
MICROPROCESSOR
ARCHITECTURE,

SOFTWARE,
AND INTERFACING

TECHNIQUES

WALTER A.TRIEBEL
AVTAR SINGH

C o n ten ts

PREFACE

1 INTRODUCTION TO MICROPROCESSORS

AND MICROCOMPUTERS
1.1 In troduction 1
1.2 The D igital Com puter 2
1.3 M ainframe Computers, M in icom puters, and

M icrocom puters 2
1.4 Hardware Elements o f the D igital Com puter

System 7
1.5 General A rch itecture o f a M icrocom puter System 9
1.6 Types o f M icroprocessors and Single-Chip

M icrocom puters 1 1

2 THE 68000 MICROPROCESSOR

2.1 In troduction 15
2 .2 The 6 8 0 0 0 M icroprocessor 15
2 .3 Interfaces of the 6 8 0 0 0 M icroprocessor 17
2 .4 Clock Input and W aveform 23
2.5 Internal Registers o f the 6 8 0 0 0 M icroprocessor 23
2 .6 Instruction Execution Control 27

3 68000 MICROPROCESSOR PROGRAMMING 1

3.1 In troduction 31
3 .2 Softw are Model o f the 6 8 0 0 0 M icroprocessor 31
3 .3 Assem bly Language and Machine Language 35

viii Contents

3.4 The Operand Addressing Modes of the 68000
Microprocessor 37

3.5 Instruction Set 57
3.6 Data Transfer Instructions 57
3.7 Integer Arithmetic Instructions 67
3.8 Decimal Arithmetic Instructions 74
3.9 Logic Instructions 79
3.10 Shift and Rotate Instructions 82

68000 M ICROPROCESSOR PROGRAM M IN G 2

4.1 Introduction 90
4.2 Compare and Test Instructions 90
4.3 Jump and Branch Instructions 95
4.4 The Test Condition, Decrement, and Branch

Instruction and Programs Involving Loops 100
4.5 Subroutines and Subroutine-Handling Instructions 1 09
4.6 Bit-Manipulation Instructions 1 1 7

USING THE MC68000 EDUCATIONAL

M ICROCOM PUTER FOR PROGRAM DEVELOPMENT

5.1 Introduction 122
5.2 The 68000 Microcomputer Development System 123
5.3 The Monitor Program 126
5.4 The Monitor Commands 127
5.5 Register Display/Modify Commands 1 32
5.6 Memory Display/Modify/Search Commands 135
5.7 Commands for Control of I/O Resources 143
5.8 Assembling Instructions and Programs 146
5.9 Program Execution Control Commands 1 54
5.10 Executing a Program 1 60
5.1 1 Debugging a Program 162

M EM ORY AND INPUT/OUTPUT INTERFACES

OF THE 68000 M ICROPROCESSOR

6.1 Introduction 170
6.2 Asynchronous Memory and I/O Interface 171
6.3 Address Space and Data Organization 171
6.4 Dedicated and General Use Memory 176
6.5 Program and Data Storage Memory and the Function

Codes 176
6.6 Memory and I/O Read Cycle Timing 178
6.7 Memory and I/O Write Cycle Timing 1 80
6.8 The User and Supervisor Stacks 183
6.9 64K-Byte Software-Refreshed Dynamic RAM

Subsystem 184

Contents ix

6 .1 0 An I/O Instruction — MOVEP 187
6.11 The 6821 Peripheral Interface Adapter 188
6 .1 2 Dual 16-Bit Ports for the 6 8 0 0 0 M icrocomputer

Using 6 8 2 1 s 192
6 .1 3 Synchronous M emory and I/O Interface 196
6 .1 4 Serial Communicat ion Interface 2 0 0
6 .1 5 The 6 8 5 0 Asynchronous Communicat ions Interface

Adapter 20 8
6 .1 6 Special-Purpose Interface Controllers 2 1 4

7 EXCEPTION PROCESSING

OF THE 68000 M IC RO PRO CESSO R 235

7.1 Introduction 2 3 5
7.2 Types of Exceptions 2 3 6
7.3 Exception Vector Table 2 3 6
7.4 Exception Priorities 2 3 8
7.5 External Hardware Interrupts 2 3 9
7.6 General Interrupt Processing Sequence 2 4 2
7.7 General Interrupt Interface of the 6 8 0 0 0 2 4 5
7.8 A utovec to r Interrupt Mechanism 24 7
7.9 A utovec to r Interface Support Circuit 2 4 8
7 .1 0 Exception Instructions 2 4 8
7.1 1 Bus Error 25 2
7 .1 2 Reset Exception 2 54
7.1 3 Internal Exception Functions 2 5 5

THE H A R D W A R E OF THE MC68000

EDU CAT ION AL M IC RO CO M PU T ER 260

8.1 Introduction 2 6 0
8 .2 The M icrocom puter of the M C 6 8 0 0 0 Educational

M icrocomputer Board 2 6 0
8 .3 Clock Generator Circuitry 2 7 2
8 .4 Interrupt Interface 2 7 3
8 .5 Program and Data Storage Memory 2 7 9
8 .6 Parallel and Serial I/O Interfaces 29 3

B IB L IO G RA PH Y 311

68230 DATA SHEET 325

ANSW ERS TO SELECTED PROBLEM S 313

INDEX 357

THE 68000 MICROPROCESSOR
A rchitecture , Soft w a re ,

a n d Interfacing T e c h n iq u es

Walter A. Triebel

Avtar Singh, Ph.D.

PRENTICE-HALL, Englewood Cliffs, New Jersey 07632

P r e f a c e

Today, the 68000 family is one of the more widely used families of 16-bit

microprocessors in modern microcomputer-based products. The 68000 is the micro

processor employed in the popular Macintosh personal computer, as well as in a wide

variety of other electronic equipment. Individuals involved in the design of micro-

processor-based equipment need a systems-level understanding of the 68000 micro

computer system. That is, a thorough knowledge of its software, hardware, and

interfacing is required.

This book represents an extensive study of the architecture, software, and inter

facing techniques used in the design of 68000-based microcomputers. This material

is developed in the following five chapters: Chapter 2, The 68000 Microprocessor;

Chapter 3, 68000 Microprocessor Programming 1; Chapter 4, 68000 Microprocessor

Programming 2; Chapter 6, Memory and Input/Output Interfaces of the 68000 Micro

processor; Chapter 7, Exception Processing of the 68000 Microprocessor.

With the first of these chapters we develop a thorough understanding of the

internal architecture of the 68000 microprocessor. This includes material on its in

struction execution control.

Chapters 3 and 4 present in detail software issues such as addressing modes,

the instruction set, and the analysis and writing of assembly-language programs. A

large number of practical applications are illustrated through example programs.

The latter two, Chapters 6 and 7, are concerned with hardware and introduce

architectural features and circuit design techniques for the memory, input/output,

and interrupt interfaces of the 68000 microcomputer. Extensive coverage of bus cycles,

address maps, program storage memory subsystems, data storage memory subsystems,

input/output interface circuits, and interrupt interface circuits is included. A number

xii Preface

of large-scale integrated (LSI) peripheral controllers, such as the 6821 peripheral in

terface adapter, the 6850 asynchronous communication adapter, and the 68230 parallel

interface/timer, are also studied in depth.

Two additional chapters are included that introduce Motorola’s MC68000 Edu

cational Microcomputer Board. This board is an educational microcomputer system

that can be used to execute and debug assembly-language programs written for the

68000 microprocessor. Chapter 5 introduces the educational microcomputer and the

commands that can be issued to the microcomputer. Moreover, examples are used

to demonstrate how programs are assembled, verified, executed, and debugged.

Chapter 8 is a study of the circuitry in the MC68000 educational microcomputer.

This chapter illustrates a practical application of the material on interfacing tech

niques presented in Chapters 6 and 7. The architecture and circuit design of the

68000-based microcomputer is described in detail.

This book is written for use as a textbook in the electronic engineering tech

nology curricula offered at universities and community colleges. Use of the book does

require prior knowledge of basic digital electronics. This background is at a level

consistent with, but not necessarily as extensive as, the material presented in two earlier

Prentice-Hall books: Integrated Digital Electronics, 2nd ed., Walter A. Triebel, 1985;

and Handbook o f Semiconductor and Bubble Memories, Walter A. Triebel and Alfred

E. Chu, 1982. Since this book includes a large amount of practical information on

68000 microcomputer architecture, assembly-language programming, and interface

circuit design, it is also a valuable reference for practicing engineers and technicians.

WALTER A. TRIEBEL

AVTAR SINGH

1 I n t r o d u c t i o n
t o M i c r o p r o c e s s o r s
a n d M i c r o c o m p u t e r s

1.1 INTRODUCTION

The most recent advances in computer system technology have been closely related

to the development of high-performance 16-bit microprocessors and their

microcomputer systems. During the last three years, the 16-bit microprocessor market

has matured significantly. Today, several complete 16-bit microprocessor families

are available. They include support products such as large-scale integrated (LSI)

peripheral devices, development systems, emulators, and high-level software

languages. Over the same period of time, these higher-performance microprocessors

have become more widely used in the design of new electronic equipment and

computers.

This book presents a detailed study of one of the more popular 16-bit micro

processors, the 68000 by Motorola Incorporated. Included is material on the inter

nal architecture of the 68000 microprocessor, its assembly language programming,

and the interface techniques used in the design of 68000-based microcomputer systems.

In this chapter we begin our study of 16-bit microprocessors and microcomputers.

The following topics are discussed:

1. The digital computer

2. Mainframe computers, minicomputers, and microcomputers

3. Hardware elements of the digital computer system

4. General architecture of a microcomputer system

5. Types of microprocessors and single-chip microcomputers

1

2 Introduction to Microprocessors and Microcomputers Chap. 1

1.2 THE DIGITAL COMPUTER

As a starting point, let us consider what a computer is, what it can do, and how it

does it. A computer is a digital electronic data processing system. Data are input

to the computer in one form, processed within the computer, and the information

that results is either output or stored for later use. Figure 1.1 shows a modern computer

system.

Computers cannot think about how to process the data that were input. Instead,

the user must tell the computer exactly what to do. The procedure by which a computer

is told how to work is called programming and the person who writes programs for

a computer is known as a programmer. The result of the programmer’s work is a

set of instructions for the computer to follow. This is the computer’s program. When

the computer is operating, the instructions of the program guide it step by step through

the task that is to be performed.

For example, a large department store can use a computer to take care of

bookkeeping for its customer charge accounts. In this application, data about items

purchased by the customers, such as price and department, are entered into the

computer by an operator. These data are stored in the computer under the customer’s

account number. On the next billing date, the data are processed and a tabular record

of each customer’s account is output by the computer. These statements are mailed

to the customers as a bill.

In a computer, the program controls the operation of a large amount of

electronic circuitry. It is this circuitry that actually does the processing of data.

Electronic computers first became available in the 1940s. These early computers were

built with vacuum-tube electronic circuits. In the 1950s, a second generation of

computers was built. During this period, transistor electronic circuitry, instead of

tubes, was used to produce more compact and more reliable computer systems. When

the integrated circuit (IC) came into the electronic market during the 1960s, a third

generation of computers appeared. With ICs, industry could manufacture more

complex, higher-speed, and very reliable computers.

Today, the computer industry is continuing to be revolutionized by the advances

made in integrated-circuit technology. It is now possible to manufacture large-scale

integrated circuits (LSI) that can form a computer with just a small group of ICs.

In fact, in some cases, a single IC can be used. These new technologies are rapidly

advancing the low-performance, low-cost part of the computer marketplace by

permitting simpler and more cost-effective designs.

1.3 MAINFRAME COMPUTERS, MINICOMPUTERS,
AND MICROCOMPUTERS

For many years the computer manufacturers’ aim was to develop larger and more

powerful computer systems. These are what we call large-scale or mainframe
computers. Mainframes are always general-purpose computers. That is, they are

4 Introduction to Microprocessors and Microcomputers Chap. 1

designed with the ability to run a large number of different types of programs. For

this reason, they can solve a wide variety of problems.

For instance, one user can apply the computer in an assortment of scientific

applications where the primary function of the computer is to solve complex

mathematical problems. A second user can apply the same basic computer system

to perform business tasks such as accounting and inventory control. The only

difference between the computer systems used in these two applications could be their

programs. In fact, today many companies use a single general-purpose computer to

resolve both their scientific and business needs.

Figure 1.1 is an example of a mainframe computer manufactured by

International Business Machine Corporation (IBM). Because of their high cost,

mainframes find use only in central computing facilities of large businesses and

institutions.

The many advances that have taken place in the field of electronics over the

past two decades have led to rapid advances in computer system technology. For

instance, the introduction of small-scale integrated (SSI) circuits, followed by

medium-scale integrated (MSI) circuits, and large-scale integrated (LSI) circuits, has

led the way in expanding the capacity and performance of the large mainframe

computers. But at the same time, these advances have also permitted the introduction

of smaller, lower-performance, and lower-cost computer systems.

Figure 1-2 Minicomputer system (Digital Equipment Corp.).

Sec. 1.3 Mainframe Computers, Minicomputers, and Microcomputers 5

As computer use grew, it was recognized that the powerful computing capability

of a mainframe was not needed by many customers. Instead, they desired easier access

to a machine with smaller capacity. It was to satisfy this requirement that the

minicomputer was developed. Minicomputers, such as that shown in Fig. 1.2, are

also digital computers and are capable of performing the same basic operations as

the earlier, larger systems. However, they are designed to provide a smaller func

tional capability. The processor section of this type of computer is typically manufac

tured using SSI and MSI electronic circuitry.

Minicomputers have found wide use as general-purpose computers, but their

lower cost also allows their use in dedicated applications. A computer used in a

dedicated application represents what is known as a special-purpose computer. By

“ special-purpose computer” we mean a system that has been tailored to meet the

needs of a specific application. Examples are process control computers for industrial

facilities, data processing systems for retail stores, and medical analysis systems for

patient care. Figure 1.3 shows a minicomputer-based retail store data processing

system.

Figure 1-3 Retail store data processing

system (Sweda International

Incorporated).

The newest development in the computer industry is the microcomputer. Today,

the microcomputer represents the next step in the evolution of the computer world.

It is a computer that has been designed to provide reduced size and capability from

that of a minicomputer, with a much lower cost.

The heart of the microcomputer system is the microprocessor. A microprocessor

is a general-purpose processor built into a single IC. It is an example of an LSI device.

Together with the use of LSI circuitry in the microcomputer have come the benefits

of smaller size, lighter weight, lower cost, reduced power requirements, and higher

reliability.

The low cost of microprocessors, which can be as low as $1, has opened the

use of computer electronics to a much broader range of products. Figures 1.4 and

i .5 show some typical systems in which a microcomputer is used as a special-purpose

computer.

6 Introduction to Microprocessors and Microcomputers Chap. 1

Figure 1-4 Calculator (Texas In

struments, Incorporated).

Figure 1-5 Point-of-sale terminal

(Sweda International

Incorporated).

Microcomputers are also finding wide use as general-purpose computers. Figures

1.6 and 1.7 are examples of personal computer systems. In fact, microcomputer

systems designed for the high-performance end of the microcomputer market are

rivaling the performance of the lower-performance minicomputers and at a much

lower cost to the user.

Figure 1-6 Personal computer

(AT&T Information Systems).

Figure 1-7 Personal computer

(Apple Computer Inc.).

1.4 HARDWARE ELEMENTS OF THE DIGITAL COMPUTER SYSTEM

The hardware of a digital computer system is divided into four functional sections.

The block diagram of Fig. 1.8 shows the four basic units of a simplified computer:

the input unit, central processing unit, memory unit, and output unit. Each section

has a special function in terms of overall computer operation.

7

8 Introduction to Microprocessors and M icrocomputers Chap. 1

Figure 1-8 Block diagram of a digital

computer (Walter A . Triebel, Integrated

Digital Electronics, © 1979. Adapted by

permission of Prencice-Hall, Inc.,

Englewood Cliffs, N .J.).

The central processing unit (CPU) is the heart of the computer system. It is

responsible for performing all arithmetic operations and logic decisions initiated by

the program. In addition to arithmetic and logic functions, the CPU controls overall

system operation.

On the other hand, the input and output units are the means by which the CPU

communicates with the outside world. The input unit is used to input information

and commands to the CPU for processing. For instance, a Teletype terminal can be

used by the programmer to input a new' program.

After processing, the information that results must be output. This output of

data from the system is performed under control of the output unit. Examples of ways

of outputting information are as printed pages produced by a high-speed printer or

displayed on the screen of a video display terminal.

The memory unit of the computer is used to store information such as numbers,

names, and addresses. By “ store,” we mean that memory has the ability to hold this

information for processing or for outputting at a later time. The programs that define

how the computer is to process data also reside in memory.

In computer systems, memory is divided into two different sections, known as

primary storage and secondary storage. They are also sometimes called internal

memory and external memory, respectively. External memory is used for long-term

storage of information that is not in use. For instance, it holds programs, files of

data, and files of information. In most computers, this part of memory employs

storage on magnetic media such as magnetic tapes, magnetic disks, and magnetic

drums. This is because they have the ability to store large amounts of data.

Internal memory is a smaller segment of memory used for temporary storage

of programs, data, and information. For instance, when a program is to be executed,

its instructions are first brought from external memory into internal memory together

with the files of data and information that it will affect. After this, the program is

executed and its files updated while they are held in internal memory. When the

processing defined by the program is complete, the updated files are returned to

external memory. Here the program and files are retained for use at a later time.

The internal memory of a computer system uses electronic memory devices

instead of storage on a magnetic media memory. In most modern computer systems,

semiconductor read-only memory (ROM) and random access read/write memory

(RAM) are in use. These devices make internal memory much faster-operating than

external memory.

Neither semiconductor memory nor magnetic media memory alone can satisfy

the requirements of most general-purpose computer systems. Because of this fact,

Sec. 1.5 General A rchitecture of a M icrocomputer System 9

both types are normally present in the system. For instance, in a personal computer

system, working storage is typically provided with RAM, while long-term storage

is provided with floppy disk memory. On the other hand, in special-purpose com

puter systems, such as a video game, semiconductor memory is used. That is, the

program that determines how the game is played is stored in ROM, and data storage,

such as for graphic patterns, is in RAM.

1.5 GENERAL ARCHITECTURE OF A MICROCOMPUTER SYSTEM

Now that we have introduced the general architecture of a digital computer, let us

look at how a microcomputer fits this model. Looking at Fig. 1.9, we find that the

architecture of the microcomputer is essentially the same as that of the digital computer

in Fig. 1.8. It has the same function elements: input unit, output unit, memory unit,

and in place of the CPU, a microprocessor unit (MPU). Moreover, each element serves

the same basic function relative to overall system operation.

Figure 1-9 General microcomputer

system architecture.

The difference between minicomputers, mainframe computers, and micro

computers does not lie in the fundamental blocks used to build the computer;

instead, it relates to the capacity and performance of the electronics used to implement

their blocks and the resulting overall system capacity and performance. As indicated

earlier, microcomputers are designed with smaller capacity and lower performance

than either minicomputers or mainframes.

Unlike mainframes and minicomputers, a microcomputer can be implemented

with a small group of components. Again the heart of the computer system is the

MPU (CPU) and it performs all arithmetic, logic, and control operations. However,

in a microcomputer the MPU is implemented with a single microprocessor chip instead

of a large assortment of SSI and MSI logic functions such as in minicomputers and

mainframes. Notice that correct use of the term “ microprocessor” restricts its use

to the central processing unit in a microcomputer system.

Notice that we have partitioned the memory unit into an internal memory section

for storage of active data and instructions and an external memory section for

long-term storage. As in minicomputers, the long-term storage medium in a

1 0 Introduction to Microprocessors and Microcomputers Chap. 1

(a)

(b)

Figure 1-10 (a) Block diagram of a personal computer; (b) block diagram of a calculator.

Sec. 1.6 Types o f Microprocessors and Single-Chip M icrocomputers 11

microcomputer is frequently a floppy disk. However, Winchester rigid disk drives

are becoming popular when storage requirements are higher than those provided by

floppy disks. In industrial applications, where the environment for the equipment

is rugged, bubble memories are also employed as long-term storage devices.

Internal memory of the microcomputer is further subdivided into program

storage memory and data storage memory. Typically, internal memory is implemented

with both ROM and RAM ICs. Data, whether they are to be interpreted as numbers,

characters, or instructions, can be stored in either ROM or RAM. But in most

microcomputer systems, instructions of the program and data such as lookup tables

are stored in ROM. This is because this type of information does not normally change.

By using ROM, its storage is made nonvolatile. That is, if power is lost, the

information is retained.

On the other hand, the numerical and character data that are to be processed

by the microprocessor change frequently. These data must be stored in a type of

memory from which they can be read by the microprocessor, modified through

processing, and written back for storage. For this reason, they are stored in RAM

instead of ROM.

Depending on the application, the input and output sections can be implemented

with something as simple as a few switches for inputs and a few light-emitting diodes

(LEDs) for outputs. In other applications, for example in a personal computer, the

input/output (I/O) devices can be more sophisticated, such as video display terminals

and printers, just like those employed in minicomputer systems.

Up to this point, we have been discussing what is known as a multichip

microcomputer system, that is, a system implemented with a microprocessor and an

assortment of support circuits, such as ROMs, RAMs, and I/O peripherals. This

architecture makes for a very flexible system design. Its ROM, RAM, and I/O capacity

can be easily expanded by just adding more devices. This is the circuit configuration

used in most larger microcomputer systems. An example is the personal computer

system shown in Fig. 1.10(a).

Devices are now being made that include all the functional blocks of a

microcomputer in a single IC. This is called a single-chip microcomputer. Unlike

the multichip microcomputer, single-chip microcomputers are limited in capacity and

not as easy to expand. For example, a microcomputer device can have 4K bytes of

ROM, 128 bytes of RAM, and 32 lines for use as inputs or outputs. Because of this

limited capability, single-chip microcomputers find wide use in special-purpose

computer applications. A block diagram of a calculator implemented with a single

chip microcomputer is shown in Fig. 1.10(b).

1.6 TYPES OF MICROPROCESSORS AND SINGLE-CHIP
MICROCOMPUTERS

The principal way in which microprocessors and microcomputers are categorized is

in terms of the number of binary bits in the data they process, that is, their word

length. Figure l . I I shows that the three standard organizations used in the design

12 Introduction to Microprocessors and Microcomputers Chap. 1

T
High

perfo rm an ce

M e d ium
p erfo rm an ce

Figure 1-11 Microprocessor and single-chip microcomputer categories and relative

performance.

of microprocessors and microcomputers are 4-bit, 8-bit, and 16-bit data words.

The first microprocessors and microcomputers, which were introduced in the

early 1970s, were all designed to process data that were arranged 4 bits wide. This

organization is frequently referred to as a nibble of data. Many of the early 4-bit

devices, such as the PPS-4 microprocessor made by Rockwell International

Incorporated and the TMS1000 single-chip microcomputer made by Texas Instruments

Incorporated, are still in wide use today.

The low performance and limited system capabilities of 4-bit microcomputers

limits their use to simpler, special-purpose applications. Some common uses are in

calculators and electronic toys. In this type of equipment, low cost, not high

performance, is the overriding requirement in the selection of a processor.

In the 1973-1974 period, second-generation microprocessors were introduced.

These devices, such as Intel Corporation’s 8008 and 8080, were 8-bit microprocessors.

That is, they were designed to process 8-bit (one-byte-wide) data instead of 4-bit data.

The newer 8-bit microprocessors exhibited higher-performance operation, larger

system capabilities, and greater ease of programming. They were able to provide the

system requirements for many applications that could not be satisfied by 4-bit

microcomputers. These extended capabilities led to widespread acceptance of multichip

8-bit microcomputers for special-purpose system designs. Examples of some of these

dedicated applications are electronic instruments, cash registers, and printers.

Somewhat later, 8-bit microprocessors began to migrate into general-purpose

microcomputer systems. In fact, the Z-80A is still the host MPU in a number of

personal computers.

Late in the 1970s, 8-bit single-chip microcomputers, such as Intel’s 8048, became

available. The full microcomputer capability of this single chip further reduces the

cost of implementing designs for smaller, dedicated digital sytems. In fact, 8-bit

microcomputers are still being designed for introduction into the marketplace. An

example is Intel’s new 8051 family of 8-bit microcomputers. Newer devices, such as

L ow
p erfo rm an ce

4004
4 04 0
PPS-4
1000

COPS400

8008
8 0 8 0 8085
8048 8 04 9

8051
Z 80

6 8 0 0
6502
7 000

9 9 0 0 0 9900
6 80 00

8 0 8 6 8088
Z 8 0 0 0
16000

4 b it 8 b it 16 b it

Chap. 1 Assignment 13

the 8051, offer a one-order-of-magnitude-higher performance, more powerful

instruction sets, and special on-chip functions such as interval/event timers and

universal asynchronous receiver/transmitters (UARTs).

The plans for development of third-generation 16-bit microprocessors were

announced by many of the leading semiconductor manufacturers in the mid-1970s.

The 9900 was introduced in 1977, followed by a number of other key devices, such

as the 9981, 8086, 8088, Z8000, 68000, 99000, and 16000. These devices all provide

high performance and have the ability to satisfy a broad scope of special-purpose

and general-purpose microcomputer applications. All of the devices have the ability

to handle 8-bit as well as 16-bit data words. Some can even process data organized

as 32-bit words. Moreover, their powerful instruction sets are more in line with those

provided by minicomputers instead of those of 8-bit microprocessors.

In terms of special-purpose applications, 16-bit microprocessors are replacing

8-bit processors in applications that require very high performance: for example,

certain types of electronic instruments. A single-chip 16-bit microcomputer, the 8096,

is also available for use in this type of application.

16-bit microprocessors are also being used in applications that can benefit from

some of their extended system capabilities. For instance, they are beginning to be

used in word-processing systems. This type of system requires a large amount of

character data to be temporarily active; therefore, it can benefit from the ability of

a 16-bit microprocessor to access a much larger amount of data storage memory.

Most new personal computers are being designed with 16-bit microprocessors.

For instance, Apple, in its personal computer, the McIntosh, uses the 68000

microprocessor to implement the microcomputer.

A S S I G N M E N T

Section 1.2
1. W hat guides the computer as to how it is to process data?

2. What type o f electronic devices are revolutionizing the low-performance, low-cost computer

market today?

Section 1.3
3. W hat is the key difference between mainframe, mini-, and microcomputers?

4. What is meant by “ general-purpose computer” ?

5. What is meant by “ special-purpose computer” ?

Section 1.4
6. What are the building blocks o f a general computer system?

7. What is the difference between primary and secondary storage?

14 In trodu c tion to M icroprocessors and M icrocom pute rs Chap. 1

Section 1.5

8. What are the basic building blocks of a microcomputer system?

9. What is the difference between program storage and data storage memory in a

microcomputer?

10. What is the difference between internal and external storage memory in a microcomputer?

Section 1.6

11. What are the standard data word lengths of microprocessors and microcomputers available

today?

12. What is the difference between a multichip microcomputer and a single-chip

microcomputer?

13. Name five 16-bit microprocessor families.

2 T he 68000
M i c r o p r o c e s s o r

2.1 INTRODUCTION

In Chapter 1, some general aspects of microprocessors and microcomputers were

introduced. With the present chapter, we begin our study of Motorola’s 68000

microprocessor. In this chapter we describe the general architecture of the 68000.

