  earlier.  RTE  also  restores  the  interrupt  priority  mask  to  the  level  that  existed 
prior  to  the  interrupt. 

We  do  not  use  the  registers  to  pass  parameters  and  results.  If  we  were  to  change 
the  register  values,  we  could  interfere  with  the  execution  of  the  main  program.  In 
most  applications,  the  main  program  is  using  the  registers  and  random  changes  will 
cause  havoc.  At  the  very  least,  changing  the  registers  lacks  generality,  since 
modifications  to  the  main  program  surely  could  result  in  the  use  of  registers  that  are 
currently  available. 

The  service  routine  does  not  have  to  explicitly  reenable  the  interrupts.  The  reason 
is  that  RTE  automatically  restores  the  old  status  register  with  the  priority  level  in  its 
original  state.  In  fact,  you  will  have  to  change  the  priority  level  on  the  stack  if  you  do  not 
want  the  interrupts  to  be  reenabled  to  their  prior  levels. 

You  can  save  and  restore  other  data  (such  as  the  contents  of  a  memory  location) 
by  using  the  stack.  This  method  can  be  expanded  indefinitely  (as  long  as  there  is  RAM 
available  for  the  stack),  since  nested  service  routines  will  not  destroy  the  data  saved  by 
earlier  routines. 

Filling  a  Buffer  via  Interrupts 

An  alternative  approach  would  be  for  the  interrupt  service  routine  to  set  FLAG 
only  after  receiving  an  entire  line  of  text  (such  as  a  string  of  characters  ending  with  a 

carriage  return).  Here  we  use  FLAG  as  an  end-of-line  flag  and  memory  locations  6002 
and  6003  as  a  buffer  pointer,  POINTER.  We  will  assume  that  the  buffer  starts  in 
memory  location  6004. 

Program  15-2b: 

00004000 
00004600 
00006000 

PROGRAM 
INT_25 : 
DATA  : 

EQU 
EQU EQU 

S 't  0  0  0 

$4600 
$6  000 

0003FF40 
0  0  0  3FF40 
000  3FF44 
00000005 
00002000 
0OO00O0D 

P I  ADDA : 
P I  ADA : 
P 1 ACA : 
P 1  A_EN : IMSK0 : 
CR  : 

EQU E  C  J 
EQU 
EQU 
E  Q  u 
EQU 

$3FF40 
$  3FF40 
$3FF44 
$05 

DATA  DIRECTION   REGISTER  A 
DATA   REGISTER  A 
CONTROL    REGISTER  A 
PIA    INTERRUPT  ENABLE 
SUPERVI SOR/ 1 NTERRUPT    LEVEL  0 
CARRIAGE  RETURN 

$2000 
$00 

00006000 
0000000  1 

ORG 
DS.B 

DATA 
006000 FLAG  : END   OF    LINE  FLAG 
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006001 
006002 
006004 

00000001 
00000002 
00000050 

00004000 

POINTER : 
BUFFER : 

DS.B 
DS.W 
DS.B 
ORG 

1 
1 80 

PROGRAM 

POINTER   TO  BUFFER   END   +  1 
INPUT  BUFFER 

004000 
004004 
00400A 
004010 
004016 

00401E 
004022 
004026 

42386000 
31FC60046002 
42390003FF44 
42390003FF40 
13FC0005 

0003FF44 46FC2000 
4A386000 
67FA 

PGMl 5_2B 

WTRDY : 

CLR.B 
MOVE.W 
CLR.B 
CLR.B 

MOVE . B MOVE 
TST.B 

BEQ 

FLAG 
ttBUFFER,  POINTER PIACA 
P I  ADDA 

APIA  EN, PIACA 
tt  IMSK0,  SR FLAG 
WTRDY 

CLEAR   DATA  READY  FLAG 
INITIALIZE  POINTER 
ADDRESS   DATA  DIRECTION  REGISTER 
MAKE   ALL    DATA   LINES  INPUTS 

ENABLE    INTERRUPT   FROM  KEYBOARD  PIA 
ENABLE   ALL  INTERRUPTS 
HAS  A  LINE   BEEN  RECEIVED   FROM  KEYBO 
NO,  WAIT 

004028 4E75 RTS 

»     INTERRUPT  5ERV CE  ROUTINE 
00004600 ORG INT_2  5 

0  046  0  0 
004602 
004606 
00460C 
004612 
004614 
00461A 
00461E 
004620 

2F  0  8 
30786002 
10F90003FF40 
0C28000DFFF 
66  06 
11FC00016000 
31C86002 
205F 4E73 

DONE  : 

MOVE.L 
MOVE . W 
MOVE.B 
CMPI .B 
BNE.S 
MOVE.B 
MOVE  .  W 
MOVE  .L 
RTE 

END 

AO, -CSP) 
POINTER, AO 
PIADA, (A0)+ 
#CR,-1(A0) 
DONE 

H , FLAG AO, POINTER CSP)+, AO 

PGMl 5_2B 

PUSH  AO   ON   SUPERVISOR  STACK 
GET   POINTER   TO  NEXT  BUFFER  ENTRY 
SAVE   KEY   DATA    IN  BUFFER 
IS   KEY    INPUT  A  CARRIAGE  RETURN? 
NO,  RETURN SET   END  OF   LINE  FLAG 
UPDATE   BUFFER  POINTER 
RESTORE   REGISTER  AO 
RETURN   TO    INTERRUPTED  ROUTINE 

This  program  fills  a  buffer  starting  at  memory  location  6004  until  it  receives  a  car- 
riage return  character  (CR).  POINTER  holds  the  current  buffer  pointer.  The  interrupt 

service  routine  increments  that  pointer  (with  autoincrementing)  after  each  use. 
In  a  real  application,  the  CPU  could  perform  other  tasks  between  interrupts.  It 

could,  for  example,  edit,  move,  or  transmit  a  line  from  one  buffer  while  the  interrupt 
service  routine  was  filling  another  buffer.  This  is  the  double  buffering  approach.  The 

main  program  only  has  to  ensure  that  the  interrupt  service  routine  doesn't  run  out  of 
buffers. 

An  alternative  approach  would  be  for  FLAG  to  contain  a  counter  rather  than  a 
flag.  The  contents  of  that  location  would  then  indicate  to  the  main  program  how  many 

bytes  of  data  had  been  received.  The  main  program  would  then  know  how  many  charac- 
ters were  in  the  buffer  without  counting  them.  It  could  even  deal  with  the  buffer 

whenever  a  certain  number  of  new  data  bytes  were  in  it.  The  service  routine  would 

simply  increment  the  counter  as  well  as  the  buffer  pointer  as  part  of  each  input  opera- 
tion. 

Interrupt  service  routines  are  invoked  randomly  because  of  the  nature  of  inter- 

rupts. Therefore,  you  can't  know  which  registers  the  interrupt  program  may  have  been 
using.  To  prevent  accidental  modification  of  registers  that  may  be  in  use  by  an  inter- 

rupted program,  you  should  always  save  and  restore  the  contents  of  all  registers  used 
by  the  interrupt  service  routine.  The  MOVEM  instruction,  which  we  have  previously 
discussed,  provides  a  simple  means  of  saving  and  restoring  registers. 

15-3.    A  PRINTER  INTERRUPT 

Purpose:  The  main  program  clears  a  variable  FLAG  at  memory  location  6000  and  waits 
for  a  ready  interrupt  from  a  printer.  This  interrupt  service  routine  sets  FLAG 
to  1  and  sends  the  contents  of  the  variable  CHAR  at  memory  location  6001  to 
the  printer. 
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Sample  Problem: 

CHAR  -  (6001)  =  51 
Result:    FLAG  -  (6000)  =  01     Flag  indicating  last  data  item 

has  been  sent 

Printer  receives  a  5 1 1 6  (ASCII  Q)  when  it  is  ready. 

Flowchart: 

Main  Program: 

c Start J 

FLAG  =  0 
Initialize  PIA 
Data  =  (CHAR) 

Enable  printer 
interrupt  on  PIA 
Enable  CPU 
interrupts 

c 
End 3 

Interrupt  Service  Routine: 

f~       Start  J 

FLAG  =  1 
clear  printer interrupt 

Send  data 

to  printer 

c 

I 
End 

J 

Program  15-3a: 

00004000 
00004600 

PROGRAM:  EQU 
INT_2  5:  EQU 

54000 
$4600 
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00006000 E  QU 
S6  000 

0003FF40 
000000FF 
0003FF40 
0003FF44 
00000005 
00002000 

P I  ADDA :  EQU 
DLOUT:  EQU 
P I  ADA :  EQU 
PIACA:  EQU 
PIA_EN:  EQU 
IMSK0:  EQU 

$3FF40 

$FF $3FF40 
$3FF44 $05 
$2000 

DATA  DIRECTION   REGISTER  A 
PIA  DATA  LINES  AS  OUTPUTS 
DATA  REGISTER  A 
CONTROL   REGISTER  A 
PIA    INTERRUPT  ENABLE 
SUPERVI SOR/ I NTERRUPT   LEVEL  0 

006000 
006001 

00006000 
00000001 
00000001 

FLAG 
CHAR 

ORG 
DS.B 
DS.B 

DATA 1 
1 

DATA  ACCEPT  FLAG 
PRINTER  OUTPUT  DATA 

004000 
004004 
00400A 

00401A 
00401E 
004022 

00004000 

42386000 
42390003FF44 
13FC00FF 

0003FF40 
13FC0005 

0003FF44 
46FC2000 
4A386000 
67FA 
4E75 

CLR  .  B 
CLR.B 

MOVE . f 

MOVE . f 
MOVE 
TST.B 

BEQ 

FLAG 
P  I  ACA 

CLEAR   DATA  ACCEPT  FLAG 
ADDRESS   DATA  DIRECTION  REGISTER 

ttDLOUT, P 1  ADDA        MAKE   ALL   DATA  LINES  OUTPUTS 

#P I A_EN, P I ACA # IMSK0, SR FLAG 
WTACK 

RTS 

INTERRUPT   SERVICE  ROUTINE 

ENABLE    INTERRUPT  FROM  PRINTER  PIA 
ENABLE   ALL  INTERRUPTS 
HAS  DATA  BEEN  OUTPUTTED  TO  PRINTER' NO,  WAIT 

00004600 

004600 
004606 
00460C 

1 1FC000 16000 
4A390003FF40 
1 3F86001 

0003FF40 4E73 

MOVE 
TST.f 
MOVE . B RTE 

#1, FLAG P  I  ADA 

CHAR, P I  ADA 

PGM  1 5  3A 

SET   DATA   ACCEPT  FLAG 
CLEAR   PRINTER  INTERRUPT 

OUTPUT   DATA   TO  PRINTER 
RETURN   TO    INTERRUPTED  ROUTINE 

The  only  differences  from  the  keyboard  interrupt  routines  are  the  meaning  of  the 
flag,  the  direction  of  the  data  transfer,  and  the  need  for  the  instruction  TST.B  PIADA  to 
clear  bit  7  of  the  PIA  control  register.  Remember  that  an  input  operation  automatically 
clears  that  bit,  but  an  output  operation  does  not. 

Here  a  cleared  FLAG  indicates  that  the  CPU  has  data  available  that  has  not  yet 

been  sent  to  the  printer.  When  the  interrupt  service  routine  sets  the  flag,  the  main  pro- 
gram knows  the  data  has  been  sent.  The  flag  acts  as  an  acknowledgment  from  the  printer 

or  a  data  accepted  indicator. 
Remember  that  you  may  find  it  necessary  to  place  a  read  at  the  start  of  the  main 

program  to  clear  stray  interrupts.  MOVE.B  PIADA, DO  or  TST.B  PIADA  will  do  the  job, 
as  long  as  you  place  it  after  the  instruction  that  addresses  the  data  register  but  before  the 
instruction  that  enables  CPU  interrupts. 

Emptying  a  Buffer  with  Interrupts 

As  in  the  keyboard  example,  we  could  have  the  interrupt  service  routine  set  the 

Data  Accepted  flag  after  it  sends  the  printer  an  entire  line  of  data  ending  with  a  car- 
riage return.  Here  again  we  use  FLAG  as  an  end-of-line  flag  and  memory  locations  6002 

and  6003  as  a  buffer  pointer.  We  will  assume  that  the  buffer  starts  in  memory  location 
6004. 

Program  15-3b: 
Main  Program: 

00004000  PROGRAM:      EQU  $4000 
00004600  INT_25:        EQU  $4600 
00006000  DATA:  EQU  $6000 
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0003FF40 PI  ADDA: EQU S3FF40 DATA  DIRECTION   REGISTER  A 
000000FF DLOUT : LQU 

$FF 
DATA  LINES   AS   ALL  OUTPUTS 

0003FF40 P 1  ADA : 
E  Q 1 1 

DATA  REGISTER  A 
0003FF44 PIACA: EQU 

$3FF44 
CONTROL   REGISTER  A 

00000005 P I  A  EN: 
1  QU 

t  n  c 5  U  5 PIA    INTERRUPT  ENABLE 
00002000 IMSK0 : EQU $2000 SUPERVI SOR/ INTERRUPT   LEVEL  0 
0000000D CR  : EQU $00 CARRIAGE  RETURN 

00006000 ORG DATA 
006000 00000001 FLAG : DS.B 1 END   OF    LINE  FLAG 
006001 00000001 DS  .B 1 
006002 00000002 POINTER : DS.W 1 POINTER   TO  BUFFER   END  +  1 
006004 00000050 BUFFER : DS.B 80 INPUT  BUFFER 

00004000 ORG PROGRAM 
004000 42386000 PGM1 5_3B : CLR.E FLAG CLEAR   END   OF    LINE  FLAG 
n  n  i±  r\  n  L U  U  4  U  U  4 ;  lrlDUUHDU  U  i (j  B  U  F  F  E  R  POINTER INITIALIZE  POINTER 
00400A 42390003FF44 CLR  .  E PIACA ADDRESS   DATA  DIRECTION  REGISTER 
n  n  u  n  l  n U  U  H  U  1  U i  i  p  r  r>  n  p  p 1 )r  LU  Ur  r 

0003FF40 MOVE  . B ttDLOUT,  P  I  ADDA MAKE   ALL   DATA  LINES  OUTPUTS 
n  n  u  n  l  Q U  U  4  U  1  o 1 )rLUUU5 

0003FF44 MOVE  . B #P  I  A  EN, P I ACA ENABLE    INTERRUPT  FROM  PRINTER  PIA 
004020 46FC2000 MOVE tt IMSK0, SR ENABLE  ALL  INTERRUPTS 
004024 4A386000 WTEOL : TST.E FLAG HAS  ALL  OF    LINE   BEEN  PRINTED? 
004028 67FA 

BEQ 

WTEOL NO,  WAIT 
00402A 4E75 RTS 

■•      INTERRUPT   SERVICE  ROUTINE 
00004600 ORG INT_25 

004600 2F08 MOVE  . L AO, -CSP) PUSH  AO   ON   SUPERVISOR  STACK 
004602 4A390003FF40 TST.E PI  ADA CLEAR   PRINTER  INTERRUPT 
004608 30786002 MOVE  . W POINTER, AO GET   POINTER   TO  NEXT  BUFFER  ENTRY 
00460C 13D80003FF40 MOVE  . B C A  0 )  +  , PI  ADA SEND  NEXT  CHARACTER   TO  PRINTER 
004612 OC28000DFFFF CMP  I  . B #CR,-1(A0) WAS   LAST  CHARACTER  A  CARRIAGE  RETURN 
0046  18 66  06 BNE.S DONE NO, RETURN 00461A 11FC00016000 MOVE  . B #1, FLAG SET  END  OF    LINE  FLAG 
004620 31C86002 DONE  : MOVE  . w AO, POINTER UPDATE   BUFFER  POINTER 
004624 20  5F MOVE  . L CSP)+, AO RESTORE   REGISTER  AO 
004626 4E73 RTE 

RETURN  TO   INTERRUPTED  ROUTINE 

END PGM1 5_3B 

We  could  use  double  buffering  to  allow  I/O  and  processing  to  occur  independently 
without  ever  halting  the  CPU  to  wait  for  the  printer. 

Fixed-Length  Buffer 

Still  another  approach  uses  FLAG  as  a  buffer  counter.  For  example,  the  follow- 
ing program  waits  for  20  characters  to  be  sent  to  the  printer. 

Program  15-3c: 
00004000 PROGRAM: EQU $4000 
00004600 INT  25: EQU $4600 
00006000 DATA: EQU $6000 

0003FF40 P  I  ADDA : EQU $3FF40 DATA  DIRECTION  REGISTER  A 
0OOO0OFF DLOUT  : EQU 

$FF DATA  LINES  AS  ALL  OUTPUTS 
0003FF40 P I  ADA : EQU $3FF40 DATA  REGISTER  A 
0003FF44 P IACA : EQU $3FF44 CONTROL  REGISTER  A 
00000005 PIA  EN: EQU 

$05 PIA    INTERRUPT  ENABLE 
00002000 IMSK0  : EQU $2000 SUPERVI SOR/ INTERRUPT   LEVEL  0 
0000000D CR: EQU SOD CARRIAGE  RETURN 
00006000 ORG DATA 

006000 00000001 FLAG: DS.B 1 BUFFER  COUNTER 
006001 00000001 DS.B 1 
006002 00000002 POINTER : DS.W 1 POINTER   TO  BUFFER   END  +  1 
006004 00000050 BUFFER : DS.B 

80 
INPUT  BUFFER 

00004000 ORG PROGRAM 

0040  00 42386000 PGM1 5_3C : CLR.B FLAG 
CLEAR   BUFFER  COUNTER 

004004 31FC6004600Z MOVE  .  W ((BUFFER,  POINTER INITIALIZE  POINTER 
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0  040  OA 42390003FF44 A^HDPQQ    n  A  T  A    H  1  DFT  T  I  HN    RFf,  KTFR MUflxL  J  J             1  H     L<  1  (\L^  1  1  WIN  f\u\jljll_r\ 
004010 13FC00FF 

0003FF40 MOVE  .  B ttDLOUT, P I  ADDA MAKE   ALL   DATA  LINES  OUTPUTS 
004018 1 3FC0005 

0003FF44 MOVE.B APIA  EN,PIACA CMAQI   C      I  MTCDDI  IDT     P  0  flM     DDIMTFD     P  I  A b  In  Ad  L  t     1  In  1  t  KKUr  1     r  KUrl    rK  1  IN  1  Cl\  rlM 
004020 46FC2000 MOVE tt  IMSK0,  SR ENABLE  ALL  INTERRUPTS 
004024 0C3800146000 WTEOL:  CMP.B tt  2  0  ,  FLAG HAVE    20   CHARACTERS  BEEN  SENT? 
00402A 66F8 BNE WTEOL 

NO,  WAIT 
00402C 4E75 RTS 

»      INTERRUPT   SERVICE  ROUTINE 

00004600 ORG INT_25 

004600 2F0  8 MOVE.L AO , - ( SP ) rUbn    AU    UIN    iUrtKVJ  5UK    j  1 
004602 4A390003FF40 TST.B P  I  ADA CLEAR  PRINTER  INTERRUPT 
004608 30786002 MOVE . W POINTER, AO GET  POINTER   TO  NEXT  BUFFER  ENTRY 
00460C 13D80005FF40 MOVE.B (AO )  +  ,  P  I  ADA SEND  NEXT  CHARACTER   TO  PRINTER 
004612 0C28000DFFFF CMPI .B #CR,-(A0) WAS  LAST  CHARACTER  A  CARRIAGE  RETURN 
004618 66  04 BNE.S DONE NO, RETURN 0046  1A 52786000 

ADDQ 

tt  1 , FLAG INCREMENT  BUFFER  COUNTER 
0046  IE 31C86002 DONE :  MOVE.W AO, POINTER UPDATE  BUFFER  POINTER 
004622 205F MOVE.L 

AO, POINTER RESTORE   REG  I STOR  AO 
004624 4E73 RTE RETURN  TO   INTERRUPTED  ROUTINE 

END PGM15_3C 

15-4.    A  REAL-TIME  CLOCK  INTERRUPT 

Purpose:  The  computer  waits  for  an  interrupt  from  a  real-time  clock. 

Real-Time  Clock 

A  real-time  clock  simply  provides  a  regular  series  of  pulses.  The  interval  be- 
tween the  pulses  can  be  used  as  a  time  reference.  Real-time  clock  interrupts  can  be 

counted  to  give  any  multiple  of  the  basic  time  interval.  A  real-time  clock  can  be  pro- 
duced by  dividing  down  the  CPU  clock,  by  using  a  timer  like  the  6840  device  or  the  one 

included  in  the  6846  multifunction  support  device, or  by  using  external  sources  such  as 
the  AC  line  frequency. 

Note  the  tradeoffs  involved  in  determining  the  frequency  of  the  real-time  clock. 
A  high  frequency  (say  10  kHz)  allows  the  creation  of  a  wide  range  of  time  intervals  of 

high  accuracy.  On  the  other  hand,  the  overhead  involved  in  counting  real-time  clock 
interrupts  may  be  considerable.  The  choice  of  frequency  depends  on  the  precision  and 
timing  requirements  of  your  application.  The  clock  may,  of  course,  consist  partly  of 
hardware;  a  counter  may  count  high  frequency  pulses  and  interrupt  the  processor 
only  occasionally.  A  program  will  have  to  read  the  counter  to  measure  time  to  high 
accuracy. 

One  problem  is  synchronizing  operations  with  the  real-time  clock.  Clearly, 
there  will  be  some  effect  on  the  precision  of  the  timing  interval  if  the  CPU  starts  the 
measurement  randomly  during  a  clock  period,  rather  than  exactly  at  the  beginning. 
Some  ways  to  synchronize  operations  are: 

1.  Start  the  CPU  and  clock  together.  RESET  or  a  startup  interrupt  can  start  the 
clock  as  well  as  the  CPU. 

2.  Allow  the  CPU  to  start  and  stop  the  clock  under  program  control. 

3.  Use  a  high-frequency  clock  so  that  an  error  of  less  than  one  clock  period  will 
be  small. 
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4.  Line  up  the  clock  (by  waiting  for  an  edge  or  interrupt)  before  starting  the 
measurement. 

A  real-time  clock  interrupt  should  have  very  high  priority,  since  the  precision  of 
the  timing  intervals  will  be  affected  by  any  delay  in  servicing  the  interrupt.  The  usual 

practice  is  to  make  the  real-time  clock  the  highest  priority  interrupt  except  for  power 
failure.  The  clock  interrupt  service  routine  is  generally  kept  extremely  short  so  that  it 
does  not  interfere  with  other  CPU  activities. 

In  the  following  programs  we  assume  a  clock  has  been  connected  to  a  PIA  inter- 
rupt. An  interrupt  will  occur  once  each  clock  cycle. 

15-4a.    Wait  for  Real-Time  Clock 

Program  15-4a: 

00004000 PROGRAM: LOU S4000 
00004600 INT_26 : EQU $46  00 00006000 DATA : EQU $6  000 
0003FF40 TP  1  ADA : EQU $3FF40 DATA   REGISTER  A  FOR   TIMER  PIA 
0003FF44 TP  I ACA : EQU $3FF44 CONTROL   REGISTER  A  FOR   TIMER  PIA 
00000005 PIA  EN : EQU 

$05 
PIA    INTERRUPT  ENABLE 

00002000 IMSK0 : EQU $2000 SUPERVISOR/INTERRUPT   LEVEL  0 

00006000 ORG DATA 
006000 00000001 COUNTER : DS.B 1 TIMER  COUNTER 

00004000 ORG PROGRAM 
004000 42386000 PGM1 5_4A : C  L  R  .  B COUNTER CLEAR   TIMER  COUNTER 
004004 13FC0005 

0003FF44 MOVE . B HP  I  A   E N , TP  I  AC A ENABLE    INTERRUPT   FROM   TIMER  PIA 
00400C 46FC2000 MOVE tt  IMSK0,  5R ENABLE   ALL  INTERRUPTS 
0040  10 4A386000 TWA  1 T : TST.  B COUNTER HAS   TIMER  COUNTER   BEEN  INCREMENTE 
0040  14 6  7FA 

BEQ 

TWA  IT NO,  WAIT 
0040  16 4E7  5 RT5 

-  TIMER I  NTERRUPT SERVICE  ROUTINE 
00004600 ORG INT_26 

004600 4A3  9  3  0  U  3FF40 TST.B TP  I  ADA CLEAR   TIMER  INTERRUPT 
004606 52386000 ADDQ.B tt  1 ,  COUNTER INCREMENT   TIMER  COUNTER 
00460A 4E73 RTE RETURN   TO    INTERRUPTED  ROUTINE 

The  variable  COUNTER  at  memory  location  6000  contains  the  clock  counter. 

If  bit  1  of  the  PIA  control  register  is  0,  the  interrupt  will  occur  on  the  high-to-low 
(falling)  edge  of  the  clock.  If  that  bit  is  1,  the  interrupt  will  occur  on  the  low-to-high  (ris- 

ing) edge  of  the  clock. 
The  interrupt  service  routine  must  explicitly  clear  bit  7  of  the  PIA  control  register 

since  no  data  transfer  is  necessary. 
You  could  still  use  the  PIA  data  port  as  long  as  you  did  not  accidentally  clear  the 

status  bit  from  the  real-time  clock  before  it  was  recognized.  This  would  be  no  problem  if 
the  port  were  used  for  output  to  a  simple  peripheral  (such  as  a  set  of  LEDs),  since  out- 

put operations  do  not  affect  the  status  bits  anyway. 
Clearly,  we  can  easily  extend  this  routine  to  handle  more  counts  and  provide 

greater  precision  by  using  more  memory  locations  for  the  clock  counter  and  a  different 
test  in  the  main  program. 
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15-4b.    Wait  for  10  Clock  Interrupts 

Program  15-4b: 

00004000 PROGRAM: EQU $4000 
00004600 INT_26 : EQU $4600 00006000 DATA : EQU $6000 

0003FF40 TP  I  ADA : EQU $3FF40 
0  0  0  3FF  44 TP  1 ACA : EQU $  3FF44 00000005 P I A  EN: EQU $05 
00002000 I MSK  0 : EQU $  2  0  0  0 
00OOOOOA TDELAY : EQU 10 

00006000 ORG DATA 

006000 00000001 COUNTER : DS.B 1 

00004000 ORG PROGRAM 
n  n  l  n  n  n 4i jOOUUU PGM15  4B CLR .  B COUNTER 
004004 13FC0005 

0003FF44 MOVE  .  B HP  I  A  EN, TP  I ACA 
00400C 46FC2000 MOVE # IMSK0, SR 
0  04010 103C000A MOVE.B ttTDELAY,  DO 
004014 B0386000 TWA  I T  : CMP.B COUNTER, DO 
004018 67FA 

BEQ 

TWA  I  T 

00401A 4E75 
RTS 

»  TIMER INTERRUPT SERVICE  ROUTINE 
00004600 ORG INT_26 

004600 4A390003FF40 TST.B TP  I  ADA 
004606 52386000 ADDQ.B tt  1 ,  COUNTER 00460A 4E73 RTE 

DATA  REGISTER  A  FOR  TIMER  PIA 
CONTROL  REGISTER  A  FOR   TIMER  PIA 
PIA   INTERRUPT  ENABLE 
SUPERVISOR/INTERRUPT  LEVEL  0 TIMER  DELAY 

TIMER  COUNTER 

CLEAR   TIMER  COUNTER 

ENABLE    INTERRUPT  FROM  TIMER  PIA ENABLE  ALL  INTERRUPTS 
TIMER  COUNT  DELAY 
HAS  DESIRED  DELAY  BEEN  ACHIEVED? 
NO,  WAIT 

CLEAR  TIMER  INTERRUPT 
INCREMENT  TIMER  COUNTER 
RETURN  TO   INTERRUPTED  ROUTINE 

15-4c.    Maintaining  Real  Time 

A  more  realistic  real-time  clock  interrupt  routine  could  keep  track  of  the 
passage  of  time  using  several  memory  locations.  For  example,  the  following  routine 
uses  addresses  6000  through  6003  to  maintain  clock  time  as  follows: 

6000  -  hundredths  of  seconds 
6001  -  seconds 

6002  -  minutes 
6003  -  hours 

We  assume  that  a  100Hz  input  provides  the  regular  source  of  interrupts. 

Program  15-4c: 

00004000 PROGRAM: EQU $4000 
00004600 INT  26: EQU $4600 00006000 DATA: EQU $6000 

0003FF40 TP  I  ADA : EQU $3FF40 DATA  REGISTER  A  FOR  TIMER  PIA 
0003FF44 TP  I ACA: EQU 

$3FF44 CONTROL  REGISTER  A  FOR  TIMER  PIA 
00000005 PIA  EN: EQU $05 PIA   INTERRUPT  ENABLE 
00002000 IMSK0 : EQU $2000 SUPERVISOR/INTERRUPT  LEVEL  0 
0000001E TDELAY: EQU 

30 

300  DELAY   (DELAY  MUST  BE   <   1  SECOND 
00006000 ORG DATA 

006000 00000001 HUNDSEC  : DS.B 1 HUNDREDTHS  OF  SECONDS 
006001 00000001 SECONDS : DS.B 1 SECONDS 
006002 00000001 MINUTES  : DS.B 1 MINUTES 
006003 00000001 HOURS : DS.B 1 HOURS 

00004000 ORG PROGRAM 



248    68000  Assembly  Language  Programming 

0  0 0  3F F 44 PGM1 5  4C MOVE  .  B APIA  EN, TP  I ACA ENABLE    INTERRUPT  FROM  TIMER  PIA 
00*4008 46FC2000 MOVE tt  IMSK0,  SR ENABLE  ALL  INTERRUPTS 
00400C 10  3  86000 MOVE . B HUNDSEC,D0 GET  CURRENT  HUNDREDTHS  OF  SECOND 
004010 0600001E ADD  I  .B ttTDELAY,  DO ADD  DELAY  TIME 
00401'+ 0C000064 CMP  I .B #100, DO MOD  100 
004018 65000006 BCS TWA  I  T 
00401C 04000064 SUBI  .B #1 00, DO 
004020 B0586000 TWAIT: CMP.B HUNDSEC, DO HAS  DESIRED  DELAY   BEEN  ACHIEVED? 
004024 67FA 

BEQ 

TWA  I  T NO,  WAIT 
004026 4E75 RTS 

::  TIMER 
I  NTERRUPT SERVICE  ROUTINE 

00004600 ORG I NT_26 

004600 48E78000 MOVEM. L DO, -CSP) SAVE  DO 
004604 4A390003FF40 TST.B TP  I  ADA CLEAR   TIMER  INTERRUPT 
00460A 52386000 ADDQ. B tt  1 ,  HUNDSEC UPDATE   HUNDREDTHS  OF  SECONDS 
0046  0E 10  3C0064 MOVE . B tt  1  0  0  ,  DO 
0046  1  2 B0386000 CMP  .  B HUNDSEC , DO IS   THERE  A  CARRY   FROM  HUNDREDTHS 
0046 16 6628 BNE  .  S TDONE NO,  DONE 0  0  4618 423ob000 HI  1  Mn  Q  F  C YPC        f  1    PAD     Ml  iMhD  CrMHC  CCTAMPiC Tt          ILLAK    nUINUK  tU  1  no    Ur  btLUlNUb 
00461C 52386001 ADDQ . B #1, SECONDS UPDATE  SECONDS 
004620 103C003C MOVE.B #60, DO 
004624 B0386001 CMP.B SECONDS, DO IS   THERE   A  CARRY   TO  MINUTES 
004628 6616 BNE  .S TDONE NO,  DONE 00462A 42386001 CLR.B SECONDS YES,    CLEAR  SECONDS 
004632 B0386002 CPM.B MINUTES, DO IS  THERE  A  CARRY   TO  HOURS 
004636 6608 BNE.S TDONE NO,  DONE 
004638 42386002 CLR.B MINUTES YES,    MAKE  MINUTES  ZERO 
00463C 52386003 ADDQ . B #1,  HOURS UPDATE  HOURS 
00462E 52386002 ADDQ . B #1, MINUTES UPDATE  MINUTES 
004640 4CDF0001 TDONE : MOVEM. L CSP)+,D0 RESTORE  DO 
004644 4E73 RTE RETURN  TO   INTERRUPTED  ROUTINE 

END  PGM15_4C 

The  main  program  produces  a  delay  of  300  milliseconds.  The  longest  delay  that 
can  be  handled  by  this  routine  is  990  milliseconds.  How  would  you  modify  this  program 
to  handle  longer  delays? 

This  approach  is  the  same  one  you  would  take  if  you  had  to  let  something  cook  for 
20  minutes.  You  must  determine  the  current  time  by  reading  your  watch  (the  counter), 
calculate  the  target  time  by  adding  20  (mod  60,  so  20  minutes  past  6:50  is  7:10),  and  wait 
for  your  watch  to  reach  the  target  time.  Notice  that  if  the  delay  is  less  than  one  hour,  you 
can  ignore  the  hour  hand  and  wait  until  the  minute  hand  comes  around  to  ten  minutes 

after  the  hour.  This  is  the  method  the  program  uses.  (If  your  watch  doesn't  have  hands, 
just  wait  until  the  minutes  numbers  display  10.) 

Change  the  program  so  it  produces  a  20  minute  delay  (an  obvious  requirement  for 

a  microprocessor-controlled  microwave  oven). 
Of  course,  the  program  could  perform  other  tasks  and  only  check  the  elapsed  time 

occasionally.  How  would  you  produce  a  delay  of  seven  seconds?  of  three  minutes? 
Many  applications  do  not  require  long  delays  to  be  highly  accurate;  for  example,  the 

operator  of  a  microwave  oven  does  not  care  if  intervals  in  minutes  are  off  by  a  few  sec- 
onds. 

Sometimes  you  may  want  to  keep  time  either  as  BCD  digits  or  as  ASCII  charac- 
ters. How  would  you  revise  the  last  interrupt  service  routine  to  handle  these  alterna- 

tives? 

Assuming  that  the  clock  PIA  generates  level  2  interrupts,  its  interrupts  are  then 
handled  by  the  level  2  autovector  at  address  68.  If  the  MC68000  has  its  interrupt  priority 
mask  set  at  level  0  and  simultaneous  interrupts  are  received  from  both  the  clock  PIA 
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Flowchart  15-4c: 

Clear  clock  interrupt 
Hundredths  = 

Hundredths  +  1 

Hundredths  =  0 
Seconds  = 

Seconds  +  1 

Seconds  =  0 
Minutes  = 

Minutes  +  1 

No  \  f 

and  the  printer  PIA  in  example  15-3,  here  is  what  happens.  Since  the  printer  PIA  gener- 
ates a  level  1  interrupt,  the  clock  PIA  is  serviced  first.  The  interrupt  from  the  printer 

PIA  would  be  inhibited  until  the  priority  mask  was  reset  to  zero.  If  the  printer  interrupt 
occurs  first  and  service  of  this  interrupt  has  begun,  this  service  would  be  interrupted  by 

the  occurrence  of  a  clock  PIA  interrupt.  After  the  clock  service  routine  has  been  com- 
pleted, control  would  be  returned  to  the  printer  service  routine  at  the  point  where  it  was 

interrupted. 
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High-Frequency  Clock 

Even  a  high-frequency  real-time  clock  can  be  handled  without  much  processor 
intervention.  The  usual  method  is  to  have  the  clock  increment  a  set  of  counters  which 

then  interrupt  the  processor  at  a  much  lower  frequency.  For  example,  the  input  fre- 
quency could  be  1  MHz;  that  input  frequency  would  then  be  passed  through  3  decimal 

counters  and  the  output  of  the  last  one  would  be  tied  to  the  PIA.  The  PIA  would  recive  a 
single  clock  pulse  for  every  1000  input  pulses  (that  is,  when  the  3  decimal  counters 

overflow).  The  processor  can  determine  the  time  to  greater  precision  than  1  ms  by  read- 
ing the  counters,  since  they  contain  the  less  significant  digits.  As  usual,  some  additional 

hardware  (counters  and  input  ports)  is  necessary  to  reduce  the  burden  on  the  CPU.  This 
is  a  typical  tradeoff;  the  additional  hardware  is  worthwhile  only  if  the  application 
requires  precise  timing. 

1 5-5.    A  TELETYPEWRITER  INTERRUPT 

15-5a.    ACIA  Interrupt  Routine 

Purpose:  The  main  program  clears  a  flag  represented  by  the  variable  FLAG  at  memory 

location  6000  and  waits  for  an  interrupt  from  a  6850  ACIA.  The  interrupt  ser- 
vice routine  sets  FLAG  to  1  and  places  the  data  from  the  ACIA  in  the  variable 

CHAR  at  memory  location  6001.  The  characters  are  7  bits  in  length  with  odd 
parity  and  2  stop  bits. 

Program  15-5a: 
00004000 PROGRAM: EQU S4000 
00004600 INT  25: EQU $4600 
00006000 DATA: EQU $60  00 

0003FF01 AC IACR : EQU $3FF01 ACIA  CONTROL  REGISTER 
0OOEFF05 AC  I  ADR  : EQU $EFF03 AC  I  A  DATA  REGISTER 
000000C5 AMODE : EQU 

$C5 
ACIA  OPERATING  MODE 

00000003 MRESET : EQU $03 ACIA  MASTER  RESET 
00002000 IMSK0  : EQU $2000 SUPERVI SOR/ INTERRUPT   LEVEL  0 
00006000 ORG DATA 

006000 00000001 FLAG: DS.B 1 DATA  ACCEPT  FLAG 
006001 00000001 CHAR : DS.B 1 CHARACTER   FROM  TT  Y 

00004000 ORG PROGRAM 
004000 42386000 PGM1 5_5A : CLR.B FLAG CLEAR   DATA  ACCEPT  FLAG 
004004 13FC0003 

0003FF01 MOVE . B ttMRSET,  ACIACR MASTER   RESET  ACIA 
00400C 13FC00C5 

0003FF01 MOVE.B # AMODE , AC IACR ENABLE  ACIA    INTERRUPT/SET  MODE 
004014 46FC2000 MOVE tt  IMSK0,  SR ENABLE   ALL  INTERRUPTS 
0040  1  8 4A386000 WAIT: TST.B FLAG 

IS   THERE   DATA  FROM  ACIA? 00401C 67FA 

BEQ 

WAIT NO,  WAIT 
00401E 4E75 RTS 

::      INTERRUPT  SERV CE  ROUTINE 
00004600 0  R  G 

I NT_2  5 

004600 11FC00016000 MOVE .B 
#1, FLAG SET  DATA  ACCEPT  FLAG 

004606 1  1F9000EFF03 
600  1 MOVE  .B AC  I  ADR, CHAR SAVE    TT  Y  CHARACTER  INPUT 

00460E 4E73 RTE 
RETURN   TO    INTERRUPTED  ROUTINE 00460E 4E73 RTE 
RETURN   TO    INTERRUPTED  ROUTINE END PGM1 5_5A 

Since  the  6850  ACIA  has  no  RESET  input,  a  master  reset  (setting  control  register 
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bits  0  and  1  to  one  simultaneously)  is  necessary  before  the  ACIA  is  initialized. 
We  then  initialize  the  bits  in  the  ACIA  control  register  as  follows: 

Bit  7  =  1  to  enable  the  receiver  interrupt 
Bit  6  =  1  and  Bit  5  =  0  to  disable  the  transmitter 

interrupt 

Bit  4  =  0,  Bit  3  =  0,  and  Bit  2  =  1  to  select  7-bit 
data  with  odd  parity  and  two  stop  bits 

Bit  1  =  0  and  Bit  0  =  1  to  select  the  divide  by  16 
clock  mode  (a  1760  Hz  clock  must  be  supplied  for  a 
110  Baud  data  rate). 

To  determine  if  a  particular  6850  ACIA  is  the  source  of  an  interrupt,  the  program 
must  examine  the  interrupt  request  bit  (bit  7  of  the  status  register)in  each  ACIA.  To 
differentiate  between  receiver  and  transmitter  interrupts,  the  program  must  examine 
the  Receive  Data  Register  Full  bit  (bit  0  of  the  status  register).  Either  reading  the 

receive  data  register  or  writing  into  the  transmit  data  register  clears  the  ACIA's  inter- 
rupt request  bit. 

15-5b.    PIA  Start  Bit  Interrupt 

Teletypewriter  data  can  also  be  received  with  a  PIA.  In  this  case,  the  serial  input 
line  from  the  teletypewriter  is  connected  to  both  data  bit  7  and  control  line  1  of  the  PIA. 

Purpose:  The  main  program  clears  a  flag  represented  by  the  variable  FLAG  at  memory 
location  6000  and  waits  for  a  teletypewriter  interrupt.  The  interrupt  service 
routine  sets  FLAG  to  1  and  places  the  data  from  the  teletypewriter  in  the 
variable  CHAR  at  memory  location  6001. 

Program  15-5b: 

00004000 PROGRAM: EQU $4000 
00004600 I  NT  25: EQU $46  00 00006000 DATA: EQU $6000 00004800 TTYRCV: EQU $4800 
0003FF40 P  I  ADDA : EQU $3FF40 DATA  DIRECTION   REGISTER  A 
00000000 DATIN: EQU 

$0 
PIA  DATA  LINES  AS  INPUTS 

0003FF40 P I  ADA : EQU $3FF40 DATA  REGISTER  A 
0003FF44 P I ACA : EQU $3FF44 CONTROL  REGISTER  A 
00000005 PIA  EN: EQU $05 PIA    INTERRUPT  ENABLE 
00000004 PIA  DIS: EQU 

$04 
PIA    INTERRUPT  DISABLE 

00002000 IMSK0  : EQU $2000 SUPERVISOR/INTERRUPT   LEVEL  0 
00006000 ORG DATA 006000 00000001 FLAG: D5  .  B 1 DATA  ACCEPT  FLAG 

00600  1 00000001 CHAR  : DS  .B 1 CHARACTER    INPUT  FROM  TT  Y 
00004000 ORG PROGRAM 

004000 42386000 PGM1 5_5B : CLR.B FLAG CLEAR   DATA  ACCEPT  FLAG 
004004 42390003FF44 CLR.B P  I  ACA ADDRESS   DATA  DIRECTION  REGISTER 
00400A 1  3FC  0  0  0  0 

0003FF40 MOVE . B ttDATIN, P I  ADDA MAKE   ALL   DATA  LINES  INPUTS 
004012 13FC0005 

0003FF44 MOVE . B ttPIA   EN, PIACA ENABLE    INTERRUPT   FROM  TT Y  PIA 
00401A 46FC2000 MOVE tt  IMSK0,  5R ENABLE  ALL  INTERRUPTS 
00401E 4A386000 WAIT: T5T.B FLAG HAS   START  BIT  BEEN  RECEIVED? 
004022 6  7FA 

BEQ 

WAI  T NO,  WAIT 004024 4EB84800 JSR TTYRCV YES,    FETCH  DATA  FROM  TT Y 004028 1  1C06  00  1 MOVE . B 
DO, CHAR 

SAVE   TT Y    INPUT  CHARACTER 

00402C 4E75 RTS 

INTERRUPT   SERVICE  ROUTINE 
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00004600  ORG  INT_25 
004600  1  1FC000  16  000  MOVE.B  tt  1  ,  FLAG  SET  DATA  ACCEPT  FLAG 
0046  06  4A390003FF40  T5T.B  P I  ADA  CLEAR   START   BIT  INTERRUPT 
00460C  13FC0004 

0003FF44  MOVE . B  tt P I A_D I S , P I  AC A  DISABLE   START  BIT  INTERRUPT 
004614  4E73  R TE  RETURN   TO    INTERRUPTED  ROUTINE 

END  PGM15_5B 

Subroutine  TTYRCV  called  by  Program  15-5/)  is  similar  to  the  teletypewriter 
receive  routine  shown  in  Chapter  13,  example  9,  except  that  we  have  assumed  a  version 
that  leaves  the  data  in  data  register  DO.  The  edge  used  to  cause  the  interrupt  is  very 

important  here.  The  transition  from  the  normal  T  (MARK)  state  to  the  '0'  (SPACE) 
state  must  cause  the  interrupt,  since  this  transition  signifies  the  start  of  the  transmis- 

sion. No  'CT  to  T  transition  will  occur  until  a  non-zero  data  bit  is  received. 

The  service  routine  must  disable  the  PIA  interrupt,  since  otherwise  each  T  to  'O1 
transition  in  the  character  will  cause  an  interrupt.  Note  that  reading  the  data  bits  will 

clear  any  status  flags  set  by  the  ignored  transitions.  Of  course,  the  program  must  reena- 
ble  the  PIA  interrupt  (by  setting  bit  0  of  the  control  register)  to  allow  receipt  of  the  next 
character,  but  this  should  be  done  after  the  current  character  has  been  read. 

15-6.    A  Supervisor  Call 

Purpose:  Allowing  programs  in  the  user  state  to  access  utility  routines  in  the  supervisor 
state. 

In  the  design  of  systems  which  include  monitors  or  operating  systems,  it  is  good 
programming  practice  to  make  utility  routines  out  of  frequently  used  sequences  of 

instructions.  These  routines  may  provide  simple  functions  such  as  determining  time-of- 
day  or  they  may  provide  much  more  complex  functions  such  as  memory  management  in 

a  multi-user  system  or  logical  input/output  on  a  disk-based  system.  The  two-state 
architecture  of  the  MC68000  prevents  application  programs  in  the  user  state  from  per- 

forming certain  privileged  instructions  which  are  reserved  for  operation  in  the  super- 
visor state.  In  future  systems  which  may  provide  memory  management,  programs  in  the 

user  state  may  be  restricted  to  using  memory  only  within  their  own  limited  address 
space. 

In  cases  where  user  state  programs  must  communicate  with  a  monitor  or  operat- 
ing system  in  the  supervisor  state,  you  can  use  the  TRAP  instructions.  Execution  of  a 

TRAP  instruction  causes  a  processor  exception  and  exception  processing  is  performed 

in  much  the  same  manner  as  interrupt  processing.  Programs  15-6<7  and  15-6/7  show  typi- 
cal uses  of  the  TRAP  instruction. 

Program  15-6a: 
00004000 PROGRAM : ECU $4000 
00004400 TTYIN: EQU $4400 
00004500 PRINT: EQU $4500 
00004600 TRAP  1 : EQU $4600 
00005100 USTACK  : EQU $5100 00006000 DATA: EQU $6000 
00000084 ORU $84 000084 00004600 DC  .L TRAP  1 

00006000 ORG DATA 
006000 00000050 BUFFER : DS.B 

8  0 

00004000 ORG PROGRAM 
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PROGRAM    IN   USER  STATE 

004000 3C7C6000 PGM1 56A : MOVE . W (♦BUFFER,  A6 
004004 4E41 TRAP 

ttl 
POINTER   TO    INPUT/OUTPUT  BUFFER 004006 000  1 DC  .W 1 MONITOR  CALL 

004008 4E41 TRAP 
H 1 

TO  READ  ONE   TTY  LINE 
00400A 0002 DC  .W 2 MONITOR  CALL 
00400C 4E75 

00004600 

::  TRAP 
RTS 

1  HANDLER 

ORG TRAP  1 

TO  WRITE   ONE   PRINTER  LINE 

004600 48E7FFFE MOVEM. L D0-D7/A0-A6, -(SP) 
004604 2A6F003E MOVE . L 60+2CSP), A5 SAVE   ALL   USER  REGISTERS 
004608 4BED0002 LEA.L 2(A5), A5 RETURN  ADDRESS 
00460C 2F4D003E MOVE . L A5,60+2(SP) ADDRESS   OF    INSTRUCTION  AFTER  TRAP 
004610 0C6D000 1FFFE CMP.  W m,-2CA5) UPDATE   STACK  VALUE 
004616 66  06 BNE.S PR  INTER READ   MONITOR  CALL? 
004618 4EB84400 JSR TTY  IN NO,    PRINTER  CALL 0046  1C 60  04 

BRA.  S DONE READ   ONE    LINE    FROM  TTY 
00461E 4EB84500 PR  INTER : 

JSR 
PR  I  NT 

0046  22 4CTF  7FFF DONE  : MOVEM . L (SP)+,D0-D7/A0-A6 OUTPUT  ONE   LINE    TO  PRINTER 
004626 4E73 RTE 

END PGM  1 5  6A 
RESTORE   USER  REG-iSTERS 
RETURN   TO   USER  PROGRAM 

Each  of  the  processor's  two  states  has  its  own  stack  pointer  (address  register  A7). 
When  the  MC68000  is  reset,  all  references  to  address  register  A7  use  the  supervisor 

stack  pointer.  The  supervisor  stack  pointer  is  used  until  the  s-bit  in  the  status  register  is 
cleared,  and  the  user  state  is  entered.  While  in  the  user  state,  A7  references  the  user 
stack  pointer. 

Program  15-6a  demonstrates  a  typical  instruction  sequence  used  to  read  and  write 

from  a  TTY  device  using  a  monitor  such  as  Motorola's  MAOBUG.™  The  sequence 
uses  the  TRAP  #1  instruction  to  perform  a  call  to  supervisor  function.  In  this  example, 
address  register  A6  is  used  as  an  input  parameter  to  the  function  and  it  points  to  the 
TTY  input/output  buffer.  A  second  parameter  to  the  function  is  contained  in  the  word 
immediately  following  the  TRAP  instruction.  This  parameter  indicates  whether  an  input 
or  output  function  is  requested.  A  detailed  description  of  parameter  passing  is  contained 
in  Chapter  10. 

As  discussed  in  the  beginning  of  this  chapter,  the  exception  processing  of  the 
TRAP  instruction  causes  the  current  processor  program  counter  and  status  register  to 

be  pushed  on  the  supervisor  stack.  The  trap  number,  1  in  this  erample,  is  used  to  deter- 
mine the  appropriate  TRAP  vector  much  as  the  interrupt  vector  number  is  used  to 

calculate  the  address  of  the  interrupt  vector.  Since  the  TRAP  vectors  start  at  address 
$80,  the  vector  for  TRAP#1  is  located  at 

$80  +  1  *  4  =  $84 

The  long  word  address  at  location  $84  contains  the  starting  address  of  the  TRAP#  1  pro- 
cessing routine  at  location  $4600.  Again,  like  interrupt  processing,  initial  exception  pro- 
cessing is  performed  in  supervisor  mode. 

Since  only  the  status  register  and  program  counter  are  saved  as  part  of  the  excep- 
tion process,  the  exception  handler  must  save  any  register  which  it  uses.  These  registers 

must  be  restored  prior  to  returning  to  the  instruction  following  the  exception.  In  the 
event  that  control  may  not  immediately  be  returned  to  the  application  program  causing 
the  exception,  you  may  also  want  to  save  the  user  stack  register.  The  instruction  MOVE 
USP,An  can  be  used  to  accomplish  this  operation.  On  completion  of  processing,  a 
MOVE  An,USP  is  used  to  restore  the  user  stack  pointer.  Both  instructions  are  priv- 

ileged instructions  and  necessary  for  systems  with  more  than  one  task. 
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Upon  completion  of  exception  processing  by  the  exception  handler,  control  must 
be  returned  to  the  instruction  following  the  instruction  which  caused  the  exception.  This 
is  accomplished  by  using  the  RTE  instruction  which  restores  the  previously  saved  status 

register  and  program  counter  from  the  supervisor  stack.  Since  RTE  affects  the  super- 
visor portion  of  the  status  register,  it  is  a  privileged  instruction. 

A  variation  of  program  \5-6a  is  shown  in  \5-6b.  This  variation  uses  two  different 
TRAP  instructions  and  therefore  two  exception  handlers.  Normally,  we  think  of  using 
the  TRAP  instructions  while  in  user  mode  to  communicate  with  functions  in  supervisor 
mode.  However,  the  TRAP  instructions  may  be  used  while  in  supervisor  mode. 

Program  15-6b: 

00004000 PROGRAM : EQU $4000 
00004400 TTYIN: EQU $4400 
00004500 PRINT: EQU $4500 
00004600 TRAPHDLR  : EQU $4600 
00005100 USTACK  : EQU $5100 
00006000 DATA  : EQU $6000 
00000084 ORG $84 TRAP    1/2  VECTOR 

000084 00004600 DC.L TRAP  1 
000088 0000460A DC  .L TRAP  2 

00006000 ORG DATA 

006000 00000050 BUFFER : DS.B 
80 

INPUT/OUTPUT  BUFFER 

00004000 ORG PROGRAM 

::     PROGRAM    IN  USER STATE 

004000 3E7C5100 PGM15_6B : MOVEA. W ♦tUSTACK,  A7 INITIALIZE   USER  STACK 
004004 3C7C6000 MOVE.k SBUFFER, A6 POINTER   TO    INPUT/OUTPUT  BU 
004008 4E41 TRAP 

#1 
MONITOR  CALL   TO   READ   ONE  T 

00400A 4E42 TRAP #2 MONITOR   CALL   TO   PRINT  ONE 
00400C 4E75 RTS 

::     TRAP  1 AND  2 HANDLERS 

00004600 ORG TRAPHDLR 

004600 48E7FFFE TRAP1 : MOVEM. L D0-D7/A0-A6, 

-CSP) 

SAVE   ALL    USER  REGISTERS 
004604 4EB84400 J  5  R TTYIN READ   ONE    LINE    FROM  TTY 
004608 6008 BRA.S RETURN 
00460A 48E7FFFE TRAP  2 : MOVEM. L DO-D7/A0-A6, 

-Csp) 

SAVE   ALL   USER  REGISTERS 
00460E 4EB84500 JSR 

PR  I  NT OUTPUT  ONE   LINE    TO  PRINTER 
004612 4CDF7FFF RETURN : MOVEM . L (SP)+, D0-D7/A0-A6 

RESTORE   USER  REGISTERS 
004616 4E73 RTE RETURN   TO   USER  PROGRAM 

END PGM15_6B 

15-7.    ENTERING  USER  MODE 

Purpose:  Establishing  programs  in  user  mode. 

Program  15-7: 

00004800 
00005100 
00005300 
00000000 
00004000 

RESET: 
STACK : 
USTACK  : 
USER  : USERPGM: 

EQU 
EQU 
EQU 
EQU 
EQU 

$4800 
$5100 $5300 $0 
$4000 

USER  STATE/PRIORITY  LEVEL 
USER  PROGRAM 

000000 
0  0  0  0  04 

0  0  0  0  0  0  0  0 

00005100 
00004800 

DC  .L 
DC  .L STACK PGM1  5 ADDRESS   OF  STACK 

ADDRESS   OF    RESET  PROGRAM 

00004800 

307C5300 MOVE. A   W      ttUSTACK  ,  AO ADDRESS   OF    USER  STACK 
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004804 
004806 
00480A 

4E60 
'+6FC0000 
4EF84000 

MOVE . L 
MOVE.W 
JMP 

A0,USP 
((USER,  SR 
USERPGM 

INITIALIZE   USER  STACK 
SET  TO  USER  MODE 
JUMP   TO  USER  PROGRAM 

END PGM  1  5 

As  mentioned  previously,  the  MC68000  is  initialized  to  operate  in  supervisor 

mode.  To  enter  user  mode,  the  Supervisor  flag  (S-bit)  in  the  status  register  must  be 
reset.  This  can  be  accomplished  by  any  instruction  which  affects  the  Supervisor  flag  such 
as  MOVE  to  SR,  ANDI  to  SR,  EORI  to  SR  or  RTE.  With  the  MOVE,  ANDI  or  EORI 
instructions,  only  the  status  register  is  affected  and  the  instruction  following  the  MOVE, 
ANDI  or  EORI  is  executed  next  in  the  user  mode.  The  RTE  instruction  allows  you  to 
switch  to  user  mode  at  a  given  address. 

More  general  interrupt  service  routine  that  are  part  of  a  complete  interrupt- 
driven  system  must  handle  the  following  tasks: 

1.  Saving  any  needed  data  on  the  stack  so  that  interrupted  programs  can 
resume  correctly.  The  MC68000  saves  only  the  program  counter  and  the 
status  register  on  the  supervisor  stack  during  its  response  to  an  interrupt. 
Therefore,  your  interrupt  service  routines  must  save  and  restore  any  additional 
registers  they  use. 

2.  Restoring  data  and  registers  before  executing  RTE  and  returning  control  to 
interrupted  programs. 

3.  Polling  of  all  devices  associated  with  a  given  interrupt  when  more  than  one 
device  can  cause  the  interrupt.  This  is  generally  the  case  for  devices  which  use 
autovectoring. 

4.  Enabling  and  disabling  interrupts  appropriately.  Remember  that  the  CPU 

automatically  disables  interrupts  of  the  same  or  lower  level  as  that  of  the  inter- 
rupt just  accepted. 
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IV 

Software  Development 

The  previous  chapters  have  described  how  to  write  short  assembly  language  pro- 
grams. While  this  is  an  important  topic,  it  is  only  a  small  part  of  software  development. 

Although  writing  assembly  language  programs  is  a  major  task  for  the  beginner,  it  soon 

becomes  simple.  By  now  you  should  be  familiar  with  standard  methods  for  program- 
ming in  assembly  language  on  the  MC68000  microprocessor.  The  next  six  chapters 

will  describe  how  to  formulate  tasks  as  programs  and  how  to  combine  short  programs 
to  form  a  working  system. 

THE  STAGES  OF  SOFTWARE  DEVELOPMENT 

Software  development  consists  of  many  stages.  Figure  IV-1  is  a  flowchart  of  the 
software  development  process.  Its  stages  are: 

•  Problem  definition 

•  Program  design 
•  Coding 

•  Debugging 
•  Testing 

•  Documentation 

•  Maintenance  and  redesign 

Each  of  these  stages  is  important  in  the  construction  of  a  working  system.  Coding, 
the  writing  of  programs  in  a  form  that  the  computer  understands,  is  only  one  stage  in  a 
long  process. 
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RELATIVE  IMPORTANCE  OF  CODING 

Coding  is  usually  the  easiest  stage  to  define  and  perform.  The  rules  for  writing 
computer  programs  are  easy  to  learn.  They  vary  somewhat  from  computer  to  computer, 
but  the  basic  techniques  remain  the  same.  Few  software  projects  run  into  trouble 
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because  of  coding;  indeed,  coding  is  not  the  most  time-consuming  part  of  software 
development.  Experts  estimate  that  a  programmer  can  write  one  to  ten  fully  debugged 
and  documented  statements  per  day.  Clearly,  the  mere  coding  of  one  to  ten  statements 

is  hardly  a  full  day's  effort.  On  most  software  projects,  coding  occupies  less  than  25%  of 
the  programmer's  time. 

MEASURING  PROGRESS  IN  OTHER  STAGES 

Measuring  progress  in  other  stages  is  difficult.  You  can  say  that  half  of  the  pro- 
gram has  been  written,  but  you  can  hardly  say  that  half  of  the  errors  have  been  removed 

or  half  of  the  problem  has  been  defined.  Timetables  for  such  stages  as  program  design, 
debugging,  and  testing  are  difficult  to  produce.  Many  days  or  weeks  of  effort  may  result 

in  no  clear  progress.  Furthermore,  an  incomplete  job  in  one  stage  may  result  in  tremen- 
dous problems  later.  For  example,  poor  problem  definition  or  program  design  can  make 

debugging  and  testing  very  difficult.  Time  saved  in  one  stage  may  be  spent  many  times 
over  in  later  stages. 

DEFINITION  OF  THE  STAGES 

Problem  Definition 

Problem  definition  is  the  formulation  of  the  requirements  that  the  task  places 
on  the  computer.  For  example,  what  is  necessary  to  make  a  computer  control  a  tool,  run 
a  series  of  electrical  tests,  or  handle  communications  between  a  central  controller  and  a 
remote  instrument?  Problem  definition  requires  that  you  determine  the  forms  and  rates 
of  inputs  and  outputs,  the  amount  and  speed  of  processing  that  is  needed,  and  the  types 
of  possible  errors  and  their  handling.  Problem  definition  takes  a  vague  idea  of  building  a 

computer-controlled  system  and  defines  the  tasks  and  requirements  for  the  computer. 

Program  Design 

Program  design  is  the  outline  of  the  computer  program  that  will  meet  the 
requirements.  In  the  design  stage,  the  tasks  are  described  in  a  way  that  can  easily  be 
converted  into  a  program.  Among  the  useful  techniques  in  this  stage  are  flowcharting, 

structured  programming,  modular  programming,  and  top-down  design. 

Coding 

Coding  is  the  writing  of  the  program  in  a  form  that  the  computer  can  either 
directly  understand  or  translate.  The  form  may  be  machine  language,  assembly 

language,  or  a  high-level  language. 

Debugging 

Debugging,  also  called  program  verification,  is  making  the  program  perform 

according  to  the  design.  In  this  stage,  you  use  such  tools  as  breakpoints,  traces,  simula- 
tors, logic  analyzers,  and  in-circuit  emulators.  The  end  of  the  debugging  stage  is  hard  to 

define,  since  you  never  know  when  you  have  found  the  last  error. 
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Testing 

Testing,  also  referred  to  as  program  validation,  is  ensuring  that  the  program  per- 
forms the  overall  system  tasks  correctly.  The  designer  uses  simulators,  exercisers,  and 

statistical  techniques  to  measure  the  program's  performance.  This  stage  is  like  quality 
control  for  hardware. 

Documentation 

Documentation  is  the  description  of  the  program  in  the  proper  form  for  users 

and  maintenance  personnel.  Documentation  also  allows  the  designer  to  develop  a  pro- 
gram library  so  that  subsequent  tasks  will  be  far  simpler.  Flowcharts,  comments, 

memory  maps,  and  library  forms  are  some  of  the  tools  used  in  documentation. 

Maintenance  and  Redesign 

Maintenance  and  redesign  are  the  servicing,  improvement,  and  extension  of 

the  program.  Clearly,  the  designer  must  be  ready  to  handle  field  problems  in  computer- 
based  equipment.  Special  diagnostic  modes  or  programs  and  other  maintenance  tools 
may  be  required.  Upgrading  or  extension  of  the  program  may  be  necessary  to  meet  new 
requirements  or  handle  new  tasks. 
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Problem  Definition 

Typical  microprocessor  tasks  require  a  lot  of  definition.  For  example,  what 
must  a  program  do  to  control  a  scale,  a  cash  register,  or  a  signal  generator?  Clearly, 
we  have  a  long  way  to  go  just  to  define  the  tasks  involved. 

INPUTS 

How  do  we  start  the  definition?  The  obvious  place  to  begin  is  with  the  inputs.  We 

should  begin  by  listing  all  the  inputs  that  the  computer  may  receive  in  this  applica- 
tion. 

Examples  of  inputs  are: 

Data  blocks  from  transmission  lines 

Status  words  from  peripherals 

Data  from  A/D  converters 

Then  we  may  ask  the  following  questions  about  each  input: 

1.  What  is  its  form;  that  is,  what  signals  will  the  computer  actually  receive? 

2.  When  is  the  input  available  and  how  does  the  processor  know  it  is  available? 
Does  the  processor  have  to  request  the  input  with  a  strobe  signal?  Does  the 
input  provide  its  own  clock? 

3.  How  long  is  it  available? 

4.  How  often  does  it  change,  and  how  does  the  processor  know  that  it  has 
changed? 

5.  Does  the  input  consist  of  a  sequence  or  block  of  data?  Is  the  order  important? 

6.  What  should  be  done  if  the  data  contains  errors?  These  may  include  transmis- 
sion errors,  incorrect  data,  sequencing  errors,  extra  data,  etc. 

7.  Is  the  input  related  to  other  inputs  or  outputs? 
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OUTPUTS 

The  next  step  to  define  is  the  output.  We  must  list  all  the  outputs  that  the  com- 
puter must  produce.  Examples  of  outputs  include: 

Data  blocks  to  transmission  lines 

Control  words  to  peripherals 
Data  to  D/A  converters 

Then  we  may  ask  the  following  questions  about  each  output: 

1.  What  is  its  form;  that  is,  what  signals  must  the  computer  produce? 

2.  When  must  it  be  available,  and  how  does  the  peripheral  know  it  is  available? 

3.  How  long  must  it  be  available? 

4.  How  often  must  it  change,  and  how  does  the  peripheral  know  that  it  has 
changed? 

5.  Is  there  a  sequence  of  outputs? 

6.  What  should  be  done  to  avoid  transmission  errors  or  to  sense  and  recover 

from  peripheral  failures? 

7.  How  is  the  output  related  to  other  inputs  and  outputs? 

PROCESSING  SECTION 

Between  the  reading  of  input  data  and  the  sending  of  output  results  is  the  process- 
ing section.  Here  we  must  determine  exactly  how  the  computer  must  process  the  input 

data.  The  questions  are: 

1.  What  is  the  basic  procedure  (algorithm)  for  transforming  input  data  into  out- 
put results? 

2.  What  time  constraints  exist?  These  may  include  data  rates. 

3.  What  memory  constraints  exist?  Do  we  have  limits  on  the  amount  of  program 
memory  or  data  memory,  or  on  the  size  of  buffers? 

4.  What  standard  programs  or  tables  must  be  used?  What  are  their  require- 
ments? 

5.  What  special  cases  exist,  and  how  should  the  program  handle  them? 
6.  How  accurate  must  the  results  be? 

7.  How  should  the  program  handle  processing  errors  or  special  conditions  such 
as  overflow,  underflow,  or  loss  of  significance? 

ERROR  HANDLING 

An  important  factor  in  many  applications  is  the  handling  of  errors.  Clearly,  the 
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designer  must  make  provisions  for  recovering  from  common  errors  and  for  diagnosing 
malfunctions.  Among  the  questions  that  the  designer  must  ask  at  the  definition  stage 
are: 

1.  What  errors  could  occur? 

2.  Which  errors  are  most  likely?  If  a  person  operates  the  system,  human  error  is 
the  most  common.  Following  human  errors,  communications  or  transmission 

errors  are  more  common  than  mechanical,  electrical,  mathematical,  or  pro- 
cessor errors. 

3.  Which  errors  will  not  be  immediately  obvious  to  the  system?  A  special  prob- 
lem is  the  occurrence  of  errors  that  the  system  or  operator  may  not  recognize 

as  incorrect. 

4.  How  can  the  system  recover  from  errors  with  a  minimum  loss  of  time  and 
data  and  yet  be  aware  that  an  error  has  occurred? 

5.  Which  errors  or  malfunctions  cause  the  same  system  behavior?  How  can 
these  errors  or  malfunctions  be  distinguished  for  diagnostic  purposes? 

6.  Which  errors  involve  special  system  procedures?  For  example,  do  parity 
errors  require  retransmission  of  data? 

Another  question  is:  How  can  the  field  technician  systematically  find  the  source  of 

malfunctions  without  being  an  expert?  Built-in  test  programs,  special  diagnostics,  or  sig- 
nature analysis  can  help.1 

HUMAN  FACTORS/OPERATOR  INTERACTION 

Many  microprocessor-based  systems  involve  human  interaction.  Human  factors 
must  be  considered  throughout  the  development  process  for  such  systems.  Among  the 
questions  that  the  designer  must  ask  are: 

1.  What  input  procedures  are  most  natural  for  the  human  operator? 

2.  Can  the  operator  easily  determine  how  to  begin,  continue  and  end  the  input 
operations? 

3.  How  is  the  operator  informed  of  procedural  errors  and  equipment  malfunc- 
tions? 

4.  What  errors  is  the  operator  most  likely  to  make? 

5.  How  does  the  operator  know  that  data  has  been  entered  correctly? 

6.  Are  displays  in  a  form  that  the  operator  can  easily  read  and  understand? 

7.  Is  the  response  of  the  system  adequate  for  the  operator? 

8.  Is  the  system  easy  for  the  operator  to  use? 

9.  Are  there  guiding  features  for  an  inexperienced  operator? 

10.  Are  there  shortcuts  and  reasonable  options  for  the  experienced  operator? 

11.  Can  the  operator  always  determine  or  reset  the  state  of  the  system  after 
interruptions  or  distractions? 