The six chapters that follow are devoted to other aspects such as instruction set,

programming, and hardware interfacing. The following topics are discussed in this
chapter:

1. The 68000 microprocessor

2. Interface signals of the 68000

3. Internal architecture of the 68000

4. Instruction execution control

2.2 THE 68000 MICROPROCESSOR

The 68000 is a very powerful 16-bit microprocessor whose development was announced

by Motorola, Inc., in 1979. Since then Motorola has concentrated on bringing the

device up to production, providing tools to support hardware and software

development, and initiating development of a new family of LSI support peripherals.

With apparent success in these areas, they have continued the growth of the product

family by introducing other microprocessors, such as the 68008, 68010, and 68020.

15

16 The 68000 Microprocessor Chap. 2

The 68000 is manufactured using HMOS (high-density N-channel MOS)

technology. The present-day advances in circuit design, process technology, and chip

fabrication techniques have enabled Motorola, Inc. to implement very high

performance operation and complex functions for the 68000. The circuitry within

the 68000 is equivalent to approximately 68000 MOS transistors.

The 68000 microprocessor is packaged into a 64-pin package. This package is

shown together with its pin assignments in Fig. 2.1. Notice that use of this large

package eliminates the need for multifunction pins. For instance, the address bus

and data bus are not multiplexed. The fact that each lead serves just one electrical

function simplifies design of the external hardware interfaces in a 68000

microcomputer system.

04 C 1 • 64 □ D5
D3C 2 63 □ 06
D2C 3 62 □ 07
D1C 4 61 □ D8
DOC 5 60 □ 09
A S C 6 59 □ 010

UDSC 7 58 □ D ll
LDSC 8 57 □ 0 1 2

R /W C 9 56 □ D13
DTACKC 10 55 ZJD14

BGC 11 54 □ D15
BGACKC 12 53 □ GND

BRC 13 52 □ A23
v e c e 14 51 □ A22
CLKC 15 50 □ A21

GNDC 16 49 □ V cc
HALT C 17 48 n A20

RESETC 18 47 □ A19
V M A C 19 46 □ A18

EC 20 45 □ A17
v p a C 21 44 □ A16

BERRC 22 43 □ A15
IPL2C 23 42 □ A14
Tp l I C 24 41 □ A13
1PL0C 25 40 □ A12
FC2C 26 39 □ A l l
FC1C 27 38 □ A10

FC0C 28 37 □ A 9
A 1C 29 36 □ A8
A 2 C 30 35 □ A7
A3 C 31 34 □ A 6
A 4C 32 33 □A 5

Figure 2-1 Pin layout of the 68000

microprocessor (Motorola, Inc.).

Sec. 2.3 Interfaces o f the 6 8 0 0 0 Microprocessor 17

The 68000 employs a very powerful 32-bit general-purpose internal architecture.

It has 16 internal general-purpose registers that are all 32 bits in length. Eight of these

registers are data registers and the other eight are address registers.

The architecture of the 68000 was planned to permit all types of data and address

operations to be performed from its data registers and address registers, respectively.

That is, none of its data registers have dedicated functions such as for use as an

accumulator or for input/output. Therefore, instructions can be written such that

their operands reside in any of the data registers or storage locations in memory.

Moreover, data processed by the 68000 can be expressed in five different types. They

are bit, BCD (4-bit), byte, word, and long word (32-bit).
The address registers are also designed for general use and do not have dedicated

functions. For instance, if the MOVE instruction was to have its source operand

located in memory instead of in one of the internal registers, any one of the address

registers can be specified to contain this address.

The architecture of the 68000 includes a number of powerful hardware and

software functions. From a hardware point of view, we see that the 68000 has a large

23-bit external address bus. This gives it a very large 16M-byte logical address space.

A software function that has been included in the architecture is the ability to create

a user/supervisor environment for the 68000 microcomputer system. This feature helps

the programmer to protect the software operating system and provides support for

multiprocessing and multitasking applications.

2.3 INTERFACES OF THE 68000 MICROPROCESSOR

Now that we have briefly introduced the 68000 microprocessor, let us look at its

electrical interfaces. From the block diagram in Fig. 2.2, we see that the signal lines

can be grouped into seven interfaces: the address/data bus, asynchronous bus control,

processor status lines, system control bus, interrupt control bus, bus arbitration control

bus, and synchronous control bus. It is through these buses and lines that the 68000

is connected to external circuitry such as memory and input/output peripherals.

Address and Data Bus

Earlier we pointed out that the 68000 microprocessor has independent address and

data buses. This simplifies the design of the memory and I/O interfaces because the

address and data signals, need not be demultiplexed with external circuitry. Moreover,

the address bus, data bus, and memory address space are used to interface to input/

output devices in addition to interface to the memory subsystem. That is, all I/O

devices in the 68000 microcomputer system are memory-mapped.

Earlier we indicated that the 68000 has a 23-bit unidirectional address bus. The

function of the signals at these lines, A23 through A|, is to supply addresses to the

memory and input/output subsystems. A23 represents the most significant bit of the

address and A[the least significant bit. Bit A0, which is maintained internal to the

18 The 6 8 0 0 0 M icroprocessor Chap. 2

Processor

status

M6800

Peripheral

control

(synchronous

control)

System

control

V C C I2 I A d d re s s is

G N D (2) B u s >

CLK V
A IN

(D a ia B u s >

A S

MC68000 R W f

FC0 M icrop rocessor UDS .

■ FC1 LDS .

FC2 DTACK

E BR

V M A BG

V P A t 8G A C K

BËRR _ IPLO

.R E S E T IPL1

HALT , IPL2

Address/data

> 0 0 0 1 6

Asychronous

bus control

Bus arbitration

control

Interrupt

control

Figure 2-2 Block diagram of the 68000 microprocessor (Mororola, Inc.).

68000, indicates whether the upper or lower byte of a word is to be used when

processing byte data.

The 16 bidirectional data lines are labeled D 15 through D0. They either carry

read/write data between microprocessor and memory or input/output data between

the microprocessor and I/O peripherals.

Asynchronous Control Bus

The control of the 68000’s bus is asynchronous. By this we mean that once a bus

cycle is initiated, it is not completed until a signal is returned from external circuitry.

The signals that are provided to control address and data transfers are address strobe

(AS), read/write (R/W), upper data strobe (UDS), tower data strobe (LDS), and data

transfer acknowledge (DTACK).

The 68000 must signal external circuitry when an address is available, and

whether a read or write operation is to take place over the bus. It does this with the

signals AS and R /W , respectively. At the moment a valid address is present on the

address bus, the 68000 produces the address strobe (AS) control signal. The pulse

to logic 0 that is output as AS is used to signal memory or I/O devices that an address

is available.
Read/write (R/W) signals which type of data transfer is to take place over the

data bus. During a read or input bus cycle, when the microprocessor reads data from

bus lines D0 through D 16, the R/W output is switched to logic 1. Similarly, when

data are written or output to memory or I/O devices, the 68000 indicates this condition

by a logic 0 on this line.

Since the bus cycle is asynchronous, external circuitry must signal the 68000

when the bus cycle can be completed. Data transfer acknowledge (DTACK) is an

input to the microprocessor which indicates the status of the current bus cycle. During

Sec 2 .3 Interfaces o f the 6 8 0 0 0 M icroprocessor 19

a read or input cycle, logic 0 at DTACK signals the microprocessor that valid

data are on the data bus. In response, it reads and latches the data internally and

completes the bus cycle. On the other hand, during a write or output operation,

DTACK informs the microprocessor that the data have been written to memory or

a peripheral device. Thus we see that in both cases DTACK is used to terminate the

bus cycle.

Two other control outputs provided on the 68000 are upper data strobe (UDS)

and lower data strobe (LDS). These two signals act as an extension of the address

bus and signal whether a byte or word of data is being transferred over the data bus.

In the case of a byte transfer, they also indicate if the data will be carried over the

upper eight or lower eight data lines. Logic 0 at UDS signals that a byte of data is

to be transferred across upper data lines D I5 through D8 and logic 0 at LDS signals

that a byte of data is to be transferred over lower data lines D- through D0.

Figure 2.3 shows the logic levels of UDS, LDS, and R /W for each type of data

transfer operation. For instance, if UDS = 0, LDS = 0, and R /W = 1, a read

operation is taking place over the complete data bus.

Example 2.1

Specify the address and control signals that occur to read the lower byte from the word

stored at address 001B36,6.

Solution. The address lines A 23 through A , directly specify an even (upper) byte

address. The odd (lower) byte address is obtained by LDS being active. Thus we get

A23A22 • • • A,A0 = 001B37|6

= 000000000001101100110111,
and

LDS = 0

U DS = 1

Since a byte o f data is to be read,

R /W = 1

and the data are supplied to the 68000 on the lower data lines D 0 through D 7.

Figure 2-3 Memory access relationships

for UDS, LDS, and R /W (Motorola, Inc.).

CDS LDS R/W Operation

0 0 0 Word — memory IO

0 I 0 High byte — memory IO

1 0 0 Low byte -» memory IO

1 1 0 Invalid data

0 0 1 Word -* microprocessor

0 1 1 High byte -* microprocessor

I 0 1 Low byte -» microprocessor

I 1 I Invalid data

20 The 6 8 0 0 0 Microprocessor Chap. 2

Processor Status Bus and the Function Codes

During every bus cycle executed by the 68000, it outputs a 3-bit processor status code.

These status codes are also known as function codes and are output on lines FC0

through FC2. They tell external circuitry which type of bus cycle is in progress. That

is, whether data or program is being accessed and if the microprocessor is in the user
or supervisor state.

The table in Fig. 2.4(a) shows the implemented function codes and also the ones

that are reserved for future expansion. For instance, the code 1102 on FCjFCiFCq

indicates that an instruction or immediate operand aquisition bus cycle is in progress

from supervisor program memory. Notice that 1112 has a special function. It is the

interrupt acknowledge code.
These codes are output by the 68000 at the beginning of each read or write cycle

and remain valid until the beginning of the next read or write cycle. The timing

relationship between the function code lines, the clock, and AS is shown in Fig.

2.4(b). Notice that the function code outputs are valid during the address strobe AS

FC2 FC1 FCO Cycle Type
Low Low Low (Undefined, Reserved)
Low Low High User Data

Low High Low User Program

Low High High (Undefined, Reserved)

High Low Low (Undefined, Reservedl
High Low High Supervisor Data

High High Low Supervisor Program

High High High Interrupt Acknowledge

(a)

Read/write
Next

cycle cycle

CLK s0 *| s t | S2 s6 | S7 So

____ /
^ c . ~ ~ x X

(b)

Figure 2-4 (a) Function code table (Motorola, Inc.); (b) relationship between FC2

FC ,FC0. CLK, and AS.

Sec. 2 .3 Interfaces of the 6 8 0 0 0 Microprocessor 21

pulse. Therefore, they can be combined with AS to generate device or memory select

signals. As an example, the function code 0012 can be used to gate AS to the user

data section of memory.

System Control Bus

The group of control signals that are labeled as the system control bus in Fig. 2.2

are used either to control the function of the 68000 microprocessor or to indicate

its operating state. There are three system control signals: bus error (BERR), halt

(HALT), and reset (RESET).

The control line bus error (BERR) is an input that is used to inform the 68000

of a problem with the bus cycle currently in progress. For instance, it could be used

to signal that the bus cycle has not been completed even after a set period of time

has elapsed. ______

On the other hand, HALT can be used to implement a hardware mechanism

for stopping the processing of the 68000. An external signal applied to the HALT

input stops the microprocessor at completion of the current bus cycle. In this state

all of its buses and control signals are inactive. HALT is actually a bidirectional line;

that is, it has both an input and output function. When the processor stops instruction

execution due to a halt condition, it informs external devices by producing an output

signal at the same HALT pin.

The RESET input can be used to initiate initialization of the 68000 based on

the occurrence of a signal generated in external hardware. Typically, this is done at

the time of power-up. When an external reset signal is applied, the processor initiates

a system initialization sequence. ______

The RESET line is also bidirectional, but unlike HALT, its output function

is initiated through software. This RESET output is used to initialize external devices

such as LSI peripherals. To reset external devices connected to the RESET line, the

68000 must execute the RESET instruction. Execution of this instruction does not

affect the internal state of the processor; instead, it just causes a pulse to be output at

RESET.

Interrupt Control Bus

In a 68000 microcomputer system, external devices request interrupt service by apply

ing a 3-bit interrupt request code to the IPL2 through IPL0 inputs. This code is sup

plied to the microprocessor from the interrupting device to indicate its priority level.

The value of IPL2IPL|IPL0 is compared to the interrupt mask value in the 68000’s

status register. If the encoded priority is higher than the mask, the interrupting device

is serviced; otherwise, it is ignored.

Bus Arbitration Control Bus

The bus arbitration control signals provide a handshake mechanism by which control

of the 68000’s system bus can be transferred between devices. The device that has

22 The 6 8 0 0 0 M icroprocessor Chap. 2

control of the system bus is known as the bus master. It controls the system address,

data, and control buses. Other devices are attached to the bus but are not active.

Examples of devices that can be used as masters are host processors or external devices

such as DMA controllers or attached processors.

As shown in Fig. 2.2, the 68000 microprocessor has three control lines for this

purpose. They are bus request (BR), bus grant (BG), and bus grant acknowledge

(BGACK). A device requests control of the bus by asserting the bus request (BR)

input. After synchronization, the 68000 responds by switching the bus grant (BG)

control output to its active low level. This means that it will give up control of the

bus at completion of the current bus cycle.

At this point, the requesting device waits for the 68000 to complete its bus cycle.

The fact that the bus cycle is complete is indicated by address strobe (AS) and data

transfer acknowledge (DTACK) returning to their inactive levels. After this happens,

the requesting device asserts bus grant acknowledge (BGACK) and also removes bus

grant request (BR). The 68000 responds by removing the bus grant (BG) signal. This

completes the bus arbitration handshake. The requesting device has now taken over

control of the bus and assumes the role of bus master. When the device has completed

its function, it releases control of the bus by negating BGACK for rearbitration or

return of bus mastership to the 68000.

Synchronous Control Bus

The 68000 microprocessor also has control signals that can make data transfers over

its system bus occur in a synchronous fashion. There are three control signals provided

for this purpose. In Fig. 2.2, we see that they are enable (E), valid peripheral address

(VPA), and valid memory address (VMA). These signals provide for simple interface

between, say, a 10-MHz 68000 microprocessor and 1-MHz synchronous LSI peripheral

devices such as those available for use in 6800 microcomputer systems.

Let us now look at the function of each of these signals. The enable (E) output

of the 68000 is used by 6800 peripherals to synchronize its data read/write operations.

It is a free-running clock with a frequency equal to one-tenth of that of the 68000

clock frequency. This signal allows 1-MHz LSI peripheral ICs to be used with the

10-MHz 68000. It is applied to the E or PHI2 input of a 6800 family peripheral.

The valid peripheral address (VPA) line is an input to the 68000 which is used

to tell it to perform a synchronous transfer over its asynchronous system bus. When

the address output on the address bus is decoded and found to correspond to an

external 6800 peripheral, VPA must be switched to logic 0. This tells the

microprocessor to synchronize the next data transfer with the enable (E) signal.

The valid memory address (VMA) output is supplied by the 68000 in response to

an active VPA input. It indicates to external circuitry that a valid address is on the

address bus and that the next data transfer over the data bus will by synchronized

with enable (E).

Sec. 2 .5 Internal Registers o f the 6 8 0 0 0 Microprocessor 23

2.4 CLOCK INPUT AND WAVEFORM

Looking at Fig. 2.2, we find that the 68000 has a single clock input which is labeled

CLK. The clock generator circuitry is not provided on the chip. Instead, the CLK

signal must be generated in external circuitry and fed to the 68000. Internally, this

signal is used to produce additional clock signals that synchronize the operation of

the 68000’s circuitry.

The 68000 is available with clock frequencies over the range from as low as

4MHz to as high as 12.5 MHz. Figure 2.5 shows the CLK waveform. For 10-MHz

operation, the cycle time (tcyc) is 100 ns. The corresponding maximum pulse width

low (tCL) and pulse width high (tCH) are both equal to 45 ns. The maximum rise and

fall times of its edges, tCr and tcf, are both 10 ns. CLK is at TTL-compatible volt

age levels.

2.5 INTERNAL REGISTERS OF THE 68000 MICROPROCESSOR

Internal to the 68000 microprocessor are eighteen 32-bit registers and one 16-bit

register. Figure 2.6 shows these registers. Notice that they include eight data registers,
seven address registers, two stack pointers, a program counter, and the status register.
The status register is the 16-bit register.

Data Registers

There are eight user-accessible data registers within the 68000. As shown in Fig.

2.6, they are called D0 through D7. Each register is 32 bits long and its bits are labeled

0 (least significant bit) through 31 (most significant bit). We will refer to these bits

as B0 through B-,,, respectively.

The data registers are used to store data temporarily for use in processing. For

example, they could hold the source and destination operands of an arithmetic or

logic instruction. Each register can be accessed for byte operands, for word operands,

or for long-word operands. Byte data are always held in the 8 least significant bits

of a data register: that is, B0 through B7. On the other hand, words of data always

24 The 6 8 0 0 0 Microprocessor Chap. 2

reside in the lower 16 bits, B0 through Bl5, and long words take up all 32 bits of

the register.

The size of data to be used during the execution of an instruction is generally

specified in the instruction. For example, a byte move instruction could be written

with register D0 as the location of the source operand and D7 as the location of the

destination operand. Executing the instruction causes the contents of bits B0 through

B7 of D0 to be copied into bits B0 through B7 of register D7. Alternatively, the

instruction could be set up to process words of data. This time, executing the

instruction would cause bits B0 through B|5 of D0 to be copied into B0 through B15

of D7.

The 68000 can also use the data registers as index registers. In this case the value

in the register represents an offset address which w’hen combined with the contents

of another register points to the location of data in the memory subsystem.

These registers are said to be truly general purpose. That is, they do not have

dedicated functions. For this reason, most instructions can perform their operations

on source and destination operands that reside in any of these registers.

Address Registers

The next seven registers, which are labeled A0 through A6 in Fig. 2.6, are the address

registers. They are also 32 bits in length. These registers are not provided for storage

of data for processing. Instead, they are meant to store address information such

as base addresses and pointer addresses. Moreover, they can also act as index registers.

Just like the data registers, the address registers are general purpose. That is,

an instruction can reference any of them as a base or pointer address for its source

or destination operands.

The values of the addresses are loaded into the address registers under software

control. When used as a source register, an address register can be accessed as a

long-word operand using the complete register or for word operands using the lower

16 bits. On the other hand, when used as a destination register, all 32 bits are always

affected.

Stack Pointers

Two other internal registers are used to hold address information. They are called

the user stack pointer (USP) and the supervisor stack pointer (SSP). Only one of

these two stack pointers is active at a time. For this reason, they are shown as a single

register, A7 in Fig. 2.6.

Unlike the address registers discussed earlier, these two registers have dedicated

functions. The user stack pointer is active whenever the 68000 is operating in a mode

known as the user state. When in this mode, the supervisor stack pointer is inactive.

The address held in the user stack pointer identifies the top of the user stack in the

user part of system memory. This user stack is the place where return addresses,

register data, and other parameters are saved during operations such as the call to

a subroutine.

Sec. 2 .5 Internal Registers o f the 6 8 0 0 0 M icroprocessor 25

31

15 8 7
~r~

System Byte, User Byte

Eight
Data
Registers

Seven
Address
Registers

Two Stack
Pointers

Program
Counter

Status
Register

Figure 2-6 Internal registers of the 68000 microprocessor (M otorola, Inc.).

The 68000 can be switched to a second mode, known as the supervisor state.

This causes the supervisor stack pointer to become active and the user stack pointer

to become inactive. The address in the supervisor stack pointer register points to the

top of a second stack. It is called the supervisor stack and resides in the supervisor

part of memory. The supervisor stack is used for the same purposes as the user stack,

but it is also used by supervisory calls such as software exceptions, interrupts, and

internal exceptions.

The address values in USP and SSP can be modified through software. However,

they can be modified only when the 68000 is set to operate in the supervisor mode.

Program Counter

The program counter (PC) register holds an address that typically points to the next

instruction that is to be executed. It is automatically incremented by 2 with the fetch

of the instruction. In this way, it points to the next word of a multiword instruction,

an immediate source operand, or the next sequential instruction in the program.

Instructions for the 68000 can take up from one to five words of program storage

memory.

26 The 6 8 0 0 0 Microprocessor Chap. 2

In Fig. 2.6 PC is shown as a 32-bit register; however, only the lower 24 bits

are actually used in currently available 68000 devices. These 24 bits can generate 16M

unique memory addresses for accessing bytes of data. But instructions are always

stored at word boundaries. Therefore, the address space can also be considered to

represent an 8M-word address space. The range of word addresses is even addresses

from 00000016 through FFFFFE16. In this way we see that program storage memory

can reside anywhere in the 8M-word address space.

Status Register

Figure 2.6 also shows the 16-bit status register (SR) of the 68000 microprocessor.

Here we see that this register is subdivided into two parts, called the user byte and

the system byte.
The status register is shown in more detail in Fig. 2.7. Here we see that the

bits im 1 'mented in the user byte are flags that indicate the processor state resulting

from the execution of an instruction. The five conditions represented by the

implemented bits are: carry (C), overflow (V), zero (Z), negative (N), and extended

carry (X). Let us now look at each of these condition flags in more detail.

1. Carry (C): The carry flag, bit 0, is set if an add operation generates a carryout

or a subtract (or compare) operation needs a borrow. Otherwise, it is reset.

During shift or rotate operations, it holds the bit that is rotated or shifted out

of a register or memory location.

2. Overflow (V): If an arithmetic operation on signed numbers produces an

incorrect result, the overflow flag (bit 1) is set; otherwise, it is reset. During

an arithmetic shift operation, this flag gets set as the result of a change in the

most significant bit; otherwise, it gets reset.

3. Zero (Z): If an operation produces a zero as its result, the zero flag (bit 2) of

SR is set. A nonzero result clears Z.

System Byte User Byte

____________ / \ ____________ ___________ / \ ____________
/ 15 13 10 8 ^ 4 O '

Figure 2-7 Status register (Motorola, Inc.).

Sec. 2 .6 Instruction Execution Control 27

4. Negative (N): The content of bit 3 is a copy of the most significant bit (sign

bit) of the result during arithmetic, logic, shift, or rotate operations. In other

words, a negative result sets the N bit and a positive result clears it.

5. Extend (X): During arithmetic, shift, or rotate operations, the extend flag, bit

4, receives the carry status. It is used as the carry bit in multiprecision operations.

These user bits of the status register can be tested through software to determine

whether or not certain events have occurred. Typically, the occurrence of an event

indicates that a change in program environment should be initiated. For instance,

the overflow bit could be tested and if it is set program control is passed to an overflow

service routine.

The system byte of SR contains bits that control operational options available

on the 68000 microprocessor and also contains the interrupt mask. The implemented

bits in this byte and their functions are identified in Fig. 2.7. Let us now look at

these functions.

1. Interrupt mask (I2Ii Io): ^ 'ts 8 through 10 of SR are the interrupt mask of the

68000. This 3-bit code determines which interrupts can be serviced and which

are to be ignored. Interrupting devices with priority higher than the binary value

of I21110 will be accepted and those with lower or the same priority will be

ignored. For example, if M|Io equals 0112, then levels 4 through 7 are able

to be active, while levels 1 through 3 are masked out.

2. Supervisor (S): Bit 13 of SR is used to select between the user and supervisor

states of operation. A logic 1 in this bit indicates that the 68000 is operating

in the supervisory state. If it is logic 0, the 68000 operates in the user state.

3. Trace mode (T): The T status bit is used to enable or disable trace (single-step)
mode of operation. To activate the single-step mode, bit 15 must be set. When

set in this way, the microprocessor executes an instruction, then enters the

supervisor state, and vectors to a trace service routine. The service routine may

pass control to a mechanism that permits initiation of execution of the next

instruction or debug mode of operations for displaying the contents of the

various internal registers.

The contents of the complete status register can be read at any time through

software. Unimplemented bits are always read as logic 0. However, the system byte

can be modified only when the 68000 is in the supervisor state.

2.6 INSTRUCTION EXECUTION CONTROL

Now that we have introduced the 68000 microprocessor, its external interfaces, and

internal registers, we continue by examining how it performs the internal operations

required during the execution of an instruction. Figure 2.8 shows the internal execution

28 The 6 8 0 0 0 Microprocessor Chap. 2

Instruction

register

Macroinstruction

Instruction
decoder

Branch
selection

Register and

function selection

:>
Conditions

I z
Micro-sequence

address

Micro-control store
(pointers)

Control word

address

I z
Nano-control store

(control words)

Control unit

Control

word

Execution unit

(ALU, address
registers, and

data registers)

Figure 2-8 Microcoded instruction execution control.

control architecture. It includes the instruction register, instruction decoder, control

un it, and execution unit.

Let us begin by overviewing the operation of the execution control section. The

instruction register accepts an instruction as it is fetched into the microprocessor for

execution. Looking at this block, we see that its outputs supply the inputs of the

instruction decoder. Here the instruction is decoded to determine which type of

operation is to be performed. Based on the result of this decoding, it produces outputs

for input to both the control unit and execution unit. The information passed to the

execution unit is called macroinstruction static because it does not depend on timing

of the execution of the instruction. For example, the registers that are to be used

and the operation that is to be performed are macroinstruction static information.

Moreover, the decoder supplies a microsequence starting address to the control unit.

The control unit is responsible for sequencing the operations performed by the

execution unit in a way that causes it to perform the operation specified by the

instruction.

Sec. 2 .6 Instruction Execution Control 29

The 68000 microprocessor employs a microprogrammed control unit similar

to that used in minicomputers and mainframe computers. That is, the instructions

in the instruction set of the 68000 are actually macroinstructions and they are emulated

by the execution control unit by performing a series of lower-level micro-operations

called microinstructions. Actually, the control unit contains a series of control words

for each instruction. These series of control words are used to tell the execution unit

how to perform the macro-operations. They are coded into the control store part

of the control unit.

In this way we see that the control unit itself does not perform the operation

specified by the instruction. Instead, it must interact with the instruction decoder

to determine which macro-operation is to be performed, with the execution unit, which

contains the data registers, address registers, and arithmetic logic unit, to perform

the processing, and possibly the bus interface to control accessing of operands.

Let us now look more closely at the control unit. From Fig. 2.8 we see that

the 68000 employs a two-level control store structure. The first level, which is identified

as the micro-control store, stores a sequence of addresses for each instruction. These

addresses are pointers to the micro-operations that need to be performed to emulate

the macro-operation. Each address is 9 bits wide and about 625 addresses are needed

to implement the complete instruction set. The second level, nano-control store,

contains a set of about 300 control words. It is these control words that define the

unique micro-operations that can be performed by the 68000’s execution unit. Each

control word is 70 bits in length.

During instruction execution, the macroinstruction decoder outputs to the

micro-control store the starting address of the emulation routine for the instruction

that is to be performed. In response, the micro-control store starts by outputting the

9-bit address of the first micro-operation that is to be performed. This address is

input by the nano-control store and causes the nano-control store to output the 70-bit

control word for this operation to the execution unit. This control word is further

decoded within the execution unit to produce as many as 180 control signals. At

completion of this first micro-operation, the micro-control store outputs the address

of the next micro-operation and the nano-control store causes it to be performed.

This sequence continues until the complete microcode emulation routine is performed

and at its completion another instruction is input to the instruction decoder.

To improve performance, the 68000 overlaps the fetch, decode, and execution

phases. For instance, when one instruction is being executed, the next one may be

getting decoded, and the one following it may be getting fetched. However, many

macroinstructions take more than one machine cycle to execute. For this reason, if

the current instruction is not yet complete, the decode or fetch of additional

instructions may not take place.

The key benefits derived from use of microcoding are decreased development

time and increased flexibility. This is because the development of the instruction set

is easier to manage. For instance, modification of the operation of an instruction

or implementation of a new instruction does not require any circuit changes; instead,

it simply requires changes of the microcode in the control store.

30 The 68 00 0 Microprocessor Chap. 2

A S S I G N M E N T

Section 2 .2

1. Name the technology used to fabricate the 68000 microprocessor.

2. In what size package is the 68000 housed?

3. How many general-purpose registers does the 68000 have?

What are they called? Specify the size of each register.

4. What basic data types is the 68000 able to process directly?

Section 2 .3

5. How many address lines are on the 68000 IC? How many unique memory or I/O addresses

can be generated using these lines?

6. How many data lines does the 68000 have?

7. What is meant by “ asynchronous bus” ?

8. What function is served by DTACK during read/write operations?

9. How is byte addressing accomplished by the 68000?

10. Specify the address and asynchronous bus control signals that occur to write a word of

data to memory address A000|6.

11. What function code is output by the 68000 when it fetches an instruction while in the

supervisor state?

12. Describe briefly the function of system control lines BERR, RESET, and HALT.

13. How does the 68000 prioritize interrupts?

14. Why are the bus arbitration control signals provided on the 68000?

15. Why is synchronous bus operation also provided for the 68000?

Section 2 .4

16. What is the duration of the clock cycle of a 68000 that is operating at 8 MHz?

Section 2 .5

17. What is the difference between the functions of the 68000’s address and data registers?

18. Define what is meant by a stack. Why are there two stack pointer registers?

19. What function is served by the program counter?

20. Distinguish between the user byte and the system byte of the status register.

Section 2 .6

21. What is the difference between a macroinstruction and a microinstruction?

22. What is the difference in the information stored in the micro-control store and the

nano-control store?

23. Give a brief description of how instruction execution is implemented in a two-level

micro-programmed control unit.

6 8 0 0 0 M icroprocessor
Pr o g r a m m in g 1

3.1 INTRODUCTION

Chapter 2 was devoted to the general architectural aspects of the 68000 microprocessor.

In this chapter we introduce a large part of its instruction set. These instructions

provide the ability to write simple straight-line programs. Chapter 4 covers the rest

of the instruction set and some more sophisticated programming concepts. The

following topics are presented in this chapter:

1. Software model of the 68000 microprocessor

2. Assembly language and machine language

3. Operand addressing modes

4. The 68000 instruction set

5. Data transfer instructions

6. Binary and decimal arithmetic instructions

7. Logic instructions

8. Shift and rotate instructions

3.2 SOFTWARE MODEL OF THE 68000 MICROPROCESSOR

The purpose of developing a software model is to aid the programmer in understanding

the operation of the microcomputer system from a software point of view. To be

able to program a microprocessor, one does not need to know all of its hardware

31

32 6 8 0 0 0 M icroprocessor Programming 1 Chap. 3

features. For instance, we do not necessarily need to know the function of the signals

at its various pins, their electrical connections, or their switching characteristics.

Moreover, the function, interconnection, and operation of the internal circuits of

the microprocessor also need not normally be considered.

What is important to the programmer is to know the various registers within

the device and to understand their purpose, functions, and operating capabilities and

limitations. Furthermore, it is essential to know how external memory is organized

and how it is addressed to obtain instructions and data.

The software model of the 68000 microprocessor is shown in Fig. 3.1. This model

specifies the resources available to programmers for implementing their program

requirements. Here we see that the 68000 is represented by eight data registers, seven

address registers, two stack pointers, a program counter, and a status register. We

discussed each of these registers as part of our study of the 68000’s architecture in

Chapter 2. However, our concern here is with what can be done w'ith this architecture

and how to do it through software. For this purpose, let us review briefly the elements

of the model. Moreover, this time we concentrate on their relationship to software.

During normal operation, the 68000 fetches one instruction after the other from

memory and executes them. The address held in program counter PC points to the

next instruction that is to be fetched. After the instruction is fetched, it is decoded

by the 68000 and, if necessary, data operands are read from either the internal registers

or memory. Then the operation specified in the instruction is performed on the

operands and the results are written to either an internal register or storage location

in memory. The 68000 is now ready to execute the next instruction.

Every time an instruction is fetched from memory, the value held in PC is

incremented such that it points to the next sequential instruction of the program.

In this way, the 68000 is ready to fetch the next instruction of the program for

execution.

The programmer has the ability to change the value in PC under software

control. For instance, execution of a jump instruction changes the value in PC. When

this is done, instructions are no longer executed sequentially.

Data registers D0 through D7 are provided for temporary storage of working

data. For instance, the instruction

ADD.W D0.D1

employs data registers D0 and D, for storage of its source and destination operands,

respectively. The sum that results from executing this instruction is saved in destination

register D,. One nice feature of the architecture of the 68000 is that its internal

registers do not have dedicated functions. Instead, they can be employed in a very

general way. For instance, the add instruction we just introduced could be written

with any combination of these seven data registers as the locations of its source and

destination operands.

These data registers also support processing of data in a variety of different

data types. For example, most instructions can access the data registers for processing

of byte, word, or long-word operands. A few instructions also permit processing of

Sec. 3 .2 Software Model of the 6 8 0 0 0 Microprocessor 33

Not
implemented

MEMORY

8 7

Next instruction

System User
byte byte

Figure 3-1 Software model of the 68000 microprocessor.

34 6 8 0 0 0 Microprocessor Programming 1 Chap. 3

individual bits or data expressed as BCD numbers. The data registers can also be

used as index registers for generating memory addresses.

Address registers A0 through A6 are not used to hold data for processing.

Instead, they contain address pointers and are used to access source or destination

operands that are stored in memory. For example, the instruction

ADD.W (A0),D1

uses the contents of A0 to access a source operand that resides in memory. Just as

for the data registers, the 68000 permits general use of the address registers. That

is, any of the seven address registers could be specified as the pointer to the location

of the source operand in the addition instruction.

In Fig. 3.1 we find that there are two stack pointer registers in the software

model, called the user stack pointer register (USP) and the supervisor stack pointer

register (SSP). The stack is a special part of the memory subsystem that is used for

temporary storage of data. Since the 68000 has two stack pointer registers, there can

be two stacks in its microcomputer system, a user stack and a supervisor stack.

However, only one of these stacks can be active at a time. The address in USP points

to the next storage location that is to be accessed in the user stack. This location

is called the top of the stack. Moreover, the value in SSP points to the top of the

supervisor stack.

During a subroutine call operation, the contents of specific internal registers

of the 68000 typically are pushed onto the stack. Here they are maintained temporarily.

At completion of the subroutine, these values are popped off the stack and put back

into the same internal register from which they originally resided. For example, if

a jump to subroutine (JSR) instruction is executed, the current value in PC is

automatically pushed onto the active stack. Moreover, as part of the subroutine,

instructions can be executed that cause the contents of other registers to be saved

on the stack.

The status register (SR) also is important when programming the 68000. The

logic state of the carry (C), overflow (V), zero (Z), negative (N), and extend (X) bits

in its user byte are status flags that indicate conditions that are produced as the result

of executing an instruction. That is, specific flags are set (logic 1) or reset (logic 0)

at the completion of execution of the instruction.

The instruction set of the 68000 includes instructions that can be used either

to save the contents of the status register or to load it with new data. Moreover, it

contains instructions that are able to use these flags to alter the sequence in which

the program executes. For instance, an instruction can be used to test the state of

the carry flag and, if it is set, to initiate a jump to another part of the program.

The bits in the system byte of SR control options available on the 68000. For

instance, it contains the supervisor (S) bit. This bit can be set or reset under software

control to put the 68000 into either the supervisor or user state, respectively.

Also represented in the model is the 68000’s memory address space. The 68000

supports a very large 16M-byte address space that has few limitations on its use. That

is, program memory, data memory, and stack can be located almost at any address

Sec. 3 .3 Assembly Language and Machine Language 35

and are not limited in size. It also may be important for the programmer to know

how memory is organized, how the various data types are stored in memory, what

restrictions exist on its use, and the ways in which it can be accessed through addressing

modes.

3.3 ASSEMBLY LANGUAGE AND MACHINE LANGUAGE

Now that we have introduced the software model of the 68000, let us continue with

the concepts of assembly language and machine language instructions and programs.

It is essential to become familiar with these ideas before attempting to learn the

functions of the instructions in the instruction set and their use in writing programs.

Assembly Language Instructions

Assembly language instructions are provided to describe each of the basic operations

that can be performed by a microprocessor. They are written using alphanumeric

symbols instead of the Os and Is of the microprocessor’s machine code. An example

of a short assembly language program is shown in Fig. 3.2(a). The assembly language

statements are located on the left. Frequently, comments describing the statements

are included on the right. This type of documentation makes it easier for programmers

to write, read, and debug code. By the term code we mean programs written in the

LEA.L $1000,A1 SOURCE BLOCK STARTS AT $1000

LEA.L $2000,A2 DESTINATION BLOCK STARTS AT $2000

MOVE.L 016,DO BLOCK LENGTH EQUALS 16 W'ORDS

NXTPT MOVE.W (Al) + ,(A2) + MOVE WORD AND POINT TO NEXT WORD

SUBQ.L #\,D0 UPDATE COUNT

BNE.S NXTPT REPEAT FOR NEXT WORD

HERE BRAS HERE

(a)

003000 43F81000 LEA.L $00001000, A 1 SOURCE BLOCK STARTS AT $1000

003004 45F82000 LEA.L $00002000,A2 DESTINATION BLOCK STARTS AT $2000

003008 203C00000010 MOVE.L #16,DO BLOCK LENGTH EQUALS 16 WORDS

00300E 34D9

£u
i

>O2

(Al)-f ,(A2) + MOVE WORD AND POINT TO NEXT WORD

003010 5380 SUBQ.L 01,DO UPDATE COUNT

003012 66FA BNE.S $00300E REPEAT FOR NEXT WORD

003014 60FE BRAS $003014

(b)

Figure 3-2 (a) Typical 68000 assembly language program; (b) assembled machine code.

36 6 8 0 0 0 Microprocessor Programming 1 Chap. 3

language of the microprocessor. Programs written in assembly language are called

source code.
Each instruction in the source program corresponds to one assembly language

statement. The statement must specify which operation is to be performed and what

data operands are to be processed. For this reason, an instruction can be divided

into two separate parts: its opcode and its operands. The opcode is the part of the

instruction that identifies the operation that is to be performed. For example, typical

operations are add, subtract, and move.

In assembly language, we assign a unique letter combination to each operation.

This letter combination is referred to as a mnemonic for the instruction. For instance,

the 68000 assembly language mnemonics for add, subtract, and move are ADD, SUB,

and MOVE, respectively.

Operands identify the data that are to be processed by the microprocessor as

it carries out the operation specified by the opcode. For instance, an instruction can

add the contents of address register A0 to the contents of Aj. An assembly language

description of this instruction is

ADD A0,A1

In this example, the contents of AO and A1 are added together and their sum is put

in A1. Therefore, AO is considered to be the source operand and A1 the destination

operand.

Here is another example of an assembly language statement:

LOOP MOVE DO,AO ;COPY DO INTO AO

This instruction statement starts with the word LOOP. It is an address identifier for

the instruction MOVE DO,AO. This type of identifier is called a label or tag. The

instruction is followed by “ COPY DO INTO AO.” This part of the statement is call

ed a comment. Thus a general format for writing an assembly language statement is

LABEL INSTRUCTION ¡COMMENT

Machine Language Instructions

Before a source program can be executed by the microprocessor, it must first be run

through a process known as assembling. This is normally done on a minicomputer

or microcomputer with a program called an assembler. The result produced by this

step is an equivalent program expressed in the machine code that is executed by the

microprocessor. That is, it is the equivalent of the source program but now written

in Os and Is. This program is also referred to as object code.
Figure 3.2(b) is a listing that includes the machine language program for the

assembly language program in Fig. 3.2(a). It was produced by a 68000 assembler.

Reading from left to right, this listing contains addresses of memory locations, fol

lowed by the machine code instructions, the original assembly language statements,

and comments. Notice that for simplicity the machine code instructions are expressed

in hexadecimal notation and not as binary numbers.

Sec. 3 .4 The Operand Addressing M odes of the 6 8 0 0 0 M icroprocessor 37

3.4 THE OPERAND ADDRESSING MODES OF THE 68000
MICROPROCESSOR

The operands processed by the 68000 as it executes an instruction may be specified

as part of the instruction in program memory, may reside in internal registers, or

may be stored in data memory. The 68000 has 14 different addressing modes. They

are shown in Fig. 3.3. The objective of these addressing modes is to supply different

ways for the programmer to generate an effective address (EA) that identifies the

location of an operand. In general, operands referenced by an effective address reside

either in one of the 68000’s internal registers or in external data memory.

Mode Generation

Register Direct Addressing
Data Register D irect
Address Register D irect

E A = Dn
E A = An

Absolute Date Addressing
Absolu te Short
Abso lu te Long

EA = (Next W o rd l
EA = (Next Tw o W ords)

Program Counter Relative Addressing
Relative w ith O ffset
Relative w ith index and O ffset

EA = (PC) + d ig
EA = (PC) + (Xn) + dg

Register Indirect Addressing
Register Indirect
Postincrem ent Register Indirect
Predecrement Register Indirect
Register Ind irect w ith O ffset
indexed Register Ind irect w ith Offset

EA = (An)
EA = (A n). A n» — An + N
An •— A n - N. EA = (An)
EA = (A n) + d j6
EA = (A n) + (Xn) ♦ dg

Immediate Data Addressing
im m ediate
Quick Immediate

D A TA = Next W ord(s)
Inherent Data

Implied Addressing
Implied Register EA = SR. USP. SP. PC

NOTES
EA = E ffective Address
An = Address Register
Dn = Data Register
Xn = Address or Data Register

used as Index Register
SR = S ta tus Register
PC = Program Counter
() = Contents of

dg = 8-b't O ffset
(displacement)

d i6 = 16-bn Offset
(displacement)

N = 1 for Byte. 2 for
W ords, and 4 for Long
W ords

— = Replaces

Figure 3-3 Operand addressing modes

of the 68000 microprocessor (Motorola,

Inc.).

Looking at Fig. 3.3, we see that the 14 addressing modes have been subdivided

into six groups based on how they generate an effective address. These groups are:

register direct addressing, absolute data addressing, program counter relative

addressing, register indirect addressing, immediate data addressing, and implied

addressing. Notice that the addressing modes in all groups other than immediate data

addressing produce an effective address. Let us now look into each of these modes

in detail.

Register Direct Addressing Modes

Register direct addressing modes are used when one of the data or address registers

within the 68000 contains the operand that is to be processed by the instruction. In

38 6 8 0 0 0 M icroprocessor Programming 1 Chap. 3

68000

MA pc-

xxxxxxxx

76543210

USP

SSP

SR

Memory
Address Contents Instruction

MA 2008 MOVE.L AO,DO

MA + 2 xxxx Next instruction

(a)

Figure 3-4 Instruction using register direct addressing (a) before execution.

Fig. 3.3, we see that if the specified register is a data register, the addressing mode

is called data register direct addressing. On the other hand, if an address register is

used, it is known as address register direct addressing.

Here is an example that employs both data register direct addressing and address

register direct addressing.

MOVE.L AO,DO

MOVE.L is how we write the move instruction to process long-word (32-bit) data.

Notice that address register A0 is specified to contain the source operand. This is

an example of address register direct addressing. On the other hand, the destination

operand uses data register direct addressing and is specified as the contents of data

register D0. In this example, neither operand is located in memory.

Sec. 3 .4 The Operand Addressing Modes of the 6 8 0 0 0 M icroprocessor 39

68000

MA + 2

76543210

76543210

PC-

D,

USP

SSP

SR

Memory
Address Contents Instruction

MA 2008 MOVE.L A0.D0

MA + 2 XXXX Next instruction

(b)

Figure 3-4 (com.) (b) After execution.

Execution of this instruction causes the long word in address register A0 to be

copied into data register D0. This operation can also be expressed as

A 0 — - DO

In Fig. 3.4(a) we see that before executing the instruction Aq contains $76543210

and the contents of D0 are a don’t-care state. The symbol $ stands for hexadecimal

number. At the conclusion of execution of the instruction, both A0 and D0 contain

$76543210. This result is shown in Fig. 3.4(b).

Absolute Data Addressing Modes

When the effective address of an operand is included in the instruction, we are using

what is called absolute data addressing mode. There are two such modes for the 68000.

40 6 8 0 0 0 M icroprocessor Programming 1 Chap. 3

They are known as absolute short addressing and absolute long addressing. These

addressing modes are used to access operands that reside in memory.

If an instruction uses absolute short data addressing to specify the location of

an operand, a 16-bit absolute address must be included as the second word of the

instruction. This word is the effective address of the storage location for the operand

in memory.

As an example, let us consider the instruction

M OVE.L $1234,DO

It stands for move the long word starting at address $1234 in memory into data register

D0. Notice that the instruction is written with $1234 in the location for the source

operand. This is the absolute address of the source operand and it is encoded by the

Address

Memory

Contents Instruction

MA 2038 MOVE.L $ 1234,D0

MA + 2 — 1234

MA + 4 xxxx Next instruction

001234 ♦-6789

001236 ABCD

(a)

Figure 3-5 Instruction using absolute data addressing (a) before execution.

Sec. 3.4 The Operand Addressing Modes of the 6 8 0 0 0 Microprocessor 41

assembler into the instruction as shown in Fig. 3.5(a). Notice that the address of the

source operand is the next word after the instruction opcode in program memory.

The 68000 automatically does a sign extension based on the MSB of the absolute

short address to give a 32-bit address (actually only 24 bits are used). For our example,

the sign bit is 0; therefore extending it gives the address 00123416. Since only 16 bits

can be used in absolute short data addressing it always generates a memory address

either in the range 00000016 through 007FFF16 or FF800016 through FFFFFF16. These

ranges correspond to the first 32K bytes and the last 32K bytes of the 68000’s address

space, respectively. Other parts of the 68000’s address space cannot be accessed with

this addressing mode.

The result of executing this instruction is shown in Fig. 3.5(b). Notice that the

long word starting at address 00123416, which equals 6789ABCD|6, is copied into

Figure 3-5 (com.) (b) After execution.

42 6 8 0 0 0 M icroprocessor Programming 1 Chap. 3

D0. Here we see that the word at the lower address, 00123416, is copied into the upper

16 bits of D0 and the word at the higher address 00123616 is copied into the lower

16 bits.

Absolute long data addressing permits use of a full 32-bit quantity as the absolute

address data. This type of operand is specified in the same way except that its absolute

address is written with more than four hexadecimal digits.

For instance, the instruction

MOVE.L $01234,DO

has the same effect as the previous instruction, but the address of the source operand

is encoded by the assembler as an absolute long data address. That is, the quantity

$01234 is encoded as a 32-bit number instead of a 16-bit number. This means that

the instruction now takes up three words of memory instead of two.

Since all 24 bits are used, the operand specified with absolute long addressing

can reside anywhere in the address space of the 68000.

Program Counter Relative Addressing Modes

It is possible to specify the location of an operand relative to the address of the

instruction that is currently being processed. Program counter relative addressing is

provided for this purpose. With it, the effective address of the operand to be accessed

is calculated relative to the updated value held in program counter (PC). There are

two types of program counter relative addressing: program counter relative with offset

and program counter relative with index and offset.
Let us begin with program counter relative with offset addressing. In this case,

a 16-bit quantity identifies the number of bytes the data to be accessed are offset

from the updated value in PC. The offset, which is also known as the displacement,

immediately follows the instruction word in memory. When the instruction is fetched

and executed, the 68000 sign-extends the offset to 32 bits and then adds it to the

updated contents of the program counter.

EA = PC + d 16

The sum that results is the effective address of the operand in memory.

An example of an instruction that employs this addressing mode is as follows:

MOVE.L TAG,DO

This means “ move the long word starting at the memory location with TAG as its

label into D0.” The question arises: Where is the label TAG in memory? The answer

lies with the assembler. It computes the number of bytes the displacement word in

the move instruction is offset from the memory location corresponding to label TAG.

This offset is expressed as a signed 16-bit binary number and is encoded as the

displacement word of the instruction.

Since the 16-bit quantity specifies the offset in bytes, the operand must reside

within + or - 32K (+ 32767 to - 32768) bytes with respect to the updated value in PC.

Sec. 3 .4 The Operand Addressing Modes of the 6 8 0 0 0 Microprocessor 43

The second type of program counter relative addressing employs both an index

and an offset. In this addressing mode, both the contents of an index register and

an 8-bit displacement are combined with the updated PC to obtain the operand’s

memory address. That is, the effective address is given by

EA = PC + Xn + d8

The index register, which is identified by Xn, can be any of the 68000’s data or address

registers. The signed 8-bit displacement is specified by d8.

Consider this instruction:

MOVE.L TABLE(A0.L),D0

Here the source operand is written such that TABLE represents the displacement and

A0 is the index register. This instruction says to copy the long word starting at the

memory location in TABLE indexed by A0 into D0.

In this case, the assembler computes the offset between the updated value in

PC and the address of label TABLE. The value of the displacement is encoded as

the least significant byte in the second word of the instruction.

The use of program counter relative addressing with offset and index to access

a table in memory is illustrated in Fig. 3.6. The starting point of the table in memory

is identified by the label TABLE. Since just 8 bits are provided for the offset, the

table must begin within + 127 or - 128 bytes of the extension word of the instruction.

The size of the table is determined by the index. The ability to specify up to a 32-bit

index permits addressing of very long tables. Actually, the size of the data table is

limited by the number of address lines on the 68000, which is 23.

PC

Table

Addressed element

Extension word

Offset (d8)

* (limited to +127 or
-128 bytes)

Index(X„)

• (limited to +8388607 or

-8388608 bytes)

Figure 3-6 Accessing elements of a

table with program counter relative with

index and offset addressing.

44 6 8 0 0 0 M icroprocessor Programming 1 Chap. 3

Address Register Indirect Addressing Modes

Address register indirect addressing is similar to the register direct addressing we

discussed earlier in that an internal register is specified when writing the instruction.

However, in this case, only address registers A0 through A6 can be used. Moreover,

the register does not represent the location of the operand; instead, it contains the

effective address of the operand in memory. Notice that register indirect addressing

enables the 68000 to access information that resides in external memory.

There are five different kinds of register indirect addressing supported by the

68000. As shown in Fig. 3.3, they are called: register indirect addressing, postincrement

register indirect addressing, predecrement register indirect addressing, register indirect

with offset addressing, and indexed register indirect with offset addressing. We shall

Address
Memory
Contents Instruction

MA 2010 MOVE.L (A0),DO

MA + 2 xxxx Next instruction

001234 ABCD

001236 EF89

(a)

Figure 3-7 Instruction using address register indirect addressing (a) before execution.

Sec. 3 .4 The Operand Addressing Modes of the 6 8 0 0 0 Microprocessor 45

now look at each of these types in more detail.

Register indirect is the simplest form of address register indirect addressing.

When it is specified, one of the address registers contains the address of the source

or destination operand. For instance, in the instruction

MOVE.L (AO),DO

the source operand employs register indirect addressing. Notice that this type of

addressing is specified by enclosing the name of the address register, which in our

example is A0, with parentheses. The destination operand is specified as D0 using

register direct addressing.

Figure 3.7 illustrates the result of using this addressing mode. In Fig. 3.7(a)

we see that the contents of A0 are $1234. Moreover, we see that the long word stored

68000

MA + 2

ABCDEF89

00001234

PC-

USP

SSP

SR

Address
Memory
Contents Instruction

MA 2010 MOVE.L (A0),D0

MA + 2 xxxx

001234 ABCD

001236 EF89

(b)

Figure 3-7 (com.) (b) After execution.

46 6 8 0 0 0 Microprocessor Programming 1 Chap. 3

at address $1234 through $1237 is $ABCDEF89. As shown in Fig. 3.7(b), execution

of the instruction causes this value to be copied into destination register D0.

Postincrement register indirect addressing works essentially the same as the

register indirect addressing we just demonstrated. However, there is one difference.

This is that after the operation specified by the instruction is completed the contents

of the address register are automatically incremented by 1, 2, or 4, depending on

whether byte, word, or long-word data are processed. In this way, the address points

to the next sequential element of data.

Our earlier example can be rewritten to use postincrement register indirect

addressing. This gives

MOVE.L (AO) + ,D0

MA

xxxxxxxx

00001234

Address
Memory
Contents Instruction

MA 2018 MOVE.L (A0)+,DO

MA + 2 xxxx Next instruction

001234 ABCD

001236 EF89

USP

SSP

SR

(a)

Figure 3-8 Instruction using postincrement register indirect addressing (a) before execution.

Sec. 3.4 The Operand Addressing Modes of the 6 8 0 0 0 Microprocessor 47

Here we see that including a + symbol after the operand specifies the postincrement

operation.

If we assume that the state of the 68000 just prior to execution of this instruction

is as shown in Fig. 3.8(a), the results are similar to those shown in Fig. 3.7(b) for

register indirect addressing. Again SABCDEF89 is copied into D0. But this time the

contents of A0 are also incremented by 4 to give $1238, as shown in Fig. 3.8(b).

Therefore, it points to the start of the next long word in data memory.

Predecrement register indirect addressing is the same as postdecrement register

indirect addressing except that the contents of the selected address register are

decremented instead of incremented. Moreover, the decrement operation takes place

prior to performing the operation specified in the instruction.

68000

MA + 2

ABCDEF89

00001238

PC-

USP

SSP

SR

Address
Memory
Contents Instruction

MA 2018 MOVE.L (A0)+,D0

MA + 2 xxxx Next instruction

001234 ABCD

001236 EF89

001238 XXXX
00123A xxxx

(b)

Figure 3-8 (com.) (b) After execution.

48 6 8 0 0 0 M icroprocessor Programming 1 Chap. 3

For instance, in the instruction

MOVE.L -(AO),DO

the - symbol identifies predecrement indirect addressing. If this instruction is executed

with the 68000 in the state shown in Fig. 3.9(a), the address in A0 is first decremented

by 4 and equals $1230. Therefore, the contents of memory locations $1230 through

$1233 are copied into D0. This result is illustrated by Fig. 3.9(b).

Postincrement and predecrement indirect addressing allow a programmer to

implement memory scanning operations without the need to update the address pointer

with additional instructions. This type of addressing is useful for performing data

processing operations such as block transfer and string searches.

68000

MA
PC

xxxxxxxx Do

;

D,

00001234
Ao

;

A6

Address
Memory
Contents Instruction

- MA 2020 MOVE.L - (A0),DO

MA + 2 xxxx Next instruction

001230 0000

001232 FFFF

001234 ABCD

001236 EF89

USP

SSP

SR

(a)

Figure 3-9 Instruction using predecrement register indirect addressing (a) before execution.

Sec. 3 .4 The Operand Addressing Modes of the 6 8 0 0 0 Microprocessor 49

In the address register indirect with offset addressing mode, a sign-extended

16-bit offset value and an address register are specified in the instruction. The effective

address of the operand is generated by adding the offset to the contents of the selected

address register; that is,

EA = An + d 16

The value of offset d16 specifies the number of bytes the storage location to be

accessed is offset from the address in An. It is encoded as the second word of the

instruction.

Let us now consider the instruction

MOVE.W 16(A0),D0

Here we find that an offset of 16 (sixteen bytes) is specified for the source operand.