Building  a  system  for  people  to  use  is  difficult.  The  microprocessor  can  make  the 
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system  more  powerful,  more  flexible,  and  more  responsive.  However,  the  designer  still 
must  add  the  human  touches  that  can  greatly  increase  the  usefulness  and  attractive- 

ness of  the  system  and  the  productivity  of  the  human  operator.2 
The  processor,  of  course,  has  no  intrinsic  preference  in  situations  involving 

human  characteristics  or  cultural  choices.  The  processor  does  not  prefer  left-to-right 
over  right-to-left,  forward  over  backward,  increasing  order  over  decreasing  order,  or 
decimal  numbers  over  other  number  systems.  Nor  does  the  processor  recognize  the 

operator's  preference  for  simplicity,  consistency,  compatibility  with  previous 
experience,  and  "logical"  order  of  operations.  The  processor  never  gets  distracted,  dis- 

oriented, confused,  or  bored.  The  designer  must  allow  for  all  these  considerations  in  the 
design  and  development  of  interactive  systems. 

EXAMPLES 

DEFINING  A  SWITCH  AND  LIGHT  SYSTEM 

Figure  16-1  shows  a  simple  system  in  which  the  input  is  from  a  single  SPST 
switch  and  the  output  is  to  a  single  LED  display.  In  response  to  a  switch  closure,  the 
processor  turns  the  display  on  for  one  second.  This  system  should  be  easy  to  define. 

Switch  Input 

Let  us  first  examine  the  input  and  answer  each  of  the  questions  previously  pre- 
sented: 

1.  The  input  is  a  single  bit,  which  may  be  either  l0'  (switch  closed)  or  T  (switch 
open). 

2.  The  input  is  always  available  and  need  not  be  requested. 

3.  The  input  is  available  for  at  least  several  milliseconds  after  the  closure. 

4.  The  input  will  seldom  change  more  than  once  every  few  seconds.  The  pro- 
cessor has  to  handle  only  the  bounce  in  the  switch.  The  processor  must  moni- 

tor the  switch  to  determine  when  it  is  closed. 

5.  There  is  no  sequence  of  inputs. 

6.  The  obvious  input  errors  are  switch  failure,  failure  in  the  input  circuitry,  and 
the  operator  attempting  to  close  the  switch  again  before  a  sufficient  amount  of 
time  has  elapsed.  We  will  discusss  the  handling  of  these  errors  later. 

7.  The  input  does  not  depend  on  any  other  inputs  or  outputs. 

Light  Output 

The  next  requirement  in  defining  the  system  is  to  examine  the  output.  The 
answers  to  our  questions  are: 

1.  The  output  is  a  single  bit,  which  is  '01  to  turn  the  display  on,  T  to  turn  it  off. 
2.  There  are  no  time  constraints  on  the  output.  The  peripheral  does  not  need  to 

be  informed  of  the  availability  of  data. 
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CPU 

The  switch  input  is  a  'V  if  the  switch  is  open,  '0'  if  the  switch  is  closed. 
The  CPU  applies  the  output  to  the  cathode  of  the  LED:  a  '0'  lights  the  display. 

Figure  16-1.  The  Switch  and  Light  System 

3.  If  the  display  is  an  LED,  the  data  need  be  available  for  only  a  few  milliseconds 

at  a  pulse  rate  of  about  100  times  per  second.  The  observer  will  see  a  con- 
tinuously lit  display. 

4.  The  data  must  change  (go  off)  after  one  second. 

5.  There  is  no  sequence  of  outputs. 

6.  The  possible  output  errors  are  display  failure  and  failure  in  the  output  circui- try. 

7.  The  output  depends  only  on  the  switch  input  and  time. 

Processing 

The  processing  section  is  extremely  simple.  As  soon  as  the  switch  input 

becomes  a  logic  40\  the  CPU  turns  the  light  on  (a  logic  '0')  for  one  second.  No  time  or 
memory  constraints  exist. 

Error  Handling 

Let  us  now  look  at  the  possible  errors  and  malfunctions.  These  are: 

•  Another  switch  closure  before  one  second  has  elapsed 
•  Switch  failure 

•  Display  failure 

•  Computer  failure 

Surely  the  first  error  is  the  most  likely.  The  simplest  solution  is  for  the  processor 
to  ignore  switch  closures  until  one  second  has  elapsed.  This  brief  unresponsive  period 

will  hardly  be  noticeable  to  the  human  operator.  Furthermore,  ignoring  the  switch  dur- 
ing this  period  means  that  no  debouncing  circuitry  or  software  is  necessary,  since  the 

system  will  not  react  to  the  bounce  anyway. 
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Clearly,  the  last  three  failures  can  produce  unpredictable  results.  The  display  may 
stay  on,  stay  off,  or  change  state  randomly.  Some  possible  ways  to  isolate  the  failures 
would  be: 

•  Lamp-test  hardware  to  check  the  display;  i.e.,  a  button  that  turns  the  light  on 
independently  of  the  processor 

•  A  direct  connection  to  the  switch  to  check  its  operation 

•  A  diagnostic  program  that  exercises  the  input  and  output  circuits 

If  both  the  display  and  switch  are  working,  the  computer  is  at  fault.  A  field  techni- 
cian with  proper  equipment  can  determine  the  cause  of  the  failure. 

DEFINING  A  SWITCH-BASED  MEMORY  LOADER 

Figure  16-2  shows  a  system  that  allows  the  user  to  enter  data  into  any  memory 
location  in  a  microcomputer.  One  input  port,  DPORT,  reads  data  from  eight  toggle 
switches.  The  other  input  port,  CPORT,  is  used  to  read  control  information.  There 
are  four  momentary  switches:  High  Address,  Mid  Address,  Low  Address  and  Data. 
The  output  is  the  value  of  the  last  completed  entry  from  the  data  switches;  eight 
LEDs  are  used  for  the  display. 

The  system  will  also,  of  course,  require  resistors,  buffers,  and  drivers. 

Inputs 

The  characteristics  of  the  switches  are  the  same  as  in  the  previous  example.  To 
simplify  the  debouncing  procedure  and  force  the  operator  to  release  the  buttons,  we 
have  the  system  respond  only  after  a  button  is  released;  this  is  a  common  technique 
that  reduces  wear  on  the  switches  as  well,  since  the  operator  is  less  tempted  to  press  a 
button  repeatedly.  In  this  system  there  is  a  distinct  sequence  of  inputs,  as  follows: 

1 .  The  operator  must  set  the  data  switches  according  to  the  eight  most  significant 
bits  of  an  address,  then 

2.  press  and  release  the  High  Address  button.  The  high  address  bits  will  appear 
on  the  lights,  and  the  program  will  interpret  the  data  as  the  high  byte  of  the 
address  (bits  A23-A16). 

3.  Then  the  operator  must  set  the  data  switches  with  the  value  of  the  middle  byte 
of  the  address  (bits  A15-A8)  and 

4.  press  and  release  the  Mid  Address  button.  The  middle  address  bits  will  appear 
on  the  lights,  and  the  program  will  consider  the  data  to  be  the  middle  byte  of 
the  address. 

5.  Then  the  operator  must  set  the  data  switches  with  the  value  of  the  least  sig- 
nificant byte  of  the  address  bits  (A7-A0)  and 

6.  press  and  releast  the  Low  Address  button.  The  low  address  bits  will  appear  on 
the  lights,  and  the  program  will  consider  the  data  to  be  the  low  byte  of  the 
address. 

7.  Finally,  the  operator  must  set  the  desired  data  into  the  data  switches  and 

8.  press  and  release  the  Data  button.  The  display  will  now  show  the  data,  and  the 
program  stores  the  data  in  memory  at  the  previously  entered  address. 
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The  operator  may  repeat  the  process  to  enter  an  entire  program.  Clearly,  even  in 
this  simplified  situation,  we  will  have  many  possible  sequences  to  consider.  How  do  we 
cope  with  erroneous  sequences  and  make  the  system  easy  to  use? 
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Figure  16-2.  The  Switch-Based  Memory  Loader 
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Output 

Output  is  no  problem.  After  each  input,  the  program  sends  to  the  displays  the 

complement  (since  the  displays  are  active-low)  of  the  input  bits.  The  output  data 
remains  the  same  until  the  next  input  operation. 

Processing 

The  processing  section  remains  quite  simple.  There  are  no  time  or  memory  con- 
straints. The  program  can  debounce  the  switches  by  waiting  for  a  few  milliseconds,  and 

must  provide  complemented  data  to  the  displays. 

Error  Handling 

The  most  likely  errors  are  operator  mistakes.  These  include: 

•  Incorrect  entries 

•  Incorrect  order 

•  Incomplete  entries;  for  example,  forgetting  the  data 

The  system  must  be  able  to  handle  these  problems  in  a  reasonable  way,  since  they 
are  certain  to  occur  in  actual  operation. 

The  designer  must  also  consider  the  effects  of  equipment  failure.  Just  as  before, 
the  possible  difficulties  are: 

•  Switch  failure 

•  Display  failure 

•  Computer  failure 

In  this  system,  however,  we  must  pay  more  attention  to  how  these  failures  affect 
the  system.  A  computer  failure  will  cause  a  complete  system  breakdown  that  will  be  easy 
to  detect.  A  display  failure  may  not  be  immediately  noticeable;  here  a  Lamp  Test  feature 
will  allow  the  operator  to  check  the  operation.  Note  that  we  would  like  to  test  each  LED 
separately,  in  order  to  diagnose  the  case  in  which  output  lines  are  shorted  together.  In 
addition,  the  operator  may  not  immediately  detect  switch  failure;  however,  the  operator 
should  soon  notice  it  and  establish  which  switch  is  faulty  by  a  process  of  elimination. 

Operator  Error  Correction 

Let  us  look  at  some  of  the  possible  operator  errors.  Typical  errors  will  be: 

•  Erroneous  data 

•  Wrong  order  of  entries  or  switches 

•  Trying  to  go  on  to  the  next  entry  without  completing  the  current  one 

The  operator  will  presumably  notice  erroneous  data  as  soon  as  it  appears  on  the 
displays.  What  is  a  viable  recovery  procedure?  Some  options  are: 

1.    The  operator  must  complete  the  entry  procedure;  i.e.,  enter  Mid  Address, 
Low  Address  and  Data  if  the  error  occurs  in  the  High  Address.  Clearly,  this 
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procedure  is  wasteful  and  annoying. 

2.  The  operator  may  restart  the  entry  process  by  returning  to  the  high  address 
entry  steps.  This  solution  is  useful  if  the  error  was  in  the  High  Address,  but 

forces  the  operator  to  re-enter  earlier  data  if  the  error  was  in  the  Mid  Address, 
Low  Address  or  Data  stage. 

3.  The  operator  may  enter  any  part  of  the  sequence  at  any  time  simply  by  setting 

the  Data  switches  with  the  desired  data  and  pressing  the  corresponding  but- 
ton. This  procedure  allows  the  operator  to  make  corrections  at  any  point  in  the 

sequence. 

This  type  of  procedure  should  always  be  preferred  over  one  that  does  not  allow 
immediate  error  correction,  has  a  variety  of  concluding  steps,  or  enters  data  into  the 

system  without  allowing  the  operator  a  final  check.  Any  added  complication  in  hard- 
ware or  software  will  be  justified  in  increased  operator  efficiency.  You  should  always 

prefer  to  let  the  microcomputer  do  the  tedious  work  and  recognize  arbitrary  sequences; 
it  never  gets  tired  and  never  forgets  the  operating  procedures. 

A  further  helpful  feature  would  be  status  lights  that  would  define  the  meaning 

of  the  display.  Four  status  lights,  marked  "High  Address, "  "Mid  Address, "  "Low 
Address,'1  and  "Data,"  would  let  the  operator  know  what  had  been  entered  without 
having  to  remember  which  button  was  pressed.  The  processor  would  have  to  monitor 

the  sequence,  but  the  added  complication  in  software  would  simplify  the  operator's  task. 
Clearly,  four  separate  sets  of  displays  plus  the  ability  to  examine  a  memory  location 
would  be  even  more  helpful  to  the  operator. 

We  should  note  that,  although  we  have  emphasized  human  interaction, 
machine  or  system  interaction  has  many  of  the  same  characteristics.  The 

microprocessor  should  do  the  work.  If  complicating  the  microprocessor's  task  makes 
error  recovery  simple  and  the  causes  of  failure  obvious,  the  entire  system  will  work 
better  and  be  easier  to  maintain.  Note  that  you  should  not  wait  until  after  the  software 
has  been  completed  to  consider  system  use  and  maintenance;  instead,  you  should 
include  these  factors  in  the  problem  definition  stage. 

DEFINING  A  VERIFICATION  TERMINAL 

Figure  16-3  is  a  block  diagram  of  a  simple  credit-verification  terminal.  One 
input  port  derives  data  from  a  keyboard  (see  Figure  16-4);  the  other  input  port 
accepts  verification  data  from  a  transmission  line.  One  output  port  sends  data  to  a  set 

of  displays  (see  Figure  16-5);  another  sends  the  credit  card  number  to  the  central 
computer.  A  third  output  port  turns  on  one  light  whenever  the  terminal  is  ready  to 
accept  an  inquiry,  and  another  light  when  the  operator  sends  the  information.  The 

"busy"  light  is  turned  off  when  the  terminal  receives  a  response.  Clearly,  the  input 
and  output  of  data  will  be  more  complex  than  in  the  previous  case,  although  the  process- 

ing is  still  simple. 

Additional  displays  may  be  useful  to  emphasize  the  meaning  of  the  response. 

Many  terminals  use  a  green  light  for  "Yes,"  a  red  light  for  "No,"  and  a  yellow  light  for 
"Consult  Store  Manager."  Note  that  these  lights  will  still  have  to  be  clearly  marked  with 
their  meanings  to  allow  for  a  color-blind  operator. 
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Figure  16-3.  Block  Diagram  of  a  Verification  Terminal 
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The  display  consists  of  ten  7-segment  displays,  which  may  be  multiplexed,  controlled  by  a  shift 
register,  or  addressed  separately.  Two  additional  lights,  READY  and  BUSY,  are  also  present. 

Figure  16-5.  Verification  Terminal  Display 

Inputs 

Let  us  first  look  at  the  keyboard  input.  This  is,  of  course,  different  from  the 
switch  input,  since  the  CPU  must  have  some  way  of  distinguishing  new  data.  We  will 
assume  that  each  key  closure  provides  a  unique  hexadecimal  code  (we  can  code  each 
of  the  12  keys  into  one  digit)  and  a  strobe.  The  program  will  have  to  recognize  the 

strobe  and  fetch  the  hexadecimal  number  that  identifies  the  key.  There  is  a  time  con- 
straint, since  the  program  cannot  miss  any  data  or  strobes.  The  constraint  is  not  serious, 

since  keyboard  entries  will  be  at  least  several  milliseconds  apart. 

The  transmission  input  similarly  consists  of  a  series  of  characters,  each  iden- 
tified by  a  strobe  (perhaps  from  a  UART).  The  program  will  have  to  recognize  each 

strobe  and  fetch  the  character.  The  data  being  sent  across  the  transmission  lines  is 
usually  organized  into  messages.  A  possible  message  format  is: 

•  Introductory  characters,  or  header 
•  Terminal  destination  address 

•  Coded  yes  or  no 

•  Ending  characters,  or  trailer 

The  terminal  will  check  the  header,  read  the  destination  address,  and  see  if  the 
message  is  intended  for  it.  If  the  message  is  for  the  terminal,  the  terminal  accepts  the 
data.  The  address  could  be  (and  often  is)  hard-wired  into  the  terminal  so  that  the  ter- 

minal receives  only  messages  intended  for  it.  This  approach  simplifies  the  software  at 
the  cost  of  some  flexibility. 

The  output  is  also  more  complex  than  in  the  earlier  examples.  If  the  displays  are 
multiplexed,  the  processor  must  not  only  send  the  data  to  the  display  port  but  must 
also  direct  the  data  to  a  particular  display.  We  will  need  either  a  separate  control  port 
or  a  counter  and  decoder  to  handle  this.  Note  that  hardware  blanking  controls  can  blank 

leading  zeros  as  long  as  the  first  digit  in  a  multi-digit  number  is  never  zero.  Software  can 

Outputs 
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also  handle  this  task.  Time  constraints  include  the  pulse  length  and  frequency  required 
to  produce  a  continuous  display  for  the  operator. 

The  communications  output  will  consist  of  a  series  of  characters  with  a  particu- 
lar format.  The  program  will  also  have  to  consider  the  time  required  between  charac- 

ters. A  possible  format  for  the  output  message  is: 

•  Header 

•  Terminal  address 

•  Credit  card  number 
•  Trailer 

A  central  communication  computer  may  poll  the  terminals,  checking  for  data 
ready  to  be  sent. 

Processing 

The  processing  in  this  system  involves  many  new  tasks,  such  as: 

•  Identifying  the  control  keys  by  number  and  performing  the  proper  actions 

•  Adding  the  header,  terminal  address,  and  trailer  to  the  outgoing  message 

•  Recognizing  the  header  and  trailer  in  the  returning  message 

•  Checking  the  incoming  terminal  address 

Note  that  none  of  the  tasks  involves  any  complex  arithmetic  or  any  serious  time 
or  memory  constraints. 

Error  Handling 

The  number  of  possible  errors  in  this  system  is,  of  course,  much  larger  than  in 
the  earlier  examples.  Let  us  first  consider  the  possible  operator  errors.  These  include: 

•  Entering  the  credit  card  number  incorrectly 

•  Trying  to  send  an  incomplete  credit  card  number 

•  Trying  to  send  another  number  while  the  central  computer  is  processing  one 

•  Clearing  nonexistent  entries 

Some  of  these  errors  can  be  handled  easily  by  organizing  the  program  correctly. 
For  example,  the  program  should  not  accept  the  Send  key  until  the  credit  card  number 
has  been  completely  entered,  and  it  should  ignore  any  additional  keyboard  entries  until 
the  response  comes  back  from  the  central  computer.  Note  that  the  operator  will  know 
that  the  entry  has  not  been  sent,  since  the  Busy  light  will  not  go  on.  The  operator  will 
also  know  when  the  keyboard  has  been  locked  out  (the  program  is  ignoring  keyboard 
entries),  since  entries  will  not  appear  on  the  display  and  the  Ready  light  will  be  off. 

Correcting  Keyboard  Errors 

Incorrect  entries  are  an  obvious  problem.  If  the  operator  recognizes  an  error,  he 
or  she  can  use  the  Clear  key  to  make  corrections.  The  operator  would  probably  find  it 
more  convenient  to  have  two  Clear  keys,  one  that  cleared  the  most  recent  key  and  one 
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that  cleared  the  entire  entry.  This  would  allow  both  for  the  situation  in  which  the 
operator  recognizes  the  error  immediately  and  for  the  situation  in  which  the  operator 
recognizes  the  error  late  in  the  procedure.  The  operator  should  be  able  to  correct  errors 
immediately  and  have  to  repeat  as  few  keys  as  possible.  The  operator  will,  however, 
make  a  certain  number  of  errors  without  recognizing  them.  Most  credit  card  numbers 

include  a  self-checking  digit;  the  terminal  could  check  the  number  before  permitting 
it  to  be  sent  to  the  central  computer.  This  step  would  save  the  central  computer  from 
wasting  processing  time  checking  the  number. 

This  requires,  however,  that  the  terminal  have  some  way  of  informing  the 
operator  of  the  error,  perhaps  by  flashing  one  of  the  displays  or  by  providing  some  other 
special  indicator  that  the  operator  is  sure  to  notice. 

Still  another  problem  is  how  the  operator  knows  that  an  entry  has  been  lost  or 
processed  incorrectly.  Some  terminals  simply  unlock  after  a  maximum  time  delay.  The 
operator  notes  that  the  Busy  light  has  gone  off  without  an  answer  being  received.  The 
operator  is  then  expected  to  try  the  entry  again.  After  one  or  two  further  attempts,  the 
operator  should  report  the  failure  to  supervisory  personnel. 

Many  equipment  failures  are  also  possible.  Besides  the  displays,  keyboard,  and 
processor,  there  now  exist  the  problems  of  communications  errors  or  failures  and 
central  computer  failures. 

Correcting  Transmission  Errors 

The  data  transmission  will  probably  have  to  include  error  checking  and  correct- 
ing procedures.  Some  possibilities  are: 

1.  Parity  provides  an  error  detection  facility  but  no  correction  mechanism.  The 
receiver  will  need  some  way  of  requesting  retransmission,  and  the  sender  will 
have  to  save  a  copy  of  the  data  until  proper  reception  is  acknowledged.  Parity 
is,  however,  very  simple  to  implement. 

2.  Short  messages  may  use  more  elaborate  schemes.  For  example,  the  yes/no 

response  to  the  terminal  could  be  coded  to  provide  error  detection  and  correc- 
tion capability. 

3.  An  acknowledgement  and  a  limited  number  of  retries  could  trigger  an  indica- 
tor that  would  inform  the  operator  of  a  communications  failure  (inability  to 

transfer  a  message  without  errors)  or  central  computer  failure  (no  response 
within  a  certain  period  of  time).  Such  a  scheme,  along  with  the  Lamp  Test, 
would  allow  simple  failure  diagnosis. 

A  communications  or  central  computer  failure  indicator  should  also  "unlock" 
the  terminal,  that  is,  allow  it  to  accept  another  entry.  This  is  necessary  if  the  terminal 
will  not  accept  entries  while  a  verification  is  in  progress.  The  terminal  may  also  unlock 

after  a  certain  maximum  time  delay.  Certain  entries  could  be  reserved  for  diag- 
nostics; i.e.,  certain  credit  card  numbers  could  be  used  to  check  the  internal  operation 

of  the  terminal  and  test  the  displays. 
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REVIEW 

Problem  definition  is  as  important  a  part  of  software  development  as  it  is  of  any 
other  engineering  task.  Note  that  it  does  not  require  any  programming  or  knowledge  of 

the  computer;  rather,  it  is  based  on  an  understanding  of  the  system  and  sound  engineer- 
ing judgment.  Microprocessors  offer  flexibility  and  local  intelligence  that  the  designer 

can  use  to  provide  a  wide  range  of  features. 
Problem  definition  is  independent  of  any  particular  computer,  computer 

language,  or  development  system.  It  should,  however,  provide  guidelines  as  to  what 
type  or  speed  of  computer  the  application  will  require  and  what  kind  of  hardware/ 
software  tradeoffs  the  designer  can  make.  The  problem  definition  stage  should  not 

even  depend  on  whether  a  computer  is  used,  although  a  knowledge  of  the  capabilities 

of  the  computer  can  help  the  designer  in  suggesting  possible  implementations  of  pro- 
cedures. 
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Program  Design 

Program  design  is  the  stage  in  which  the  problem  definition  is  formulated  as  a 
program.  If  the  program  is  small  and  simple,  this  stage  may  involve  little  more  than 

the  writing  of  a  one-page  flowchart.  If  the  program  is  larger  or  more  complex,  the 
designer  should  consider  more  elaborate  methods. 

We  will  discuss  flowcharting,  modular  programming,  structured  programming, 

and  top-down  design.  We  will  try  to  indicate  the  reasoning  behind  these  methods,  and 
their  advantages  and  disadvantages.  We  will  not,  however,  advocate  any  particular 
method  since  there  is  no  evidence  that  one  method  is  always  superior  to  all  others.  You 
should  remember  that  the  goal  is  to  produce  a  good  working  system,  not  to  follow 
religiously  the  tenets  of  one  methodology  or  another. 

BASIC  PRINCIPLES 

All  the  methodologies  are  based  on  common  principles,  many  of  which  apply  to 
any  kind  of  design.  Among  these  principles  are: 

1.  Proceed  in  small  steps.  Do  not  try  to  do  too  much  at  one  time. 

2.  Divide  large  jobs  into  small,  logically  separate  tasks.  Make  the  sub-tasks 
as  independent  of  one  another  as  possible,  so  that  they  can  be  tested  sepa- 

rately and  so  that  changes  can  be  made  in  one  without  affecting  the  others. 

3.  Keep  the  flow  of  control  simple  to  make  programs  easy  to  follow  and  errors 
easy  to  locate  and  correct. 

4.  Use  pictorial  or  graphic  design  descriptions  as  much  as  possible.  They  are 
easier  to  visualize  than  word  descriptions.  This  is  the  great  advantage  of 
flowcharts. 

275 
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5.  Emphasize  clarity  and  simplicity  at  first.  You  can  improve  performance  (if 
necessary)  once  the  system  is  working. 

6.  Proceed  in  a  thorough  and  systematic  manner.  Use  checklists  and  standard 
procedures. 

7.  Do  not  tempt  fate.  Either  do  not  use  methods  that  you  are  not  sure  of,  or 
use  them  very  carefully.  Watch  for  situations  that  might  cause  confusion, 
and  clarify  them  as  soon  as  possible. 

8.  Keep  in  mind  that  the  system  must  be  debugged,  tested  and  maintained. 
Plan  for  these  later  stages. 

9.  Use  simple  and  consistent  terminology  and  methods.  Repetitiveness  is  no 
fault  in  program  design,  nor  is  complexity  a  virtue. 

10.  Have  your  design  completely  formulated  before  you  start  coding.  Resist 
the  temptation  to  start  writing  down  instructions:  it  makes  no  more  sense 
than  making  parts  lists  or  laying  out  circuit  boards  before  you  know  exactly 
what  will  be  in  the  system. 

11.  Be  particularly  careful  of  factors  that  may  change.  Make  the  implementa- 
tion of  likely  changes  as  simple  as  possible. 

12.  Keep  the  overall  task  in  mind.  Build  a  total  framework  in  which  individual 
pieces  can  be  defined  and  tested.  Do  not  leave  the  entire  system  integration 
to  the  end. 

13.  If  the  data  is  complex  or  there  are  numerous  relationships  between  data 
items,  you  must  organize  your  data  just  as  carefully  as  you  organize  your 
program.  We  will  briefly  discuss  the  design  of  data  structures  at  the  end  of 
this  chapter. 

FLOWCHARTING 

Flowcharting  is  certainly  the  best  known  of  all  program  design  methods.  Program- 
ming textbooks  describe  how  programmers  first  write  complete  flowcharts  and  then 

start  writing  the  actual  program.  In  fact,  few  programmers  have  ever  worked  this  way, 
and  flowcharting  has  often  been  more  of  a  joke  or  a  nuisance  to  programmers  than  a 
design  method.  We  will  try  to  describe  both  the  advantages  and  disadvantages  of 
flowcharts,  and  show  the  place  of  this  technique  in  program  design. 

ADVANTAGES  OF  FLOWCHARTING 

The  basic  advantage  of  the  flowchart  is  that  it  is  a  pictorial  representation.  Peo- 
ple find  such  representations  much  more  meaningful  than  written  descriptions.  The 

designer  can  visualize  the  whole  system  and  see  the  relationships  of  the  various  parts. 
Logical  errors  and  inconsistencies  often  stand  out  instead  of  being  hidden  in  a  printed 
page.  At  its  best,  the  flowchart  is  a  picture  of  the  entire  system. 

Some  specific  advantages  of  flowcharts  are: 

1.    Standard  symbols  exist  (see  Figure  17-1)  so  that  flowcharting  forms  are 
widely  recognized. 
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Figure  17-1.  Standard  Flowchart  Symbols 

2.  Flowcharts  can  be  understood  by  someone  without  a  programming  back- 
ground. 

3.  Flowcharts  can  be  used  to  divide  the  entire  project  into  sub-tasks.  The 
flowchart  can  then  be  examined  to  measure  overall  progress. 

4.  Flowcharts  show  the  sequence  of  operations  and  can  therefore  aid  in  locating 
the  source  of  errors. 

5.  Flowcharting  is  widely  used  in  other  areas  besides  programming. 

6.  There  are  many  tools  available  to  aid  in  flowcharting,  including  programmer's 
templates  and  automated  drawing  packages. 

DISADVANTAGES  OF  FLOWCHARTING 

These  advantages  are  all  important.  There  is  no  question  that  flowcharting  will 
continue  to  be  widely  used.  But  we  should  note  some  disadvantages  of  flowcharting  as 
a  program  design  method: 

1.    Flowcharts  are  difficult  to  design,  draw,  or  change  in  all  except  the  simplest 
situations. 
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2.  There  is  no  easy  way  to  debug  or  test  a  flowchart. 

3.  Flowcharts  tend  to  become  cluttered.  Designers  find  it  difficult  to  balance  be- 
tween the  amount  of  detail  needed  to  make  the  flowchart  useful  and  the 

amount  that  makes  the  flowchart  little  better  that  a  program  listing. 

4.  Flowcharts  show  only  the  program  organization.  They  do  not  show  the 
organization  of  the  data  or  the  structure  of  the  input/output  modules. 

5.  Flowcharts  do  not  help  with  hardware  or  timing  problems  or  give  hints  as  to 
where  these  problems  might  occur. 

6.  Flowcharts  allow  unstructured  design.  There  are  no  rules  governing  the  num- 
bers of  entries  and  exits,  the  number  or  type  of  interconnections,  or  the  logic 

that  may  be  employed. 

7.  There  is  no  obvious  way  to  represent  the  simple  repetition  of  a  loop. 

MAKING  FLOWCHARTS  USEFUL 

The  most  useful  flowcharts  may  ignore  program  variables  and  ask  questions 
directly.  Of  course,  compromises  are  often  necessary  here.  Two  versions  of  the 

flowchart  are  sometimes  helpful  —  one  general  version  in  layman's  language,  which 
will  be  useful  to  non-programmers,  and  one  programmer's  version  in  terms  of  the 
program  variables,  which  will  be  useful  to  other  programmers. 

A  third  type  of  flowchart,  a  data  flowchart,  may  also  be  helpful.  This  flowchart 

serves  as  a  cross-reference  for  the  other  flowcharts,  since  it  shows  how  the  program  han- 
dles a  particular  type  of  data.  Ordinary  flowcharts  show  how  the  program  proceeds,  han- 

dling different  types  of  data  at  different  points.  Data  flowcharts,  on  the  other  hand, 
show  how  particular  types  of  data  move  through  the  system,  passing  from  one  part  of 
the  program  to  another.  Such  flowcharts  are  very  useful  in  debugging  and  maintenance, 
since  errors  most  often  show  up  as  a  particular  type  of  data  being  handled  incorrectly. 

Thus  flowcharting  is  a  helpful  technique  that  you  should  not  try  to  extend  too 
far.  Flowcharts  are  useful  as  program  documentation,  since  they  have  standard 

forms  and  are  comprehensible  to  non-programmers.  As  a  design  tool,  however, 
flowcharts  cannot  provide  much  more  than  a  starting  outline;  the  programmer  cannot 
debug  a  detailed  flowchart  and  the  flowchart  is  often  more  difficult  to  design  than  the 
program  itself. 

EXAMPLES 

Flowcharting  the  Switch  and  Light  System 

This  simple  task,  in  which  a  single  switch  turns  on  a  light  for  one  second,  is 
easy  to  flowchart.  In  fact,  such  tasks  are  typical  examples  for  flowcharting  books, 
although  they  form  a  small  part  of  most  systems.  The  data  structure  here  is  so  simple 
that  it  can  be  safely  ignored. 

Figure  17-2  is  the  flowchart.  There  is  little  difficulty  in  deciding  on  the  amount  of 
detail  required.  The  flowchart  gives  a  straightforward  picture  of  the  procedure,  which 
anyone  could  understand. 
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Turn  light  on 

Figure  17-2.  Flowchart  of  One-Second  Response  to  a  Switch 

Flowcharting  the  Switch-Based  Memory  Loader 

This  system  (see  Figure  16-2)  is  considerably  more  complex  than  the  previous 
example,  and  involves  many  more  decisions.  The  flowchart  (see  Figure  17-3)  is  more 
difficult  to  draw  and  is  not  as  straightforward  as  the  previous  example.  In  this  exam- 

ple, we  face  the  problem  that  there  is  no  way  to  debug  or  test  the  flowchart. 

The  flowchart  in  Figure  17-3  includes  the  improvements  we  suggested  as  part  of 
the  problem  definition.  Clearly,  this  flowchart  is  beginning  to  get  cluttered  and  lose  its 
advantages  over  a  written  description.  Adding  other  features  that  define  the  meaning  of 
the  entry  with  status  lights  and  allow  the  operator  to  check  entries  after  completion 
would  make  the  flowchart  even  more  complex.  Drawing  the  complete  flowchart  from 
scratch  could  quickly  become  a  formidable  task.  However,  once  the  program  has  been 
written,  the  flowchart  is  useful  as  documentation. 

Flowcharting  the  Verification  Terminal 

In  this  application  (see  Figures  16-3  through  16-5)  the  flowchart  will  be  even 
more  complex  than  in  the  switch-based  memory  loader  case.  Here,  the  best  idea  is  to 
flowchart  sections  separately  so  that  the  flowcharts  remain  manageable.  However, 

the  presence  of  data  structures  (as  in  the  multi-digit  display  and  the  messages)  will  make 
the  gap  between  flowchart  and  program  much  wider. 
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IJZ 

Store  Data in  Address 

Wait 
debounce  time 

Figure  17-3.  Flowchart  of  a  Switch-Based  Memory  Loader 

Let  us  look  at  some  of  the  sections.  Figure  17-4  shows  the  keyboard  entry  pro- 
cess for  the  digit  keys.  The  program  must  fetch  the  data  after  each  strobe  and  place  the 

digit  into  the  display  array  if  there  is  room  for  it.  If  there  are  already  ten  digits  in  the 
array,  the  program  simply  ignores  the  entry. 

The  actual  program  will  have  to  handle  the  displays  at  the  same  time.  Note  that 

either  software  or  hardware  must  de-activate  the  keyboard  strobe  after  the  processor 
reads  a  digit. 

Figure  17-5  adds  the  Send  key.  This  key,  of  course,  is  optional.  The  terminal 
could  just  send  the  data  as  soon  as  the  operator  enters  a  complete  number.  However, 
that  procedure  would  not  give  the  operator  a  chance  to  check  the  entire  entry.  The 
flowchart  with  the  Send  key  is  more  complex  because  there  are  two  alternatives. 
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Clear  Entry  Array 
Key  Pointer  =  Start 

of  Entry  Array 

Key  Counter  =  0 

(Key  Pointer)  =  Key 

i 

Key  Pointer  = 
Key  Pointer  +  1 

Key  Counter  = 
Key  Counter  +  1 

Figure  17-4.  Flowchart  of  Keyboard  Entry  Process 

1.  If  the  operator  has  not  entered  ten  digits,  the  program  must  ignore  the  Send 
key  and  place  any  other  key  into  the  entry. 

2.  If  the  operator  has  entered  ten  digits,  the  program  must  respond  to  the  Send 
key  by  transferring  control  to  the  Send  routine;  and  ignore  all  other  keys. 

Note  that  the  flowchart  has  become  much  more  difficult  to  organize  and  to  follow. 
There  is  also  no  obvious  way  to  check  the  flowchart. 

Figure  17-6  shows  the  flowchart  of  the  keyboard  entry  process  with  all  the  func- 
tion keys.  In  this  example,  the  flow  of  control  is  not  simple.  Clearly,  some  written 

description  is  necessary.  The  organization  and  layout  of  complex  flowcharts  requires 
careful  planning.  We  have  followed  the  process  of  adding  features  to  the  flowchart  one 

at  a  time,  but  this  still  results  in  a  large  amount  of  redrawing.  Again  we  should  remem- 
ber that  throughout  the  keyboard  entry  process,  the  program  must  also  refresh  the  dis- 

plays if  they  are  multiplexed  and  not  controlled  by  shift  registers  or  other  hardware. 
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f~       Start  J 

Clear  Display  Array 
Key  Pointer  =  Start 

of  Display  Array 
Key  Counter  =  0 

(Key  Pointer)  = 
Key  Pointer  = Key  Pointer  + 
Key  Counter  = 

Key  Counter  +  1 

Figure  17-5.  Flowchart  of  Entry  Process  With  Send  Key 

Figure  17-7  is  the  flowchart  of  a  receive  routine.  We  assume  that  the  serial/ 
parallel  conversion  and  error  checking  are  done  in  hardware  (e.g.,  by  a  UART).  The 
processor  must: 

1.  Look  for  the  header.  (We  assume  that  it  is  a  single  character.) 

2.  Read  the  destination  address  (we  assume  that  it  is  three  characters  long)  and 
see  if  the  message  is  meant  for  this  terminal;  i.e.,  if  the  three  characters  agree 
with  the  terminal  address. 

3.  Wait  for  the  trailer  character. 
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Start 

Clear  Display  Array 
Key  Pointer  =  Start 
of  Display  Array 
Key  Counter  =  0 

Key  =  Keyboard 
Input  Data 

Key  Pointer  = 
Key  Pointer  +  1 

Figure  17-6.  Flowchart  of  Keyboard  Entry  Process  With  Function  Keys 

4.  If  the  message  is  meant  for  the  terminal,  turn  off  the  Busy  light  and  go  to  Dis- 
play Answer  routine. 

5.  In  the  event  of  any  errors,  request  retransmission  by  going  to  the  appropriate 
RTRANS  routine. 

This  routine  involves  a  large  number  of  decisions,  and  the  flowchart  is  neither 
simple  nor  obvious. 
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c 
RTRAN 

Figure  17-7.  Flowchart  of  Receive  Routine 

Clearly,  we  have  come  a  long  way  from  the  simple  flowchart  (Figure  17-2)  of 
the  first  example.  A  complete  set  of  flowcharts  for  the  transaction  terminal  would  be 
a  major  task.  It  would  consist  of  several  interrelated  charts  with  complex  logic,  and 
would  require  a  large  amount  of  effort.  Such  an  effort  would  be  just  as  difficult  as  writing 
a  preliminary  program,  and  not  as  useful,  since  you  could  not  check  the  flowcharts  on 
the  computer. 
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MODULAR  PROGRAMMING 

Once  programs  become  large  and  complex,  flowcharting  is  no  longer  a  satisfactory 
design  tool.  However,  the  problem  definition  and  the  flowchart  can  help  you  divide  the 

program  into  reasonable  sub-tasks.  The  division  of  the  entire  program  into  sub-tasks 

or  modules  is  called  "modular  programming."  Clearly,  most  of  the  programs  we  pre- 
sented in  earlier  chapters  would  typically  be  modules  in  a  large  program.  The  problems 

that  the  designer  faces  in  modular  programming  are  how  to  divide  the  program  into 
modules  and  how  to  put  the  modules  together. 

ADVANTAGES  OF  MODULAR  PROGRAMMING 

The  advantages  of  modular  programming  are  obvious: 

1.  A  single  module  is  easier  to  write,  debug,  and  test  than  an  entire  program. 

2.  A  module  is  likely  to  be  useful  in  many  places  and  in  other  programs,  particu- 
larly if  it  is  reasonably  general  and  performs  a  common  task.  You  can  build  a 

library  of  standard  modules. 

3.  Modular  programming  allows  the  programmer  to  divide  tasks  and  use  pre- 
viously written  programs. 

4.  Changes  can  be  incorporated  into  one  module  rather  than  into  the  entire 

system. 
5.  Errors  can  often  be  isolated  and  then  attributed  to  a  single  module. 

6.  Modular  programming  helps  with  project  management,  since  it  results  in 
obvious  goals  and  milestones. 

DISADVANTAGES  OF  MODULAR  PROGRAMMING 

The  idea  of  modular  programming  is  so  simple  that  its  disadvantages  are  often 
ignored.  These  include: 

1.  Fitting  the  modules  together  can  be  a  major  problem,  particularly  if  different 
people  write  the  modules. 

2.  Modules  require  very  careful  documentation,  since  they  may  affect  other 
parts  of  the  program,  such  as  data  structures  used  by  all  the  modules. 

3.  Testing  and  debugging  modules  separately  is  difficult,  since  other  modules 
may  produce  the  data  used  by  the  module  being  debugged  and  still  other 
modules  may  use  the  results.  You  may  have  to  write  special  programs  (called 

"drivers")  just  to  produce  sample  data  and  test  the  programs.  These  drivers 
require  extra  programming  effort  that  adds  nothing  to  the  system. 

4.  Programs  may  be  very  difficult  to  modularize.  If  you  modularize  the  program 
poorly,  integration  will  be  very  difficult,  since  almost  all  errors  and  changes 
will  involve  several  modules. 

5.  Modular  programs  often  require  extra  time  and  memory,  since  the  separate 
modules  may  repeat  functions. 
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Therefore,  while  modular  programming  is  certainly  an  improvement  over  trying 
to  write  the  entire  program  from  scratch,  it  does  have  some  disadvantages  as  well. 

Important  considerations  include  restricting  the  amount  of  information  shared 
by  modules,  limiting  design  decisions  that  are  subject  to  change  to  a  single  module, 

and  restricting  the  access  of  one  module  to  another.1 

PRINCIPLES  OF  MODULARIZATION 

An  obvious  problem  is  that  there  are  no  proven,  systematic  methods  for 

modularizing  programs.  We  should  mention  the  following  principles:2 

1.  Modules  that  reference  common  data  should  be  parts  of  the  same  overall 
module. 

2.  Two  modules  in  which  the  first  uses  or  depends  on  the  second,  but  not  the 
reverse,  should  be  separate. 

3.  A  module  that  is  used  by  more  than  one  other  module  should  be  part  of  a 
different  overall  module  than  the  others. 

4.  Two  modules  in  which  the  first  is  used  by  many  other  modules  and  the  second 
is  used  by  only  a  few  other  modules  should  be  separate. 

5.  Two  modules  whose  frequencies  of  usage  are  significantly  different  should  be 
part  of  different  modules. 

6.  The  structure  or  organization  of  related  data  should  be  hidden  within  a  single 
module. 

If  a  program  is  difficult  to  modularize,  you  may  need  to  redefine  the  tasks  that 

are  involved.  Too  many  special  cases  or  too  many  variables  that  require  special  han- 
dling are  typical  signs  of  inadequate  problem  definition. 

EXAMPLES 

Modularizing  the  Switch  and  Light  System 

This  simple  program  can  be  divided  into  two  modules: 
Module  1  waits  for  the  switch  to  be  turned  on  and  turns  the  light  on  in 

response. 

Module  2  provides  the  one-second  delay. 
Module  1  is  likely  to  be  specific  to  the  system,  since  it  will  depend  on  how  the 

switch  and  light  are  attached.  Module  2  will  be  generally  useful,  since  many  tasks 
require  delays.  Clearly,  it  would  be  advantageous  to  have  a  standard  delay  module  that 
could  provide  delays  of  varying  lengths.  The  module  will  require  careful  documentation 
so  that  you  will  know  how  to  specify  the  length  of  the  delay,  how  to  call  the  module,  and 
what  registers  and  memory  locations  the  module  affects. 

A  general  version  of  Module  1  would  be  far  less  useful,  since  it  would  have  to  deal 
with  different  types  and  connections  of  switches  and  lights. 

You  would  probably  find  it  simpler  to  write  a  module  for  a  particular  configuration 

of  switches  and  lights  rather  than  try  to  use  a  standard  routine.  Note  the  difference  be- 
tween this  situation  and  Module  2. 
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Modularizing  the  Switch-Based  Memory  Loader 

The  switch-based  memory  loader  is  difficult  to  modularize,  since  all  the  pro- 
gramming tasks  depend  on  the  hardware  configuration  and  the  tasks  are  so  simple 

that  modules  hardly  seem  worthwhile.  The  flowchart  in  Figure  17-3  suggests  that  one 
module  might  be  the  one  that  waits  for  the  operator  to  press  one  of  the  four  pushbut- 
tons. 

Some  other  modules  might  be: 

•  A  delay  module  that  provides  the  delay  required  to  debounce  the  switches 

•  A  switch  and  display  module  that  reads  the  data  from  the  switches  and  sends  it 
to  the  displays 

•  A  Lamp  Test  module 

Highly  system-dependent  modules  such  as  the  last  two  are  unlikely  to  be  generally  use- 
ful. This  example  is  not  one  in  which  modular  programming  offers  great  advantages. 

Modularizing  the  Verification  Terminal 

The  verification  terminal,  on  the  other  hand,  lends  itself  very  well  to  modular 
programming.  The  entire  system  can  easily  be  divided  into  three  main  modules: 

•  Keyboard  and  display  module 
•  Data  transmission  module 

•  Data  reception  module 

A  general  keyboard  and  display  module  could  handle  many  keyboard-  and  dis- 
play-based systems.  The  sub-modules  would  perform  such  tasks  as: 

•  Recognizing  a  new  keyboard  entry  and  fetching  the  data 

•  Clearing  the  array  in  response  to  a  Clear  Key 

•  Entering  digits  into  storage 

•  Looking  for  the  terminator  or  Send  key 

•  Displaying  the  digits 

Although  the  key  interpretations  and  the  number  of  digits  will  vary,  the  basic 
entry,  data  storage,  and  data  display  processes  will  be  the  same  for  many  programs.  Such 
function  keys  as  Clear  would  also  be  standard.  Clearly,  the  designer  must  consider 
which  modules  will  be  useful  in  other  applications,  and  pay  careful  attention  to  those 
modules. 

The  data  transmission  module  could  also  be  divided  into  such  sub-modules  as: 

1.  Adding  the  header  character. 

2.  Transmitting  characters  as  the  output  line  can  handle  them. 

3.  Generating  delay  times  between  bits  or  characters. 

4.  Adding  the  trailer  character. 

5.  Checking  for  transmission  failures;  i.e.,  no  acknowledgement,  or  inability  to 
transmit  without  errors. 
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The  data  reception  module  could  include  sub-modules  which: 

1.  Look  for  the  header  character. 

2.  Check  the  message  destination  address  against  the  terminal  address. 

3.  Store  and  interpret  the  message. 
4.  Look  for  the  trailer  character. 

5.  Generate  bit  or  character  delays. 

INFORMATION  HIDING  PRINCIPLE 

Note  here  how  important  it  is  that  each  design  decision  (such  as  the  bit  rate, 

message  format,  or  error-checking  procedure)  be  implemented  in  only  one  module.  A 
change  in  any  of  these  decisions  will  then  require  changes  only  to  that  single  module. 
The  other  modules  should  be  written  so  that  they  are  totally  unaware  of  the  values 
chosen  or  the  methods  used  in  the  implementing  module.  An  important  concept  here  is 

the  "information-hiding  principle,"3  whereby  modules  share  only  information  that 
is  absolutely  essential  to  getting  the  task  done.  Other  information  is  hidden  within  a 
single  module. 

Error  handling  is  a  typical  situation  in  which  information  should  be  hidden. 
When  a  module  detects  a  lethal  error,  it  should  not  try  to  recover;  instead,  it  should 
inform  the  calling  module  of  the  error  status  and  allow  that  module  to  decide  how  to 
proceed.  The  reason  is  that  the  lower  level  module  often  lacks  sufficient  information  to 
establish  recovery  procedures.  For  example,  suppose  that  the  lower  level  module  is  one 
that  accepts  numeric  input  from  a  user.  This  module  expects  a  string  of  numeric  digits 

terminated  by  a  carriage  return.  Entry  of  a  non-numeric  character  causes  the  module  to 
terminate  abnormally.  Since  the  module  does  not  know  the  context  (i.e.  is  the  numeric 

string  an  operand,  a  lone  number,  an  I/O  unit  number,  or  the  length  of  a  file?),  it  can- 
not decide  how  to  handle  an  error.  If  the  module  always  followed  a  single  error  recovery 

procedure,  it  would  lose  its  generality  and  only  be  usable  in  those  situations  where  that 
procedure  was  required. 

REVIEW  OF  MODULAR  PROGRAMMING 

Modular  programming  can  be  very  helpful  if  you  abide  by  the  following  rules: 

1.  Use  modules  of  20  to  50  lines.  Shorter  modules  are  usually  a  waste  of  time, 
while  longer  modules  are  seldom  general  and  may  be  difficult  to  integrate. 

2.  Make  modules  reasonably  general.  Differentiate  between  common  features 
like  ASCII  code  or  asynchronous  transmission  formats,  which  will  be  the 
same  for  many  applications,  and  key  identifications,  number  of  displays,  or 

number  of  characters  in  a  message,  which  are  likely  to  be  unique  to  a  particu- 
lar application.  Make  the  changing  of  the  latter  parameters  simple.  Major 

changes  like  different  character  codes  should  be  handled  by  separate  modules. 

3.  Take  extra  time  on  modules  like  delays,  display  handlers,  keyboard  handlers, 
etc.  that  will  be  useful  in  other  projects  or  in  many  different  places  in  the 
present  program. 
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Figure  17-8.  Flowchart  of  an  Unstructured  Program 

4.  Make  modules  independent  of  each  other.  Restrict  the  flow  of  information 
between  modules  and  implement  each  design  in  a  single  module. 

5.  Do  not  modularize  simple  tasks  that  are  already  easy  to  implement. 

STRUCTURED  PROGRAMMING 

How  do  you  keep  modules  distinct  and  stop  them  from  interacting?  How  do  you 
write  a  program  that  has  a  clear  sequence  of  operations  so  that  you  can  isolate  and 

correct  errors?  One  answer  is  to  use  the  methods  known  as  "structured  program- 
ming," whereby  each  part  of  the  program  consists  of  elements  from  a  limited  set  of 

structures  and  each  structure  has  a  single  entry  and  a  single  exit. 

Figure  17-8  shows  a  flowchart  of  an  unstructured  program.  If  an  error  occurs  in 
Module  B,  we  have  five  possible  sources  for  that  error.  Not  only  must  we  check  each 
sequence,  but  we  also  have  to  make  sure  that  corrections  do  not  affect  any  sequences. 
The  usual  result  is  that  debugging  becomes  like  wrestling  an  octopus.  Every  time  you 
think  the  situation  is  under  control,  there  is  another  loose  tentacle  somewhere. 
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BASIC  STRUCTURES 

The  solution  is  to  establish  a  clear  sequence  of  operations  so  that  you  can  isolate 

errors.  Such  a  sequence  uses  single-entry,  single-exit  structures.  A  program  consists 
of  a  sequence  of  structures;  it  may  be  a  single  statement  or  it  may  consist  of  structures 
that  are  nested  within  each  other  to  any  level  of  complexity.  The  required  structures  are 
listed  below. 

1.  An  ordinary  sequence;  that  is,  a  linear  structure  in  which  programs  are 
executed  consecutively.  If  the  sequence  is: 

pi P2 
P3 

the  computer  executes  PI  first,  P2  second,  and  P3  third.  PI,  P2,  and  P3  may 
be  single  statements  or  complex  programs. 

2.  A  conditional  structure  in  which  the  execution  of  a  program  depends  on  a 
condition. 

There  are  many  possible  conditional  structures,  but  a  common  one  is  "if  C 

then  PI  else  P2"  where  C  is  a  condition  and  PI  and  P2  are  programs.  The 
computer  executes  PI  if  C  is  true,  and  P2  if  C  is  false.  Figure  17-9  shows  the 
logic  of  this  structure.  Note  that  it  has  a  single  entry  and  a  single  exit;  the 
computer  cannot  enter  or  leave  PI  or  P2  other  than  through  the  structure. 

3.  A  loop  structure  in  which  a  program  is  repeated  until  (or  as  long  as)  a  con- 
dition holds. 

There  are  many  possible  loop  structures.  A  common  one  (called  a  "do- 
while"  structure)  is  "while  C  do  P,"  where  C  is  a  condition  and  P  is  a  pro- 

gram. The  computer  continually  checks  C  and  then  executes  P  as  long  as  C  is 
true. 

Figure  17-9.  Flowchart  of  the  If-Then-Else  Structure 
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Figure  17-10.  Flowchart  of  the  Do-While  Structure 

Figure  17-11.  Flowchart  of  the  Do-Until  Structure 

An  obvious  alternative  is  "until  C  do  P"  in  which  the  computer  continually 
checks  C  and  then  executes  P  as  long  as  C  is  false.  Figures  17-10  and  17-11 
show  the  logic  of  these  alternatives.  Both  have  a  single  entry  and  a  single  exit. 
The  computer  will  not  execute  P  at  all  if  C  is  originally  in  the  exit  state;  thus  P 
is  not  executed  at  least  once  automatically  as  it  is  in  a  FORTRAN  DO  loop. 

Alternative  structures  like  "do  P  while  C"  or  "repeat  P  until  C"  produce  the 
FORTRAN  implementation  in  which  the  computer  checks  the  condition  after 

executing  the  program  (remember  Figures  5-1  and  5-2).  This  approach  is 
often  more  efficient,  but  we  will  use  only  the  form  in  Figure  17-10  to  simplify 
the  discussion.  Most  high-level  structured  languages  allow  all  four  alterna- 

tives to  provide  flexibility.  In  most  cases,  the  program  P  must  eventually  force 
C  into  the  exit  state;  if  it  does  not,  the  computer  will  execute  P  endlessly  (the 
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so-called  DO  FOREVER  structure)  as  it  must  if  P  is  the  overall  control  pro- 
gram for  an  instrument,  computer  peripheral,  test  system,  or  electronic  game. 

4.  A  case  structure.  Although  it  is  not  a  primitive  structure  like  our  first  three, 
the  case  structure  is  so  common  that  it  merits  a  special  description.  The  case 

structure  is  "case  I  of  PO,  PI, ...  ,  Pn,"  where  I  is  an  index  and  PO,  PI, ... ,  Pn 
are  programs.  The  computer  executes  program  PO  if  I  is  0,  PI  if  I  is  1,  and  so 
on;  it  executes  only  one  of  the  n  programs.  If  I  is  greater  than  n  (the  number 
of  programs  in  the  case  statement)  or  after  execution  of  one  of  the  programs, 
the  computer  then  executes  the  next  sequential  statement  as  shown  in  Figure 

17-12.  Obviously,  we  could  implement  a  case  structure  as  a  series  of  condi- 
tional structures,  much  as  we  could  implement  a  jump  table  as  a  series  of  con- 

ditional branches.  However,  the  alternative  implementations  are  long,  awk- 
ward, and  difficult  to  expand. 
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FEATURES  AND  EXAMPLES  OF  STRUCTURES 

Note  the  following  features  of  structured  programming: 

1.  Only  the  three  basic  structures,  and  possibly  a  small  number  of  auxiliary 
structures,  are  permitted.  Variations  of  the  conditional  and  loop  structures 
may  be  allowed. 

2.  Structures  may  be  nested  to  any  level  of  complexity  since  any  structure  can, 
in  turn,  contain  any  of  the  structures. 

3.  Each  structure  has  a  single  entry  and  a  single  exit. 

Some  examples  of  the  conditional  structure  illustrated  in  Figure  17-9  are: 

1.  P2  included: 

IF    X   >    0   THEN   NPOS   =   NPOS   +  1 
ELSE   NNEG   =   NNEG   +  1 

Both  PI  and  P2  are  single  statements. 

2.  P2  omitted: 

IF   X   =    0   THEN    Y   =  1/X 

Here  no  action  is  taken  if  C  (X  •  0)  is  false.  P2  and  "else"  can  be  omitted  in  this  case. 
Some  examples  of  the  loop  structure  illustrated  in  Figure  17-10  are: 

1.  Form  the  sum  of  integers  from  1  to  N. 
i  =  o 
SUM    :  0 
DO   WHILE    I    <  N 

1    =    1    +  1 
SUM   =   SUM   +  I END 

The  computer  executes  the  loop  as  long  as  I  <  N.  If  N  =  0,  the  program  within  the  "do- 
while"  is  not  executed  at  all. 

2.  Count  characters  in  an  array  SENTENCE  until  you  find  an  ASCII  period. 

NCHAR   =  0 
DO  WHILE   SENTENCE(NCHAR)   j.  PERIOD 

NCHAR   -   NCHAR   +  1 
END 

The  computer  executes  the  loop  as  long  as  the  character  in  SENTENCE  is  not  an  ASCII 
period.  The  count  is  zero  if  the  first  character  is  a  period. 

ADVANTAGES  OF  STRUCTURED  PROGRAMMING 

The  advantages  of  structured  programming  are: 

1.  The  sequence  of  operations  is  simple  to  trace.  This  allows  you  to  test  and 
debug  programs  easily. 

2.  The  number  of  structures  is  limited  and  the  terminology  is  standardized. 

3.  The  structures  can  easily  be  made  into  modules. 

4.  Theoreticians  have  proved  that  the  given  set  of  structures  is  complete;  that  is, 
all  programs  can  be  written  in  terms  of  the  three  structures. 
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5.  The  structured  version  of  a  program  is  partly  self-documenting  and  fairly  easy 
to  read. 

6.  Structured  programs  are  easy  to  describe  with  program  outlines. 

7.  Structured  programming  has  been  shown  in  practice  to  increase  programmer 
productivity. 

Structured  programming  basically  forces  much  more  discipline  on  the  pro- 
grammer than  does  modular  programming.  The  result  is  more  systematic  and  better 

organized  programs. 

DISADVANTAGES  OF  STRUCTURED  PROGRAMMING 

The  disadvantages  of  structured  programming  are: 

1.  Only  a  few  high-level  languages  (e.g.,  PL/M,  Pascal)  will  directly  accept  the 
structures.  The  programmer  therefore  has  to  go  through  an  extra  translation 

stage  to  convert  the  structures  to  assembly  language  code.  The  structured  ver- 
sion of  the  program,  however,  is  often  useful  as  documentation. 

2.  Structured  programs  often  execute  more  slowly  and  use  more  memory  than 
unstructured  programs. 

3.  Limiting  the  structures  to  the  three  basic  forms  makes  some  tasks  very  awk- 
ward to  perform.  The  completeness  of  the  structures  only  means  that  all  pro- 

grams can  be  implemented  with  them;  it  does  not  mean  that  a  given  program 
can  be  implemented  efficiently  or  conveniently. 

4.  The  standard  structures  are  often  quite  confusing:  e.g.,  nested  "if-then-else11 
structures  may  be  very  difficult  to  read,  since  there  may  be  no  clear  indication 

of  where  the  inner  structures  end.  A  series  of  nested  "do-while"  loops  can 
also  be  difficult  to  read. 

5.  Structured  programs  consider  only  the  sequence  of  program  operations,  not 
the  flow  of  data.  Therefore,  the  structures  may  handle  data  awkwardly. 

6.  Few  programmers  are  accustomed  to  structured  programming.  Many  find  the 
standard  structures  awkward  and  restrictive. 

WHEN  TO  USE  STRUCTURED  PROGRAMMING 

We  are  neither  advocating  nor  discouraging  the  use  of  structured  programming. 
It  is  one  way  of  systematizing  program  design.  In  general,  structured  programming  is 
most  useful  in  the  following  situations: 

•  Larger  programs,  perhaps  exceeding  1000  instructions. 

•  Applications  in  which  memory  usage  is  not  critical. 

Low-volume  applications  where  software  development  costs,  particularly  test- 
ing and  debugging,  are  important  factors. 

Applications  involving  string  manipulation,  process  control,  or  other 
algorithms  rather  than  simple  bit  manipulations. 
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In  the  future,  we  expect  the  cost  of  memory  to  decrease,  the  average  size  of 
microprocessor  programs  to  increase,  and  the  cost  of  software  development  to 
increase.  Therefore,  methods  like  structured  programming,  which  decrease  software 
development  costs  for  larger  programs  but  use  more  memory,  will  become  more 
valuable. 

Just  because  structured  programming  concepts  are  usually  expressed  in  high-level 
languages  does  not  mean  that  structured  programming  is  not  applicable  to  assembly 
language  programming.  On  the  contrary,  the  assembly  language  programmer,  with  the 

total  freedom  of  expression  that  assembly  level  programming  allows,  needs  the  struc- 
turing concept  provided  by  structured  programming.  Creating  modules  with  single 

entry  and  exit  points,  using  simple  control  structures  and  keeping  the  complexity  of 

each  module  minimal  increases  the  productivity  of  the  assembly  language  pro- 
grammer. 

EXAMPLES 

Structured  Program  for  the  Switch  and  Light  System 

The  structured  version  of  this  example  is: 

SWITCH  r  OFF 
DO   WHILE   SWITCH   =  OFF 

READ  SWITCH 
END 

LIGHT   =  ON 
DELAY  1 
LIGHT   =  OFF 

ON  and  OFF  must  have  the  proper  definitions  for  the  switch  and  light.  We  assume 
that  DELAY  is  a  module  that  provides  a  delay  given  by  its  parameter  in  seconds. 

A  statement  in  a  structured  program  may  actually  be  a  subroutine.  However,  in 
order  to  conform  to  the  rules  of  structured  programming,  the  subroutine  cannot  have 
any  exits  other  than  the  one  that  returns  control  to  the  main  program. 

Since  "do-while"  checks  the  condition  before  executing  the  loop,  we  set  the 
variable  SWITCH  to  OFF  before  starting.  The  structured  program  is  straightforward, 
readable,  and  easy  to  check  by  hand.  However,  it  would  probably  require  somewhat 
more  memory  than  an  unstructured  program,  which  would  not  have  to  initialize 
SWITCH  and  could  combine  the  reading  and  checking  procedures. 

Structured  Program  for  the  Switch-Based  Memory  Loader 

The  switch-based  memory  loader  is  a  more  complex  structured  programming 

problem.  We  may  implement  the  flowchart  of  Figure  17-3  as  follows  (a  *  indicates  a 
comment,  and  we  use  "begin"  and  "end"  around  a  conditionally  executed  program 
that  consists  of  more  than  one  line): 

-CLEAR   ADDRESS    INITIALLY   SO    ITS   STARTING   VALUE    IS  ZERO 

HIADDRESS   =  0 
MIDADDRESS   =  0 
LOADDRESS   =  0 

-CONTINUOUSLY   EXAMINE   THE   SWITCHES  AND   LOAD   DATA    INTO  MEMORY 
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»     NOTE   THAT   "DO   FOREVER"    IS   JUST   "DO   WHILE"   WITH  NO  CONDITION 

DO  FOREVER 

::TEST   HIGH  ADDRESS  BUTTON.    IF    IT    IS   BEING   PRESSED,    DEBOUNCE  IT 
»     AND   WAIT   FOR   THE   OPERATOR   TO   RELEASE    IT.    THEN   ENTER  HIGH 
S!     ADDRESS   FROM   THE   SWITCHES  AND   SHOW    IT  ON   THE  LIGHTS 

IF    HIGHADDRBUTTON   -   0  THEN 
BEGIN 

DO   WHILE   HIADDRBUTTON   =  0 
DELAY   (DEBOUNCE  TIME) END 

HIADDRESS   =  SWITCHES 
LIGHTS   =  SWITCHES 

END 
-TEST  MID  ADDRESS  BUTTON.    IF    IT   IS   BEING  PRESSED,    DEBOUNCE  IT 
::     AND   WAIT   FOR   THE   OPERATOR   TO   RELEASE    IT.    THEN   ENTER  MID 
::     ADDRESS   FROM   THE   SWITCHES   AND   SHOW    IT   ON   THE  LIGHTS 

IF   MIDADDRBUTTON •=   0  THEN 
BEGIN 

DO  WHILE   MI DADDRBUTTON   -  0 
DELAY   (DEBOUNCE  TIME) 
END 

MIDADDRESS   =  SWITCHES 
LIGHTS   =  SWITCHES 

END 
-TEST  LOW  ADDRESS  BUTTON.  IF  IT  IS  BEING  PRESSED,  DEBOUNCE  IT  AND 
::     WAIT  FOR   THE   OPERATOR   TO  RELEASE    IT.    THEN  ENTER  LOW  ADDRESS 
-  FROM  THE   SWITCHES  AND   SHOW    IT   ON   THE  LIGHTS 

IF    LOADDRBUTTON   =   0  THEN 
BEGIN 

DO   WHILE   LOADDRBUTTON   -  0 
DELAY    (DEBOUNCE  TIME) 
END 

LOADDRESS   -  SWITCHES 
LIGHTS   =  SWITCHES 

END 

-TEST   DATA   BUTTON.    IF    IT    IS   BEING   PRESSED,    DEBOUNCE    IT  AND  WAIT 
-  FOR   THE   OPERATOR   TO   RELEASE    IT.    THEN   ENTER   DATA  FROM  THE 
-  SWITCHES,    SHOW   IT  ON  THE   LIGHTS,    AND  STORE    IT    IN  MEMORY  AT 
"      (HIGH  ADDRESS,    MID  ADDRESS,    LOW  ADDRESS) 

IF    DATABUTTON   =   0  THEN 
BEGIN 

DO   WHILE   DATABUTTON   =  0 
DELAY   (DEBOUNCE  TIME) 
END 

DATA  r  SWITCHES 
LIGHTS   =  SWITCHES 
(HIADDRESS,    MIDADRESS,    LOADDRESS)    =  DATA END 

-WAIT   THE   DEBOUNCING  TIME  BEFORE  EXAMINING  THE  BUTTONS  AGAIN. 
-  THIS   DELAY  DEBOUNCES   THE   RELEASE   FOR  SURE 

DELAY   (DEBOUNCE  TIME) 
END 

-THE   LAST   END  ABOVE   TERMINATES  THE 
-  DO  FOREVER  LOOP 

Structured  programs  are  not  easy  to  write,  but  they  can  give  a  great  deal  of  insight 
into  the  overall  program  logic.  You  can  check  the  logic  of  the  structured  program  by 
hand  before  writing  any  actual  code. 
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Structured  Program  for  the  Verification  Terminal 

Let  us  look  at  the  keyboard  entry  for  the  transaction  terminal.  We  will  assume 
that  the  display  array  is  ENTRY,  the  keyboard  strobe  is  KEYSTROBE,  and  the 
keyboard  data  is  KEYIN.  The  structured  program  without  the  function  keys  is: 

NKEYS   =  10 

-CLEAR   ENTRY   TO  START 

DO   WHILE   NKEYS   >  0 
NKEYS   r  NKEYS   -  1 
ENTRY(NKEYS)   =  0 

END 

-FETCH   A   COMPLETE   ENTRY   FROM  KEYBOARD 

DO   WHILE   NKEYS    <  10 
IF   KEYSTROBE  =  ACTIVE  THEN 

BEGIN 
KEYSTROBE  =  INACTIVE 
ENTRY(NKEYS)  =  KEYIN 
NKEYS   =   NKEYS   +  1 END 

END 

Adding  the  SEND  key  means  that  the  program  must  ignore  extra  digits  after  it 
has  a  complete  entry,  and  must  ignore  the  SEND  key  until  it  has  a  complete  entry. 
The  structured  program  is: 

-CLEAR   ENTRY   TO  START 

DO   WHILE   NKEYS   >  0 
NKEYS    =   NKEYS   -  1 
ENTRY(NKEYS)   =  0 

END 

-WAIT   FOR   COMPLETE   ENTRY   FOLLOWED   BY    SEND  KEY 

DO   WHILE   KEY   p   SEND   OR   NKEYS    t  10 
IF    KEYSTROBE    =  ACTIVE  THEN 

BEGIN 
KEYSTROBE    =  INACTIVE 
KEY   =  KEYIN 
IF    NKEYS    i-    10   AND   KEY   t    SEND  THEN 

BEGIN 
ENTRY(NKEYS)    =  KEY 
NKEYS    =   NKEYS   +  1 

END 
END 

END 

Note  the  following  features  of  this  structured  program. 

1.  The  second  if-then  is  nested  within  the  first  one,  since  the  keys  are  only 

entered  after  a  strobe  is  recognized.  If  the  second  if-then  were  on  the  same 
level  as  the  first,  a  single  key  could  fill  the  entry,  since  its  value  would  be 

entered  into  the  array  during  each  iteration  of  the  do-while  loop. 
2.  KEY  need  not  be  defined  initially,  since  NKEYS  is  set  to  zero  as  part  of  the 

clearing  of  the  entry. 