68000

MA + 2
PC

OOOOFFFF

Address
Memory
Contents Instruction

MA 2020 MOVE.L - (A0),DO

MA + 2 XXXX Next instruction

001230 0000

001232 FFFF

001234 ABCD

001236 EF89

00001230
Ao

•

A6

USP

SSP

SR

(b)

Figure 3-9 (com.) (b) After execution.

50 6 8 0 0 0 M icroprocessor Programming 1 Chap. 3

Execution of this instruction for the conditions in Fig. 3.10(a) produces the effective

address

EA = 1234|6 + 1610 = 124416
As shown in Fig. 3 .10(b), the word contents of address $1244, which equals SABCD,

are copied into the least significant 16 bits of D0.

Since the offset is a signed 16-bit integer number, the operand to be accessed

must be within + 32767 or - 32768 bytes of the storage location pointed to by the

contents of the address register.

The last register indirect addressing mode, indexed register indirect with offset

addressing, allows specification of an address register, an offset, and an index register

for formation of the effective address. The offset value is limited to a signed 8-bit

quantity. On the other hand, the index register can be the contents of any of the

68000

MA
PC

Address
Memory
Contents Instruction

MA

MA + 2

MA + 4

3028

0010 —|

XXXX

MOVE.W 16(A0),D0

Next instruction

001234 XXXX

001244 ABCD - ■k

USP

SSP

SR

(a)

Figure 3-10 Instruction using register indirect addressing with offset (a) before execution.

Sec. 3.4 The Operand Addressing Modes of the 68000 Microprocessor 51

68000’s data or address registers. The effective address is computed by adding the

contents of the address register, the contents of the index register, and the offset.

That is,

EA = An + Xn + d8

Here is an instruction that uses this addressing mode for its source operand.

MOVE.W 16(A0,A1.L),D0

The offset equals 1610, A0 is the address register, and Aj is the index register. Figure

3.11(a) shows that Aq contains $1234 and A| contains $2344. In this case, the address

of the source operand is obtained as

EA = AO + A1 + 1610 = 1234,6 + 2344,6 + 1016
= 3588 16

68000

M A + 4

XXXXABCD

00001234

PC

USP

SSP

SR

Address

Memory

Contents Instruction

MA

MA + 2

MA + 4

3028

0010 -

X X XX

MOVE.W 16(A0),D0

Next instruction

001234 x x x x

001244 A B C D -H

(b)

Figure 3-10 (com.) (b) After execution.

52 6 8 0 0 0 M icroprocessor Programming 1 Chap. 3

USP

SSP

SR

(a)

Figure 3-11 Instruction using indexed register indirect with offset addressing (a) before execution.

Figure 3.11(b) shows that the word contents at this memory location are ABCD,6.

This value is copied into the least significant word of D0.

Since the offset value is an 8-bit signed integer, the address offset is limited

to + 127 or - 128 bytes relative to the location specified by the sum of the contents

of the address register and the index register.

Address register indirect with index and offset addressing is very useful when

accessing elements of an array in memory. For example, the two-dimensional array

of Fig. 3.12(a), which has a size of m + 1 rows by / + 1 columns can be stored in

memory as shown in Fig. 3.12(b). Notice that the first I + 1 addresses, with starting

address at 00F00016, contain the elements of row 0 of the array, that is, the elements

located at columns 0 through / of row 0. In both figures, these are identified as E(0,0)

through E(0,/). The elements of row 0 are followed in memory by those for rows

1 through m.
Let us look at how to access the element located at column j of row i (E(i,j)).

In order to access this element, the first address register A0 can be loaded with the

beginning address, SOOFOOO, of the array in memory. In this way, it points to the

Sec. 3 .4 The Operand Addressing Modes of the 6 8 0 0 0 Microprocessor 53

Figure 3-11 (com.) (b) After execution.

first element in the first row of the array. A! can be used as the index register and

loaded with an index number such that it points to row i in the array. Assuming that

each element uses a word for storage, the value required in index register A| in order

to access row i is computed as 2i (/ + 1). Finally, the offset can be used to select

the appropriate column. For element j, it should be made equal to 2j. In this way,

the effective address computed as

EA = AO + 2i (/ + 1) + 2j

points to element E(i,j). Notice that the 8-bit offset limits the number of columns

in the array to a maximum of 128.

For instance, let us determine the effective address needed to copy the word

in element E(5,6) of the array in Fig. 3.12 with m = 8 into D0. Assume that the array

of words is stored starting at address S00F000. First we must load registers A0 and

A| as follows:

AO = 00F00016

A1 = 2i(/ + 1) = 2(5)(8 + 1) = 9010 = 5Ai6

Beginning of array: Column 0

Column 1

Column 2

Column /

Column 0

Column 1

Column I

Column j

Column 0

Column /

(a)

Memory

E(0, 0)

E(0, 1)

E(0, 2)

E(0, /)

E(1, 0)

E(l, 1)

E(l , /)

00F000,

*• Row 1

E(i,j) Element to be addressed
in row i and column j

E(m, 0)

E(m, /)

- Row m

(b)

Figure 3-12 (a) An (m + 1) x (/ + 1) two-dimensional array; (b) storage of the array

in memory.

5 4

Sec. 3 .4 The Operand Addressing Modes of the 6 8 0 0 0 Microprocessor 55

Then the offset is obtained by multiplying the column dimension of the array element

by 2. This gives

d8 = 2j = 2(6) = 1210 = C 16

Therefore, the effective address of the element is

EA = AO + A1 + d8 = 00F000,6 + 5A,6 + C l6

= 00F0661S

This element can be copied into D0 by executing the instruction

MOVE.W 12(A0,A1.L),D0

Immediate Data Addressing Modes

With immediate data addressing mode, the operand to be processed during the

execution of the instruction is supplied in the instruction itself. In general, the data

are encoded and stored in the word locations that follow the instruction in program

memory. If the instruction processes bytes of data, a special form of immediate

addressing can be used. This is known as quick immediate addressing. In this case,

the data are encoded directly into the instruction’s operation word. For this reason,

using quick immediate addressing takes up less memory and executes faster.

Here are two examples of instructions that employ immediate data addressing

for their source operands.

Notice that the tt symbol written before the operand indicates that immediate data

addressing is employed. The first instruction, move quick (MOVEQ), illustrates quick

immediate addressing. In this instruction, the immediate source operand is C5!6. As

shown in Fig. 3.13(a), it gets encoded as S70C5, where the least significant byte of

the instruction word is the immediate operand. Executing this instruction loads D0

with the sign-extended long-word value of $C5; that is.

MOVEQ #$C5,D0

MOVE.W #$1234,DO

$FFFFFFC5 - DO

MOVEQ *SC5, DO S70C5LQuick immediate operand

(a)

MOVE.W #S 1234, DO--- ►_$303C
Figure 3-13 (a) Coding of a move in-

51234 Immediate operand struction with quick immediate operand;

(b) coding of a move instruction with

general immediate operand.

56 6 8 0 0 0 Microprocessor Programming 1 Chap. 3

Looking at the second instruction, we see that its immediate source operand

is the word 123416. Figure 3.13(b) illustrates how its immediate operand gets encoded

into the second word of the instruction. When the instruction is executed, sign

extension is not performed; instead, the value $1234 is loaded into the least significant

16 bits of D0. That is,

$1234 -*■ Least significant 16 bits of D0

The most significant 16 bits of D0 are not affected.

Implied Addressing Mode

Some of the 68000’s instructions do not make direct reference to operands. Instead,

inherent to their execution is an automatic reference to one or more of its internal

registers. Typically, these registers are the stack pointers, the program counter, or

the status register.

An example is the instruction

BSR SUBRTN

It stands for branch to the subroutine at label SUBRTN. Both the contents of the

program counter and active stack pointer are always referenced during the execution

of this instruction.

Functional Addressing Categories

The addressing modes that we have discussed in this section can be divided into four

categories based on the manner in which they are used. These functional categories

are: data addressing, memory addressing, control addressing, and alterable addressing.

The relationship between the addressing modes and these four categories is summarized

by the table in Fig. 3.14.

Addressing M ode M ode Register
Addressing Categories Assembler

SyntaxData M em Cont Alter
Data Reg Dir 000 reg no X - - X Dn
Addr Reg Dir 001 reg no - — - X An
Addr Reg ind 010 reg no X X X X lA n)

Addr Reg Ind w /P ostm c 011 reg no X X - X lA n) +
Addr Reg Ind w /P red ec 100 reg no X X - X - (A n)
Addr Reg ind w /D is p 101 reg no X X X X d(An)

Addr Reg Ind w /ln d e x no reg no X X X X d(A n . Ri)
Absolute Short 111 000 X X X X XX X
Absolute Long 111 001 X X X X xxxxxx
Prog Ctr w /'D isp 111 010 X X X - diPC)
Prog Ctr w /ln d e x 111 011 X X X - d(PC. Ri)
imm ediate 111 100 X X - - #xxx

Figure 3-14 Effective addressing mode categories (Motorola, Inc.).

If an addressing mode can be used to reference data operands, it is categorized

as data addressing. Looking at Fig. 3.14, we see that all addressing modes other than

address register direct are classified as data addressing. Address register direct is not

included because it only allows access to address information.

Sec. 3 .6 Data Transfer Instructions 57

Similarly, if an addressing mode provides the ability to reference operands in

memory, it is classified as memory addressing. Notice in Fig. 3.14 that just the data

register direct and address register direct addressing modes are not classified in this

way. This is because their use is restricted to accessing information that resides in

the internal registers of the 68000.

An addressing mode is considered control addressing if it can be used to reference

an operand in memory without specification of the size of the operand. Notice in

Fig. 3.14 that all direct addressing modes, indirect addressing modes with either

predecrement or postincrement, and the immediate addressing modes are not included

in this category.

Moreover, if an addressing mode permits reference to operands that are being

written into, it is called an alterable addressing mode. That is, alterable addressing

modes can be used in conjunction with destination operands. Looking at Fig. 3.14,

we see that immediate data addressing is an example of an addressing mode that cannot

be used to specify a destination operand. It only can be used to reference source

operands.

3.5 INSTRUCTION SET

Now that we have introduced the software model of the 68000 and its addressing

modes, we are ready to begin our study of its instructions. Motorola, Inc. has applied

orthogonality in the design of the instruction set of the 68000. That is, instead of

having a large number of instructions that include many special-purpose instructions,

they have included a smaller number of general-purpose instructions. But the 68000

is equipped with more powerful addressing modes and most of the instructions can

use all of the addressing modes. This makes its general instructions very versatile.

Moreover, it results in fewer instruction mnemonics for the programmer to remember

and less restrictions on how operands can be accessed during instruction execution.

The 68000 microprocessor provides a very powerful minicomputer-like

instruction set. It has 56 basic instruction types. A summary of the instructions is

shown in Fig. 3.15. These basic instruction types coupled with their variations, shown

in Fig. 3.16, the 14 addressing modes, and five data types produce a large number

of executable instructions at the machine code level.

For ease of learning, we will divide the instructions of the 68000’s instruction

set into functionally related groups. In this chapter the groups covered are: the data
movement instructions, the integer arithmetic instructions, the decimal arithmetic

instructions, the logic instructions, and the shift and rotate instructions. The rest of

the instruction set will be presented in Chapter 4.

3.6 DATA TRANSFER INSTRUCTIONS

The instruction set of the 68000 provides instructions to transfer data between its

internal registers, between an internal register and a storage location in memory, or

between two locations in memory. The basic instructions in the data transfer group

6 8 0 0 0 M icroprocessor Programming 1 Chap.

Mnemonic Description

ABCD Add Decimal w ith Extend
ADD Add
AND Logical And
ASL Arithm etic Shift Left
ASR Arithm etic Shift Right

Bcc Branch Conditionally
BCHG Bit Test and Change
BCLR Bit Test and Clear
BRA Branch Always
BSET Bit Test and Set
BSR Branch to Subroutine
BTST Bit Test
CHK Check Register Against Bounds
CLR Clear Operand
CMP Compare

DBcc Test Condition. Decrement and Branch
DIVS Signed Divide
DIVU Unsigned Divide
EOR Exclusive Or
EXG Exchange Registers
EXT Sign Extend

JMP Jump
JSR Jump to Subroutine
LEA Load Effective Address
LINK Link Stack
LSL Logical Shift Left
LSR Logical Shift Right

MOVE Move
MOVEM Move M ultiple Registers
MOVEP Move Peripheral Data
M ULS Signed M ultiply
MULU Unsigned M ultiply

NBCD Negate Decimal w ith Extend
NEG Negate
NOP No Operation
NO Ones Complement

OR Logical Or
PEA Push Effective Address
RESET Reset External Devices
ROL Rotate Left w ithou t Extend
ROR Rotate Right w ithou t Extend
ROXL Rotate Left w ith Extend
ROXR Rotate Right w ith Extend
RTE Return from Exception
RTR Return and Restore
RTS Return from Subroutine

SBCD Subtract Decimal w ith Extend
See Set Conditional
STOP Stop
SUB Subtract
SWAP Swap Data Register Halves
TAS Test and Set Operand
TRAP Trap
TRAPV Trap on Overflow
TST Test
UNLK Unlink

Figure 3-15 Instruction set summary

(Motorola, Inc.).

Sec. 3.6 Data Transfer Instructions 59

Instruction
Type Variation Description

ADD ADD Add
ADDA Add Address
ADDQ Add Quick
ADDI Add Immediate
ADDX Add w ith Extend

AND AND Logical AND
ANDI AND Immediate
ANDI to CCR AND Immediate to Condition Code
ANDI to SR AND Immediate to Status Register

CMP CMP Compare
CMPA Compare Address
CMPM Compare Memory
CMPI Compare Immediate

EOR EOR Exclusive OR
EORI Exclusive OR Immediate
EORI to CCR Exclusive Immediate to Condition Codes
EORI to SR Exclusive OR Immediate to Status Register

MOVE MOVE Move
MOVEA Move Address
MOVEQ Move Quick
MOVE to CCR Move to Condition Codes
MOVE to SR Move to Status Register
MOVE from SR Move from Status Register
MOVE to USP Move to User Stack Pointer

NEG NEG Negate
NEGX Negate with Extend

OR OR Logical OR
ORI OR Immediate
ORI to CCR OR Immediate to Condition Codes
ORl to SR OR immediate to Status Register

SUB SUB Subtract
SUBA Subtract Address
SUBI Subtract Immediate
SUBO Subtract Quick
SUBX Subtract w ith Extend

Figure 3-16 V a r ia t io n s o f in s t ru c t io n ty p es (M o to ro la , Inc .) .

are shown in Fig. 3.17. Notice that it includes the following instructions: move
(MOVE), move multiple (MOVEM), load effective address (LEA), exchange (EXG),
swap (SWAP), and clear (CLR).

Move Instruction—MOVE

The first o f the basic data transfer instructions in Fig. 3.17 is the MOVE instruction.
This instruction has the ability to perform all three o f the earlier mentioned data
transfer operations. That is, data transfers from register to register, between register
and memory, or memory to memory. Looking at Fig. 3.17, we see that there are
eight different forms o f this instruction. Notice that they differ in both the size o f
operands they process and the types o f operands that they can access.

The first form o f the MOVE instruction is

MOVE EAs,EAd

It permits movement o f a source operand location identified by effective address EAs
into a destination location identified by effective address EAd. The source and

6 0 6 8 0 0 0 M icroprocessor Programming 1 Chap. 3

Mnemonic Meaning Type Operand Size Operations

MOVE Move MOVE EAs.EAd
MOVE EA.CCR
MOVE EA,SR
MOVE SR.EA
MOVE USP,An
MOVE An,USP
MOVEA EA,An
MOVEQ #XXX,Dn

8, 16 ,32
16
16
16
32
32
16 ,32
8

(EAs) -*• EAd
(EA) — CCR
(E A) - S R
SR -* EA
USP - An
An - USP
(E A) - A n
X X X - D n

MOVEM Move m ultiple MOVEM Reg_list,EA
MOVEM EA.Reg_list

16 .32
16.32

Reg_list -► EA
(EA) — Reg_list

LEA Load effective address LEA EA,An 32 EA -* An

EXG Exchange EXG Rx.Ry 32 Rx *— Ry

SWAP Swap SWAP Dn 16 D n 3 l : l 6 — Dn 15:0

CLR Clear CLR EA 8, 16 ,32 0 - EA

Figure 3-17 D a ta tra n s fe r in s tru c tio n s .

d es t in a t io n o p e ra n d s can be loca ted in d a ta registers, ad d ress regis ters, o r s to rage
loca t ions in m em o ry . M o reo v er , this in s t ruc t ion can be used to process byte, w o rd ,
o r long-w ord o p e ran d s .

W h en ev er this in s t ruc t ion is p rocess ing w o rd or lo n g -w o rd d a ta , the source
o p e ra n d can be specif ied using a ny a ddress ing m ode. H ow ever , fo r o p e ra t io n on byte
d a ta , address register direct address ing m o d e c a n n o t be used. T h is is because the
a d d ress registers can be accessed on ly as w o rd o r lo n g -w o rd o p e ran d s .

F o r the d es t in a t io n o p e ra n d , on ly the a l te rab le address ing m o d es a re a llowed.
T h e address ing m o d es in this g r o u p were identif ied in Fig. 3.14. In o th e r w ords ,
p ro g ra m c o u n te r re la tive an d th e im m ed ia te d a ta address ing m o d es c an n o t be used
to specify the loca t ion o f the d es t in a t io n o p e ra n d . M o reo v er , w hen process ing byte
o p e ran d s , add ress register d irect add ress ing c a n n o t be used.

A n o th e r th ing th a t m ay be im p o r ta n t to no te is h o w the co n d i t io n code bits
in the user byte o f th e 68000’s s ta tu s register are a f fec ted by execu tion o f the M O V E
ins t ruc t ion . T h e c o n d i t io n codes a f fec ted a re the negative (N) bit, the zero (Z) bit,
the overflow (V) b i t , an d the ca r ry (C) bi t. N an d Z a re set o r c leared based o n the
result o f the in s t ru c t io n : th a t is, th e value cop ied in to the d es t in a t io n loca t ion . If
the result is negative , N is set; o therw ise , it is c leared . S imilarly , if the result is zero,
Z is set, an d if it is n o n z ero , it is c leared . T h e V an d C bits a re always c leared .

Here is an example o f the m ove instruction tha t perform s a w ord-copy operat ion .

M O V E .W D0,D1

T h e source o p e ra n d in D0 is specified using d a ta regis ter direct address ing m ode . Let
us assum e th a t the c o n ten ts o f register D 0 are 1234567816. T h e des t in a t io n o p e ra n d
in D , is also specif ied using d a ta register direct address ing m ode . E xecu tion o f the
instruction causes the least significant w ord in D0, which equals 5678J6, to be copied

Sec. 3 .6 Data T ra n s fe r In s tru c tio n s 61

in to th e lo w er 16 bits o f D , . S ince the resu lt in D , is pos i t ive a n d n o n z e ro , the
c o n d i t io n co d es a re a f fe c ted as fo l low s: N = 0 , Z = 0, V = 0, C = 0, a n d X is
n o t a f fec ted .

T h e nex t tw o fo rm s s h o w n in Fig. 3 .17 fo r th e M O V E in s t ru c t io n a re p ro v id e d
fo r in i t ia l iza t ion o f th e s ta tu s reg is te r . T h e in s t ru c t io n

M O V E E A . C C R

allo w s o n ly th e c o n d i t io n c o d e p a r t o f th e s t a tu s reg is te r to be spec if ied as the
d e s t in a t io n o p e r a n d . T h is o p e r a n d is id e n t if ied by C C R . O n th e o th e r h a n d , a n y o f
th e d a t a ad d re s s in g m o d e s c an be u sed fo r th e so u rc e o p e r a n d . T h is in s t ru c t io n can
be used to lo ad th e user b y te o f SR f ro m m e m o ry o r a n in te rna l reg is ter . E ven th o u g h
th e so u rc e o p e r a n d size is sp ec if ied as a w o rd , ju s t its e igh t leas t s ign if ican t b its a re
u sed to m o d i fy th e c o n d i t io n c o d e bits in SR .

T h e se c o n d in s t ru c t io n

M O V E E A ,S R

is u sed to lo a d all 16 b its o f th e s ta tu s reg is te r . T h e re fo r e , its e x e cu t io n lo a d s b o th
th e sys tem by te a n d user by te . S ince this in s t ru c t io n u p d a te s the m o s t s ign if ican t by te
in S R , it c an be ex ecu ted o n ly w h e n th e 68000 is in th e su p e rv iso r s ta te (pr iv ileged
in s t ru c t io n) .

Exam ple 3.1

W h at will be the result o f executing the fo l lowing sequence o f ins t ruc t ions?

M O V E .W #12 ,DO

M O V E DO, SR

A ssum e tha t the 68000 is in the superv iso r state .

Solution. Execution o f the first instruction loads the lower w ord o f D0 with imm ediate
source o p e ra n d I 2 |0 .

12)0 = OOOC]6 = 0000000000001100,

A f te r execu tion o f this in s t ruc t ion , the co n d it io n code bits o f SR are as follows:

X = unch an g ed

N = 0

Z = 0

V = 0

C = 0

C heck Fig. 2.7 fo r the m ean ing o f each o f these bits . T he result o f executing the second
in s truct ion d epends on the s ta le o f the 68000. W e have a ssum ed that it is o pe ra t ing in
the superv isor sta te ; there fo re , SR is loaded with the lower w o rd o f D0, which is
0000000000001100,.

DO = XXXXXXXXXXXXXXXXOOOOOOOOOOOOliOO,

SR = 0000000000001100;,

62 6 8 0 0 0 M icroprocessor Programming 1 Chap. 3

This gives the cond ition codes th a t follow :

X = 0

N = 1

Z = 1

V = 0

C = 0

T h e next fo rm o f the M O V E in s t ru c t io n sh o w n in Fig. 3 .17 is

M O V E S R ,E A

N otice th a t its sou rce o p e ra n d is a lw ays the co n te n ts o f SR a n d th a t the des t in a t io n
o p e ran d is represented by the effective address E A . T here fo re , this instruct ion permits
the p ro g r a m m e r to save the co n te n ts o f the s ta tus regis ter in an a d d ress regis ter, d a ta
register, o r a s to rage loca t ion in d a ta m em ory . In specifying the d es t ina t ion o p e ran d ,
on ly th o se a ddress ing m o d es iden tif ied in Fig. 3 .14 as a l te rab le can be used.

F o r exam ple , execu ting th e ins t ruc t ion

M O V E S R ,D 7

causes the c o n te n ts o f SR to be cop ied in to d a ta register D 7. N o c o n d i t io n codes a re
a f fec ted d ue to th e execu tion o f this in s t ruc t ion . Since this in s t ru c t io n reads b u t does
no t m o d ify the co n te n ts o f SR , it can be execu ted w hen the 68000 is in e ithe r the
user sta te o r th e superv iso r s ta te .

T h e m ove use r stack p o in te r in s t ruc t ions a re show n in Fig. 3 .17 to be

M O V E U S P ,A n

and

M O V E A n ,U S P

N otice th a t the d a ta t ran s fe r th a t t ak es place is a lw ays be tw een the user stack p o in te r
(U S P) register a n d o n e o f the a d d ress registers. F o r this rea so n , these in s t ruc t ions
a re used to re ad a n d to m o d ify the user stack p o in te r , respectively. Since U S P is a
32-bit register, b o th the source a n d d es t in a t io n o p e ra n d s a re a lw ays long w o rd in
size. Both o f the instructions a re privileged a n d m ust only be executed when the 68000
is in the superv iso r s ta te .

A n efficient way o f load ing an address register f ro m a n o th e r address register,
d a ta regis ter, o r s to rage loca t ion in m em o ry is w ith the move address instruction.
In Fig. 3.17, this fo rm o f the M O V E ins t ruc t ion is given as

M O V E A E A ,A n

T his in s t ruc t ion a llows the o p e r a n d to be e ithe r 16 bits o r 32 bits in length . I f the
source o p e ra n d is specified as a w o rd , the a d d ress w ord is s ign-ex tended to give a
long w o rd b e fo re it is m oved in to the address register.

Sec. 3 .6 Data Transfer Instructions 6 3

T h e source o p e ran d can be specif ied using a n y o f the 68000’s address ing m odes .
F o r instance, the in s truct ion

M O V E A .L (A 0) ,A 6

em ploys ad d ress register indirect address ing . E xecu tio n o f this in s t ru c t io n causes the
lo ng-w ord c o n ten ts o f the m e m o ry loca t ion p o in ted to by the a d d ress in A 0 to be
load ed in to ad d ress regis ter A 6. C o n d i t io n codes a re not a f fec ted by execution o f
this in s truc t ion .

T h e last fo rm o f the M O V E in s t ru c t io n we find in Fig. 3.17 is

M O V E Q # X X X ,D n

This in s t ru c t io n , move quick, is used to load a d a ta register effic iently with a
byte-w ide im m ed ia te o p e ran d . A n exam ple is th e ins t ruc t ion

M O V E Q 04,D1

T h e im m edia te o p e r a n d , which is decim al n u m b e r 4, is enco d ed d irectly in to the
in s t ruc t ion o p e ra t io n w ord . W h en this in s t ruc t ion is execu ted , the im m ed ia te d a ta
a re loaded in to d a ta register D j . H o w ev e r , b e fo re the va lue is lo ad ed , it is sign
ex tended to 32 bits . T h e re fo re , the value lo ad e d in to D (is 0 0 00000416.

Move Multiple Registers Instruction—MOVEM

T h e m ove m ult ip le regis ters (M O V E M) in s t ru c t io n p rov ides an e ffic ient m ech an ism
for saving the contents o f the internal registers in to m em ory o r to restore their contents
f ro m m em o ry . O n e use o f this in s t ru c t io n is to init ialize a g r o u p o f regis ters f ro m
a tab le in m em o ry . T his o p e ra t io n can be d o n e with a series o f M O V E ins t ruc t ions
o r with ju s t one M O V E M ins truc t ion .

A n o th e r o p e ra t io n fo r which it can be useful is when w o rk in g with subrou t ines .
F o r instance, if a su b ro u t in e is to be init ia ted , typically the c o n te n ts o f the regis ters
th a t a re used d u r in g its execu tion m ust be saved in m em o ry . M o reo v er , a f te r its
execu tion is c o m p le te , their c o n te n ts m ust be re s to red . In this way , when p ro g ra m
co n tro l is re tu rn e d to the m ain p ro g ra m , the registers reflect th e sam e in fo rm a t io n
th a t they co n ta in ed p r io r to en try in to the su b ro u t in e . E ithe r the save o r restore
o p e ra t io n can be p e r fo rm e d with a single M O V E M ins truc t ion .

T h e tw o fo rm s o f M O V E M are show n in Fig. 3.17. T h e first fo rm ,

M O V E M Reg-lis t ,EA

is em ployed to save the c o n ten ts o f th e registers specified in register list (Reg-list)
in m em ory . T h ey a re saved at consecu tive addresses in m em o ry s ta r ting at the address
specified by the dest inat ion op e ran d . A ny o f the c on tro l addressing modes and address
regis ter indirect with p red ec rem en t can be used in c o n ju n c t io n with the d es t in a t io n
o p e ra n d .