Adding  the  CLEAR  key  allows  the  program  to  clear  the  entry  originally  by 
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simulating  the  pressing  of  CLEAR;  i.e.,  by  setting  NKEYS  to  10  and  KEY  to  CLEAR 
before  starting.  The  structured  program  must  also  only  clear  digits  that  have  previously 
been  filled.  The  new  structured  program  is: 

SIMULATE   COMPLETE  CLEARING 

NKEYS   =  10 
KEY    =  CLEAR 

"WAIT   FOR   COMPLETE   ENTRY   AND   SEND  KEY 

DO   WHILE   KEY   =    SEND  OR   NKEYS   =  10 

•CLEAR   WHOLE   ENTRY    IF    CLEAR   KEY  STRUCK 

IF   KEY   =   CLEAR  THEN 
BEGIN 

KEY   =  0 
DO   WHILE   NKEYS    >  0 

NKEYS   =   NKEYS   -  1 
ENTRY(NKEYS)    =  0 END 

END 

:GET   DIGIT    IF    ENTRY  INCOMPLETE 
IF    KEYSTROBE   =   ACTIVE  THEN 

BEGIN 
KEYSTROBE    =  INACTIVE 
KEY   =  KEYIN 
IF    KEY    <    10   AND   NKEYS    t    10  THEN 

BEGIN 
ENTRY(NKEYS)    =  KEY 
NKEYS    =   NKEYS   +  1 

END 
END 

Note  that  the  program  resets  KEY  to  zero  after  clearing  the  array,  so  that  the  operation 
is  not  repeated. 

We  can  similarly  build  a  structured  program  for  the  receive  routine.  An  initial 
program  could  just  look  for  the  header  and  trailer  characters.  We  will  assume  that  RSTB 
is  the  indicator  that  a  character  is  ready.  The  structured  program  is: 

CLEAR   HEADER   FLAG    TO  START 

HFLAG    =  0 

WAIT   FOR    HEADER   AND  TRAILER 

DO   WHILE    HFLAG    =    0    OR   CHAR    *  TRAILER 

"GET   CHARACTER    IF    READY.    LOOK   FOR  HEADER 
IF    RSTB    =   ACTIVE  THEN 

BEGIN 
RSTB    =  INACTIVE 
CHAR    =  INPUT 
IF    CHAR    r    HEADER    THEN   HFLAG    =  1 END 

Now  we  can  add  the  section  that  checks  the  message  address  against  the  three 
digits  in  TERMINAL  ADDRESS  (TERMADDR).  If  any  of  the  corresponding  digits 
are  not  equal,  the  ADDRESS  MATCH  flag  (ADDRMATCH)  is  set  to  1. 

CLEAR   HEADER   FLAG,    ADDRESS   MATCH  FLAG,    ADDRESS   COUNTER   TO  START 

HFLAG   "=  0 ADDRMATCH   =  0 
ADDRCTR   =  0 
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-WAIT   FOR   HEADER,    DESTINATION  ADDRESS,    AND  TRAILER 
DO   WHILE   HFLAG   =    0   OR   CHAR    =   TRAILER   OR   ADDRCTR    =  3 

"GET   CHARACTER    IF  READY 

IF    RSTB    =   ACTIVE  THEN 
BEGIN 

RSTB    =  INACTIVE 
CHAR    =  INPUT 

END 

-CHECK   FOR   TERMINAL   ADDRESS   AND  HEADER 

IF    HFLAG   =    1    AND   ADDRCTR   =    3  THEN 
BEG  IN 

IF  CHAR  =  TERMADDR(ADDRCTR)  THEN  ADDRMATCH  =  1 
ADDRCTR    =   ADDRCTR   +  1 

END 
IF    CHAR    =    HEADER    THEN   HFLAG    =  1 END 

The  program  must  now  wait  for  a  header,  a  three-digit  identification  code,  and  a 
trailer.  You  must  be  careful  of  what  happens  during  the  iteration  when  the  program 
finds  the  header,  and  of  what  happens  if  an  erroneous  identification  code  character  is  the 
same  as  the  trailer. 

A  further  addition  can  store  the  message  in  MESSG.  NMESS  is  the  number  of 

characters  in  the  message;  if  it  is  not  zero  at  the  end,  the  program  knows  that  the  ter- 
minal has  received  a  valid  message.  We  have  not  tried  to  minimize  the  logic  expres- 

sions in  this  program. 

•■CLEAR   FLAGS,    COUNTERS   TO  START 
HFLAG   =  0 
ADDRMATCH   =  0 
ADDRCTR   =  0 
NMESS    =  0 

-WAIT   FOR   HEADER,    DESTINATION   ADDRESS,    AND  TRAILER 
DO   WHILE   HFLAG   =    0   OR   CHAR   =   TRAILER   OR   ADDRCTR   i  3 

-GET   CHARACTER    IF  READY 

IF    RSTB    =   ACTIVE  THEN 
BEGIN 

RSTB    -  INACTIVE CHAR    =  INPUT END 

•READ   MESSAGE    IF    DESTINATION  ADDRESS   =   TERMINAL  ADDRESS 

IF    HFLAG   =    1    AND   ADDRCTR   =    3  THEN 
IF    ADDRMATCH    =    0    AND   CHAR    z    TRAILER  THEN 

BEG  I N 
MESSGCNMESS)   =  CHAR NMESS    =    NMESS    +  1 

END 

;CHECK    FOR    TERMINAL  ADDRESS 

IF    HFLAG    =    1    AND   ADDRCTR    /    3  THEN 
BEGIN 

IF    CnAK    =    TERMADDR(ADDRCTR)    THEN   ADDRMATCH   =  1 
ADDRCTR   =   ADDRCTR    +  1 END 

:LGOK   FOR  HEADER 

IF    CHAR    =    HEADER    THEN   HFLAG    =  1 
END 
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The  program  checks  for  the  identification  code  only  if  it  found  a  header  during  a 
previous  iteration.  It  accepts  the  message  only  if  it  has  previously  found  a  header  and  a 
complete,  matching  destination  address.  The  program  must  work  properly  during  the 
iterations  when  it  finds  the  header,  the  trailer  and  the  last  digit  of  the  destination 
address.  It  must  not  try  to  match  the  header  with  the  terminal  address  or  place  the  trailer 
or  the  final  digit  of  the  destination  address  in  the  message.  You  might  try  adding  the 

rest  of  the  logic  from  the  flowchart  (Figure  17-7)  to  the  structured  program.  Note  that 
the  order  of  operations  is  often  critical.  You  must  be  sure  that  the  program  does  not 
complete  one  phase  and  start  the  next  one  during  the  same  iteration. 

REVIEW  OF  STRUCTURED  PROGRAMMING 

Structured  programming  brings  discipline  to  program  design.  It  forces  you  to 
limit  the  types  of  structures  you  use  and  the  sequence  of  operations.  It  provides 

single-entry,  single-exit  structures,  which  you  can  check  for  logical  accuracy.  Struc- 
tured programming  often  makes  the  designer  aware  of  inconsistencies  or  possible 

combinations  of  inputs.  Structured  programming  is  not  a  cure-all,  but  it  does  bring 
some  order  into  a  process  that  can  be  chaotic.  The  structured  program  should  also  aid 
in  debugging,  testing,  and  documentation. 

Structured  programming  is  not  simple.  The  programmer  must  not  only  define 
the  problem  adequately,  but  must  also  work  through  the  logic  carefully.  This  is 
tedious  and  difficult,  but  it  results  in  a  clearly  written,  working  program. 

Terminators 

The  particular  structures  we  have  presented  are  not  ideal  and  are  often  awk- 
ward. In  addition,  it  can  be  difficult  to  determine  where  one  structure  ends  and 

another  begins,  particularly  if  they  are  nested.  Theorists  may  provide  better  struc- 
tures in  the  future,  or  designers  may  wish  to  add  some  of  their  own.  A  terminator  for 

each  structure  seems  necessary,  since  indenting  does  not  always  clarify  the  situation. 

"End"  is  a  logical  terminator  for  the  "do-while"  loop.  There  is  no  obvious  terminator, 
however,  for  the  "if-then-else"  statement;  some  theorists  have  suggested  "endif  or 
"fi"  ("if  backwards),  but  these  are  both  awkward  and  detract  from  the  readability  of 
the  program. 

RULES  FOR  STRUCTURED  PROGRAMMING 

We  suggest  the  following  rules  for  applying  structured  programming: 

1.  Begin  by  writing  a  basic  flowchart  to  help  define  the  logic  of  the  program. 

2.  Start  with  the  "sequential,"  "if-then-else,"  and  "do-while"  structures. 
They  are  known  to  be  a  complete  set,  i.e.,  any  program  can  be  written  in 
terms  of  these  structures. 

3.  Indent  each  level  a  few  spaces  from  the  previous  level,  so  that  you  will  know 
which  statements  belong  where. 

4.  Use  terminators  for  each  structure:  e.g.,  "end"  for  the  "do-while"  and 
"endif 1  or  "fi"  for  the  "if-then-else."  The  terminators  plus  the  indentation 
should  make  the  program  reasonably  clear. 
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5.  Emphasize  simplicity  and  readability.  Leave  lots  of  spaces,  use  meaningful 
names,  and  make  expressions  as  clear  as  possible.  Do  not  try  to  minimize  the 
logic  at  the  cost  of  clarity. 

6.  Comment  the  program  in  an  organized  manner. 

7.  Check  the  logic.  Try  all  the  extreme  cases  or  special  conditions  and  a  few 
sample  cases.  Any  logical  errors  you  find  at  this  level  will  not  plague  you  later. 

TOP-DOWN  DESIGN 

The  remaining  problem  is  how  to  check  and  integrate  modules  or  structures. 

Certainly  we  want  to  divide  a  large  task  into  sub-tasks.  But  how  do  we  check  the  sub- 

tasks  in  isolation  and  put  them  together?  The  standard  procedure,  called  "bottom-up 
design,"  requires  extra  work  in  testing  and  debugging  and  leaves  the  entire  integra- 

tion task  to  the  end.  What  we  need  is  a  method  that  allows  testing  and  debugging  in 
the  actual  program  environment  and  modularizes  system  integration. 

This  method  is  "top-down  design."  Here  we  start  by  writing  the  overall  super- 
visor program.  We  replace  the  undefined  sub-programs  by  program  "stubs,"  tempor- 

ary programs  that  may  either  record  the  entry,  provide  the  answer  to  a  selected  test 
problem,  or  do  nothing.  We  then  test  the  supervisor  program  to  see  that  its  logic  is 
correct. 

We  proceed  by  expanding  the  stubs.  Each  stub  will  often  contain  sub-tasks, 
which  we  will  temporarily  represent  as  stubs.  This  process  of  expansion,  debugging, 
and  testing  continues  until  all  the  stubs  are  replaced  by  working  programs.  Note  that 
testing  and  integration  occur  at  each  level,  rather  than  all  at  the  end.  No  special  driver  or 
data  generation  programs  are  necessary.  We  get  a  clear  idea  of  exactly  where  we  are  in 

the  design.  Top-down  design  assumes  modular  programming,  and  is  compatible  with 
structured  programming  as  well. 

DISADVANTAGES  OF  TOP-DOWN  DESIGN 

The  disadvantages  of  top-down  design  are: 

1.  The  overall  design  may  not  mesh  well  with  system  hardware. 

2.  It  may  not  take  good  advantage  of  existing  software. 

3.  Stubs  may  be  difficult  to  write,  particularly  if  they  must  work  correctly  in 
several  different  places. 

4.  Top-down  design  may  not  result  in  generally  useful  modules. 

5.  Errors  at  the  top  level  can  have  catastrophic  effects,  whereas  errors  in  bottom- 
up  design  are  usually  limited  to  a  particular  module. 

In  large  programming  projects,  top-down  design  has  been  shown  to  greatly 
improve  programmer  productivity.  However,  almost  all  of  these  projects  have  used 

some  bottom-up  design  in  cases  where  the  top-down  method  would  have  resulted  in  a 
large  amount  of  extra  work. 
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Top-down  design  is  a  useful  tool  that  should  not  be  followed  to  extremes.  It  pro- 
vides the  same  discipline  for  system  testing  and  integration  that  structured  program- 
ming provides  for  module  design.  The  method,  however,  has  more  general 

applicability,  since  it  does  not  assume  the  use  of  programmed  logic.  However,  top- 
down  design  may  not  result  in  the  most  efficient  implementation. 

EXAMPLES 

Top-Down  Design  of  Switch  and  Light  System 

The  first  structured  programming  example  actually  demonstrates  top-down 
design  as  well.  The  program  was: 

SWITCH   =  OFF 
DO   WHILE    SWITCH   =  OFF 

READ  SWITCH END 
LIGHT   =  ON 
DELAY  1 
LIGHT   =  OFF 

These  statements  are  really  stubs,  since  none  of  them  is  fully  defined.  For  example, 
what  does  READ  SWITCH  mean?  If  the  switch  were  one  bit  of  input  port  SPORT,  it 
really  means: 

SWITCH   zz    SPORT   AND  SMASK 

where  SMASK  has  a  T  bit  in  the  appropriate  position.  The  masking  may,  of  course,  be 
implemented  with  a  Bit  Test  instruction. 
Similarly,  DELAY  1  actually  means  (if  the  processor  itself  provides  the  delay): 

REG   =  COUNT 
DO   WHILE   REG   t  0 

REG   =   REG   -  1 
END 

COUNT  is  the  appropriate  number  to  provide  a  one-second  delay.  The  expanded  ver- 
sion of  the  program  is: 

SWITCH   =  0 
DO   WHILE    SWITCH   =  0 

SWITCH   =   SPORT   AND  MASK 
END 
LIGHT   =  ON 
REF    =  COUNT 
DO   WHILE   REG   =  0 

REG   =   REG   -  1 END 
LIGHT   -  NOT(LIGHT) 

Certainly  this  program  is  more  explicit,  and  could  more  easily  be  translated  into 
actual  instructions  or  statements. 

Top-Down  Design  of  the  Switch-Based  Memory  Loader 

This  example  is  more  complex  than  the  first  example,  so  we  must  proceed 
systematically.  Here  again,  the  structured  program  contains  stubs. 



Program  Design  303 

For  example,  if  the  HIGH  ADDRESS  button  is  one  bit  of  input  port  CPORT,  "if 
HIADDRBUTTON  =  (T  really  means: 

1.  Input  from  CPORT 

2.  Logical  AND  with  HAMASK 

where  HAMASK  has  a  T  in  the  appropriate  bit  position  and  'O's  elsewhere.  Similarly 
the  condition  "if  DATABUTTON  =  (r  really  means: 

1.  Input  from  CPORT 

2.  Logical  AND  with  DAMASK 

So,  the  initial  stubs  could  just  assume  that  no  buttons  are  being  pressed: 
HIADDRBUTTON   =  1 
M I DADDRBUTTON   =  1 
L0ADDR6UTT0N   =  1 
DATABUTTON   -  1 

A  run  of  the  supervisor  program  should  show  that  it  takes  the  implied  "else"  path 
through  the  "if-then-else"  structures,  and  never  reads  the  switches.  Similarly,  if  the 
stub  were: 

HIADDRBUTTON   =  0 

the  supervisor  program  should  stay  in  the  "do  while  HIADDRBUTTON  =  0"  loop  wait- 
ing for  the  button  to  be  released.  These  simple  runs  check  the  overall  logic. 
Now  we  can  expand  each  stub  and  see  if  the  expansion  produces  a  reasonable 

overall  result.  Note  how  debugging  and  testing  proceed  in  a  straightforward  and 

modular  manner.  We  expand  the  HIADDRBUTTON  =  0  stub  to: 
READ  CPORT 
HIADDRBUTTON  =   (CPORT)   AND  HAMASK 

The  program  should  wait  for  the  HIGH  ADDRESS  button  to  be  released.  The 
program  should  then  display  the  values  of  the  switches  on  the  lights.  This  run  checks  for 
the  proper  response  to  the  HIGH  ADDRESS  button. 

We  then  expand  the  MID  ADDRESS  button  module  to: 

READ  CPORT 
MI DADDRBUTTON   =   (CPORT)  AND  MAMASK 

When  the  MID  ADDRESS  button  is  released,  the  program  should  display  the 
value  of  the  switches  on  the  lights.  This  run  checks  for  the  proper  response  to  the  MID 
ADDRESS  button. 

We  then  expand  the  LOW  ADDRESS  button  module  to: 

READ  CPORT 
LOADDRBUTTON   =   (CPORT)  AND  LAMASK 

When  the  LOW  ADDRESS  button  is  released,  the  program  should  display  the 
values  of  the  switches  on  the  lights.  This  run  checks  for  the  proper  response  to  the  LOW 
ADDRESS  button. 

Similarly,  we  can  expand  the  DATA  button  module  and  check  for  the  proper 
response  to  that  button.  The  entire  program  will  then  have  been  tested. 

When  all  the  stubs  have  been  expanded,  the  coding,  debugging,  and  testing 
stages  will  all  be  complete.  Of  course,  we  must  know  exactly  what  results  each  stub 

should  produce.  However,  many  logical  errors  will  become  obvious  at  each  level  with- 
out any  further  expansion. 
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Figure  17-13.  Initial  Flowchart  of  Transaction  Terminal 

Top-Down  Design  of  Verification  Terminal 

This  example,  of  course,  will  have  more  levels  of  detail.  We  could  start  with  the 

following  program  (see  Figure  17-13  for  a  flowchart): 
KEYBOARD ACK   =  0 
DO   WHILE   ACK   =  0 

TRANSMI T 
RECEIVE 

END 
D  I  SPLAY 

Here,  KEYBOARD,  TRANSMIT,  RECEIVE,  and  DISPLAY  are  program  stubs 

that  will  be  expanded  later.  KEYBOARD,  for  example,  could  simply  place  a  ten-digit 
verified  number  into  the  appropriate  buffer. 

The  next  stage  of  expansion  could  produce  the  following  program  for 
KEYBOARD  (see  Figure  17-14): 

VER   =  0 
DO   WHILE   VER   -  0 

COMPLETE    =  0 
DO   WHILE   COMPLETE    =  0 KEY  1  N 

KE  YDS END 
VERIFY 

END 
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Figure  17-14.  Flowchart  for  Expanded  KEYBOARD  Routine 

Here  VER  =  0  means  that  an  entry  has  not  been  verified;  COMPLETE  =  0  means 
that  the  entry  is  incomplete.  KEYIN  and  KEYDS  are  the  keyboard  input  and  display 
routines  respectively.  VERIFY  checks  the  entry.  A  stub  for  KEYIN  would  simply  place 
a  random  entry  (from  a  random  number  table  or  generator)  into  the  buffer  and  set 
COMPLETE  to  1. 

We  would  continue  by  similarly  expanding,  debugging,  and  testing 
TRANSMIT,  RECEIVE,  and  DISPLAY.  Note  that  you  should  expand  each  program 
by  one  level  so  that  you  do  not  perform  the  integration  of  an  entire  program  at  any  one 
time.  You  must  use  your  judgment  in  defining  levels.  Too  small  a  step  wastes  time, 

while  too  large  a  step  gets  you  back  to  the  problems  of  system  integration  that  top- 
down  design  is  supposed  to  solve. 

REVIEW  OF  TOP-DOWN  DESIGN 

Top-down  design  brings  discipline  to  the  testing  and  integration  stages  of  pro- 
gram design.  It  provides  a  systematic  method  for  expanding  a  flowchart  or  problem 



306    68000  Assembly  Language  Programming 

definition  to  the  level  required  to  actually  write  a  program.  Together  with  structured 
programming,  it  forms  a  complete  set  of  design  techniques. 

Like  structured  programming,  top-down  design  is  not  simple.  The  designer 
must  have  defined  the  problem  carefully  and  must  work  systematically  through  each 

level.  Here  again  the  methodology  may  seem  tedious,  but  the  payoff  can  be  substan- 
tial if  you  follow  the  rules. 

We  recommend  the  following  approach  to  top-down  design: 

1.  Start  with  a  basic  flowchart. 

2.  Make  the  stubs  as  complete  and  as  separate  as  possible. 

3.  Define  precisely  all  the  possible  outcomes  from  each  stub  and  select  a  test  set. 

4.  Check  each  level  carefully  and  systematically. 

5.  Use  the  structures  from  structured  programming. 

6.  Expand  each  stub  by  one  level.  Do  not  try  to  do  too  much  in  one  step. 

7.  Watch  carefully  for  common  tasks  and  data  structures. 

8.  Test  and  debug  after  each  stub  expansion.  Do  not  try  to  do  an  entire  level  at  a 
time. 

9.  Be  aware  of  what  the  hardware  can  do.  Do  not  hesitate  to  stop  and  do  a  little 

bottom-up  design  where  that  seems  necessary. 

DESIGNING  DATA  STRUCTURES 

Beginning  programmers  seldom  think  about  data  structures.  They  generally 

assume  that  the  data  will  be  stored  somewhere  in  the  computer's  memory,  much  as 
records  are  piled  into  a  cabinet  or  books  into  a  bookcase.  Designing  data  structures 

seems  as  far  fetched  as  establishing  a  complete  card  catalog  for  one's  books  or  records; 
few  people  take  organization  to  such  lengths. 

But  the  fact  is  that  most  computer-based  systems  involve  a  surprisingly  large 
amount  of  data  processing.  Numerical  algorithms  assume  that  the  processor  can  easily 
find  the  element  in  the  next  row  or  next  column  of  an  array.  Editor  programs  assume 
that  the  processor  can  easily  find  the  next  character,  the  previous  line,  a  particular  string 
of  characters,  or  the  starting  point  of  an  entire  paragraph  or  page.  An  operator  interface 
for  a  piece  of  test  equipment  may  assume  that  the  processor  can  easily  find  a  particular 
command  or  data  entry  and  move  it  from  one  place  to  another.  Imagine  how  difficult 
the  following  tasks  would  be  to  implement  if  the  data  is  simply  scattered  through 
memory  or  organized  in  a  long,  linear  array: 

1 .  The  operator  of  a  machine  tool  wants  to  insert  two  extra  cutting  steps  between 

steps  14  and  15  of  a  40-step  pattern. 

2.  The  operator  of  a  chemical  processing  plant  wants  to  see  the  last  ten  values  of 
the  temperature  at  the  inlet  to  tank  05. 

3.  An  accounting  clerk  wants  to  enter  a  new  account  into  an  alphabetical  list. 

The  processor  may  spend  most  of  its  time  finding  the  data,  moving  from  one 
data  item  to  the  next,  and  organizing  the  data. 
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SELECTING  DATA  STRUCTURES 

Obviously,  we  cannot  provide  a  complete  description  of  data  structures  here.4-5 
Just  as  clearly,  the  design  of  data  structures  has  great  influence  on  the  design  of  pro- 

grams if  the  data  is  complex.  We  will  briefly  mention  the  following  considerations  in 
selecting  data  structures: 

1.  How  are  the  data  items  related?  Closely  related  items  should  be  accessible 
from  each  other,  since  such  accesses  will  be  frequent. 

2.  What  kind  of  operations  will  be  performed  on  the  data?  Simple  linear  struc- 
tures are  adequate  if  the  data  is  always  handled  in  a  single,  fixed  order. 

However,  more  complex  structures  are  essential  if  the  tasks  involve  opera- 
tions such  as  searching,  editing,  or  sorting. 

3.  Can  standard  structures  be  used?  Methods  are  readily  available  for  handling 
structures  such  as  queues,  stacks,  and  linked  lists.  Other  arrangements  will 
require  special  programming. 

4.  What  kind  of  access  is  necessary?  Clearly  we  need  more  structure  if  we  must 
find  elements  that  are  identified  by  a  number  or  a  relative  position,  rather 
than  just  the  first  or  last  entries.  We  must  organize  the  data  to  make  the 
accesses  as  rapid  as  possible. 

REVIEW  OF  PROBLEM  DEFINITION  AND 

PROGRAM  DESIGN 

You  should  note  that  we  have  spent  two  entire  chapters  without  mentioning  any 
specific  microprocessor  or  assembly  language,  and  without  writing  a  single  line  of  actual 
code.  However,  you  should  now  know  a  lot  more  about  the  examples  than  you  would  if 
we  had  just  asked  you  to  write  the  programs  at  the  start.  Although  we  often  think  of  the 
writing  of  computer  instructions  as  a  key  part  of  software  development,  it  is  actually 
one  of  the  easiest  stages. 

Once  you  have  written  a  few  programs,  coding  will  become  simple.  You  will 
soon  learn  the  instruction  set,  recognize  which  instructions  are  really  useful,  and 
remember  the  common  sequences  that  make  up  the  largest  part  of  most  programs.  You 
will  then  find  that  many  of  the  other  stages  of  software  development  remain  difficult 
and  have  few  clear  rules. 

We  have  suggested  some  ways  to  systematize  the  important  early  stages.  In  the 

problem  definition  stage,  you  must  define  all  the  characteristics  of  the  system  —  its 
inputs,  outputs,  processing,  time  and  memory  constraints,  and  error  handling.  You 
must  particularly  consider  how  the  system  will  interact  with  the  larger  system  of 
which  it  is  a  part,  and  whether  that  larger  system  includes  electrical  equipment, 
mechanical  equipment,  or  a  human  operator.  You  must  start  at  this  stage  to  make 
the  system  easy  to  use  and  maintain. 

In  the  program  design  stage,  several  techniques  can  help  you  to  systematically 
specify  and  document  the  logic  of  your  program.  Modular  programming  forces  you  to 

divide  the  total  program  into  small,  distinct  modules.  Structured  programming  pro- 
vides a  systematic  way  of  defining  the  logic  of  those  modules,  while  top-down  design 
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is  a  systematic  method  for  integrating  and  testing  them.  Of  course,  no  one  can  compel 
you  to  follow  all  of  these  techniques;  they  are,  in  fact,  guidelines  more  than  anything 
else.  But  they  do  provide  a  unified  aproach  to  design,  and  you  should  consider  them  a 
basis  on  which  to  develop  your  own  approach. 
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Documentation 

Software  development  must  yield  more  than  just  a  working  program.  A  soft- 
ware product  must  also  include  the  documentation  that  allows  it  to  be  used,  main- 

tained, and  extended.  Adequate  documentation  is  helpful  during  program  debugging 

and  testing,  and  essential  in  the  later  stages  of  the  program's  life  cycle. 

Although  no  program  is  ever  completely  self-documenting,  some  of  the  rules 
that  we  mentioned  earlier  can  help.  These  include: 

•  Clear,  simple  structure  with  as  few  transfers  of  control  (jumps)  as  possible 

•  Use  of  meaningful  names  and  labels 

•  Use  of  names  instead  of  literal  numbers  for  I/O  devices,  parameters,  numerical 
factors,  subroutine  addresses,  branch  destinations,  etc. 

•  Emphasis  on  simplicity  rather  than  on  minor  savings  in  memory  usage,  execu- 
tion time,  or  typing 

For  example,  the  following  program  sends  a  character  to  a  teletypewriter: 

SELF-DOCUMENTING  PROGRAMS 

MOVEQ 

MOVE .B MOVEQ 

-1,D0 

$6000, DO 
#10, D2 

SNDBIT 
BCLR  .B 
BSR ROR  .  W 
BCS.S 

#7, 0(A0) DELAY9_1 

#1,D0 
SNDONE 

BCLR . B BRA. 5 #7, O(AO) 
NEXT 

SNDONE 
NEXT 

BSET.B 
DBRA 

#7, 0CA0) 
D 2 , SNDB  I  T 

RTS 

END 

311 
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CHOOSING  USEFUL  NAMES 

Even  without  comments  we  can  improve  the  program  as  follows: 

PROGRAM 
DATA 

EQU 
EQU 

$4000 
$  6  0  0  0 

PI  ADA EQU SCO OFFSET  DATA  REGISTER  A 

TTYB  I  T 
CHRBIT 
STPB  I  T 

EQU 
EQU 
EQU 

$0  7 
$08 
$0  2 

TTY   CONNECTED   TO  BIT  7 
NUMBER   OF   DATA  BITS    IN  CHARACTER 
NUMBER   OF   STOPBITS   TO  TRANSMIT 

TTYOUT MOVEQ 
MOVE . B MOVEQ 

-1,D0 

CHAR, DO 
H+CHRBIT  +  STPBIT-1,D2 

FORM   STOP  BITS 
GET   TTY  OUTPUT  DATA 
BIT  COUNT  ADJUSTED  FOR  DBRA 

SNDB  I  T 
BCLR.B 
BSR ROR  .  W 
BCS.S 

t(TTYBIT,PIADA(A0) 
DELAY9  1 
1*1, DO 
SNDONE 

SEND   START  BIT 
WAIT    1   BIT  TIME 
CARRY   =   NEXT   DATA  BIT 
IF   DATA   =   1    THEN   SEND  A  ONE 

BCLR.B 
BRA.S ttTTYB  IT, PIADA(AO) 

NEXT 
SEND    1 0 '    AS   DATA  B I T 

SNDONE 
NEXT 

BSET.B 
DBRA 

ttTTYB  I  T ,  PIADACA0  ) 
D2, SNDB  I  T 

SEND    ' 1 •    AS   DATA  BIT 
CONTINUE   UNTIL   ALL   DATA  BITS  SENT 

RTS 
END 

This  program  is  undoubtedly  easier  to  understand  than  the  earlier  version.  Even 

without  further  documentation,  you  could  probably  guess  at  the  function  of  the  pro- 
gram and  the  meanings  of  most  of  the  variables.  Other  documentation  techniques  can- 

not substitute  for  self-documentation. 
Some  further  notes  on  choosing  names: 

1.  Use  the  obvious  name  when  it  is  available,  like  TTY  or  CRT  for  output 
devices,  START  or  RESET  for  addresses,  DELAY  or  SORT  for  subroutines, 
COUNT  or  LENGTH  for  data. 

2.  Avoid  acronyms  like  S16BA  for  SORT  16-BIT  ARRAY.  These  seldom  mean 
anything  to  anybody. 

3.  Use  full  words  or  close  to  full  words  when  possible,  like  DONE,  PRINT, 
SEND,  etc. 

4.  Keep  the  names  as  distinct  as  possible.  Avoid  names  that  look  alike,  such  as 

TEMPI  and  TEMPI,  or  those  that  resemble  operation  codes  or  other  built-in 
names. 

COMMENTS 

Comments  are  a  simple  form  in  which  to  provide  additional  documentation. 

However,  few  programs  (even  those  used  as  examples  in  books)  have  effective  com- 
ments. You  should  consider  the  following  guidelines  for  good  comments: 

1.  Don't  explain  the  internal  effects  of  the  instruction.  Instead,  explain  the 
purpose  of  the  instruction  in  the  program.  Comments  like 

SUBQ.W     til, DO DO    :  =  DO    -  1 
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do  not  help  the  reader  understand  the  program.  A  more  useful  comment  is 

SUBQ.W      #1,D0  LINE    NUMBER    :=   LINE   NUMBER    -  1 

Remember  that  the  standard  manuals  contain  descriptions  of  how  the  pro- 
cessor executes  its  instructions.  The  comments  should  explain  what  tasks  the 

program  is  performing  and  what  methods  it  is  using. 

2.  Make  the  comments  as  clear  as  possible.  Do  not  use  abbreviations  or 

acronyms  unless  they  are  well  known  (like  ASCII,  PIA,  or  UART)  or  stan- 

dard (like  "num11  for  number,  "ms"  for  millisecond,  etc.).  Avoid  comments like 

SUBQ.W      #1,D0  L    N    :=   L    N   -  1 

or 
SUBQ.W      #1,00  DEC.    LN   BY  1 

The  extra  typing  required  to  enter  meaningful  comments  is  certainly  worth- 
while. 

3.  Comment  every  important  or  obscure  point.  Be  particularly  careful  to  mark 
operations  that  may  not  have  obvious  functions,  such  as 

MOVE  A . L    (AO), AO  GET   ADDRESS    TC   NEXT    ELEMENT    IN  QUEUE 

or 
AND  I  . B      tt$FE, PIADA(AO)  TURN   OFF    LED  INDICATOR 

Clearly,  I/O  operations  often  require  extensive  comments.  If  you're  not 
exactly  sure  what  an  instruction  does,  or  if  you  have  to  think  about  it,  add  a 
clarifying  comment.  The  comment  will  save  you  time  later  and  will  be  helpful 
in  documentation. 

4.  Don't  comment  the  obvious.  A  comment  on  each  line  makes  it  difficult  to 
find  the  important  points.  Standard  instructions  like 

DBRA  Dl,LOOP 

need  not  be  marked  unless  you're  doing  something  special.  One  comment 
will  often  suffice  for  several  lines,  as  in 

CLR.B        PIACA(AO)  INITIALIZE    A  SIDE 
MOVE.B      t»A_DATD  I  R,  P  I  ADDA(A0  ) 
MOVE.B      t*A_CNTRL,  P  I  ACA(  AO  ) 

or 
MOVE.B      (A0)+,D0  EXCHANGE    MOST   SIGNIFICANT  AND 
MOVE.B      (AO), -(AO)  ..    LEAST   SIGNIFICANT  BYTES 
MOVE.B  D0,1(A0) 

5.  Place  comments  on  the  lines  to  which  they  refer  or  at  the  start  of  a 
sequence. 

6.  Keep  your  comments  up-to-date.  If  you  change  the  program,  change  the 
comments. 

7.  Use  standard  forms  and  terms  in  commenting.  Don't  worry  about  repetition. 
Varied  names  for  the  same  things  are  confusing,  even  if  the  variations  are  just 
COUNT  and  COUNTER,  START  and  EEGIN,  DISPLAY  and  LEDS,  or 

PANEL  and  SWITCHES.  You  gain  nothing  from  inconsistency.  Minor  varia- 
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tions  may  be  obvious  to  you  now,  but  may  not  be  clear  later;  others  will  get 
confused  immediately. 

8.  Make  comments  mingled  with  instructions  brief.  Leave  a  complete 
explanation  to  header  comments  and  other  documentation.  Otherwise  the 

program  gets  lost  in  the  comments  and  you  may  have  a  hard  time  even  find- 
ing the  actual  instructions. 

9.  Keep  improving  your  comments.  If  you  come  to  one  that  you  cannot  read  or 
understand,  take  the  time  to  change  it.  If  you  find  that  the  listing  is  getting 

crowded,  add  some  blank  lines.  The  comments  won't  improve  themselves;  in 
fact,  they  will  just  become  worse  as  you  leave  the  task  behind  and  forget 
exactly  what  you  did. 

10.  Use  comments  to  place  a  heading  in  front  of  every  major  section,  subsec- 
tion, or  subroutine.  The  heading  should  describe  the  functions  of  the  code 

that  follows  it;  it  should  include  information  about  the  algorithm  employed, 
the  inputs  and  outputs,  and  any  incidental  effects  that  may  be  produced. 

11.  If  you  modify  a  working  program,  use  comments  to  describe  the  modifica- 
tions that  you  made  and  identify  the  date  and  author  of  the  revision.  This 

information  should  go  both  at  the  front  of  the  program  (so  a  user  can  easily 
tell  one  version  from  another)  and  at  the  points  where  changes  were  actually 
made. 

Remember,  comments  are  important.  Good  ones  will  save  you  time  and  effort. 
Put  some  work  into  comments  and  try  to  make  them  effective. 

EXAMPLES 

18-1.    COMMENTING  A  TELETYPEWRITER 
OUTPUT  ROUTINE 

The  basic  program  is: MOVEQ 

MOVE . B MOVEQ 

-1,00 

$6000,00 
#10,02 

SNDBIT ROR  .  W 
BCS.S 

BCLR.B 
BSR 

#7, 0(A0) DELAY9_1 

H,D0 SNDONE 

BCLR.B BRA.S #7, 0(A0) NEXT 

SNDONE 
NEXT 

BSET.B 
DBRA #7, 0(A0) 

02, SNDBIT 
RTS 

END 
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Commenting  the  important  points  and  adding  names  for  numbers  gives: 

*  TELETYPEWRITER  OUTPUT 
»  THIS    PROGRAM   SENDS    THE    CHARACTER    IN   LOCATION  CHAR 
::  TO   THE   TELETYPE   AT   THE   ADDRESS    IN   REGISTER  AO 

PR  CiCQ  AM E  QU $  4  0  0  0 
DATA EQU $6000 

p  I  ADA E  QU $  0  0 OFFSET   FOR   DATA   REGISTER  A  OF  PIA 

TTYB  I  T EQU $  0  7 TTY    rnMNFfTFD    TO    RIT  7 
CHRB I T EQU $08 NUMBER   OF   DATA  BITS    IN  CHARACTER 
STPB I T EQU $02 NUMBER   OF    STOPBITS   TO  TRANSMIT 

ORG DATA 

CHAR DS.B 1 TTY  OUTPUT  CHARACTER 
ORG 

PROGRAM 

TTYOUT MOVEQ -1 ,  DO 
FORM   STOP  BITS 

MOVE . B CHAR, DO GET   TTY   OUTPUT  DATA MOVEQ 
#1+CHRBIT+STPBIT-1,D2 BIT  COUNT   ADJUSTED   FOR  DBRA 

BCLR.B «TTYB I Tf PIADA(AO) SEND   START  BIT 
SNDB  I  T BSR DELAY9  1 WAIT    1    BIT  TIME 

ROR  .  W ttl,D0 CARRY   =   NEXT   DATA  BIT 
BCS  .  S SNDONE IF    DATA    =    1    THEN   SEND   A  ONE 

BCLR.B ttTTYB IT, PIADA(AO) SEND    »0 '    AS   DATA  BIT BRA.S NEXT 

SNDONE BSET. 3 ttTTYB I T, P IADA(A0 ) SEND    ' 1 '    AS   DATA   B I T 
NEXT DBRA D 2 , SNDB  I  T CONTINUE   UNTIL   ALL   DATA  BITS  SENT 

RTS 
END 

Changing  the  Program 

Note  how  easily  we  could  change  this  program  so  that  it  would  transfer  a  whole 
string  of  data,  starting  at  the  address  in  location  CHRSTR  and  ending  with  an  03 
character  (ASCII  ETX). 

::  PROGRAM  TTYOUT 

::  TELETYPEWRITER  OUTPUT 

:;  THIS    PROGRAM   SENDS   A    STRING    TO  A 
::  TELETYPEWRITER 

::  TO   USE    THIS  PROGRAM: 

'■•  CHRSTR                       PUT   ADDRESS    OF    STRING  IN -  THIS  LOCATION 
-  AO  PUT   ADDRESS   OF  TELETYPEWRITER 
55  DEVICE    IN    REGISTER  AO 

ETX  END    STRING   WITH  AN  ASCII 
»  ETX  CHARACTER 

00004000 PROGRAM EQU $4000 
00006000 DATA EQU $6000 

00000000 P  I  ADA EQU $00 OFFSET   FOR    DATA   REGISTER   A   OF  PIA 

00000007 TTYB I T EQU $07 TTY   CONNECTED   TO   BIT  7 
00000008 CHRB I T EQU 

$0  8 
NUMBER   OF   DATA   BITS    IN  CHARACTER 

00000002 STPBIT EQU 
$02 

NUMBER   OF   STOPBITS   TO  TRANSMIT 
00000003 ENDMARK EQU 

$0  3 
ASCII    ETX' MARKS    END   OF    OUTPUT  STRIN 

00006000 ORG DATA 
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006000 00000001 CHRSTR DS.8 1 TTY  OUTPUT  CHARACTERSTRING 

00004000 
0  R  G 

PROGRAM 

004000 227C00006000 T  T YOU  T MOVE A . L  #  C  HR  S  TR , A  1 GET  ADDRESS   OF   OUTPUT  STRING 

n  n  u  n  n  f, 7  0  F  F OUTCHR 
MOVEQ -1,00 

FORM   STOP  BITS 
004008 1019 MOVE . B (A1)+,D0 GET   TTY   OUTPUT  DATA 
00400A OC000003 CMPI .8 #ENDMARK, DO IS    IT   END  OF  STRING 
n  r»  u  n  n  f 6  7  2  4 BEQ .  S DONE . . THEN  DONE 

004010 740A 
MOVEQ 

#1+CHRBIT+STPBIT-1 D2   BIT  COUNT  ADJUSTED  FOR  DBRA 

004012 08A800070000 BCLR.B #TTYB IT, PIADA(AO) SEND   START  BIT 
004018 6100BFE6 SNDB  I  T BSR DELAY9_1 WAIT    1    BIT  TIME 
n  n  u  n  l  r E  2  5  8 ROR  .  W #  1 ,  DO CARRY   =   NEXT  DATA  BIT 
00401E 6  508 BCS.S SNDONE IF   DATA   =    1    THEN   SEND  A  ONE 

004020 08A800070000 BCLR.B #TTYBIT,PIADA(A0) SEND    '0  '    AS   DATA  BIT 
004026 6  0  06 BRA. 5 NEXT 

004028 08E800070000 5NDONE BSET.B #TTYBIT,PIADA(A0) SEND    ' 1 1    AS   DATA  BIT 
00402E 51CAFFE8 NEXT DBRA D2,SNDBIT CONTINUE  UNTIL  ALL  DATA  BITS 

004032 60D2 BRA OUTCHR CONTINUE  UNTIL  ALL  CHARACTERS 

004034 4E75 DONE 

Good  comments  will  help  you  change  a  program  to  meet  new  requirements.  For 
example,  try  changing  the  last  program  so  that  it: 

•  Starts  each  message  with  ASCII  STX  (02)  followed  by  a  two-digit  identification 
code  stored  in  memory  location  IDCODE. 

•  Adds  no  start  or  stop  bits. 

•  Waits  1  ms  between  bits. 

•  Transmits  40  characters,  starting  with  the  one  located  at  the  address  in  DPTR. 

•  Ends  each  message  with  two  consecutive  ASCII  ETXs  (03). 

18-2.    COMMENTING  A  MULTIPLE-PRECISION  ADDITION 
ROUTINE 

The  basic  program  is: 

ORG 
MOVE . L 
MOVE .L 
MOVE MOVEQ 

LOOP  MOVE.B 
MOVE .B 
ADDX.B 
MOVE .B 
DBRA RTS 

END 

$4000 
#$6008, AO 
#$6208, Al 

#0,CCR #7,D2 -(AO), DO 
-CA1),D1 

D1,D0 
DO, (AO) 
D2, LOOP 

Important  Points 

First,  comment  the  important  points.  These  are  typically  initializations,  data 

fetches,  and  processing  operations.  Don't  bother  with  standard  sequences  like  updat- 
ing pointers  and  counters.  Remember  that  names  are  clearer  than  numbers,  so  use 

them  freely. 
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The  new  version  of  the  program  is: 

MULT  I PREC I S 1  ON  ADDITION 

»  THIS   PROGRAM  ADDS   TWO   NUMBERS  STORED 
»  AT    LOCATIONS    NUM1    AND   NUM2  AND 
-  STORES   THE   RESULT    IN   LOCATION  NUM1 

::  THE   NUMBERS   MUST   BE   EIGHT   BYTES  LONG 
;:  COR   CHANGE  BYTECOUNT) 

PROGRAM     EQU  $4000 

NUM1            EQU  $6000 
NUM2           EQU  $6200 
BYTECOUNT  EQU  $8 

ORG  PROGRAM 

MOVE  A .  L  ttNUMl+BYTECOUNT,  AO  ADDRESS   BEYOND   END  OF   FIRST  NUMBER 
MOVE A . L  #NUM2+BYTECOUNT,Al  ADDRESS   BEYOND   END   OF    SECOND  NUMBER 
MOVE  #0,CCR 
MOVEQ  #BYTECOUNT-l , D2 

LOOP MOVE.B 
MOVE . B 
ADDX . B 
MOVE .B 
DBRA 

-(AO), DO 
-(A1),D1 
D1,D0 
DO, (AO) 
D2,LOOP 

RTS 

GET   BYTES   TO  ADD,    START  WITH 
LEAST   SIGNIFICANT  BYTES 
ADD   THEM  WITH  CARRY 
STORE   RESULT    IN  NUM1 

Obscure  Functions 

Second,  look  for  instructions  that  may  not  have  obvious  functions  and  explain 
their  purposes  with  comments.  Here,  the  purpose  of  MOVE  #0,CCR  is  to  clear  the 
Extend  flag  (and  other  flags)  before  adding  the  least  significant  bytes. 

MULTIPRECISION  ADDITION 

"  THIS   PROGRAM  ADDS   TWO  NUMBERS  STORED 
"  AT   LOCATIONS   NUM1    AND   NUM2  AND 
||  STORES   THE   RESULT    IN   LOCATION  NUM1 
"  THE    NUMBERS   MUST   BE    EIGHT   BYTES  LONG 
::  (OR   CHANGE  BYTECOUNT) 

PROGRAM  EQU  $4000 
NUM1 
NUM2 

EQU 
EQU 

BYTECOUNT  EQU 

$6000 
$6  200 
$8 

ADDRESS   OF   FIRST  BINARY  NUMBER 
ADDRESS   OF    SECOND   BINARY  NUMBER 
NUMBER   OF   BYTES   TO  ADD 

PROGRAM 

MOVE  A  .  L  tINUMl+BYTECOUNT,  AO 
MOVE A . L  #NUM2+BYTECOUNT,Al 
MOVE  «0,CCR 
MOVEQ  «B YTECOUNT-1 , D2 

ADDRESS   BEYOND   END  OF   FIRST  NUMBER 
ADDRESS   BEYOND   END  OF   SECOND  NUMBER 
CLEAR   EXTEND  FLAG   (AND  OTHER  FLAGS) 
LOOP   COUNTER   ADJUSTED  FOR  DBRA 

LOOP  MOVE.B  -(AO), DO 
MOVE.B  -(A1),D1 
ADDX . B  D1,D0 
MOVE.B  DO, (AO) 
DBRA  D2.LOOP 

GET  BYTES   TO  ADD,    START  WITH 
LEAST   SIGNIFICANT  BYTES 
ADD   THEM  WITH  CARRY 
STORE   RESULT    IN  NUM1 

RTS 
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Questions  for  Commenting 

Third,  ask  yourself  whether  the  comments  tell  you  what  you  would  need  to 
know  to  use  the  program;  for  example: 

1.  Where  is  the  program  entered?  Are  there  alternative  entry  points? 

2.  What  parameters  are  necessary?  How  and  in  what  form  must  they  be  supplied? 

3.  What  operations  does  the  program  perform? 

4.  From  where  does  it  get  the  data? 

5.  Where  does  it  store  the  results? 

6.  What  special  cases  does  it  consider? 

7.  What  does  the  program  do  about  errors? 

8.  How  does  it  exit? 

Some  questions  may  be  irrelevant  and  some  answers  may  be  obvious.  Make 

sure,  however,  that  you  wouldn't  have  to  dissect  the  program  to  answer  the  important 
questions.  Remember  also  that  too  much  explanation  may  be  an  obstacle  to  using  the 
program.  Are  there  any  changes  you  would  like  to  see  in  the  listing?  If  so,  make 

them  —  you  are  the  one  who  has  to  decide  if  the  commenting  is  adequate  and  reasona- 
ble. 

FLOWCHARTS  AS  DOCUMENTATION 

We  have  already  described  the  use  of  flowcharts  as  a  design  tool  in  Chapter  17. 
Flowcharts  are  also  useful  in  documentation,  particularly  if: 

•  They  are  not  cluttered  or  too  detailed. 

•  Their  decision  points  are  explained  and  marked  clearly. 

•  They  include  all  branches. 

•  They  correspond  to  the  actual  program  listings. 

Flowcharts  are  helpful  if  they  give  you  an  overall  picture  of  the  program.  They 
are  not  helpful  if  they  are  just  as  difficult  to  read  as  the  program  listing. 

STRUCTURED  PROGRAMS  AS  DOCUMENTATION 

A  structured  program  can  serve  as  documentation  for  an  assembly  language  pro- 
gram if: 

•  You  describe  the  purpose  of  each  section  in  the  comments. 

•  You  make  it  clear  which  statements  are  included  in  each  conditional  or  loop 
structure  by  using  indentation  and  ending  markers. 

•  You  make  the  total  structure  as  simple  as  possible. 

•  You  use  a  consistent,  well-defined  language. 

The  structured  program  can  help  you  check  the  logic  or  improve  it.  Further- 
more, since  the  structured  program  is  machine-independent,  it  can  also  help  you 

implement  the  same  task  on  another  computer. 



Documentation  319 

MEMORY  MAPS 

A  memory  map  is  simply  a  list  of  all  the  memory  assignments  in  a  program. 
The  map  allows  you  to  determine  the  amount  of  memory  needed,  the  locations  of  data 
or  subroutines,  and  the  parts  of  memory  not  allocated.  The  map  is  a  handy  reference  for 
finding  storage  locations  and  entry  points  and  for  dividing  memory  between  different 
routines  or  programmers.  The  map  will  also  give  you  easy  access  to  data  and  subroutines 

if  you  need  them  in  later  extensions  or  in  maintenance.  Sometimes  a  graphical  map  is 
more  helpful  than  a  listing. 

A  typical  map  is: 

Address 

E000  -  E1FF 
E200  -  E240 
E241  -  E250 
E251  -  E270 
E271  -  E3EF 
0000  -  03FF 

Address 

1000 
1001  -  1002 
1003  -  1041 
1042  -  1050 
1051  -  106F 
1070  -  10FF 

Program  Memory 

Routine  Purpose 

RDKBD  Interrupt  Service  Routine  for  Keyboard 
BRKPT  Breakpoint  Routine  Entered  Via  Software  Interrupt 
DELAY  Generalized  Delay  Program 
DSPLY  Control  Program  for  Operator  Displays 
SUPER  Main  Supervisor  Program 

Interrupt  and  Reset  Vectors 

Data  Memory 

Name  Purpose 

NKEYS  Number  of  Keys  Pressed  by  Operator 
KBPTR  Keyboard  Buffer  Pointer 
KBUFFR  Keyboard  Buffer 
DBUFFR  Display  Buffer 
TEMP  Miscellaneous  Temporary  Storage 
STACK  Hardware  Stack 

The  map  may  also  list  additional  entry  points  and  include  a  specific  description 
of  the  unused  parts  of  memory. 

PARAMETER  AND  DEFINITION  LISTS 

Parameter  and  definition  lists  at  the  start  of  the  main  program  and  each 
subroutine  make  understanding  and  changing  the  program  far  simpler.  The  following 
rules  can  help. 

1.  Separate  data  locations,  I/O  units,  parameters,  definitions,  and  fixed 
memory  addresses. 

2.  Arrange  lists  alphabetically  when  possible,  with  a  description  of  each  entry. 

3.  Give  each  parameter  that  might  change  a  name  and  include  it  in  the  lists. 
Such  parameters  may  include  time  constants,  inputs  or  codes  corresponding  to 
particular  keys  or  functions,  control  or  masking  patterns,  starting  or  ending 
characters,  thresholds,  etc. 

4.  List  fixed  memory  addresses  separately.  These  may  include  reset  and  inter- 
rupt service  addresses,  the  starting  address  of  the  program  memory  areas, 

stack  areas,  etc. 
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5.  Give  each  port  used  by  an  I/O  device  a  name,  even  though  devices  may  share 
ports  in  the  current  system.  The  separation  will  make  it  easier  for  you  to 
expand  or  change  the  I/O  section. 

A  typical  list  of  definitions  is: 

::  MEMORY SYSTEM CONSTANTS 

I  R0_1LEV EQU $2  1000 LEVEL  1 INTERRUPT   SERVICE  ROUTINE 
IRQ  2LEV EQU $2 10AB LEVEL  2 INTERRUPT   SERVICE  ROUTINE 
IRQ  7LEV EQU $22000 LEVEL  7 INTERRUPT   SERVICE  ROUTINE 
MEMORY EQU $0 STARTING   ADDRESS   FOR  MEMORY 
S5TKPNT EQU $F000 INITIAL SUPERVISOR   STACK  POINTER 
USTKPNT EQU $E000 INITIAL USER   STACK  POINTER 

::    I  /0  UNITS 
P  I  Al EQU $3FF40 BASE   ADDRESS   PIA  1 
P  I  A2 EQU $3FF41 BASE   ADDRESS   PIA  2 
AC  IA1 ECU $3FF0 1 BASE   ADDRESS   ACIA  1 
AC  I  A2 EQU $3FF21 BASE   ADDRESS   ACIA  2 

::    I/O  UNIT?  OFFSETS 

P  I  ADDA ECU 

SO 

OFFSET FOR   DATA   DIRECTION  REGISTER 
P  I  ADA EQU $0 OFFSET FOR   DATA   REGISTER  A 
P  I  ACA EQU 

$4 OFFSET FOR   CONTROL    REGISTER  A 

::  DATA  STORAGE 

ORG P  AM 
NUMROWS DS.B 1 NUMBER OF    ROWS   ON    INPUT  KEYBOARD 
NUMCOL DS  .  B 1 NUMBER OF    COLUMNS   ON    INPUT  KEYBOARD 
INPUTBUF DS.L 1 ADDRESS TO    INPUT  BUFFER 
OUTBUF DS.L 1 ADDRESS TO   OUTPUT  BUFFER 
TEMP DS.L $10 TEMPORARY   DATA  BUFFER 

PARAMETERS 

BOUNCE1  EQU 
OPEN  EQU 
D  I  SDL  Y  EQU 

$2 
SOF 50  1 

BOUNCE    TIME    IN   MS   FOR  KEYBOARD 
INPUT   PATTERN   WHEN   NO   KEYS    ARE  CLOSED 
PULSE    LENGTH   FOR   DISPLAYS    IN  MS 

DEFINITIONS 

ALLHI  EOU 
STCON  EQU 5FF $80 ALL   ONES  INPUT 

OUTPUT   FOR    START   OF    CONVERSION  PULSE. 

Of  course,  the  data  storage  entries  may  not  always  be  in  alphabetical  order, 
since  the  designer  may  order  these  differently  for  various  reasons. 

LIBRARY  ROUTINES 

Standard  documentation  of  subroutines  helps  you  build  a  library  of  programs 
that  are  easy  to  use.  If  you  describe  each  subroutine  with  a  standard  form,  anyone  can 
see  at  a  glance  what  the  routines  do  and  how  to  use  them.  You  should  organize  the 

forms  carefully,  defining  them,  for  example,  by  processor,  language,  and  type  of  pro- 
gram. Remember,  without  proper  documentation  and  organization,  using  the  library 

may  be  more  difficult  than  writing  programs  from  scratch.  If  you  are  going  to  use 
subroutines  from  a  library  or  other  outside  source,  you  must  know  all  their  effects  in 
order  to  debug  your  overall  program. 
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STANDARD  PROGRAM  LIBRARY  FORMS 

Among  the  information  that  you  will  need  in  the  standard  form  is: 

•  Purpose  of  the  program 
•  Processor  used 

•  Language  used 

•  Parameters  required  and  how  they  are  passed  to  the  subroutine 

•  Results  produced  and  how  they  are  passed  to  the  calling  program 

•  Number  of  bytes  of  memory  used 

•  Number  of  clock  cycles  required.  This  number  may  be  an  average  or  a  typical 
figure,  or  it  may  vary  widely.  Actual  execution  time  will,  of  course,  depend  on 
the  processor  clock  rate  and  the  memory  cycle  time. 

•  Registers  affected 

•  Flags  affected 

•  A  typical  example 

•  Error  handling 

•  Special  cases 

•  Documented  program  listing 

If  the  program  is  complex,  the  standard  library  form  should  also  include  a 
general  flowchart  or  a  structured  outline  of  the  program.  As  we  have  mentioned 
before,  a  library  program  is  most  likely  to  be  useful  if  it  performs  a  single  function  in 
a  general  manner. 

TOTAL  DOCUMENTATION 

Complete  documentation  of  microprocessor  software  will  include  all  or  most  of 
the  elements  that  we  have  mentioned. 

DOCUMENTATION  PACKAGE 

The  total  documentation  package  may  involve: 

•  General  flowcharts 

•  A  written  description  of  the  program 

•  A  list  of  all  parameters  and  definitions 
•  A  memory  map 

•  A  documented  listing  of  the  program 

•  A  description  of  the  test  plan  and  test  results 

The  documentation  may  also  include: 

•  Program  flowcharts 
•  Data  flowcharts 

•  Structured  programs 
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Even  this  package  is  sufficient  only  for  non-production  software.  Production  soft- 
ware also  requires  the  following  documents: 

•  Program  Logic  Manual 

•  User's  Guide 
•  Maintenance  Manual 

Program  Logic  Manual 

The  program  logic  manual  expands  the  written  explanation  provided  wih  the 

software.  It  should  explain  the  system's  design  goals,  algorithms,  and  tradeoffs,  assum- 
ing a  reader  who  is  competent  technically  but  lacks  detailed  knowledge  of  the  program. 

It  should  provide  a  step-by-step  guide  to  the  operations  of  the  program  and  it  should 
explain  the  data  structures  and  their  manipulation. 

User's  Guide 

The  user's  guide  is  the  most  important  single  piece  of  documentation.  No  mat- 
ter how  well  designed  the  system  may  be,  it  will  not  be  useful  if  no  one  can  understand 

its  operations  or  take  advantage  of  its  features.  The  user's  guide  should  explain  system 
features  and  their  use,  provide  frequent  examples  that  clarify  the  text,  and  give 

tested  step-by-step  directions.  The  writing  of  user's  guides  requires  care  and  objec- 
tivity, since  the  writer  must  be  able  to  take  an  outsider's  point  of  view. 

One  problem  in  writing  user's  guides  is  the  need  to  avoid  overwhelming  the 
beginner  or  taxing  the  patience  of  the  experienced  user.  Two  separate  versions  can  help 
overcome  this  problem.  A  guide  for  the  beginner  can  explain  the  most  common 
features  of  the  program  with  the  aid  of  simple  examples  and  detailed  discussions.  A 
guide  for  the  experienced  user  can  provide  more  extensive  descriptions  of  features 
and  fewer  examples.  Remember  that  the  beginner  needs  help  getting  started,  whereas 
the  experienced  user  wants  organized  reference  material. 

Maintenance  Manual 

The  maintenance  manual  is  designed  for  the  programmer  who  has  to  modify  the 
system.  It  should  explain  the  procedures  for  any  changes  or  expansion  that  have  been 
designed  into  the  program. 

IMPORTANCE  OF  DOCUMENTATION 

Documentation  should  not  be  taken  lightly  or  left  to  the  last  minute.  Good  docu- 
mentation, combined  with  proper  programming  practices,  is  not  only  an  important  part 

of  the  final  product  but  can  also  make  development  simpler,  faster,  and  more  produc- 
tive. The  designer  should  make  consistent  and  thorough  documentation  part  of  every 

stage  of  software  development. 
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Debugging 

As  we  noted  at  the  beginning  of  this  section,  debugging  and  testing  are  among  the 

most  time-consuming  stages  of  software  development.  Even  though  such  methods  as 
modular  programming,  structured  programming  and  top-down  design  can  simplify 
programs  and  reduce  the  frequency  of  errors,  debugging  and  testing  are  still  difficult 
because  they  are  so  poorly  defined.  The  selection  of  an  adequate  set  of  test  data  is 
seldom  a  clear  or  scientific  process.  Finding  errors  sometimes  seems  like  a  game  of  pin 

the  tail  on  the  donkey,  except  that  the  donkey  is  moving  and  the  programmer  must  posi- 
tion the  tail  by  remote  control.  Few  tasks  are  as  frustrating  as  debugging  programs. 
This  chapter  will  first  describe  the  tools  available  to  aid  in  debugging.  It  will 

then  discuss  basic  debugging  procedures,  describe  the  common  types  of  errors,  and 
present  some  examples  of  program  debugging.  The  next  chapter  will  describe  how  to 
select  test  data  and  test  programs. 

We  will  describe  only  the  purposes  of  most  debugging  tools.  There  is  little  stan- 
dardization in  this  area  and  we  cannot  discuss  all  the  available  products.  The  examples 

show  the  uses,  advantages,  and  limitations  of  some  common  tools. 
Debugging  tools  have  two  major  functions.  One  is  to  pin  the  error  down  to  a  short 

section  of  the  program  ;  the  other  is  to  provide  more  detailed  information  about  what  the 
computer  is  doing  than  is  provided  by  normal  runs,  and  so  make  the  source  of  the  error 
obvious.  Current  debugging  tools  do  not  find  and  correct  errors  by  themselves;  you 
must  know  enough  about  what  is  happening  to  recognize  and  correct  the  error  when  the 
debugging  tools  zero  in  on  it  and  show  its  effects  in  detail. 

323 
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SIMPLE  DEBUGGING  TOOLS 

The  most  common  simple  debugging  tools  are: 

•  A  breakpoint  facility 

•  A  single-step  facility 
•  A  trace  facility 

•  A  register  dump  program 

•  A  memory  dump  program 

BREAKPOINT 

A  breakpoint  is  a  place  at  which  the  program  will  automatically  halt  or  wait  so 

that  the  user  can  examine  the  current  status  of  the  system.  A  program  will  not  con- 
tinue until  the  user  orders  its  resumption.  Breakpoints  allow  you  either  to  check  or 

pass  over  an  entire  section  of  a  program.  To  see  if  an  initialization  routine  is  correct,  you 

can  place  a  breakpoint  at  the  end  of  it  and  run  the  program.  You  can  then  check  memory 
locations  and  registers  to  see  if  the  entire  section  is  correct.  However,  note  that  if  the 
section  is  not  correct,  you  must  still  pinpoint  the  error,  either  with  earlier  breakpoints  or 

with  a  single-step  mode. 
Breakpoints  often  use  the  exception  processing  system  (see  Chapter  15).  You 

can  use  any  of  the  16  trap  vectors  to  act  as  a  breakpoint.  Any  of  the  7  interrupt  levels  can 
also  be  used  by  external  equipment  to  cause  breakpoints.  A  breakpoint  will  usually 
cause  a  special  program  to  be  executed;  for  example,  it  might  automatically  print  the 
contents  of  specified  registers  or  wait  for  the  user  to  enter  a  command. 

Inserting  Breakpoints 

The  simplest  and  best  way  to  insert  a  breakpoint  in  a  program  is  to  replace  the 
first  word  of  an  instruction  with  a  trap  instruction.  When  the  trap  instruction  is 

executed,  program  control  is  transferred  to  a  breakpoint  routine  specified  via  a  trap  vec- 
tor, the  processor  is  forced  into  supervisor  mode,  and  the  program  counter  and  status 

register  contents  are  saved. 

Don't  forget  that  the  value  saved  for  the  program  counter  points  to  the  instruc- 
tion after  the  one  which  caused  the  trap.  If  you  want  the  actual  breakpoint  address  dis- 

played, or  if  you  want  the  program  to  resume  correctly  after  restoring  the  original 
instruction,  you  will  have  to  subtract  two  from  the  stored  program  counter  value.  The 
simplest  way  to  accomplish  this  would  be  to  execute  the  instruction  SUBQ.L 

#2,  —  2(A7).  Note  that  this  method  assumes  that  the  supervisor  stack  pointer  still  points 
to  the  data  saved  at  the  time  of  the  trap. 

Figure  19-1  shows  a  simple  breakpoint  routine  with  its  trap  vector  and  a  call  to  the 
breakpoint  routine.  This  routine  causes  an  endless  loop,  and  the  only  way  to  terminate 
the  loop  is  with  a  reset  or  an  interrupt. 

Setting  and  Clearing  Breakpoints 

Many  monitors  have  facilities  for  automatically  inserting  (setting)  and  remov- 
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-EXCEPTION  VECTORS 
ORG  0 

DS . L            BRK  PT TRAP    0  = BREAKPO INT 

!I     IICCTD      D  D          D  A  M '*    UbtK    rKUlj"  An 

ORG  $4000 
PGM14_2        MOVEA.L  ttACIA,A0 ADDRESS OF  ACIA 

TRAP  HO B  R  E AK  PO NT  HERE 

::   BREAKPOINT  HANDLER 

ORG  $10000 
BRKPT            BRA  BRKPT WAIT  IN PLACE 

Figure  19-1.  A  Simple  Breakpoint  Routine 

ing  (clearing)  breakpoints  based  on  one  of  the  TRAP  instructions.  Such  breakpoints 
do  not  affect  the  timing  of  the  program  until  one  of  them  is  executed.  However,  you 
obviously  cannot  replace  instructions  that  are  in  ROM  or  PROM.  Other  monitors 
implement  breakpoints  by  actually  checking  the  address  lines  or  the  program  counter 
in  hardware  or  in  software.  This  method  allows  the  user  to  set  breakpoints  on 
addresses  in  ROM  or  PROM,  but  it  may  affect  system  timing  if  the  address  must  be 
checked  in  software.  A  more  powerful  facility  would  allow  the  user  to  enter  an  address  to 
which  the  processor  would  transfer  control.  Another  possibility  would  be  a  return 
dependent  on  a  switch  as  in  the  following  example. 

BRKPT  BTST   #  7 , P I  ADR  WAIT  FOR   SWITCH    IN  BIT   7   TO  CLOSE 
BNE  BRKPT 

RTE 

Of  course,  other  PIA  data  or  control  lines  could  also  be  used.  Remember  that 
RTE  automatically  reenables  interrupts.  If  a  PIA  interrupt  is  used,  the  service  routine 
must  read  the  PIA  data  register  to  clear  the  interrupt  status  bit. 

Precautions  in  Using  Breakpoints 

When  you  use  breakpoints  (whether  manually  or  through  monitor  facilities), 
remember  the  following  precautions: 

1.  Only  set  breakpoints  at  addresses  that  contain  operation  codes.  Replacing 
data  or  parts  of  addresses  with  Trap  instructions  can  result  in  chaos. 
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2.  Interpret  the  results  carefully.  Remember  that  the  computer  has  not  yet 
executed  the  instruction  that  was  replaced. 

3.  Check  all  conditions  before  resuming  the  program.  You  may  have  to  change 
the  program  counter,  correct  the  contents  of  registers  or  memory  locations, 
clear  breakpoints  that  are  no  longer  necessary,  and  set  new  breakpoints. 

Methods  for  resuming  programs  vary  greatly,  so  consult  your  microcomputer's 
user's  guide.  Be  particularly  careful  never  to  resume  a  program  in  the  middle  of 
an  instruction  (that  is,  at  an  address  that  does  not  contain  an  operation  code) 
or  in  the  middle  of  an  I/O  or  timing  operation  (e.g.,  sending  data  to  a 
teletypewriter)  that  cannot  logically  be  resumed  after  a  delay. 

REGISTER  DUMP 

A  register  dump  is  a  facility  that  lists  the  contents  of  all,  or  some  selected 

subset,  of  the  processor's  registers.  A  register  dump  routine  is  very  often  a  part  of  a 
breakpoint  handling  routine  and  the  debug  program  that  controls  the  trace  facility. 

A  useful  register  dump  program  will  let  you  specify  which  registers,  and  even 
which  portion  of  selected  registers,  to  display.  Since  the  MC68000  allows  operations 
on  portions  of  registers  (byte  or  word  operations)  it  will  often  be  useful  to  display,  for 
example,  just  the  least  significant  byte  of  a  register.  Similarly,  if  you  are  only  interested 

in  the  contents  of  a  few  data  registers,  it  would  be  most  useful  simply  to  display  the  con- 
tents of  those  registers  rather  than  the  contents  of  all  16  data  and  address  registers. 

Figure  19-2  shows  the  results  of  a  typical  register  dump  program. 
There  are  a  couple  of  things  we  must  keep  in  mind  when  we  write  a  register 

dump  program.  First,  if  we  want  the  program  counter  contents  to  be  displayed,  it  is 
usually  possible  to  find  the  PC  contents  somewhere  on  the  stack.  However,  you  have 
to  know  how  many  exceptions  and/or  subroutine  calls  may  have  intervened  before  the 
register  dump  program,  since  they  may  have  stored  additional  items  on  the  stack. 

Secondly,  stack  pointer  A7  may  cause  problems  if  you  don't  keep  track  of 
whether  the  processor  is  in  the  user  or  supervisor  state.  Here  are  some  rules  to 
remember: 

•  In  the  user  state,  the  user  stack  pointer  is  in  A7  and  it  is  impossible  to  reach  the 
supervisor  stack  pointer. 

•  In  the  supervisor  state,  the  supervisor  stack  pointer  is  in  A7  and  you  can  reach 
the  user  stack  pointer  with  the  help  of  the  MOVE  USP,An  instruction. 

Thirdly,  remember  that  a  subroutine  call  stores  just  a  program  counter  value  on 
the  stack  while  an  exception  (trap,  interrupt,  and  so  on)  stores  the  program  counter 
content  and  the  status  register  contents. 