T h e register list can include any c o m b in a t io n o f d a ta an d address regis ters. A
list o f the regis ters t o be saved is c o d ed in to a second w o rd o f the in s t ruc t ion . T h is

6 4 6 8 0 0 0 Microprocessor Programming 1 Chap. 3

w o rd is called the register list mask. As show n in Fig. 3.18(a), each bit o f this m ask
c o r re sp o n d s to o n e o f the 68000’s in te rn a l registers. Setting a bit to 1 indicates tha t
the c o r re sp o n d in g regis ter is included in the list a n d 0 indicates th a t it is not included.
Notice tha t d a ta registers D0 th ro u g h D 7 co r re sp o n d to bits 0 th ro u g h 7 o f the m ask ,
respectively, a n d ad d ress registers A 0 th ro u g h A 7 co r re sp o n d to bits 8 th ro u g h 15,
respectively. W h e n address register indirect with p red ec rem en t a ddress ing is used ,
the m ean in g o f the bits o f the m ask w o rd are c h an g ed as show n in Fig. 3.18(b). T h e
register c o r re sp o n d in g to the first set bit is saved first, fo l low ed by the regis ter
c o r re sp o n d in g to the next set b it an d so on . T h e last saved register c o r re sp o n d s to
the last set bi t.

15 8 7 0

A7 ^6 A 5 A, A 3 A 2 A, Ao D, D6 d 5 d 4 D3 D 2 D, Do

15 8

(a)

7 0

Do D, d 2 d 3 d 4 D s D6 D, A o A, A j A3 A4 A s A* A?

(b)

Figure 3-18 (a) R eg ister list m ask w ord fo rm a l fo r co n tro l m o d e a n d po stin c rem en t
ad d re ss in g ; (b) fo rm a t fo r ad d re ss reg iste r ind irec t w ith p red ec rem e n t ad d ress in g .

This in s t ru c t io n can be w r i t ten to p e r fo rm w o rd or lo n g -w o rd d a ta t ran s fe rs .
In a w o rd o p e ra t io n , only the least significant w o rd pa r ts o f th e specified regis ters
a re saved in m em o ry . In this case, it requires o n e w o rd o f m e m o ry s to rage fo r each
register. H ow ever , i f long-w ord t ran s fe rs are specif ied, each regis ter needs tw o w ords
o f m em o ry .

T h e second fo rm o f the M O V E M in s tru c t io n show n in Fig. 3.17 perm its the
internal registers o f the 68000 to be initialized or restored f rom m em ory . It is written as

M O V E M E A ,R eg-l is t

E xecu tion o f th is ins t ruc t ion causes the w o rd o r long-w ord co n te n ts o f the regis ters
in Reg-list to be loaded one a f te r the o ther f ro m m em o ry . W h en specifying the source
o p e ra n d , the s ta r t in g address o f the table o f va lues to be lo ad ed can on ly use the
co n tro l o r p o s t in c rem en t a ddress ing m odes .

Example 3.2
W rite an in struction tha t will do the reverse o f the instruction

MOVEM. W DO/D I / A5,$AF00

Solution. T his in struction will save the low er w ords o f registers D0, D ,, and A5 in
m em ory at w ord addresses AF00,6, AF02|6, and AF04]6, respectively. To resto re the
registers, th e instruction is w ritten as

MOVEM.W $A F00,D 0/D 1/A 5

F ig u re 3 .19 i l lu s t ra te s w h a t h a p p e n s d u e to the e x e c u t io n o f th e se tw o in s t ru c t io n s .

Sec. 3 .6 Data Transfer Instructions 6 5

Figure 3-19 Save and restore o f processor register contents as implemented with the
MOVEM instructions.

Load Effective Address Instruction—LEA

A way o f directly load ing an address register with an address is with the load effective
address (L E A) in s truc t ion . T h e fo rm o f this in s tru c t io n is given in Fig. 3.17 as

L E A E A ,A n

E xecu tion o f this in s tru c t ion does n o t load the d e s t in a t io n o p e ran d w ith the con ten ts
o f th e specified source o p e ra n d . In s tead , it co m p u te s an effective address based on
the addressing m o d e used fo r the source o p e ran d an d loads this va lue in to the address
register specified as the des t ina t io n . O nly the co n tro l address ing m odes listed in Fig.
3.14 can be used to describe th e source o p e ra n d .

Example 3.3

Describe what happens when the instruction

L E A 6(A1,D0),A2

is executed. Assum e that A t = 00004000|6 and D0 = 000012AB,6.
Solution. This instruction uses address register indirect with index addressing for the
source operand. Its destination is simply address register A , . Execution o f the instruction
causes A , to be loaded with the effective address

A2 = A 1 + DO + 6 jq

Using the values given for the contents o f A | and D 0, we find that the effective address
loaded into A , equals

A2 = 0000400016 + 000012AB15 + 6 |6

= 000052B116

Exchange Instruction—EXG

Earlier we show ed how the M O V E in s truc t ion co u ld be used to m ove the con ten ts
o f o ne o f the in ternal registers o f the 68000 to a n o th e r internal register. A n o th e r type
o f requ irem en t fo r som e ap p lica t ion s is to exchange efficiently the con ten ts o f tw o

6 6 6 8 0 0 0 Microprocessor Programming 1 Chap. 3

regis ters. It is fo r th is reason th a t th e exchange (E X G) ins t ruc t ion is included in the
in s t ruc t ion set o f the 68000.

T his in s t ru c t io n is sh o w n in Fig. 3.17 to h av e the fo rm

E X G R x ,R y

H ere Rx an d Ry s tan d for a rb i t ra r i ly se lected d a ta o r add ress registers. A n exam ple
is the in s t ruc t ion

E X G DO,A3

It will load d a ta regis ter D0 with the c o n ten ts o f a d d ress regis ter A 3 an d A 3 with
the c o n ten ts o f D0. F o r exam ple , if D0 c o n ta in s F F F F F F F F 16 a n d A 3 con ta ins
00000000)6, th e result a f te r execu ting the in s t ru c t io n is tha t D 0 now con ta ins
00000000 ,6 an d A 3 con ta ins F F F F F F F F 16. T h e d a ta t rans fers th a t take p lace a re
a lw ays 32 bits long an d no c o n d i t io n code bits a re a ffec ted .

Swap Instruction—SWAP

T h e sw ap (S W A P) ins t ruc t ion is s im ila r to the exchange ins t ruc t ion in th a t it has
the abili ty to exchange tw o values. H ow ever , it is used to exchange the up p e r an d
lower w ords in a d a ta regis ter. T h e general fo rm o f S W A P is given in Fig. 3.17 as

S W A P Dn

A n exam p le is

S W A P DO

W h en this instruction is executed, the contents o f the lower 16 bits o f D0 are sw apped
with its u p p e r 16 b i ts . I f the o r ig ina l c o n ten ts o f D 0 are F F F F 0 0 0 0 16, execution o f
th e ins t ruc t ion resu lts in the value 0 0 0 0 F F F F ,6 in D 0. T h e 32-bit va lue th a t results
in D0 a f te r the sw ap o p e ra t io n is used to set o r reset the co n d i t io n code flags.

Clear Instruction—CLR

T h e C L R in s t ru c t io n can be used to initialize th e c o n ten ts o f an in ternal regis ter o r
s to rage loca t ion in d a ta m e m o ry to zero . F igu re 3.17 shows th a t the ins t ruc t ion is
w ri t ten in general as

C L R E A

a n d th a t it can p e r fo rm its o p e ra t io n on byte, w o rd , o r long-w ord o p e ran d s . All
a l te rab le a ddress ing m o d es except add ress register direct can be used to access the
o p e ra n d .

F o r instance, to clear the least significant 8 bits o f D0, the following instruction
is executed:

C L R .B DO

W henever this in s t ruc t ion is execu ted , th e Z bit o f SR is set an d the N, V, an d C
bits are c leared . M o reo v er , the X bit is no t a ffec ted .

Sec. 3 .7 Integer A rithm etic Instructions 6 7

3.7 INTEGER ARITHMETIC INSTRUCTIONS

The instruction set o f the 68000 provides instructions to perform binary ari thmetic
operations, such as add , subtract, multiply, and divide. These instructions can process
both signed and unsigned numbers. M oreover, the d a ta being processed can be
organized as bytes, words, o r long words. The instructions in this g rou p are shown
in Fig. 3.20.

M nemonic Meaning Type O perand Size O peration

ADD Addl ADD EA, Dn
ADD Dn, EA
ADDI #X X X , EA
ADDQ #X X X , EA
ADDX Dy, Dx
ADDX - (A y), “ (A x)
ADDA EA, An

8, 16,32
8, 16,32
8, 16,32
8, 16,32
8, 16,32
8, 16,32
16,32

(EA) + Dn Dn
Dn + (E A) - E A
#X X X + (E A) - E A
#X X X + (E A) - E A
Dy + Dx + X Dx
“ (A y) + “ (A x) + X -* (A x)
(EA) + An -» An

SUB Subtracti SUB EA, Dn
SUB Dn, EA
SUBI #X X X , EA
SUBQ #X X X , EA
SUBX D y, Dx
SUBX “ (A y), “ (A x)
SUBA EA, An

8, 16,32
8, 16,32
8, 16,32
8, 16,32
8, 16,32
8, 16,32
16,32

Dn - (EA) - Dn
(EA) - Dn -* EA
(E A) - # X X X - E A
(EA) - #X X X - EA
Dx - Dy -* Dx
“ (A x) - “ (A y)-» (A x)
An - (EA) -* An

NEC Negate NEG EA, Dn
NEGX EA, Dn

8, 16,32
8, 16,32

0 - (EA) - EA
0 - (EA) - X -» EA

MUL Multiply MULS EA, Dn
MULU EA, Dn

16
16

(EA) ■ Dn - Dn
(EA) • Dn -» Dn

DIV Divide DIVS EA, Dn
DIVU EA, Dn

32 ■=■ 16
32 16

Dn ■=• (EA) -» Dn
Dn •=- (EA) -» Dn

EXT Extend sign EXT.W Dn
EXT.L Dn

8 -» 16
1 6 - 3 2

Dn byte ■* Dn word
Dn word -* Dn long word

Figure 3-20 Integer arithmetic instructions.

The condit ion code bits in the SR register are set or reset as per the result o f
ari thm etic instructions. For A D D , SUB, and N EG instructions the five condit ion
code bits are affected as follows:

N is set if the result is negative, cleared otherwise

Z is set if the result is zero, cleared otherwise
V is set if an overflow occurs , cleared otherwise
X and C are set if carry is generated or bo rrow is taken , cleared otherwise

For M UL, DIV, and E X T instructions, V and C are always cleared, X is not affected,
and N and Z are set o r cleared like tha t in o ther ari thmetic instructions: A D D , SUB,
and N EG .

6 8 6 8 0 0 0 M icroprocessor Programming 1 Chap. 3

Addition Instructions—ADD, ADDI, ADDQ, ADDX,
and ADDA

F o r im p lem en t ing th e b in a ry a d d i t io n o p e ra t io n , the 68000 p rov ides five types o f
ad d instruct ions. All five fo rm s to g e th e r with their p e rm it ted o p e ra n d sizes are show n
in Fig. 3.20. T he d ifferent types o f instructions a re p rovided for dealing with d ifferent
k inds o f a d d i t io n requ irem en ts . F o r instance, w h e n addresses a re m a n ip u la ted , we
want to operate o n da ta in the address registers a n d do not want to affect the condit ion
codes in SR. T h u s for this s i tu a t io n a special a d d ress ad d i t io n (A D D A) ins t ruc t ion
is p rov ided .

T h e first fo u r fo rm s o f the a d d ins t ruc t ion in Fig. 3 .20 are generally used to
process d a ta a n d th e last fo rm is fo r m o d ify ing addresses . T w o fo rm s o f the basic
add (A D D) in s t ru c t io n a re show n . T h e first fo rm

A D D E A ,D n

a d d s the con ten ts o f the loca t ion specified by the effective address E A to the con ten ts
o f d a ta register D n; th a t is,

(E A) + Dn -*■ D n

T h e source o p e r a n d can be lo ca ted in an in te rna l register o r a s to rage loca t ion in
m em o ry . M o re o v e r , its effective add ress can be specified with a n y o f the address ing
m o d es o f the 68000. T h e on ly excep tion is th a t the size o f the o p e ra n d c a n n o t be
specif ied as a by te when address register direct a dd ress ing m o d e is used.

F o r instance, the ins t ruc t ion

A D D .L D0,D1

causes th e c o n ten ts o f D0 to be a d d e d to the c o n te n ts o f D | . I f the orig ina l con ten ts
o f D 0 are $00013344 and th a t o f D , a re $00000FFF, the sum tha t is p ro d u ced equals
$00014343 an d it is saved in D , .

T h e second fo rm is s im ila r except th a t it represen ts th e ad d it io n o f the con ten ts
o f a source d a ta register to the co n te n ts o f a d e s t in a t io n o p e ra n d th a t is identif ied
by the effective add ress E A .

A D D D n ,E A

D n + (EA) -*• E A

In this case on ly the a lte rab le m e m o ry a ddress ing m odes a re app licab le to the
d es t in a t io n o p e ra n d .

Example 3.4
W rite an in struction sequence tha t can be used to add tw o long w ords whose locations
in m em ory are specified by th e con ten ts o f add ress registers A , and A ,, respectively.
T he sum is to replace the co n ten ts o f the s to rage location po in ted to by the address in
A 2.

Solution. W e will use D0 as an in term edia te s to rage location fo r im plem enting the
m em ory-to -m em ory add . T he in struction sequence is

Sec. 3 .7 Integer A rithm etic Instructions 69

C L R .L DO

A D D .L (A 1),D 0

A D D .L D 0,(A 2)

The instruction add immediate (A D D I) operates similarly to the A D D instruction
we jus t in t ro d u c ed . T h e im p o r ta n t d if ference is th a t now th e value o f th e source
o p e ra n d is a lw ays loca ted in p ro g ra m m em o ry as an im m ed ia te o p e ran d . T h a t is,
it is en co d ed as the second w o rd o f the in s t ru c t io n for byte a n d w o rd o p e ran d s o r
as a second an d th i rd w o rd for lo n g -w o rd o p e ra n d s . T h e general in s t ruc t ion fo rm at
as show n in Fig. 3 .20 is

A D D I #XXX, E A

H ere #XXX s tan d s fo r the im m ed ia te source o p e r a n d an d E A is th e e ffective a ddress
o f the des t in a t io n o p e ra n d . F o r exam p le , the in s t ru c t io n

A D D .L # $ 0 F F F F ,D 0

causes the va lue F F F F)6 to be a d d ed to the long-w ord c o n te n ts o f D0.
T he add quick (A D D Q) in s t ru c t io n o f Fig. 3 .20 is a special v a r ia t ion o f the

ad d - im m ed ia te in s t ruc t ion . It limits the size o f the source o p e r a n d to the range 1
th ro u g h 8.

A n exam p le is the in s t ruc t ion

A D D Q #3,D1

It s tan d s fo r ad d the n u m b e r 3 to the con ten ts o f D , . These im m e d ia te d a ta a re
en co d ed directly in to the in s t ruc t ion w ord . F o r this reason , A D D Q encodes in fewer
bytes an d executes fa s te r th a n A D D I . T h e re fo re , it is p re fe r red when m em o ry
req u irem en t an d execution t im es a re to be m in im ized . O f co u rse , the ad d it io n th a t
is p e r fo rm e d c a n n o t involve a n u m b e r larger t h a n 8 as the so u rce o p e ran d .

T he next type o f ad d it io n in s t ruc t ion in Fig. 3 .20 is the add extend (A D D X)
ins t ruc t ion . It d i ffe rs f ro m the earlier in s t ru c t io n s in tha t the a d d i t io n it p e r fo rm s
involves the tw o o p e ran d s a lo n g with the ex tend (X) bit o f SR. O n e fo rm o f the
ins t ruc t ion is

A D D X D y ,D x

a n d the a r i th m et ic o p e ra t io n it p e r fo rm s is

Dy + Dx + X -* Dx

T h a t is, the c o n te n ts o f d a ta regis te r Dy are ad d ed to the c o n ten ts o f d a ta regis ter
Dx an d ex tend bit X . T h e sum tha t results is placed in Dx. Notice th a t b o th o p e ran d s
m ust a lways be in d a ta registers.

T he o th e r fo rm o f the A D D X ins truc t ion , as sh o w n in Fig. 3.20, specifies its
o p e ra n d s with p red ec rem en t a d d re ss regis ter indirect address ing . It perm its access
to d a ta s to red in m em ory .

7 0 6 8 0 0 0 M icroprocessor Programming 1 Chap. 3

T h e last fo rm o f the a d d it io n instruction in Fig. 3.20 is the add address (A D D A)
ins t ruc t ion . Its fo rm is

A D D A E A .A n

a n d its ex ecu tion results in

(E A) + A n -* A n

T h e sou rce o p e ra n d can em p lo y a n y o f the a d d ress in g m odes o f the 68000. F o r this
reason the source o p e r a n d can reside in an in te rn a l regis ter o r s to rag e loca t ion in
m em o ry . O n the o th e r h a n d , the d es t in a t io n is a lw ays an address register. Since the
des t ina t ion o p e ra n d is a lways an address regis ter, on ly w ord o r long-w ord op e ra t io n s
a re pe rm it ted .

Example 3.5
If the values in D , and A 3 are 76543210]6 and OOOOABCD,6, respectively, w hat is the
result p roduced by executing the instruction

A D D A .W D 3,A 3

Solution. Execu tion o f th is in stru c tio n causes th e w ord value in D , to be added to the
con ten ts o f A 3. This gives

A j = X X X X 3210,6 + OOOOABCD16
= 0000DDDD16

Subtraction Instructions—SUB, SUBI, SUBQ, SUBX,
and SUBA

H av in g covered the ad d i t io n in s t ru c t io n s o f th e 68000, let us look at the in s t ruc t ions
p ro v id ed to p e r fo r m b in a ry su b t ra c t io n . As sh o w n in Fig. 3 .20 , the su b tra c t io n
in s t ru c t io n a lso has five basic fo rm s . N ot ice th a t these fo rm s are iden tica l to those
a lread y described fo r the ad d i t io n o p e ra t io n . F o r this reason we will presen t the
su b t ra c t io n in s t ru c t io n s in less deta i l.

T he general subtraction (SUB) in s truct ion o f th e 68000 can be w ri t ten in general
using e ither the fo rm

SU B E A ,D n

or
SU B D n ,E A

T h e first fo rm perm its the c o n te n ts o f an in te rna l regis ter o r s to rage loca t ion in
m em o ry to be su b t ra c ted f ro m the c o n ten ts o f a d a ta register. T he d iffe rence tha t
is o b ta in e d is s to red in th e selected d es t in a t io n d a ta regis ter. T h is o p e ra t io n can be
expressed as

D n - (E A) - Dn

F o r ins tance , the ins t ruc t ion

SU B D0,D1

Sec. 3 .7 Integer A rithm etic Instructions 71

p e r fo rm s a regis te r- to-register su b t ra c t io n . T he d if fe rence D, - D 0 is saved in D , .
T h e second SU B ins t ruc t ion in Fig. 3 .20 p e r fo rm s the o p p o s i te su b trac t io n

op e ra t io n . Its so u rce o p e ra n d is a d a ta register with in the 68000 an d the loca t ion
o f the d es t in a t io n is specified by an effective a d d ress . T h e re fo re , it can be a d a ta
register, ad d ress regis ter, o r s to rag e loca t ion in d a ta m em ory .

T he next tw o su b tra c t io n in s t ruc t ions in Fig. 3.20, subtract immediate (SUBI)
a n d subtract quick (SU B Q), p e rm it an im m ed ia te o p e ra n d in p ro g ra m m em o ry to
be sub tracted f ro m the des t ina t ion o p e ran d identified by EA. T he dest ina t ion o p e ran d
can be a d a ta register o r a s torage loca t ion in d a ta m em o ry . These instruct ions opera te
the sam e as their a d d i t io n c o u n te rp a r t s except th a t they calcu la te the d ifference
be tw een their so u rce an d d es t in a t io n o p e ran d s in s tead o f their sum .

F o r instance,

S U B I .W 0S1234,DO

causes the value 1234I6 to be su b t ra c ted f ro m th e con ten ts o f D 0. A ssum ing th a t D0
init ially c o n ta in s 0 0 0 0 F F F F l6, t h e d ifference p ro d u c e d in D0 is

F F F F)6 - 1234l6 = E D C B |6

Extend subtract (SU B X), ju s t like A D D X , includes the ex ten d (X) bit o f SR
in th e su b t ra c t io n . M o reo v er , the sam e source a n d d es t ina t ion o p e ra n d var ia t ions
are perm it ted as fo r the A D D X ins truc t ion . F o r exam ple , the first fo rm in Fig. 3 .20 is

S U B X D y ,D x

a n d it p e r fo rm s th e su b t rac t io n

Dx - Dy - X — Dx

F o r exam ple , i f D, an d D 2 co n ta in the va lues 76543210l6 an d 0 0 0 0 A B C D ,6,
respectively, an d the ex tend bit is 12, the result p ro d u c ed by executing the instruct ion

S U B X .W D 1 ,D 2

is

D 2 = OOOOABCDl6 - X X X X 3 2 l 0 16 - 116

= 7 9 B C 16

Finally , subtract address (SU B A) o f Fig. 3 .20 is used to m o d ify addresses in
A 0 th ro u g h A 6 by su b t ra c t io n . F o r exam ple , it c an be used to su b t ra c t the con ten ts
o f d a ta register D 7 f ro m the a d d ress in A 5 with the ins t ruc t ion

S U B A D 7 .A 5

Negate Instructions—NEG and NEGX

A n o th e r type o f a r i th m et ic in s t ru c t io n is the negate in s t ruc t ion . T w o fo rm s o f this
ins t ruc t ion are sh o w n in Fig. 3.20. T h e negate in s t ruc t ions a re s im ila r to the su b trac t
ins t ruc t ions in th a t the specified o p e ra n d is su b t ra c ted f ro m a n o th e r o p e ra n d .

72 6 8 0 0 0 Microprocessor Programming 1 Chap. 3

H o w ev er , in this case, the o th e r o p e r a n d is a lw ays a ssu m ed to be zero . S u b trac t in g
a n y n u m b e r f ro m zero gives its negative.

T he basic negate (N E G) in s t ruc t ion is used to fo rm the negative o f the specified
o p e ra n d . It is given in general by

N E G E A

a n d an exam ple is the in s t ru c t io n

N E G .W DO

If the orig inal co n te n ts o f D0 a re 0 0 F F 16, execu tion o f the in s t ru c t io n p ro d u ces the
result F F 0 1 I6.

Negate with extend (N E G X) d iffers f ro m N E G in th a t it su b t rac ts b o th the
c on ten ts o f the specified o p e ra n d an d the extend (X) flag from 0. T h a t is, it pe r fo rm s
the o p e ra t io n

0 - (EA) - X -* E A

Both in s truct ions can be w r i t ten to process bytes , words , o r long w ords o f d a ta .
M oreover , the addressing modes pe rm it ted for the o p e ran d are the a lterable addressing
m o d es th a t were sh o w n in Fig. 3.14.

Multiplication Instructions—MULS and MULU

T h e 68000 prov ides instruct ions th a t p e r fo rm the m ult ip licat ion a r i thm et ic o p e ra t io n
o n unsigned o r s igned n u m b ers . S ep a ra te in s t ru c t io n s a re p ro v id ed to process these
tw o types o f n u m b ers . As sh o w n in Fig. 3.20, they are signed m ult ip ly ,

M U L S E A ,D n

a n d unsigned m ult ip ly ,

M U L U E A ,D n

Both M U L S a n d M U L U have two 16-bit o p e ran d s th a t are labeled E A and Dn. T h e
so u rce o p e ra n d E A can be specified with any o f th e d a ta a ddress ing m odes a n d the
des t in a t io n o p e r a n d a lways uses d a ta regis ter direct address ing . B o th the source and
des t in a t io n o p e ra n d s a re t rea ted as signed n u m b e rs w hen executing M U L S a n d as
unsigned n u m b e rs w hen execu ting M U L U . T h e result , which is a 32-bit n u m b er , is
p laced in the d es t in a t io n d a ta register.

H ere is an exam p le o f the in s t ruc t ion n eeded to m ult ip ly the unsigned w o rd
n u m b e r in d a ta register D (by th e unsigned w o rd n u m b e r in D 0.

M U L U D0,D1

At co m p le t io n o f execu tion o f the in s t ruc t ion , the long-w ord p ro d u c t th a t results
is in D , .

As in m ost a r i th m et ic in s t ru c t io n s , the co n d i t io n code bits o f SR are u p d a te d
based on the produc t that results. T w o o f the condit ion code bits, zero (Z) and negative
(N), a re a f fec ted based on the results . O n the o th e r han d , car ry (C) an d overflow
(V) are a lw ays c leared .

Sec. 3 .7 Integer Arithm etic Instructions 73

Division Instructions—DlVS and DIVU

Similar to the m ult ip licat ion in s truct ions o f the 68000, there is a signed divide (DI VS)
instruct ion a n d a n unsigned divide (D IV U) ins truct ion . T hey are expressed in general
as

DIV S E A ,D n

and

D IV U E A ,D n

T h e des t in a t io n o p e ra n d , which is th e d iv idend , m ust be the co n te n ts o f one o f the
d a ta regis ters. T h e source o p e ra n d , which is the d iv isor , can be accessed using any
o f the d a ta a ddress ing m odes o f th e 68000.

E xecu tion o f e ithe r o f these in s t ruc t ions causes the 32-bit d iv idend identif ied
by the dest ina t ion o p e ran d to be divided by the 16-bit divisor specified by the effective
a ddress . T h e 16-bit q u o t ien t th a t results is p ro d u c e d in the lower w o rd o f the
d es t in a t io n d a ta regis ter an d the r e m a in d e r is p laced in the u p p e r w o rd o f the sam e
regis ter. T h e sign o f the r e m a in d e r p ro d u c ed by a signed div is ion is a lw ays the sam e
as th a t o f the d iv idend .

T h e co n d i t io n codes tha t a re a f fec ted by the d ivis ion in s t ruc t ion are zero (Z)
a n d negative (N). T h ey are set o r reset based o n the q u o t ien t va lue an d its sign.
F u r th e rm o re , the ca r ry flag is a lw ays cleared. I f the result tu rn s o u t to be over 16
bits, the overflow cond it ion code bit is set and the dest ina t ion o p e ran d is not changed.
T hus one should check the V flag for an overflow a f te r executing a division instruction.
A n a t te m p t to d iv ide by zero is a lso au to m a tica l ly de tected by the 68000.

Sign Extend Instruction—EXT

T h e 68000 p rov ides th e sign extend (E X T) in s t ru c t io n fo r sign extension o f by te o r
w o rd o p e ran d s . As show n in Fig. 3.20, the general fo rm o f this ins t ruc t ion is given by

E X T Dn

N otice th a t its o p e r a n d m ust be loca ted in a d a ta register. W h en E X T is executed ,
th e sign bit o f the o p e ra n d is cop ied in to the m o s t significant b i ts o f the regis ter.

Fo r ins tance , when the w o rd value in D | m u s t be ex tended to a long w o rd , the
ins t ruc t ion

E X T .L D l

can be execu ted . It causes the va lue in bit 15 (the sign bit) to be cop ied in to bits 16
th ro u g h 31 o f D t .

Sign ex tension is requ ired b e fo re d a ta o f u n e q u a l lengths can be involved in
s igned a r i thm et ic o p e ra t io n s . F o r ins tance , if o ne o f the o p e ran d s for an a dd it ion
in s t ruc t ion th a t is w ri t ten to process w o rd d a ta is expressed as a signed byte, it m ust
first be ex tended to a signed w o rd .