Lastly,  if  you  are  in  the  user  state  and  save  the  status  register  contents  some- 

where, don't  attempt  to  restore  the  entire  status  register;  that  is  a  privileged  instruc- 
tion. It  will  be  sufficient  to  restore  the  condition  code  part  of  the  status  register  with  a 

MOVE  to  CCR  instruction.  Alternately,  you  can  use  the  RTR  instruction  which  auto- 
matically restores  the  condition  code  portion  of  the  status  register. 

Figure  19-3  shows  a  flowchart  of  the  register  dump  program  REGDUMP.  In 
this  program,  we  assume  that  the  subroutines  PRT8HEX  and  PRT4HEX  convert  and 
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D0  =  3FD  5  6  7  0  9    Dl  =  1  0  0  0  0  2    0  2  =  2430    D 4  =  3 C    A  0  =  0  0  0  1  k  0  0  0    Al=6  0  0  0    A  7  =  0  0  0  5 6  4 2  1 

Figure  19-2.  Results  of  a  Typical  MC68000  Register  Dump 
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Save  all  registers 
on  stack 

I 

Data  Pointer  = 
Stack  Pointer 

Count  =  1  5 
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of  registers) 

Print  (Data  Pointer) 
as  8  hex  digits 

Data  Pointer  = 
Data  Pointer  +  2 
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1 

Adjust  A7 
contents  and  print 
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Register  contents 
as  4  hex  digits 
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Figure  19-3.  Flowchart  of  a  Register  Dump  Program 
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print  32  or  16  bits  of  register  DO  as  hex  digits  on  the  system  printer.  We  also  assume  that 
the  register  dump  routine  is  called  by  a  BSR  or  JSR  instruction  and  that  the  system  is  in 
the  user  state. 

::RhGIST£R   DUMP  PROGRAM 

PROGRAM EQU 
ORG 

$4000 
PROGRAM 

REGDUMP MOVE . W 
MOVEM.L 

SR, -CA7) 
D0-D7/A0 -A7, -CA7) 

SAVE    STATUS  REGISTER 
SAVE    REST   OF  REGISTERS 

MOVE A  .  L 
MOVEQ A7,  AO 

#1 5-1, D4 
AO    IS   LOCAL  STACKPOINTER 
15   REGISTERS   TO   PRINT-ADJUST  FOR 

LOOP MOVE . L 
BSR 
DBRA 

K.  AU  )  +  ,  DU 
PRT8HEX 
Dk, LOOP 

r  c  T    di  ic  ucr\    d  c  c  tctcd 
AND   PRINT  IT 

MOVE . L 
ADD  I  .L 
BSR 

(A0)+, DO 
#6 ,  DO 
PRT8HEX 

GET  STACKPOINTER 
ADJUST   TO   VALUE   BEFORE  CALL 
PRINT  IT 

MOVE . W 
BSR 

(A0)+,D0 
PRT4HEX 

GET   STATUS  WORD 
PRINT  IT 

MOVE .L 
SUB  I  .  L 
BSR 

(A0)+,D0 
#  2 ,  DO 
PRT8HEX 

GET  OLD  PC 
ADJUST    IT   TO  VALUE   BEFORE  CALL 
PRINT  IT 

MOVEM.L (A7)+, DO -D7/A0-A7 RESTORE  REGISTERS 

RTR RETURN AND     RESTORE   THE   CONDITION  CODES 

Note  that  the  last  instruction  is  an  RTR  instruction.  If  you  want  to  call  the  register 
dump  program  via  an  exception,  you  must  make  some  changes  to  this  program. 
Required  changes  are  shown  in  the  program  SYSDUMP. 

-REGISTER   DUMP   AFTER   TRAP   OR  EXCEPTION 

PROGRAM EQU 

ORG 

$t+000 

PROGRAM 

SYSDUMP MOVEM.L D0-D7/A0 -A6, -CA7) SAVE   REGISTERS  ON   SUPERVISOR  STACK 

MOVE  A . L 
MOVEQ A7,  AO 

#1 5-1, D4 
AO    IS   LOCAL  STACKPOINTER 
15   REGISTERS   TO   PRINT-ADJUST  FOR  DB 

LOOP MOVE  .L 
BSR 
DBRA 

(A0)+,D0 
PRT8HEX 
Dk , LOOP 

GET   PUSHED  REGISTER 
AND   PRINT  IT 

MOVE .L 
MOVE .L 
BSR 

USP, Al 
A1,D0 
PRT8HEX 

GET   USER  STACKPOINTER 

PRINT  IT 

MOVE . W 
BSR 

(A0)+,D0 
PRT4HEX 

GET  STATUS  WORD 
PRINT  IT 

MOVE .L 
SUB  I  .  L 
BSR 

(A0)+,D0 
#2,  DO 
PRT8HEX 

GET  OLD  PC 
ADJUST    IT   TO  VALUE   BEFORE  CALL 
PRINT  IT 

MOVEM.L (A7)+, DO -D7/A0-A6 RESTORE  REGISTERS 

RTE RETURN AND     RESTORE   THE   CONDITION  CODES 
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Make  sure  you  understand  the  difference  between  the  instructions  RTE,  RTR, 
and  RTS.  Which  of  them  is  privileged  and  why? 

SINGLE-STEP 

A  single-step  facility  allows  you  to  execute  a  program  one  instruction  or  one 
memory  cycle  at  a  time.  After  each  step  you  might  display  some  register  or  memory 

contents.  Usually,  single-stepping  is  associated  with  some  external  circuitry  which 
monitors  the  output  lines  of  the  processor.  The  MC68000,  however,  provides  internal 

circuitry  to  accomplish  single-stepping  via  its  trace  logic. 

TRACE 

The  trace  facility  allows  you  to  see  intermediate  results  since  you  can  deter- 

mine the  status  of  the  processor's  registers  after  each  instruction  is  executed.  A  sim- 
ple trace  usually  lets  you  step  through  your  program  instruction  by  instruction  and 

prints  all  the  registers  after  each  instruction  is  executed.  A  more  useful  trace  facility 
might  allow  you  to  execute  several  instructions  before  stopping  and  permit  you  to 
specify  how  much  information  you  want  each  time  you  stop.  It  might  also  allow  you  to 
print  the  contents  of  memory  locations  you  specify.  This  will  result  in  a  reduced  volume 
of  information  and  means  that  you  must  decide  what  you  need  before  instituting  the 
trace,  but  it  should  give  you  the  information  that  is  most  useful. 

Simple  instruction  tracing  may  provide  you  with  very  detailed  information  about 
what  happens  inside  the  processor.  This  information  should  be  sufficient  to  identify 

such  errors  as  jump  and  branch  instructions  with  incorrect  conditions  and/or  destina- 
tions, omitted  or  incorrect  addresses,  incorrect  operation  codes,  and  improper  data 

values. 

You  must  keep  in  mind,  however,  that  a  single-step  trace  slows  the  processor 
far  below  its  normal  speed.  Thus,  you  cannot  check  delay  loops  or  I/O  operations  in 

real  time.  Nor  can  a  single-step  trace  help  you  find  timing  errors  or  errors  in  the  inter- 
rupt or  DMA  systems.  In  fact,  the  single-step  mode  typically  operates  at  less  than  one 

millionth  of  normal  processor  speed.  To  single-step  through  one  second  of  real  pro- 
cessor time  would  require  more  than  ten  days.  The  single-step  trace  mode,  therefore,  is 

useful  only  to  check  the  logic  of  short  sequences  of  instructions. 

The  MC68000  has  a  built-in  trace  facility  not  often  found  on  microprocessors. 
Bit  15  in  the  status  register  can  be  set  to  force  the  processor  into  the  trace  state.  In  this 
state,  an  exception  is  forced  after  each  instruction,  thus  allowing  a  debug  program  to 
have  control  over  program  execution.  In  the  trace  mode,  it  essentially  looks  as  though 
we  had  inserted  breakpoints  (trap  instructions)  after  every  instruction. 

The  exception  processing  for  the  trace  operation  follows  the  same  general  pattern 
as  for  the  processing  of  a  trap  instruction.  The  contents  of  the  program  counter  and 
status  register  are  saved,  and  control  is  transferred  to  the  address  stored  in  the  trace 

exception  vector  which  is  #9,  at  memory  address  2416. 
If  you  want  to  implement  a  very  simple  trace  facility  on  your  MC68000  system, 

just  place  the  address  of  the  register  dump  program  (SYSDUMP),  described  previously, 

in  address  24,6  (the  trace  exception  vector  location). 

ORG  $2<+ DC.L  SYSDUMP 
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Then  set  bit  15  in  the  status  register,  using  one  of  the  instructions  that  operate  on 

the  status  register,  and  start  your  program.  You  will  get  all  of  the  processor's  registers 
(except  the  supervisor  stack  pointer)  printed  after  each  instruction  is  executed.  Once 
again,  for  a  more  detailed  discussion  of  exception  processing,  refer  to  Chapter  15.  Note 
that  the  program  counter  printout  resulting  from  SYSDUMP  would  have  to  be 
modified.  How  would  you  modify  it? 

This  trace  routine  will  provide  you  with  an  enormous  amount  of  information.  If 
you  improve  on  it,  or  if  you  have  a  good  trace  program  already,  here  is  some  advice  to 
keep  in  mind: 

1.  Decide  what  you  need  before  executing  the  trace.  Otherwise  you  will  not 
know  what  to  do  with  the  results. 

2.  Start  by  tracing  only  one  or  two  variables  and  printing  the  results  infre- 
quently. This  will  give  you  less  information  to  analyze  at  one  time. 

3.  Use  breakpoints  to  limit  the  extent  of  the  trace.  Turn  tracing  on  or  off  at  the 
breakpoints. 

4.  Use  whatever  facility  your  computer  has  to  mark  the  output.  Otherwise  you 
will  end  up  with  pages  of  unidentified  numbers  and  you  will  spend  most  of  your 
time  just  figuring  out  what  they  are. 

5.  Be  careful  when  you  specify  that  only  a  portion  of  a  register  is  to  be  dis- 
played (if  your  trace  allows  this  option).  Remember  that  phenomena  like 

sign-extensions  can  cause  problems  that  you  won't  see  if  you  don't  display  the 
contents  of  the  entire  register. 

MEMORY  DUMP 

A  memory  dump  is  a  program  that  lists  the  contents  of  memory  on  an  output 
device  (such  as  a  printer).  This  is  a  more  efficient  way  of  examining  data  arrays  or 
entire  programs  than  just  looking  at  single  locations.  However,  very  large  memory 

dumps  are  not  useful  (except  to  supply  scrap  paper)  because  of  the  sheer  mass  of  infor- 
mation that  they  produce.  They  may  also  take  a  long  time  to  execute  on  a  slow  printer. 

Small  dumps  may,  however,  provide  the  programmer  with  a  reasonable  amount  of 
information  that  can  be  examined  as  a  unit.  Regular  repetitions  of  data  patterns  or 
offsets  of  entire  arrays  are  easily  spotted  in  a  dump. 

A  general  dump  program  is  often  rather  difficult  to  write.  Make  sure  that  the  end- 
ing memory  address  is  not  smaller  than  the  starting  memory  address.  A  larger  starting 

memory  address  might  be  treated  as  an  error,  or  it  may  cause  no  output. 
Since  the  speed  of  the  memory  dump  depends  on  the  speed  of  the  output  device, 

the  efficiency  of  the  routine  seldom  matters.  The  following  program  will  ignore  cases 
where  the  starting  address  is  larger  than  the  ending  address,  and  will  handle  memory 
blocks  of  any  length. 

::   THIS   PROGRAM   PRINTS   A   PIECE   OF   MEMORY   CONTENTS   ON  THE 
::    SYSTEM  PRINTER. 

00004000  PROGRAM     EQU  $4000 
00006000  DATA  EQU  $6000 

00006000 ORG  DATA 
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n  n  k  n  n  n U  UD  U  u  U nnnnnnnu U  Dull  II  11  11  T START DS.L 1 
n  n  (\  n  n  u U  U  D  UU4 nnnnnnnu END DS.L 

00004000 ORG PROGRAM 

0  040  0  0 20786000 MEMDUMP MOVE  A . L START, AO GET   START  ADDRESS 
004004 22786004 MOVEA.L END, Al GET   THE   END  ADDRESS 

004008 B1C9 LOOP CMPA  .L Al  ,  AO IF    END   >  START 
00400A 6  208 BHI  .  S DONE . . THEN  DONE 
00400C 2018 MOVE  .  L (A0)+,D0 ..ELSE   GET   DATA,    INCREMENT  START 
00400E 6  1  00  00  06 BSR PRT8HEX AND   PRINT  DATA 
004012 60F4 BRA LOOP 
004014 4E7  5 DONE RTS 

A  typical  result  of  this  memory  dump  program  is  shown  in  Figure  19-4.  Note  that 
since  we  are  printing  long  words,  we  may  print  a  maximum  of  three  bytes  beyond  the 

specified  ending  address.  To  illustrate  this,  try  START  =  6000,END  =  6004. 
This  memory  dump  routine  correctly  handles  the  case  in  which  the  starting  and 

ending  locations  are  the  same  (try  it!).  You  will  have  to  interpret  the  results  carefully  if 
the  dump  area  includes  the  stack,  since  the  dump  subroutine  itself  uses  the  stack.  The 
PRT8HEX  subroutine  may  also  change  memory  and  stack  locations. 

Obviously,  these  results  may  sometimes  be  hard  to  interpret.  They  don't  tell  you 
which  addresses  are  involved  and  the  results  are  not  output  in  a  very  satisfying  format. 

Figure  19-5  shows  a  better  format  that  gives  you  the  addresses  involved  and  makes  it 
easier  to  distinguish  between  bytes,  words,  and  long  words. 

If  you  are  working  a  lot  with  ASCII  strings,  then  it  will  be  useful  to  get  the 

ASCII  characters  corresponding  to  the  memory  locations  as  shown  in  Figure  19-6. 
This  is  a  common  and  useful  format.  It  will,  for  example,  immediately  show  you  if  some 
unprintable  character  is  intermixed  in  the  string.  Thus,  if  we  happen  to  get  a  byte  with  a 

48415353 
45204D41 
444520  54 
48495320 
44554D50 

Figure  19-4.  Results  of  an  Unformatted  Memory  Dump 

005000      43      48      41      4C  4D      45      52      53  20      53      57      45  44     45     4E  20 

Figure  19-5.  Results  of  a  Formatted  Memory  Dump 
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005000     5*+  48  45   2  0  4D  45  4D  4F   52   5  9   2  0   44   55  4D   5  0   2  0         THE .  MEMORY .  DUMP 

Figure  19-6.  Results  of  a  Memory  Dump  with  ASCII  Characters 

0  0  5  0  0  0      54   48   45   2  0   4D   45   4D   15   4F    5  2    59   20   44   55   4D   50  THE .  MEM .  OR  Y .  DUMP 

Figure  19-7.  Results  of  an  ASCII  Memory  Dump  with  Unprintable  Character 

value  1516  between  M  and  O  in  MEMORY  the  dump  would  appear  as  shown  in  Figure 

19-7.  A  dump  program  which  just  shows  you  printable  characters  wouldn't  have 
revealed  this  extra  character. 

Try  to  rewrite  the  memory  dump  program  so  that  it  produces  a  memory  dump  that 
shows  you  the  address  and  the  hexadecimal  form  as  well  as  the  ASCII  characters  con- 

tained in  memory. 

MORE  ADVANCED  DEBUGGING  TOOLS 

The  more  advanced  debugging  tools  that  are  most  widely  used  are: 

•  Simulator  programs  to  check  program  logic 

•  Logic  analyzers  to  check  signals  and  timing 

Many  variations  of  both  these  tools  exist,  and  we  will  discuss  only  the  standard 
features. 

Software  Simulator 

The  simulator  is  the  computer  equivalent  of  a  pencil-and-paper  computer.  It  is  a 
computer  program  that  goes  through  the  operating  cycle  of  a  computer,  keeping  track 
of  the  contents  of  all  the  registers,  flags,  and  memory  locations.  We  could,  of  course, 
do  this  by  hand,  but  it  would  require  a  large  effort  and  close  attention  to  the  exact  effects 
of  each  instruction.  The  simulator  program  never  gets  tired  or  confused,  never  forgets 
an  instruction  or  register,  and  does  not  run  out  of  paper. 

Typical  simulator  features  include: 

•  A  breakpoint  facility.  Usually,  breakpoints  can  be  set  to  occur  after  a  particular 
number  of  cycles  have  been  executed;  when  a  memory  location  or  one  of  a  set 
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of  memory  locations  is  referenced;  when  the  contents  of  a  location  or  one  of  a 
set  of  locations  is  altered,  or  on  other  conditions. 

•  Register  and  memory  dump  facilities  that  display  the  contents  of  memory 
locations,  registers,  and  I/O  ports. 

•  A  trace  facility  that  prints  the  contents  of  particular  registers  or  memory  loca- 
tions whenever  the  program  changes  or  uses  them. 

•  A  load  facility  that  allows  you  to  set  initial  register  and/or  memory  location 
contents,  or  change  them  during  the  simulation. 

Some  simulators  can  simulate  input/output,  interrupts,  and  even  DMA.  The 
simulator  has  many  advantages: 

1.  It  can  provide  a  complete  description  of  the  status  of  the  computer,  since  the 
simulator  program  is  not  restricted  by  microprocessor  chip  pinout  limitations 
or  other  characteristics  of  the  underlying  circuitry. 

2.  It  can  provide  breakpoints,  dumps,  traces,  and  other  facilities,  without  using 

any  of  the  simulated  processor's  memory  space  or  control  system.  These 
facilities  will  therefore  not  interfere  with  the  user  program. 

3.  Programs,  starting  points,  and  other  conditions  are  easy  to  change. 

4.  All  the  facilities  of  a  large  computer,  including  peripherals  and  software,  are 
available  to  the  microprocessor  designer. 

On  the  other  hand,  the  simulator  is  limited  by  its  software  base  and  its  separa- 
tion from  the  real  microcomputer.  The  major  limitations  are: 

1.  The  simulator  cannot  cope  with  timing  problems,  since  it  operates  at  less  than 

real-time  execution  speed.  The  simulator  is  usually  quite  slow.  Reproducing 
one  second  of  actual  processor  time  may  require  hours  of  computer  time. 

2.  The  simulator  cannot  model  the  input/output  section  exactly  since  it  cannot 
represent  external  hardware  or  interfaces  accurately. 

The  simulator  represents  the  software  side  of  debugging;  it  has  the  typical 

advantages  and  limitations  of  a  wholly  software-based  approach.  The  simulator  can 
provide  insight  into  program  logic  and  other  software  problems,  but  often  cannot  help 
with  timing,  I/O,  and  hardware  problems. 

Logic  Analyzer 

The  logic,  or  microprocessor,  analyzer  is  the  hardware  solution  to  debugging. 
Basically,  the  analyzer  is  a  parallel  digital  version  of  the  standard  oscilloscope.  The 
analyzer  displays  information  in  binary,  hexadecimal,  or  mnemonic  form  on  a  CRT,  and 
has  a  variety  of  triggering  events,  thresholds,  and  inputs.  Most  analyzers  also  have  a 
memory  so  that  they  can  display  the  past  contents  of  the  microcomputer  busses. 

The  standard  procedure  is  to  set  a  triggering  event,  such  as  the  occurrence  of  a 
particular  address  on  the  address  bus  or  instruction  on  the  data  bus.  For  example,  one 
might  trigger  the  analyzer  if  the  microcomputer  tries  to  store  data  in  a  particular  address, 
or  execute  an  input  or  output  instruction.  One  may  then  look  at  the  sequence  of  events 
that  preceded  the  breakpoint.  Common  problems  you  can  find  in  this  way  include 
short  noise  spikes  (or  glitches),  incorrect  signal  sequences,  overlapping  waveforms, 
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•  Number  of  input  lines.  At  least  40  are  necessary  to  monitor  a  16-bit  data  bus 
and  a  24-bit  address  bus.  Still  more  are  necessary  for  control  signals,  clocks,  and 
other  important  inputs. 

•  Amount  of  memory.  Each  previous  state  that  is  saved  will  occupy  several  bytes 
of  memory. 

•  Maximum  frequency.  It  must  be  several  MHz  to  handle  the  fastest  processors. 

•  Minimum  signal  width  (important  for  catching  glitches). 

•  Type  and  number  of  triggering  events  allowed.  Important  features  are  pre-  and 
post-trigger  delays;  these  allow  the  user  to  display  events  occurring  before  or 
after  the  trigger  event. 

•  Methods  of  connecting  to  the  microcomputer.  This  may  require  a  rather 
complex  interface. 

•  Number  of  display  channels. 

•  Binary,  hexadecimal,  or  mnemonic  displays. 

•  Display  formats. 

•  Signal  hold  time  requirements. 

•  Probe  capacitance. 

•  Single  or  dual  thresholds. 

All  of  these  factors  are  important  in  comparing  different  logic  and  microprocessor 
analyzers,  since  these  instruments  are  new  and  unstandardized.  A  tremendous  variety 

of  products  is  already  available  and  this  variety  will  become  even  greater  in  the  future.1 
Logic  analyzers,  of  course,  are  necessary  only  for  systems  with  complex  timing. 

Simple  applications  with  low-speed  peripherals  have  few  hardware  problems  that  a 
designer  cannot  handle  with  a  standard  oscilloscope. 

DEBUGGING  WITH  CHECKLISTS 

No  one  can  hope  to  check  an  entire  program  by  hand;  however,  certain  trouble 
spots  can  be  checked.  You  can  use  systematic  hand  checking  to  find  a  large  number  of 
errors  without  resorting  to  any  debugging  tools. 

The  question  is  where  to  place  the  effort.  The  answer  is  on  points  that  can  be 

handled  with  either  a  yes-no  answer  or  a  simple  arithmetic  calculation.  Do  not  do 
complex  arithmetic,  follow  all  status  flags,  or  try  every  conceivable  case.  Limit  your 

hand-checking  to  matters  that  can  be  settled  easily.  Leave  the  complex  problems  to  be 
solved  with  the  aid  of  debugging  tools.  But  proceed  systematically;  build  your  checklist, 
and  make  sure  that  the  program  performs  all  basic  operations  correctly. 

The  first  step  is  to  compare  the  flowchart  or  other  program  documentation  with 
the  actual  code.  Make  sure  that  everything  which  appears  in  one  also  appears  in  the 

other.  A  simple  checklist  will  do  the  job.  It  is  easy  to  omit  an  entire  branch  or  a  process- 
ing section. 

Next  concentrate  on  the  program  loops.  Make  sure  that  all  registers  and  memory 
locations  used  inside  the  loops  are  initialized  correctly.  This  is  a  common  source  of 
errors;  once  again,  a  simple  checklist  will  suffice. 

Now  look  at  each  conditional  branch.  Select  a  sample  case  that  should  produce  a 
branch  and  one  that  should  not;  try  both  of  them.  Is  the  branch  correct  or  reversed?  If 
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the  branch  involves  checking  whether  a  number  is  above  or  below  a  threshold,  try  the 
equality  case.  Does  the  correct  branch  occur?  Make  sure  that  your  choice  is  consistent 
with  the  problem  definition. 

Look  at  the  loops  as  a  whole.  Try  the  first  and  last  iterations  by  hand;  these  are 
often  troublesome  special  cases.  What  happens  if  the  number  of  iterations  is  zero;  e.g., 
there  is  no  data  or  the  table  has  no  elements?  Does  the  program  fall  through  correctly? 
Programs  will  often  perform  one  iteration  unnecessarily,  or,  even  worse,  decrement 
counters  past  zero  before  checking  them.  Check  for  other  trivial  cases  where  there  is 
nothing  for  the  program  to  do. 

Check  off  everything  down  to  the  last  statement.  Don't  optimistically  assume 
that  the  first  error  is  the  only  one  in  the  program.  Hand-checking  will  allow  you  to 
get  the  maximum  benefit  from  debugging  runs,  since  you  will  get  rid  of  many  simple 
errors  ahead  of  time. 

Hand-Checking  Questions 

Here  is  a  quick  review  of  the  hand-checking  questions: 

1.  Does  the  program  include  everything  that  was  designed  into  it  (and  vice  versa 
for  documentation  purposes)? 

2.  Are  all  registers  and  memory  locations  initialized  before  they  are  used  inside 
loops? 

3.  Are  all  conditional  branches  logically  correct? 

4.  Do  all  loops  start  and  end  properly? 

5.  Are  equality  cases  handled  correctly? 

6.  Are  trivial  cases  handled  correctly? 

LOOKING  FOR  ERRORS 

Of  course,  despite  all  these  precautions  (or  if  you  skip  over  some  of  them),  pro- 

grams often  still  won't  work.  The  designer  is  left  with  the  problem  of  how  to  find  the 
remaining  mistakes.  The  lists  that  follow  may  be  of  some  help.  We  have  attempted  to 
categorize  the  types  of  errors  that  you  may  encounter.  However,  you  must  remember 
that  a  certain  kind  of  error  will  not  necessarily  be  limited  to  just  one  kind  of  program. 
The  groupings  we  have  arrived  at  may  make  it  faster  for  you  to  pinpoint  the  error. 

But  if  you  don't  find  the  error  within  the  category  in  which  it  seems  most  likely  to 
occur,  look  under  all  the  other  categories. 

ERRORS  LIKELY  TO  BE  FOUND 

IN  CERTAIN  PARTS  OF  A  PROGRAM 

The  Initialization  Section 

•  Failure  to  initialize  variables  such  as  counters,  pointers,  sums,  indexes,  and 
so  on.  Do  not  assume  that  the  registers,  memory  locations,  or  condition  codes 
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necessarily  contain  zero  before  they  are  used.  Also  make  sure  that  you  initialize 
the  correct  part  of  a  register.  For  example,  if  you  are  going  to  use  register  DO  as 
an  8-bit  counter  for  a  DBRA  loop,  it  is  necessary  to  clear  the  entire  low-order 
word  of  DO  since  this  instruction  always  operates  on  the  entire  16-bit  word. 

•  Failure  to  follow  through  correctly  in  trivial  cases.  It  is  usually  here  where  you 
must  decide  what  to  do  if  there  is  nothing  for  the  program  to  do  (no  data  pre- 

sent, no  entries  in  a  list,  and  so  on).  Do  not  assume  that  such  cases  will  never 
occur  unless  the  program  specifically  eliminates  them. 

•  Accidental  initializations.  Make  sure  that  no  jump  or  branch  instructions 
transfer  control  back  to  the  initialization  section. 

Loops 

•  Updating  counters,  pointers,  or  indexes  in  the  wrong  place  or  not  at  all.  Be 
sure  that  there  are  no  paths  through  a  loop  that  either  skip  or  repeat  the  updat- 

ing function.  Be  especially  careful  when  you  deal  with  nested  loops,  and  remem- 
ber that  counters  for  inner  loops  must  be  reinitialized  each  time  they  are 

entered. 

•  Confusing  postincrement  and  predecrement  operations.  Remember  that  post- 
increment increments  the  address  register  after  using  its  contents,  while  pre- 
decrement decrements  the  address  register  before  using  its  contents.  Also 

remember  that  it  is  the  "size11  of  the  instruction  that  determines  the  amount  of 
the  increment  or  decrement.  A  long  word  instruction  increments  or  decrements 
by  4,  a  word  instruction  by  2  and  a  byte  instruction  by  1.  Did  you  correctly 
specify  the  size? 

•  Confusing  the  use  of  the  DBcc  instruction.  The  condition  specified  is  the  con- 
dition that  makes  the  program  exit  the  loop,  rather  than  remaining  in  the  loop 

by  taking  the  branch.  Remember  that  if  the  condition  is  not  met,  the  processor 

will  decrement  the  counter  and  test  for  counter  contents  exactly  equal  to  —  1: 

the  test  is  not  for  less  than  zero.  Also  remember  that  if  you  don't  compensate 
for  the  —1  (rather  than  the  zero)  that  is  tested  for,  the  loop  will  be  executed 
one  more  time  than  you  had  expected. 

•  Inverting  the  logic  of  a  conditional  jump  such  as  using  branch  on  carry  set 
when  you  meant  branch  on  carry  clear.  Remember  that  compare  and  subtrac- 

tion instructions  perform  the  operations  destination  (second  operand)  —  source 
(first  operand),  and  set  the  Carry  and  Zero  flags  as  follows: 

Zero  flag  (Z)  =  1  if  destination  ^  source 
Zero  flag  (C)  =  0  if  destination  >  source 

Carry  flag  (C)  =  1  if  destination  <  source 

Note  that  the  Carry  flag  is  cleared  if  destination  =  source. 

•  Changing  condition  codes  before  using  them  or  failure  to  change  them. 
Remember  that  the  MOVE  instruction  affects  all  the  condition  codes  except  the 
Extend  (X)  flag.  Operations  using  address  registers  as  a  destination  do  not 
affect  the  condition  codes  with  the  exception  of  the  CMPA  instruction.  Also 

refer  back  to  the  precautions  given  with  Program  9-2b  concerning  testing  of 
flags  that  may  have  been  set  as  a  result  of  more  than  one  instruction. 
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Subroutines  and  Macros 

•  Ignoring  the  effects  of  subroutines  and  macros.  Subroutine  calls  and 
references  to  macros  typically  result  in  the  execution  of  many  instructions. 
These  instructions  will  almost  always  change  the  condition  code  register  (CCR) 
and  may  change  the  contents  of  other  registers  and  memory  locations  as  well. 
Be  sure  that  you  know  all  the  effects  of  any  subroutine  or  macro  you  use.  Also 
note  the  importance  of  documenting  subroutines  and  macros  so  that  users  can 
determine  their  effect  without  examining  a  long  listing. 

•  Forgetting  that  the  stack  is  used  in  subroutine  linkages.  The  JSR  and  BSR 
instructions  save  the  return  address  in  the  hardware  stack  on  top  of  any 
parameter  you  may  have  placed  there.  The  RTS  instruction  simply  transfers 
control  to  the  address  at  the  top  of  the  current  stack  (user  or  supervisor).  If  you 

have  not  carefully  managed  the  stack,  the  processor  could  end  up  at  a  com- 
pletely unexpected  location. 

•  Using  the  wrong  return  instruction.  RTS  does  not  restore  condition  codes, 
RTR  does.  Note  that  no  subroutine  calling  instructions  automatically  store  the 
contents  of  the  condition  codes;  you  must  explicitly  accomplish  this  function. 
Remember  that  RTR  fetches  the  condition  codes  before  it  restores  the  program 
counter;  thus,  the  sequence 

MOVE.W  SR,-(A7) 
BSR  SUBR 

will  not  work  in  conjunction  with  an  RTR  instruction.  Instead,  if  you  want  to 
save  the  contents  of  the  condition  codes,  you  must  do  it  at  the  beginning  of  the 
subroutine  to  which  control  is  transferred. 

•  Failure  to  restore  previously  saved  registers.  This  is  a  very  common  error.  Be 
sure  that  you  restore  the  correct  number  of  registers  and  to  the  correct  loca- 

tions. Use  the  MOVEM.L  instruction  and  store  on  the  stack.  Remember  that  if 

you  are  moving  16-bit  words  from  memory  to  address  registers,  they  will  be 
sign-extended  to  32  bits,  and  this  may  result  in  problems. 

•  Using  Link  and  Unlink  instructions  improperly.  Don't  change  the 
"link-register1'  during  execution  of  the  subroutine.  For  example,  if  you  use 
LINK  A6,#—  16  at  the  beginning  of  a  subroutine,  then  A6  must  have  exactly 
the  same  value  when  you  execute  the  UNLK  A6  instruction.  Otherwise  the 
stack  will  go  out  of  phase  and  the  result  will  probably  be  disastrous  to  your 

system.  Also  remember  that  the  displacement  is  interpreted  as  a  two's  comple- 
ment integer;  if  you  have  a  stack  that  grows  downward  (as  the  system  stack 

does)  you  have  to  specify  a  negative  displacement  with  the  link  instruction.  The 
displacement  must  also  always  be  an  even  number  since  the  stack  is  organized 
on  a  word  boundary. 

General  Processing  Sections 

•  Reversing  order  of  operands.  Remember  that  MOVE  D1,D2  moves  the  con- 
tents of  Dl  to  D2.  (This  is  the  opposite  of  the  way  the  Z8000  and  8086  work.) 

Also  remember  that  SUB  src,dst  and  CMP  src,dst  perform  the  operation 
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dst  -  src.  The  DIV  src,Dn  instruction  performs  the  operation  Dn  -f  src  (and 
stores  the  result  in  Dn). 

•  Confusing  addressing  modes 
—  Data  versus  addresses  (immediate  and  absolute).  Remember  that 

MOVE.W  #$2000,D0  loads  register  DO  with  the  number  2000l6, 
whereas  MOVE.W  $2000,D0  loads  register  DO  with  the  contents  of 

memory  locations  200016  and  2001 16. 

—  Address  register  direct  and  indirect.  Remember  that  CLR.L  AO  loads 
register  AO  with  zeros,  whereas  CLR.L  (AO)  loads  the  memory  word 
pointed  to  by  AO  with  zeros. 

—  Forgetting  that  addressing  modes  operate  differently  on  jump  instruc- 
tions than  on  other  instructions.  Jump  instructions  (JMP  or  JSR)  are 

executed  as  if  one  level  of  indirection  had  been  removed.  For  example, 

JMP  $1000  loads  100016  into  the  program  counter,  whereas  MOVE 
$1000,  AO  loads  the  contents  of  memory  location  1000|6  into  register  DO. 

•  Ignoring  the  fact  that  certain  instructions  only  operate  in  one  size  format 

Examples:    DBcc  subtracts  1  from  the  low-order  16  bits  of  the  specified 
data  register. 

MOVEQ  affects  all  32  bits  of  the  specified  data  register. 

MOVE  ea,-(A7)  and  MOVE  (A7)  +  ,ea  must  always  be 
performed  on  a  word  boundary  (even  address). 

MOVE  to  CCR  is  a  word  instruction  but  only  the  low-order 
byte  of  the  status  register  is  affected. 
DIVS  and  DIVU  affect  all  32  bits  of  the  destination  data 

register  but  use  only  16  bits  of  the  source.  The  same  is  true  of 
MULS  and  MULU. 

When  an  address  register  is  used  as  a  destination,  the  entire 
register  is  affected  regardless  of  what  size  you  specify.  If  the 

source  operand  is  specified  as  a  word,  it  is  sign-extended  to  32 
bits  in  the  address  register. 

•  Forgetting  that  the  MC68000  sign-extends  your  16-bit  addresses.  This  may 
cause  trouble  if  you  work  in  the  memory  space  between  32K  and  64K 

(addresses  8000|6  through  FFFF16).  Also  be  careful  when  you  load  immediate 
values  into  an  address  register  and  when  you  use  the  absolute  short  addressing 
mode.  In  both  of  these  cases,  strange  results  can  be  obtained  if  the  size  is  word 

and  if  the  MSB  of  the  word  is  a  1:  the  automatic  sign-extension  will  propagate 

l's  through  the  most  significant  16  bits  of  the  long  word  address. 
•  Forgetting  the  details  of  sign  extension  of  data.  MOVEQ  treats  the  operand  as 

a  signed  value  and  extends  the  sign.  ADDQ  and  SUBQ  work  only  with  positive 
numbers.  MOVEM  sign  extends  to  32  bits  when  moving  words  from  memory 
registers. 

•  Using  the  shift  instructions  improperly.  Remember  the  difference  between 
arithmetic  shifts,  logical  shifts,  and  rotates.  They  will  all  affect  the  condition 
codes  even  if  they  are  operating  on  data  in  a  memory  location.  If  you  specify 
that  a  shift  count  is  to  be  found  in  a  data  register,  remember  that  the  count  is 
interpreted  modulo  64. 
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•  Confusing  8,  16,  and  32-bit  quantities.  Remember  that  the  processor  doesn't 
keep  track  of  whether  the  variable  you  stored  in  a  register  was  an  8-,  16-,  or  32- 
bit  value.  You  must  specify  the  size  in  each  instruction.  Here  are  some  size- 
related  points  to  keep  in  mind: 

—  A  byte  can  hold  two  BCD  numbers  and  the  BCD  instructions  (ABCD, 
SBCD)  are  byte-sized. 

—  A  16-bit  word  occupies  two  bytes  and  therefore  "two  addresses  in 
memory. "  In  other  words,  a  16-bit  word  stored  in  memory  location 
1000,6  occupies  location  100 1  !6  also. 

—  A  long  word  (32  bits)  occupies  4  bytes;  this  may  be  a  common  source 
of  errors  if  you  are  used  to  8-bit  microprocessors. 

•  Ignoring  the  limitations  of  read-only  memory.  Obviously,  instructions  that 
both  read  from  and  write  to  memory  locations  make  little  sense  when  applied  to 

an  address  occupied  by  a  read-only  memory  (ROM)  device.  A  sorting  program 
that  has  been  given  data  located  in  ROM  will  run  forever! 

Using  the  wrong  register.  The  MC68000  has  a  large  number  of  data  and 
address  registers.  While  this  is  one  of  the  sources  of  the  power  and  flexibility  of 
the  processor,  it  demands  that  you  very  carefully  keep  track  of  what  you  put 
where.  Note  the  specifications  for  two  data  registers  may  differ  by  only  one 
character  (e.g.  Dl,  D2).  The  same  is  true  of  address  and  data  registers  (e.g.  Al, 
Dl).  Typing  errors  are  easy  to  make  and  often  difficult  to  find. 

•  Confusing  BCD,  binary,  hexadecimal,  and  decimal  numbers.  In  the  BCD 
representation,  each  decimal  digit  is  coded  separately  into  binary,  using  four 
binary  digits  (0  or  1).  In  hexadecimal  representation,  four  binary  digits  are 
grouped  together  and  represented  with  a  hex  digit  (0  through  F).  For  example, 

the  decimal  number  54]0  is  equal  to  1 101 1 02  in  binary,  3616  in  hexadecimal,  and 
5416  in  the  standard  BCD  representation. 

•  Forgetting  to  transfer  control  past  sections  of  the  program  that  should  not  be 
executed.  Remember  that  the  processor  proceeds  sequentially  unless  you  tell  it 
to  do  otherwise.  You  may  need  some  unconditional  branches  to  avoid  routines 
that  should  not  be  executed. 

•  Confusing  the  stack  and  its  pointers.  The  contents  of  the  stack  are  always 
addressed  with  one  of  the  indirect  modes  and  the  stack  pointer  is  addressed 
using  register  direct  mode. 

•  Confusing  the  bit  positions  in  the  bit  operate  instructions.  Bits  are  numbered 
from  31  down  through  zero.  The  least  significant  bit  is  zero,  bit  7  is  the  most 
significant  bit  (MSB)  in  a  byte,  bit  15  is  the  MSB  in  a  word,  and  bit  31  is  the 
MSB  in  a  long  word. 

String  Manipulation  Errors 

•  Counting  the  length  of  an  array  incorrectly.  Remember  that  the  addresses 
100016  through  100416  include  five  (not  four)  memory  locations.  Thus,  the 
number  of  elements  in  an  array  is  ending  address  —  starting  address  +  1. 
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•  Confusing  numbers  and  characters.  Remember  that  the  ASCII  representation 
of  a  digit  is  not  the  same  as  the  binary  or  BCD  representation.  For  example,  the 
ASCII  representation  of  the  number  seven  is  3716;  0716  is  the  ASCII  BELL 
character  which  rings  the  bell  on  a  teletypewriter. 

•  Forgetting  that  word  operations  don't  work  on  odd  addresses.  String  opera- 
tions are  often  byte-sized.  Be  careful  if  you  are  using  word  or  long  word  opera- 
tions to  move  strings  or  append  characters  to  a  string.  For  example,  if  register 

A4  holds  the  address  of  the  current  position  within  a  string  and  you  want  to 

append  the  text  "The  End"  to  the  string,  the  instruction  sequence 
MOVE.L  #"THE  ",  (A4)  + 
MOVE.L*  "END",  (A4)  + 

will  cause  an  address  error  exception  if  A4  points  to  an  odd  address  before 
execution  of  the  first  instruction. 

Input/Output  Errors 

•  Ignoring  the  physical  limitations  of  I/O  and  interface  chips.  While  we 
address  interface  chips  as  if  they  were  memory  locations,  they  may  not  behave 
like  memory  devices.  Storing  data  in  an  input  port  seldom  makes  sense,  nor 
does  loading  data  from  an  output  port  unless  the  port  is  latched  and  buffered. 

Some  I/O  devices  have  two  different  registers  (one  read-only  and  one  write- 
only)  at  the  same  address.  The  6850  ACIA  control  and  status  registers  are  an 
example  of  this  case.  Be  careful  of  instructions  like  shift,  negate,  and  so  on, 

which  read  from  and  then  write  back  to  the  "same"  location;  they  will  produce 
strange  errors  with  register  combinations  like  those  provided  by  the  6850. 

•  Using  incorrect  bits  in  status  and  control  registers.  The  order  of  bits  in  these 
kinds  of  registers  may  appear  to  be  random.  Are  you  sure  you  used  the  right 
combination? 

•  Misusing  the  MOVEP  instruction.  Remember  that  MOVEP  uses  every  other 
address,  all  even  addresses  or  all  odd  addresses. 

•  Forgetting  to  reset  or  initialize  I/O  devices.  For  example,  the  6850  ACIA 
requires  a  software  reset  sequence. 

Assembler-Related  Errors 

The  use  of  an  assembler  is  the  only  practical  way  to  convert  source  programs  into 
object  code,  but  it  can  introduce  a  few  annoying  errors.  In  particular, 

•  Be  careful  of  what  your  assembler  may  use  as  defaults.  For  example,  the 
standard  MC68000  assembler  will  make  the  following  assumptions: 

—  Default  instruction  size  is  word  if  no  size  is  specified.  Remember  that 
it  is  good  programming  style  always  to  specify  the  size  with  every 
instruction,  even  though  it  is  obviously  not  necessary  with  instructions 
where  the  size  is  word. 
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—  Unmarked  numbers  are  assumed  to  be  decimal.  If  you  want  hex- 
adecimal numbers,  ASCII  characters,  and  so  on,  you  must  explicitly 

specify  such  numbers. 

—  The  default  addressing  modes  are  register  direct  and  absolute.  That  is, 
Al  specifies  address  register  Al,  not  the  memory  location  pointed  to  by 

Al.  The  value  $1000  will  specify  memory  location  100016,  and  #$1000 
will  specify  the  number  100016. 

•  Be  careful  with  absolute  short  addresses.  If  you  have  used  the  ORG  directive, 
the  assembler  assumes  that  any  reference  to  an  absolute  address  can  be 

achieved  using  the  short  absolute  addressing  form  of  the  instruction.  The  pro- 
cessor will  then  sign-extend  this  address.  You  should  note  that  this  condition 

may  be  remedied  with  later  versions  of  assemblers. 

•  Remember  that  the  assembler  chooses  the  quick  form  of  instructions  where 
possible,  regardless  of  whether  you  have  specified  the  quick  version.  Thus, 

ADD  #2, DO  will  cause  the  object  code  for  the  ADDQ  instruction  to  be  gener- 
ated. 

•  Watch  for  simple  typing  errors.  The  register  numbers  are  close  to  each  other 
on  the  keyboard  and  no  assembler  can  detect  a  typing  error  if  the  erroneous 
result  is  a  legal  instruction.  Also,  some  assemblers  get  confused  if  you  insert 

extra  spaces  where  it  didn't  expect  them,  or  if  you  accidentally  use  meaningless 
characters  such  as  1/2.  In  fact,  the  assembler  may  object  to  a  minor  error,  but 
accept  a  totally  illogical  entry  that  its  developer  never  considered. 

•  Remember,  the  assembler  can  print  a  reassuring  message  like  TOTAL 
ERRORS  0  even  when  the  program  is  wrong.  All  the  message  means  is  that 
the  assembler  found  no  errors  according  to  its  interpretations  of  the  rules  of 
the  language.  This  does  not  exclude  errors  that  produce  legal  instructions  or 

that  are  beyond  the  assembler's  comprehension.  Most  of  all,  it  does  not 
exclude  logical  errors  that  may  be  present  in  your  program  and  does  not 
necessarily  mean  that  the  program  does  what  you  intended. 

Exception  Processing 

Exception  processing  can,  from  the  trouble-shooter's  point  of  view,  be  divided 
into  two  groups:  interrupts,  and  all  the  other  types  of  exceptions.  This  is  because,  in 
general,  interrupts  are  controlled  by  external  devices  and  therefore  appear  to  occur  at 
random  occasions.  Other  kinds  of  exceptions,  illegal  instructions,  address  errors, 
and  so  on,  are  often  possible  to  pinpoint  a  specific  instruction  or  sequence.  If  your 

microcomputer  doesn't  have  an  exception  processing  software  system,  it  will  be  most 
useful  to  write  one  that  at  least  tells  you  which  exception  caused  a  trap  (address  error, 
bus  error,  and  so  on),  and  gives  you  the  address  where  the  trap  occurred. 

Some  errors  that  may  be  found  when  you  deal  with  exceptions  of  any  kind  are: 

•  Forgetting  the  general  facts  about  exceptions.  The  processor  is  put  in  the 
supervisor  state,  and  some  information  (usually  the  program  counter  and 
status  register)  is  saved  on  the  supervisor  stack. 

•  Using  the  wrong  return  instruction.  RTE  and  RTR  are  not  the  same,  so  you 
cannot  be  clever  and  use  your  subroutines  just  as  they  are,  as  part  of  exception 
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processing.  RTE  restores  the  entire  status  register  while  RTR  restores  just  the 
condition  code  portion  of  the  status  register.  RTE  is  a  privileged  instruction. 

•  Causing  multiple  bus  or  addressing  errors.  If  the  processor  recognizes  an 
address  or  bus  error  while  it  is  processing  a  previous  address  or  bus  error,  it  will 
halt.  For  example,  assume  that  you  have  an  odd  value  in  the  supervisor  stack 
pointer  for  some  reason.  You  try  to  use  the  stack  pointer  with  this  odd  address 
value  and  thereby  cause  an  address  trap.  But  the  trap  handler  also  uses  the 
supervisor  stack  and  this  causes  a  new  address  error  which  will  then  halt  the 

processor. 

Interrupt-Driven  Programs 

Interrupt-driven  programs  are  particularly  difficult  to  debug,  since  errors  may 
show  up  only  when  an  interrupt  occurs  at  a  particular  time.  If,  for  example,  the  pro- 

gram enables  the  interrupts  a  few  instructions  too  early,  an  error  will  appear  only  if 
an  interrupt  occurs  while  the  processor  is  executing  those  few  instructions.  In  fact, 
you  can  usually  assume  that  sporadic  or  randomly  occuring  errors  are  caused  by  the 

interrupt  system.2,3 
Since  the  MC68000  has  an  interrupt  priority  mask  in  the  status  register,  it  may  be 

possible  to  mask  off  some  of  the  interrupts  and  pinpoint  the  error.  Sometimes  a  break- 
point placed  at  the  start  of  the  interrupt  routine  may  give  you  a  hint  as  to  the  cause  of  the 

problem,  although  this  may  be  impossible  in  real-time  systems.  Another  approach  is  to 
save  the  return  addresses  every  time  you  get  an  interrupt,  and  in  this  way  you  may 
locate  the  section  of  the  system  that  causes  the  problem. 

Here  are  some  typical  errors  in  interrupt-driven  programs: 

•  Incorrect  value  of  the  interrupt  priority  level.  When  the  processor  is  reset,  it 
sets  its  interrupt  priority  mask  to  level  7.  Upon  acknowledging  an  interrupt,  the 
priority  mask  is  set  to  the  level  of  the  interrupt  being  acknowledged.  RTE  will 
restore  the  status  register,  and  thus  the  interrupt  priority  level,  as  it  was  before 
the  interrupt  occurred.  Make  sure  that  no  path  through  a  program  fails  to  set 
the  interrupt  priority  level  to  its  desired  value. 

•  Allowing  interrupts  on  a  certain  level  before  the  system  is  ready  to  handle  it. 
System  parameters  such  as  condition  codes,  flags,  pointers,  and  counters  must 
be  initialized  first.  A  checklist  might  give  some  help  here. 

•  Forgetting  to  store  and  restore  registers.  Interrupts  are  much  like  subroutines. 
Use  the  same  precautions  when  storing  and  restoring  registers  or  allocating 
space  on  the  stack. 

•  Forgetting  that  the  interrupt  leaves  the  old  program  counter  and  status 
register  contents  on  the  stack  whether  you  use  them  or  not. 

•  Forgetting  to  clear  the  source  of  the  interrupt  before  exiting  from  the  service 
routine.  For  example,  if  the  interrupt  comes  from  a  PIA,  the  interrupt  service 

routine  must  read  the  PIA's  data  register  in  order  to  clear  the  interrupt  flag.  The 
read  operation  is  necessary  even  if  the  interrupt  is  from  an  output  device  or  a 

real-time  clock;  otherwise,  the  interrupt  will  remain  active  and  will  be  recog- 
nized again  as  soon  as  the  processor  reenables  interrupts  on  this  level. 
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•  Failing  to  disable  certain  interrupts  during  multiword  transfers  and  other 
critical  sequences.  For  example,  assume  that  you  have  a  real-time  clock  with 
six  digits  stored  in  six  consecutive  bytes  of  memory.  If  the  clock  contains 

1  1 5959  and  you  are  reading  the  digits  from  memory  one  at  a  time  without  disab- 
ling the  interrupt  that  updates  the  clock,  here  is  what  could  happen.  If  a  clock- 

updating  interrupt  occurs  after  you  have  read  the  second  digit,  it  will  cause  the 
four  last  digits  to  be  0000  and  you  will  think  the  time  is  1 10000.  Such  an  error 
may  be  hard  to  find  because  it  occurs  so  seldom  and  because  some  very  special 
coincidences  are  required  to  create  the  error.  Another  area  where  you  must  be 
very  cautious  of  interrupts  is  in  delay  routines. 

•  Failing  to  reenable  the  interrupt  after  executing  a  routine  that  requires  inter- 
rupts to  be  disabled. 

•  Ignoring  the  possibility  that  the  interrupt  routine  may  get  reentered.  An 
interrupt  routine  might  have  to  be  reentered  just  like  a  subroutine  (see 
Chapter  11). 

A  list  of  possible  errors  can  be  endless  and  the  purpose  of  the  preceding  list  is  to 
give  you  some  ideas  as  to  where  you  might  start  looking  for  errors.  Unfortunately,  no 
one  has  found  the  algorithm  which  describes  how  to  be  one  hundred  percent  sure  that 
you  have  found  all  errors;  you  may  be  left  with  errors  no  matter  how  systematic  you 
are.  Sometimes  the  following  approach  may  be  your  best  bet:  turn  off  the  computer, 
have  a  beer,  and  let  your  brain  rest.  Perhaps  let  the  problem  sit  overnight  or  have 
someone  with  a  fresh  viewpoint  look  at  it.  Often,  when  you  are  explaining  a  problem 
to  someone  else,  you  will  see  the  answer  yourself. 

PROGRAM  EXAMPLES 

19-1.    DEBUGGING  A  CODE  CONVERSION  PROGRAM 

The  purpose  of  this  program  is  to  convert  a  decimal  number  in  memory  location 

DIGIT  to  a  7-segment  code  in  memory  location  CODE.  The  program  should  blank  the 
display  if  DIGIT  does  not  contain  a  decimal  number.  This  appears  to  be  a  simple  task 

and  we  start  off  with  the  flowchart  shown  in  Figure  19-8.  Our  first  coding  attempt  looks 
like  this: 

Initial  Program:  (from  flowchart  in  Figure  19-8) 

-BCD   TO   SEVEN   SEGMENT  DISPLAY  CONVERSION 

::INPUT--BCD  NUMBER   IN  DIGIT 
"OUTPUT--B I T   PATTERN  FOR   SEVEN   SEGMENT  DISPLAY    IN  CODE 

DATA  EQU  $8000 
PROGRAM     EQU  $4200 

ORG  DATA 

DIGIT  DS.B  1 
CODE  DS.B  1 



344    68000  Assembly  Language  Programming 

SSEG  DC.B 
DC  .B 

BCD_7SEG  MOVEA.W  SSEG, AO 
MOVE  DIGIT, DO 
CMP.B  #9, DO 
BCS.S  DONE 

EXT.W  DO 
MOVE.B  0(A0,D0),D1 

MOVE. 3  DO, CODE 

DONE  RTS 

GET  BASE   ADDRESS   OF  TABLE 
GET  DIGIT   TO  CONVERT 
IF   GREATER   THEN  9 THEN  DONE 

ELSE   MAKE   LOOK   LIKE   A  WORD 
GET   CODE   FROM  TABLE 

$3F,  $06,  $5B,  $t+F,  $66 
$6D, $7F, $07, $7F 

i 

Pointer  =  SSEG 
Result  =  0 

Data  =  (DIG  IT) 

Result  = (Pointer  +  Data) 

EE: 

CODE  =  Result 

(     End  ) 

Figure  19-8.  Flowchart  of  Decimal  to  Seven-Segment  Conversion 
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Using  the  Checklist 

Let  us  use  the  checklist  we  described  earlier  in  this  chapter  to  evaluate  this 

program. 

1.  Every  element  of  the  design  in  the  program?  No!  We  forgot  the  section  that 
clears  the  display  if  the  data  was  not  a  decimal  digit. 

2.  Initialization?  Okay. 

3.  Conditional  branches  correct?  No!  Branch  on  carry  set  (BCS)  will  not  handle 
the  equality  case  correctly.  (Try  it!).  BHI.S  DONE  is  the  correct  instruction. 

4.  No  loops. 

5.  Equality  cases?  Yes,  they  are  now  handled  correctly. 

6.  Trivial  cases?  Yes,  (DIGIT)  =  0  is  handled  in  the  same  way  as  other 

digits.  (Since  zero  is  just  another  digit  in  this  example,  this  isn't  really  a  trivial case.) 

We  also  forgot  to  specify  the  suffix  for  the  second  MOVE  instruction.  Our  second 
version  of  the  program  looks  like  this: 

Second  program: 

DATA  EQU  $8000 
PROGRAM     EQU  $4200 

ORG  DATA 

DIGIT         DS.B  1 
CODE  DS.B  1 
SSEG  DC.B  $3F,$06,$5B,$4F,$66 

DC.B  $6D, $7F, $07, $7F 

BCD   7SEG  MOVEA.W  SSEG, AO GET  BASE   ADDRESS  OF  TABLE 

DONE 

MOVEQ  #0,D1 
MOVE.B     DIGIT, DO 
CMP.B        #9, DO 
BHI.S 

EXT.  W 

DONE 
DO 

MOVE.B      0(A0,D0 .W),D1 

MOVE.B     DO, CODE 
RTS 

GET  DIGIT  TO  CONVERT 
IF   GREATER   THEN  9 

THEN  DONE 

ELSE  MAKE   LOOK  LIKE   A  WORD 
GET  CODE   FROM  TABLE 

The  hand  check  did  not  uncover  any  errors  in  this  version. 

Assembling 

The  next  step  is  to  key  in  the  program  and  assemble  it. 

Third  Program: 

00008000 
00004200 

DATA  EQU  $8000 
PROGRAM     EQU  $4200 

00008000 ORG  DATA 
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008000  00000001  DIGIT  D5.B  1 
008001  00000001  CODE  D5.B  1 
0  0  8  0  0  2    3F  SSEG  DC . B  $ 3F , $  06 , $ 5B , $ 4F  ,  $  6 6 
0  0  8  0  0  7   6D  DC.B  $6D , $ 7F , $  0 7 ,  $ 7F 

00004200  ORG  PROGRAM 

004200    307900008002   BCD_75EG  MOVEA.W  SSEG, AO  GET  BASE   ADDRESS  OF  TABLE 
004206    7200  MOVEO  #0,D1 
004208    103900008000  MOVE . B  DIGIT, DO  GET  DIGIT  TO  CONVERT 
00420E   0C000009  CMP.B  #9, DO  IF   GREATER   THEN  9 
004212   620C  BHI.S  DONE  THEN  DONE 

004214   4880  EXT.W  DO  ELSE   MAKE    LOOK   LIKE   A  WORD 
004216    12300000  MOVE . B  0 ( AO , DO . W) , D 1  GET  CODE   FROM  TABLE 

00421A   13C000008001  MOVE . B  DO, CODE 

004220   4E75  DONE  RTS 

END  BCD   7  S  EG 

Single-Step 

It  is  now  time  to  single-step  through  this  program  (this  can  be  done  quickly 

because  it's  a  short  program).  If  you  have  the  ability  to  specify  which  registers  to  display 
after  each  step,  choose  PC,  DO,  Dl,  SR,  and  AO. 

We  chose  the  following  test  data  for  the  trials: 

O  The  smallest  decimal  digit 
9  The  lagest  decimal  digit 

1 0  A  boundary  case 
6B  A  randomly  selected  case 

For  the  first  trial,  we  place  zero  in  memory  location  DIGIT.  After  executing  the 

first  instruction,  MOVE.W  SSEG, AO  we  find  the  value  3F06l6  in  register  AO.  That 

doesn't  sound  familiar;  we  expected  to  have  8000l6  in  AO.  The  first  thing  to  check  here 
is  whether  we  selected  the  correct  addressing  mode.  In  this  case,  the  answer  is  no;  we 
confused  the  immediate  and  absolute  addressing  modes.  Replace  SSEG  with  #SSEG 

and  try  again.  This  time,  we  find  FFFF800016  in  register  AO.  Again,  not  the  expected 

result.  However,  all  of  the  F's  must  have  come  from  sign-extension  (provided  that  AO 
contained  zero  when  we  first  started).  We  have  specified  a  word  address  to  be  loaded 

into  AO  and  the  most  significant  bit  in  the  word  is  1.  When  this  address  is  sign-extended, 
it  produces  all  ones  (FFFF)  in  the  most  significant  word  of  the  register.  The  solution  is 
to  specify  the  long  word  form  of  the  MOVEA  instruction.  All  of  this  trouble  has  showed 
us  that  the  correct  first  instruction  is  MOVEA. L  #SSEG,A0.  (Once  again,  this  is  a 
weakness  in  the  version  of  the  assembler  we  are  using  and  will  probably  be  handled  by 
later  assemblers.) 

After  correcting  this  problem,  we  continue  single-stepping  through  the  program. 
Everything  seems  to  work  fine.  The  branch  is  not  taken  and  we  get  3F16  as  we  had 
expected  in  register  Dl.  But  when  we  check  memory  position  CODE,  we  find  the  BCD 

digit  which  we  used  as  the  input  test  data,  zero.  Something  is  wrong.  To  find  the  prob- 
lem, ask  the  question:  which  instruction (s)  affects  memory  location  CODE.  In  this  case 

it  is  the  last  instruction:  MOVE  D0,CODE.  What  do  we  have  in  register  DO?  The  BCD 
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code.  Where  is  the  7-segment  code?  In  register  Dl.  Aha!  It  appears  that  we  have  a  typ- 
ing error.  We  change  DO, CODE  to  Dl,CODE  and  make  another  try.  This  time  we  find 

3F16  in  memory  location  CODE.  The  program  now  looks  like  this: 

Fourth  Program: 

00008000 DATA EQU $  800  0 
00004200 PROGRAM EQU $4200 

00008000 ORG DATA 

008000 0000000  1 DIGIT DS  .  B 1 
008001 00000001 CODE DS  .  B 1 
008002 

3F 
SSEG DC  .B $3F, $06, $5B, $4F 

,$66 

n  n  8  n  n  i U  U  0  u  u  / 6  D DC  .  B $6D,  $  7F  ,  $  0  7,  $  7F 

00004200 ORG PROGRAM 

004200 207C00008 002 BCD_7SEG MOVE  A . L #  S  SEG, AO GET  BASE   ADDRESS   OF  TABLE 
004206 7  200 

MOVEQ 
#0,D1 

004208 103900008 000 MOVE . B DIGIT, DO GET  DIGIT  TO  CONVERT 
00420E 0C000009 CMP  .  B #  9,  DO IF   GREATER   THEN  9 
004212 6  20C BHI  .  S DONE THEN  DONE 

004214 4880 EXT.  W 
DO 

ELSE  MAKE   LOOK   LIKE   A  WORD 
004216 12300000 MOVE  .  B 0(A0,D0.W),D1 GET  CODE   FROM  TABLE 

00421A 1 3C1 00008 001 MOVE  .  B Dl  , CODE 

004220 4E75 DONE 
RTS 

END BCD   7  S  EG 

Run  Test 

This  time  we  run  the  entire  program  with  the  second  test  value,  9.  A  check  of 

memory  location  CODE  shows  that  it  does  not  contain  7D16,  which  is  the  last  value  in 
the  7-segment  code  table.  The  input  test  value  9  should  cause  the  program  to  follow  the 
same  path  as  for  the  value  0.  To  see  what  has  happened,  we  make  another  single-step 
pass  through  the  program.  Everything  works  fine  until  we  reach  the  MOVE.B 

0(A0,D0.W),D1  instruction.  We  expected  7D,6  to  be  loaded  into  Dl  but  this  was  not 
the  case.  A  memory  dump  of  the  table  and  its  environment  shows  that  the  value  we  get 

comes  from  the  byte  immediately  following  the  7-segment  table.  Did  we  miss  an  entry  in 
the  table?  We  have  nine  bytes  in  the  table.  The  values  0  through  9  require  ...ten  bytes!  A 

check  shows  that  we  forgot  the  last  entry,  6F|6,  for  the  digit  9.  After  adding  this  value  to 
the  table  the  run  test  works  with  both  0  and  9. 

The  test  result  after  the  two  last  runs  were 

Digit  Code 
10  6F 
6B  6F 

The  code  has  not  been  changed  since  we  tested  with  the  digit  equal  to  9.  Both  of 
the  values  are  invalid  data  so  the  error  can  probably  be  found  in  the  neighborhood  of  the 
branch.  To  what  location  does  the  branch  transfer  control?  Aha!,  directly  to  the  RTS 
instruction!  We  must  execute  the  MOVE  Dl,CODE  instruction  and  store  the  cleared 
results.  The  label  DONE  should  be  moved  up  one  statement. 
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Exhaustive  Test 

Since  the  program  is  simple,  it  can  be  tested  for  all  the  decimal  digits.  The  results 
are 

Digit Code 

0 

3F 
1 06 
2 

5B 3 4F 
4 

66 5 
6D 6 
7F 7 
07 8 7F 

9 
6F 

The  result  for  number  6  is  wrong;  it  should  be  7D.  Since  everything  else  seems  to 
be  correct,  the  error  is  almost  surely  in  the  table.  Entry  6  in  the  table  had  been  typed 
incorrectly. 

Final  Program: 

::BCD   TO   SEVEN   SEGMENT   DISPLAY  CONVERSION 

-1NPUT--BCD   NUMBER   0-9    IN   LOCATION  DIGIT 
-GUTPUT--B I T   PATTERN   FOR    SEVEN   SEGMENT  DISPLAY 
::  IN   LOCATION   CODE.    DISPLAY   CLEARED  IF 
;!  DIGIT   OUT   OF  RANGE 

DATA  EQU  $8000 
PROGRAM     EQU  $1+200 

ORG DATA 

DIGIT         DS.B  1 
CODE  DS.B  1 
SSEG  DC.B  $3F, $06, $5B, $4F, $66 

DC.B  $6D, $7D, $07, $7F, $6F 

ORG PROGRAM 

BCD   7  S  EG  MOVE  A . L  #SSEG,A0 MOVEQ 

MOVE  .  B 
CMP.  B 
BHI  .  S 

#0,D1 DIGIT, DO 
#9, DO DONE 

GET  BASE  ADDRESS  OF  TABLE 

GET  DIGIT  TO  CONVERT 
IF   GREATER   THEN  9 

THEN  DONE 

F  I  N  I 

EXT.  W 
MOVE . B 

MOVE . B 

RTS 

END 

DO 
0(A0,D0 .W),D1 

Dl , CODE 

BCD   7  S  EG 

ELSE   MAKE    LOOK   LIKE   A  WORD 
GET   CODE   FROM  TABLE 

Notice  that  we  have  also  improved  the  comments. 
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Summary  of  Errors  Discovered 

The  errors  that  we  found  in  this  example  are  typical  of  the  ones  that  MC68000 
assembly  language  programmers  should  expect.  They  include: 

1.  Failing  to  initialize  registers  or  memory  locations. 

2.  Inverting  the  logic  on  conditional  branches. 

3.  Misalignment  of  data  when  dealing  with  byte  values  (although  the 
assembler  will  usually  tell  you  that  something  is  wrong  in  this  case). 

4.  Confusing  the  immediate  and  absolute  addressing  modes  (i.e.,  data  and 
addresses). 

5.  Forgetting  when  sign-extension  occurs  and  when  it  does  not  (especially 
when  dealing  with  addresses). 

6.  Failing  to  keep  track  of  which  register  is  used  for  what,  or  typing  the  wrong 
digit  for  a  register  number. 

7.  Copying  lists  of  numbers,  characters,  or  instructions  incorrectly. 

8.  Branching  to  the  wrong  place. 

19-2.    DEBUGGING  A  SORT  PROGRAM 

This  program  sorts  a  list  of  unsigned  16-bit  numbers  into  decreasing  order.  The 
address  of  the  beginning  of  the  list  is  in  memory  location  LISTADDR  and  the  first  byte 
in  the  list  contains  the  length  of  the  list. 

Initial  Program:  (from  flowchart  in  Figure  19-9) 
00006000  DATA  EQU  $6000 
00004000  PROGRAM     EQU  $4000 

00006000  ORG  DATA 

006000   00000004  LISTADDR   DS.L  1  ADDRESS   OF   START  OF  LIST 

00004000  ORG  PROGRAM 

004000    22786  000  BUB_SORT  MOVE  A . L   LISTADDR, Al  GET   START  OF  LIST 
004004   7200                                     MOVEQ  #0,D1 
004006    1219  MOVE.B      (A1)+,D1  GET  LENGTH  OF  LIST 

004008    5  341  SUBQ  H,D1  N  ENTRIES   REQUIRES  N-l  COtAPfi 

00400A  45E90002  LEA  2(A1),A2  GET  ADDRESS   TO  SECOND  ELEMEN 
00400E   08820000  BCLR.B      *J0,D2  CLEAR    INTERCHANGE  FLAG 

004012   B549  NEXT  CMPM.W     (A1)+,(A2)+  IF   (Al)    <=  (A2) 
004014  6506  BCS.S       NSWITCH  THEN   TEST  NEXT   PAIR    IF  ANY 

004016    3611  MOVE.W     (A1),D3  ELSE    INTERCHANGE  THE 
004018    3292  MOVE.W     (A2),(A1)  ADJACENT  ENTRIES 
00401A   3483  MOVE.W  D3,(A2) 

00401C  51C9FFF4 NSWITCH  DBRA Dl  , NEXT 
004020  08020000 
004024  66EC 

BTST.B  tfO,D2 
BNE  NEXT 

INTERCHANGE  DURING  THIS  PASS 
IF   YES,    START  NEW  PASS 

004026  4E75 DONE RTS 

END BUB  SORT 

ELSE  DONE 
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C    Slart  ) 

First  =  (LISTADDR) 
Length  =  (First) First  =  First  +  1 

Exchange 
Elements 

Length  = 
Length  -  1 

Figure  19-9.  Flowchart  of  a  Sort  Program 
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Initial  Hand  Check 

A  hand  check  shows  us  that  all  of  the  blocks  in  the  flowchart  have  been  imple- 
mented and  the  registers  used  in  the  loop  have  been  initialized.  We  must  examine  two 

conditional  branches  carefully.  The  branch  in  the  inner  loop  BCS.S  NSWITCH  must 
be  taken  if  the  second  entry  is  less  than  or  equal  to  the  first  entry.  The  operation 

peformed  is  (A2)  — (Al).  If  (A2)#(Al),  the  Carry  flag  will  be  set  because  of  the  bor- 
row. The  equality  condition  (A2)  =  (Al)  will  not  set  the  Carry  flag  but  will  set  the  Zero 

flag.  The  BCS  instruction  will  not  handle  the  equality  case  correctly;  we  must  use  BLS 
instead. 