74 6 8 0 0 0 M icroprocessor Programming 1 Chap. 3

Example 3.6

Assume that data registers D0, D p and D-, contain a signed byte, a signed word, and
a signed long word in 2’s-complement form, respectively. Write a sequence o f instructions
that will produce the signed result o f the operation that follows:

D0 + D| - D , -* D0

Solution. Before any addition or subtraction can be performed, we must extend each
value o f data to a signed long word. To convert the byte in D0 to its equivalent long
word, we must first convert it to a word and then to a long word. This is done with
the following instructions:

EXT.W DO

EXT.L DO

Similarly, to convert the word in D, to a long word, we execute the instruction

EXT.L D1

Since the contents o f D-, are already a signed long word, no sign extension is necessary.
To do the required arithmetic operations, we just use the appropria te arithmetic

instructions. For instance, to add the contents o f D0 and D,, we use ADD, and to
subtract the contents o f D-, from this sum, we use SUB. This leads us to the following
sequence of instructions.

A D D .L D1,D0

SUB.L D2,D0

The complete program is listed in Fig. 3.21.

EXT.W DO
EX T.L DO
EX T.L D1
ADD.L D 1 ,D 0 Figure 3-21 A d d it io n a n d s u b tra c tio n

SUB.L D2, DO o f s igned n u m b e rs .

3.8 DECIMAL ARITHMETIC INSTRUCTIONS

The a ri thm etic ins tructions we considered in the preceding section process d a ta tha t
is expressed as binary numbers. However, d a ta are frequently provided that are coded
as BCD num bers instead o f as binary num bers . T radit ionally , BCD -to-b inary and
binary-to-BCD conversion routines are used to process BCD data. However, the 68000
microprocessor has the ability to pe rfo rm the add , sub trac t , and negate ari thmetic
opera t ions directly on packed BCD num bers . Three BCD arithm etic instructions,
A B C D , SBCD, and N BC D , are p rovided for this purpose . They provide an efficient
and easy-to-use m ethod for im plem enting BCD arithmetic . As per the result o f these
instructions, the condit ion code bits, Z, C, and X, are affected , whereas N and V
are undefined.

Sec. 3 .8 Decimal A rithm etic Instructions 75

Add Decimal with Extend Instruction—ABCD

Let us begin with the add binary-coded decimal (A B C D) ins t ruc t ion . In Fig. 3.22
we see its p e rm it ted o p e ra n d v a r ia t io n s , o p e ra n d size, a n d the o p e ra t io n it p e r fo rm s .
N o t ice th a t on ly tw o address ing m o d es can be used to specify its o p e ran d s . T h e first
fo rm ,

A B C D D y,D x

uses d a ta register direct address ing for b o th so u rce an d d es t in a t io n o p e ran d s .
T h e re fo re , b o th o p e ran d s m ust reside in in te rna l d a ta registers o f the 68000.

T h e o th e r fo rm ,

A B C D - (A y) , - (A x)

em ploys p red ec rem en t add ress register indirect address ing to specify b o th o p e ran d s .
Use o f this address ing m o d e pe rm its access o f d a ta s to red in m em o ry .

E xecu tion o f e ither o f the A B C D ins t ruc t ions a d d s the c o n ten ts o f the source
an d dest ina t ion o p e ran d s together with the ex tend (X) bit o f SR. T h e sum th a t results
is saved in the d es t in a t io n o p e ra n d loca tion .

Mnemonic Meaning Type Operand Size O peration

ABCD Add BCD numbers ABCD Dy, Dx 8 Dy + Dx + X -» Dx
ABCD “ (A y), “ (Ax) 8 - (A y) + - (A x) + X - (A x)

SBCD Subtract BCD SBCD Dy, Dx 8 Dx - Dy - X -» Dx
numbers SBCD ~ (A y) , “ (Ax) 8 -(A x) - “ (Ay) - X - (A x)

NBCD Negate BCD numbers NBCD EA 8 0 — (EA) - X -* EA

Figure 3-22 B inary -coded decim al a r ith m e tic in s tru c tio n s .

These instructions pe rfo rm decimal add it ion operat ions; therefore, we must start
with decim al o p e ra n d s ins tead o f b inary o p e ra n d s . T hese decim al o p e ran d s a re
expressed in p ack ed B C D . T h e su m tha t is p ro d u c e d is a lso a decim al n u m b e r coded
in p acked B C D . H ow ever , the o p e ra n d size is a lw ays byte wide; th e re fo re , two B C D
digits can be p rocessed at a t im e.

A n exam ple is the ins t ruc t ion

A B C D D0,D1

If D0 init ially c o n ta in s the value 12l0 = 000100102, D, c o n ta in s 3 7 10 = 001101112,
a n d X is c lear , execu tion o f the in s t ruc t ion p ro d u ces the sum

DO + D1 + X = 12I0 + 3 7 1 q + Ojq

= 49,o
At co m p le tio n o f the ins t ruc t ion , D0 still c o n ta in s 1210 but the c o n ten ts o f D, a re
ch an g ed to 4 9 10. X rem ains c leared because no c a r ry results .

76 6 8 0 0 0 Microprocessor Programming 1 Chap. 3

C o n d i t io n co d e bits Z , X , a n d C are a f fec ted based o n the result p ro d u c ed by
the a d d it io n . Bits C a n d X a re a lw ays set t o th e sam e logic level. T h e o th e r tw o
c o n d i t io n co d e bits , V an d N , a re u n d e f in e d a f te r execution o f th e ins t ruc t ion an d
d o no t p rov ide a n y usab le i n fo rm a t io n .

Subtract Decimal with Extend Instruction—SBCD

T h e subtract binary-coded decimal (SB C D) in s t ru c t io n w orks sim ila r to the A B C D
instruct ion ju s t discussed. O f course , in this case, the sub trac t ion ar ithm etic o pe ra t ion
is p e r fo rm e d a n d n o t th e ad d i t io n o p e ra t io n .

As sh o w n in Fig. 3.22, the tw o fo rm s o f the in s t ru c t io n are

S B C D D y,D x

and

S B C D - (A y) , - (A x)

Notice th a t the p e rm it ted a d d ress in g m odes a re identical to th o se em ployed by the
A B C D ins truc t ion .

A n exam p le is the in s t ruc t ion

S B C D — (AO), — (A l)

W h e n this in s t ru c t io n is executed , the byte-w ide (tw o B C D digits) c o n ten ts o f the
sou rce o p e ra n d a n d X bit o f SR a re su b t rac ted f ro m the d es t in a t io n o p e ra n d . T h e
d if fe rence th a t is p ro d u c ed is saved at the d es t in a t io n loca t ion .

In o u r exam ple , we a re using a d d ress register indirect with p red ec rem en t
address ing . T h e re fo re , the co n te n ts o f ad d ress regis ters A 0 a n d A , a re first
d ec rem en ted by 1. F o r ins tance , i f their orig ina l c o n ten ts were 0 0 0 0 1 10F16 an d
0 0 0 0 1 2 0 F 16, r e sp e c t iv e ly , d e c r e m e n t in g by 1 g ives A 0 = 0 0 0 0 1 1 0 E 16 a n d
A , = 0 0 0 0 1 2 0 E 16. These a re th e addresses th a t a re used to access the o p e ra n d s in
m em o ry . T h e n the B C D d a ta at m e m o ry lo ca t io n 0 0 1 1 0 E 16 a n d X are su b t rac ted
f ro m the B C D value at 0 0 1 2 0 E 16. W e will a ssum e th a t the va lue s to red at 0 0 1 2 0 E 16
is 3 7 10, the va lue a t 0 0 1 1 0 E 16 is 1210, an d X is 1. T h e n the d i f fe rence calcu la ted by
the ins t ruc t ion is

(0 0 1 2 0 E ,6) - (0011 0 E |6) - X = 3 7 10 - 1210 - 110

= 24io
T his value is saved at d e s t in a t io n ad d ress 0 0 1 2 0 E 16 an d the c o n d i t io n code bits Z,
X , an d C are c leared .

Negate Decimal Instruction—NBCD

T h e last o f the dec im al a r i th m et ic in s t ruc t ions in Fig. 3 .22 is negate binary-coded
decimal (N B C D). It is expressed in general as

N B C D E A

Sec. 3 .8 Decimal A rith m e tic Ins truc tions 7 7

N B C D is effectively an SB C D ins truc t ion in which the sub trah end always equals zero.
F o r this reason , it im p lem en ts th e o p e ra t io n

0 - (EA) — E A

T h e o p e ra n d iden tif ied as E A can be specified using the a lte rab le address ing m odes .
O n e exception is address register direct add ress ing , which c a n n o t be used.

H ere is an exam ple w ith the o p e ra n d accessed th ro u g h add ress register indirect
address ing m o d e with p o s t in c rem en t:

N B C D (A5) +

T h e co n d it io n co de bits a f fec ted by the N B C D in s truc t ion are the sam e as those
a f fec ted by the S B C D in s truc t ion .

Example 3.7
Write a p rogram segment tha t will add two four-digit packed BCD num bers that are
held in registers D0 and D, and place their sum in D0. The organizat ion o f the original
BCD d a ta in the d a ta registers is shown in Fig. 3.23(a).

Solution. Remember that only the contents o f the 8 least significant bits o f a data register
can be processed with the BCD instructions. M oreover, up to this point in the chapter
we have not shown any direct way o f exchanging the most significant byte o f a word
in a d a ta register with its least significant byte. One solution to this problem is to move
the contents o f D0 and D, to m em ory . This reorganizes the BCD digits at separate byte
addresses, as shown in Fig. 3.23(b). T o move D0 and D, to m em ory , say D0 to address
M E M 0 and D (to address M E M , , the following instructions can be used:

M O V E .W DO,MEMO

M O V E .W D1 ,M E M I

Now we can use the predecrement address register indirect form o f the BCD
addit ion instruction to perform the decimal arithmetic operat ions . Therefore , address
registers must be loaded with pointers to the d a ta in m em ory. Let us use A() and A,
for this purpose . Since the predecrement m ode o f addressing must be used, A() should
be loaded with M E M 0 + 2 and A , with M E M , + 2 . This is done with the instructions

LEA M E M O + 2, AO

LEA M E M 1 + 2 , A1

Moreover, in o rde r to use the BCD instructions, we m ust start with X = 0. To do this,
we execute the instruction

M O V E /W.CCR

Now that the address pointers and the extend bit o f SR are initialized, we are ready
to perform the addit ion opera t ion . Executing the instructions

A B C D —(A l) , - (AO)

and

A B C D — (A l) , — (AO)

gives the sum in M E M 0.

78 680 00 Microprocessor Programming 1 Chap. 3

15 0

MSD LSD

Digit 3 Digit 2 Digit 1 Digit 0

15 0

MSD LSD

Digit 3 Digit 2 Digit 1 Digit 0

(a)

Memory

Digit 3
(MSD)

Digit 2

Digit 1 Digit 0
(LSD)

Digit 3
(MSD)

Digit 2

Digit 1 Digit 0
(LSD)

(b)

MOVE.W DO, MEMO
MOVE.W D1.MEM1
LEA MEMO + 2, AO
LEA MEM 1 + 2 , A1
MOVE # 0 , CCR
ABCD - (A l) , -(AO)
A BCD - (A l) , -(AO)
MOVE.W MEMO, DO

(c)

Figure 3-23 (a) Four-digit B CD num bers in d a ta registers D() and D ,; (b) storage
o f the BCD numbers in memory; (c) program for adding two four-digit BCD numbers.

Sec. 3 .9 Logic Instructions 7 9

T o p u t the sum in to D 0, th e in s tru c tio n is

M O V E .W M EMO,DO

T h e co m p le te p ro g ra m is rep ea ted in Fig. 3 .23(c).

3.9 LOGIC INSTRUCTIONS

T o im p le m e n t logic f u n c t io n s , su c h as A N D , O R , e x c lu s iv e -O R , a n d N O T , th e
in s t ru c t io n set o f th e 68000 p ro v id es a g r o u p o f logic in s t ru c t io n s . T h e in s t ru c t io n s
in th is g ro u p a re sh o w n in Fig. 3 .24 to g e th e r with the ir d i f fe ren t fo rm s , o p e r a n d sizes,
a n d o p e r a t io n s . T h e e x e c u t io n o f a logic in s t ru c t io n sets th e c o n d i t i o n c o d e bi ts N
a n d Z as pe r th e re su l t , c lears V a n d C , a n d d o e s n o t a f fe c t th e X bit.

AND Instructions—AND and ANDI

A s sh o w n in F ig . 3 .24 , th e re a r e fo u r fo r m s o f th e A N D in s t ru c t io n . T h e g en era l
fo r m , w h ich uses th e m n e m o n ic A N D , p e rm i t s th e c o n te n t s o f a d a t a reg is te r a n d
a n o p e r a n d spec if ied by the e f fec t iv e a d d re s s E A to be A N D e d to g e th e r . Let us lo o k
a t th e f irst f o r m o f th e in s t ru c t io n

A N D E A ,D n

T h e s o u rc e o p e r a n d c a n use th e d a t a a d d re s s in g m o d e s to g e n e ra te E A . T h e r e f o r e ,
th e s o u rc e o p e r a n d can use a n y a d d re s s in g m o d e excep t a d d r e s s reg is te r d i rec t
a d d re ss in g . O n th e o th e r h a n d , th e d e s t in a t io n o p e r a n d can be spec if ied o n ly w ith
d a ta regis ter d i rec t ad d re ss in g a n d will a lw ays be o n e o f th e e ight d a ta regis ters inside
th e 68000.

M nemonic M eaning T ype O perand Size O peration

AND Logical AND AND EA.Dn
AND Dn,EA
ANDI #X X X ,EA
ANDI #X X X ,CCR
ANDI #X X X ,SR

8, 1 6 ,3 2
8, 1 6 ,3 2
8, 1 6 ,3 2
8
16

(EA) • Dn -* Dn
Dn • (E A) ^ E A
#X X X • (EA) - EA
#X X X • CCR - CCR
#X X X • SR - SR

OR Logical OR OR EA,Dn
O R Dn.EA
OR1 #X X X ,EA
OR1 #X XX ,CCR
OR1 #X X X ,SR

8, 1 6 ,3 2
8, 1 6 ,3 2
8, 1 6 ,3 2
8
16

(EA) + Dn - Dn
Dn + (EA) -* EA
#X X X + (EA) - EA
#X X X + CCR - CCR
#X X X + SR - SR

EOR Logical
exclusive-OR

EOR Dn,EA
EORI #X X X ,EA
EORI #X XX ,CCR
EO RI #X X X ,SR

8, 1 6 ,3 2
8, 16 ,32
8
16

Dn ® (EA) -* EA
#X X X ® (EA) - EA
#X X X ® CCR - CCR
#X X X œ SR - SR

NOT Logical NOT NOT EA 8, 1 6 ,3 2 (Ë Â)-* E A

Figure 3-24 Logic instructions .

80 6 8 0 0 0 Microprocessor Programming 1 Chap. 3

A n ex am p le o f the in s t ru c t io n , which uses register d irect add ress ing fo r b o th
t h e sou rce a n d d es t in a t io n o p e r a n d s , is

A N D .B D0,D1

E xecu tio n o f this in s t ru c t io n causes a bit fo r bit A N D o p e ra t io n to be p e r fo rm e d
o n th e byte co n te n ts o f D0 a n d D , . T h e result is saved in d es t in a t io n regis ter D t .

F o r ins tance , if D , co n ta in s 0 0 0 0 A B C D 16 a n d D 0 c o n ta in s 0 0 0 0 0 F 0 F |6, the
A N D o p e ra t io n be tw een the least s ignificant by tes gives

C D 1 6 - 0 F 16 = 110011012 • 000011112

= 000011012

= 0 D 16

T h ere fo re , the new c o n ten ts o f D , a re 0 0 0 0 A B 0 D 16. N o t ice th a t the fo u r m ost
s ignificant bits o f the least significant byte o f D | have been m asked o ff . T h e affected
c o n d i t io n code bits in SR a re Z , N , C , a n d V. T h e C a n d V bits a re a lw ays c leared ,
b u t Z a n d N a re set o r reset based o n the result p ro d u c e d in th e d es t in a t io n register.

T h e second fo rm ,

A N D D n ,E A

p erm its the co n te n ts o f a so u rce o p e ra n d held in a d a ta register to be A N D e d with
a d e s t in a t io n o p e r a n d iden tif ied by E A . T h is t im e the loca t ion o f the d es t in a t io n
o p e ra n d can be specified using an y o f the a lte rab le m em o ry address ing m odes . These
a ddress ing m o d es a re identif ied in Fig. 3.14.

T he next three types o f the A N D gro u p are AND immediate (AND1) instructions.
T h ese in s t ruc t ions A N D an im m e d ia te sou rce o p e r a n d identif ied as MXXX w ith the
co n te n ts o f a specif ied d es t in a t io n o p e ra n d . T h e im m ed ia te o p e ra n d is s to red as pa r t
o f the in s t ru c t io n in p ro g ra m m em o ry .

T h e first fo rm ,

A N D I f fXXX, E A

p erm its A N D in g o f a n im m e d ia te sou rce o p e r a n d with the co n te n ts o f a d es t ina t ion
o p e ran d whose location is specif ied by effective address EA. T his dest ina t ion o p e ran d
can be in a d a ta regis ter, a d d re ss register, o r s to rag e loca t ion in d a ta m em ory .

A n e x am p le is th e in s t ruc t ion

A N D 1 .B 07, D1

Execution o f this instruct ion causes the b inary form o f decimal n u m b er 7 to be A N D ed
with the co n te n ts o f D , . Let us a ssu m e th a t D | o r ig ina l ly c o n ta in ed F F F F F F F F 16;
t h en , executing the in s t ruc t ion gives

D , = F F F F F F F F 16 • 7 | 6

= F F F F F F F 7 , 6

T he next tw o fo rm s,

A N D I 0 X X X ,S R

Sec. 3 .9 Logic Instructions 81

and

A N D I 0 X X X .C C R

a re used to A N D th e con ten ts o f the co m p le te s ta tus regis ter an d the co n d it io n code
byte pa r t o f SR with im m ed ia te d a ta , respectively. T h e first o f these tw o o p e ra t io n s
is privileged an d can only be execu ted when the 68000 is in the superv iso r s ta te .

OR Instructions—OR and ORI

T h e O R ins t ruc t ion has the sam e five fo rm s th a t we jus t in t ro d u c ed fo r the A N D
ins t ruc t ion . F igu re 3.24 show s th a t they include tw o fo rm s o f the general OR
ins t ruc t ion a n d th ree fo rm s o f the OR immediate (O R I) in s t ruc t ion .

T h e genera l O R ins truct ion pe rm its the O R logic o p e ra t io n to be p e r fo rm e d
be tw een the co n te n ts o f a d a ta register specif ied using o n e o p e ra n d an d the con ten ts
o f a n o th e r d a ta register, an ad d ress register, o r a loca t ion in m e m o ry specified by
the d a ta address ing m o d e o f the o th e r o p e ran d . F o r exam ple , the ins t ruc t ion

O R .B (AO),DO

O R s the c o n ten ts o f the byte loca t ion w hose effec tive ad d ress is the con ten ts o f A 0
with the byte c o n te n ts o f D0. T h e result is saved in D0. T h a t is, it p e r fo rm s the logic
o p e ra t io n

(E A) + DO -* DO

A ssum ing th a t th e c o n ten ts o f the s to rage loca t ion p o in ted to by the address in A 0
is A A A A A A A A)6 an d the d a ta held in D0 is 5555555516, the results o b ta in e d by
executing the in s t ruc t ion are

DO = A A A A A A A A 16 + 5555555516

= f f f f f f f f 16

T h e O R im m ed ia te fo rm s o f the in s t ruc t ion allow an im m ed ia te o p e ra n d to be
O R e d with the c o n ten ts o f a s to rag e loca t ion in d a ta m em o ry , a d a ta register, o r
the s ta tus regis ter. An exam ple is the ins t ruc t ion

O R I iWFF00,SR

E xecu tion o f th is in s truction causes all o f the bits in the u p p e r byte o f SR to be set
to l w i thou t chan g in g the bits in the lower byte. Since the s ta tus reg is te r’s u p p e r byte
is chan g ed , the o p e ra t io n can on ly be p e r fo rm e d when in the superv iso r state .

Exclusive-OR Instructions—EOR and EORI

L o o k in g at Fig. 3.24, we see th a t th e sam e basic in s t ruc t ion fo rm s a re also p rov ided
fo r the exclusive-OR (E O R) ins t ruc t ion . T h e d iffe rence here is th a t they p e r fo rm the
exclusive-OR logic func tion o n the con ten ts o f the source an d d es t in a t io n o p e ran d s .

Let us now look at som e exam ples . A first exam ple o f the in s truct ion is

E O R .L AO,DO

8 2 6 8 0 0 0 M icroprocessor Programming 1 Chap. 3

W h en it is execu ted , th e o p e ra t io n p e r fo rm e d is

AO (+) DO -* DO

A n o th e r exam ple is

E O R #$OF,CCR

E xecu tion o f this in s t ru c t io n p e r fo rm s the o p e ra t io n

$0F @ C C R - C C R

NOT Instruction—NOT

T h e NO T in s t ruc t ion d iffe rs f ro m the A N D , O R , an d E O R ins t ruc t ions we jus t
described in th a t on ly o n e o p e r a n d is specif ied. Its general fo rm , as show n in Fig.
3.24, is

N O T E A

W h en this in s t ru c t io n is executed , the c o n ten ts o f the specified o p e r a n d are rep laced
by its l ’s c o m p le m e n t . T o add ress th e o p e ra n d , on ly the a lte rab le address ing m odes
can be used. H ow ever , one exception exists: it is th a t address register direct addressing
is no t p e rm it ted .

Example 3.8
W rite a sequence o f logic instructions tha t will clear the b its in register D , th a t
co rrespond to the bits th a t a re set in D0.

Solution. T o clear a bit th a t is set, it shou ld be A N D ed w ith logic 0. M oreover, to
o b ta in a logic 0 from logic 1, it shou ld be inverted . T hus if the con ten ts o f D0 are
inverted and then A N D ed w ith D ,, the requ ired result will be generated in D t . The
in structions th a t do this are

N O T .L DO

A N D .L D0,D1

3.10 SHIFT AND ROTATE INSTRUCTIONS

T h e shif t an d ro ta te in s t ruc t ions o f the 68000 a re used to ch ange bit pos i t ions o f the
d a ta bits in an o p e ra n d . These types o f o p e ra t io n s a re useful to m ult ip ly o r divide
a given n u m b e r by a p o w e r o f 2, check the s ta tu s o f ind iv idual bits in an o p e ra n d ,
o r sim ply shif t the posi t ion o f d a ta bits in a regis ter o r m em o ry loca tion .

Shift Instructions—LSL, LSR, ASL, and ASR

T h ere are tw o k inds o f shif t o p e ra t io n s : the logical shift a n d th e arithmetic shift.
M o reo v er , each o f these tw o sh if ts can be p e r fo rm e d in the left direction o r right
direction. A s sh o w n in Fig. 3.25, these va r ia tions lead to fou r basic shift instructions.

T h e two logical shift in s t ru c t io n s a re logical shift left (LSL) a n d logical shift
right (LSR). T h e o p e ra t io n o f these ins t ruc t ions is i l lustra ted with d iag ram s in Fig.

Sec. 3 .1 0 Shift and Rotate Instructions 83

Figure 3-25 Shift instructions.

3.25 . L o o k in g a t th e i l lu s t ra t io n f o r L S L , we see t h a t its e x e c u t io n c au ses th e bi ts
o f th e o p e r a n d to be sh i f ted t o th e left by a spec if ic n u m b e r o f bit p o s i t io n s . A t the
s a m e t im e , th e v a c a te d bit p o s i t io n s o n th e least s ig n if ican t b i t e n d o f th e o p e r a n d
a re filled with z e ro s a n d bits a re sh i f ted o u t f r o m th e m o s t s ig n i f ic a n t bit e n d . T h e
last bit sh i f ted o u t o n th e left is c o p ie d in to b o t h th e ex te n d (X) a n d c a r ry (C) b i ts
o f SR .

N o t ice in Fig . 3.25 th a t th e re a re th re e fo r m s o f th e L S L in s t ru c t io n . T h e f irst
tw o fo r m s d i f f e r in th e w ay th e sh i f t c o u n t is spec if ied . In th e f irs t f o r m ,

L S L # X X X ,D y

th e c o u n t is spec if ied by th e im m e d ia t e o p e r a n d # X X X . T h e v a lu e o f th is o p e r a n d
can be f ro m 0 t h r o u g h 7. A v a lu e o f z e ro s t a n d s fo r “ sh if t left e igh t bit p o s i t io n s . ”
In th is w ay , we see th a t th is f o r m o f th e i n s t r u c t io n l im its th e sh i f t left to the ra n g e
o f f ro m 1 to 8 b i ts . F o r in s tan c e ,

L S L .W 0 5 .D 4

in it ia tes a sh if t left by five bit p o s i t io n s fo r th e w o r d c o n te n t s o f d a ta reg is te r D 4.
T h e se c o n d fo rm

L S L D x ,D y

specif ies the c o u n t as res id ing in d a t a reg is te r Dx. O n ly the six least s ign if ican t bits
o f th is reg is te r a re used fo r th e sh if t c o u n t . T h e r e f o r e , th e sh if t c o u n t is e x te n d ed
to a ra n g e o f f r o m 1 to 63 bit p o s i t io n s .

A n e x a m p le is th e in s t ru c t io n

L S L D 0 ,D 1

A s su m in g th a t D 0 c o n ta in s 4)6 a n d D (c o n ta in s OOOOFFFF16, ex ec u t io n o f the
in s t ru c t io n resu l ts in

D , = 0 0 0 F F F F 0 16

84 6 8 0 0 0 M icroprocessor Programming 1 Chap. 3

and

C = 0

Both o f the fo rm s o f th e LSL ins t ruc t ion th a t we have cons id e red u p to this
po in t on ly have the abil i ty to shif t the bits o f an o p e r a n d th a t is held in o ne o f the
in te rna l d a ta registers o f the 68000. T h e th ird fo rm ,

LSL E A

perm its a shift left o p e ra t io n to be p e r fo rm e d on th e c o n ten ts o f a s to rag e loca t ion
in m em ory . Actually , any o f the data-a l terab le addressing m odes th a t relate to external
m e m o ry can be used to specify E A . O n e res t r ic tion is th a t the size specified fo r the
o p e ran d m ust a lways be a w ord . M oreover , since no shift coun t is specified, execution
o f the in s t ru c t io n causes a shif t left o f ju s t o n e bit posi t ion .

L o o k in g a t Fig. 3.25, we see th a t the logical shif t right (L SR) in s t ru c t io n can
be written using the sam e basic fo rm s as the LSL instruction. M oreover , the operat ions
th a t they p e r fo rm a re the exact o p p o s i te o f tha t jus t described for the ir c o r respond ing
LSL in s t ru c t io n . N o w d a ta a re sh if ted to the r ight instead o f to th e left; zeros a re
load ed in to v aca ted bits f ro m th e MSB end ins tead o f the LSB end; an d the last bit
sh if ted o u t f ro m th e LSB is cop ied in to b o th X an d C.

T h e re are also tw o basic a r i thm et ic shift instruct ions: arithmetic shift left (ASL)
a n d arithmetic shift right (ASR). T h e i r fo rm s an d o p e ra t io n s a re a lso show n in Fig.
3.25. H ere we see th a t the o p e ra t io n p e r fo rm e d by A S L is essentia lly the sam e as
th a t p e r fo rm e d by th e LSL in s t ru c t io n . H ow ever , there is a d i f fe rence in the way
in which the o v e rf lo w flag is h a n d le d by the tw o ins t ruc t ions . It is a lways 0 fo r the
LSL in s t ru c t io n , b u t fo r A S L it is set to 1 if the MSB changes logic level.

O n th e o th e r h a n d , A S R is n o t the sam e as L SR . N otice th a t it does no t on ly
shif t the bits o f its o p e ra n d bu t a lso preserves its sign. T h e i l lu s t ra t ion o f o p e ra t io n
o f A SR in Fig. 3.25 show s th a t vaca ted m o re significant bit p o s i t ions a re filled with
the orig ina l va lue fo r the M S B — th a t is, the sign bi t.

Rotate Instructions—ROL, ROR, ROXL, and ROXR

T h e ro ta te in s t ru c t io n s o f th e 68000 are s imilar to its shif t in s t ruc t ions in tha t they
can be used to sh if t the bits o f d a ta in a n o p e ra n d to the left o r r ight. H ow ever , the
shif t o p e ra t io n they p e r fo rm d if fe rs in th a t the bits o f d a ta th a t a re sh if ted o u t at
o n e end are sh if ted b ack in at th e o th e r end . H en ce , the bits o f d a ta a p p ea r to have
been ro ta ted .

Based o n the p a th in which bits a re ro ta te d , tw o kinds o f ro ta te o p e ra t io n s a re
de f ined . As sh o w n in Fig. 3.26, the basic ro ta te o p e ra t io n p e r fo rm e d by the rotate
left (R O L) in s t ru c t io n o r rotate right (R O R) in s t ru c t io n use a p a th in which bits a re
sh if ted ou t f ro m o n e end o f the o p e r a n d in to the c a r ry (C) bit o f SR , an d at the sam e
t im e they are re lo ad ed at the o th e r end . N otice th a t the p a th fo r the o th e r tw o
ins t ruc t ions , R O X L an d R O X R , d if fe rs in th a t b o th C a n d X a re loaded with the
bits as they are sh if ted o u t . M o re o v e r , bits th a t a re re loaded at the o th e r end pass
th ro u g h X.

Sec. 3 .10 Shift and Rotate Instructions 85

Mnemonic Meaning Type Operand Size Operation

R O L

R O R

R O X L

R O X R

R o ta te le ft

R o ta te r igh t

R o ta te le ft
th ro u g h e x te n d

R o ta te r ig h t
th ro u g h e x te n d

R O L # X X X ,D y
R O L D x .D y

R O L EA

R O R # X X X ,D y
R O R D x ,D y
R O R EA

R O X L # X X X ,D y

R O X L D x ,D y

R O X L EA

R O X R # X X X ,D y

R O X R D x ,D y
R O X R EA

8, 16 ,32
8, 16,32
8, 16 ,32

8, 16 ,32
8, 16,32
8, 16 ,32

8, 16,32
8, 16 ,32
8, 16 ,32

8, 16 ,32
8, 16 ,32
8, 16 ,32

Figure 3-26 Rotate instructions.

L et us b e g in w i th th e R O L i n s t r u c t io n . L o o k i n g a t th e d i a g r a m o f its o p e r a t i o n
in F ig . 3 .2 6 , w e see t h a t it c a u s e s th e b i ts o f th e s p e c i f ie d o p e r a n d to b e r o t a t e d to
th e le f t . Bits s h i f t e d o u t f r o m th e m o s t s ig n i f i c a n t b it p o s i t i o n a r e b o t h lo a d e d in to
C a n d th e leas t s i g n i f i c a n t b it p o s i t i o n . T h e n u m b e r o f b it p o s i t i o n s t h r o u g h w h ic h
th e d a t a a r e to b e r o t a t e d a r e sp e c i f ie d as p a r t o f th e in s t r u c t i o n .

N o t ic e t h a t t h e a l lo w e d o p e r a n d v a r ia t io n s fo r R O L a re id en t ic a l to th o s e s h o w n
in F ig . 3 .25 f o r th e sh i f t in s t r u c t i o n s . T h e f i r s t f o r m ,

R O L # X X X , D y

p e r m i t s a n im m e d i a t e o p e r a n d in th e r a n g e 0 t o 7 , t o sp e c i fy t h e c o u n t . T h i s l im i ts
t h e a m o u n t o f r o t a t i o n to 1 to 8 b i t p o s i t i o n s . A v a lu e o f 0 f o r X X X is a c tu a l ly a
spec ia l c a se . It c a u s e s a n 8-b i t r o t a t e to th e le f t . T h e n ex t f o r m ,

R O L D x , D y

u se s th e c o n te n t s o f t h e six leas t s ig n i f i c a n t b i ts o f d a t a r e g is te r D x to sp e c i fy th e
c o u n t . T h i s e x te n d s t h e r o t a t e r a n g e to f r o m 1 to 63 b it p o s i t i o n s . W h e n e i th e r o f
th e se in s t ru c t io n s a r e u se d , th e o p e r a n d th a t is to be p ro c e s se d by th e r o t a t e o p e r a t i o n
m u s t re s id e in o n e o f th e d a t a r e g is te r s .

A n e x a m p le is th e i n s t r u c t io n

R O L . L D 0 ,D 1

I f D 0 c o n ta in s 0 0 0 0 0 0 0 4 16, e x e c u t io n o f th e in s t ru c t io n c a u se s th e lo n g - w o r d c o n te n t s
o f D j to be r o t a t e d fo u r bit p o s i t io n s to th e le f t. F o r in s ta n c e , i f th e o r ig in a l c o n te n t s
o f D , w ere 0 0 0 0 F F F F 16, a f t e r t h e r o t a t e o p e r a t i o n is c o m p l e t e , th e n ew c o n te n t s o f

D , a r e 0 0 0 F F F F 0 16 a n d C e q u a l s 0.
T h e las t f o r m o f th e r o t a t e lef t i n s t r u c t io n

R O L E A

86 6 8 0 0 0 M icroprocessor Program m ing 1 Chap. 3

perm its th e o p e ra n d to reside in a s to rage locat ion in m em o ry . T h is in s truc t ion m ay
o n ly be used to p e r f o rm a 1-bit ro ta te left on a w o rd o p e ra n d .

In Fig. 3 .26 we see th a t th e ro ta te r ight (R O R) in s tru c t io n is capab le o f
p e r fo rm in g the sam e o p e ra t io n s as R O L . H o w ev e r , in this case, the d a ta are ro ta ted
in the o pp os i te d irec tion .

As we ind ica ted earlier , the rotate left with extend (R O X L) an d rotate right
with extend (R O X R) in s truc t ion s essentially p e r fo rm the sam e ro ta te o p e ra t io n s as
R O L an d R O R , respectively. H o w e v e r , this t im e th e last bit ro ta te d ou t is loaded
in to bo th X and C , n o t jus t C , an d bits tha t are re loaded at the o th e r end pass th ro ug h
X . T h e re fo re , execu t ion o f the in s truc t io n

R O X L .L D0,D1

w h e n D 0 = 4 16, D , = OOOFFFF()16, C = 1, a n d X = 1, r e s u l t s in
D , = 0 0 F F F F 0 8 16 with C = 0 an d X = 0.

Example 3.9

Implement the operation described in Example 3.7 using the rotate and decimal arithmetic
instructions to add two four-digit packed BCD num bers that are held in D0 and D ,,
respectively. Place the result in D0.

Solution . W e first start with X = 0 and add the two least significant digits. The
instructions required to do this are

M O V E #0 ,CCR

A B C D D1,D0

Let us save this result in D , by executing the instruction

M O V E .B D0.D2

T o add the m ost significant digits, we can ro ta te the words in D, and D0 8 bits to the
right. The instructions for this are

R O R .W #0,D0

R O R .W 00,D1

This does not change the X bit, which must be used in the addit ion . Now the least
significant bytes in D0 and D, can be added as BCD num bers by the instruction

A B C D D1.D0

The result o f D0 can now be ro ta ted to the left and the least significant result saved
in D 2 can be placed back in D0. The instructions to do this are

r o l . w m , DO

M O V E .B D2,D0

This completes the BCD addition. The entire p rogram is shown in Fig. 3.27.

Chap. 3 Assignment 87

MOVE *O.CCR
ABCD D1.D0
MOVE.B DO.D2
ROR.W flO.DO
ROR.W »o.DI
ABCD Dl.DO
ROL.W » .D O
MOVE.B D2.D0 Figure 3-27 BCD add ition program .

A S S I G N M E N T

Section 3 .2

1. C a n the 68000 directly s to re a w ord o f d a ta s ta r t ing at an o d d address?

2. C o m p a re a d a ta register a n d an address register f ro m a so f tw are p o in t o f view.

3. List the basic d a ta types o n which the 68000 can o p e ra te directly.

Section 3 .3

4. Identify the th ree pa r ts o f an assem bly language ins t ruc t ion in each o f the fo llowing
s ta tem ents :

A G A I N A D D D0,D1 A D D T H E R E G IS T E R S

M O V E D1.D5 S A V E T H E R E S U L T

5. Iden tify the source a n d d es t in a t io n o p e ran d s fo r each o f the s ta tem en ts in p ro b lem 4.

Section 3 .4

6. M ak e a list o f the address ing m o d es available o n the 68000.

7. Identify the address ing m o d es for b o th the source a n d des t in a t io n o p e ran d s in the
in s t ruc t ions th a t follow.

(a) M O V E .W D 3.D 2
(b) M O V E .B D3,A2
(c) M O V E .L D 3.SA B C D
(d) M O V E .L X Y Z .D 2
(e) M O V E .W X Y Z (D 0 .L) ,D 2
(f) M O V E .B D3,(A2)

(g) M O V E .L A 1,(A 2) +
(h) M O V E .L — (A2),D3
(i) M O V E .W 10(A2),D3

(j) M O V E .B 10(A2,A3.L),SA123
(k) M O V E .W # S A B C D ,S 1 122

8. C o m p u te the m em o ry address fo r the source o p e ra n d a n d / o r des t in a t io n o p e ra n d in each
o f the inst ruc t ions in p ro b lem 5.

88 6 8 0 0 0 M icroprocessor Program m ing 1 Chap. 3

9. Specify the condit ions that m ake the following instructions equivalent.

M O V E .L D O ,$A B C D
M O V E .L D 0 ,$ 1 0 (A 1)
M O V E .L DO,$100(A2,D1.L)
M O V E .L DO,(A3)

Section 3 .6

10. Given that D0 = $12345678, D, = $A B C D EF01, and A 0 = $87654321, specify the
m em ory contents o f address $AOOO to address $A002 after executing the instruction

M O V E M .B DO/D1/AO,$AOOO

11. Write an instruction that places the long-word contents o f memory locations $B000, $B004,
and $B008 into registers D 5, D 6, and D7, respectively.

12. W hat will be the contents o f D0 and D, a fte r executing the following sequence o f
instructions?

M O V E .L $13579BDF,D0
M O V E .L $02468ACE,D1
S W A P DO
E X G .W D0,D1

Section 3 .7

13. Two word-wide unsigned integers are stored at the m em ory addresses $A000 and SB000,
respectively. Write an instruction sequence that computes and stores their sum, difference,
p roduc t , and quotient. S tore these results at consecutive m em ory locations starting at
address $COOO in m em ory . To ob ta in the d ifference, subtract the integer at $BOOO from
the integer at $A000. For the division, divide the integer at $A000 by the integer at $B000.
Use register indirect relative addressing m ode th rough register A, to store the various
results.

Section 3 .8

14. Tw'o long-word BCD integers are stored at the symbolic addresses NUM1 and NU M 2,
respectively. Write an instruction sequence to generate their d ifference and store it at
NUM 3. The d ifference is to be form ed by subtract ing the value at NUM1 from that at
NU M 2. Use the predecrement indirect mode o f addressing.

Section 3 .9

15. Write an instruction sequence that generates a byte-size integer in the m em ory location
identified by label R ESULT. The value o f the byte integer is to be calculated using logic
operat ions as follows:

(R ESU LT) = DO • NUM1 + N U M 2 • DO + D1

Assume that all param eters are byte size.

Chap. 3 A ss ignm e n t 89

Section 3 .1 0

16. Im plem ent the fo llowing o p e ra t io n using shift a n d ar i thm et ic instruct ions.

7 • D1 - 5 • D2 - - ^ D 2 - DO

A ssum e th a t the p a ram ete rs a re all long w ord in size.

17. Write a p ro g ram that stores the long-word contents o f D0 into m em ory starting at address
loca tion SBOOl.

6 8 0 0 0 M icro pr oc esso r
Pr o g r a m m in g 2

4.1 INTRODUCTION

In C h a p te r 3, we in t ro d u c ed the a d d ress in g m odes a n d m an y o f the in s t ruc t ions in
the in s t ru c t io n set o f th e 68000 m ic ro p ro cesso r . Us ing these in s t ruc t ions , we also
covered so m e p re l im in a ry p r o g ra m m in g techn iques . H e re we will cover the rest o f
th e in s t ru c t io n s an d in t ro d u c e so m e m o re co m p lex p r o g ra m m in g m eth o d s .
Specifically, th e fo l low ing top ic s a re p resen ted in this chap ter :

1. C o m p a r e a n d test in s t ru c t io n s

2. J u m p a n d b ra n ch ins t ruc t ions

3. P ro g ra m s em ploy ing loops

4. S u b ro u t in es an d su b ro u t in e h an d lin g in s t ruc t ions

5. Bit m a n ip u la t io n ins t ruc t ions

4.2 COMPARE AND TEST INSTRUCTIONS

T h e in s t ru c t io n set o f th e 68000 includes in s t ruc t ions to c o m p a re tw o o p e ran d s o r
an o p e r a n d with zero . T h e c o m p a r is o n is d o n e by su b t ra c t in g the source o p e ran d
fro m the d es t in a t io n o p e ran d . T h e result o f the su b t ra c t io n does n o t m o d ify e ither
o f th e o p e ran d s ; in s tead , it is used to set o r reset co n d i t io n code b i ts (flags) in the
s ta tu s regis ter. T h e flags a f fec ted a re : negative (N), zero (Z), o v e rf lo w (V), an d carry
(C). T hese flags can th en be e x am in ed by o th e r in s t ruc t ions to m a k e the decision
as to w h e th e r to execu te one pa r t o f the p ro g ra m o r an o th e r .

9 0

Sec. 4 .2 Compare and Test Instructions 91

T h e in s t ru c t io n s th a t have th e ab il i ty to c o m p a r e o p e r a n d s a r e sh o w n in Fig.
4 . 1. Basically , tw o types o f in s t ru c t io n s a re ava i lab le : the compare (C M P) in s t ru c t io n
a n d test (T ST) in s t ru c t io n . N o t ic e th a t th e C M P in s t ru c t io n a lw ay s c o m p a r e s tw o
o p e r a n d s . O n th e o th e r h a n d , t h e T S T in s t r u c t io n c o m p a r e s t h e spec if ied o p e r a n d
w ith zero .

M nemonic Meaning Type O perand Size S tatus Bits A ffected

CMP Compare CMP EA,Dn 8, 1 6 ,3 2 N, Z, V ,C

CMPA EA,An 1 6 ,3 2 N, Z, V ,C

CMP1 #X X X ,EA 8, 1 6 ,3 2 N, Z, V, C

CMPM (A y)* ,(A y)+ 8, 1 6 ,3 2 N, Z, V ,C

TST Test TST EA 8, 1 6 ,3 2 N, Z, V, C

Figure 4-1 Compare and lest instructions.

Let us begin by look ing in deta il at the c o m p a re instruct ion o f the 68000. L o o k in g
a t Fig. 4 .1 , we see th a t th e re a r e fo u r fo rm s o f th is in s t ru c t io n . T h ese fo r m s are:
compare (C M P) , compare address (C M P A) , compare immediate (C M P 1) , a n d
compare memory (C M P M) . T h e y d i f f e r in th e m a n n e r th e i r o p e r a n d s a re o b t a in e d
f o r c o m p a r i s o n .

T h e C M P in s t ru c t io n is u sed t o c o m p a r e a s o u rc e o p e r a n d w ith the c o n te n t s
o f a d a t a regis te r . T o spec ify th e l o c a t io n o f th e s o u rc e o p e r a n d , a n y o f the 6 8 0 0 0 ’s
a ddress ing m o d es can be used. O n th e o th e r h a n d , the dest ina t ion o p e r a n d m ust a lways
be o n e o f the in te rn a l d a ta reg is te rs . As in d ic a te d in Fig. 4 .1 , th e spec if ied o p e r a n d
size m ay be a byte, a w o rd , o r a lo n g w ord . H o w ev e r , when an a d d ress register co n ta in s
th e so u rc e o p e r a n d , byte-s ize c o m p a r i s o n s c a n n o t be m ad e .

T h e result o f th e c o m p a r is o n is reflected by ch an g e s in fo u r o f th e 68000’s s ta tus
f lags. N o t ice in Fig. 4.1 th a t it a f fe c ts th e sign , z e ro , o v e r f lo w , a n d c a r ry flags. T h e
logic s ta te o f these flags c an be re fe re n ce d by in s t ru c t io n s in o r d e r t o m a k e a decis ion
w h e th e r o r n o t to a l te r th e s e q u e n ce in w h ich th e p r o g r a m execu tes .

T h e p ro cess o f c o m p a r i s o n p e r f o r m e d by th e C M P in s t ru c t io n is bas ica lly a
s u b t r a c t io n o p e r a t io n . T h e so u rc e o p e r a n d is s u b t r a c t e d f ro m th e d e s t in a t io n
o p e r a n d . H o w e v e r , the result o f th is su b t r a c t i o n is n o t saved in the d e s t in a t io n . I n
s te ad , b a se d o n the result th e a p p r o p r i a t e flags a re set o r reset.

T h e su b t r a c t io n is d o n e u s in g 2 ’s c o m p le m e n t a r i th m e t ic . F o r e x am p le , let us
a s su m e th a t the des t in a t io n o p e r a n d equals 100110012 = - 103,0 a n d th a t the source
o p e r a n d e q u a ls 0 0 0 1 1 0 1 12 = 2 7 10. S u b t r a c t in g the so u rc e f r o m th e d e s t in a t io n ,
we get

1 00 1 10012 = - 103,0

- 0 0 0 1 1 0 1 12 = - (+ 2 7 , 0)

R ep lac ing th e d e s t in a t io n o p e r a n d w ith its 2 ’s c o m p le m e n t a n d a d d in g yields

92 6 8 0 0 0 M icroprocessor Programming 2 Chap. 4

100110012 = - 10310

— 111001012 = - 2 7 10

01 1 1 1 1 102 = + 12610

In the process o f o b ta in in g this result, we set th e s ta tus flags as follows:

1. Bit 7 o f th e d if fe rence is ze ro and th e re fo re sign flag N is at logic 0.

2. T he d iffe rence th a t is p ro d u c e d is no n zero , which m akes zero flag Z logic 0.

3. Even th o u g h a car ry ou t is gen era ted f ro m bit 7, there is no car ry f ro m bit 6
to bit 7. This represents an overflow condit ion a n d therefore the V flag is logic 1.

4. T h e re is a c a r ry o u t f ro m bit 7. T h u s , c a r ry flag C is logic 1.

N otice th a t the result p ro d u c ed by su b tra c t in g the tw o 8-bit n u m b e rs is not correc t.
T h is co n d i t io n is ind ica ted by th e fact th a t the overflow flag is set.

A n ex am p le o f the in s t ru c t io n is

C M P .W D 1 ,D 0

W h en this in s t ru c t io n is execu ted , the w o rd co n te n ts o f D, a re su b t ra c ted f ro m th a t
o f D 0 a n d the flags are a ffec ted accord ing to the result p ro d u ced by the sub trac t ion .
F o r instance, if the va lue in D , is the sam e as th a t in D0, th e Z bit in SR is set and
N, V, a n d C are all reset. Even th o u g h a su b t ra c t io n is p e r fo rm e d to de te rm ine this
s ta tu s , the values in D , an d D0 a re no t changed .

F o r instance, i f the w o rd co n te n ts o f D, a n d D0 are 100016 an d 40 0 0)6,
respectively, execution o f the instruction C M P .W D1 ,D0 subtracts 100016 from 4000)6
a n d sets o r resets th e s ta tus flags based on the d if fe rence tha t results . Since this result
is positive an d n o n z e ro , b o th N a n d Z are reset. M o re o v er , n o ca r ry is genera ted
by the su b t ra c t io n ; there fo re , C is also reset. F ina lly , in the p rocess o f p e r fo rm in g
the su b t ra c t io n , an overflow co n d i t io n does n o t occur an d V is also reset. In this
w ay, we find th a t at co m p le t io n o f execu tion o f th e in s t ruc t ion the sta tuses are
N = 0, Z = 0, V = 0, an d C = 0.

C o m p a r e address (C M P A) is th e sam e as C M P except th a t the des t in a t io n
o p e ra n d m ust reside in an add ress register ins tead o f a d a ta register. F o r this reason
on ly w o rd a n d lo n g -w o rd o p e ran d s can be specif ied. A w o rd source o p e ra n d is sign
ex tended to a long w o rd b e fo re m a k in g th e c o m p a r is o n . H ere is an in s truct ion tha t
does a long-w ord c o m p a r is o n o f the value o f a long w o rd in m e m o ry to the con ten ts
o f A 0.

C M P A . L (A 1) ,A 0

Notice tha t the address in A j is used to po in t t o the long w o rd in m em ory .
T h e next in s t ruc t ion , c o m p a r e im m ed ia te (C M P I) , is used to co m p a re a byte,

w o rd , o r lo n g -w o rd im m ed ia te o p e ra n d to a d e s t in a t io n o p e r a n d th a t resides in a
d a ta regis ter, a d d ress register, o r s to rage lo ca t io n in m em o ry . T h e loca t ion o f the

Sec 4 .2 C om pare and Test In s tru c tio n s 9 3

destination operand can be specified using any o f the data-alterable addressing modes
o f the 68000. A n example is the instruction

C M P I .B #$FF,D 0

The last type o f com pare instruc tion in Fig. 4.1 is com pare m em ory (C M P M).
Here bo th operands are located in m em ory and m ust be specified using the au tom atic
postincrement indirect address register addressing modes. Since this instruction updates
the address po in ters each time it is executed, we are always ready to com pare the
next two pieces o f d a ta in m em ory . For this reason, it is very useful for perform ing
string com parisons .

Exam ple 4.1

Determine how the condition codes will change as th e following instructions are executed.

C L R .L DO

M O V E .B #$5 A ,D 0

C M P .B DO, DO

C M P I .B #$60, DO

Solu tion . W h a t h ap p en s to the c o n d i t io n codes as these ins truct ions a re executed is
su m m arized in Fig. 4.2. Here we see tha t the first in s t ruc t ion clears d a ta register DQ.
This is written as a long-word ins t ruc t ion ; there fo re , all 32 bi ts o f D0 a re c leared. T h a t
is, it is loaded with 0000000016. Due to the execu tion o f the first in s t ruc t ion , the Z
cond it ion code bit is set while N , V, and C a re cleared.

Instruction Function
Condition Codes

X N z V c

CLR.L DO Clear D0 X 0 1 0 0
MOVE.B «S5A.D0 Load 5A16 into D0 X 0 0 0 0
CMP.B DO,DO Compare D0 with D0 X 0 1 0 0
CMPI.B *$60,DO Compare 6016 with D0 x 1 0 0 1 F ig u re 4-2 Exam ple p rogram em ploying

com pare instructions.

T he next instruction loads the lower byte o f D 0 with the n u m b e r 5 A |6. Since this
n u m b er is positive a n d grea ter th a n zero , the N a n d Z bits o f SR a re c leared . M oreover ,
it a lways clears the V a n d C bits.

T he th ird ins t ruc t ion c o m p a res the con ten ts o f D 0 with itself. T h u s the Z bit is
set an d N , V, a n d C are cleared.

The last instruction com pares 6 0 ,5 with the con ten ts o f D0. T here fore , it subtracts
6 0 |6 f rom 5 A 16. This su b tra c t io n yields a negative result; th e re fo re , the N bit is set.
F u r the rm ore , to subtract a larger n u m b er from a sm aller one, a b o r ro w is required. Thus
the C bit is also set. The result o f subtracting the tw o num bers can be correctly represented
as a byte. T h a t is, no overflow h as occurred . T h e re fo re , V is reset. M oreo v er , the result
is n o t zero; th e re fo re , Z is also reset.

94 6 8 0 0 0 M icroprocessor Programming 2 Chap. 4

Test Instruction—TST

T h e last ins t ruc t ion in Fig. 4.1 is the test (TST) in s truc t ion . This in s truct ion p e rfo rm s
a n o p e ra t io n th a t is s imilar to the c o m p a re in s t ru c t io n except th a t its d e s t in a t io n
o p e ra n d is a lw ays assu m ed to be zero. T h e specified source o p e r a n d is su b t rac ted
f ro m zero a n d b ase d o n the resu l t , the c o n d i t io n code bits in SR are set o r reset.
A n y o f the d a ta -a l te rab le address ing m odes can be used to specify th e source o p e ran d
a n d it can be a b y te , w o rd , o r long w o rd .

T h e sam e f o u r c o n d i t io n c o d e bits a re a f fec ted by the T ST in s t ru c t io n . But in
this case on ly N a n d Z a re set o r reset based o n the result o f the c o m p a r is o n . T he
o th e r tw o bits , V a n d C , a re a lw ays cleared.

A n ex am p le is the in s t ru c t io n

T S T .B DO

Let us a ssum e th a t D0 c o n ta in s 1016. E xecu ting the in s t ru c t io n causes 1016 to be
su b t ra c ted f ro m 0 a n d then th e flags a re set o r reset based o n the d ifference th a t
results . Fo r this value o f d a ta , th e d ifference th a t is p roduced is negative and nonzero ;
th e re fo re , N is set to 1 a n d Z is c leared to 0.

Set According to Condition Instruction—See

E arl ie r we p o in ted o u t th a t the c o n d i t io n code bits set o r reset by th e c o m p a re an d
test in s t ruc t ions a re e x am ined t h r o u g h so f tw are to decide w h e th e r o r no t b ran ch in g
sho u ld tak e p lace in the p r o g r a m . O n e way o f using these bits is to test them directly
with the b ran ch instructions. A n o th e r ap p ro ac h is to test them for a specific condit ion
a n d th en save a flag value rep resen t ing w h e th er the tested c o n d i t io n is t rue o r false.
T h is flag va lue can th en be used fo r p ro g ram b ra n ch in g decisions. A n ins t ruc t ion
th a t p e r fo rm s this o p e ra t io n is set according to condition (See).