The  second  condition  branch  is  BNE  NEXT  which  is  supposed  to  force  another 
pass  through  the  loop  if  an  interchange  occurred.  We  clear  the  interchange  flag  before 
the  inner  loop  so  a  set  flag  means  interchange  and  BNE  will  work  fine  here. 

The  next  thing  to  check  is  the  loop.  Let  us  test  the  first  iteration  by  hand.  We 

assume  that  memory  location  LISTADDR  contains  5000,6.  The  initialization  section  — 
the  first  six  instructions  —  causes  the  following  result: 

A1  =  5001 
A2  =  5003 
D1  =  count 
D2  bit#0  =  0 

The  effect  of  the  loop  instructions  is  as  follows: 

NEXT  CMPM.W  (A1)+,(A2) 
BLS.S  NSWITCH 

(  5  00  1  )   -   (  5  00  3)   AND  AUTO  I NCREMENT 

MOVE.W  (A1),D3 
MOVE.W  (A2),(A1) 
MOVE.W  D3,(A2) 

NSWITCH  DBRA D 1 , NEXT 

D3    :=  (5003) 
(5003)    :-  (5005) 
(5005)    :=  (5003) 

COUNT    :=  COUNT  -  1 

There  is  something  weird  here.  The  contents  of  memory  locations  5001  and  5003 
were  compared  and  then  location  5005  somehow  got  involved  in  the  interchange. 

Clearly,  we  forgot  that  the  CMPM  instruction  autoincremented  both  Al  and  A2.  Let's 
try  this  code  for  the  loop: 

NEXT CMPM.W  (A1)+,(A2)+ 
BLS.S  NSWITCH 

IF    (Al)    >=  (A2) 
THEN   TEST  NEXT   PAIR    IF  ANY 

MOVE . W 
MOVE .W 
MOVE . W 

-(A1),D3 
-(A2),(A1)+ 
D3, (A2)+ 

ELSE  INTERCHANGE  THE 
ADJACENT  ENTRIES 

NSWITCH  DBRA D 1 , NEXT 

A  new  check  shows  us  that  this  code  performs  what  we  want. 
Now  let  us  check  the  last  iteration.  Suppose  we  have  three  elements: 

(5000)  =  03 
(5001)  =  2015 
(5003)  =  1B1 1 
(5005)  =  OOOA 

This  is  what  happens.  After  the  first  iteration: 
D1  =  02 
A1  =  5003 
A2  =  5005 
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DBRA  subtracts  1  from  Dl  and  branches  to  NEXT. 
After  the  second  iteration: 

D1  =  1 
A1  =  5005 
A2  =  5007 

Now  A2  points  beyond  the  list  and  things  should  stop  here.  But  when  DBRA 

subtracts  1  from  Dl,  the  result  becomes  0  and  DBRA  tests  for  —  1.  The  branch  will  be 
taken  and  the  loop  executes  one  more  time  —  one  time  too  many.  We  must  adjust  Dl 
by  subtracting  1  from  it  before  we  enter  the  loop. 

The  next  checkpoint  in  our  list  is  the  equality  cases.  We  checked  what  happened 
with  two  equal  entries  when  we  discussed  the  conditional  branches,  and  that  is  the  only 
equality  case  that  exists  in  this  program. 

Checking  Trivial  Cases 

What  happens  in  the  trivial  cases?  First,  which  are  the  trivial  cases  —  zero  entries 
in  the  list?  Yes,  but  another  trivial  case  is  when  there  is  only  one  entry  in  the  list  —  it 

doesn't  make  much  sense  to  try  to  sort  a  single  element.  Remember  that  trivial  cases  are 
not  only  zero  entries,  zero  objects,  and  so  on.  What  happens  if  we  have  one  entry?  The 

answer  is  that  the  program  tries  to  sort  64K  of  memory  (if  there  is  read-only  memory  in 
this  area,  the  program  will  run  forever).  A  few  instructions  added  to  handle  trivial  cases 
will  save  you  from  a  lot  of  trouble  and  they  can  usually  be  positioned  outside  of  the  loop 

so  that  they  don't  increase  the  execution  time  very  much.  The  BLS.S  DONE  instruction 
is  the  only  one  required  in  our  program  to  handle  the  trivial  cases.  The  program  now 
looks  like  this: 

00006000 
00004000 

DATA 
PROGRAM 

EQU 
EQU 

$6  00  0 
$4000 

00006000 ORG 
DATA 

006000 00000004 

00004000 

LISTADDR DS.L 

ORG 

I 

PROGRAM 

ADDRESS   OF   START  OF  LIST 

004000 
004004 
004006 

22786000 
7  2  0  0 
1219 

BUB_SORT MOVE  A  .  L MOVEO 

MOVE . B 

L I STADDR, Al 
#0,D1 
(A1)+,D1 

GET   START   OF  LIST 

GET  LENGTH  OF  LIST 

0  040  0  8 
00400A 

5  34  1 
631E 

SUBQ 

BLS  .  S 
#1,D1 
DONE 

N   ENTRIES   REQUIRES   N-l  COMPAR 
IF   0   OR   1    ENTRY   THEN  DONE 

00400C 
0040  10 
0  040  1  4 

45E90002 
08820000 
5  34  1 

LEA BCLR  .  B 
SUBQ. W 

2(A1), A2 
#0,D2 
#1,01 

GET  ADDRESS   TO  SECOND  ELEMENT 
CLEAR    INTERCHANGE  FLAG 
ADJUST  FOR  DBCC 

004016 
0  040  1  8 

B549 
6  506 

NEXT CMPM . W 
BCS.  S (A1)+,(A2)+ 

NSWI TCH 
IF   (Al)    <=  (A2) 
THEN   TEST  NEXT   PAIR    IF  ANY 

00401A 
00401C 
00401E 

3621 
32E2 
34C3 

MOVE . W 
MOVE . W 
MOVE  .  W 

-CA1),D3 

-(A2),(A1)+ 
D3, (A2)+ 

ELSE    INTERCHANGE  THE 
ADJACENT  ENTRIES 

004020 51C9FFF4 NSW  I TCH DBRA Dl , NEXT 
004024 
004028 

08020000 
66EC 

BTST.B 
BNE 

#0,D2 
NEXT 

INTERCHANGE   DURING  THIS  PASS 
IF    YES,    START  NEW  PASS 

00402A 4E7  5 DONE 
RTS 

END BUB  SORT 

ELSE  DONE 
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Run  Test  with  Breakpoints 

Now  it  is  time  to  check  the  program  on  a  computer  or  on  a  simulator.  A  simple 
set  of  test  data  is: 

(6000)  =  00005000       Address  of  array 
(5000)  =  02  Length  of  array 
(5001)  =  0100 
(5003)  =  0A00  Array  to  be  stored 

This  set  consists  of  two  elements  in  the  wrong  order.  The  program  should  require 
two  passes.  The  first  pass  should  exchange  the  elements,  producing: 

(5001)  =  0A00 
(5003)  =  0100 
D2b#0  =  1  Interchange  flag 

The  second  pass  should  just  find  the  elements  already  in  the  proper  (descending) 
order  and  produce: 

D2bit#0  =  0  Interchange  flag 

This  program  is  too  long  for  single-stepping,  so  we  will  use  breakpoints 
instead.  Each  breakpoint  will  halt  the  computer  and  print  contents  of  key  registers. 
We  will  use  four  breakpoints  and  we  position  them  as  follows: 

1.  After  SUBQ.W  #1,D1  to  check  the  initialization. 

2.  After  CMPM.W  (A1)+,(A2)  +  to  check  the  comparison  and  the  branch. 

3.  After  MOVE.W  D3,(A2)+  to  check  the  interchange. 

4.  After  BTST.B  #0,D2  to  check  the  completion  of  a  pass  through  the  list. 

Assuming  that  our  trace  facility  allows  us  to  display  just  the  contents  of  those 
registers  we  select,  we  select  registers  PC,  Dl,  D2,  Al,  A2,  and  the  condition  codes  of 
the  status  register. 

After  the  first  breakpoint  these  are  our  results: 

PC  =  004016 
CCR  =  04 
D1  =  0000 
D2  bit#0  =  0 

These  are  all  correct,  so  the  program  is  performing  the  initialization  properly  in 
this  case. 

When  we  start  up  our  program  again,  we  get  a  trap.  (At  this  point  the  less 
intrepid  travelers  of  the  marvelous  world  of  computer  programming  simply  throw  up 

their  hands  in  dismay  and  consternation  and  cry,  "Damn  this  noise!,,)  The  trap  handler 
tells  us  that  it  is  an  address  error  and  the  instruction  code  that  caused  it  was  B549  (the 

program  counter  is  not  reliable  in  this  case).  This  instruction  code  is  the  CMPM.W 

(Al)  +  ,A2+  instruction.  The  size  is  word.  Al  contains  5001,  and  A3  contains  5003  — 
both  odd  values!  The  list  length  is  a  byte  value  and  this  causes  Al  and  A3  to  get  odd 
values.  This  is  a  serious  problem  and  the  solution  is  far  from  trivial. 

One  solution  is  to  rewrite  the  program  so  that  it  reads  byte  by  byte  instead  but  that 
is  a  lot  of  unnecessary  work.  A  second  alternative  is  to  realign  the  entire  list  so  that  the 
words  are  on  even  boundaries.  A  third  and  simpler  (for  us)  alternative  is  to  decide  that 
the  first  entry  in  the  list  (the  length)  should  be  a  word.  This  alternative  means  that  we 
only  have  to  change  the  suffix  after  the  MOVE  instruction  that  obtains  the  length.  But 
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be  careful.  This  is  a  change  in  the  "specifications'1  and  it  may  not  fit  with  other  parts  of 
your  system.  However,  in  this  case  we  assume  that  it  is  possible  to  make  this  change  and 
the  third  instruction  of  the  program  is  changed  to: 

MOVE.  W  (AD  +  .D1 

Note  that  this  error  would  not  have  been  discovered  if  the  list  had  started  in 

memory  location  4FFF.  Why? 
Notice  also  that  our  program  does  not  have  any  comments  at  the  beginning  to  tell 

users  how  to  specify  the  location  and  length  of  the  list. 
We  must  change  the  list  to  look  like  this  before  we  can  start  our  second  trial: 

(5000)  =  0002 
(5002)  =  0100 
(5004)  =  0A00 

This  time  the  initialization  gives  us  the  same  results,  and  after  the  second  break- 
point these  are  the  results: 

PC  =  004018 
CCR  =  00 
D1  =  0000 
D2  bit  *0  =  0 
A1  =  005004 
A2  =  005006 

These  are  the  correct  results,  and  we  proceed  to  the  third  breakpoint: 

PC  =  004020 
CCR  =  00 
D1  =  00 
D2  bit#0  =  0 
A1  =  005004 
A2  =  005006 

A  check  of  memory  locations  shows: 

(5002)  =  0A00 
(5004)  =  0100 

Exactly  what  we  expected.  We  proceed  to  the  fourth  breakpoint: 

PC  =  004028 
CCR  =  04 
D1  =  FFFF 
D2  bit#0  =  0 
A1  =  005004 
A2  =  005006 

Something  is  wrong.  The  bit  that  should  indicate  that  an  interchange  occurred  is 

still  0.  A  quick  look  in  the  loop-de-loop  shows  that  no  instruction  ever  changes  this  bit. 
The  solution  is  to  insert  BSET  #0,D2  after  MOVE.W  D3,(A2)  +  . 

At  this  point  in  the  debugging  procedure,  the  easiest  thing  to  do  is  simply  to  set 
the  interchange  bit  ourselves  and  proceed  with  the  second  pass.  The  next  breakpoint  we 
reach  is  the  one  at  address  4016  following  the  SUBQ.W  #1,D1  instruction: 

PC  =  004016 
SR  =  00 
D1  =  FFFF 
D2  bit#0  =  1 
A1  =  005004 
A2  =  005006 
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There  is  still  something  wrong:  the  registers  are  not  reinitialized.  For  this  pass,  we 
must  be  sure  that  we  branch  all  the  way  to  the  start  of  the  program  to  reinitialize. 

We  change  BNE  NEXT  to  BNE  BUB  SORT  and  this  time  everything  works 
correctly. 

Final Program: 

00006000 
00004000 

DATA 
PROGRAM 

EQU 
EQU 

$6000 
$  4  0  0  0 

00006000 ORG DATA 

006000 •0  0000004 LISTADDR  DS.L 1 ADDRESS    OF   START   OF  LIST 

00004000 ORG PROGRAM 

004000 
0  040  04 
004006 

22786000 
7  20  0 
3219 

BUB_SORT MOVEA.L MOVEQ 

MOVE . W 

L I S  TADDR , A 1 
#  0  ,  D  1 
(A1)+,D1 

GET   START   OF  LIST 

GET   LENGTH   OF  LIST 

004008 
00400A 

5  34  1 
6  322 

SUBQ 

BLS.  S H,D1 DONE 
N   ENTRIES   REQUIRES   N-l  COMPARES 
IF    <=    0      THEN  DONE 

00400C 
0  040  1  0 
004014 

45E90002 
08820000 
5  34  1 

LEA 
BCLR  .  B 
SUBQ. W 

2(A1), A2 
#0,D2 

n,Di 

GET   ADDRESS   TO   SECOND  ELEMENT 
CLEAR    INTERCHANGE  FLAG 
ADJUST   COUNTER   FOR  DBCC 

004016 
004018 

B549 
6  3  0A 

NEXT CMPM . W 
BLS  .  S 

(A1)+,(A2)+ 
NSW  I TCH 

IF    (Al)    <=  (A2) 
THEN   TEST   NEXT   PAIR    IF  ANY 

00401A 
00401C 
00401E 

36  2  1 
32E2 
34C3 

MOVE  .  W 
MOVE . W 
MOVE . W 

-(A1),D3 

-CA2),(A1)+ 
D3, (A2)+ 

ELSE    INTERCHANGE  THE 
ADJACENT  ENTRIES 

004020 08C20000 BSET.  B #0,D2 SET    INTERCHANGE  FLAG 

004024 51C9FFF0 N  SW I TC  H DBRA Dl  , NEXT 
004028 
00402C 

08020000 
66D2 

BTST. B 
BNE 

#0,D2 
BUB_SORT 

INTERCHANGE   DURING   THIS   PASS  ? 
IF    YES,    START   NEW  PASS 

00402E 4E7  5 DONE 
RTS 

ELSE  DONE 

END  BUB  SORT 

This  program  still  needs  some  comments  at  the  start  for  documentation. 

Other  Test  Cases 

Clearly,  we  cannot  test  all  possible  cases  for  this  program.  Some  other  simple 
test  cases  we  could  use  for  debugging  are: 

1.  No  elements  in  list 

(6000)  =  00005000 
(5000)  =  OOOO 

2.  One  element  in  list: 

(6000)  =  00005000 
(5000)  =  0001 
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3.  A  "random  case"  with  two  equal  elements: 
(6000)  =  00008200 
(8200)  =  0004  Number  of  elements  in  list 
(8202)  =  8345 
(8204)  =  0001  Array  to  be  stored 
(8206)  =  0001 
(8208)  =  4657 

Summary  of  Errors  Discovered 

With  this  program,  we  have  become  acquainted  with  some  other  errors  which 
you  certainly  will  encounter  in  your  career  as  an  MC68000  programmer.  They 
included: 

1.  Specifying  the  wrong  condition  in  conditional  branches  (again,  but  this  is  a 
very  common  error). 

2.  Forgetting  the  effects  of  autoincrements/autodecrements  or  forgetting  the 
values  of  pointers. 

3.  Forgetting  that  DBcc  tests  for  -1  or  incorrectly  calculating  the  length  of  an 
array  (length  =  end-start  +  1). 

4.  Failure  to  handle  trivial  cases  and  equality  cases  or  perhaps  even  missing 
some  of  the  trivial  cases. 

5.  Trying  to  address  words  and  long  words  at  odd  addresses.  This  is  very  easy  to 
do  with  poorly  defined  data  structures  that  require  a  mixture  of  byte  and  word 
instructions. 

6.  Forgetting  to  set  and/or  reset  flags. 

7.  Forgetting  to  reinitialize  the  inner  loops  in  nested  structures. 
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Testing 

Program  testing1  is  closely  related  to  program  debugging.  We  must  test  the  pro- 
gram on  the  data  that  we  used  to  debug  it;  for  example, 

•  Trivial  cases  such  as  no  data  or  a  single  statement 

•  Special  cases  that  the  program  singles  out  for  some  reason 

•  Simple  cases  that  exercise  particular  parts  of  the  program 

For  the  decimal  to  seven-segment  conversion  program  in  Chapter  19,  these 
cases  cover  all  possible  situations.  The  test  data  consists  of: 

•  The  numbers  0  through  9 

•  The  boundary  case  10 

•  The  random  case  6B16 

The  program  does  not  distinguish  any  other  cases.  Here  debugging  and  testing 
are  virtually  the  same. 

In  the  sorting  program,  the  problem  is  more  difficult.  The  number  of  elements 
could  range  from  0  to  255,  and  each  of  the  elements  could  lie  anywhere  in  that  range. 
The  number  of  possible  cases  is  therefore  enormous.  Furthermore,  the  program  is 
moderately  complex.  How  do  we  select  test  data  that  will  give  us  a  degree  of  confidence 
in  that  program?  Here  testing  requires  some  design  decisions.  The  testing  problem  is 

particularly  difficult  if  the  program  depends  on  sequences  of  real-time  data.  How  do  we 
select  the  data,  generate  it,  and  present  it  to  the  microcomputer  in  a  realistic  manner? 

357 
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TESTING  AIDS 

Most  of  the  tools  mentioned  earlier  for  debugging  are  helpful  in  testing  also. 

Logic  or  microprocessor  analyzers  can  help  check  the  hardware;  simulators2  can  help 
check  the  software.  Other  tools  can  also  be  of  assistance: 

1.  I/O  simulations  that  can  simulate  many  devices  from  a  single  input  and  a 
single  output  device. 

2.  In-circuit  emulators  that  allow  you  to  attach  the  prototype  to  a  development 
system  or  control  panel  and  test  it.3 

3.  ROM  simulators  that  can  be  changed  like  RAM  but  otherwise  behave  like 
the  ROM  or  PROM  that  will  be  used  in  the  final  system. 

4.  Real-time  operating  systems  that  can  provide  inputs  or  interrupts  at  specific 
times  (or  perhaps  randomly)  and  mark  the  occurrence  of  outputs.  Real-time 
breakpoints  and  traces  may  also  be  included. 

5.  Emulations  (often  on  microprogrammable  computers)  that  may  provide 

real-time  execution  speed  and  programmable  I/O.4 
6.  Interfaces  that  allow  another  computer  to  control  the  I/O  system  and  test  the 

microcomputer  program. 

7.  Testing  programs  that  check  each  branch  in  a  program  for  logical  errors. 

8.  Test  generation  programs  that  can  generate  random  data  or  other  distribu- 
tions. 

Formal  testing  theorems  exist,  but  are  only  practical  for  verifying  short  pro- 
grams. You  must  be  careful  that  the  test  equipment  does  not  invalidate  the  test  by 

modifying  the  environment.  Often  test  equipment  may  buffer,  latch,  or  condition 
input  and  output  signals.  The  actual  system  may  not  do  this  and  may  therefore 
behave  differently. 

Furthermore,  extra  software  in  the  test  environment  may  use  some  of  the 
memory  space  or  part  of  the  interrupt  system.  It  may  also  provide  error  recovery  and 
other  features  that  will  not  exist  in  the  final  system.  A  software  test  bed  must  be  just 
as  realistic  as  a  hardware  test  bed  since  software  failure  can  be  just  as  critical  as  hardware 
failure. 

Emulations  and  simulations  are,  of  course,  never  precise.  They  are  usually 
adequate  for  checking  logic,  but  can  seldom  help  test  interfaces  or  timing.  On  the 

other  hand,  real-time  test  equipment  does  not  provide  much  of  an  overview  of  the  pro- 
gram logic  and  may  affect  the  interfacing  and  timing. 

SELECTING  TEST  DATA5 

Few  real  programs  can  be  checked  for  all  cases.  The  designer  must  choose  a 
sample  set  that  is  in  some  sense  representative. 

Structured  Testing 

Testing  should,  of  course,  be  part  of  the  total  development  procedure.  Top-down 
design  and  structured  programming  provide  for  testing  as  part  of  the  design.  This  is 
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called  structured  testing.  Each  module  within  a  structured  program  should  be  checked 

separately.  Testing,  as  well  as  design,  should  be  modular,  structured,  and  top-down. 

Special  Cases 

But  that  leaves  the  question  of  selecting  test  data  for  a  module.  The  designer 
must  first  list  all  special  cases  that  a  program  recognizes.  These  may  include: 

•  Trivial  cases 

•  Equality  cases 

•  Special  situations 

The  test  data  should  include  all  of  these. 

Forming  Classes  of  Data 

You  must  next  identify  each  class  of  data  that  statements  within  the  program 
may  distinguish.  These  may  include: 

•  Positive  or  negative  numbers 

•  Numbers  above  or  below  a  particular  threshold 

•  Data  that  does  or  does  not  include  a  particular  sequence  or  character 

•  Data  that  is  or  is  not  present  at  a  particular  time 

Be  careful;  each  two-way  decision  doubles  the  number  of  classes  since  you  must 
test  both  paths.  Thus  three  conditional  branches  will  result  in  2x2x2  =  8  classes  if 
the  computer  always  executes  each  branch.  Limiting  the  size  of  test  sets  is  another 
important  reason  to  keep  modules  short  and  general. 

Selecting  Data  from  Classes 

You  must  now  separate  the  classes  according  to  whether  the  program  produces 
a  different  result  for  each  entry  in  the  class  (as  in  a  table)  or  produces  the  same  result 

for  each  entry  (such  as  a  warning  that  a  parameter  is  above  a  threshold).  In  the  dis- 
crete case,  one  may  include  each  element  if  the  total  number  is  small  or  sample  if  the 

number  is  large.  The  sample  should  include  all  boundary  cases  and  at  least  one  case 
selected  randomly.  Random  number  tables  are  available  in  books,  and  random  number 

generators  are  part  of  most  computer  facilities.6 
You  must  be  careful  of  distinctions  that  may  not  be  obvious.  For  example,  the 

MC68000  microprocessor  will  regard  an  8-bit  unsigned  number  greater  than  127  as 
negative;  you  must  consider  this  when  using  the  branch  instructions  that  depend  on  the 
Negative  (Sign)  flag. 



360    68000  Assembly  Language  Programming 

EXAMPLES 

20-1.  TESTING  A  SORT  PROGRAM 

The  special  cases  here  are  obvious: 

•  No  elements  in  the  array 

•  One  element,  magnitude  may  be  selected  randomly 

The  other  special  case  to  be  considered  is  one  in  which  elements  are  equal. 
There  may  be  some  problem  here  with  signs  and  data  length.  Note  that  the  array 

itself  must  contain  fewer  than  256  elements. 

We  could  check  to  see  if  the  sign  of  the  number  of  elements  has  any  effect  by 
choosing  half  the  test  cases  with  elements  between  128  and  255  and  half  with  elements 
between  2  and  127.  We  should  choose  the  magnitudes  of  the  elements  randomly  to 

avoid  unconscious  bias  which  might  favor  small  numbers,  decimal  (rather  than  hex- 
adecimal) digits,  or  regular  patterns. 

20-2.  TESTING  AN  ARITHMETIC  PROGRAM 

Here  we  will  presume  that  a  prior  validity  check  has  ensured  that  the  number  has 

the  right  length  and  consists  of  valid  digits.  Since  the  program  makes  no  other  distinc- 
tions, test  data  should  be  selected  randomly.  Here  a  random  number  table  or  random 

number  generator  will  prove  ideal;  the  range  of  the  random  numbers  is  0  to  255  for  each 
byte  in  each  number. 

RULES  FOR  TESTING 

Sensible  design  simplifies  testing.  The  following  rules  can  help: 

1.  Eliminate  trivial  cases  early  without  introducing  unnecessary  distinctions. 

2.  Avoid  special  cases,  since  they  increase  debugging  and  testing  time. 

3.  Perform  validity  or  error  checks  on  the  data  before  it  is  processed. 

4.  Avoid  inadvertent  distinctions,  particularly  in  handling  signed  numbers  or  in 
using  instructions  that  are  intended  to  handle  signed  numbers. 

5.  Check  boundary  cases  by  hand.  Be  sure  to  define  what  should  happen  in 
these  es. 

6.  Emphasize  generality.  Each  distinction  and  separate  routine  leads  to  more 
testing. 

7.  Use  top-down  design  and  modular  programming  to  modularize  testing. 
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CONCLUSIONS 

Debugging  and  testing  are  the  stepchildren  of  the  software  development  pro- 
cess. Most  projects  leave  far  too  little  time  for  them  and  most  textbooks  neglect  them. 

But  designers  and  managers  often  find  that  these  stages  are  the  most  expensive  and 

time-consuming.  Progress  may  be  difficult  to  measure  or  produce.  Debugging  and 
testing  microprocessor  software  is  particularly  difficult  because  the  powerful  hard- 

ware and  software  tools  that  can  be  used  on  larger  computers  are  seldom  available  for 
microcomputers. 

The  designer  should  plan  debugging  and  testing  carefully.  We  recommend  the 
following  guidelines: 

1.  Try  to  write  programs  that  are  easy  to  debug  and  test.  Modular  program- 
ming, structured  programming,  and  top-down  design  are  useful  techniques. 

2.  Prepare  a  debugging  and  testing  plan  as  part  of  the  problem  definition. 
Decide  early  what  data  you  must  generate  and  what  equipment  you  will  need. 

3.  Debug  and  test  each  module  using  top-down  design. 

4.  Debug  each  module's  logic  systematically.  Use  checklists,  breakpoints,  and 
the  single-step  mode.  If  the  program  logic  is  complex,  consider  using  the  soft- 

ware simulator. 

5.  Check  each  module's  timing  systematically  if  this  timing  is  a  problem.  An 
oscilloscope  can  solve  many  problems  if  you  plan  the  test  properly.  If  the  tim- 

ing is  complex,  consider  using  a  logic  or  microprocessor  analyzer. 

6.  Be  sure  that  the  test  data  is  representative.  Watch  for  any  classes  of  data 
that  the  program  may  distinguish.  Include  all  special  and  trivial  cases. 

7.  If  the  program  handles  each  element  differently  or  the  number  of  cases  is 
large,  select  the  test  data  randomly. 

8.  Document  all  tests.  If  errors  are  found  later,  you  will  not  have  to  repeat  tests 
you  have  already  run. 
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MC68000  Instruction  Set 

Chapter  21  and  Appendices  A  and  B  comprise  a  total  reference  for  the  MC68000  family. 

DETAILED  DESCRIPTIONS 

Chapter  21  describes  each  instruction  in  detail.  The  descriptions  are  set  in  a  template,  as 
follows: 

Instruction 

The  first  line  gives  the  standard  instruction  mnemonic  and  a  one-line  definition  of  the 
instruction. 

Syntax 

This  section  gives  the  standard  assembly  language  syntax  for  the  instruction.  The  order  of 

the  operands  in  two-operand  instructions  is  source,  then  destination.  For  example,  in  the 
instruction 

MOVE.L  DO,  D1 

DO  is  the  source  and  Dl  is  the  destination.  In  many  instances,  you  can  use  any  addressing  mode 
for  the  operand(s).  In  these  cases,  we  will  use  the  term  <ea>  (for  effective  address)  for  the 
operand,  and  you  may  select  any  of  the  modes  given. 

In  a  few  cases,  the  instruction  is  restricted  to  only  one  or  two  addressing  modes.  In  these 
cases,  we  will  give  the  addressing  mode  explicitly  along  with  the  syntax. 

If  the  operation  accepts  can  manipulate  more  than  one  size  of  data,  we  append  an  ".s"  to 
the  mnemonic,  and  list  possible  values  for  the  size.  This  may  be  ".B"(for  byte), ".  W"(for  word), 
or  ".L"  (for  long).  Not  all  sizes  are  available  for  all  operands. 

A  few  assemblers  may  not  follow  the  syntax  of  "mnemonic  src,  dst"  completely;  consult 
your  assembler's  manual  for  verification. 

Instruction  Format 

This  section  gives  the  bit  format  of  the  instruction  word. 

Condition  Codes 

This  section  lists  the  state  of  the  condition  codes  of  the  status  register  following  execution 
of  the  instruction. 
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Description 

This  section  gives  a  full  description  of  the  instruction,  including  basic  usage,  any  quirks 
associated  with  the  instruction,  and  a  few  applications  for  the  instruction. 

Example 

This  section  gives  an  example  of  the  instruction:  how  it  is  assembled,  the  states  of  the 
source  and  destination  before  and  after  execution,  and  other  information  that  may  be  useful  for 
understanding  the  use  of  the  instruction.  While  most  instructions  can  use  many  different 
addressing  modes,  the  example  will  usually  use  the  simplest  mode;  that  is,  register  direct. 

Appendices  A  and  B  give  you  a  quick  reference  for  the  instruction  mnemonics  and 

op-codes  for  each  instruction.  Appendix  A  lists  the  instructions  in  alphabetical  order  accord- 
ing to  mnemonic.  Appendix  B  lists  the  instructions  in  numerical  order  according  to  op-code. 

In  describing  the  instructions,  addressing  modes,  operands,  and  so  on,  we  will  use  some 
standard  abbreviations  to  make  the  descriptions  as  concise  as  possible.  You  will  recognize  most 
of  the  abbreviations  from  other  discussions  throughout  the  earlier  portions  of  the  book. 

APPENDICES 

ABBREVIATIONS 

GENERAL  ABBREVIATIONS 

An 
bd 
CCR 
Dn 
dst 
d8 
d16 
d32 

Address  register  (n  =  0  to  7) 
Base  displacement  (8,  16,  or  32  bits) 
Condition  code  register 
Data  register  (n  =  0  to  7) 
Destination 
8-bit  displacement 
1 6-bit  displacement 
32-bit  displacement 
Effective  address 
Outer  displacement  (8,  1 6,  or  32  bits) 
Program  counter 
Source 
Stack  pointer 
Status  register 

<ea> 
od 
PC 
src 
SP 
SR 
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Rn  Either  data  or  address  register  (n  =  0  to  7) 
xxx.  L  32-bit  address 
xxx. W  1 6-bit  address 

ADDRESSING  MODES 

Dn 
An 
(An) 
(An)  + "(An) 

(d16,An) 
(d8,An,Xn) 
(bd.An.Xn) 
([bd.An.Xn],od) 
([bd,An],Xn.od) 
xxx.L 
xxx.L 
#<data> 
(d16,PC) 
(d8.PC.Xn) 
(bd.PCXn) 
[(bd.PC.Xn).od] 
[(bd.PC).Xn.od] 

Data  register  direct 
Address  register  direct 
Address  register  indirect 
Address  register  indirect  with  post-increment 
Address  register  indirect  with  pre-decrement 
Address  register  indirect  with  1  6-bit  displacement 
Address  register  indirect  with  8-bit  displacement  and  index 
Address  register  indirect  with  16-  or  32-bit  displacement  and  index 
Memory  indirect  preindexed 
Memory  indirect  postindexed 
Absolute  short 
Absolute  long 
Immediate 
PC  indirect  with  1 6-bit  displacement 
PC  indirect  with  8-bit  displacement  and  index 
PC  indirect  with  16-  or  32-bit  displacement  and  index 
PC  memory  indirect  preindexed 
PC  memory  indirect  postindexed 

INSTRUCTION  ENCODING 

The  MC68000  instructions  range  from  1  to  11  words  in  length.  The  first  word  of  the 

instruction  contains  the  op-code  as  well  as  information  on  where  to  find  the  operand(s),  in  the 
form  of  t  wo  3-bit  fields  (mode  and  register)  per  operand.  A  few  instructions  use  a  second  word 
as  part  of  the  op-code.  Depending  on  what  the  effective  address  of  the  operand(s)  is,  additional 
words  may  follow  the  instruction  word(s). 

Tables  V-l ,  V-2,  and  V-3  summarize  the  effective  address  encoding.  Look  these  over  for  a 
bit  and  then  we  will  show  you  an  example  of  how  an  assembler  encodes  an  assembly  instruction 
into  its  binary  equivalent. 

For  our  example,  we  will  choose  the  instruction 

MOVE.L  D3,       ($10,  AO,  DOW) 

This  tells  the  computer  to  move  the  long-word  contents  of  D3  to  the  contents  of  the 
address  formed  by  adding  $10,  AO,  and  the  word  value  in  the  index  register  DO. 

The  first  step  is  to  get  the  op-code  for  the  MOVE  instruction  from  Chapter  21  or  the 
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Table  V-1 .  Addressing  Mode  Fields 

15 14     13  12 11 10  9 8 7 6 5  4 3 2      1  0 

instruction  op-code 
mode 

register 

15 14     13  12 

single  effective  address  format 

11     10     9      8      7      6      5  4 3 2      1  0 
D/A 

index 
register 

W/l 

scale 0 displacement 

extension  word,  brief  format 
D/A 

index 
register 

w/l 

scale 1 BS IS BD  size 0 l/IS 

base  displacement  (0,  I,  or 2  words) 

outer  displacement  (0,  1,  or 2  words) 

extension  word(s),  full  format  (68020  only) 

register  Data  or  Address  register  (see  Table  V-2) 

mode  Addressing  mode  (see  Table  V-2) 

op-code  Instruction  and  possible  mode/register 
information  for  second  operand 

displacement   signed  8-bit  value 

scale  index  scaling  factor  (68020  only) 
00-1  X 
01  =2X 
10  =4X 
1  1  =8X 

index 

register     Data  or  address  register  (000-111) 

D/A Index  register  type 
0  Data  register 
1  Address  register 

l/IS         Index/Indirect  Select  (68020  only- 
see  Table  V-3) 

BD  size     Base  displacement  size  (68020  only) 
00  Reserved 
01  Null  displacement 
10    Word  displacement 
1  1    Long  displacement 

IS  Index  suppress  (68020  only- 
see  Table  V-3) 

BS  Base  suppress  (68020  only) 
0  Evaluate  and  add  base  register 
1  Suppress  base  register 

W/L         Index  register  size 
0  sign-extended  word 
1  signed  long  word 
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appendices.  This  gives  us 

15       14       13      12      11       10       9        8        7         6        5        4         3        2        1  0 

Size 

Destination Source 
0 0 

Register 
Mode Mode 

Register 

Size  field:  01  =  byte    1 1  =  word    10  =  long 

Now  refer  to  Table  V-2  to  get  the  mode/ register  fields  for  data  register  direct  (000/011)  and 
address  register  indirect  with  index  (110/000).  Filling  this  data  in  gives: 

15 14 13 12 1 1 
10 

9 8 7 6 5 4 3 2 1 0 

0 0 1 0 0 0 0 1 1 0 0 0 0 O 1 1 

Table  V-  2.  Mode/  Register  Encoding 

Mode Register Addressing  Operation 

000 
reg  # Data  register  direct 

001 reg  n Address  register  direct 

010 reg  U Address  register  indirect 

011 reg  n Address  register  indirect  with  post-increment 

100 
reg  n Address  register  indirect  with  pre-decrement 

101 reg  U Address  register  indirect  with  displacement 

110 
reg  n Address  register  memory  indirect  with  index* 

1 1 1 000 Absolute  short 

111 001 Absolute  long 

111 010 Program  counter  indirect  with  displacement 

111 011 Program  counter  memory  indirect  with  index* 
111 100 Immediate  data 

1 1 1 101-111 Reserved 

*68020  only 
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Table  V- 3.  IS  =  I  S  Addressing  Mode  Encoding  (68020  Only) 

IS l/IS Addressing  Operation 

0 000 Index,  no  memory  indirect 

0 001 Indirect  pre-index  with  null  outer  displacement 

0 010 Indirect  pre-index  with  word  outer  displacement 

0 011 Indirect  pre-index  with  long  outer  displacement 

0 100 Reserved 

0 101 Indirect  post-index  with  null  outer  displacement 

0 110 
Indirect  post-index  with  word  outer  displacement 

0 111 Indirect  post-index  with  long  outer  displacement 

1 000 No  index,  no  memory  indirect 

1 001 No  index,  memory  indirect  with  null  outer  displacement 

1 010 No  index,  memory  indirect  with  word  outer  displacement 

1 011 No  index,  memory  indirect  with  long  outer  displacement 

1 100-111 Reserved 

The  source  addressing  mode  (data  register  direct)  is  complete;  the  destination  mode, 
howver,  will  require  more  information  to  be  complete.  Picking  the  correct  type  of  extension 
word  is  straightforward  and  follows  these  rules: 

1.  For  a  simple  displacement,  immediate  data,  or  absolute  address,  the  extension 
word(s)  is  the  value. 

2.  For  indexing  with  an  8-bit  displacement,  the  extension  word  is  the  brief  format. 

3.  For  memory  indirection  and  for  indexing  with  16-  or  32-bit  displacement,  the 
extension  word  is  the  full  format.  (This  is  only  valid  for  the  MC68020.) 

Based  on  these  rules,  we  generate  the  following  instruction: 

1  5 14 
13 12 1 1 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 



MC68000  Instruction  Set  369 

All  instruction  encodes  work  similarly  to  this  example. 

ASSEMBLER  MNEMONICS 

AND  OPTIMIZATIONS 

In  reviewing  the  list  of  instructions  in  the  next  chapter,  you  may  become  dismayed  at  the 
number  of  slightly  different  instructions  and  corresponding  mnemonics.  For  example,  there 
are  four  different  binary  add  instructions,  each  differing  only  in  the  location  or  size  of  the 
operands.  These  are  Add  (ADD),  Add  Address  (ADDA),  Add  Immediate  (ADD1),  and  Add 
Quick  (ADDQ). 

Fortunately,  most  assemblers  let  you  get  away  with  the  instruction  ADD  for  all  of  these 
variations;  the  assembler  attempts  to  decide  which  version  is  appropriate  based  on  the 
operands  involved.  You  should  be  aware,  however,  that  each  variation  will  decode  into  a 

different  instruction,  and  that  the  machine  won't  let  you  get  away  with  illegal  operations  (for 
example,  a  byte-sized  ADDA  instruction). 





21 

Descriptions  of  Individual 

MC68000  Instructions 

ABCD— Add  Binary  Coded  Decimal 
With  Extend 

Syntax: 
ABCD  Dn,  Dm 
ABCD  -(An),  -(Am) 

Instruction  Format: 
15 

14 
13 12 

11       10       9  8 7 6 5 4 3 2        1  0 

1 1 0 0 Destination 

Register* 

1 0 0 0 0 R/M 
Source 

Register* 
R/M  field:  0  =  data  register  to  data  register    1  =  memory  to  memory 
*  If  R/M  =  0,  specifies  a  data  register 

If  R/M  =  1,  specifies  an  address  register  for  the  predecrement  addressing  mode 
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Condition  Codes: 

N  Undefined 

Z         Cleared  if  result  is  non-zero,  unchanged  if  zero 
V  Undefined 

C  Set  if  carry  generated,  cleared  if  no  carry 

X         Set  if  carry  generated,  cleared  if  no  carry 

Description: 

This  instruction  adds  the  byte  contents  of  the  source  operand,  the  value  in  the  Extend  (X) 
bit,  and  the  byte  destination,  and  stores  the  sum  in  the  destination.  The  addition  uses 

binary-coded  decimal  (BCD)  arithmetic  and  affects  only  eight  bits  of  data.  Since  the 
instruction  includes  the  value  in  the  Extend  bit  in  calculating  the  sum,  using  the  instruc- 

tion with  the  address  register  indirect  addressing  mode  gives  you  a  quick  method  of 

implementing  high-precision  arithmetic. 

Example: 

If  DO  is  $43,  Dl  is  $28,  and  the  Extend  bit  is  set,  then  after 

ABCD  DO,  D1 

Dl  contains  $71  and  the  Extend  bit  is  clear. 

ADD— Add  Binary 

Syntax: 
ADD.s 
ADD.s 

<ea>,  Dn 
Dn,  <ea> 

where  for  dst=Dn,  <ea>  is 

Dn 
An 
(An) 
(An)+ 
-(An) 

(d16,An) 

(d8,An,Xn) 
(bd,An,Xn) 
([bd,An,Xn],od) 
([bd,An],Xn,od) xxx. L 
xxx. L 

where  for  src=Dn,  <ea>  is 

Dn 
An 
(An) 
(An)+ -(An) 

(d16,An) 

(d8,An,Xn) 
(bd,An,Xn) 
([bd,An,Xn],od) 
([bd,An],Xn,od) 
xxx. L 
xxx.L 

#<data> 
(d16,PC) 
(d8,PC,Xn) 
(bd,PC,Xn) 
[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 

#<data> 
(d16,PC) 
(d8,PC,Xn) 
(bd,PC,Xn) 
[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 

and  where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 
15 14 13 12 11      10  9 8       7  6 5       4       3       2       1  0 

1 1 0 1 
Data 

Op-Mode 
Effective  Address 

Register Mode  Register 

Op-Mode  field:  Byte  Word  Long 
000  001  010 
100  101  110 

Operation 
( <  ea  > )  +  ( <  Dn  > )  —  <  Dn  > 
( <  Dn  > )  +  ( <  ea  > )  — ►  <  ea  > 
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Condition  Codes: 

N  Set  if  result  is  negative,  cleared  otherwise 

Z  Set  if  result  is  zero,  cleared  otherwise 

V  Set  if  overflow  is  generated,  cleared  otherwise 

C  Set  if  carry  is  generated,  cleared  otherwise 

X  Set  if  carry  is  generated,  cleared  otherwise 

Description: 

This  instruction  adds  the  contents  of  the  source  operand  to  the  contents  of  the  destination 

operand  and  stores  the  sum  in  the  destination.  Note  that  at  least  one  of  the  operands  must 
be  a  data  register. 

Example: 

If  DO  contains  $100  and  the  word  at  the  address  given  by  the  label  SUM  contains  $5480, 
then  after  the  instruction 

ADD.W  SUM,  DO 

DO  contains  $5580. 

ADDA  — Add  Address 

Syntax: 

ADDA.s  <ea>,  An 

where  <ea>  is 

X Dn X (d8,An,Xn) X #<data> 
X An X (bd,An,Xn) X (d16,PC) 
X (An) X ([bd,An,Xn],od) X (d8,PC,Xn) 
X (An)+ X ([bd,An],Xn,od) X (bd,PC,Xn) 
X 

-(An) 
X xxx.  L X [(bd,PC,Xn),od] 

X (d16,An) X xxx.  L X [(bd,PC),Xn,od] 

and  where  .s  =  .W  or  .L. 

Instruction  Format: 

15 14 
13 12 11      10  9 8       7  6 5       4       3       2       1  0 

1 1 0 1 
Address 

Op-Mode 
Effective  Address 

Register Mode  Register 

Op-Mode  field:  Word        Long  Operation 
011  111  (<ea>)  +  (<An>)  —  <An> 

Condition  Codes: 

N  Unchanged 

Z  Unchanged 

V  Unchanged 

C  Unchanged 

X  Unchanged 
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Description: 

This  instruction  adds  the  source  operand  to  the  value  in  an  address  register.  Note  that 

since  it  deals  with  addresses,  the  instruction  permits  only  word  and  long-word  operations. 

Example: 

If  TABLE  is  a  constant  valued  $00800000,  and  AO  contains  $2000,  then  after  the 
instruction 

ADDA.L  #TABLE,  AO 

AO  contains  the  value  $00802000. 

ADDI— Add  Immediate 

Syntax: 
ADDI.s  #<data>,  <ea> 

where  <ea>  is 

X    Dn  X    (d8,An,Xn)  #<data> 
An  X    (bd,An,Xn)  (d16,PC) 

X    (An)  X    ([bd,An,Xn],od)  (d8,PC,Xn) 
X    (An)+  X    ([bd,An],Xn,od)  (bd,PC,Xn) 
X    -(An)  X  xxx.L  [(bd,PC,Xn),od] 
X(d16,An)  X  xxx.L  [(bd,PC),Xn,od] 

and  where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

15 14 
13 12 

11 
10 

9 8 7  6 5        4  3 2        1  0 

0 0 0 0 0 1 1 0 Size 
Effective  Address 

Mode 
Register 

Size  field:  00  =  byte    01=  word    10=  long 

Condition  Codes: 

N  Set  if  result  is  negative,  cleared  otherwise 

Z  Set  if  result  is  zero,  cleared  otherwise 

V  Set  if  an  overflow  is  generated,  cleared  otherwise 

C  Set  if  carry  is  generated,  cleared  otherwise 

X  Set  if  carry  is  generated,  cleared  otherwise 

Description: 

This  instruction  adds  the  immediate  data  given  as  the  source  operand  to  the  specified 
destination  operand  and  stores  the  result  in  the  destination.  The  number  of  bytes  used  for 
the  immediate  data  matches  the  size  attribute  of  the  mnemonic,  regardless  of  the  actual 
size  of  the  immediate  data.  That  is,  an  ADD1.W  will  be  followed  by  two  bytes  of  operand 
data,  and  an  ADD1.L  will  be  followed  by  four  bytes  of  operand  data. 
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Example: 

If  DO  contains  $1400050  and  SUM  is  a  pointer  to  a  long-word  variable,  then 

ADDI.I  #$804000,  SUM 

leaves  the  value  S1C04050  in  SUM. 

ADDQ  — Add  Quick 

Syntax: 
ADDQ.S  #<data>,  <ea> 

where  <ea>  is 

Dn 
An 
(An) 
(An)+ -(An) 

(d16,An) 

(d8,An,Xn) 
(bd,An,Xn) 
([bd,An,Xn],od) 
([bd,An],Xn,od) 
xxx.  L 
xxx.  L 

#<data> 

(d16,PC) 
(d8,PC,Xn) 
(bd,PC,Xn) 
[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 

and  where  .S  =  .B,  .W,  or  .L. 

Instruction  Format: 

15 14 13 12 11      10  9 8 7  6 5       4       3       2       1  0 

0 1 0 1 Data 0 Size 
Effective  Address 

Mode  Register 

Data  field:  Three  bits  of  immediate  data,  0,  1-7  representing  a  range  of  8,  1  to  7  respectively. 
Size  field:  00  =  byte   01=  word    10  =  long 

Condition  Codes: 

N         Set  if  result  is  negative,  cleared  otherwise 

Z         Set  if  result  is  zero,  cleared  otherwise 

V         Set  if  overflow  is  generated,  cleared  otherwise 

C         Set  if  carry  is  generated,  cleared  otherwise 

X         Set  if  carry  is  generated,  cleared  otherwise 

Description: 

This  instruction  adds  the  immediate  data  specified  by  the  source  to  the  data  stored  in  the 
destination  operand  and  stores  the  sum  in  the  destination  operand.  This  instruction 
differs  from  the  ADDI  instruction  in  that  the  immediate  data  is  restricted  to  values  1-8. 
When  assembled,  the  immediate  data  is  part  of  the  instruction  word  rather  than  the 
extension  word(s). 

Example: 

If  D4  contains  the  word  value  $1004,  then  after 

D4  contains  $1008. 

ADDQ.W$4,  D4 
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ADDX  — Add  Binary  With  Extend 

Syntax: 
ADDX.s  Dsrc,  Ddst 
ADDX.s  -(Asrc),  ~(Adst) 

where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

15 14 13 12 11      10  9 8 7  6 5 4 3 2        1  0 

1 1 0 1 
Destination 

Register* 

1 Size 0 0 R/M Source 

Register* 

Size  field:  00  =  byte   01  =  word    10  =  long 
R/M  field:  0  =  data  legister  to  data  register  1  =  memory  to  memory 
*lf  R/M  =  0,  specifies  a  data  register 

If  R/M  =  1,  specifies  an  address  register  for  the  predecrement  addressing  mode. 

Condition  Codes: 

N  Undefined 

Z         Cleared  if  result  is  non  zero,  unchanged  if  zero 
V  Undefined 

C  Set  if  carry  generated,  cleared  if  no  carry 

X         Set  if  carry  generated,  cleared  if  no  carry 

Description: 

This  instruction  adds  the  contents  of  the  source  operand,  the  value  in  the  Extend  (X)  bit, 
and  the  destination,  and  stores  the  sum  in  the  destination.  Since  the  instruction  includes 

the  value  in  the  Extend  bit  in  calculating  the  sum,  you  can  use  the  instruction  with  the 

address  register  addressing  mode  to  obtain  a  quick  method  of  implementing  high- 
precision  arithmetic. 

Example: 

If  the  quad  word  (eight  bytes)  labeled  Q0  contains  $00140000  F000FFFF,  and  the  quad 
word  labeled  Ql  contains  $00000000  10000001,  then  after 

MOVE  A.  L  #Q0,  AO 
MOVEA.L  #Q1,A1 
MOVE.W  #0,  CCR 
ADDX.L  -(A1), -(AO) 
ADDX.L  -(A1), -(AO) 

Q0  contains  $00140001  00010000  and  the  Extend  bit  is  clear. 

AND  — Logical  AND 

Syntax: 
AND.s 
AND.s 

<ea>,  Dn 
Dn,  <ea> 
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where  for  dst=Dn,  <ea>  is 

Dn 
An 
(An) 
(An)+ -(An) 

(d16,An) 

(d8,An,Xn) 
(bd,An,Xn) 
([bd,An,Xn],od) 
<[bd,An],Xn,od) 
xxx.  L 
xxx.  L 

and  where  for  src=Dn,  <ea>  is 

Dn 
An 
(An) 
(An)+ -(An) 

(d16,An) 

(d8,An,Xn) 
(bd,An,Xn) 
([bd,An,Xn],od) 
([bd,An],Xn,od) 
xxx.L 
xxx.  L 

#<data> 
(d16,PC) 
(d8(PC,Xn) 
(bd,PC,Xn) 
[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 

#<data> 
(d16,PC) 
(d8,PC,Xn) 
(bd,PC,Xn) 
[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 

and  where  .s  =  .B,  .W,  or  .L. 
Instruction  Format: 

15 14 
13 12 11      10  9 8       7  6 5       4  3 2       1  0 

1 1 0 0 
Data 

Op-Mode 
Effective  Address 

Register Mode 
Register 

Op-Mode  field:  Byte 
000 100 

Word        Long  Operation 
001  010  (<ea>)A(<Dn>)— ■  <Dn> 
101  110  (<Dn>)A(<ea>)-— <ea> 

Condition  Codes: 

N 

Z 

V 

c 

X 

Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Set  if  result  is  zero,  cleared  otherwise 
Cleared 

Cleared 

Unaffected 

Description: 

This  instruction  performs  a  bitwise  logical  AND  of  the  source  and  destination  operands 
and  stores  the  result  in  the  destination.  At  least  one  of  the  operands  must  be  in  a  data 
register. 

Example: 

If  the  word  pointed  to  by  FLAG  _  WORD  contains  $2376  and  DO  contains  $4A3C,  then 
after 

AND.W  DO,  FLAG _ WORD 

is  evaluated  as  follows: 

FLAG  WORD      =  $2376  =  0010  0011  0111  0110 
DO  =  $4A3C  =0100  10100011  1100 

FLAG  _ WORD      =  $0234  =  0000  0010  0011  0100 

leaving  the  value  $0234  in  FLAG  WORD. 

ANDl  —  AND  Immediate 

Syntax: 
ANDl. #<data>,  <ea> 
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where  <ea>  is 

X Dn X (d8,An,Xn) #<data> 
An X (bd,An,Xn) (d16,PC) 

X 
An) 

X ([bd,An,Xn],od) (d8,PC,Xn) X (An)+ X ([bd,An](Xn,od) (bd.PCXn) 
X 

"(An) 
X xxx. L [(bd,PC,Xn),od] 

X (d16,An) X xxx. L [(bd,PC),Xn,od] 

and  where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

15 14 
13 12 11 

10 
9 8 7  6 5       4  3 2       1  0 

0 0 0 0 0 0 1 0 Size 
Effective  Address 

Mode 
Register 

Size  field:  00  =  byte   01=  word    10=  long 

Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 
V  Cleared 

C  Cleared 

X  Unaffected 

Description: 

This  instruction  logically  ANDs  the  immediate  source  the  result  in  the  destination. 

Example: 

If  the  constant  long  word  MASK  equals  SFF007777  and  DO  contains  $80238001,  then 
after 

ANDI.L  #MASK,  DO 

DO  contains  $80000001  and  the  N  flag  is  set. 

ANDI  to  CCR— AND  Immediate  Data 
To  the  Condition  Codes 

Syntax: 
ANDI  #<data>,  CCR 

Instruction  Format: 

15 14 13 12 
11 

10 
9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 
0 0 0 0 0 0 0 0 

Byte  Data 
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Condition  Codes: 

N  ANDed  with  bit  3  of  immediate  data 

Z  ANDed  with  bit  2  of  immediate  data 

V  ANDed  with  bit  1  of  immediate  data 

C  ANDed  with  bit  0  of  immediate  data 

X         ANDed  with  bit  4  of  immediate  data 

Description: 

This  instruction  logically  ANDs  the  immediate  byte  data  with  the  condition  code  register 
and  sets  the  flags  appropriately.  The  instruction  provides  you  with  a  means  of  selectively 
clearing  one  or  more  bits  of  the  CCR. 

Example: 

If  CCR  contains  SOB  (N,  V,  and  C  flags  set)  and  the  constant  CLR_C  contains  $FE,  then 
after 

ANDI  #CLR_C,  CCR 

the  CCR  contains  $0A  (N  and  V  flags  set,  the  C  bit  has  been  cleared). 

ANDI  to  SR—  AND  Immediate  Data 

To  the  Status  Register 

(Privileged  Instruction) 

Syntax: 
ANDI  #<data>,  SR 

Instruction  Format: 

15      14      13      12      11       10       9       8        7       6        5       4       3       2        1  0 
0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 

Word  Data 

Condition  Codes: 

N  ANDed  with 

Z  ANDed  with 

V  ANDed  with 

C  ANDed  with 

X         ANDed  with 

bit  3  of  immediate  data 

bit  2  of  immediate  data 

bit  1  of  immediate  data 

bit  0  of  immediate  data 

bit  4  of  immediate  data 

Description: 

This  instruction  logically  ANDs  the  16-bit  immediate  source  data  with  the  value  from  the 
status  register  (SR)  and  stores  the  result  in  the  status  register.  Execution  of  this  instruction 
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allows  your  program  to  clear  individual  bits  in  the  register.  Note  that  the  instruction  is 
privileged;  if  you  attempt  to  execute  it  from  user  mode,  the  processor  will  trap  through  the 

privilege-violation  vector. 

Example: 

If  the  status  register  contains  the  value  $2004  (indicating  supervisor  mode  and  N  flag  set), 
and  the  constant  CLR_SUPER  equals  $DFFF,  then 

ANDI  #CLR_SUPER,  SR 

leaves  the  value  $0004  in  the  SR  (clearing  the  supervisor  bit  and  changing  the  processor 
mode  to  user  mode). 

ASL  and  ASR  —  Arithmetic  Shift  Left 

And  Right 

Syntax: 
ASL.s  Dn,  Dm 
ASLs  #<data>,  Dn 
ASL  <ea> 
ASR.s  Dn,  Dm 
ASR.s  #<data>,  Dn 
ASR  <ea> 

where  <ea>  is 

Dn  X    (d8,An,Xn)  #<data> 
An  X    (bd,An,Xn)  (d16,PC) 

X    (An)  X    ([bd.An.Xnlod)  (d8,PC,Xn) 
X    (An)+  X    ([bd,An],Xn,od)  (bd,PC,Xn) 
X    -(An)  X    xxx.  L  [(bd,PC,Xn),od] 
X    (d16,An)  X    xxx.L  [(bd.PC).Xn.od] 

and  where  .s  —  .B,  .W,  or  .L. 

Instruction  Format: 

(Register) 
15 14 13 12 1 1 10 9 8 7 6 5 4 3 2         1  0 

1 1 1 0 Cou nt/Register 
dr Size l/R 0 0 

Register 

(Memory) 

1 1 1 0 0 0 0 
dr 

1 1 
Effective  Address 

Mode 
I Register 

i/r:  0  =  immediate  shift  count 
1  =  register  shift  count 

dr:    0=  right 
1  =  left 

Size  field:  00  =  byte    01  =  word    10  =  long 
Count/Register:  if  i/r  =  0,  specifies  shift  count 

if  i/r  =  1,  specifies  data  register 
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Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 

V         Set  if  high-order  bit  changes  during  shift  operation,  cleared  otherwise 
C         Set  according  to  last  bit  shifted  out  of  operand 

X         Set  according  to  last  bit  shifted  out  of  operand 

Description: 

These  instructions  shift  the  contents  of  the  destination  operand  a  specified  number  of 
times.  The  destination  may  be  in  a  data  register  or  in  memory.  When  the  destination  is  in  a 
data  register,  you  can  specify  the  number  of  bits  to  shift  either  through  immediate  data  (a 

value  of  1-8)  or  through  another  data  register  (containing  a  Modulo  64  value  of  0-63).  If 
the  destination  is  a  memory  location,  the  size  of  the  shift  is  restricted  to  one  bit,  and  in 

addition,  the  size  of  the  operand  must  be  word-sized. 

The  ASL  instructions  operate  as  follows: 

Operand 

Note  that  the  processor  fills  in  the  operand  with  zeros  from  the  right  side  (bit  0)  and  drops  the 
bits  from  the  left  side  into  the  Carry  (C)  and  Extend  bits  (X).  For  multiple  bit  shifts,  these  flags 
reflect  the  state  of  the  final  bit  shifted  out.  If  the  sign  of  the  operand  ever  changes,  the  processor 
sets  the  Overflow  bit  (V). 

The  ASR  instruction  operates  as  follows: 

Operand 

The  processor  replicates  the  state  of  the  most  significant  bit.  This  means  that  a  right- 
shifted  operand  will  never  change  from  negative  to  positive  as  the  result  of  a  shift.  The  bits 
falling  out  the  right  side  of  the  operand  end  up  in  the  Carry  (C)  and  Extend  (X)  bits;  for 
multiple  bit  shifts,  these  flags  reflect  the  state  of  the  final  bit  shifted  out. 

The  difference  between  arithmetic  shifts  (ASR  and  ASL)  and  logical  shifts  (LSR  and 

LSL)  lies  in  the  application  for  each.  As  the  name  implies,  arithmetic  shifts  are  useful  in  certain 

quick  arithmetic  functions.  For  example,  a  left  shift  by  2  bits  is  equivalent  to  a  multiplication 

by  4;  a  right  shift  by  4  is  equivalent  to  a  division  by  16.  Because  of  their  simplicity,  the  shifts 
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operate  faster  than  do  the  corresponding  M  U  L  or  DI V  instructions.  To  verify  that  the  left  shift 

operation  (a  multiply)  hasn't  overflowed  its  operand,  the  processor  sets  the  V  bit  accordingly. 
To  verify  that  the  operand  sign  doesn't  change  on  a  right  shift  (a  divide),  the  processor 
replicates  the  most  significant  bit. 

The  logical  shift  instructions  are  useful  in  manipulating  bit  masks  and  status-bit  fields;  in 
these  applications,  the  sign  or  status  of  overflow  is  not  important  and  can  even  lead  to 
erroneous  results. 

Examples: 

If  DO  contains  $0138  (312(10),  then  after 

ASLW  #3,  DO 

DO  contains  S09C0  (312(10)  X  8  =  2496(10)  =  $09C0),  and  the  C,  X,  and  V  bits  are  all 
clear. 

If  the  word  at  the  address  of  VAL1  is  — 120,  then  after 

ASR.W  VAL1 

VAL1  contains —60. 

Bcc  —  Branch 

Syntax: 

Bcc  displacement 

Instruction  Format: 

15      14      13  12 11 10  9 
Condition 8-Bit  Displacement 

16-Bit  Displacement  if  8-Bit  Displacement  =  $00 
32-Bit  Displacement  if  8-Bit  Displacement  =  $FF 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  tests  a  condition  and  then  branches  if  that  condition  is  true.  If  a  branch  is 

in  order,  the  processor  adds  the  two's  complement  displacement  value  to  the  program 
counter  (PC).  The  displacement  value  can  be  an  8-bit  value  or  a  16-bit  value;  on  the 
MC68020,  it  can  be  a  32-bit  value.  The  PC  value  used  in  evaluating  the  new  address  is  the 
address  of  the  instruction  plus  2.  The  instruction  can  specify  any  one  of  14  different 
conditions,  as  summarized  in  Table  21-1.  The  BRA  instruction  is  a  special  case;  the 
processor  does  no  checking  on  the  condition  codes. 
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Table  22-1.   Bcc  Conditional  Tests 
IV/I  npmnni pIppI Condition Condition  Field Test 

HI High 0010 C  Z 
LS Low  or  same 001  1 C  v  Z 
cc Carry  clear 

0100 C 
f*  nrr\t  cot 0101 c 

NE Not  equal 01  10 z 
EQ 

Equal 
01  1  1 z 

VC Overflow  clear 1000 V 
VS Overflow  set 1001 V 
PL Plus 1010 N 
Ml Minus 101  1 N 

GE Greater  or  equal 
1 100 

(N 

V)  v  (N 

V) 

LT Less  than 1  101 

(N 

V)  v  (N 

V) 

GT Greater  than 
1 110 (N  V Z)  v  (N V  Z) 

LE Less  or  equal 1111 Z  v  (N V)  v  (N 
V) 

Normally,  you  specify  the  displacement  as  a  label  name.  To  calculate  the  numeric  value  of 

the  displacement,  the  assembler  subtracts  the  label  value  from  the  current  instruction's 

address.  You  needn't  provide  a  size  for  the  instruction;  the  assembler  will  choose  the  appropri- 
ate size  based  on  the  size  of  the  displacement.  The  displacement  can  be  in  either  direction, 

jumping  ahead  of  the  current  PC  or  behind  it.  You  cannot,  however,  jump  to  the  instruction 
immediately  following  the  Bcc  instruction. 

Some  documentation  lists  the  Bcc  instructions  separately  from  the  BRA  instruction. 

Example: 

If  the  Carry  bit  is  set,  then 
BCS  NO_CLR 
CLR  VAL 

NO_CLR:  ... 

causes  the  processor  to  branch  around  the  CLR  instruction  to  the  instruction  at  label 
NO_CLR. 

BCHG—  Test  a  Bit  and  Change 

Syntax: 
BCHG.s  Dn,  <ea> 
BCHG.s  #<data>,  <ea> 

where  <ea>  is 

X Dn X (d8,An,Xn) #<data> 
An X (bd,An,Xn) (d16,PC) 

X (An) X ([bd,An,Xn],od) (d8,PC,Xn) X (An)+ X ([bd,An],Xn,od) (bd,PC,Xn) X 
-(An) 

X xxx. L [(bd,PC,Xn),od] X (d16,An) X xxx.  L [(bd,PC),Xn,odl 

and  where  .s  =.B  or  .L  (.L  only  valid  when  <ea>— Dn). 
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(Bit  number  in  Dn) 
15 14 

13 12 11 10 9 8 7 6 5        4        3         2        1  0 

0 
Data 

1 0 1 
Effective  Address 

0 0 0 
Register Mode  Register 

(Bit  number  is  immediate) 

0 0 1 0 0 0 0 1 
Effective  Address 

0 0 
Mode  Register 

Condition  Codes: 

N  Unaffected 

Z         Set  if  bit  tested  is  zero,  cleared  otherwise 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  tests  a  bit  value,  sets  the  Zero  (Z)  flag  accordingly,  and  then  changes  it 
(that  is,  if  it  was  a  0,  it  becomes  a  l ,  or  vice  versa).  The  operand  may  be  32  bits  in  length  and 

reside  in  a  data  register,  or  it  may  reside  in  memory  as  an  8-bit  value. 

You  may  choose  one  of  two  ways  to  specify  the  bit  number;  either  through  a  data  register 
or  through  immediate  data.  Bit  numbers  start  with  bit  0  as  the  least  significant  bit  of  the 

operand.  For  data  register-resident  operands,  valid  bit  numbers  range  from  0-3I ;  for  memory- 
resident  operands,  valid  bit  numbers  range  from  0-7. 

Example: 

If  the  byte  at  label  FLAGS  contains  $Fl  (llll  0001),  then  after 

BCHG.B  *3,  FLAGS 

FLAGS  contains  the  value  $F9  ( 1 1 1 1  1001 ),  and  the  Z  flag  is  cleared. 

BCLR  —  Test  a  Bit  and  Clear 

Syntax: 
BCLR.s  Dn,  <ea> 
BCLR.s  *<data>,  <ea> 

where  <ea>  is 

X    Dn  X  (d8,An,Xn)  c<data> 
An  X  (bd,An,Xn)  (d16,PC) 

X    (An)  X  ([bd,An,Xn],od)  (d8,PC,Xn) 
X    (An)+  X  ((bd,An],Xn,od)  (bd,PC,Xn) 
X    -(An)  X  xxx.L  [(bd,PC,Xn),od] 
X    (dl6.An)  X  xxx.L  [(bd,PC),Xn,od] 

and  where  .s  =  .B  or  .L  (.L  only  where  <ea>=Dn). 
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Instruction  Format: 

(Bit  number  in  Dn) 
15 14 13 12 1 1 10 

9 8 7 6 5       4       3        2         1  0 

0 0 0 0 Data 1 1 0 Effective  Address 
Register Mode  Register 

(Bit  number  immediate) 

0 0 0 0 1 0 0 0 1 0 Effective 
Address  Mode  Register 

Condition  Codes: 

N  Unaffected 

Z         Set  if  bit  tested  is  zero,  cleared  otherwise 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  tests  a  bit  value,  sets  the  Zero  flag  (Z)  accordingly,  and  then  clears  the  bit. 
The  operand  can  be  32  bits  in  length  and  reside  in  a  data  register  or  it  may  reside  in 

memory  as  an  8-bit  value. 

You  can  choose  one  of  two  ways  to  specify  the  bit  number:  either  through  a  data  register 
or  through  immediate  data.  Bit  numbers  start  with  bit  0  as  the  least  significant  bit  of  the 

operand.  For  data  register-resident  operands,  valid  bit  numbers  range  from  0-3 1;  for  memory- 
resident  operands,  valid  bit  numbers  range  from  0-7. 

Example: 

If  DO  contains  the  value  $12  (18(10),  and  Dl  contains  S104FF0EC  (00010000  01001111 
11110000  11101100),  then  after 

BCLR.L  D1.DO 

D 1  contains  the  value  $  104BF0EC  (00010000  0100101 1  111  10000  1 1 101 100),  and  the  Z  flag  is 
set. 

BFCHG— Test  Bit  Field  and  Change 

(MC68020  only) 

Syntax: 
BFCHG  <ea>|offset:widthj 

where  <ea>  is 

X    Dn  X    (d8,An,Xn)  #<data> 
An  X    (bd,An,Xn)  (d16,PC) 
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X  (An) 

(An)+ -(An) 

X  (d16,An) 

X  ([bd,An,Xn],od) 
X  ([bd,An],Xn,od) 
X  xxx.  L 
X  xxx.  L 

(d8,PC,Xn) 
(bd,PC,Xn) 
[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 

Instruction  Format: 
15 14 

13 12 11 
10 

9 8 7 6 5 4        3        2         1  0 

0 1 1 1 0 1 1 1 
Effective  Address 

0 0 Mode  Register 

0 0 0 0 Do Offset Dw Width 

Do:   0  =  offset  is  immediate       Dw:  0  =  width  is  immediate 
1  =  offset  is  data  register  1  =  width  is  data  register 

Condition  Codes 

N 

Z 

V 

c 

X 

Set  if  high-order  bit  of  field  is  set,  cleared  otherwise 
Set  if  bit  field  is  zero,  cleared  otherwise 

Always  cleared 

Always  cleared 
Unaffected 

Description: 

This  instruction  tests  the  contents  of  a  bit  field,  sets  the  condition  codes  accordingly,  and 
then  logically  NOTs  the  bit  field  contents.  The  operand  may  be  in  a  data  register  or  in 
memory.  The  field  has  an  offset  and  a  width,  which  you  can  specify  either  through 
immediate  data  or  through  data  registers.  If  you  specify  the  offset  as  immediate  data,  it  can 

have  values  from  0-31 .  If  you  specify  the  offset  in  a  data  register,  it  can  have  values  from 
1.  The  width  is  a  value  between  1  and  32. 

231  through  231- 

Note  here  that  the  bit  order  for  bit  fields  differs  from  that  of  individual  bits  in  that  for  bit 

fields,  the  most  significant  bit  is  bit  number  1. 

Example: 

You  have  defined  a  long  status  word  at  the  label  STATUS.  Within  that  word,  the  field 

comprising  bit  offsets  14-18  define  a  counter  that  you  must  negate  before  using.  If  the  field 
contains  the  value  OHIO,  then  after 

BFCHG  STATUS}  14:5} 

the  field  contains  10001  and  the  Negative  (N)  flag  is  set. 

BFCLR— Test  Bit  Field  and  Clear 

(MC68020  only) 

Syntax: 
BFCLR  <ea>{offset:widthj 

where  <ea>  is 

X    Dn  X    (d8,An,Xn)  #<data> 
An  X    (bd,An,Xn)  (d16,PC) 
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X  (An) 
(An)+ -(An) 

X  (d16,An) 

X  ([bd,An,Xn],od) 
X  ([bd,An],Xn,od) 
X  xxx.  L 
X  xxx.  L 

(d8,PC,Xn) 
(bd,PC,Xn) 
[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 

Instruction  Format: 
15 14 13 12 1 1 10 9 8 7 6 5 4        3        2         1  0 

1 1 1 1 1 0 1 1 
Effective  Address 

0 0 Mode  Register 

0 0 0 0 Do Offset Dw Width 

Do:   0  =  offset  is  immediate       Dw:  0  =  width  is  immediate 
1  =  offset  is  data  register  1  =  width  is  data  register 

Condition  Codes 

N 

Z 

V 

c 

X 

Set  if  high  order  bit  of  field  is  set,  cleared  otherwise 

Set  if  bit  field  is  zero,  cleared  otherwise 

Always  cleared 

Always  cleared 
Unaffected 

Description: 

This  instruction  tests  the  contents  of  a  bit  field,  sets  the  condition  codes  accordingly,  and 
then  clears  the  bit  field  contents.  The  operand  may  be  in  a  data  register  or  in  memory.  The 
field  has  an  offset  and  a  width,  which  you  may  specify  either  through  immediate  data  or 
through  data  registers.  If  you  specify  the  offset  as  immediate  data,  it  can  have  values  from 

0-31 .  If  you  specify  the  offset  in  a  data  register,  it  can  have  values  from  —  231  through  23!—  1 . 
The  width  is  a  value  between  1  and  32. 

Note  here  that  the  bit  order  for  bit  fields  differs  from  that  of  individual  bits  in  that  for  bit 

fields,  the  most  significant  bit  is  bit  number  1 .  This  is  discussed  in  further  detail  in  Chapter  12. 

Example: 

You  have  defined  several  words  of  bit  field  data  starting  at  the  label  FIELD  BASE. 

Within  those  fields,  the  6-bit  field  beginning  at  offset  +45(10)  bits  from  the  beginning 
contains  the  seconds  count  in  the  current  time.  If  the  current  value  is  $23  (10111),  and  DO 
contains  the  offset  of  45,  after  the  instruction 

BFCLR  FIELD  BASE|D0:6| 

the  field  contains  $000000  and  no  flags  are  set. 

BFEXTS  — Extract  Bit  Field  Signed 

(MC688020only) 

Syntax: 

BFEXTS  <ea>|offset:width!,  Dn 

where  <ea>  is 

X    Dn  X    (d8,An,Xn)  #<data> 
An  X    (bd,An,Xn)  X  (d16,PC) 
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X  (An) 

(An)+ 
-(An) 

X  (d16,An) 

Instruction  Format: 

X  ([bd,An,Xn],od) 
X  ([bd,An],Xn,od) 
X  xxx.  L 
X  xxx.L 

X  (d8,PC,Xn) 
X  (bd,PC,Xn) 
X  [bd,PC,Xn),od] 
X  [(bd,PC),Xn,od] 

15 14 13 12 1  1 
10 

9 8 7 6 5 4       3        2        1  0 

1 1 1 0 1 0 1 1 1 1 Effective  Address 
Mode  Register 

0 Register 

Do 

Offset 
Dw Width 

Do:  0  =  offset  is  immediate 
1  =  offset  is  data  register 

Dw:  0  =  width  is  immediate 
1  =  width  is  data  register 

Condition  Codes 

N 

Z 

V 

c 

Set  if  high-order  bit  of  field  is  set,  cleared  otherwise 
Set  if  all  bits  are  zero,  cleared  otherwise 

Always  cleared 

Always  cleared 
Unaffected 

Description: 

This  instruction  copies  the  contents  of  a  bit  field  to  a  data  register  sign,  extending  the  value 
to  32  bits.  The  operand  may  be  in  a  data  register  or  in  memory.  The  field  has  an  offset  and 
a  width,  which  you  can  specify  either  through  immediate  data  or  through  data  registers.  If 

you  specify  the  offset  as  immediate  data,  it  can  have  values  from  0-31.  If  you  specify  the 

offset  in  a  data  register,  it  can  have  values  from  — 231  through  231—  1 .  The  width  is  a  value 
between  1  and  32. 

Note  here  that  the  bit  order  for  bit  fields  differs  from  that  of  individual  bits  in  that  for  bit 

fields,  the  most  significant  bit  is  bit  number  1 .  This  is  discussed  in  further  detail  in  Chapter  12. 

Example: 

You  have  defined  a  set  of  bit  fields  starting  at  COUNTERS,  and  a  12-bit  counter  lies  at 
offset  108  bits  from  the  start.  If  DO  contains  108,  D 1  contains  0,  and  the  bit  field  contains 

-340,  then  after 

BFEXTS  COUNTERS|D0:12|,  D1 

Dl  contains  —340  and  the  N  flag  is  set. 

BFEXTU  — Extract  Bit  Field  Unsigned 

Syntax: 

BFEXTU  <ea>|offset:widthl,  Dn 

where  <ea>  is 

X    Dn  X    (d8,An,Xn)  #<data> 
An  X    (bd,An,Xn)  X  (d16,PC) 

X    (An)  X    ([bd,An,Xn],od)  X  (d8,PC,Xn) 
(An)+  X    ([bd,An],Xn,od)  X  (bd,PC,Xn) 
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-(An)  X    xxx.L  X  [(bd,PC.Xn),od] 
X    (d16,An)  X    xxx.L  X  [(bd,PC),Xn,od] 

Instruction  Format: 

15 
14 

13 12 11 10 9 8 7 6 5 4        3        2  1 0 

1 1 1 0 1 0 0 1 1 1 
Effective  Address 

Mode  Register 

0 Register 
Do 

Offset 
Dw 

Width 

Do:  0  =  offset  is  immediate 
1  =  offset  is  data  register 

Dw:  0  =  width  is  immediate 
1  =  width  is  data  register 

Condition  Codes: 

N  Set  if  high-order  bit  of  field  is  set,  cleared  otherwise 
Z  Set  if  all  bits  are  zero,  cleared  otherwise 

V  Always  cleared 

C  Always  cleared 
X  Unaffected 

Description: 

This  instruction  copies  the  contents  of  a  bit  field  to  a  data  register,  filling  the  unused  bits  of 
the  register  with  zeros.  The  operand  may  be  in  a  data  register  or  in  memory.  The  field  has 
an  offset  and  a  width,  which  you  can  specify  either  through  immediate  data  or  through 

data  registers.  If  you  specify  the  offset  as  immediate  data,  it  can  have  values  from  0-31 .  If 

you  specify  the  offset  in  a  data  register,  it  can  have  values  from  — 231  through  231—  1 .  The width  is  a  value  between  1  and  32. 

The  bit  order  for  bit  fields  differs  from  that  of  individual  bits  in  that  for  bit  fields,  the  most 

significant  bit  is  bit  number  1.  This  is  discussed  in  further  detail  in  Chapter  12. 

Example: 

You  have  loaded  an  encoded  long  word  into  DO.  At  offset  10,  a  bit  field  starts  that  is  3  bits 

wide  and  represents  the  disk-drive  status,  currently  valued  at  101.  After  the  instruction 

BFEXTU  D0{  10:31,  D1 

Dl  contains  101  and  the  N  flag  is  set. 

BFFFO  — Find  First  One  in  Bit  Field 

Syntax: 
BFFFO <ea>joffset:width|,  Dn 

where  <ea> is 

X  Dn X  (d8,An,Xn) #<data> 
An X  (bd,An,Xn) X (d16,PC) 

X  (An) X  ([bd,An,Xn],od) X (d8,PC,Xn) 
(An)+ X  ([bd,An],Xn,od) X (bd.PCXn) -(An) 

X  xxx.L X [(bd,PC,Xn),od] 
X  (d16,An) X  xxx.L X [(bd,PC),Xn,od] 
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Instruction  Format: 

15 14 13 12 1 1 
10 9 8 7 6 5 4 3        2  10 

1 1 0 1 1 0 1 1 1 
Effective  Address 

1 Mode 
Register 

0 Register 
Do Offset Dw Width 

Do:    0  =  offset  is  immediate 
1  =  offset  is  data  register 

Dw:  0  =  width  is  immediate 
1  =  width  is  data  register 

Condition  Codes: 

N         Set  if  high-order  bit  of  field  is  set,  cleared  otherwise 
Z         Set  if  all  bits  are  zero,  cleared  otherwise 

V         Always  cleared 

C         Always  cleared 
X  Unaffected 

Description: 

This  instruction  searches  the  source  bit  field  for  the  most  significant  bit  that  is  set  to  1 .  The 
processor  places  the  bit  offset  (the  original  offset  plus  the  offset  to  the  first  set  bit)  into  the 

given  data  register.  If  the  processor  can't  find  a  bit  set  to  1,  it  places  the  sum  of  the  offset 
plus  the  width  of  the  data  register  into  the  given  data  register.  The  instruction  sets  the 
condition  codes  based  on  the  contents  of  the  bit  field,  regardless  of  the  result  of  the 
instruction. 

The  operand  may  be  in  a  data  register  or  in  memory.  The  field  has  an  offset  and  a  width, 
which  you  can  specify  either  through  immediate  data  or  through  data  registers.  If  you  specify 

the  offset  as  immediate  data,  it  can  have  values  from  0-31.  If  you  specify  the  offset  in  a  data 

register,  it  can  have  values  from  —  231  through  231— 1.  The  width  is  a  value  between  1  and  32. 
Note  here  that  the  bit  order  for  bit  fields  differs  from  that  of  individual  bits  in  that  for  bit 

fields,  the  most  significant  bit  is  bit  number  1 .  This  is  discussed  in  further  detail  in  Chapter  12. 

Example: 

You  have  defined  a  set  of  24-bit  fields  that  represent  a  bit  map  for  allocated  space  on  a 
diskette  (cne  bit  field  per  track;  each  bit  represents  a  sector).  You  want  to  find  the  first  used 
sector  on  a  track  (that  is,  the  first  occurrence  of  a  1).  If  DO  contains  the  track  number, 
currently  0,  and  BIT  MAP  is  the  address  of  the  bit  map,  then  if  the  first  available  sector 
is  sector  4, 

BFFFO 

places  a  4  into  Dl .  No  flags  are  set. 

BIT_MAPjD0:24!,  D1 

BFINS  — Bit  Field  Insert 

Syntax: 
BFINS  Dn,  <ea>|offset:width  j 

where  <ea>  is 

X    Dn  X    (d8,An,Xn)  #<data> 
An  X    (bd,An,Xn)  (d16,PC) 
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X  (An) 
(An)+ -(An) 

X  (d16,An) 

Instruction  Format: 

X  ([bd,An,Xn],od) 
X  ([bd,An],Xn,od) 
X  xxx.  L 
X  xxx.  L 

(d8,PC,Xn) 
(bd,PC,Xn) 
[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 

15 14 
13 12 1 1 10 9 8 7 6 5 4       3        2        1  0 

1 1 1 0 1 1 1 1 1 1 
Effective  Address 

Mode  Register 

0 Register Do Offset 
Dw 

Width 

Condition  Codes 

N 

Z 

V 

c 

X 

Do:  0 
1 

Dw:  0 
1 

offset  is  immediate 
offset  is  data  register 
width  is  immediate 
width  is  data  register 

Set  if  high-order  bit  of  field  is  set,  cleared  otherwise 
Set  if  all  bits  are  zero,  cleared  otherwise 

Always  cleared 

Always  cleared 
Unaffected 

Description: 

This  instruction  inserts  the  bit  field  value  in  the  specified  source  data  register  into  the 
destination  bit  field  and  sets  the  flags  based  on  the  new  bit  field  value.  The  operand  can  be 
in  a  data  register  or  in  memory.  The  field  has  an  offset  and  a  width,  which  you  can  specify 
either  through  immediate  data  or  through  data  registers.  If  you  specify  the  offset  as 

immediate  data,  it  can  have  values  from  0-31.  If  you  specify  the  offset  in  a  data  register,  it 

can  have  values  from  —  231  through  231— 1.  The  width  is  a  value  between  1  and  32. 

The  bit  order  for  bit  fields  differs  from  that  of  individual  bits  in  that  for  bit  fields, 

the  most  significant  bit  is  bit  number  1.  This  is  discussed  in  further  detail  in  Chapter  12. 

Example: 

If  the  first  four  bits  of  a  communications  message  define  the  message  type,  and  your 
message  buffer  begins  at  BUFF,  then  if  DO  contains  a  4,  after 

BFINS  DO,  BUFF j  0:4  ( 

the  message  class  is  set  to  4  and  no  flags  are  set. 

BFSET— Test  Bit  Field  and  Set 

Syntax: 

BFSET  <ea>|offset:widthJ 

where  <ea>  is 

X    Dn  X    (d8,An,Xn)  #<data> 
An  X    (bd,An,Xn)  (d16,PC) 

X    (An)  X    ([bd,An,Xn],od)  (d8,PC,Xn) 
(An)+  X    ([bd,An],Xn,od)  (bd,PC,Xn) 
-(An)  X    xxx.L  [(bd,PC,Xn),od] 

X    (d16,An)  X    xxx.L  [(bd,PC),Xn,od] 
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Instruction  Format: 

15 14 
13 12 1 1 10 

9 8 7 6 5 4       3        2        1  0 

1 1 0 1 1 0 1 1 
Efffective  Address 

1 1 
Mode  Register 

0 0 0 0 Do Offset 
Dw 

Width 

Condition  Codes: 

N         Set  if  high-order  bit  of  field  is  set.  cleared  otherwise 
Z         Set  if  all  bits  are  zero,  cleared  otherwise 

V         Always  cleared 

C         Always  cleared 
X  Unaffected 

Description: 

This  instruction  tests  the  bit  field  data,  sets  the  condition  codes  accordingly,  and  then  sets 
the  contents  of  the  bit  field  to  all  Is.  The  operand  can  be  in  a  data  register  or  in  memory. 
The  field  has  an  offset  and  a  width,  which  you  may  specify  either  through  immediate  data 
or  through  data  registers.  If  you  specify  the  offset  as  immediate  data,  it  can  have  values 

from  0-31.  If  you  specify  the  offset  in  a  data  register,  it  can  have  values  from  — 2?1  through 
231—  I.  The  width  is  a  value  between  1  and  32. 

Note  here  that  the  bit  order  for  bit  fields  differs  from  that  of  individual  bits  in  that  for  bit 

fields,  the  most  significant  bit  is  bit  number  1. 

Example: 

FLAGS  is  the  base  address  of  a  set  of  bit  fields.  At  offset  39  is  a  12-bit  counter  containing 

the  value  34.  which  you  want  to  initialize  to  —1.  If  you  first  load  DO  with  39.  then  after 

BFSET  FLAGS)  D0:12  j 

the  bit  field  contains  —  1  (1111  1111  1111)  and  no  condition  flags  are  set. 

BFTST  — Test  Bit  Field 

Syntax: 
BFTST  <ea>{offset:width  ] 

where  <ea>  is 

X    Dn  X  (d8,An,Xn)  =<data> 
An  X  (bd,An,Xn)  X  (d16,PC) 

X    (An)  X  ([bd.An,Xn],od)  X  (d8,PC,Xn) 
(An)-  X  ([bd,An],Xn,od)  X  (bd,PC,Xn) 
-(An)  X  xxx. L  X  [(bd,PC,Xn),od] 

X    (d16,An)  X  xxx. L  X  [(bd,PC),Xn,od] 
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Instruction  Format: 

15 14 13 12 11 10 9 8 7 6 5 4 3        2  10 

1 1 1 0 1 0 0 0 1 1 
Effective  Address 

Mode Register 
0 0 0 0 Do 

Offset 
Dw Width 

Do:  0  =  offset  is  immediate 
1  =  offset  is  data  register 

Dw:  0  =  width  is  immediate 
1  =  width  is  data  register 

Condition  Codes: 

N  Set  if  high-order  bit  of  field  is  set,  cleared  otherwise 
Z  Set  if  all  bits  are  zero,  cleared  otherwise 

V  Always  cleared 

C  Always  cleared 
X  Unaffected 

Description: 

This  instruction  tests  the  contents  of  the  specified  bit  field  and  sets  the  condition  codes 
accordingly.  The  operand  can  be  in  a  data  register  or  in  memory.  The  field  has  an  offset 
and  a  width,  which  you  may  specify  either  through  immediate  data  or  through  data 
registers.  If  you  specify  the  offset  as  immediate  data,  it  can  have  values  from  0  to  31 .  If  you 

specify  the  offset  in  a  data  register,  it  can  have  values  from  —  231  to  231  — 1.  The  width  is 
a  value  between  1  and  32. 

Note  here  that  the  bit  order  for  bit  fields  differs  from  that  of  individual  bits  in  that  for  bit 

fields,  the  most  significant  bit  is  bit  number  1 .  This  is  discussed  in  further  detail  in  Chapter  12. 

Example: 

The  3-bit-wide  bit  field  at  offset  13  from  the  label  BASE  contains  an  encoded  status  value; 
the  encoded  value  of  0  means  that  no  status  has  been  recorded.  If  its  value  is  101 ,  then  after 

BFTST  BASE  1 13:3j 

the  N  flag  is  set  and  the  Z  flag  is  cleared.  The  status  value  is  unchanged. 

BKPT  —  Breakpoint 

Syntax: 
BKPT  #<data> 

Instruction  Format: 

15 14 13 12 

11 

10 
9 8 7 6 5 4 3 2        1  0 

0 1 0 0 1 0 0 0 0 1 0 0 1 Vector 
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Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description 

This  instruction  signals  external  hardware  that  an  illegal  instruction  has  been  executed. 
The  execution  of  Breakpoint  causes  slightly  different  reactions  on  different  processors: 

•  MC68000  and  MC68008  The  processor  considers  this  intruction  to  be  just  another 
illegal  instruction  and  traps  through  the  illegal  instruction  vector. 

•  MC68010  and  MC68012  The  processor  sends  a  special  signal  ("breakpoint  cycle")  out 
its  bus  lines  to  inform  external  hardware  of  the  execution  of  an  illegal  instruction.  The 
processor  then  traps  through  the  illegal  instruction  vector. 

•  MC68020  The  processor  sends  a  special  signal  ("breakpoint  cycle")  out  from  its  bus 
lines  to  inform  external  hardware  of  the  execution  of  an  illegal  instruction.  The  signal 
includes  the  immediate  data  given  in  the  instruction.  The  external  hardware  may  then 
provide  the  processor  with  a  new  instruction  or  it  may  force  it  to  trap  through  the 
illegal  instruction  vector. 

On  the  MC68000  and  MC68008,  the  illegal  instruction  vector  will  always  be  at  physical 
address  S00000010.  To  catch  the  occurrence  of  an  illegal  instruction,  the  hardware  simply 
monitors  address  and  control  bus  lines  for  access  to  this  address.  On  the  later  processors,  this 

isn't  possible,  since  they  allow  you  to  redefine  the  base  address  of  the  vector  table  through  the 
vector  base  register  (VBR).  This  instruction  provides  a  means  of  signaling  the  hardware 
without  relying  on  access  to  the  illegal  instruction  vector. 

Depending  on  your  assembler  and  on  the  processor  it  is  intended  for,  you  may  or  may  not 
have  this  instruction  implemented. 

Example: 

After  the  MC68020  instruction 

the  processor  sends  out  a  breakpoint  cycle  and  then  traps  through  vector  number  4,  the  illegal 
instruction  vector. 

BKPT 

BSET  — Test  Bit  and  Set 

Syntax: 
BSET  s 
BSET.s 

Dn,  <ea> 
-data,  <ea> 

where  <ea>  is 

X  Dn 
An 

X  (An) 

X  (An)- 

X  (d8,An,Xn) 
X  (bd,An,Xn) 
X  ([bd,An,Xn],od) 
X  ([bd,An],Xn,od) 

~<data> 

(d16.PC) 
(d8,PC,Xn) 
(bd.PCXn) 
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X    -(An)  X  xxx.L 
X    (d16,An)  X  xxx.L 

and  where  .s  =  .B  or  .L. 

Instruction  Format: 

(Bit  number  in  Dn) 
15 14 13 12 11 10 9 8 7 6 5       4       3        2        1  0 

0 0 0 0 Rpnistpr 1 1 1 Effective  Address 
Mode  Register 

Bit  number is  immediate) 

0 0 0 0 1 0 0 0 1 1 Effective  Address 
Mode  Register 

[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 

Condition  Codes: 

N  Unaffected 

Z         Set  if  tested  bit  is  zero,  cleared  otherwise 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  tests  the  state  of  a  single  bit  in  the  operand,  sets  the  Zero  flag  accordingly, 

and  sets  the  bit's  value  to  1 .  You  can  specify  the  bit  number  either  through  a  data  register  or 
through  an  immediate  byte  value.  The  operand  can  reside  in  a  data  register;  in  this  case, 

the  operand  size  is  the  full  32-bit  width  of  the  register.  Those  operands  residing  in  memory 
can  be  byte-sized  only. 

You  can  use  BSET  to  provide  a  "lock"  mechanism  for  protecting  common  data  in  a 
multitasking  system.  Since  two  or  more  tasks  may  share  the  common  data,  and  since  any  task 
may  run  at  any  time,  one  task  could  start  manipulating  the  data  before  another  has  finished. 
This  could  lead  to  a  corrupt  database. 

A  standard  means  for  providing  protection  is  to  define  a  lock  flag.  When  this  flag  is  set  to 
true,  the  common  data  is  in  use;  when  false,  your  task  can  access  the  common  data.  Naturally, 

the  first  thing  you'll  need  to  do  upon  gaining  access  to  the  common  data  is  to  set  the  lock  flag. 
The  BSET  flag  is  perfect  for  this  since  it  tests  and  sets  in  the  same  instruction;  it  cannot  be 
interrupted  in  between  the  time  that  it  tests  the  flag  and  the  time  it  sets  the  flag.  (Reference  the 
instruction  BTST,  which  only  tests  the  bit  state.) 

The  instruction  can  be  interrupted  in  the  middle  of  its  execution  by  a  hardware  bus  request 

signal  (different  from  peripheral  interrupt),  which  can  occur  in  a  system  that  contains  more 

than  one  CPU.  If  your  system  is  such,  you  should  use  TAS  or  CAS  instead  of  the  BSET  or 
BCLR.  These  instructions  are  indivisible  even  by  a  bus  request. 

Example: 

Bit  number  3  of  the  byte  in  memory  at  the  label  LOCKS  may  constitute  the  lock  for  a 
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common  data.  The  following  piece  of  code  will  test  for  the  lock  condition: 

BSET.B  #3,  LOCKS 
BNE  WAIT 

If  the  bit  was  set  (indicating  lock),  it  remains  set  and  the  Z  flag  is  cleared;  the  program 
branched  to  WAIT.  If  the  bit  was  not  set  (indicating  unlock),  the  instruction  sets  the  bit 
(indicating  lock),  sets  the  Z  flag,  and  falls  through  the  BNE  instruction. 

BSR  —  Branch  to  Subroutine 

Syntax: 
BSR  <  offset  > 

Instruction  Format: 

15 14 13      12  11 
10 

9 8 7 6 5       4       3  2 1 0 
0 1 1        0  0 0 0 0 8-Bit  Displacement 

16-Bit  Displacement  if  8-Bit  Displacement  =  $00 
32-Bit  Displacement  if  8-Bit  Displacement  =  $FF 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  branches  to  the  subroutine  indicated  by  the  offset  value.  Normally,  this 
value  is  a  program  label  that  the  assembler  converts  to  an  offset  value.  When  this 
instruction  is  executed,  the  processor  pushes  the  address  of  the  instruction  that  follows  the 
BSR  instruction  onto  the  stack.  It  then  adds  the  value  of  the  displacement  to  the  PC  (BSR 
instruction  address  plus  2)  and  begins  execution  at  the  new  PC.  Since  the  displacement  is 
signed,  the  subroutine  address  may  be  ahead  of  or  behind  the  current  address. 

This  instruction  differs  from  the  JSR  instruction  in  that  the  only  addressing  mode  allowed 
is  PC  relative.  This  limitation  is  an  advantage  in  that  the  processor  can  execute  the  instruction 

faster  in  this  mode,  and,  in  some  cases,  the  instruction  doesn't  take  up  as  much  room  as  it  would 
in  other  addressing  modes. 

Example: 

If  SUB1  is  a  label  of  a  subroutine,  then 
BSR  SUB1 

calls  the  subroutine  SUB1. 
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BTST  — Test  Bit 

Syntax: 
BTST  s  Dn,  <ea> 
BTST.s  tfdata,  <ea> 

where  <ea>  is 

X Dn X (d8,An,Xn) #<data> 
An X (Bd,An,Xn) X (d16,PC) 

X (An) X ([bd,An,Xn],od) X (d8,PC,Xn) 
X (An)+ 

X ((bd,An],Xn,od) X (bd,PC,Xn) 
X 

-(An) X xxx. L X [(bd,PC,Xn),od] 
X (d16,An) X xxx. L X [(bd,PC),Xn,od] 

and  where  .s  =  .B  or  .L. 

Instruction  Format: 

(Bit  number  in  Dn) 
15 14 13 12 11 10 9 8 7 6 5        4        3        2        1  0 

0 0 0 0 Register 1 0 0 Effective  Address 
Mode  Register 

(Bit  number  is  immediate) 

0 0 0 0 1 0 0 0 0 0 Effective  Address 
Mode  Register 

Condition  Codes: 

N  Unaffected 

Z  Set  if  tested  bit  is  zero,  cleared  otherwise 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  tests  the  state  of  a  single  bit  in  the  operand  and  sets  the  Zero  flag 

accordingly.  The  bit's  value  remains  unchanged.  You  can  specify  the  bit  number  either 
through  a  data  register  or  through  an  immediate  byte  value.  The  operand  can  reside  in  a 

data  register;  in  this  case,  the  operand  size  is  the  full  32-bit  width  of  the  register.  Those 

operands  residing  in  memory  can  be  byte-sized  only. 

Example: 

In  your  application,  several  factors  of  a  calculation  may  determine  whether  or  not  to  print 

a  value.  As  you  test,  if  you  find  that  you  should  print  the  value,  you  set  a  bit  flag  (bit  25)  in 

data  register  D7.  At  the  end  of  the  loop,  you  test  to  see  if  you  should  print  the  value.  With 
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the  instructions 

BTST.L  #25,  D7 
BNE  PRINT_SUM 

if  the  bit  is  set,  then  the  program  branches  to  PRINT_SUM. 

CALLM— Call  Module  (MC68020  Only) 

Syntax: 
CALLM  #<data>,  <ea> 

where  <ea>  is 

Dn X (d8,An,Xn) #<data> 
An X (bd,An,Xn) X (d16,PC) 
(An) X ([bd,An,Xn],od) X (d8,PC,Xn) 
(An)+ X ([bd,An],Xn,od) X (bd.PC.Xn) -(An) 

X xxx. L X [(bd,PC,Xn),od] 
(d16.An) X xxx.  L X [(bd,PC),Xn,od] 

Instruction  Format: 
15 

14 
13 12 11 

10 

9 8 7 6 5       4        3        2        1  0 

0 0 0 0 0 1 1 0 1 1 
Effective  Address 

Mode  Register 
0 0 0 0 0 0 0 0 Argument  Count 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  (MC68020  only)  creates  and  files  a  module  stack  frame  on  the  stack, 
loads  the  processor  with  the  data  provided  by  the  module  descriptor  (in  the  effective 
address),  and  begins  execution  at  the  new  address  (as  provided  in  the  module  descriptor). 
This  instruction,  when  used  in  a  system  with  the  proper  hardware  configuration,  provides 
a  finer  degree  of  memory  access  than  is  provided  with  the  user/ supervisor  modes.  The 
RTM  instruction  performs  the  opposite  of  this  instruction:  it  restores  a  processor  state 
from  the  stack  frame. 

By  using  several  control  lines,  the  processor  can  tell  external  hardware  to  use  different 
locations  for  memory  than  it  would  use  for  normal  program  reads  and  writes.  In  this  special 

memory,  called  "CPU  space,"  certain  locations  define  access-control  hardware.  When  exe- 
cuted, this  instruction  compares  the  requested  access  level  with  that  in  the  CPU  space 
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descriptors.  If  permission  is  granted,  the  processor  continues  with  the  instruction;  if  hardware 

says  that  permission  is  denied,  the  instruction  traps  through  the  format-error  exception. 
This  instruction  is  used  only  in  advanced  systems  that  have  the  necessary  hardware  for 

granting  or  denying  access.  In  your  applications,  you  are  unlikely  to  encounter  it. 

CAS  — Compare  and  Swap  (MC68020  only) 

Syntax: 
CAS.s  Dc,  Du,  <ea> 

where  <ea>  is 

Dn                   X    (d8,An,Xn)  #<data> 
An                   X    (bd,An,Xn)  (d16,PC) 

X    (An)                 X    ([bd,An,Xn],od)  (d8,PC,Xn) 
X    (An)+               X    ([bd,An],Xn,od)  (bd,PC,Xn) 
X    -(An)               X    xxx.L  [(bd,PC,Xn),od] 
X    (d16,An)            X    xxx.L  [(bd,PC),Xn,od] 

and  where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

15 14 
13 12 11 

10 
9 8 7 6 5        4  3 2       1  0 

0 0 0 0 1 0 1 1 
Effective  Address one Mode 

Register 
0 0 0 0 0 0 0 Ou 0   |   0    |  0 Dc 

Size  field:  01  =  byte    10  =  word    11  =  long 

Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 

V         Set  if  compare  generates  an  overflow,  cleared  otherwise 

C         Set  if  compare  generates  a  carry,  cleared  otherwise 
X  Unaffected 

Description: 

This  instruction  subtracts  the  value  in  the  "compare"  data  register  (labeled  "Dc"  in  the 
preceding  syntax)  from  the  destination  operand  (<ea>),  and  sets  the  condition  codes 
accordingly.  If  the  Zero  (Z)  flag  is  set,  the  processor  moves  the  value  in  the  update  register 

(labeled  "Du"  in  the  syntax)  to  the  destination  operand. 

In  a  standard  test  and  change  instruction  (such  as  BSET),  the  processor  could  be 
interrupted  by  a  bus  request  in  between  the  time  it  tests  the  operand  (with  a  read  cycle)  and  the 
time  it  sets  the  operand  (with  a  write  cycle).  In  a  multiprocessor  environment,  another 
processor  could  potentially  gain  control  of  the  bus  in  between  cycles  and  change  the  value  of 
the  operand,  thus  corrupting  its  value.  The  processor  executes  the  CAS  instruction  using  a 
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special  type  of  bus  cycle  called  a  "read-modify-write"  cycle;  that  action  prevents  another 
processor  from  interfering  with  the  instruction  while  it  does  its  compare  and  swap  operation. 

Example: 

You  have  several  CPUs  in  your  system  and  have  defined  a  queue  in  "global"  memory  (all 
processors  in  the  system  have  access  to  its  data).  The  queue  is  first-in-first-out  and  uses 
linked  lists  (see  Chapter  9).  Since  any  processor  can  manipulate  the  queue  and  its  pointers, 
you  must  provide  some  means  of  locking  out  other  processors  while  your  task  inserts  or 
deletes  from  the  queue. 

One  method  of  doing  this  is  to  provide  a  "lock"  byte  that  you  can  manipulate  with  the  TAS 
instruction  (which  also  uses  a  read-modify-write  cycle).  However,  the  CAS  instruction  is  more 
applicable  here,  as  is  shown  by  the  code  segment  that  follows.  In  this  example,  HEAD  is  a 
memory  value  pointing  to  the  first  element  in  the  queue,  NEW  NODE  is  the  address  of  a  new 
queue  element,  and  LINK  is  a  constant  defining  the  offset  within  a  queue  element  that  contains 
a  pointer  to  the  next  element. 

MOVEA.L  NEWNODE,  AO 
LEA  HEAD,  A2 

LOOP  MOVE.L  DO,  (LINK, AO) 
MOVE.L  AO,  D1 
CAS.L  DO,  D1,(A2) 
BNE  LOOP 

In  this  example,  there  are  several  tentative  pointers  prior  to  the  CAS  instruction:  AO  and 
Dl  point  to  the  new  node,  DO  points  to  the  current  HEAD,  and  the  LINK  pointer  in 

NEW  NODE  points  to  the  current  HEAD.  When  the  processor  executes  the  CAS  instruc- 
tion, one  of  two  conditions  is  true: 

1.  another  processor  may  have  changed  the  HEAD  pointer 

2.  the  HEAD  pointer  is  the  same 

In  the  first  case,  the  compare  will  fail,  the  swap  won't  take  place,  and  the  Z  flag  will  be 
cleared,  forcing  a  branch  to  the  top.  In  the  second  case,  the  compare  passes,  so  the  pointer  to 
NEW  NODE  takes  the  place  of  HEAD  and  the  Z  flag  is  set,  allowing  the  program  to  pass 
through  the  BNE  instruction.  While  the  swap  takes  place,  the  current  processor  has  control  of 
the  bus,  so  that  no  other  processor  can  modify  the  value  of  HEAD. 

To  remove  an  element  from  the  queue,  you  would  work  to  the  end  of  the  queue  and  swap 
the  pointer  to  the  last  link  with  a  local  pointer,  substituting  the  link  with  a  NULL  value. 

CAS2  — Compare  and  Swap  Two  Values 

Syntax: 
CAS2.S  Del  :Dc2,  Du1  :Du2,  (Rn1  ):(Rn2) 

where  .s  =  .W  or  .L. 
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Instruction  Format: 

15 14 
13 12 11 10 9 8 7 6 5 4 3 2       1  0 

0 0 0 0 1 Size 0 1 1 1 1 1 1        0  0 
D/A Register  1 0 0 0 Du1 0 0 0 

Del 
D/A Register  2 0 0 0 Du2 0 0 0 

Dc2 

Size  field •      01  : =  byte 
10  = 

word 
11  = 

ong 

Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 

V         Set  if  compare  generates  an  overflow,  cleared  otherwise 

C         Set  if  compare  generates  a  carry,  cleared  otherwise 
X  Unaffected 

Description: 

This  instruction  subtracts  the  values  in  the  compare  data  registers  (labeled  "Del"  and 
"Dc2"  in  the  syntax)  from  the  two  destination  operands  (pointed  to  by  the  registers 
labeled  "Rn  1 "  and  "Rn2"),  and  sets  the  condition  codes  accordingly.  If  the  Zero  (Z)  flag  is 
set,  the  processor  moves  the  values  in  the  update  register  (labeled  "Du  1 "  and  "Du2"  in  the 
syntax)  to  the  destination  operands.  Note  that  in  this  unique  case,  data  registers  can 
function  as  address  registers. 

In  a  standard  test  and  change  instruction  (such  as  BSET),  the  processor  could  be 
interrupted  by  a  bus  request  in  between  the  time  it  tests  the  operand  with  a  read  cycle  and  the 
time  it  sets  the  operand  with  a  write  cycle.  1  n  a  multiprocessor  environment,  another  processor 
could  potentially  gain  control  of  the  bus  in  between  cycles  and  change  the  value  of  the  operand, 
thus  corrupting  its  value.  The  processor  executes  the  CAS2  instruction  using  a  special  type  of 

bus  cycle  called  a  read-modify-write  cycle;  this  prevents  another  processor  from  interfering 
with  the  instruction  while  it  does  its  compare  and  swap  operation. 

Example: 

You  have  a  multiprocessor  system,  in  which  you  have  defined  a  global  first-in-first-out 

queue.  You've  implemented  the  queue  using  doubly  linked  lists  and  have  a  "get"  pointer 
(indicating  the  next  element  to  be  removed)  and  a  "put"  pointer  (indicating  the  last 
element  queued).  Since  multiple  processors  have  access  to  the  queue,  you  must  provide  a 
means  of  protecting  the  get  and  put  pointers  while  you  manipulate  them.  You  can  do  so  by 
using  the  CAS2  instruction,  since  it  lets  you  adjust  two  values  at  once. 

In  this  example,  PUT  contains  the  address  of  the  latest  element,  GET  contains  the  address 
of  the  oldest  element,  and  NEW  contains  the  address  of  an  element  to  add  to  the  queue  (after 
PUT).  FORWARD  and  BACKWARD  are  constants  that  define  the  offset  in  the  element 
structure  where  pointers  ahead  and  behind  are  found. 
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LEA 
LEA 
MOVEA.L 
MOVE.L 

LOOP  MOVE.L 
BEQ 
MOVE.L 
CLR.L 
MOVE.L 
LEA 
CAS2.L 
BNE 
BRA 

EMPTY  MOVE.L 
MOVE.L 
CAS2.L 
BNE 

DONE 

In  this  example,  prior  to  the  CAS2  instruction,  the  pointers  in  the  NEW  element  have 
been  set  up  so  that  they  point  back  to  the  current  PUT  and  ahead  to  a  null  element.  At  the  time 
of  the  CAS2,  DO  points  to  the  original  PUT  value,  Dl  points  to  a  null  element  (value  0),  D2 

points  to  the  NEW  element,  AO  contains  PUT's  address,  and  Al  contains  a  pointer  to  the 
BACKWARD  pointer  of  the  NEW  element.  When  the  processor  executes  the  CAS2  instruc- 

tion, if  the  PUT  value  hasn't  changed,  the  NEW  element  is  added  to  the  list. 
Note  the  special  case  when  the  list  contains  no  elements  (PUT  is  null);  you  load  NEW's 

pointers  with  a  null  pointer  and  try  to  update  GET  and  PUT 

CHK  — Check  Register  Against  Boundaries 

Syntax: 
CHK.s  <ea>,  Dn 

where  <ea>  is 

X Dn X (d8,An,Xn) X 
tf<data> 

An X (bd,An,Xn) X (d16,PC) 
X (An) X ([bd,An,Xn],od) X (d8,PC,Xn) 
X (An)  + X ([bd,An],Xn,od) X (bd,PC,Xn) 
X 

-(An) 
X xxx.  L X [(bd,PC,Xn),od] 

X (d16,An) X xxx  L X [(bd,PC),Xn,od] 

and  where  .s  =  .W  or  .L  (.L  for  MC68020  only). 

Instruction  Format: 

15 14 13 12 11      10  9 8  7 6 5       4       3       2       1  0 

0 1 0 0 
Data Size 0 

Effective  Address 

Register Mode  Register 

Size  field:  10=  Long  word  (MC68020) 
11  =  Word 

Condition  Codes: 

N  Set  if  Dn<0,  cleared  if  Dn>  source,  undefined  otherwise 
Z  Undefined 

PUT,  AO 
GET,  A1 
NEW,  A2 
A2,  D2 

(AO),  DO EMPTY 
DO,  (FORWARD, A2) 
D1 
D1,  (BACKWARD, A2) 
(BACKWARD, A2),  A1 
D0:D1,  D2:D0,  (A0):(A1) 
LOOP 
DONE 
DO,  (FORWARD, A2) 
DO,  (BACKWARD, A2) 
D0:D0,  D2:D2,  (A0):(A1) 
LOOP 
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V  Undefined 

C  Undefined 

X  Unaffected 

Description: 

This  instruction  compares  the  contents  of  a  data  register  to  the  contents  of  the  source 

operand.  If  the  data  register  value  is  less  than  zero  or  greater  than  the  source  operand,  the 
processor  traps  through  exception  vector  6  (offset  $18)  in  the  vector  table.  Naturally,  you 
or  the  operating  system  should  have  defined  a  handler  address  at  this  vector.  For  a 

complete  discussion  of  the  sequences  that  occur  during  exception  processing,  refer  to 
Chapter  14. 

The  long-word  operand  version  of  the  instruction  is  valid  only  on  the  MC68020;  the  other 
processors  only  support  the  16-bit  operand. 

Example: 

This  instruction  is  useful  for  maintaining  array  subscripts  since  you  can  subscript  against 
an  upper  bounds  before  using  it  to  fetch  or  store  data.  For  example,  you  can  define  a  byte 
array  called  TABLE  that  contains  100  entries,  subcripted  0  to  99.  If  the  word  at  the  label 
TAB  SIZ  contains  the  value  99,  and  DO  contains  a  potential  subscript,  then  after 

CHK.W  TAB_SIZ,  DO 

if  DO  contains  a  legitimate  value,  the  program  will  continue  normal  execution.  If  the  value 
is  out  of  range,  however,  then  the  processor  will  trap  through  the  CHK  vector. 

CHK2  — Check  Register  Against  Bounds  (MC68020  Only) 

Syntax: 
CHK2.S  <ea>,  Rn 

where  <ea>  is 

Dn X (d8,An,Xn) #<data> 
An X (bd,An,Xn) X (d16,PC) 

X (An) X ([bd,An,Xn],od) X (d8,PC,Xn) 
(An)+ X ([bd,An],Xn,od) X (bd,PC,Xn) 

X 
"(An) X xxx.  L X [(bd,PC,Xn),od] x (d16,An) X xxx.  L X [(bd,PC),Xn,od] 

and  where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

15 14 
13 12 11 

10 
9 8 7 6 5 4 3 2 1 0 

Size 0 1 1 
Effective  Address 

0 0 0 0 0 Mode Registe r 

A/D Register 1 0 0 0 0 0 0 0 0 0 0 0 

Size  field:  00  =  byte    01=  word    10=  long 
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Condition  Codes: 

N  Undefined 

Z  Set  if  Rn  is  equal  to  either  boundary,  cleared  otherwise 
V  Undefined 

C  Set  if  Rn  is  out  of  bounds,  cleared  otherwise 
X  Unaffected 

Description: 

This  instruction  compares  a  value  in  a  data  or  address  register  against  signed  upper  and 
lower  boundaries.  The  bounds  reside  in  memory;  the  lower  boundary  is  at  the  address 
specified  in  the  instruction;  the  upper  boundary  is  at  that  address  plus  the  operand  size 
(that  is,  + 1  for  byte,  +2  for  word,  and  +4  for  long  word). 

If  the  comparison  falls  in  the  range  specified,  the  processor  continues  normal  execution.  If 
the  comparison  fails,  then  the  processor  begins  exception  processing  using  the  CHK/CHK2 
exception  vector  (vector  number  6  at  offset  $18).  (Refer  to  Chapter  14  for  further  information 
on  exception  processing  sequences.) 

Refer  to  the  CMP2  instruction  for  a  bounds  test  that  does  not  generate  an  exception  for 
out-of-bounds  conditions. 

Example: 

In  your  application,  you  have  defined  an  array  of  100  elements  with  subscripts  ranging 

from  —  50-49.  If  the  two  bytes  at  TAB  RANGE  contain  —50  and  49,  respectively,  and  DO 
contains  a  100,  then 

CHK2.B  TAB  RANGE,  DO 

causes  a  trap  through  the  CHK/CHK2  exception  vector. 

CLR  —Clear  an  Operand 

Syntax: 
CLR.s  <ea> 

where  <ea>  is 

X  Dn x (d8,An,Xn) #<data> 
An x (bd,An,Xn) (d16,PC) 

X  (An) X ([bd,An,Xn],od) (d8,PC,Xn) 
X    (An)  + x ([bd,An],Xn,od) (bd,PC,Xn) 
X  -(An) x xxx.  L [(bd,PC,Xn),od] 
X  (d16,An) x xxx.  L [(bd,PC),Xn,od] 

and  where  .s  = 

B, 

. W,  or  .L. 

Instruction  Format: 

15 14 13 12 11 
10 

9 8 7  6 5        4  3 2       1  0 

0 1 0 0 0 0 1 0 Size 
Effective  Address 

Mode 
Register 

Size  field:  00  =  byte    01=  word    10=  long 
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Condition  Codes: 

N  Cleared 

Z  Set 

V  Cleared 

C  Cleared 

X  Unaffected 

Description: 

This  instruction  moves  a  zero  to  the  specified  operand. 

Example: 

If  DO  contains  the  value  S5400200F,  then  after 

CLR.L  DO 

DO  contains  $00000000. 

CMP  — Compare 

Syntax: 
CMP.s  <ea>,  Dn 

where  <ea>  is 

X Dn X (d8,An,Xn) X #<data> 
X An X (bd,An(Xn) X (d16,PC) 
X (An) X ([bd,An,Xn],od) X (d8,PC,Xn) 
X (An)  + X ([bd,An],Xn,od) X (bd,PC,Xn) 
X 

-(An) X xxx.  L X [(bd,PC,Xn),od] 
X (d16,An) X xxx.  L X [(bd,PC),Xn,od] 

and  where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

15 14 13 12 11      10  9 8       7  6 5       4       3       2       1  0 

1 0 1 1 
Data 

Op-Mode 
Effective  Address 

Register Mode  Register 

Op-Mode  field:  Byte  Word        Long  Operation 
000  001  010  (<Dn>)-(<ea>) 

Condition  Codes: 

N  Set  if  Dn— source,  cleared  otherwise 

Z         Set  if  Dn  —  source,  cleared  otherwise 

V         Set  if  Dn  —  source  operation  generates  an  overflow,  cleared  otherwise 

C         Set  if  Dn  —  source  operation  requires  a  borrow,  cleared  otherwise 
X  Unaffected 

Description: 

This  instruction  subtracts  the  contents  of  the  source  operand  from  a  data  register  and  sets 
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the  condition  codes  appropriately.  The  result  of  the  subtraction  is  thrown  away.  The  order 
of  the  operands  is  not  necessarily  the  same  as  the  order  of  the  comparison  performed  by 
the  instruction;  it  compares  the  destination  to  the  source,  not  vice  versa. 

Example: 

If  DO  contains  a  $700  and  Dl  contains  a  $600,  then 

CMP.W  DO,  D1 
BLT  LABEL1 

causes  a  branch  to  LABEL1  (Dl  is  less  than  DO). 

CM  PA  — Compare  Addresses 

Syntax: 
CMPA.s <ea> An 

where  <ea> 
is 

X  Dn X (d8,An,Xn) X #<data> 
X  An X (bd,An,Xn) X (d16,PC) 
X  (An) X ([bd,An,Xn],od) X (d8,PC,Xn) 
X  (An)-f 

X ([bd,An],Xn,od) X (bd,PC,Xn) 
X  -(An) X xxx. L X [(bd,PC,Xn),od] 
X  (d16,An) X xxx. L X [(bd,PC),Xn,od] 

and  where  .s  =  .W  or  .L. 

Instruction  Format: 

15 14 13 12 11      10  9 8       7  6 5       4  3 2       1  0 

1 0 1 1 
Data 

Op-Mode 
Effective  Address 

Register 
Mode 

Register 
Op-Mode  field:  Word       Long  Operation 

011  111  (<An>-(<ea>) 

Condition  Codes: 

N  Set  if  An— source,  cleared  otherwise 

Z         Set  if  An— source,  cleared  otherwise 

V         Set  if  An— source  operation  generates  an  overflow,  cleared  otherwise 

C         Set  if  An— source  operation  requires  a  borrow,  cleared  otherwise 
X  Unaffected 

Description: 

This  instruction  subtracts  the  source  operand  from  the  given  address  register  and  sets  the 
condition  codes  accordingly.  The  result  of  the  subtraction  is  thrown  away.  The  order  of 
the  operands  is  not  necessarily  the  same  as  the  order  in  which  the  instruction  makes  its 
comparison;  it  compares  the  address  register  to  the  source  operand,  not  vice  versa. 
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Example: 

If  you  are  working  through  a  TABLE  that  is  $  100  bytes  long,  using  AO  as  a  pointer  into  the 
table,  then 

CMPA.L  #TABLE+$100,  AO 
BNE  MORE 

will  cause  a  branch  to  the  label  MORE  until  the  two  values  are  equal. 

CM  PI —Compare  Immediate 

Syntax: 
CMPI  s  #<data>,  <ea> 

where  <ea>  is 

X Dn X (d8,An,Xn) s<data> 
An X (bd,An,Xn) X (d16,PC) 

X (An) X ([bd,An,Xn],od) X (d8,PC,Xn) 
X (An)  + X ([bd,An],Xn,od) X (bd.PCXn) 
X 

-(An) 
X xxx  L X [(bd,PC,Xn),od] 

X (d16,An) X xxx. L X [(bd,PC),Xn,od] 

and  where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

15 14 
13 12 11 

10 
9 8 7  6 5       4  3 2       1  0 

0 0 0 0 1 1 0 0 Size 
Effective  Address 

Mode 
Register 

Size  field:  00  =  byte  01  =  word  10  =  long 

Condition  Codes: 

N  Set  if  <ea>  <  data,  cleared  otherwise 

Z         Set  if  <ea>  =  data,  cleared  otherwise 

V         Set  if  <ea>  —  data  operation  generates  an  overflow,  cleared  otherwise 

C         Set  if  <ea>  —  data  operation  requires  a  borrow,  cleared  otherwise 
X  Unaffected 

Description: 

This  instruction  subtracts  the  immediate  source  data  from  the  destination  operand  and 
sets  the  condition  codes  accordingly.  The  result  of  the  subtraction  is  thrown  away.  The 
order  of  the  operands  is  not  necessarily  the  same  as  the  order  in  which  the  instruction 
performs  the  comparison;  it  compares  the  second  operand  to  the  first,  not  vice  versa. 

Example: 

The  value  defined  by  the  constant  HIVAL  defines  the  maximum  value  for  the  long 
variable  at  the  label  COUNTS.  If  COUNTS  has  exceeded  HIVAL,  then  after 
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CMPI.L  #HIVAL,  COUNTS 

the  N,  Z,  V,  and  C  flags  are  all  clear. 

CM PM —Compare  Memory 

Syntax: 
CMPM.s  (Asrc)+,(Adst)+ 

where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

15 14 
13 12 

11       10  9 8 7  6 5 4 3 2        1  0 

1 0 1 1 
Destination 

Register 
1 Size 0 0 1 Source 

Register 

Size  field:  00  =  byte    01  =  word    10  =  long 

Condition  Codes: 

N  Set  if  (Adst)  <  (Asrc),  cleared  otherwise 

Z         Set  if  (Adst)  =  (Asrc),  cleared  otherwise 

V         Set  if  (Adst)  —  (Asrc)  operation  generates  an  overflow,  cleared  otherwise 

C         Set  if  (Adst)  —  (Asrc)  operation  requires  a  borrow,  cleared  otherwise 
X  Unaffected 

Description: 

This  instruction  subtracts  the  value  pointed  to  by  Asrc  from  the  value  pointed  to  by  Adst 
and  sets  the  condition  codes  accordingly.  The  result  of  the  subtraction  is  thrown  away. 
After  performing  the  operation,  both  address  registers  are  incremented  according  to  the 
size  of  the  operation. 

The  order  of  the  operands  is  not  necessarily  obvious  for  a  comparison;  it  compares  the 
second  operand  to  the  first,  not  vice  versa. 

Example: 

You  need  to  compare  two  strings  in  memory  for  equality.  If  AO  and  Al  both  point  to 
strings,  then 

CMPM.B  (A0)+,(A1)  + 

compares  the  byte  pointed  to  by  AO  to  the  one  pointed  to  by  A  l .  If  they  are  equal,  the  Z 

flag  is  set;  otherwise,  the  Z  flag  is  cleared.  You  might  follow  this  instruction  with  a  condi- 
tional branch  (BCL)  or  a  decrement/ test/ branch  (DBC  )  instruction. 

CMP2  — Compare  Register  Against  Bounds 
(MC68020  only) 

Syntax: 
CMP2.S  <ea>,  Rn 
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where  <ea>  is 

Dn X (d8,An,Xn) #<data> 
An X (bd,An,Xn) X (d16,PC) 

X  (An) X ([bd,An,Xn],od) X (d8,PC,Xn) 
<An)+ X ([bd,An],Xn,od) X (bd,PC,Xn) -(An) 

X xxx.  L X [(bd,PC)(Xn,od] 
X  (d16,An) X xxx.  L X [(bd,PC),Xn,od] 

and  where  .s  =  .B,  .W,  and  .L  . 

Instruction  Format: 

15      14      13      12      11       10       9       8        7        6        5        4       3       2        1  0 

0 0 0 0 0 Size 0 1 1 
Effective  Address 

Mode 
Register 

A/D Register 0 0  0 0 0 0 0  0 0 0       0  0 

Size  field:  00  =  byte   01=  word    10  =  long 

Condition  Codes: 

N  Undefined 

Z         Set  if  Rn  is  equal  to  either  boundary,  cleared 
V  Undefined 

C         Set  if  Rn  is  out  of  bounds,  cleared  otherwise 

X  Unaffected 

Description: 

This  instruction  compares  a  value  in  a  data  or  address  register  against  signed  upper  and 
lower  boundaries.  The  bounds  reside  in  memory;  the  lower  boundary  is  at  the  address 
specified  in  the  instruction;  the  upper  boundary  is  at  that  address  plus  the  operand  size 
(that  is,  +1  for  a  byte,  +2  for  a  word,  or  +4  for  a  long  word). 

This  instruction  is  analogous  to  the  CHK2  instruction  except  that  it  does  not  cause  an 
exception  if  the  register  value  is  out  of  bounds. 

Example: 

Your  application  reads  in  a  number  of  entries  from  the  user.  You  must  verify  that  each 

entry  is  valid  by  comparing  them  to  valid  ranges.  If  DO  contains  a  user-entered  value  and 
REC  RANGE  points  to  a  range  for  that  value,  then 

CMP2  REC  RANGE,  DO 

verifies  that  the  entry  is  in  range.  If  the  value  is  in  range,  the  C  flag  is  clear;  if  it  is  out  of 
range,  the  C  flag  is  set. 

DBCC— Test,  Decrement,  and  Branch 

Syntax: 

DBCC  Dn,  displacement 
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Instruction  Format: 

15 14 
13 12 

11      10      9  8 7 6 5 4 3 2       1  0 

0 1 0 1 Condition 1 1 0 0 1 

Data 

Register 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  tests  the  condition  codes  to  see  if  they  match  a  given  condition.  If  they  do 
match,  the  instruction  is  complete  and  the  program  continues  with  the  next  instruction.  If 
that  condition  is  not  met,  the  processor  decrements  the  given  data  register.  If  its  new  value 

is  —  I ,  then  the  instruction  is  complete  and  the  program  continues  to  the  next  instruction.  If 
the  value  is  something  other  than  —  l ,  the  processor  adds  the  1 6-bit  displacement  value  to 
the  program  counter  and  begins  execution  at  the  new  address.  The  conditions  possible  are 
shown  in  Table  21 -2. 

Normally,  you  will  specify  the  displacement  value  in  terms  of  a  statement  label.  The 
assembler  then  calculates  the  appropriate  signed  displacement  (positive  or  negative)  and 
inserts  it  into  the  instruction  extension  word. 

Note  the  difference  between  the  BA  and  DB^  instructions:  for  Bcc,  the  branch  is  taken 
when  the  condition  is  true:  for  DBCL.  the  branch  will  never  be  taken  when  the  condition  is  true. 
For  a  further  discussion  of  this  instruction,  refer  to  Chapter  6. 

Table  21-2.  DBCC  Conditional  Tests 

Mnemomcs(cc> Condition Condition  Field 

Test T True 0000 1 
F False 0001 0 

HI 
High 0010 C  Z LS 
Low  or  same 001  1 C  v  Z 

cc Carry  cleai 0100 C 
cs Carry  set 0101 c 
NE Not  equal 01  10 z 
EQ 

Equal 
01  1  1 z 

VC Overflow  clear 1000 V 
VS Overflow  set 1001 PL Plus 1010 N 
Ml Minus 101  1 N 
GE Greater  or  equal 1  100 

(N 

V)  v  (N 

V) 

LT Less  than 1  101 

(N 

V)  v  (N V) 

GT Greater  than 
1110 (N  V Z)  v  (N V  Z) 

LE Less  or  equal 1111 Z  v  (N V)  v  (N 

V) 
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Example: 

AO  and  A  l  contain  pointers  to  text  strings,  and  DO  contains  the  maximum  length  of  each 
string  minus  l.  The  instructions 

LOOP  CMPM.B  (A0)+.  (A1)  + 
DBNE  DO,  LOOP 

repetitively  test  the  equality  of  each  character  of  the  strings.  As  long  as  they  are  equal  and 

DO  is  not  equal  to  —  1,  the  processor  will  keep  looping.  When  a  difference  is  found  (the  NE 
condition  is  true),  or  when  DO  has  been  decremented  to  —  1 ,  the  test  fails  and  the  execution 
proceeds  sequentially. 

DIVS/DIVSL  — Signed  Divide 

Syntax: 
DIVS.W <ea>,  Dn 
DIVS.L <ea>,  Dq (MC68020  only) 
DIVS.L <ea>,  Dr:Dq (MC68020  only) 
DIVSLL ;a>,  Dr:Dq (MC68020  only) 

where  <ea>  is 

X  Dn X (d8,An,Xn) X  #<data> 
An X (bd,An,Xn) X  (d16,PC) 

X  (An) X ([bd,An,Xn],od) X  (d8,PC,Xn) 
X    (An)  + X ([bd,An],Xn,od) X  (bd.PC.Xn) 
X  -(An) X xxx  L X  [(bd,PC,Xn),od] 
X  (d16,An) X xxx  L X  [(bd.PC).Xn.od] 

Instruction  Format: 

(Long) 
15 14 13 12 1 1 10 9 8 7 6 5 4 3 2         1  0 

0 1 0 0 1 1 0 0 0 1 Effective  Address 
Mode Register 

0 

Dq 

1 Size 0 0 0 0 0 0 0 Dr 

Size  field:  0  =  Long  word  dividend 
1  =  Quad  word  dividend 

(Word) 

1 0 0 Register 1 1 1 Effective  Address 0 
Mode  Register 

Condition  Codes: 

N         Set  if  quotient  is  negative,  cleared  otherwise;  undefined  if  overflow  or  divide 

by  zero. 
Z          Set  if  quotient  is  zero,  cleared  otherwise;  undefined  if  overflow  or  divide  by 

zero. 

V         Set  if  division  overflow,  cleared  otherwise 

C         Always  cleared 
X  Unaffected 



412    68000  Assembly  Language  Programming 

Description: 

These  instructions  divide  the  destination  operand  by  the  source  and  store  the  result  in  the 

destination.  The  processor  considers  the  sign  of  the  source  and  destination  when  comput- 
ing the  answer.  The  word  division  instruction  is  available  on  all  processors;  the  long 

division  instructions  are  available  only  on  the  MC68020. 

The  Dl  VS.W  instruction  works  as  follows:  the  processor  divides  the  32-bit  dividend  (in  the 
destination  register)  by  the  1 6-bit  divisor.  It  then  stores  the  16-bit  remainder  of  the  division  in 
bits  16-31  of  the  destination  register  and  stores  the  1 6-bit  quotient  in  bits  0-15  of  the  destination 
register. 

In  the  first  long-word  form  (Dl  VS.L<ea>  ,Dq),  the  processor  divides  the  32-bit  dividend 
(from  the  destination  register)  by  the  32-bit  source  operand.  It  then  stores  the  32-bit  quotient  in 
the  destination  register,  discarding  the  remainder. 

In  the  second  long- word  form  (Dl  VS.L<ea>  ,Dr:Dq),  the  processor  operates  on  a  64-bit 
dividend  contained  in  a  destination  register  pair:  the  first  register  (Dr)  containing  the  most 
significant  long  word,  and  the  second  ( Dq)  containing  the  least  significant  long  word.  It  divides 

this  "quad  word"'  by  the  32-bit  source  operand,  storing  the  32-bit  remainder  in  the  first  register 
(Dr)  and  the  32-bit  quotient  in  the  second  (Dq). 

In  the  third  long-word  form.  (DIVSL.L  <ea>.Dr:Dq).  the  processor  divides  a  32-bit 
long  word  (from  the  Dq  register)  by  the  32-bit  source  operand,  storing  the  32-bit  remainder  in 
the  first  register  (Dr)  and  the  32-bit  quotient  in  the  second  (Dq).  The  original  value  in  Dr  is 
discarded. 

For  the  modes  supporting  register  pairs,  you  can  select  any  of  the  data  registers;  they 

needn't  be  adjacent  or  in  numerical  order. 
The  division  can  cause  two  error  conditions.  A  div  ision  by  zero  causes  a  trap  through 

vector  number  5  (offset  $  14)  in  the  exception  table.  If  the  quotient  of  the  division  is  too  big  to  fit 
into  the  destination,  the  Overflow  flag  is  set. 

Example: 

If  DO  contains  677.  then  after 

the  high  word  of  DO  contains  2  (the  remainder)  and  the  low  word  of  DO  contains  27  (the 

DIVS.W 

'•-25,  DO 

quotient). 

DIVU/DIVUL  — Unsigned  Divide 

Syntax: 
DIVU.W 
DIVU.L 
DIVU.L 
DIVULL 

ea  >,  Dn 
<ea>,  Dq 
<ea>,  Dr:Dq 

ea    ,  Dr:Dq 

(MC68020  only) 
(MC68020  only) 
(MC68020  only 

where  <ea>  is 

X  Dn 
An 

X  (An) 

X  (An)- X  (An) 
X  (d16,An) 

X  (d8,An,Xn) 
X  (bd,An,Xn) 
X  ([bd,An,Xn],od) 
X  ([bd,An],Xn,od) 
X  xxx  L 
X  xxx  L 

X  data 
X  (d16,PC) 
X  (d8,PC,Xn) 
X  (bd.PC.Xn) 
X  [(bd.PC.Xn).od] 
X  [(bd,PC),Xn,od] 
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Instruction  Format: 

15 14 13 12 11 
10 

9 8 7 6 5 4 3 2        1  0 

0 1 0 0 1 1 0 0 0 1 
Effective  Address Mode 

Register 
0 

Dq 

0 Size 0 0 0 0 0 0 0 

Dr 
(Long) 

1 0 0 0 Register 0 1 1 
Effective  Address 

Mode 
Register 

Condition  Codes: 

N         Set  if  quotient  is  negative,  cleared  otherwise;  undefined  if  overflow  or  divide 

by  zero 
Z         Set  if  quotient  is  zero,  cleared  otherwise;  undefined  if  overflow  or  divide  by 

zero 

V         Set  if  division  overflow,  cleared  otherwise 

C         Always  cleared 
X  Unaffected 

Description: 

These  instructions  divide  the  destination  operand  by  the  source  and  store  the  result  in  the 
destination.  The  processor  ignores  the  sign  of  the  source  and  destination  when  computing 

the  answer.  The  word-division  instruction  is  available  on  all  processors;  the  long-division 
instructions  are  available  only  on  the  MC68020. 

The  DI  VU.W  instruction  works  as  follows:  the  processor  divides  the  32-bit  dividend  (in 
the  destination  register)  by  the  16-bit  divisor.  It  then  stores  the  16-bit  remainder  of  the  division 
in  bits  16-31  of  the  destination  register  and  stores  the  16-bit  quotient  in  bits  0-15  of  the 
destination  register. 

In  the  first  long-word  form  (DIVU.L  <ea>,Dq),  the  processor  divides  the  32-bit 
dividend  (from  the  destination  register)  by  the  32-bit  source  operand.  It  then  stores  the  32-bit 
quotient  in  the  destination  register,  discarding  the  remainder. 

In  the  second  long-word  form  (DI  VU.L<  ea>,Dr:Dq),  the  processor  operates  on  a  64-bit 
dividend  contained  in  a  destination  register  pair:  the  first  register  (Dr)  containing  the  most 
significant  long  word,  and  the  second  (Dq)  containing  the  least  significant  long  word.  It  divides 

this  "quad  word"  by  the  32-bit  source  operand,  storing  the  32-bit  remainder  in  the  first  register 
(Dr)  and  the  32-bit  quotient  in  the  second  (Dq). 

In  the  third  long-word  form,  (DIVUL.L  <ea>  ,Dr:Dq),  the  processor  divides  a  32-bit 

long  word  (from  the  Dq  register)  by  the  32-bit  source  operand,  storing  the  32-bit  remainder  in 
the  first  register  (Dr)  and  the  32-bit  quotient  in  the  second  (Dq).  The  original  value  in  Dr  is 
discarded. 

For  the  modes  supporting  register  pairs,  you  can  select  any  of  the  data  registers;  they 

needn't  be  adjacent  or  in  numerical  order. 
The  division  can  cause  two  error  conditions.  A  division  by  zero  causes  a  trap  through 

vector  number  5  (offset  $  14)  in  the  exception  table.  If  the  quotient  of  the  division  is  too  big  to  fit 
into  the  destination,  the  Overflow  flag  is  set. 
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Example: 

If  register  DO  contains  240122005,  D4  contains  235,  and  the  long  word  at  the  label 
DIVISOR  contains  3504,  then  after 

DIVULL  DIVISOR,  D4D0 

D4  contains  3397  (the  remainder)  and  DO  contains  68527  (the  quotient). 

EOR  — Exclusive  OR 

Syntax: 
EOR  s  Dn,  ea 

where  <ea>  is 

Dn 
An 
(An) 
(An)+ 
(An) 

(d16,An) 

(d8,An,Xn) 
(bd,An,Xn) 
([bd,An,Xn],od) 
([bd,An],Xn,od) 
xxx. L 
xxx. L 

••  data 

(d16,PC) 
(d8,PC,Xn) 
(bd,PC,Xn) 
[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 

and  where B,  .W,  or  L. 

Instruction  Format: 

15 14 13 12 11      10  9 8       7  6 5       4  3 2       1  0 

1 0 1 1 
Data 

Op-Mode 
Effective  Address 

Register Mode 
Register 

Op-Mode  field:  Byte 100 Word 
101 

Long 

110 
Operation 

( <  ea  > )  ©  ( <  Dn  > )  —  <  ea  > 

Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 

V  Cleared 

C  Cleared 

X  Unaffected 

Description: 

This  instruction  performs  a  bitwise  Exclusive  OR  of  the  contents  of  a  data  register  with 
the  contents  of  the  destination  operand  and  stores  the  results  in  the  destination.  EOR  is 
commonly  used  to  calculate  checksums  in  communications  messages. 

Example: 

If  DO  contains  $E3  and  A3  points  to  a  byte  containing  SAO,  then 

EOR.B  DO,  (A3) 
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moves  the  value  $43  into  (A3).  This  is  calculated  as 

DO  =  $E3  =11100011 
(A3)        =  $A0  =  10100000 

(A3)        -$43  =01000011 

EORI —  Exclusive  OR  Immediate 

Syntax: 

EORI.s  #<data>,  <ea> 

where  <ea>  is 

Dn 
An 
(An) 
(An)+ -(An) 

(d16,An) 

(d8,An,Xn) 
(bd,An,Xn) 
([bd,An,Xn],od) 
([bd,An],Xn,od) 
xxx.  L 
xxx. L 

and  where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

#<data> 
(d16,PC) 
(d8,PC,Xn) 
(bd,PC,Xn) 
[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 

15 14 13 12 11 
10 

9 8 7  6 5       4  3 2       1  0 

0 0 0 0 1 0 1 0 Size 
Effective  Address 

Mode 
Register 

Size  field:  00  =  byte   01=  word    10  =  long 

Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 
V  Cleared 

C  Cleared 

X  Unaffected 

Description: 

This  instruction  exclusively  ORs  the  immediate  data  to  the  destination  operand,  storing 
the  result  in  the  destination. 

Example: 

If  DO  contains  $5522,  then 

EOR.W  #$B31C,  DO 

moves  the  value  SE63E  into  DO. 
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EORI  to  CCR  — Exclusive  OR  Immediate  Data 
To  the  Condition  Codes 

Syntax: 
EORI  #<data>,  CCR 

Instruction  Format: 

15 14 
13 12 11 

10 
9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 
0 0 0 0 0 0 0 0 Byte Data 

Condition  Codes: 

N  Changed  if  bit  3  of  immediate  data  is  1,  otherwise  unaffected 

Z  Changed  if  bit  2  of  immediate  data  is  1,  otherwise  unaffected 

V  Changed  if  bit  1  of  immediate  data  is  1,  otherwise  unaffected 

C  Changed  if  bit  0  of  immediate  data  is  1,  otherwise  unaffected 

X         Changed  if  bit  4  of  immediate  data  is  1,  otherwise  unaffected 

Description: 

This  instruction  exclusively  ORs  the  immediate  data  with  the  condition  code  register.  The 

immediate  data  is  limited  to  a  single  byte,  and  only  bits  0-4  are  defined. 

Example: 

If  the  Z  flag  is  set  and  all  others  are  clear,  then 

EORI  #7,  CCR 

clears  the  Z  flag  and  sets  the  V  and  C  flags. 

EORI  to  SR  —  Exclusive  OR  Immediate  Data 

To  Status  Register  (Privileged) 

Syntax: 
EORI  #<data>,  SR 

Instruction  Format: 

15 14 13 12 11 10 
9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 
Word  Data 

Condition  Codes: 

N  Changed  if  bit  3  of  immediate  data  is  1,  otherwise  unaffected 

Z         Changed  if  bit  2  of  immediate  data  is  1,  otherwise  unaffected 
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V  Changed  if  bit  I  of  immediate  data  is  I,  otherwise  unaffected 
C  Changed  if  bit  0  of  immediate  data  is  l,  otherwise  unaffected 
X         Changed  if  bit  4  of  immediate  data  is  I,  otherwise  unaffected 

Description: 

This  instruction  exclusively  ORs  the  immediate  data  with  the  status  register  and  stores  the 
result  in  the  status  register.  The  instruction  is  privileged  and  will  cause  an  exception  if  it  is 
executed  in  user  mode. 

Example: 

If,  on  the  MC68000,  the  Z  flag  is  set  and  all  other  flags  are  clear,  the  supervisor  bit  is  set, 
trace  mode  is  off,  and  the  interrupt  mask  is  0,  then  after 

EORI  #A000.  SR 

enables  trace  mode,  changes  from  supervisor  to  user  mode,  and  leaves  the  condition  codes 
unchanged. 

EXG  — Exchange  Registers 

Syntax: 

EXG  Rx,  Ry 

Instruction  Format: 

15 14 13 12 11      10  9 8 7 6        5  4 3 2         1  0 

1 1 0 0 Register 1 
Opcode Register 

Opcode.  01000  =  exchange  data  registers 
01001  =  exchange  address  registers 
10001  =  exchange  data  and  address  registers 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  exchanges  the  long-word  values  of  two  registers.  You  can  swap  two  data 
registers,  two  address  registers,  or  a  data  register  and  address  register. 

Example: 

If  DO  contains  $10004030  and  D3  contains  SFFFF0000,  then  after 

EXG  DO,  D3 

DO  contains  SFFFF0000  and  D3  contains  $10004030. 
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EXT/EXTB  — Sign  Extend 

Syntax: 
EXT.s  Dn 
EXTB.L  Dn  (MC68020  only) 

where  .s  =  .W  or  .L. 

Instruction  Format: 

15 14 
13 12 

11 

10 
9 8        7  6 5 4 3 2        1  0 

0 1 0 0 1 0 0 Type 0 0 0 
Data 

Register 

Type  field.  010=Extend  Word    011  =Extend  Long    111  =Extend  Byte  Long  -  (MC68020) 

Condition  Codes: 

N         Set  if  result  is  negative,  cleared  otherwise 

Z         Set  if  result  is  zero,  cleared  otherwise 
V  Cleared 

C  Cleared 

X  Unaffected 

Description: 

This  instruction  sign  extends  the  value  in  the  data  register.  The  word-sized  version 
(EXT.W)  of  the  instruction  extends  the  sign  of  a  byte  value  into  bits  8-15.  The  long-word 
version  (EXT.L)  of  the  instruction  extends  the  sign  of  a  word  value  into  bits  16-31.  A 
second  long-word  version  (EXTB.L)  extends  the  sign  of  a  byte  value  into  bits  8-31.  This 
latter  instruction  is  valid  only  on  the  MC68020,  while  the  former  instructions  are  available 
on  all  processors. 

Example: 

If  DO  contains  a  S000000FF,  then  after 

EXT.W  DO 

DO  contains  a  S0000FFFF. 

ILLEGAL  — Take  Illegal  Instruction  Trap 

Syntax: 
ILLEGAL 

Instruction  Format: 

15      14      13      12      11      10      9  876543210 
0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0 
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Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  causes  the  processor  to  trap  through  the  illegal  instruction  exception 
vector  (vector  4,  offset  $10).  While  many  bit  patterns  are  illegal  instructions,  Motorola 
guarantees  that  this  instruction  will  always  be  illegal  in  all  future  extensions  of  the 
instruction  set. 

Example: 
ILLEGAL 

The  processor  traps  through  exception  table  vector  number  4. 

JMP  — Jump 

Syntax: 
JMP  <ea> 

where  <ea>  is 

Dn  X  (d8,An,Xn)  #<data> 
An  X  (bd,An,Xn)  X  (d16,PC) 

X    (An)  X  ([bd,AnfXn],od)  X  (d8,PC,Xn) 
(An)H-  X  ([bd,An],Xn,od)  X  (bd,PC,Xn) 
-(An)  X  xxx.  L  X  [(bd,PC,Xn),od] 

X    (d16,An)  X  xxx.L  X  [(bd.PQ.Xn.od] 

Instruction  Format: 

15 14 13 12 11 10 9 8 7 6 5       4  3 2       1  0 

0 0 1 1 1 1 1 Effective  Address 1 0 0 Mode 
Register 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  loads  the  program  counter  with  the  value  specified  by  the  effective 
address  and  begins  execution  at  the  new  address. 
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Example: 

If  FUNC1  is  the  label  of  a  segment  of  your  program,  then 

JMP  FUNC1 

transfers  control  of  the  program  to  the  instruction  at  FUNC1. 

JSR  —  Jump  to  Subroutine 

Syntax: 
JSR  <ea> 

where  <ea>  is 

Dn X (d8,An,Xn) 
#<data> 

An X (bd,An,Xn) X (d16,PC) 
X  (An) X ([bd,An,XnJ,od) X (d8,PC,Xn) 

(An)+ X ([bd,An],Xn,od) X (bd,PC,Xn) -(An) 
X xxx.  L X [(bd,PC,Xn),od] 

X  (d16,An) X xxx. L X [(bd,PC),Xn,od] 

Instruction  Format: 

15 14 13 12 11 
10 

9 8 7 6 5       4  3 2       1  0 

0 1 0 0 1 1 1 0 1 0 
Effective  Address 

Mode 
Register 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  pushes  the  address  of  the  instruction  immediately  following  the  JSR 
instruction  onto  the  current  stack.  The  processor  then  loads  the  PC  with  the  given 
effective  address  and  begins  execution  at  the  new  address. 

This  instruction  differs  from  the  BSR  in  that  it  provides  many  more  addressing  modes  for 
the  new  PC  address  than  does  the  BSR  instruction,  which  supports  only  relative  branches. 

Example: 

If  FUNC„  l  is  the  label  of  a  subroutine,  then 

JSR  FUNC_1 

calls  the  subroutine  starting  at  FUNC_  1. 
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LEA  — Load  Effective  Address 

Syntax: 
LEA  <ea>,  An 

where  <ea>  is 

Dn X (d8,An,Xn) #<data> 
An X (bd,An,Xn) X (d16,PC) 

X  (An) X ([bd,An,Xn],od) X (d8,PC,Xn) 
(An)+ X ([bd,An],Xn,od) X (bd,PC,Xn) -(An) 

X xxx.  L X [(bd,PC,Xn),od] 
X  (d16,An) X xxx.  L X [(bd,PC),Xn,od] 

Instruction  Format: 

15 
14 

13 12 11      10  9 8 7 6 5       4  3 2       1  0 

0 1 0 0 
Address 

1 1 1 
Effective  Address 

Register 
Mode 

Register 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  calculates  the  value  of  the  effective  address  and  loads  that  value  into  the 

given  address  register.  Since  the  calculation  happens  at  execution  time,  this  instruction 

helps  you  write  position-independent  code. 

Example: 

If  your  program  is  loaded  at  run  time  so  that  the  label  TABLE  l  is  located  at  $1200,  then 
the  instruction 

LEA  (TABLE  _1, PC),  AO 

uses  PC  relative  addressing  with  a  displacement  to  calculate  the  effective  address  of  $  1200; 
the  result  is  loaded  into  AO. 

LINK  — Link  and  Allocate  Space 

Syntax: 
LINK An,  #<data> 
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Instruction  Format: 

(Word) 15 14 
13 12 1  1 10 9 8 7 6 5 4 3 2       1  0 

0 1 0 0 1 1 1 0 0 1 0 1 0 
Register 

(Long) 
0 1 0 0 1 0 0 0 0 0 0 0 1 

Register 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  pushes  the  contents  of  the  specified  address  register  onto  the  stack,  loads 
the  new  value  of  the  stack  pointer  into  the  address  register,  and.  finally,  adds  the  signed 

immediate  data  to  the  stack  pointer.  All  MC68000  processors  support  16-bit  immediate 
values.  The  MC68020  also  supports  32-bit  values.  The  UNLNK  instruction  performs  the 
reverse  of  the  LINK  instruction. 

Note  that  since  the  stack  grows  downward,  you  should  use  negative  numbers  to  allocate 
fresh  space  on  the  stack.  You  should  not  modify  the  address  register  between  the  LINK  and 
UNLNK  instruction.  Finally,  note  that  A7  serves  as  the  stack  pointer,  so  you  should  not  use  A7 
as  the  frame  pointer. 

This  instruction  creates  a  "stack  frame"  in  the  stack  memory.  You  can  use  the  stack  frame 
area  for  anything  you  need:  temporary  storage,  buffers,  and  so  on.  Typically,  compilers  (for 

example,  many  C-language  compilers)  create  a  stack  frame  upon  entry  to  functions  and 
subroutines.  They  use  this  stack  frame  for  storing  local  variables;  this  way,  the  local  data  is 
dynamically  allocated  and  can  be  returned  to  free  space  (back  to  the  stack)  when  the 
subroutine  terminates. 

Example: 

In  the  illustration  that  follows,  procedure  A  calls  procedure  B.  At  this  time,  the  return 

address  back  to  procedure  B  is  on  the  top  of  the  stack,  as  shown  in  Figure  2 1  - 1  a.  The  first 
instruction  of  procedure  B  is 

LINK  A6,  =  <-10> 

After  executing  this  instruction,  10  bytes  of  the  stack  are  allocated  as  procedure  B's  stack 
frame.  A6  points  to  the  start  of  that  frame:  SP  points  to  the  end  of  the  frame.  At  this  time, 
procedure  B  may  use  those  10  bytes  of  its  frame  for  local  variables,  temporaries,  and  anything 

else  for  which  it  might  need  dynamic  storage.  This  state  is  shown  in  Figure  21-1  b. 
At  the  end  of  procedure  B,  just  before  the  RTS  statement,  procedure  B  executes  a 

UNLNK  A6 

This  moves  the  contents  of  A6  into  the  stack  pointer  (thus  deallocating  procedure  B's  local 
data).  It  then  pulls  the  original  value  of  A6  from  the  stack.  At  this  point,  the  stack  points  to  the 
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return  address  to  procedure  A  (as  shown  by  Figure  21 -lc). 
Note  that  procedure  B  could  have  called  other  procedures  (or  it  could  even  call  itself 

recursively).  The  called  procedures  would  LINK  and  allocate  their  own  stack  frames  just  as 
procedure  B  did.  Since  A6  is  saved  on  the  stack,  each  LINK  builds  successive  stack  frames  that 
UNLNK  can  unwind  in  order. 

We  used  A6  as  our  frame  pointer;  you  may  use  any  address  register  except  A7.  Good 
programming  practice,  however,  dictates  that  you  be  consistent  in  your  stack  frame  pointer 
selection. 

LSL/LSR- Logical  Shift 

Syntax: 
LSLs 
LSLs 
LSL 
LSR.s 
LSR.s 
LSR 

Dx,  Dy 
#<data>,  Dy 
<ea> Dx,  Dy 
#<data>,  Dy 
<ea> 

where  <ea>  is 

Dn 
An 
(An) 
(An)+ -(An) 

(d16,An) 

(d8,An,Xn) 
(bd,An,Xn) 
([bd,An,Xn],od) 
([bd,An],Xn,od) xxx.  L 
xxx.  L 

#<data> 
(d16,PC) 
(d8,PC,Xn) 
(bd,PC,Xn) 
[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 

and  where  .s  =  .B,  .W,  or  .L. 

SP 

0 

SP 

A6 

Return 
Address 

to  Proc  "A" 

Stack  Frame 

Save  Value 
of  A6 

Return  SP 
Address 

to  Proc  "A" 

Return 
Address 

to  Proc  "A" 

© 0 

Figure  21-1.  LINK  Instruction  Execution  Sequence 
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Instruction  Format: 

(Register) 
15 14 

13 12 11 10 9 8 7 6 5 4 3 2      1  0 

1 1 1 0 
Count/ 
Register dr 

S 
ze i/r 

0 1 
Register 

(Memory) 

1 1 1 0 0 1 dr 1 1 Effective  Address 0 
Mode Register 

i/r  field:  0  =  immediate  shift  count 
1  =  register  shift  count 

d/r  field:  0  =  right  1  =  left 
Size  field:  00  =  byte  01  =  word  10  =  long 
Count/Register  field:  if  i/r  =  0,  specifies  shift  count 

if  i/r  =  1 ,  specifies  data  register 

Condition  Codes: 

N 

Z 

V 

c 

X 

Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Set  if  result  is  zero,  cleared  otherwise 

Always  cleared 

Set  according  to  last  bit  shifted  out  of  operand,  cleared  for  zero  shift  count 

Set  according  to  last  bit  shifted  out  of  operand,  cleared  for  zero  shift  count 

Description: 

These  instructions  shift  the  contents  of  the  operand  a  specified  number  of  times.  The 
destination  can  be  in  a  data  register  or  in  memory.  When  the  destination  is  in  a  data 
register,  you  can  specify  the  number  of  bits  to  shift  either  through  immediate  data  (a  value 

of  1-8)  or  through  another  data  register  (a  value  from  0-63).  If  the  destination  is  a  memory 
location,  this  shift  is  restricted  to  one  bit,  and  in  addition,  the  operand  must  be 
word-sized. 

The  LSL  instructions  operate  as  shown: 

Operand 

Note  that  the  processor  fills  zeros  into  the  least  significant  bit  (bit  0)  and  drops  the  bits 
from  the  left  side  into  the  Carry  (C)  and  Extend  (X)  flags.  For  multiple  bit  shifts,  these  bits 
reflect  the  state  of  the  final  bit  shifted  out. 

The  LSR  instruction  operates  as  shown: 
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Note  that  the  processor  fills  zeros  into  the  most  significant  bit  and  drops  the  bits  from  the 
right  side  into  the  Carry  (C)  and  Extend  (X)  flags.  For  multiple  bit  shifts,  these  bits  reflect  the 
state  of  the  final  bit  shifted  out. 

The  difference  between  these  instructions  and  their  arithmetic  shift  counterparts  (ASL 
and  ASR)  lies  in  their  applications.  Logical  shifts  are  useful  in  manipulating  masks  and  bit 
fields;  in  these  shifts,  the  sign  is  not  replicated.  Arithmetic  shifts  are  useful  in  integer  arithmetic, 
where  the  sign  is  important;  in  these  shifts,  the  sign  is  replicated  and  the  Overflow  (V)  flag  has 
meaning. 

Examples: 

If  DO  contains  $8138,  then 

LSR.W  #3,  DO 

stores  a  value  of  $1027  into  DO  and  clears  the  C  and  X  flags. 

MOVE  — Move  Data 

Syntax: 

MOVE.s  <ea1>,  <ea2> 

where  <eal>  is 

X  Dn X  (d8,An,Xn) X #<data> 
X  An X  (bd,An,Xn) X (d16,PC) 
X  (An) X  ([bd,An,Xn],od) X (d8,PC,Xn) 
X  (An)+ X  ([bd,An],Xn,od) X (bd,PC,Xn) 
X  -(An) X    xxx.  L X [(bd,PC,Xn),od] 
X  (d16,An) X    xxx.  L X [(bd,PC),Xn,od] 

and  where  <ea2>  is 

X  Dn X  (d8,An,Xn) #<data> 
An X  (bd,An,Xn) (d16,PC) 
(An) X  ([bd,An,Xn],od) (d8,PC,Xn) 

X  (An)+ X  ([bd,An],Xn,od) (bd,PC,Xn) 
X  -(An) X    xxx.  L [(bd,PC,Xn),od] 
X  (d16,An) X    xxx.  L [(bd,PC),Xn,od] 

and  where  .s  = .B,  .W,  or  .L. 

Instruction  Format: 

15       14       13      12      11       10       9        8       7        6        5        4        3        2        1  0 

0 0 Size 
Destination Source 

Register  Mode Mode  Register 

Size  field:  01  =  byte  10  =  long  11  =  word 

Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 

V         Always  cleared 

C         Always  cleared 
X  Unaffected 
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Description: 

This  instruction  moves  the  contents  of  the  source  operand  to  the  destination  operand.  The 
processor  examines  the  data  as  it  moves  it  and  sets  the  condition  codes  accordingly.  If  the 

source  <ea>  is  an  address  register,  you  are  limited  to  word  and  long-word  movements. 
Also,  movements  to  data  registers  affect  only  as  many  bits  as  are  indicated  by  the  size;  the 
sign  is  not  extended. 

Example: 

If  DO  contains  $1234  and  AO  contains  the  address  $200010,  then 

MOVE.W  DO,  (AO)+ 

moves  $1234  to  address  $200010  and  increments  AO  to  $200012. 

MOVE  A  — Move  to  Address  Register 

Syntax: 
MOVEA.s  <ea>.  An 

where  <ea>  is 

X  Dn 
X  An 
X  (An) 
X  (An)+ 
X  -(An) 
X  (d16,An) 

X  (d8,An,Xn) 
X  (bd,An,Xn) 
X  ([bd,An,Xn],od) 
X  ([bd,An],Xn.od) 
X  xxx.  L 
X  xxx. L 

X  #<data> 
X  (d16,PC) 
X  (d8,PC,Xn) 
X  (bd,PC,Xn) 
X  [(bd,PC,Xn),od] 
X  [(bd,PC),Xn,od] 

and  where  .s  =  .W  or  .L. 

Instruction  Format: 

0 0 Size Destination 0 0 1 
Source 

Register Mode  Register 
Size:  10  =  long   1 1  =  word 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  moves  a  word  or  long  word  from  the  effective  address  into  an  address 
register.  The  instruction  affects  the  entire  address  register;  the  processor  sign  extends 

word-sized  operands  before  loading  them  into  the  register. 

This  instruction  differs  from  the  general  MOVE  instruction  only  in  its  size  and  its  effect  on 
the  condition  codes.  Many  assemblers  will  let  you  get  away  with  using  the  MOVE  mnemonic 
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with  "An"  as  the  destination;  the  assemblers  assume  you  mean  MOVEA  and  fill  in  the  correct 
opcode. 

Example: 

The  label  TABLE  contains  the  address  of  a  database  table.  After 

MOVEA. L  STABLE,  AO 

AO  points  to  TABLE. 

MOVE  From  CCR  — Move  From  Condition 

Code  Register 

Syntax: 
MOVE  CCR,  <ea> 

where  <ea>  is 

x Dn 
An 
(An) 
(An)+ -(An) 

(d16,An) 

(d8,An,Xn) 
(bd,An,Xn) 
([bd,An,Xn],od) 
([bd,An],Xn,od) 
xxx.  L 
xxx. L 

#<data> 
(d16,PC) 
(d8,PC,Xn) 
(bd,PC,Xn) 
[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 

Instruction  Format: 

15 14 13 12 11 10 
9 8 7 6 5        4  3 2       1  0 

0 1 0 0 0 0 1 0 1 1 
Effective  Address 

Mode 
Register 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  moves  the  contents  of  the  condition  codes  into  the  specified  effective 

address.  Note  that  although  the  instruction  is  sized  as  a  word  operation,  only  the  lower 
byte  contains  the  condition-code  information;  the  upper  byte  is  all  zeros. 

Example: 

If  the  N  and  Z  flags  are  set  and  the  V,  C,  and  X  flags  are  clear,  and  STATUS  is  a  label  to  a 
word  in  memory,  then  after 

MOVE  CCR,  STATUS 

STATUS  contains  $000C. 
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MOVE  to  CCR  —  Move  to  the  Condition  Code  Registers 

Syntax: 
MOVE  <ea>,  CCR 

where  <ea>  is 

X Dn X (d8,An,Xn) X #<data> 

An X (bd,An,Xn) X (d16,PC) 
X (An) X ([bd,An,Xn],od) X (d8,PC,Xn) 
X (An)+ 

X ([bd,An],Xn,od) X (bd,PC,Xn) 
X 

-(An) 
X xxx.  L X [(bd,PC,Xn),od] 

X (d16,An) X xxx. L X [(bd,PC),Xn,od] 

Instruction  Format: 

15 14 
13 12 11 

10 
9 8 7 6 5       4  3 2       1  0 

0 1 0 0 0 0 0 0 1 1 
Effective  Address 

Mode 
Register 

Condition  Codes: 

N  Set  same  as  bit  3  of  source 

Z  Set  same  as  bit  2  of  source 

V  Set  same  as  bit  1  of  source 

C  Set  same  as  bit  0  of  source 

X         Set  same  as  bit  4  of  source 

Description: 

This  instruction  moves  the  source  operand  to  the  condition-code  register.  Although  the 
source  operand  is  word-sized,  only  the  five  least  significant  bits  of  the  CCR  are  affected; 
the  rest  are  ignored. 

Example: 

If  NEW_CCR  contains  the  word  value  $001 F,  then  after 

MOVE  NEW_CCR,  CCR 

all  of  the  condition  code  flags  are  set  to  1. 

MOVE  From  SR  —  Move  From  the  Status  Register 

Syntax: 
MOVE  SR,  <ea> 

where  <ea>  is 

X    Dn                   X    (d8,An(Xn)  #<data> 
An                    X    (bd,An,Xn)  (d16,PC) 

X    (An)                 X    ([bd,An,Xn],od)  (d8,PC,Xn) 
X    (An)+                X    ([bd,An],Xn,od)  (bd,PC,Xn) 
X    -(An)               X    xxx.L  [(bd,PC,Xn),od] 
X    (d16,An)            X    xxx.L  [(bd,PC),Xn,od] 



Descriptions  of  Individual  MC68000  Instructions  429 

Instruction  Format: 

15 14 
13 

12 11 
10 9 8 7 6 5        4        3       2        1  0 

0 1 0 0 0 0 0 0 1 1 
Effective  Address 

Mode  Register 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  copies  the  contents  of  the  status  register  to  the  destination  location.  On 
the  MC68010,  MC68012,  and  MC68020,  this  instruction  is  privileged  and  will  cause  an 
exception  if  executed  while  in  user  mode. 

Example: 

If  on  the  MC68000,  the  status  register  indicates  that  in  supervisor  mode,  the  interrupt 

mask  =  101,  and  the  Z  flag  is  set,  then  after 

MOVE  SR,  DO 

DO  contains  $2504. 

MOVE  to  SR  —  Move  to  the  Status  Register 

(Privileged) 

Syntax: 
MOVE  <ea>,  SR 

where  <ea>  is 

X Dn X (d8,An,Xn) X #<data> 
An X (bd,An,Xn) X (d16,PC) 

X (An) X ([bd,An,Xn],od) X (d8,PC,Xn) X (An)+ X ([bd,An],Xn,od) X (bd,PC,Xn) X 
-(An) X xxx.  L X [(bd,PC,Xn),od] X (d16,An) X xxx.  L X 

[(bd,PC),Xn,od] 

Instruction  Format: 
15 14 13 12 11 

10 
9 8 7 6 5       4       3       2       1  0 

0 1 1 1 0 1 1 
Effective  Address 

0 0 0 
Mode  Register 

Condition  Codes: 

N  Set  same  as  bit  3  of  source 

Z  Set  same  as  bit  2  of  source 
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V  Set  same  as  bit  1  of  source 

C  Set  same  as  bit  0  of  source 

X         Set  same  as  bit  4  of  source 

Description: 

This  instruction  moves  the  contents  of  the  source-operand  word  to  the  status  register.  This 
instruction  is  privileged  and  will  cause  an  exception  if  your  program  attempts  to  execute  it 
from  the  user  mode. 

Example: 

If  on  the  MC68000,  the  constant  NEW_SR  is  defined  as  $0001,  then  after 

MOVE  NEW_SR,  SR 

the  status  register  indicates  no  trace,  user  mode,  interrupt  mask  0,  and  the  Carry  bit  is  set. 

MOVE  USP  — Move  to/From  the  User 

Stack  Pointer  (Privileged) 

Syntax: 
MOVE  USP,  An 
MOVE  An,  USP 

Instruction  Format: 

15 14 13 12 
1  1 

10 
9 8 7 6 5 4 3 2        1  0 

0 1 0 0 1 1 1 0 0 1 1 0 d Register 

d:  0  =  move  to  USP 
1  =  move  from  USP 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

These  instructions  move  the  32-bit  contents  of  the  user  stack  pointer  (A7)  to  or  from  an 

address  register.  This  instruction  is  privileged;  attempting  to  execute  it  from  a  user-mode 
program  will  cause  an  exception. 

Recall  that  the  MC68000  processors  have  separate  user  and  supervisor  stacks  (in  fact,  the 

MC68020  has  two  supervisor  stacks).  One  means  of  implementing  a  call  to  an  operating-system 
function  is  to  load  the  parameters  onto  the  stack  and  execute  a  TRAP  instruction.  Since  the 

processor  is  then  in  supervisor  mode  but  the  calling  parameters  are  on  the  user-mode  stack,  this 

instruction  provides  the  supervisor  with  a  means  of  accessing  the  user's  data  (from  the  user 
stack). 
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Example: 

If  the  user  stack  contains  the  address  $00002000,  then  after 

MOVE  USP,  AO 

AO  contains  $00002000. 

MOVEC  —  Move  To/From  Control  Register 

(MC68010,  MC68012,  MC68020)  (Privileged) 

Syntax: 
MOVEC Rc,  Rn 
MOVEC Rn,  Rc 

where  Rc  is 

SFC source  function  code  register 
DFC destination  function  code  register 

USP user  stack  pointer 
VBR vector  base  register 
CAAR cache  address  register 
MSP master  stack  pointer 
ISP interrupt  stack  pointer 

Instruction  Format: 

15      14      13      12  11 
10 

0 1    |    0  0 1  1 10       0  1 1 1        1  0 1  dr 
A/D Register Control  Register 

dr  field:  0  =  control  register  to  general  register 
1  =  general  register  to  control  register 

Control  Register  field:  $000  =  SFC 
$001  =  DFC 
$002  =  CACR  (MC68020) 
$800  =  USP 

$801  =  VBR 
$802  =  CAAR  (MC68020) 
$803  =  MSP  (MC68020) 
$804  =  ISP  (MC68020) 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  copies  the  contents  of  the  specified  control  register  (Rc)  to  a  general 

purpose  register  (Rn).  This  is  a  privileged  instruction;  attempting  its  execution  from  user 
mode  will  bring  about  exception  processing.  Note  that  this  instruction  is  available  only  on 
the  MC68010,  MC68012,  and  MC68020,  and  that  not  all  control  registers  are  defined  on 

all  of  these  processors.  (Consult  Chapter  3  for  a  description  of  the  control  registers 
available  on  the  various  processors.) 
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Example: 

If  the  vector-base  register  contains  $00800000,  then  after 

MOVEC  VBR,  AO 

AO  contains  $00800000. 

MOVEM  — Move  Multiple 

Syntax: 
MOVEM.s  #<data>,  <ea> 
MOVEM. s  <ea>,  #<data> 

where  <ea>  is 

Dn  (d8,An,Xn)  #<data> 
An  (bd,An,Xn)  (d16,PC) 
(An)  ([bd,An,Xn],od)  (d8,PC,Xn) 
(An)+  ([bd,An],Xn,od)  (bd,PC,Xn) 
-(An)  xxx.L  [(bd,PC,Xn),od] 
(d16,An)  xxx.L  [(bd,PC),Xn,od] 

where  .s  =  .W  or  .L. 

Instruction  Format: 

15 14 13 12 1 1 10 9 8 7 6 5         4        3         2         1  0 

0 1 0 0 d 1 0 0 1 Size Effective  Address 
Mode  Register 

Size  field:  0  =  word  1  =  long 
d:  0  =  move  to  memory 

1  =  move  to  registers 

Bit  mask  for  memory  and  (An)+ 
Bit  mask  for  —(An) 
A7 A6 A5 A4 A3 

A2 
A, 

AO 
D7 D6 

D5 D4 
D3 D2  |  D1 

DO  j 

DO D1 D2 D3 D4 D5 D6 
D7 AO 

A1 

A2 
A3 

A4 A5  |  A6 A7 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

These  instructions  move  the  selected  registers  to  or  from  consecutive  memory  locations. 
You  select  which  registers  to  use  by  setting  bits  in  the  immediate  data  mask  word  as  shown. 
The  processor  stores  or  fetches  the  data  from  least  significant  bit  to  most  significant  bit. 
The  bit  definition  of  the  mask  word  depends  on  the  addressing  mode  used. 

•  If  you  specify  the  memory  address  with  postincrement  mode  (for  movement  from 
memory  only),  the  least  significant  bit  of  the  mask  is  DO. 

•  If  you  specify  the  memory  address  with  predecrement  mode  (for  movement  to  memory 
only),  the  least  significant  bit  of  the  mask  is  A7. 
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•    If  you  specify  the  memory  address  using  any  of  the  other  modes  (for  movement  in 
either  direction),  the  least  significant  bit  of  the  mask  is  DO,  as  it  was  for  postincrement. 

Note  that  most  assemblers  provide  shorthand  notation  for  specifying  which  registers  to 

use.  A  common  notation  uses  the  hyphen  (-)  to  indicate  a  range  of  registers;  for  example, 
A 1 -A5  builds  a  mask  for  using  A 1 ,  A2,  A3,  A4,  and  A5.  The  slash  ( / )  indicates  an  OR  of  single 
registers;  for  example,  D0/D1/A0/ Al  builds  a  mask  for  using  DO,  Dl,  AO,  and  Al.  These 

notations  are  not  standard,  however,  so  you  should  consult  your  assembler's  user  manual  for 
specific  details. 

Example: 

If  A6  contains  a  $1000,  then  after 

MOVEM.L  D0/D1/A0/A1,  ~(A6) 

address  $  1004  holds  the  contents  of  DO,  $  1008  holds  D 1 ,  $  1 00C  holds  AO,  $  1 0 1 0  holds  A 1 , 

and  A6  contains  $1010.  Later  in  your  program  you  can  restore  the  values  of  those  saved 
registers  with 

MOVEM.L         (A6)+,  D0/D1/A0/A1 

MOVEP  — Move  Peripheral  Data 

Syntax: 
MOVEP.s  Dn,  (disp,  An) 
MOVEP.s  (disp,  An) 

where  .s  =  .W  or  .L. 

Instruction  Format: 

15 14 
13 

12 11      10  9 8       7  6 5 4 3 2       1  0 

0 0 0 0 
Data 

Register 
Op-Mode 0 0 1 Address 

Register 
Op-Mode  field:  100  =  transfer  word  from  memory  to  register 

101  =  transfer  long  from  memory  to  register 
110  =  transfer  word  from  register  to  memory 
111  =  transfer  long  from  register  to  memory 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  moves  data  between  a  data  register  and  alternate  bytes  of  memory.  This 

instruction  simplifies  the  movement  of  data  between  the  processor  and  certain  older  8-bit 
devices,  whose  registers  lie  on  alternate  bytes  of  memory  (all  odd  or  all  even).  One  operand 

must  be  a  data  register,  the  other  an  address  specified  by  address  indirect  with  displace- 
ment. The  operation  transfers  the  high-order  byte  of  the  register  first  and  the  low-order 

byte  of  the  register  last. 
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Example: 

If  DO  contains  $4304,  AO  has  a  value  of  $800000,  which  is  the  base  address  of  a  peripheral's 
control  registers.  A  word-count  register  (word-sized)  lies  at  the  bytes  at  offsets  4  and  6. 
After 

MOVEP.W  DO,  (4,A0) 

the  word  count  register  contains  $4304  ($800004  contains  $43  and  $800006  contains  $04). 

MOVEQ  —  Move  Quick 

Syntax: 
MOVEQ  #<data>,  Dn 

Instruction  Format: 

15 14 
13 

12 11      10  9 8 7 6 5 4  3 2 1 0 

0 1 1 1 
Data 

Register 
0 Data 

Data  field:  Data  is  sign  extended  to  a  long  operand  and  all  32  bits  are 
transferred  to  the  data  register. 

Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 
V  Cleared 

C  Cleared 

X  Unaffected 

Description: 

This  instruction  moves  a  signed  8-bit  immediate  value  into  a  data  register.  The  processor 
extends  the  sign  of  the  value  through  all  32  bits  of  the  register. 

Example: 

After  the  instruction, 

MOVEQ  #-1,DO 

DO  contains  the  long-word  value  —  1  ($FFFFFFFF)  and  the  N  flag  is  set. 

MOVES  — Move  Address  Space  (Privileged) 
(MC68010,  MC68012,  MC68020) 

Syntax: 
MOVES. s  Rn,  <ea> 
MOVES. s  <ea>,  Rn 
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where  <ea>  is 

Dn  X  (d8,An,Xn)  #<data> 
An  X  (bd,An,Xn)  (d16,PC) 

X    (An)  X  ([bd,An,Xn],od)  (d8,PC,Xn) 
X    (An)  +  X  ([bd,An],Xn,od)  (bd,PC,Xn) 
X    -(An)  X  xxx.L  [(bd,PC,Xn),od] 
X    (d16,An)  X  xxx.L  [(bd,PC),Xn,od] 

and  .s=  .B,  .W,  or  .L. 

Instruction  Format: 

15      14      13      12      11      10       9       8       7       6       5       4       3       2        1  0 

0 0 0 0 1 1 1 0 Size Effective  Address 
Mode 

Register 
AID Register dr 

0 0 0 0  0 0       0  0 0  0 0 

dr  field:  0  =  EA  to  register 
1  =  register  to  EA 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  moves  data  between  a  register  and  memory.  Unlike  the  normal  MOVE 
instruction,  this  instruction  sends  external  hardware  the  contents  of  a  function-code 
register  as  well  as  the  address  of  the  operand.  The  instruction  is  privileged;  if  it  is  executed 
in  user  mode,  an  exception  results.  Since  the  MC68000  and  MC68008  do  not  have  the 

function-code  registers,  these  processors  do  not  implement  this  instruction. 

As  we  discussed  in  Chapter  2,  whenever  the  processor  accesses  memory,  it  sends  the 
memory  controller  some  information  about  the  requested  access.  The  information  may  be  for 
an  instruction  or  for  data,  and  it  may  be  for  a  user  program  or  a  supervisor  program.  Also,  the 

request  may  be  in  a  special  area  called  "CPU  space."  For  reads  from  memory,  the  processor 
uses  the  value  in  the  source  function  code  (SFC)  register;  for  writes  to  memory,  the  processor 
uses  the  value  in  the  destination  function  code  (DFC)  register. 

A  memory  management  unit  (MMU)  "maps"  program-supplied  logical  addresses  into 
physical  addresses.  This  mapping  simplifies  programming  in  a  multitasking  environment  since 
each  task  thinks  it  starts  at  address  $00000000  (for  example).  Prior  to  executing  a  particular 

task,  the  operating  system  loads  the  MMU  with  data  telling  how  to  map  the  logical  addresses 
to  physical  addresses. 

The  operating  system  (in  supervisor  mode)  has  its  own  set  of  MMU  mapping  registers 

separate  from  the  user-mode  registers.  This  keeps  a  user  task  from  accidentally  (or  otherwise) 

accessing  vital  operating  system  data  and  code.  The  MMU  distinguishes  between  user  and 
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supervisor  accesses  by  the  data  on  the  function-code  lines. 

In  servicing  user  requests,  the  operating  system  must  be  able  to  get  at  the  user's  data.  On 
the  MC68000  and  MC68008,  the  system  can  copy  part  of  the  user's  MMU  to  its  own  MMU  and 
thus  access  the  data.  With  the  MC68010,  MC68012,  and  the  MC68020,  the  method  is  simpler; 

the  system  can  load  the  function-code  registers  with  the  appropriate  user-mode  code.  A 
subsequent  MOVES  instruction  thus  instructs  the  MMU  to  map  to  user  address  space  instead 
of  supervisor  space. 

Another  encoding  of  the  function  codes  implies  CPU  space.  In  this  case,  the  MMU  can 
access  yet  another  portion  of  memory.  You  can  use  CPU  space  in  several  ways,  but  primarily 
you  would  use  it  for  communicating  with  some  peripheral  devices. 

Note  that  MOVES  is  the  only  instruction  that  uses  the  data  in  the  function-code  registers. 

A  user  program  can  request  system  services  (on  some  operating  systems)  by  pushing 
request  parameters  onto  the  user  stack  and  then  executing  a  TRAP.  Since  executing  the 
TRAP  puts  the  processor  into  supervisor  mode,  which  has  its  own  stack  pointer,  the 
supervisor  routine  must  have  some  means  of  getting  at  the  data  on  the  user  stack.  The 
following  code  (located  in  the  service  routine)  will  do  this: 

This  code  segment  fetches  the  user's  stack  pointer  and  puts  it  into  AO.  The  program  then 
loads  the  source  function  code  register  with  1.  which  signifies  user  data  space  access.  The 

MOVES  instruction  then  loads  DO  with  the  long-word  value  from  the  user  stack. 

Example: 

MOVE 
MOVEC 
MOVES. L 

USP,  AO 
#1,  SFC 

(AO),  DO 

MULS  — Signed  Multiply 

Syntax: 
MULS.W 
MULS.L 
MULS.L 

<ea>,  Dn 
<ea>,  Dn 
<ea>,  Dh:DI 

(MC68020  only) 
(MC68020  cnly) 

where  <ea>  is 

x Dn 
An 
(An) 

X 
X 
X 
X 
X 
X 

(d8,An,Xn) 
(bd,An,Xn) 
([bd,An,Xn],od) 
([bd,An],Xn,od) xxx. L 
xxx. L 

X 
X 
X 
X 
X 
X 

3<data> 

(d16,PC) 
(d8,PC,Xn) 
(bd,PC,Xn) 

X 
X 
X 
X 

(An)  + 
-(An) 

(d16,An) 
[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 
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Instruction  Format: 

15 14 13 12 1 1 
10 

9 8 7 6 5 4 3 2        1  0 

1 1 0 0 1 1 1 
Effective  Address 

Mode 
Register 

15 14 
13 12 1  1 10 

9 8 7 6 5 4 3 2        1  0 

0 1 0 0 1 1 0 0 0 0 
Effective  Address 

Mode Register 

0 Dl 1 Size 0 0 0 0 0 0 0 
Dh 

(Word) 

(Long) 

Size  Field:  0  =  32-bit  product 
1  =  64-bit  product 

Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 

V         Set  if  operation  causes  overflow  of  destination  register,  cleared  otherwise 
C  Cleared 

X  Unaffected 

Description: 

These  instructions  multiply  the  two  signed  operands  together,  storing  the  signed  result  in 
the  destination.  The  first  instruction  (MULS.W)  is  available  on  all  processors  and 

multiplies  the  16-bit  source  and  the  low  16  bits  of  the  destination  data  register  together, 
producing  a  32-bit  product  in  the  data  register. 

The  other  two  instruction  forms  are  available  only  on  the  MC68020.  The  first  long  form 

(with  the  single  destination  register)  multiplies  the  32-bit  signed  source  with  the  32-bit  signed 
destination  and  yields  a  32-bit  product  in  the  destination  register.  The  second  form  multiplies 
the  32-bit  signed  source  with  the  32-bit  signed  destination  from  Dl  and  stores  the  64-bit 
product  in  the  Dh:Dl  register  pair.  The  most  significant  long  word  is  in  Dh,  with  the  least 
significant  long  word  in  Dl. 

For  the  first  long-word  format  (long-word  product),  you  should  check  the  status  of  the 
Overflow  (V)  flag  after  the  operation  to  verify  the  legitimacy  of  the  result.  With  the  other  two 
formats,  overflow  will  never  occur. 

Example: 

If  DO  contains  -2500  and  Dl  contains  19400,  then  after 

MULS D1,  DO 

DO  contains -48500000. 
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MULU  — Multiply  Unsigned 

Syntax: 
MULU.W 
MULU.L 
MULU.L 

where  <ea>  is 

<ea>,  Dn 
<ea>,  Dn 
<ea>,  Dh:DI 

(MC68020  only) 
(MC68020  only) 

Dn 
An 
(An) 
(An)  + 
-(An) 

(d16,An) 

(d8,An,Xn) 
(bd,An,Xn) 
([bd,An,Xn],od) 
([bd,An],Xn,od) xxx. L 
xxx. L 

#<data> 
(d16,PC) 
(d8,PC,Xn) 
(bd,PC,Xn) 
[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 

Instruction  Format: 

(Word) 
15 14 13 12 1 1 

10 
9 8 7 6 5 4 3 2        1  0 

1 1 0 0 Registe r 0 1 1 Effective  Address 
Mode Register 

(Long) 

0 1 0 0 1 1 0 0 0 0 Effective  Address 
Mode 

Register 
0 Dl 0 Size 0 0 0 0 0 0 0 

Dh 
Size  field:  0  =  32-bit  product 

1  =  64-bit  product 

Condition  Codes 

N 

Z 

V 

c 

X 

Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Set  if  result  is  zero,  cleared  otherwise 

Set  if  operation  causes  overflow  of  the  destination  register,  cleared  otherwise 
Cleared 

Unaffected 

Description: 

These  instructions  multiply  the  two  unsigned  operands  together,  storing  the  unsigned 
result  in  the  destination.  The  first  instruction  (MULU.W)  is  available  on  all  processors 

and  multiplies  the  16-bit  source  and  the  low  16  bits  of  the  destination  data  register 
together,  producing  a  32-bit  product  in  the  data  register. 

The  other  two  instruction  forms  are  available  only  on  the  MC68020.  The  first  long  form 

(with  the  single  destination  register)  multiplies  the  32-bit  unsigned  source  with  the  32-bit 
unsigned  destination  and  yields  a  32-bit  product  in  the  destination  register.  The  second  form 
multiplies  the  32-bit  unsigned  source  with  the  32-bit  unsigned  destination  from  Dl  and  stores 
the  64-bit  product  in  the  Dh:Dl  register  pair.  The  most  significant  long  word  is  in  Dh,  with  the 
least  significant  long  word  in  Dl. 

For  the  first  long-word  format  (long  word  product),  you  should  check  the  status  of  the 
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Overflow  (V)  flag  after  the  operation  to  verify  the  legitimacy  of  the  result.  With  the  other  two 
formats,  overflow  will  never  occur. 

Example: 

If  DO  contains  32500  and  Dl  contains  49401,  then  after 

MULS  D1.DO 

DO  contains  1608782500. 

NBCD  — Negate  Decimal  With  Extend 

Syntax: 
NBCD  <ea> 

where  <ea>  is 

X Dn X (d8,An,Xn) #<data> 
An X (bd,An,Xn) (d16,PC) 

X (An) X ([bd,An,Xn],od) (d8,PC,Xn) 
X (An)  + X ([bd,An],Xn,od) (bd,PC,Xn) 
X 

-(An) X xxx.  L f(bd,PC,Xn),od] 
X (d16,An) X xxx.  L [(bd,PC),Xn,od] 

Instruction  Format: 

15 14 
13 

12 11 
10 

9 8 7 6 5       4  3 2       1  0 

0 1 0 0 0 1 0 0 1 1 
Effective  Address 

Mode 
Register 

Condition  Codes: 

N  Undefined 

Z         Set  if  result  is  zero,  cleared  otherwise 
V  Undefined 

C  Set  if  a  borrow  was  required,  cleared  otherwise 

X         Set  if  a  borrow  was  required,  cleared  otherwise 

Description: 

This  instruction  subtracts  the  destination  and  the  Extend  flag  (X)  from  0  and  stores  the 

result  back  in  the  destination.  The  operation  uses  binary-coded  decimal  (BCD)  arith- 
metic. (For  more  information  on  BCD  arithmetic,  refer  to  Chapter  8.) 

Example: 

If  A2  points  to  a  byte  in  memory  containing  the  value  $27,  and  the  Extend  flag  is  set, 
then  after 

NBCD  (A2) 

the  byte  contains  72  and  the  Carry  (C)  bit  is  set. 
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N  EG  — Negate 

Syntax: 
NEG.s  <ea> 

where  <ea>  is 

X Dn 
An 
(An) 
(An)  + 
-(An) 

(d16,An) 

(d8,An,Xn) 
(bd,An,Xn) 
([bd,An,Xn],od) 
([bd,An],Xn,od) xxx.  L 
xxx.  L 

and  where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

#<data> 
(d16,PC) 
(d8,PC,Xn) 
(bd.PCXn) 
[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 

15 14 
13 12 11 

10 
9 8 7  6 5       4  3 2       1  0 

0 1 0 0 0 1 0 0 Size 
Effective  Address 

Mode 
Register 

Size  field:  00  =  byte   01  =  word    10  =  long 

Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 

V         Set  if  operation  generates  an  overflow,  cleared  otherwise 

C         Set  if  result  is  nonzero,  cleared  if  result  is  zero 

X         Set  if  result  is  nonzero,  cleared  if  result  is  zero 

Description: 

This  instruction  subtracts  the  operand  from  zero  and  replaces  the  difference  into  the 

operand.  Note  that  this  operation  forms  the  two's  complement  of  the  original  operand value. 

Example: 

If  the  low-order  byte  in  DO  contains  $3A,  then  after 

NEG.B  DO 

DO  contains  $C6  and  the  N,  C,  and  X  bits  are  set. 

NEGX  — Negate  With  Extend 

Syntax: 

NEGX.s  <ea> 

where  <ea>  is 

X    Dn                   X    (d8,An,Xn)  #<data> 
An                    X    (bd,An,Xn)  (d16,PC) 

X    (An)                  X    ([bd,An,Xn],od)  (d8,PC,Xn) 
X    (An)+               X    ([bd,An],Xn,od)  (bd,PC,Xn) 
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X    -(An)  X  xxx.L 
X    (d16,An)  X  xxx.L 

and  where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

15 14 13 12 11 
10 

9 8 7  6 5       4  3 2       1  0 

0 1 0 0 0 0 0 0 Size Effective  Address 
Mode 

Register 

Size  field:  00  =  byte  01  =  word  10  =  long 

Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 

V         Set  if  the  operation  generates  an  overflow,  cleared  otherwise 

C         Set  if  a  borrow  is  required,  cleared  otherwise 

X         Set  if  a  borrow  is  required,  cleared  otherwise 

Description: 

This  instruction  subtracts  the  operand  and  the  Extend  flag(X)  from  zero  and  replaces  the 
difference  into  the  operand.  (Refer  to  Chapter  8  for  a  discussion  of  multiprecision 
arithmetic.) 

Example: 

If  the  long  word  pointed  to  by  AO  contains  $01023032  and  the  Extend  bit  is  clear,  then 
after 

NEGX.L  (AO) 

the  value  at  AO  is  SFEFDCFCE,  and  the  N,  C,  and  X  bits  are  set. 

NOP  — No  Operation 

Syntax: 
NOP 

Instruction  Format: 

15 14 
13 12 11 10 9 8 7 6 5 

0 1 o 1 1 o 1 1 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 
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C  Unaffected 

X  Unaffected 

Description: 

This  instruction  performs  no  meaningful  work  except  to  consume  a  machine  cycle.  You 
can  use  NOP  in  cases  where  you  need  a  slight  delay  (for  example,  for  hardware  to  catch  up) 
or  in  debugging  to  replace  a  questionable  instruction. 

NOT  — Logical  Complement 

Syntax: 
NOT.s  <ea> 

where  <ea>  is 

X    Dn                   X    (d8,An,Xn)  #<data> 
An                    X    (bd,An,Xn)  (d16,PC) 

X    (An)                  X    ([bd,An,Xn],od)  (d8,PC,Xn) 
X    (An)+               X    ([bd,An],Xn,od)  (bd,PC,Xn) 
X    -(An)               X    xxx.L  [(bd,PC,Xn),od] 
X    (d16,An)            X    xxx.L  [(bd,PC),Xn,od] 

and  where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

15      14      13      12      11      10      9       8       7       6       5       4       3       2       1  0 

0 1 0 0 0 1 1 0 Size Effective  Address 

Mode  Register 

Size  field:  00  =  byte   01=  word    10  =  long 

Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 
V  Cleared 

C  Cleared 

X  Unaffected 

Description: 

This  instruction  performs  a  bitwise  complement  of  the  operand.  This  entails  the  replace- 
ment of  each  1  in  the  operand  with  a  0  and  each  0  with  a  I. 

Example: 

If  the  long  word  at  VAL1  contains  S1F004209,  then  after 

NOT.L  VAL1 

VAL1  contains  SE0FFBDF6  and  the  N  flag  is  set. 
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OR  — Inclusive  Logical  OR 

Syntax: 

OR.s  <ea>,  Dn 
OR.s  Dn,  <ea> 

where  for  dst=  Dn,  <ea>  is 

X    Dn  X    (d8,An,Xn)  X  #<data> 
An  X    (bd,An,Xn)  X  (d16,PC) 

X    (An)  X    ([bd,An,Xn],od)  X  (d8,PC,Xn) 
X    (An)+  X    ([bd,An],Xn,od)  X  (bd,PC,Xn) 
X    -(An)  X    xxx.  L  X  [(bd,PC,Xn),od] 
X    (d16,An)  X    xxx.L  X  [(bd,PC),Xn,od] 

and  where  for  src=  Dn,  <ea>  is 

Dn  X    (d8,An,Xn)  #<data> 
An  X    (bd,An,Xn)  (d16,PC) 

X    (An)  X    ([bd,An,Xn],od)  (d8,PC,Xn) 
X    (An)+  X    ([bd,An],Xn,od)  (bd,PC,Xn) 
X    -(An)  X    xxx.L  [(bd,PC,Xn),od] 
X    (d16,An)  X    xxx.L  [(bd,PC),Xn,od] 

and  where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

15      14      13      12      11      10      9       8       7       6       5       4       3       2        1  0 
Data Effective  Address 

1 0 0 0 Op-Mode 
Register Mode  Register 

Op-Mode  field:  By*e   Word    Lon9  Operation 
000  001  010  (<ea>)v(<Dn>)^  <Dn> 
100     101      110     (<Dn>)v(<ea>)-~  <ea> 

Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 

V  Cleared 

C  Cleared 

X  Unaffected 

Description: 

This  instruction  performs  a  bitwise  logical  OR  of  the  contents  of  the  source  operand  with 
the  contents  of  the  destination  operand  and  stores  the  result  in  the  destination.  OR  is  a 
common  logical  instruction  and  is  most  often  used  to  set  one  or  more  bits  to  1. 

Example: 

If  D3  contains  $1007  and  D7  contains  $0FF0,  then  after 

OR.W  D3,  D7 
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D7  contains  S1FF7.  This  is  calculated  as 

D3  =  $1007  =  00010000000001 1 1 
D7  =  $0FF0  =  00001 1111111 0000 
D7  =  $1FF7  =  0001111111110111 

ORI  — Inclusive  OR 
Immediate 

Syntax: 
ORI.s  #<data>,<ea> 

where  <ea>  is 

X    Dn  X  (d8,An,Xn)  #<data> 
An  X  (bd,An,Xn)  (d16,PC) 

X    (An)  X  ([bd,An,Xn],od)  (d8,PC,Xn) 
X    (An)+  X  ([bd,An],Xn,od)  (bd,PC,Xn) 
X    -(An)  X  xxx.L  [(bd,PC,Xn),od] 
X    (d16,An)  X  xxx.L  [(bd,PC),Xn,od] 

and  where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

15      14      13      12      11       10       9       8        7       6        5       4       3       2        1  0 
Effective  Address 

0 0 0 0 0 0 0 0 Size 
Mode  Register 

Size  field:  00  =  byte    01=  word    10  =  long 

Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 
V  Cleared 

C  Cleared 

X  Unaffected 

Description: 

This  instruction  is  used  to  OR  the  immediate  data  to  the  destination  operand;  storing  the 
result  is  stored  in  the  destination. 

Example: 

If  the  long  word  at  the  label  FLAGS  contains  S8F77F010,  then  after 

ORI  #10000001,  FLAGS 

FLAGS  contains  S8F77F011  and  the  N  flag  is  set. 
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ORI  to  CCR  —  Inclusive  OR  Immediate 
To  Condition  Codes 

Syntax: 

ORI  #<data>,CCR 

Instruction  Format: 

15 14 
13 12 11 10 

9 8 7 6 5 4 3 2 1 0 
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 o 
0 0 0 0 0 0 0 0 

Byte 
Data 

Condition  Codes: 

N  Takes  value  of  bit  3  of  immediate  data 

Z  Takes  value  of  bit  3  of  immediate  data 

V  Takes  value  of  bit  3  of  immediate  data 

C  Takes  value  of  bit  3  of  immediate  data 

X         Takes  value  of  bit  3  of  immediate  data 

Description: 

This  instruction  logically  ORs  the  condition  codes  with  the  immediate  data. 

Example: 

If  the  N  flag  is  set  and  all  others  are  clear,  then  after 

ORI  #$1F,  CCR 

all  of  the  flags  are  set. 

OR  to  SR  — Inclusive  OR  Immediate 

To  Status  Register  (Privileged) 

Syntax: 

ORI  #<data>,SR 

Instruction  Format: 

15 14 13 12 11 10 9  8 7 6 5 4 3 2 1 0 
0 0 o 0 0 1    I  0 

o  I 

1 1 1 1 0 0 
Word  Data 

Condition  Codes: 

N  Takes  value  of  bit  3  of  immediate  data 

Z         Takes  value  of  bit  3  of  immediate  data 
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V  Takes  value  of  bit  3  of  immediate  data 

C  Takes  value  of  bit  3  of  immediate  data 

X         Takes  value  of  bit  3  of  immediate  data 

Description  : 

This  instruction  logically  ORs  the  immediate  data  with  the  data  in  the  status  register  (SR). 

Note  that  this  is  a  privileged  instruction;  your  attempt  to  execute  it  from  a  user-mode 
program  will  cause  exception  processing  through  the  privilege  violation  vector. 

Example: 

If  the  supervisor  bit  is  set,  the  Z  flag  is  set,  and  the  interrupt  mask  is  000,  then  after 

ORI  #$0700,  SR 

the  status  register  contains  $2704  (supervisor  bit  set,  interrupt  mask  is  1 1 1 ,  and  the  Z  flag  is 
set). 

PACK  — Pack  BCD  (MC68020  only) 

Syntax: 

PACK  -(An),  -  (Ay),  #<data> 
PACK  Dn,  Dm,  #<data> 

Instruction  Format: 

15 14 
13 12 11      10  9 8 7 6 5 4 3 2        1  0 

1 0 0 0 
Destination 

Register* 

1 0 1 0 0 R/M 
Source 

Register* 
16-Bit  Extension:Adjustment 

R/M  field:  0  =  data  register  to  data  register 
1  =  memory  to  memory 

*lf  R/M  =  0,  specifies  a  data  register 
If  R/M  =  1,  specifies  an  address  register  for  the  predecrement  addressing  mode. 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  converts  two  bytes  of  data  into  a  single  byte  of  packed  binary-coded 
decimal  data.  The  instruction  adds  the  immediate  word  data  to  the  two  bytes  and  moves 
bits  11-8  and  3-0  to  bits  7-0  of  the  destination.  Note  that  the  source  is  two  bytes  long  while 
the  destination  is  a  single  byte;  as  a  result,  when  using  the  address  register  mode,  the 
processor  decrements  the  source  by  two  but  decrements  the  result  by  one. 
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With  this  instruction,  you  can  convert  a  string  of  ASCII  or  EBCDIC  data  into  a  packed 
decimal  string  for  manipulation  with  the  various  BCD  instructions.  To  unpack  the  BCD  string 
back  into  an  ASCII  string,  use  the  UNPCK  instruction. 

Example: 

If  DO  contains  the  word  $3539  (which  is  ASCII  for  "59"),  then  after 
PACK  DO,  D1,#0 

Dl  contains  the  byte  $59. 

PEA  — Push  Effective  Address 

Syntax: 
PEA  <ea> 

where  <ea>  is 

Dn X (d8,An,Xn) #<data> 
An X (bd,An,Xn) X (d16,PC) 

X  (An) X ([bd,An,Xn],od) X (d8,PC,Xn) 
(An)+ X ([bd,An],Xn,od) X (bd,PC,Xn) -(An) 

X xxx.  L X [(bd,PC,Xn),od] 
X  (d16,An) X xxx.  L X [(bd,PC),Xn,od] 

Instruction  Format: 

15      14      13      12  11 
10 

0 1 0 0 1 0 0 0 0 

1  I
 

Effective  Address 
Mode 

Register 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  calculates  an  absolute  address  based  on  the  given  effective  address  and 

pushes  that  32-bit  value  onto  the  stack.  Note  that  the  value  put  on  the  stack  is  an  address, 
not  the  value  at  that  address. 

This  instruction  is  used  to  evaluate  addresses  that  may  be  unknown  at  assembly  time,  as 

would  be  the  case  with  position-independent  code  (code  that  uses  no  absolute  addresses).  Refer 
also  to  the  instruction  LEA. 

Example: 

Your  assembler  has  determined  that  the  label  VAL1  is  $  126  bytes  away  from  the  extension 
word  following  this  PEA  instruction: 
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PEA (VAL1,PC) 

At  run  time,  this  instruction  is  located  at  address  $1000.  The  processor  computes  the 
absolute  address  of  VAL1  as  $1126  and  pushes  this  value  (as  $00001126)  onto  the  stack. 

RESET  — Reset  External  Devices 

(Privileged) 

Syntax: 
RESET 

Instruction  Format: 

15 14 13 12 11 
10 

9 8 7 6 5 4 3 2 1 0 
0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  tells  the  processor  to  raise  its  output  signal  RESET,  notifying  external 
devices  to  reset  themselves  to  their  initial  states.  Nothing  significant  happens  to  the 
processor,  and  it  continues  with  the  next  instruction.  This  instruction  is  privileged;  if  you 

attempt  to  execute  it  from  a  user-mode  instruction,  it  will  cause  exception  processing. 

Example: 
Following 

RESET 

all  external  devices  reset  their  internal  state. 

ROL/ROR  —  Rotate 

Syntax: 
ROR.s 
ROR.s 
ROR 
ROL.s 
ROLs 
ROL 

Dn,  Dm 
#<data>,  Dn 
<ea> 
TDn,  Dm 
#<data>,  Dn 
<ea> 
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where  <ea>  is 

Dn 
An 
(An) 
(An)+ -(An) 

(d16,An) 

(d8,An,Xn) 
(bd,An,Xn) 
([bd,An,Xn],od) 
([bd,An],Xn,od) 
xxx.  L 
xxx.  L 

#<data> 
(d16,PC) 
(d8,PC,Xn) 
(bd,PC,Xn) 
[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 

and  where  .s  is  .B,  .W,  or  .L. 

Instruction  Format: 

(Register) 
15 14 13 12 11 10 9 8 7 6 5 4  3 2       1  0 

1 1 1 0 Count 
Register dr Size i/r 1  1 

Register 

IMemory) 

1 1 1 0 0 1 1 
dr 

1 1 Effective  Address 
Mode 

Register Count/Register  field:  if  i/r  =  0,  immdediate  data 
if  i/r  =  1 ,  data  register 

dr  field:  0  =  right  1  =  left 
Size  field:  00  =  byte  01  =  word  10  =  long 

Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 

V  Cleared 

C         Set  if  last  bit  rotated  out  of  operand  was  set,  cleared  otherwise 
X  Unaffected 

Description: 

This  instruction  rotates  the  bits  of  the  operand  either  left  or  right.  When  the  operand  is  a 

register,  you  can  specify  the  number  of  bits  to  rotate  through  an  immediate  value  (1-8)  or 
through  another  data  register  (value  0-63).  For  operands  in  memory,  you  are  restricted  to  a 
rotate  of  one  bit;  memory  operands  are  restricted  to  16-bit  values,  also. 

For  the  ROL  instruction,  the  processor  shifts  the  bits  to  the  left.  As  bits  leave  the 

high-order  bit,  the  processor  moves  them  into  both  the  low-order  bit  and  the  Carry  bit.  This  is 
illustrated  as  follows: 

c 
Operand 

For  the  ROR  instruction,  the  processor  shifts  the  bits  to  the  right.  As  bits  leave  the 

low-order  bit,  the  processor  moves  them  into  the  high-order  bit  as  well  as  the  Carry  bit.  This  is 
illustrated  on  the  next  page. 



450    68000  Assembly  Language  Programming 

Operand 

Example: 

If  the  low-order  byte  of  DO  contains  $A7,  then  after 

ROL  #3,  DO 

DO  contains  $3D  and  the  C  bit  is  set. 

ROXL/ROXR  — Rotate  With  Extend 

Syntax: 
ROXR.s 
ROXR.s 
ROXR 
ROXLs 
ROXLs 
ROXL 

Dn,  Dm 
#<data>,  Dn 
<ea> 
Dn,  Dm 
#<data>,  Dn 
<ea> 

where  <ea>  is 

Dn 
An 

X  (An) 
X  (An)+ 
X  -(An) 
X  (d16,An) 

(d8,An,Xn) 
(bd,An,Xn) 
([bd,An,Xn],od) 
([bd,An],Xn,od) 
xxx.  L 
xxx.  L 

#<data> 
(d16,PC) 
(d8,PC,Xn) 
(bd,PC,Xn) 
[(bd,PC,Xn),od] 
[(bd,PC),Xn,od] 

and  where  .s  is  .B,  .W  or  .L. 

Instruction  Format: 

(Register) 15 14 13 12 11 10 9 8 7 6 5 4 3 2       1  0 

1 1 1 0 
Count/ 
Register dr S 

ze 

i/r 
1 0 Register 

(Memory) 
15 14 13 12 11 

10 
9 8 7 6 5 4 3 2        1  0 

1 1 1 0 0 1 0 
dr 

1 1 Effective  Address Mode 

Register Count/Register  field:  if  i/r  is  0,  immediate  data 
if  i/r  is  1 ,  data  register 

dr  field:  0  =  right  1  =  left 
Size  field:  00  =  byte  01  =  word  10  =  Long 

Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 
V  Cleared 
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C         Set  if  last  bit  rotated  out  of  operand  was  set,  cleared  otherwise;  set  to  the  value 
of  X  for  a  rotate  of  zero 

X         Set  if  last  bit  rotated  out  of  operand  was  set,  cleared  otherwise;  unaffected  for 
a  rotate  of  zero 

Description: 

These  instructions  rotate  the  bits  of  the  operand  either  left  or  right.  When  the  operand  is  in 

a  register,  you  can  specify  the  number  of  bits  to  rotate  through  an  immediate  value  ( l  -8)  or 
through  another  data  register  (value  0-63).  For  operands  in  memory,  you  are  restricted  to  a 
rotate  of  one  bit;  memory  operands  are  restricted  to  16-bit  values,  also. 

These  instructions  differ  from  the  ROL  and  ROR  instructions  in  that  they  include  the 
Extend  (X)  flag  in  the  Rotate  operation  and  can  thus  be  used  as  part  of  multiprecision  rotates 
(involving  operands  longer  than  32  bits). 

The  ROXR  instruction  shifts  the  bits  of  the  operand  to  the  right.  As  bits  leave  the  least 
significant  bit,  the  processor  moves  them  into  both  the  Carry  (C)  and  X  flags.  The  processor 
moves  the  previous  contents  of  the  X  flag  into  the  most  significant  bit  of  the  operand.  This  is 
illustrated  as  follows: 

X 
Operand 

The  ROXL  instruction  shifts  the  bits  of  the  operand  to  the  left.  The  processor  moves  the  X 
flag  into  the  least  significant  bit  of  the  operand  and  moves  the  bit  shifted  out  of  the  most 
significant  bit  into  both  the  X  and  C  flags.  This  is  illustrated  as  follows: 

Operand 
X 

Example: 

You  have  a  four-word  datum  in  memory,  pointed  to  by  AO,  which  you  want  to  rotate  one 
bit  to  the  left.  The  following  instructions  will  perform  this  function: 

ANDI.B  #OF,  CCR  ;  clear  extend  flag 
ROXLW  (AO)  ;  rotate  the  4  words 
ROXLW  (2,A0) 
ROXLW  (4,A0) 
ROXLW  (6,A0) 
BCC  NOWRAP  ;  rotate  msb  to  Isb? 
BSET.W  #0,  (AO)  ;  if  so,  then  set  Isb 

NOWRAP: 
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RTD  — Return  and  Deallocate  Parameters 

(MC68010,  MC68012,  MC68020) 

Syntax: 
RTD  #<data> 

Instruction  Format: 

15 14      13      12      11      10       9       8        7       6       5       4       3       2        1  0 

i|o|o|i|i|ilo|o|o|o 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  pulls  the  long  word  from  the  stack  and  moves  it  into  the  program  counter. 

After  this  is  done,  the  processor  addresses  the  sign-extended  16-bit  immediate  data  to  the 
stack  pointer.  This  instruction  provides  a  handy  means  of  returning  from  a  subroutine 
that  required  arguments  passed  on  the  stack.  Note  that  there  is  no  JSR  or  BSR  instruction 
that  automatically  pushes  parameters  onto  the  stack  prior  to  the  call.  You  must  do  this 
manually  with  the  MOVE  instruction. 

This  instruction  is  not  available  on  the  MC68000  and  MC68008. 

Example: 

If  a  subroutine  FUNC1  requires  that  its  caller  push  four  long  words  to  the  stack  prior  to 
the  JSR  FUNC1  call,  then  at  the  end  of  FUNC1,  after 

RTD  #$10 

the  function  returns  control  to  its  caller  and  removes  the  four  long  words  from  the  stack. 

RTE  — Return  From  Exception 
(Privileged) 

Syntax: 
RTE 

Instruction  Format: 

15      14      13      12      11       10       9       8        7        6        5        4        3        2        1  0 
0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 
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Condition  Codes: 

N  Set  according  to  stacked  status  word 

Z  Set  according  to  stacked  status  word 

V  Set  according  to  stacked  status  word 

C  Set  according  to  stacked  status  word 

X        Set  according  to  stacked  status  word 

Description: 

This  instruction  restores  the  state  of  the  processor  at  the  completion  of  an  exception 
handler  routine  by  pulling  the  stack  frame  from  the  supervisor  stack.  As  a  minimum,  the 
status  register  and  program  counter  are  on  the  stack.  Other  data  may  also  be  present  and 
removed  by  this  instruction:  the  contents  of  the  stack  as  well  as  internal  processor  states 
dictate  how  much  data  to  remove.  (Refer  to  Chapter  14  for  details  on  stack  frame 
contents.) 

Note  that  this  instruction  is  privileged;  if  you  attempt  to  execute  it  from  a  user-mode 
program,  the  processor  will  trap  through  the  privilege  violation  vector. 

Example: 

At  the  end  of  an  interrupt  exception  handler  on  the  MC68020,  the  instruction 

RTE 

pulls  a  format  $0  stack  frame  from  the  supervisor  stack,  restoring  the  former  status 
register  (SR)  and  program  counter  (PC). 

RTM  —  Return  from  Module 

Syntax: 
RTM  Rn 

Instruction  Format: 

15       14      13      12      11       10       9       8       7       6       5        4       3       2       1  0 

|0|0|0|0|011|1|0|1|1|0|0|  D/aJ  Register 

Condition  Codes: 

N  Set  according  to  stacked  status  word 

Z  Set  according  to  stacked  status  word 

V  Set  according  to  stacked  status  word 

C  Set  according  to  stacked  status  word 

X         Set  according  to  stacked  status  word 

Description: 

This  instruction  loads  a  previously  saved  module  state  from  the  top  of  the  stack.  The 
processor  state  (program  counter,  status  word,  and  so  on)  come  from  the  stacked  data. 
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This  instruction  is  the  complement  of  the  CALLM  instruction. 

Since  this  instruction  is  uncommon  and  requires  external  hardware,  we  will  not  go  into 
further  detail  about  it. 

RTR  —  Return  and  Restore  Condition  Codes 

Syntax: 
RTR 

Instruction  Format: 

15      14      13      12      11       10       9       8        7        6        5        4        3        2        1  0 

I   0  I    1    I   0  I   0  I    1    I   1    I   1    I   0   I  0   I    1    I    1    I    1    I   o   I  o   I  iTTl 

Condition  Codes: 

N  Set  according  to  value  from  stack 

Z  Set  according  to  value  from  stack 

V  Set  according  to  value  from  stack 

C  Set  according  to  value  from  stack 

X         Set  according  to  value  from  stack 

Description: 

This  instruction  pulls  a  word  from  the  stack  and  moves  the  five  least  significant  bits  into 

the  condition-code  register.  It  then  pulls  the  long  word  from  the  stack  and  moves  it  into 
the  program  counter.  Program  execution  continues  at  the  new  PC. 

This  instruction  (not  privileged)  functions  similarly  to  the  RTE  instruction  (privileged), 
except  that  RTR  ignores  the  high  byte  of  the  stacked  word  while  RTE  restores  the  entire  status 
register. 

The  MC68000  processors  don't  have  a  special  call  subroutine  instruction  for  automati- 
cally saving  the  condition  code  registers.  Subroutines  that  use  the  RTR  instruction  should 

explicitly  save  the  condition  codes  upon  entry  with  the  instruction  MOVE  CCR-(SP). 

Example: 

The  function  SUB1  promises  not  to  disturb  the  condition  codes.  To  achieve  this,  it  will 
execute: 

SUB1:  MOVE  CCR, -(SP)        ;  save  CCR 

;  —  body  of  subroutine 

RTR  ;  return  and  restore  CCR 

RTS  — Return  From  Subroutine 

Syntax: 
RTS 
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Instruction  Format: 

15 14 13 12 
11 

10 
9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  pulls  the  long  word  from  the  stack  and  moves  it  into  the  program  counter. 

Program  execution  continues  at  the  new  program  counter.  This  instruction  is  the  com- 
plement to  the  JSR  and  BSR  instructions. 

Example: 

If  the  instruction  at  address  $20000  was  JSR  SUB1,  then  at  the  end  of  SUB1  after 
RTS 

the  value  $20004  is  pulled  from  the  stack,  and  program  execution  continues  at  that 
address. 

SBCD  — Subtract  BCD  With  Extend 

Syntax: 
SBCD  Dn,  Dm 
SBCD  -(An),  -(Am) 

Instruction  Format: 

15 14 
13 12 11 

10 
9 8 7 6 5 4 3 2  1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 0    |  , 0 

Condition  Codes: 

N  Undefined 

Z         Unchanged  if  result  is  zero,  cleared  otherwise 
V  Undefined 

C  Set  if  a  borrow  was  generated,  cleared  otherwise 

X         Set  if  a  borrow  was  generated,  cleared  otherwise 

Description: 

This  instruction  subtracts  both  the  contents  of  the  source  operand  and  the  value  of  the 

Extend  (X)  flag  from  the  contents  of  the  destination  operand.  The  subtraction  is  per- 
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formed  using  binary-coded  decimal  (BCD)  arithmetic.  The  operands  must  either  both  be 
data  registers  or  both  be  found  in  memory  using  address  register  indirect  with  predecre- 

ment. The  size  of  the  operation  is  restricted  to  a  single  byte;  however,  since  the  X  flag  is 
utilized,  you  can  use  several  consecutive  SBCD  instructions  to  implement  multiprecision 
BCD  arithmetic. 

Example: 

If  D5  contains  $57  (BCD  value  57),  D3  contains  $43  (BCD  value  43),  and  X  is  set,  after 

SBCD  D3,  D5 

D5  contains  $13. 

Sec  — Set  According  to  Condition 

Syntax: 
See  <ea> 

where  <ea>  is 

X Dn X (d8,An,Xn) #<data> 
An X (bd,An,Xn) (d16,PC) 

X (An) X ([bd,An,Xn],od) (d8,PC,Xn) 
X (An)+ X ([bd,An],Xn,od) (bd,PC,Xn) 
X 

-(An) 
X xxx.  L [(bd,PC,Xn),od] 

X (d16,An) X xxx.  L [(bd,PC),Xn,od] 

Instruction  Format: 

15 14 13 12 11      10       9  8 7 6 5       4  3 2       1  0 

0 1 0 1 Condition 1 1 
Effective  Address 

Mode 
Register 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  tests  the  state  of  the  specified  condition.  If  the  condition  is  true,  the 
processor  sets  the  byte  at  <ea>  to  all  ones;  if  the  condition  is  false,  the  processor  sets  the 
byte  to  all  zeros.  The  conditions  are  listed  in  Table  21-3. 

Example: 

If  the  Carry  and  Zero  flags  are  set,  then  after 

SLS  LOW_VAL 

the  byte  at  LOW_VAL  is  true  (all  ones). 
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Table  21 -3.  CC  Conditional  Tests 

Mnemonic(cc) Condition Condition  Field Test 

T True 
0000 1 

F False 0001 0 
HI High 0010 C  A  Z 
LS Low  or  same 001 1 

C  v  Z 
CC Carry  clear 0100 C 
CS Carry  set 0101 

C 

NE Not  equal 01 10 z 
EQ 

Equal 01  1  1 z 
VC Overflow  clear 1000 V 
VS Overflow  set 1001 V 
PL Plus 1010 N 

Ml Minus 1001 N 

GE Greater  or  equal 1 100 (N  A  V)  v  (N  A  V) 
LT Less  than 1  101 (N  A  V)  v  (N  A  V) 

GT Greater  than 1 1  10 (N  A  V  A  Z)  v  (N  A  V  A  Z) 
LE Less  or  equal 1111 Z  v  (N  A  V)  v  (N  A  V) 

STOP  — Load  Status  Register  and  Stop 

(Privileged) 

Syntax: 
STOP #<data> 

Instruction  Format: 

15      14      13      12      11      10  9 

I    0    I    1    I    0   I    0    I    1    I    1    I  1 

0 

13 

Condition  Codes: 

N  Set  according  to  immediate  data 

Z  Set  according  to  immediate  data 

V  Set  according  to  immediate  data 

C  Set  according  to  immediate  data 

X         Set  according  to  immediate  data 

Description: 

This  instruction  loads  the  16-bit  immediate  data  into  the  status  register  and  stops 
instruction  execution.  The  processor  will  not  resume  execution  until  it  receives  an 
interrupt  of  high  enough  priority  or  else  an  external  reset.  Note  that  if  the  trace  bit  is  set 
when  the  instruction  begins,  the  processor  will  process  the  exception  rather  than  stop. 

This  is  a  privileged  instruction;  if  you  attempt  to  execute  this  instruction  from  a  user-mode 
program,  exception  processing  will  result. 

Example: 

After  the  instruction 

STOP #$300 

the  processor  stops  execution.  An  interrupt  at  priority  4  or  higher  will  restart  the 
processor. 
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SUB  — Subtract  Binary 

Syntax: 
SUB.s  <ea>,  Dn 
SUB.s  Dn,  <ea> 

where  for  dst=Dn  <ea>  is 

X Dn 
X (d8,An,Xn) X #<data> 

X An X (bd,An,Xn) X (d16,PC) 
X (An) X ([bd,An,Xn],od) X (d8,PC,Xn) 
X (An)+ X ([bd,An],Xn,od) X (bd,PC,Xn) 
X 

-(An) 
X xxx.  L X [(bd,PC,Xn),od] 

X (d16,An) X xxx.  L X [(bd,PC),Xn,od] 

and  where  for  src^ Dn  <ea>  is 

Dn X (d8,An,Xn) #<data> 
An X (bd,An,Xn) (d16,PC) 

X (An) X ([bd,An,Xn],od) (d8,PC,Xn) 
X (An)+ X ([bd,An],Xn,od) (bd,PC(Xn) 
X 

-(An) 
X xxx.L [(bd,PC,Xn),od] 

X (d16,An) X xxx.L [(bd,PC),Xn,od] 

and  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

15 14 13 12 11      10  9 8       7  6 5       4  3 2       1  0 

1 0 0 1 
Data 

Op-Mode 
Effective  Address 

Register 
Mode 

Register 

Op-Mode  field:  Byte  Word  Long  Operation 
000  001  010  (<ea>)-(<Dn>)— •  <Dn> 
100  101  110         (<Dn>)-(<ea>)— <ea> 

Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 

V         Set  if  an  overflow  is  generated,  cleared  otherwise 

C         Set  if  a  borrow  is  generated,  cleared  otherwise 

X        Set  if  a  borrow  is  generated,  cleared  otherwise 

Description: 

This  instruction  subtracts  the  source  operand  from  the  destination  operand  and  stores  the 
result  in  the  destination.  At  least  one  of  the  operands  must  be  a  data  register.  Note  that 

when  the  source  is  an  address  register,  you  can  only  subtract  word  and  long-word  values; 
in  all  other  modes,  you  can  subtract  byte,  word,  and  long  word  values. 

Example: 

If  DO  contains  $2300  and  the  word  at  the  label  BALANCE  contains  $2500,  then  after 

SUB.W  DO,  BALANCE 

BALANCE  contains  $200. 
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SUBA  — Subtract  Address 

Syntax: 
SUBA.s  <ea>,  An 

where  <ea>  is 

X Dn X (d8,An,Xn) X #<data> 
X An X (bd,An,Xn) X (d16,PC) 
X (An) X ([bd,An,Xn],od) X (d8,PC,Xn) 
X (An)+ X ([bd,An],Xn,od) X (bd,PC,Xn) 
X 

-(An) X xxx.  L X [(bd,PC,Xn),od] 
X (d16,An) X xxx.  L X [(bd,PC),Xn,od] 

and  where  .s  =  .W  or  .L. 

Instruction  Format: 

15      14      13      12      11       10       9        8        7        6        5        4        3        2        1  0 

1 0 0 1 
Data 

Op-Mode 
Effective  Address 

Register 
Mode 

Register 

Op-Mode  field:  Word        Long  Operation 
011  111  (<ea>)-(<An>)^  <An> 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  subtracts  a  word  or  long-word  operand  from  the  value  in  an  address 
register.  The  result  in  the  address  register  is  always  32  bits  long;  the  processor  sign  extends 

16-bit  operands  to  32  bits  before  performing  the  subtraction. 

Example: 

If  AO  contains  $20000  and  REC_SIZ  is  a  constant  defined  as  $220,  then  after 

SUB.W  REC_SIZ,  AO 

AO  contains  $1FDE0. 

SUBI  — Subtract  Immediate 

Syntax: 

SUBI.s  #<data>,  <ea> 

where  <ea>  is 

X    Dn  X    (d8,An,Xn)  #<data> 
An  X    (bd,An,Xn)  (d16,PC) 
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X  (An)  X  ([bd(An,Xn].od)  (d8,PC,Xn) 
X  (An)+  X  ([bd,An],Xn,od)  (bd,PC,Xn) 
X  -(An)  X  xxx.L  [(bd,PC,Xn),od] 
X  (d16,An)  X  xxx.L  [(bd,PC),Xn,od] 

and  where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

15      14      13      12      11      10       9       8        7       6        5        4        3        2        1  0 
Effective  Address 

0 0 0 0 0 1 0 0 Size 
Mode  Register 

Size  field:  00  =  byte   01=  word    10=  long 

Condition  Codes: 

N        Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 

V        Set  if  an  overflow  is  generated,  cleared  otherwise 

C         Set  if  a  borrow  is  required,  cleared  otherwise 

X        Set  if  a  borrow  is  required,  cleared  otherwise 

Description: 

This  instruction  subtracts  the  immediate  data  from  the  destination  operand  and  stores  the 
difference  in  the  destination.  The  size  of  the  operation  matches  the  size  of  the  immediate 
data. 

Example: 

If  AO  points  to  a  long  word  containing  the  value  $12340000,  then  after 

SUBI.L  #1,(A0) 

the  word  at  AO  contains  S1233FFFF. 

SUBQ— Subtract  Quick 

Syntax: 
SUBQ.s  #<data>,  <ea> 

where  <ea>  is 

X    Dn  X    (d8,An,Xn)  #<data> 
X    An  X    (bd,An,Xn)  (d16,PC) 
X    (An)  X    ([bd,An,Xn],od)  (d8,PC,Xn) 
X    (An)+  X    ([bd,An],Xn,od)  (bd,PC,Xn) 
X    -(An)  X    xxx.L  [(bd,PC,Xn),od] 
X    (d16,An)  X    xxx.L  [(bd,PC),Xn,od] 

where  .s  =  .B,  .W,  or  .L. 
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Instruction  Format: 

15 14 13 12 11      10  9 8 7  6 5       4       3       2       1  0 

0 1 0 1 Data 1 Size 
Effective  Address 

Mode  Register 

Data  field:  Three  bits  of  immediate  data,  0,  1-7  representing  a  range  of  8, 
1  to  7  respectively. 

Size  field:  00  =  byte   01  =  word    10  =  long 

Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Set  if  result  is  zero,  cleared  otherwise 

V         Set  if  an  overflow  is  generated,  cleared  otherwise 

C         Set  if  a  borrow  is  required,  cleared  otherwise 

X         Set  if  a  borrow  is  required,  cleared  otherwise 

Description: 

This  instruction  subtracts  the  immediate  data  from  the  destination  operand.  Unlike  SU  BI, 

the  value  of  the  immediate  data  is  1-8  and  is  part  of  the  instruction  word  rather  than  an 
extension  word.  When  the  destination  is  an  address  register,  the  entire  register  is  used, 
regardless  of  the  operation  size. 

Example: 

If  DO  contains  $400,  then  after 

SUBQ.W  #4,  DO 

DO  contains  $3FC. 

SUBX  —  Subtract  With  Extend 

Syntax: 
SUBX.s  Dn,  Dm 
SUBX.s  -(An),  -(Am) 

where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

15 14 
13 12 11      10  9 8 7  6 5 4 3 2        1  0 

1 0 0 1 
Destination 

Register* 

1 Size 0 0 
R/M 

Source 

Register* 
Size  field:  00  =  byte   01  =  word    10  =  long 
R/M  field:  0  =  data  register  to  data  register    1  =  memory  to  memory 
*lf  R/M  =  0,  specifies  a  data  register 

If  R/M  =  1,  specifies  an  address  register  for  the  predecrement  addressing  mode. 
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Condition  Codes: 

N         Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z         Unchanged  if  the  result  is  zero,  cleared  otherwise 

V         Set  if  an  overflow  is  generated,  cleared  otherwise 

C         Set  if  a  borrow  was  generated,  cleared  otherwise 

X         Set  if  a  borrow  was  generated,  cleared  otherwise 

Description: 

This  instruction  subtracts  both  the  contents  of  the  source  operand  and  the  value  or  the 
Extend  (X)  flag  from  the  contents  of  the  destination  operand.  The  operands  must  either 
both  be  data  registers  or  both  be  found  in  memory  using  address  register  indirect  with 

predecrement. 
Example: 

If  DO  contains  $2000300,  Dl  contains  $4000300,  and  the  Extend  bit  is  set,  then  after 

SUBX DO,  D1 

Dl  contains  $1 FFFFFF. 

SWAP  — Swap  Register  Halves 

Syntax: 
SWAP Dn 

Instruction  Format: 

15 
14 

13 12 11 
10 

9 8 7 6 5 4 3 2        1  0 

0 1 0 0 1 0 0 0 0 1 0 0 0 
Data 

Register 

Condition  Codes: 

N         Set  if  bit  31  of  result  is  set,  cleared  otherwise 

Z         Set  if  result  is  zero,  cleared  otherwise 
V  Cleared 

C  Cleared 

X  Unaffected 

Description: 

This  instruction  swaps  the  high-  and  low-order  16-bit  values  in  the  given  data  register. 

Example: 

If  DO  contains  $12345678,  then  after 
SWAP  DO 

DO  contains  $56781234. 
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TAS  —  Indivisible  Test  and  Set 

Syntax: 
TAS  <ea> 

where  <ea>  is 

X Dn X (d8,An,Xn) #<data> 
An X (bd,An,Xn) (d16,PC) 

X (An) X ([bd,An,Xn],od) (d8,PC,Xn) 
X (An)+ X ([bd,An],Xn,od) (bd,PC,Xn) 
X 

-(An) X xxx.  L [(bd,PC,Xn)(od] 
X (d16,An) X xxx.  L [(bd,PC),Xn.od] 

Instruction  Format: 

15 14 13 12 11 
10 

9 8 7 6 5        4  3 2       1  0 

0 1 0 0 1 0 1 0 1 1 
Effective  Address 

Mode 
Register 

Condition  Codes: 

N  Set  if  high-order  bit  of  result  is  set,  cleared  otherwise 
Z  Set  if  result  is  zero,  cleared  otherwise 

V  Cleared 

C  Cleared 

X  Unaffected 

Description: 

This  instruction  tests  the  byte-sized  operand,  sets  the  N  and  Z  flags  appropriately,  and 
then  sets  the  high-order  bit  (bit  7)  of  the  operand  to  1 .  The  processor  uses  a  read-modify- 
write  bus  cycle;  this  means  that,  in  a  multiprocessor  system,  no  other  processor  can  gain 
control  of  the  bus  in  between  the  time  that  your  processor  tests  the  operand  and  the  time  it 
sets  the  operand.  This  instruction  is  useful  for  locking  data  commons  and  device  accesses 
in  multiprocessor  systems. 

Example: 

If  the  byte  at  the  label  LOCK  contains  $80,  then  after 

TAS  LOCK 

LOCK  still  contains  $80  and  the  N  flag  is  set. 

TRAP  — Trap  Through  Exception  Table 

Syntax: 
TRAP  #<vector> 

Instruction  Format: 

15 14 
13 12 11 

10 
9 8 7 6 5 4 3 2  1 0 

0 1 0 0 1 1 1 0 0 1 0 0 Vector 
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Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  pushes  the  program  counter  (pointing  at  the  instruction  following  TRAP) 
followed  by  the  status  register.  It  then  moves  the  long  word  from  the  exception  table  vector 

requested  by  the  immediate  data.  Table  14-1  shows  the  vector  table  entries  associated 
with  the  TRAP  instruction. 

Note  that  after  the  TRAP  is  executed,  the  processor  is  operating  in  supervisor  mode. 

Example: 

After  the  following  instruction, 

TRAP  #3 

the  processor  begins  execution  at  the  address  specified  by  trap  vector  3  (exception  vector 
35,  offset  $8C  in  the  vector  table). 

TRAPcc  — Trap  on  Condition 

(MC68020  only) 

Syntax: TRAPcc 

TRAP''  #<data> 

Attribute  size:  word,  long 

Instruction  Format: 

15 14 
13 12 11      10      9  8 7 6 5 4 3 2       1  0 

0 1 0 1 Condition 1 1 1 1 1 Mode 

Operand 

Mode  field:  010  =  word  operand  011  =  Long  word  operand  100  =  no  operand 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 
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V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 
This  instruction  tests  the  specified  condition  and  if  true,  it  traps  through  exception  vector 
7  (offset  $1C).  If  the  condition  is  false,  the  program  continues  execution  normally.  The 

conditions  possible  are  shown  in  Table  21-4. 

The  instruction  may  optionally  specify  a  word  or  long  word  of  immediate  data;  this  data 
has  no  significance  to  the  processor,  and  can  be  used  for  any  purpose.  The  exception  handler 
can  access  this  data  as  an  offset  to  the  stacked  program  counter.  (The  stacked  program  counter 
is  the  address  of  the  next  instruction,  not  the  immediate  data.) 

This  instruction  is  available  only  on  the  MC68020. 

Example: 

If  the  Carry  bit  is  set,  then  after 

TRAPCS 

the  processor  begins  exception  processing. 

Table  21  -4.  Trapcc  Conditional  Tests 

Mnemonic(cc) Condition Condition  Field Test 

HI High 0010 C  A  Z LS Low  or  same 001 1 C  v  Z 
CC Carry  clear 0100 C 
CS Carry  set 0101 C 
NE Not  equal 01 10 z 
EQ 

Equal 
01 1 1 z 

VC Overflow  clear 1000 V 
VS Overflow  set 1001 V 
PL Plus 1010 N 
Ml Minus 101  1 N 

GE Greater  or  equal 1 100 

(N  A 

V)  v  (N  a  V) 
LT Less  than 1  101 

(N  A 

V)  v  (N  a  V) 
GT Greater  than 1  110 

(N  A  V  A Z)  v  (N  A  V  "  I) LE Less  or  equal 1111 Z  v  (N a  V)  v  (N  A  V) 
F Never  true 

0001 
0 

T Always  true 0000 1 
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TRAPV  — Trap  on  Overflow 

Syntax: 
TRAPV 

Instruction  Format: 

15 14 13 12 11 
10 

9 8 7 6 5 4 3 2 1 0 

0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 

°  I 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  tests  the  state  of  the  Overflow  (V)  flag  and  traps  through  exception  table 
vector  7  (offset  $  1 C)  if  the  flag  is  set.  If  the  V  flag  is  clear,  program  execution  continues 
normally. 

Example: 

If  the  V  flag  is  set,  then  after 

TRAPV 

the  processor  begins  exception  processing. 

TST  — Test  an  Operand 

Syntax: 
TST.s  <ea> 

where  <ea>  is 
X Dn X (d8,An,Xn) 

*<data> 

An X (bd,An,Xn) X (d16,PC) 
X (An) X ([bd,An,Xn],od) X (d8,PC,Xn) 
x (Ar.)+ X ([bd,An],Xn,od) X (bd,PC,Xn) 
X 

-(An) 
X xxx.  L X [(bd,PC,Xn),od] 

X (dl6,An) X xxx.  L X [(bd,PC),Xn,od] 

and  where  .s  =  .B,  .W,  or  .L. 

Instruction  Format: 

15 14 13 12 
11 

10 
9 8 7  6 5       4  3 2       1  0 

0 1 0 0 1 0 1 Size Effective  Address 
0 Mode 

Register 
Size  field:  00  =  byte   01=  word    10  =  long 
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Condition  Codes: 

N         Set  if  high-order  bit  of  operand  is  set,  cleared  otherwise 
Z         Set  if  operand  is  zero,  cleared  otherwise 
V  Cleared 

C  Cleared 

X  Unaffected 

Description: 

This  instruction  tests  the  operand  and  sets  the  Negative  (N)  and  Zero  (Z)  bits  accordingly. 

The  operand  remains  unchanged. 

Example: 

If  the  long  word  contained  in  DO  is  $00000000,  then  after 

TST.L  DO 

the  Z  flag  is  set. 

UNLK  — Unlink  and  Deallocate  Stack 

Syntax: 
UNLK  An 

Instruction  Format: 

15 14 
13 12 11 10 9 8 7 6 5 4 3 2       1  0 

0 1 0 0 1 1 1 0 0 1 0 1 1 
Address 

Register 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  loads  the  stack  pointer  with  the  long  word  stored  in  the  given  address 
register.  A  long  word  at  the  new  stack  pointer  is  then  pulled  and  stored  in  the  same  address 

register.  When  executed,  this  instruction  removes  the  frame  created  by  the  LINK  instruc- 
tion. Refer  to  that  instruction  for  a  more  detailed  discussion  and  example. 

UNPK  — Unpack  BCD  (MC68020  only) 

Syntax: 

UNPK  -(An),  -(Am),  #<data> 
UNPK  Dn,  Dm,  #<data> 
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Instruction  Format: 

15 14 13 12 11      10  9 8 7 6 5 4 3 2       1  0 

1 0 0 0 Destination 

Register* 

1 1 0 0 0 
R/M Source 

Register* R/M  field:  0  =  data  register  to  data  register 
1  =  memory  to  memory 

*lf  R/M  =  0,  specifies  a  data  register 
If  R/M  =  1,  specifies  an  address  register  for  the  predecrement  addressing  mode. 

Condition  Codes: 

N  Unaffected 

Z  Unaffected 

V  Unaffected 

C  Unaffected 

X  Unaffected 

Description: 

This  instruction  unpacks  a  byte  of  data  containing  two  BCD  digits  into  two  bytes  of  data. 

It  then  adds  the  adjustment  to  the  two-byte  result.  This  instruction  is  unusual  in  that  its 
source  is  a  single  byte  but  its  destination  is  a  two-byte  value. 

UNPK  allows  you  to  convert  a  BCD  value  into  separate  bytes,  and,  with  the  adjustment, 
into  ASCII  or  EBCDIC  notations.  This  instruction  is  the  complement  of  the  PACK  instruction 
and  is  implemented  only  on  the  MC68020. 

Example: 

If  the  byte  pointed  to  by  AO  (after  decrement)  contains  $45,  then  after 

UNPK  -(AO), -(A  1),  #$30 

Al  points  to  a  word  containing  $3435  (ASCII  for  "45"). 



VI 

Appendices 

The  following  pages  summarize  the  MC68000  instruction  set.  Appendix  A  lists  the 

instructions  and  op-codes  alphabetically.  Appendix  B  lists  the  instructions  numerically  by 
op-code. 
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A 

Alphabetic  Listing  of  Instructions 

Mnemonic  Description  Opcode 

ABCD Add  decimaL  with  extend 1100 
xxxl  0000  xxxx 

ADO Add 1101 xxxx  xxxx  xxxx 
ADDA Add  address 1101 xxxx  xxxx  xxxx 
ADDI Add  immediate 0000 0110  xxxx  xxxx 
ADDQ Add  quick 0101 xxxO  xxxx  xxxx ADDX Add  extended 1101 xxxl  xxOO  xxxx 
AND AND  Logical 1100 

xxxx  xxxx  xxxx 
AND  I AND  imnediate 0000 0010  xxxx  xxxx 
ANDI AND  immediate  to  CCR 0000 0010  0011  1100 
AND  I AND  immediate  to  SR 0000 0010  0111  1100 
ASL Arithmetic  shift  Left 1110 xxxl  xxxO  Oxxx 
ASR Arithmetic  shift  right 1110 xxxO  xxxO  Oxxx 

Bcc 

Branch 0110 xxxx  xxxx  xxxx 
BCHG Test  bit  and  change 0000 xxxl  01 XX  xxxx 
BCLR Test  bit  and  cLear 0000 0001  10xx  xxxx BFCHG Test  bit  fieLd  and  change 1110 1010  11 xx  xxxx  0000  xxxx xxxx xxxx 
BFCLR Test  bit  field  and  clear 1110 

1100  11xx  xxxx  0000  xxxx xxxx xxxx 
BFEXTS Extract  signed  bit  field 1110 1011  11 xx  xxxx  Oxxx  xxxx xxxx xxxx BFEXTU Extract  unsigned  bit  field 1110 

1001  11 xx  xxxx  Oxxx  xxxx 
xxxx 

xxxx BFFFO Find  first  one  in  bit  field 1110 1101  11 xx  xxxx  Oxxx  xxxx xxxx xxxx BFINS Insert  bit  field 1110 1111  11 xx  xxxx  Oxxx  xxxx xxxx xxxx 
BFSET Set  bit  field 

1110 
1110  11xx  xxxx  0000  xxxx xxxx xxxx 

BFTST Test  bit  field 1110 1000  11 xx  xxxx  0000  xxxx xxxx xxxx 
BKPT Breakpoint 0100 1000  0100  1xxx 
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Mnemonic  Description  Opcode 

BSET Test  bit  and  set 0000  xxxl  11 xx  xxxx 
BSR Branch  to  subroutine 0110  0001  xxxx  xxxx DTCT Test  bit 0000  xxxl  OOxx  xxxx 
CALLM Call  module 0000  0110  11xx  xxxx 
CAS Compare  and  swap  one  operand 0000  1xx0  11 xx  xxxx  0000  OOOx  xxOO  Oxxx 
CAS2 Compare  and  swap  two  operands 0000  1xx0  1111  1100  xxxx  OOOx  xxOO  Oxxx  xxxx  OOOx  xxOO  Oxxx 
Crt< Check  against  bounds 0100  xxxx  xxxx  xxxx 
CHK2 Check  against  two  bounds 0000  OxxO  11 xx  xxxx  xxxx  1000  0000  0000 
CLR Clear  operand 0100  0010  xxxx  xxxx 
OP Compare 1011  xxxx  xxxx  xxxx 
CMP2 Compare  against  two  bounds 0000  OxxO  11 xx  xxxx  xxxx  0000  0000  0000 
CMPA Compare  address 1011  xxxx  xxxx  xxxx 
CMPI Compare  immediate 0000  1100  xxxx  xxxx 
CMPM Compare  memory 1011  xxxl  xxOO  1xxx 
DBcc Test,  decrement  and  branch r\A rvi                44on  #•  ...... 0101  xxxx  1100  1xxx 
DIVS Signed  divide 1000  xxxl  11 xx  xxxx 
DIVSL Long  signed  divide 0100  1100  Olxx  xxxx  Oxxx  1x00  0000  Oxxx 
DIVU Unsigned  divide 1000  xxxO  11 xx  xxxx 
DIVUL Long  unsigned  divide 0100  1100  Olxx  xxxx  Uxxx  UxuU  UUuu  uxxx 
EOR Exclusive  OR 1011  xxxx  xxxx  xxxx 
EORI Exclusive  OR  immediate 0000  1010  xxxx  xxxx 
EORI Exclusive  OR  immediate  to  CCR 0000  1010  0011  1100 
EORI Exclusive  OR  immediate  to  SR 0000  1010  0111  1100 
EXG Exchange  registers 1100  xxxl  xxxx  xxxx 
EXT Extend  sign 0100  1000  xxOO  Oxxx 
EXTB Extend  sign  of  byte  to  long 0100  1001  xxOO  Oxxx 
ILLEGAL Illegal  instruction 0100  1010  1111  1100 
JMP 

Jump 
0100  1110  11xx  xxxx 

JSR Jump  to  subroutine 0100  1110  10xx  xxxx 
LEA Load  effective  address 0100  xxxl  11 xx  xxxx 
LINK Link  and  allocate 0100  1x10  OlOx  xxxx 
LSL Logical  shift  left 1110  xxxl  xxxx  xxxx 
LSR Logical  shift  right 1110  xxxO  xxxx  xxxx 
MOVE Move  data OOxx  xxxx  xxxx  xxxx 
MOVE Move  from  CCR 0100  0010  11xx  xxxx 
MOVE Move  from  SR 0100  0000  11 xx  xxxx 
MOVE Move  to  CCR 0100  0100  11xx  xxxx 
MOVE Move  to  SR 0100  0110  11 xx  xxxx 
MOVE Move  user  stack  pointer 0100  1110  0110  xxxx 
MOVEA Move  address OOxx  xxxO  Oxxx  xxxx 
MOVEC Move  control  register 0100  1110  0111  101 x  xxxx  xxxx  xxxx  xxxx 
MOVEM Move  multiple  registers 0100  1x00  1xxx  xxxx 
MOVEP Move  peripheral 0000  xxxx  xxOO  1xxx 
MOVEQ Move  quick 0111  xxxO  xxxx  xxxx 
MOVES Move  address  space 0000  1110  xxxx  xxxx  xxxx  xOOO  0000  0000 
MULS Signed  multiply 1100  xxxl  11 xx  xxxx 
MULSL Long  signed  multiply 0100  1100  OOxx  xxxx  Oxxx  1x00  0000  Oxxx 
MULU Unsigned  multiply 1100  xxxO  11 xx  xxxx 
MULUL Long  unsigned  multiply 0100  1100  OOxx  xxxx  Oxxx  0x00  0000  Oxxx 
N3CD Negate  decimal  with  extend 0100  1000  OOxx  xxxx 
NEG Negate 0100  0100  xxxx  xxxx 
NEGX Negate  with  extend 0100  0000  xxxx  xxxx 
NOP No  operation 0100  1110  0111  0001 
NOT Logical  complement 0100  0110  xxxx  xxxx 
OR Inclusive  OR 1000  xxxx  xxxx  xxxx 
ORI Inclusive  OR  immediate 0000  0000  xxxx  xxxx 
ORI Inclusive  OR  immediate  to  CCR 0000  0000  0011  1100 
ORI Inclusive  OR  immediate  to  SR 0000  0000  0111  1100 
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Mnemonic      Description  Opcode 

rftLK. raCK  10  OLD 
PPA rUoll   CI  ICLLIVC   aUJI  Cm 
ixuoC  1 ncbci  CaICmIcii  ucviv.tr:> 

IVJlCllC    IC  1  L 
Pn+ate  1  »f t  uith  ovfpnH rvjlaic    LCI  I   Willi  CAICTIU 

pop Rn+a+ia  rinht ftUldic  1  i yi  i l DORY nuiaic  i  lyni  wiiri  cxicriu 
DTT> 

K  1  U kciuiti  au  ucaiiuuaic 
RTE Return  from  exception 
DTM 
k  in Ketum  Trofn  rnuuuic 
RTR Rptum  and  rpstorp  CCR 

RTS Return  from  subroutine 
SBCD Subtract  decimal  with  extend 
Sec Set  according  to  codes 
STOP Load  SR  and  stop  processor 
SUB 

Subtract 

SUBA Subtract  address 
SUBI Subtract  imnediate 

SUBQ Subtract  quick 
SUBX Subtract  with  extend 

SWAP Swap  register  halves 
TAS Test  and  set  operand 
TRAP Trap  through  vector  table 
TRAPcc Trap  on  condition 
TRAPV Trap  on  overflow 
TST Test  operand 
UNLK Unlink  stack 
UNPK Unpack  BCD 

1000  xxxl  0100  xxxx 
0100  1000  01 xx  xxxx 
0100  1110  0111  0000 
1110  xxxl  xxxx  xxxx 
1110  xxxl  xxxx  xxxx 
1110  xxxO  xxxx  xxxx 
1110  xxxO  xxxx  xxxx 
0100  1110  0111  0100 
0100  1110  0111  0011 
0000  0110  1100  xxxx 
0100  1110  0111  0111 
0100  1110  0111  0101 
1000  xxxl  0000  xxxx 
0101  xxxx  11 xx  xxxx 
0100  1110  0111  0010 
1001  xxxx  xxxx  xxxx 

1001  xxxx  xxxx  xxxx 
0000  0100  xxxx  xxxx 
0101  xxxl  xxxx  xxxx 
1001  xxxl  xxOO  xxxx 
0100  1000  0100  Oxxx 
0100  1010  11xx  xxxx 
0100  1110  0100  xxxx 
0101  xxxx  1111  1xxx 
0100  1110  0111  0110 
0100  1010  xxxx  xxxx 
0100  1110  0101  1xxx 
1000  xxxl  1000  xxxx 





B 

Numeric  Listing  of  Instructions 

Mnemonic  Description  Opcode 

ORI  Inclusive  OR  iirmediate  to  CCR  0000  0000  0011  1100 
0RI  Inclusive  OR  inmediate  to  SR  0000  0000  0111  1100 
ORI  Inclusive  OR  irrmediate  0000  0000  xxxx  xxxx 
BCLR  Test  bit  and  clear  0000  0001  10xx  xxxx 
ANDI  AND  irrmediate  to  CCR  0000  0010  0011  1100 
ANDI  AND  irrmediate  to  SR  0000  0010  0111  1100 
ANDI  AND  irrmediate  0000  0010  xxxx  xxxx 
SUBI  Subtract  irrmediate  0000  0100  xxxx  xxxx 
RTM  Return  from  module  0000  0110  1100  xxxx 
CALLM  Call  module  0000  0110  11 xx  xxxx 
ADDI  Add  irrmediate  0000  0110  xxxx  xxxx 
CMF2  Compare  against  two  bounds  0000  OxxO  11xx  xxxx  xxxx  0000  0000  0000 
CHK2  Check  against  two  bounds  0000  OxxO  11xx  xxxx  xxxx  1000  0000  0000 
EORI  Exclusive  OR  inmediate  to  CCR  0000  1010  0011  1100 
EORI  Exclusive  OR  inmediate  to  SR  0000  1010  0111  1100 
EORI  Exclusive  OR  irrmediate  0000  1010  xxxx  xxxx 
CMPI  Compare  irrmediate  0000  1100  xxxx  xxxx 
MOVES  Move  address  space  0000  1110  xxxx  xxxx  xxxx  xOOO  0000  0000 
CAS2  Compare  and  swap  two  operands  0000  1xx0  1111  1100  xxxx  OOOx  xxOO  Oxxx  xxxx  OOOx  xxOO  Oxxx 
CAS  Compare  and  swap  one  operand  0000  1xx0  11xx  xxxx  0000  OOOx  xxOO  Oxxx 
BTST  Test  bit  0000  xxxl  OOxx  xxxx 

475 



47  6    68000  Assembly  Language  Programming 

Mnemonic  Description 
Opcode 

BCHG  Test  bit  and  change  0000  xxxl  01 xx  xxxx 
BSET  Test  bit  and  set  0000  xxxl  11xx  xxxx 
MOVEP  Move  peripheral  0000  xxxx  xxOO  1xxx 
MOVEA  Move  address  OOxx  xxxO  Oxxx  xxxx 
MOVE  Move  data  OOxx  xxxx  xxxx  xxxx 
MOVE  Move  from  SR  0100  0000  11xx  xxxx 
INEGX  Negate  with  extend  0100  0000  xxxx  xxxx 
MOVE  Move  from  CCR  0100  0010  11 xx  xxxx 
CLR  Clear  operand  0100  0010  xxxx  xxxx 
MOVE  Move  to  CCR  0100  0100  11 xx  xxxx 
NEG  Negate  0100  0100  xxxx  xxxx 
MOVE  Move  to  SR  0100  0110  11  xx  xxxx 
NOT  Logical  complement  0100  0110  xxxx  xxxx 
mCO  Negate  decimal  with  extend      0100  1000  OOxx  xxxx 
SWAP  Swap  register  halves  0100  1000  0100  Oxxx 
BKPT  Breakpoint  0100  1000  0100  1xxx 
PEA  Push  effective  address  0100  1000  01  xx  xxxx 
EXT  Extend  sign  0100  1000  xxOO  Oxxx 
EXTB  Extend  sign  of  byte  to  long     0100  1001  xxOO  Oxxx 
ILLEGAL  Illegal  instruction  0100  1010  1111  1100 
TAS  Test  and  set  operand  0100  1010  11 xx  xxxx 
TST  Test  operand  0100  1010  xxxx  xxxx 
MULUL  Long  unsigned  multiply  0100  1100  OOxx  xxxx  Oxxx  0x00  0000  Oxxx 
MULSL  Long  signed  multiply  0100  1100  OOxx  xxxx  Oxxx  1x00  0000  Oxxx 
DIVLL  Long  unsigned  divide  0100  1100  Olxx  xxxx  Oxxx  0x00  0000  Oxx^ 
DIVSL  Long  signed  divide  0100  1100  Olxx  xxxx  Oxxx  1x00  0000  Oxxx 
TRAP  Trap  through  vector  table  0100  1110  0100  xxxx 
UMX  Unlink  stack  0100  1110  0101  1xxx 
MOVE  Move  user  stack  pointer  0100  1110  0110  xxxx 
RESET  Reset  external  devices  0100  1110  0111  0000 
NOP  No  operation  0100  1110  0111  0001 
STOP  Load  SR  and  stop  processor      0100  1110  0111  0010 
RTE  Return  from  exception  0100  1110  0111  0011 
RTD  Return  and  deallocate  0100  1110  0111  0100 
RTS  Return  from  subroutine  0100  1110  0111  0101 
TRAPV  Trap  on  overflow  0100  1110  0111  0110 
RTR  Return  and  restore  CCR  0100  1110  0111  0111 
MOVEC  Move  control  register  0100  1110  0111  101x  xxxx  xxxx  xxxx  xxxx 
JSR  Jump  to  subroutine  0100  1110  10xx  xxxx 
JMP  Jurrp  0100  1110  11xx  xxxx 
MOVEM  Move  multiple  registers  0100  1x00  1xxx  xxxx 
LINK  Link  and  allocate  0100  1x10  010x  xxxx 
LSL  Logical  shift  left  1110  xxxl  xxxx  xxxx 
LEA  Load  effective  address  0100  xxxl  11xx  xxxx 
CHK  Check  against  bounds  0100  xxxx  xxxx  xxxx 
ADDQ  Add  quick  0101  xxxO  xxxx  xxxx 
SUBQ  Subtract  quick  0101  xxxl  xxxx  xxxx 
DBcc  Test,  decrement  and  branch      0101  xxxx  1100  1xxx 
TRAPcc  Trap  on  condition  0101  xxxx  1111  1xxx 
Sec  Set  according  to  codes  0101  xxxx  11 xx  xxxx 
BSR  Branch  to  subroutine  0110  0001  xxxx  xxxx 
Bcc  Branch  0110  xxxx  xxxx  xxxx 
MOVEQ  Move  quick  0111  xxxO  xxxx  xxxx 
DIVU  Unsigned  divide  1000  xxxO  11xx  xxxx 
SBCD  Subtract  decimal  with  extend   1000  xxxl  0000  xxxx 
PACK  Pack  to  BCD  1000  xxxl  0100  xxxx 
UNPK  Unpack  BCD  1000  xxxl  1000  xxxx 
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Mnemonic  Description  Opcode 

DIVS Signed  divide 
1000 xxxl 11  XX xxxx 

OR Inclusive  OR 1UUU xxxx xxxx xxxx 
SUBX Subtract  with  extend 1001 XXX 1 

xxOO 
xxxx 

SUB Subtract 
1001 

xxxx xxxx xxxx 
SUBA Subtract  address IUU  1 xxxx xxxx xxxx 
CMPM Compare  memory 1 1 J I  I xxxl xxOO 1xxx 
PMDA LPlrA Compare  address iin  I xxxx xxxx xxxx 

EOR Exclusive  OR inn lul  I xxxx xxxx xxxx 
LOfnpare inn IU  I  I xxxx xxxx xxxx 

Mi  1  1 1 PTUUJ Unsigned  multiply 11m I  IUU xxxO 11  vv I  I XX xxxx 
ABCD AHH  Hprifml   u/i'th  pvt-pnH rVW    Utb  1  IIKJ  L     W  1  LM     CA  l\J 1100 0000 
MULS Signed  multiply 1100 xxxl 11  XX xxxx 
EXG Exchange  registers 

1100 
XXX 1 

AfX) 11m xxxx 
ADOX ArH  pytprvWH 1101 

xxxl Ar>r> ArH 11(71 xxxx XXXX xxxx 
nvvR Add  address 11m I  lul xxxx XXXX xxxx 
DCTCT Br  Ibl lest  Dit  neLu I  I  IU mm IUUU 11  vv I  I XX xxxx 

nrm UUUU xxxx xxxx 
xxxx 

drtA IU Extract  unsigned  bit  field inn I  I  IU IUU  I 11  vv I  I XX xxxx Oxxx xxxx xxxx xxxx 
DrLnu Test  bit  field  and  change mn I  I  IU ILTIU 11  vv I  I XX xxxx mm UUUU xxxx xxxx 

xxxx 
RCPYTQ Extract  signed  bit  field I  I  IU inn IU  I  I 11  vv I  I XX xxxx 

Oxxx xxxx 
xxxx xxxx 

BFCLR Test  bit  field  and  clear 1110 1100 11xx xxxx 0000 xxxx xxxx xxxx 
BFFFO Find  first  one  in  bit  field 1110 1101 11xx xxxx 

Oxxx 
xxxx xxxx xxxx 

BFSET Set  bit  field 1110 1110 11xx xxxx 0000 
xxxx 

xxxx xxxx 
BFINS Insert  bit  field 1110 1111 11 XX xxxx Oxxx xxxx xxxx xxxx 
ASR Arithmetic  shift  right 1110 xxxO xxxO Oxxx 
LSR Logical  shift  right 1110 xxxO xxxx xxxx 
ROR Rotate  right 1110 xxxO xxxx xxxx 
RORX Rotate  right  with  extend 1110 xxxO xxxx xxxx 
ASL Arithmetic  shift  left 

1110 xxxl xxxO 
Oxxx ROL Rotate  left 1110 xxxl xxxx xxxx 

ROLX Rotate  left  with  extend 1110 xxxl xxxx xxxx 
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A 

A-line  instructions,  216 
ABCD,  371 
Absolute  addressing,  39 
ADD,  372 
Add  instructions 

address,  373 

binary,  372 
binary  coded  decimal,  371 
immediate,  374 

quick,  375 
with  extend,  376 

ADDA,  373 
ADDI,  374 
Addition,  62,  68,  77,  81,  132,  134,  135, 

185 

ADDQ,  375 
Address  errors,  217,  228 

Address  register  direct  addressing,  38 
Address  register  indirect  addressing,  40 

with  displacement,  42 
with  displacement  and  index,  44 
with  postincrement,  42 

Address  register  indirect  with 
predecrement,  41 

Address  registers,  19,  21 
Addressing  modes,  36 
ADDX,  376 
Alternate  function  code  registers,  26 
ALU  (arithmetic  logic  unit),  19 
AND,  376 
And  instructions 

immediate,  377 
to  the  condition  codes,  378 
to  the  status  register,  379 

ANDI,  377 
to  CCR,  378 
to  SR,  379 

Arithmetic  shift,  380 
Arrays,  75 

multidimensional,  138 
ASCII,  95 

ASL,  380 
ASR,  380 
Assembler  mnemonics,  369 
Assemblers,  4 

errors,  340 
function,  9 

types,  10 Assembly  language 
advantages,  6 

applications,  8 
format,  10 

Autovectoring,  219,  235 

B 

Baudot,  95 

Bcc,  382 

BCD  (binary  coded  decimal) 
instructions,  34 

BCHG,  383 
BCLR,  384 
BFCHG,  384 
BFCLR,  386 
BFEXTS,  387 
BFEXTU,  388 
BFFFO,  389 
BFINS,  390 
BFSET,  391 
BFTST,  392 

Binary  digits,  4 
Bit  field  instructions,  33,  197 

extraction,  387,  388 

insert,  390 
scan, 389 

test,  392 

479 



48  0    68000  Assembly  Language  Programming 

Bit  field  instructions,  continued 
test  and  change,  385 
test  and  set,  391 
test  clear,  386 

Bit  manipulation  instructions,  32, 
108 

Bit  test  instructions 

test,  397 
test  and  change,  383 
test  and  clear,  384 
test  and  set,  394 

Bits,  4 
BKPT,  393 
Boolean  arithmetic  instructions,  31 
Branch,  382 
Branch  to  subroutine,  396 

Breakpoint  Instruction,  393 
Breakpoints,  218 

debugging,  324 
inserting,  324 
precautions,  335 
setting  and  clearing,  324 

BSET,  394 
BSR,  396 
BTST,  397 
Bubble  sort,  162 
Bus  errors,  220,  229 
Buses,  19,  201 
Byte  disassembly,  65 

C 

CAAR  (cache  address  register),  28 
Cache  control,  27 
CACR  (cache  control  register),  28 
Call  module,  398 

Call-by-name,  176 
Call-by-value,  176 
CALLM,  398 

Carry  bit,  23 
CAS,  399 
CAS2,  400 
Case  structure,  292 
CCR  (condition  code  register),  23 
Check  bounds,  402,  403 
Checklist,  334 
CHK,402 
CHK2,  403 

Clear,  404 

CLR,  404 
CMP,  405 
CMP2,  408 
CMPA,  406 
CMPI,407 
CMPM,  408 

Coding,  259 
Comments,  15,  54,  312 
Communication  devices,  202 

Compare  instructions 
address,  406 
binary,  405 
bounds,  408 

compare  and  swap,  399,  400 
immediate,  407 
memory,  408 

Comparison,  66,  86 

Complement,  442 
Conditional  assembly,  14 
Constant  definition,  12 
Conversion 

ASCII  to  decimal,  122 
BCD  to  decimal,  124 

binary  to  ASCII,  127 

decimal  to  seven-segment,  119 
hexadecimal  to  ASCII,  118,  179, 

182 

Coprocessor  control  instructions, 
36 

CPU  (central  processing  unit),  19 
CPU  support  peripherals,  203 

CPU-peripheral  interface,  203 
Cross  assemblers,  10 

D 

Data  definition,  12 
Data  movement,  30,  59,  425 

Data  register  direct  addressing,  38 
Data  registers,  19,  21 
Data  space,  224 
Data  structures,  160,  306 
DBcc,  409 

DC  (define  constant  data),  55,  122 
Debugging,  259,  323 
Decimal  precision,  135 
Device  controllers,  203 



Direct  addressing,  37 
Directives,  10,  12,  55 

Divide,  signed,  411 
Divide,  unsigned,  412 
Division,  143 
DIVS,  411 
DIVSL,  411 
DIVU,  412 
D1VUL,  412 

DMA  (direct  memory  access),  206, 
208 

Do-until  structure,  291 
Do-while  structure,  291 
Documentation,  260,  311 

importance  of,  322 
Documentation  package,  321 
DS  (define  storage),  56 

E 

EBCDIC,  95 
Effective  address,  36,  76,  365,  421, 

447 

END  (end  of  program),  56 
EOR,  414 
EORl,415 
EOR1  to  CCR,  416 
EOR1  to  SR,  416 

EQU  (equate),  56 
Errors 

assembler,  340 

exception  processing,  341 
handling,  262 
initialization,  335 

input/ output,  339 
looping,  336 
processing,  337 
string  manipulation,  339 

Example  format,  53 
Exception  initialization,  236 
Exception  priorities,  214,  229 
Exception  processing,  211,  232,  233,  234 
Exception  processing  sequences,  213 
Exception  types,  213,  228 
Exception  vector  table,  211,  230 
Exceptions,  225 
Exchange  registers,  417 

Index  481 

Exclusive  or  instructions 
binary,  41 4 
immediate,  415 
to  the  condition  codes,  416 
to  the  status  register,  416 

EXG,  417 
Expressions,  55 
EXT,  418 
EXTB,  418 
Extend  bit,  23 
External  definition,  13 

F 

F-line  instructions,  216 
Factorials,  69,  187 
File  inclusion,  14 

Flags,  clearing  and  setting,  133 
Flowcharting,  276 

advantages,  276 
as  documentation,  318 
disadvantages,  276 
examples,  278 

Format  error,  218 

H 

Hashing,  149 

High-level  languages,  3 
advantages,  6 

applications,  7 
disadvantages,  6 

Human  factors,  263 

I 

If-then-else  structure,  290 
ILLEGAL,  418 

Illegal  instructions,  215,  228,  418 
Immediate  addressing,  39 

Implicit  addressing,  37 
Information  hiding,  288 

Inputs /Outputs  in  design,  261,  262 
Instruction  set,  30 

alphabetic  order,  471 
encoding,  365 
format,  363 
numeric  order,  475 

Instruction  traps,  215 
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Integer  arithmetic  instructions,  31 
Interrupt  enabling  and  disabling,  227 
Interrupt  mask  bits,  23 
Interrupt  system  characteristics,  226 
Interrupts,  206,  219,  225,  227,  229 

J 

JMP,  419 
JSR,  420 
Jump,  419 
Jump  table,  165 
Jump  to  subroutine,  420 

L 

Labels,  11,  54 
Library  routines,  320 

LIFO  (last-in,  first-out),  22 
LINK,  421 
Link  and  allocate  space,  421 
Linkers,  10 

Listing  control  directives,  14 
Lists 

doubly-linked,  158 
entry,  147 
linked,  156 
searching,  150 

Load  effective  address,  421 
Logic  analyzer,  333 
Logical  and,  376 
Loops,  75 
LSL,  423 
LSR,  423 

M 

Machine  architecture,  19 
Machine  language,  4 
Macro  assemblers,  10 
Macros,  13 
Maintenance,  260 
Maintenance  manual,  322 
Master  bit,  26 
Memory 

access  sizes,  28 
arrangement,  28 
byte  ordering,  28 

Memory  dump,  330 
Memory  indirect  addressing,  47,  196 
Memory  indirect  post  indexed,  47 

Memory  indirect  preindexed,  48 
Memory  maps,  319 
MMU  (memory  management  unit),  220 
Mnemonics,  4,  11,  54 

Modes  of  operation,  227 
Modular  programming,  285 

advantages,  285 
disadvantages,  285 

examples,  286 

principles,  286 
MOVE,  425 

from  CCR,  427 
from  SR,  428 

to  CCR,  428 
to  SR,  429 

MOVEA,  426 
MOVEC,  431 
MOVEM,  432 
MOVEP,  433 

MOVEQ,  434 
MOVES,  434 
MOVE  USP,  430 
Move  instructions 

address  space,  434 
from  condition  codes,  427 
from  status  register,  428 

multiple  registers,  432 

peripheral  data,  433 

quick,  434 to  address  register,  426 
to  condition  codes,  428 
to  status  register,  429 

to/ from  control  register,  431 
to/ from  user  stack  pointer,  430 

MULS,  436 

Multiplication,  138,  139 

Multiply,  signed,  436 
Multiply,  unsigned,  438 
Multiprecision  arithmetic,  131 
Multiprocessor  control  instructions,  36 
MULU,  438 

N 

NBCD,  439 
NEG,  440 

Negate,  440 
Negate  binary  coded  decimal,  439 
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Negative  bit,  23 
NEGX,  440 

No  operation,  441 
NOP,  441 
Normalization,  90 
NOT,  442 
Notation,  54 

O 

Object  code,  10 
Off-line  storage,  202 
On-line  memory,  201 

One's  complement,  61 
Operands,  9,  12 
Operator  interaction,  263 
OR,  443 
OR  to  CCR,  445 
OR  to  SR,  445 
Or  instructions 

immediate,  444 
to  condition  codes,  445 

to  status  register,  445 
ORG  (origin),  56 
OR1,  444 
Overflow  bit,  23 

P 

PACK,  446 

Pack  binary  coded  decimal,  446 
Parameter  lists,  173,  319 

Parity,  106 
PC  (program  counter),  22 
PEA,  447 
Peripherals,  19,  201 
Polled  I/O,  206,  226 
Position  independent  code,  39,  177 
Priorities,  23,  226 

Privilege  violations,  20,  228 
Privileged  instructions,  20,  228 
Problem  definition,  259,  261 
Processing  section,  262 
Program  control  instructions,  34 
Program  counter  indirect  with 

displacement,  45 
Program  counter  indirect  with 

displacement  and  index,  46 
Program  counter  memory  indirect 

postindexed,  49 

Program  counter  memory  indirect 

preindexed,  50 
Program  design,  259 
Program  development,  15 
Program  format,  57 
Program  logic  manual,  322 
Program  sections,  13 
Program  space,  224 
Push  effective  address,  447 

Q 

Queues,  156 
R 

Radices,  4,  55 

RAM  (random  access  memory),  19,  201 

Read-modify-write  cycle,  400,  463 
Real  time  clock,  245 

Redesign,  260 
Register  dump,  326 
Register  indirect  addressing,  40 
Reset  exception,  222,  229 
Reset  external  devices,  448 
RESET  instruction,  448 
Return  and  deallocate,  452 
Return  and  restore  condition  codes,  454 
Return  from  exception,  452 
Return  from  module,  453 
Return  from  subroutine,  454 
ROL,  448 

ROM  (read  only  memory),  201 
ROR,  448 
Rotate,  448,  450 
ROXL,  450 
ROXR,  450 
RTD,  452 
RTE,  452 
RTM,  453 

RTR,  454 
RTS,  454 
Running  the  program,  57 

S 

SBCD,  455 
Scaled  indices,  195 
Scaling,  44 

Sec,  456 
Self-documenting  programs,  311 
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Set  according  to  condition  codes,  456 
Shift,  423 
Shift  and  rotate  instructions,  32,  64, 

381,448,450 

Sign  extension,  21,  418 
Single  stepping,  329 
Software  development  stages,  257 
Software  simulation,  332 
Sorting,  161 
Source  code,  9 
SRAM  (static  random  access  memory), 

201 

Stack  frames,  214 
Stack  pointer,  25,  27 
Stacks,  22,  160,  421 
Standard  documentation  forms,  321 
Status  register,  23,  26 
Status/ control  registers,  19,  204 
STOP,  457 

Stop  execution,  457 
Storage  devices,  201 
Strings,  95 

comparison,  109 
length,  97 
search,  102 
substitution,  103 

Structured  programming,  289 
advantages,  293 
as  documentation,  318 

disadvantages,  294 
examples,  293,  295 
rules,  300 

Structured  testing,  358 
SUB,  458 
SUBA,  459 
SUBI,459,  460 
Subroutines,  173 

recursive,  178 
reentrant,  177 
relocatable,  177 

Subtraction  instructions 
address,  459 
binary,  458 
binary  coded  decimal,  455 
immediate,  459 

quick,  460 
with  extend,  461 

SUBX,  461 

Supervisor  bit,  23 
Supervisor  mode,  20 
SWAP,  462 

Swap  register  halves,  462 
System  control  instructions,  35 

T 

Table  lookup,  121 

Tables,  147 
TAS,  463 
Test,  decrement  and  branch,  409 

Test  operand,  466 
Test  and  set,  463 

Testing,  260,  357 
aids,  358 
data,  358 
rules,  360 

structured  methods,  358 

Top  down  design,  301 
disadvantages,  301 
examples,  302 

Totaling,  84 
Trace  bit,  23,  26 

Tracing,  218,  329 
TRAP,  463 

Trap  on  condition,  464 
Trap  on  overflow,  466 
Trap  through  exception  table,  463 
TRAPcc,  464 
TRAPV,  466 
TST,  466 

I 

Unimplemented  instructions,  215,  228 
Unlink  and  deallocate  stack,  467 
UNLK,  467 

Unpack  binary  coded  decimal,  467 
UNPK,  467 
User  mode,  20 

User's  guide,  322 

V 

Vector  base  register,  26 
Vector  table,  212,  230 
Vectoring,  226 
Virtual  Memory,  220 

Z 

Zero  bit,  23 
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Anyone  using,  designing,  or  simply  interested  in  an 
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and  operating-system  interfacing.  You'll  also  examine statistics,  encryption  and  compressed  data  formats, 
random  numbers  and  simulations,  expression  parsers, 
converting  C  and  BASIC  to  Pascal,  efficiency,  porting and  debugging. 
$18.95p 

0-07-881220-8,  350pp.,  73kx9'U 

Turbo  Pascal @  Library 
Kris  Jamsa  and  Steven  Nameroff 
This  library  of  programming  tools  enables  Turbo 
Pascal ®  users  to  write  more  effective  programs  that 
take  full  advantage  of  Borland's  best-selling  compiler. In  this  varied  collection  there  are  utility  routines  for 
Pascal  macros  as  well  as  routines  for  string  and  array 

manipulation,  records,  pointers,  and  pipes.  You'll  also find  I/O  routines  and  a  discussion  of  sorting  that 
covers  bubble,  shell,  and  quick-sort  algorithms.  In 
addition,  the  authors  provide  routines  for  the  Turbo 
Toolbox "  and  the  new  Turbo  Graphix "  package.  Turbo 
Pascal"  Library  complements  two  other  Osborne 
tutorials,  Using  Turbo  Pascal^  and  Advanced 
Turbo  Pascal f  and  provides  programmers  with 
an  excellent  resource  of  practical  tools. S18.95p 

0-07-881238-0,  300  pp.,  73kx9'U 

A  User  Guide  to  the  UNIX™  System 
(2nd  Edition) 
by  Dr.  Rebecca  Thomas  and  Jean  Yates 

Now  the  best-selling  User  Guide  to  the  UNIX1" System  has  been  revised  and  expanded  to  cover 
applications  of  the  UNIX™  operating  system  for  Bell 
Laboratories'  New  System  V  and  Berkeley  UNIX.  Twelve extensive  tutorials  take  you  from  initial  log  on  to 
advanced  program  control  and  input/output  proce- 

dures. You'll  find  special  emphasis  given  to  word processing  and  to  the  most  commonly  used  UNIX 
system  commands.  Error  messages  are  fully  explained, 
and  a  System  Administration  appendix  tells  you  how 



to  oversee  the  system's  operation.  Whether  you're already  familiar  with  UNIX  or  just  getting  acquainted, 
this  fully  illustrated  guide  makes  an  excellent 
reference  tool. 
$18.95  p 
0-07-881109-0.  520  pp..  7<hx9>U 

Advanced  Programmer's  Guide  to 
UNIX™  System  V by  Rebecca  Thomas,  Ph.D.,  Lawrence  R.  Rogers, 
and  Jean  L.  Yates 

C  programmers  who  already  know  UNIX™  funda- mentals can  use  this  guide  to  write  more  effective 
programs  with  the  software  tools  in  UNIX  System  V. 
Thomas  and  Yates,  two  renowned  names  in  the  com- 

puter industry  and  the  authors  of  A  User  Guide  to 
the  UNIX1"  System,  lend  their  expertise  to  help  you develop  sophisticated  skills.  This  book  explains  and 
illustrates  the  use  of  the  Bourne  and  C  shells,  text 
editors,  the  C  compiler,  library  archives,  utilities,  sub- 

routines, and  system  calls.  You'll  also  learn  about  the new  interprocess  communication  features,  which  are 
important  in  designing  commercial  applications 
software. 
$21.95p 
0-07-881211-9.  560  pp..  73lsx9'U 

The  Practical  Guide  to  Local  Area 
Networks,  Covers  IBM   &  Compatible 
Computers 
Rowland  Archer 

You  can  gamble  your  company's  money  on  a  local area  network. .  .or  you  can  read  this  book  first. 
Deciding  which  local  area  network  is  right  or  you 
doesn't  have  to  be  a  difficult  process.  With  The 

Practical  Guide  to  Local  Area  Networks,  you'll 
be  prepared  to  evaluate  and  select  the  LAN  that's  best for  your  business  needs.  LAN  specialist  Rowland 
Archer  guides  you  through  the  process  of  planning 
your  LAN  installation,  pointing  out  the  advantages  and 
potential  pitfalls  every  step  of  the  way.  Archer  then 
applies  the  criteria  he  has  developed  to  five  of  the 
most  popular  LANs  available  for  the  IBM H  PC  and 
compatible  computers:  IBM*  PC  Network,  3Com Ethernet:  Corvus  Omninet;  Orchid  PCnet;  and  Novell 
NetWare!"  With  Archer's  advice  and  insights  in  The Practical  Guide  to  Local  Area  Networks,  you, 
too,  can  become  a  LAN  expert. 
$21.95p 
0-07-881190-2.  250  pp..  Q'hx&U 

Micro-to-Mainframe  Links 
by  Ronald  F.  Kopeck 

Here's  a  book  that  sorts  out  all  the  complex  issues involved  in  linking  microcomputers  to  mainframes  for 
sophisticated,  high-powered  applications.  With  Micro- 
to-Mainframe  Links,  data  processing  and  communi- 

cations professionals  can  fully  understand  the  major 
considerations  behind  PC-to-mainframe  integration. 
A  concise,  detailed  text  thoroughly  explains  the  plan- 

ning and  evaluation  process  used  in  determining  how 
PC-to-mainframe  linking  fits  into  your  office  environ- 

ment. Data  transfer,  security,  and  use  of  existing 
networks  are  also  discussed.  You'll  find  out  about  link products  and  the  real  and  hidden  costs  of  linking,  as 

well  as  maintenance  and  service.  And  you'll  learn about  monitoring,  the  safe  ways  to  begin  the 
PC-to-mainframe  link  by  establishing  and  evaluating 
tests  and  measurements.  Kopeck,  a  widely-known 
consultant  and  editor  of  Micro-to-Mainframe  Link 
News,  draws  on  his  extensive  knowledge  of  this 
field  to  bring  you  the  most  comprehensive  coverage 

possible. $18.95  p 
0-07-881228-3.  300pp..  73kx&U 

Available  at  fine  bookstores  and  computer  stores  everywhere. 

For  a  complimentary  catalog  of  all  our  current  publications  contact: 

Osborne/ McGraw-Hill,  2600  Tenth  Street,  Berkeley,  CA  94710 

Phone  inquiries  may  be  made  using  our  toll-free  number.  Call  800-227-0900  or 

800-772-2531  (in  California).  TWX  910-366-7277. 

Prices  subject  to  change  without  notice. 
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68000 

ASSEMBLY  LANGUAGE 

PROGRAMMING 

This  classic  on  assembly  language  programming  for  the  68000  microprocessor  has  been 

revised  to  provide  complete  coverage  of  the  entire  68000  family,  including  the  68010  and 
68020  chips. 

Every  instruction  you  need  to  program  in  assembly  language  is  thoroughly  described.  Fully 

debugged,  practical  programming  examples  with  solutions  in  both  object  code  and  source 

code  are  used  throughout  the  text  to  illustrate  techniques. 

68000  Assembly  Language  Programming,  Second  Edition  offers  detailed  instructions 
for  using 

■  Assembler  conventions 

■  Loops,  character-coded  data,  code  conversion 

■  Parameter-passing  techniques 
■  Subroutines 

■  I/O  device  programming  and  interfacing  methods 

■  Software  design,  documentation,  debugging  and  testing 

■  68000, 68008, 68010,  and  68020  instruction  sets. 

If  you're  designing  software  for  the  Macintosh,™  Commodore  Amiga™  Atari  "  ST,™  Altos R 

3068,  Tandy®  6000,  or  other  68000-based  computers,  you'll  find  essential  information 
in  this  lasting  reference. 

Lance  A.  Leventhal  is  the  author  of  the  Osborne/McGraw-Hill  assembly  language  programming 

series  that  covers  the  6800, 6809, 8080A/8085,  Z80,R  and  Z8000 R  microprocessors.  Leventhal 
is  a  partner  in  Emulative  Systems  Company,  a  San  Diego-based  consulting  firm  specializing 
in  microprocessor  design  and  programming. 

Doug  Hawkins,  vice  president  of  Engineering  for  Phoenix  Digital  Corporation,  holds  a  BSEE  degree 

from  Michigan  State  University,  and  MSEE  and  MBA  degrees  from  Arizona  State  University. 

Gerry  Kane  is  co-author  of  the  68000  Microprocessor  Handbook,  Second  Edition,  Osborne  4-  &  8-Bit 
Microprocessor  Handbook,  and  Osborne  16-Bit  Microprocessor  Handbook. 

William  D.  Cramer  is  co-author  of  the  68000  Microprocessor  Handbook,  Second  Edition,  and 
MacTelecommunications. 

■ f 

Macintosh  is  a  trade 
Commodore  Amiga  i 
Atari  is  a  registere 
Altos  is  a  register 
Tandy  is  a  register] 
Z80and  Z8000, 
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