T h e fo rm o f th e See in s t ru c t io n is sh o w n in Fig. 4.3(a) . T h e “ cc” par t o f the
m n em o n ic s tands fo r a general co n d i t io n code re la t ionsh ip a n d m ust be replaced with
a specific re la t io n sh ip w hen w r it ing the in s t ru c t io n . F igure 4 .3 (b) is a list o f the
m n em o n ics a n d c o n d i t io n co d e re la t ionsh ips t h a t can be used to replace cc. Fo r
instance, rep lacing cc by LE gives the in s t ru c t io n m n em o n ic S L E . This s tands for
set i f less than or equal to a n d tests s ta tu s to d e te rm in e if the logical va lue o f

Z + N • V + Ñ • V

is equal to 0 o r 1.
L o o k in g at Fig. 4 .3(a) , we see th a t a byte-w ide d es t in a t io n o p e ra n d is also

specified in the instruction. Its location can be identified using any o f the data-alterable
add ress ing m odes . F o r exam ple , an ins t ruc t ion co u ld be wri t ten as

S G T DO

W h en this in s t ru c t io n is execu ted , it causes the co n d i t io n code b i ts to be checked
to d e te rm in e if th e re la t ionsh ip

N ■ V • Z + Ñ • V • Z = 1

Sec. 4 .3 Jum p and Branch Ins truc tions 9 5

M nem onic M eaning F o rm at O perand Size O pera tion

See Set accord ing to
c o n d itio n code

See EA 8 11111111 -* EA if cc is true
00 0 0 0 0 0 0 -» EA if cc is false

(a)

M nem onic M eaning C o n d itio n C ode R elationsh ip

see Set if carry clear C = 0
scs S et if carry set C = 1
SEQ S et if equal Z = 1
SNE Set if n o t equal z = o
SMI S et if m inus N = 1
SPL Set if p lus N = 0
SVC S et if overflow clear (signed) v = o
svs S et if overflow set (signed) V = 1
SHI S et if h igher (unsigned) C • Z = I
SLS Set if low er o r sam e (unsigned) C + Z = 1
SGT Set if g rea ter th a n (signed) N V Z + N V Z = 1
SGE Set if g rea ter o r equal (signed) NV + N V = 1
SLT Set if less than NV + NV = 1
SLE Set if less o r equal (signed) Z + NV + N V = 1

(b)

Figure 4-3 (a) Set according to condition code instruction; (b) conditional tests of
the See instruction.

is s a t is f ie d . I f th is r e la t i o n s h ip is t r u e , th e b i ts o f th e b y te p a r t o f d e s t i n a t io n reg is te r
D () a r e all se t . O n th e o t h e r h a n d , i f th e r e l a t i o n s h ip is fa ls e , t h e y a re all re se t . F o r
e x a m p l e , i f N = V = 0 , a n d Z = 1, th e c o n d i t i o n c o d e r e l a t i o n s h ip e v a lu a t e s as

N • V • Z + N • V • Z = 0 • 0 • 0 + 1 • 1 • 0 = 0

T h e r e f o r e , th e r e l a t i o n s h ip is fa lse a n d th e b y te p a r t o f D 0 b e c o m e s 0 0]6.

4.3 JUM P AND BRANCH INSTRUCTIONS

F o r all th e p r o g r a m s w e h a v e s tu d i e d u p t o th is p o i n t , th e s e q u e n c e in w h ic h th e
i n s t r u c t io n s w e re w r i t t e n w a s a lso t h e s e q u e n c e in w h ic h th ey w e re e x e c u te d . In o t h e r
w o r d s , a f t e r e x e c u t io n o f a n i n s t r u c t i o n th e p r o g r a m c o u n t e r a lw a y s p o in t s t o th e
n e x t s e q u e n t i a l i n s t r u c t i o n .

F o r m o s t a p p l i c a t io n s , o n e m u s t be a b l e to a l t e r t h e s e q u e n c e in w h ic h
in s t r u c t io n s o f t h e p r o g r a m e x e c u te . T h e c h a n g e s in s e q u e n c e m a y h a v e to be
u n c o n d i t i o n a l l y d o n e o r m a y b e su b je c t t o s a t i s f y in g a c o n d i t i o n a l r e la t i o n s h ip . T o
s u p p o r t th e s e t y p e s o f o p e r a t i o n s , th e 6 8 0 0 0 is e q u ip p e d w ith j u m p a n d b r a n c h
in s t r u c t io n s .

9 6 6 8 0 0 0 M icroprocessor Programming 2 Chap. 4

The Unconditional and Conditional Branch

T h e 68000 m ic r o p r o c e s s o r a l low s t w o d i f f e re n t ty p es o f b r a n c h o p e r a t io n s . T h e y a re
th e unconditional branch, a n d th e conditional branch. In a n u n c o n d i t i o n a l b r a n c h ,
n o s ta tu s r e q u ire m e n ts a re im p o sed f o r the b ra n c h to o ccu r . T h a t is, a s the in s t ru c t io n
is ex ec u te d , the b r a n c h a lw ays t a k e s p lace to c h a n g e th e ex ec u t io n seq u en ce .

T h is c o n ce p t is i l lu s t ra te d in F ig . 4 .4 (a) . N o t ic e th a t w h en th e in s t ru c t io n B R A
A A in p a r t 1 is e x ec u te d , p r o g r a m c o n t r o l is p a sse d t o a p o in t in p a r t 111 id en t i f ied
b y th e label A A . E x e c u t io n r e su m e s w ith th e i n s t r u c t io n c o r re s p o n d in g to A A . In
th is w ay , the in s t ru c t io n s in p a r t II o f th e p r o g r a m h a v e been b y p a s se d . T h a t is, th ey
h a v e been j u m p e d over .

O n the o t h e r h a n d , fo r a c o n d i t i o n a l b r a n c h in s t ru c t io n , s t a tu s c o n d i t io n s th a t
exist at the m o m e n t the b ra n c h in s t ru c t io n is execu ted decide w h e th e r o r not the b ra n ch
will o c cu r . I f th is c o n d i t io n o r c o n d i t i o n s a re m e t , th e b r a n c h t a k e s p lace; o th e rw ise ,

C onditional branch
instruction

Next instruction executed
if condition not met
Locations skipped
if branch taken

N ext instruction
executed if
condition m et

< b)

l'a rt I

Bcc AA

XXXXXX

Part II

XXXXXX

Part III

Figure 4-4 (a) Unconditional branch program sequence; (b) conditional branch pro
gram sequence.

Sec. 4 .3 Jump and Branch Instructions 9 7

execution continues with the next sequential instruction o f the p ro g ram . T he conditions
th a t can be re ferenced by a c o n d i t io n a l b ran ch in s t ruc t ion are s ta tu s flags such as
car ry (C), zero (Z), negative (N), a n d o verf low (V).

Lo o k in g at Fig. 4 .4(b), we see th a t execu tion o f the co n d it io n a l b ran ch
ins t ruc t ion in pa r t I causes a test to be in it iated . I f t h e co n d it io n s o f the test are not
met, the N O pa th is taken and execution continues with the next sequential instruction.
This c o r re sp o n d s to the first in s t ruc t ion in p a r t II. H o w ev e r , if the result o f the
con d it io n a l test is YES, a b ra n ch is in it iated to the segment o f the p ro g ram identif ied
as pa r t III an d the in s t ruc t ions in par t II a re bypassed .

Unconditional Jump and Branch Instructions—JMP
and BRA

U n co n d i t io n a l changes in the execution sequence o f a p ro g ra m are su p p o r te d by b o th
the j u m p and b ra n c h in s truct ions . T h e first in s t ru c t io n in Fig. 4.5 is the jum p (J M P)
in s t ruc t ion . T h e effect o f executing this in s t ruc t ion is to load the p ro g ram co u n te r
with the c o n ten ts o f the effective a d d ress specif ied by the o p e ra n d in the in s truct ion .
T h ere fo re , p ro g ra m execution resum es at the loca t ion specified by th e effective
address .

A n exam p le o f the in s t ru c t io n is

J M P (AO)

In this case, p ro g r a m execu tion is d irected to the ins t ruc t ion at th e address specified
by the c o n ten ts o f add ress register A 0. O n ly th e co n tro l a ddress ing m odes can be
used to specify th e o p e ran d .

A second w ay o f init iat ing u n c o n d i t io n a l changes in the p ro g ra m execution
sequence is by m ea n s o f the branch always (B R A) ins t ruc t ion . T h e fo rm a t o f this
instruction is also show n in Fig. 4.5. Notice tha t B R A differs from J M P in the m an n e r
by which the a d d ress o f the next ins t ruc t ion to be executed is e n co d ed . In J M P , this
address is specif ied directly by an E A o p e ran d . Th is perm its it to reside in a d a ta
regis ter o r a s to rag e loca tion in m em o ry . O n the o th e r h a n d , in B R A the d ifference
be tw een the a d d ress o f the new ins t ruc t ion an d tha t o f th e B R A ins t ruc t ion
(d isp lacem ent) is enco d ed fo l low ing th e o pcode . T h u s , fo r the B R A ins truct ion the
m ic ro p ro cesso r c o m p u te s th e next a d d ress by a d d in g the d isp lacem en t to the cu rren t
value in PC .

T h e b ra n ch in s t ruc t ion a llows the d isp lacem en t d to be e n co d e d e ither as an
8-bit (short-form) integer o r 16-bit (tong-form) in teger. W ith an 8-bit d isp lacem en t,
the ins t ruc t ion is en co d ed as one w o rd , but the b ra n c h to loca t ion m ust reside within

Mnemonic Meaning Form at Operand Size Operation

JMP Jum p JMP EA - - E A - P C

BRA Branch always BRA Label 8, 16 PC + d - PC

Figure 4-5 Jum p and branch always instructions.

98 6 8 0 0 0 M icroprocessor Programming 2 Chap. 4

+ 129 o r - 126 bytes o f the c u r re n t value in P C . O n the o th e r h a n d , the 16-bit
d isp lacem en t is e n co d e d as a second ins t ruc t ion w o rd , thereby m a k in g it a tw o -w o rd
ins t ruc t ion . T his long d isp lacem en t ex tends the ran g e o f the b ra n c h o p e ra t io n to
+ 32769 to - 32766 bytes relative to the cu rren t P C .

T h e p r o g r a m m e r does no t n o rm al ly specify the d isp lacem en t in the b ran ch
instruction. Instead , a label is written in the p ro g ram to identify the b ranch to location.
F o r exam ple , th e ins t ruc t ion

B R A S T A R T

causes a t ran s fe r o f p ro g ra m c o n tro l to the in s t ru c t io n in the p ro g ra m with the label
S T A R T . It is the d u ty o f the assem b le r p ro g ram to c o m p u te the ac tua l d isp lacem ent
an d encode it in to t h e in s t ruc t ion . In this exam ple , th e d isp lacem en t will be encoded
as a 16-bit w ord . I f d isp lacem ent m u s t be encoded as a byte, the in s t ru c t io n shou ld
be w ri t ten as

B R A .S S T A R T

J M P an d B R A are called unconditional branch in s t ruc t ions . T h is is because
the change in in s t ru c t io n sequence th a t they in it ia te takes p lace ind ep en d en t o f any
co n d it io n s in th e p rocesso r s ta tus .

Conditional Branch Instruction—Bcc

T he 68000 provides a conditional branch instruction called branch conditionally (Bcc).
A s sh o w n in Fig. 4 .6 (a) , its general fo rm is

Bcc L A B E L

H ere “ cc” is used to specify o n e o f m an y co n d i t io n a l re la t ionsh ips . F igure 4.6(b)
is a list o f all the valid re la t ionsh ips an d their m n em o n ics . Fo r ins tance , selecting
E Q we get the branch on equal (B E Q) ins t ruc t ion .

T h e co n d i t io n a l b ra n ch in s t ru c t io n passes c o n tro l to the specif ied label only
if the c o n d it io n a l re la t ionsh ip is t rue . In the ex am p le B E Q , the Z bit o f SR is tes ted .
If it is set, the b ra n c h takes p lace to the loca t ion specified by L A B E L . If it is not
set, the next sequen tia l in s t ru c t io n is executed . T h e a m o u n t o f d isp lacem en t a llowed
with the co n d i t io n a l b ra n ch in s t ru c t io n is th e sam e as fo r the b ran ch always
in s t ruc t ion .

Let us now c ons ider an exam p le . T h e in s t ruc t ion

BVS S T A R T

m ean s b ran ch to th e ins t ruc t ion iden tif ied by S T A R T if the overf low (V) bit is set.
I f V is no t set , the in s t ruc t ion th a t follows the BVS ins t ruc t ion is executed . T he
d isp lacem ent b e tw een the ad d ress o f BVS plus tw o an d the in s t ruc t ion with label
S T A R T is c o m p u te d by the assem b le r and e n co d ed in to the in s t ruc t ion as a 16-bit
in teger. Fo r e n co d in g the d isp lacem en t as a byte, the ins t ruc t ion sh o u ld be w ri t ten as

BVS.S S T A R T

Sec. 4 .3 J u m p and B ran ch In s tru c tio n s 9 9

M n em o n ic M ean ing F o rm a t O p e ra n d Size O p e ra tio n

Bcc B ran c h c o n d itio n a lly Bcc L abe l 8 , 16 (P C) + d -* PC if cc is t ru e ;
o th e rw ise , n e x t s e q u e n tia l
in s tru c t io n e x e c u te s

(a)

M n em o n ic M eaning C o n d it io n a l C o d e R e la tio n sh ip

BCC B ran c h if c a rry c lea r C = 0
BCS B ran c h if c a rry se t C = 1
B E Q B ran c h if eq u a l Z = 1
B N E B ran c h if n o t eq u a l z = o
BMI B ran ch if m in u s N = 1
BPL B ran c h if p lu s N = 0
BVC B ran ch if o v e rf lo w c lea r (s ig n ed) V = 0
BV S B ran c h if o v e rflo w se t (s ig n ed) V = 1
BH1 B ran c h if h igh (u n s ig n e d) C • Z = 1
BLS B ran ch if less o r sam e (u n s ig n e d) C + Z = 1
B G T B ran ch if g re a te r th a n (s ig n ed) N V Z + N V Z = 1
BGE B ran ch if g re a te r o r e q u a l (s ig n ed) N V + N V = 1
B L T B ran ch if less th a n N V + N V = 1
B LE B ran ch if less o r eq u a l (s ig n ed) Z + N V + N V = 1

(b)

F ig u re 4-6 (a) Branch conditionally instruction; (b) conditional tests of the Bcc in
struction.

E xam ple 4 .2

It is req u ire d to m o v e a set o f N , 16-bit d a ta p o in ts th a t a re s to re d in a b lock o f m e m o r y
tha t starts a t loca t ion BLK1 to a new block th a t s ta r ts a t loca t ion B L K 2. W rite a p ro g ra m
to im p le m e n t th is o p e r a t io n .

S olu tio n . T h e f lo w ch ar t in Fig. 4 .7 (a) show s a p la n for im p le m e n t in g th e b lock m o v e
fu n c t io n . In i t ia lly , we set u p tw o p o in te r s , o n e fo r th e beg in n in g o f BLK1 a n d th e o th e r
fo r the beg in n in g o f BLK2. A d d re s s regis te rs A , a n d A 2, respec tive ly , c an be used as
these p o in te r s . T h e co u n t fo r the n u m b e r o f p o in ts to be m o v ed is p laced in D 0. T his
c a n be a cc o m p l ish e d by th e in s t ru c t io n sequence

L E A BLK1 ,A1

L E A B L K 2 ,A 2

M O V E .L N ,D 0

T o m o v e a w o rd f ro m BLK1 to B L K 2 , we can use a m o v e w o rd in s t ru c t io n with a d d re ss
regis ter ind irec t ad d re ss in g with p o s t in c re m e n t m o d e fo r b o th its so u rc e a n d d e s t in a t io n
o p e ran d s . M o re o v e r , each t im e a d a ta point is m o v e d , the count in D 0 m u st be decreased
by 1. T h e m o v e in s t ru c t io n m u s t be re p ea te d if th e c o u n t ha s n o t r e ac h ed zero . T h e
in s t ru c t io n s th a t fo l low will p e r fo r m these o p e ra t io n s .

100 6 8 0 0 0 Microprocessor Programming 2 Chap. 4

NXTPT MOVE.W (A1) + ,(A2) +

SUBQ.L #1,D0

BNZ NXTPT

The entire program is shown in Fig. 4.7(b).

(a)

NXTPT

LEA
LEA
MOVE.L
MOVE.W
SUBQ.L
BNZ

(b)

B LK l.A I
BLK2.A2
N,D0
(A l)+,(A 2)+
#1 ,D0
NXTPT

Figure 4-7 (a) Block transfer flowchart;
(b) program.

4.4 THE TEST CONDITION, DECREMENT, AND BRANCH
INSTRUCTION AND PROGRAMS INVOLVING LOOPS

T h e p ro g ram we cons id e red in the preced ing section was an exam p le o f a software
loop. In the earlier exam ple we f o u n d th a t w hen a so f tw a re loop is execu ted , a g ro u p
o f in s t ruc t ions a re executed repea ted ly . T h e repe t i t ion m ay be u n co n d it io n a l o r
condit ional . T o design a loop , o n e can use the previously in tro d u ced c o m p are , j u m p ,
a n d b ran ch in s t ruc t ions . Th is was th e a p p r o a c h em ployed in E x am p le 4.2. H ow eve r ,
the 68000 prov ides a n o th e r in s t ru c t io n th a t is especially useful fo r h and ling loops.
T h is ins t ruc t ion is called test condition, decrement, and branch (DBcc) and has the
genera l fo rm

Sec. 4 .4 The Test Condition, Decrement, and Branch Instruction 101

D B cc D n ,L a b e l

H e re “ c c ” rep re sen ts the sam e c o n d i t io n s th a t w ere av a i lab le fo r the Bcc in s t ru c t io n .
T h e y a re lis ted in th e t ab le o f Fig . 4 .6 (b) . In fac t , t w o m o r e c o n d i t io n s , a lw ays t ru e
(T) a n d a lw ay s fa lse (F), a r e a lso a v a i lab le fo r th e D B cc in s t ru c t io n . D n is th e d a ta
reg is te r th a t c o n ta in s th e c o u n t o f h o w m a n y t im es the l o o p is to be r e p e a te d , a n d
Label identifies th e loca t ion to which co n tro l is to be re tu rn ed by the b ra n ch o p e ra t io n .

W h e n th e D B cc in s t ru c t io n is ex ec u te d , f irst th e c o n d i t io n iden t i f ied by cc is
te s ted . I f it is t ru e , n o b r a n c h t ak e s p lace ; in s tea d , the l o o p is t e r m in a t e d a n d the
next seq u e n t ia l in s t ru c t io n is ex ec u te d . O n the o t h e r h a n d , i f th e c o n d i t i o n is no t
t r u e , th e c o n te n t s o f th e spec if ied d a t a reg is te r a re d e c re m e n te d b y 1. T h e n a n o th e r
test is p e r f o r m e d . T h is o n e is o n the c o u n t in D n . I f it is e q u a l t o - 1, th e b r a n c h
do e s n o t t a k e p lace b ecau se the l o o p o p e r a t io n has r u n to c o m p le t i o n . In th is case ,
ex ec u t io n c o n t in u e s w ith the nex t se q u e n t ia l i n s t r u c t io n . H o w e v e r , i f the c o u n t is
n o t - 1, p r o g r a m c o n t r o l b r a n c h e s to th e lo c a t io n c o r re s p o n d in g to L abe l .

A n e x a m p le o f th e in s t ru c t io n is as fo l low s:

D B L E D 0 , N X T P T

D u r in g th e e x e c u t io n o f th is in s t r u c t i o n , f irst th e c o n d i t io n c o d e b i ts o f S R a re tes ted
to d e te rm in e if th e r e la t io n sh ip

Z + N - V + N - V = l

is sa t is f ied . I f t r u e , th e in s t ru c t io n fo l lo w in g th e D B L E in s t ru c t io n is ex ecu ted . I f
fa lse, D 0 is d e c re m e n te d . N ex t , D 0 is tes ted to d e te r m in e i f it h a s b e c o m e - 1. I f
it has , the next se q u e n t ia l in s t ru c t io n is execu ted . B u t i f D 0 is a n y n u m b e r o th e r th a n
- 1, e x ec u t io n c o n t in u e s at the label N X T P T .

F o r e x a m p le , i f Z = 0, N = 1, V = 1, a n d th e c o n te n t s o f D 0 a re 0 3 16, the
c o n d i t io n c o d e re la t io n s h ip e v a lu a te s as

Z J- N - V + N - V = 0 + 1 • 0 + 0 • 1

= 0

Since the result is 0 , th e re la t io n s h ip is fa lse. T h u s , th e v a lu e in D 0 is d e c re m e n te d
by 1, w h ich gives 0 2 16, a n d tes ted f o r - 1. S ince D 0 d o e s n o t c o n ta in - 1, c o n t ro l
is passed to th e in s t ru c t io n c o r re s p o n d in g to label N X T P T .

Example 4.3
Given N data points that are signed 16-bit numbers stored in consecutive memory locations
starting at address DATA, write a program that finds their average value. The average
value that results is to be stored at location AV ERA GE in memory. Assume that N is
in the range 0 < N < 32K.

Solution. A flowchart that solves this problem is shown in Fig. 4.8(a). It implements
an algorithm that finds the average o f N data points by adding their values and then
dividing the sum by N.

Initially we set the sum, which will reside in D7, to 0, the address pointer in A,
to DATA so that it points to the first da ta point, and the counter in D0 equal to N - 1.
Notice that the value o f the count is 1 less than the number o f data points to be processed.

1 0 2 6 8 0 0 0 M ic ro p ro ce sso r P rog ram m ing 2 Chap 4

T h e reason fo r this is th a t we in tend to use the DBcc instruct ion which b ranches ou t
o f the loop w hen the coun t in a d a ta register becom es equal to - 1 an d not 0. This
in it ialization is p e r fo rm e d by execu ting the fo l low ing instructions

C L R .L D7

L E A D A T A , AI

M O V E .L #(N - 1),D0

T o a d d a new d a ta po in t to su m , we first m ove it in to D , . Since the d a ta point
is o f w ord length , it m ust be sign e x tended to a long w o rd before it can be added to
the prev ious sum . T h en the sign-ex tended d a ta po in t in D, is ad d ed to the sum in D 7.
Next the co u n t in D 0 is dec rem en ted by 1 a n d checked to d e te rm in e if it has becom e
equal to - 1. A value o f - 1 m ean s th a t all p o in ts have been a d d e d . If it is not - 1 ,
there a re still d a t a po in ts to be a d d ed an d we m u s t repeat the set o f ins truct ions that
a d d a new d a ta po in t. O n the o th e r h a n d , if the co u n t show s tha t all po in ts have been
ad d ed , we are read y to divide the sum in D 7 by N to o b ta in the average. This value
can then be m o v ed f rom D 7 to the s to rage loca t ion A V E R A G E in m em o ry . All this
can be d o n e by the fo l low ing sequence o f instruct ions.

M O V E .W (A l) + ,D1

E X T .L D1

A D D .L D1,D7

D B F D 0 ,N X T P T

DIVS #N ,D 7

M O V E .W D 7 ,A V E R A G E

T h e co m ple te p ro g ram is listed in Fig. 4.8(b).

Exam ple 4.4

Given a four-digit B CD n u m b er located in m em ory location B C D N U M , write a p rogram
to convert it to its equiva lent b in a ry n u m b er a n d place the result in m em o ry loca t ion
B IN N U M .

Solution . Let us begin by de f in ing an a lgo r i thm that can be used to convert a B C D
n u m b er to its equiva lent b inary n u m b er . Fo r the general B C D n u m b er

^ bcd = D3D2D ,D 0

its equivalent decim al n u m b er is given by the expression

N |0 = 1000(D3) + I00(D 2) + 10 (D ,) + D0

This expression c an be reorgan ized to give

N 10 = D0 + 10(D, + 10(D2 + 10(D3)))

D0, D t , D-,, a n d D 3 in this express ion s tand fo r B CD digits an d not fo r d a ta registers
w ith in the~68000. T h is express ion suggests an a lgo r i thm tha t can be im plem en ted using
a so f tw are loop . Notice th a t i f we start with the M S D D 3, m ult ip ly it by 10, a n d then
ad d the next M S D D 2, we will get o u r first t e m p o ra ry result. This sam e sequence can

Sec. 4 .4 The Test Condition, Decrement, and Branch Instruction 1 0 3

D0 = coun te r
D7 = sum
Aj = po in ter to da ta points
Dj = tem porary register for

holding da ta point

NXTPT

CLR.L D7
LEA DA TA ,AI
MOVE.L # < N -1) ,D 0
MOVE.W (A 1)+,D1
EXT.L D1
ADD.L D1,D7
DBF DO,NXTPT
DIVS # N ,D 7
MOV.W D7,AVERAG E

(b)

F ig u re 4-8 (a) Flowchart o f a program
for finding the average o f N signed
numbers; (b) program.

104 6 8 0 0 0 M ic ro p ro ce sso r P rog ram m ing 2 Chap. 4

be p e rfo rm ed twice m o re on the t e m p o ra ry resu lt , first a d d in g D , to the p roduc t and
then a dd ing D 0 to the p ro d u c t , to p ro d u ce the final result.

T h e f low chart in Fig. 4 .9(a) show s how this a lg o r i th m can be im plem en ted on
the 68000. In i t ia liza t ion involves se t t ing the result, which is in D 7, to zero , setting the
digit coun te r in D 0 to 3, and the shif t coun te r in D , to 12. The B C D n u m b er at m em ory
loca t ion B C D N U M is cop ied in to D 2. Notice th a t the value o f the digit c o u n te r is
actually one less th an the n u m b e r o f digits to be processed. This is d u e to the fact tha t
we in tend to use the DBcc in s t ru c t io n , which b ran ch e s on the c o n ten ts o f a d a ta register
being equal to - 1. T h e shift c o u n te r will be used to ex tract the a p p ro p r ia te digit f rom
the n u m b er . This init ialization can be p e rfo rm ed w ith the in s truct ion sequence tha t
follows.

C L R .L

M O V E .L

D7

03, DO

M O V E .L #12 ,D1

M O V E .W B C D N U M ,D 2

T o p ro g ram the convers ion e q u a t io n , we begin with the m ost significant digit o f
B C D N U M . T o ex tract the M S D , the B C D n u m b e r in regis ter D 2 is first copied in to
register D-, a n d then the c o n ten ts o f D 3 are sh if ted r ight logically by 12 bit posit ions .
T h is places the M S D in the 4 least s ignificant bi ts o f register D 3. N ow this digit value
is ad d ed to the result in D 7. T o p re p a re fo r the ex trac t ion o f the next M S D , we shift
the con ten ts o f register D-, left by fo u r bit posi t ions . This places the next M S D in the
m os t s ignificant digit pos i t ion so th a t this digit can now be t rea te d exactly like the
p reced ing one . T he c o u n te r in register D0 is d ec rem en ted a n d tes ted; if it is no t equal
to - 1, we repea t the process with the next digit . If we repea t, we m ust mult ip ly the
result by 10 before a dd ing the value o f the next digit. All this can be d one by the following
sequence o f instruct ions:

M U L U 0 1 0 ,D7

M O V E .W D 2,D 3

L SR .W D 1,D 3

A D D .W D3.D7

L S L .W 04 ,D2

DBF D O .N X T D G T

M O V E .W D 7 .B IN N U M

T h e entire p ro g ram is sh o w n in Fig. 4.9(b).

Exam ple 4.5

It is required to sort an a r ray o f 16-bit signed b inary num bers such th a t they are a r ranged
in ascending o rd e r . Fo r ins tance , i f the orig inal a r ray is

5, 1, 29, 15, 38, 3, - 8 , - 3 2

af te r so r t ing , the a r ray tha t results would be

- 3 2 , - 8 , 1, 3, 5, 15, 29, 38

Sec. 4 .4 The Test Condition, Decrement, and Branch Instruction 1 0 5

Initialize
Result = 0
C o u n t = 3

Shift coun t = 12
BCDNUM - D2

D0 = counte r
Dj = shift coun te r
D2 = given BCD num b er

(BCDNUM)
D7 = equivalent binary

num ber (BINNUM)

NX TD GT

NXTDGT

CLR.L D7
MOVE.L # 3 , DO
MOVE.L # 1 2 ,D I
MOVE.W BCDNUM.D2
MULU #1 0 ,D 7
MOVE.W D2.D3
LSR.W D1.D3
ADD.W D3.D7
LSL.W # 4 ,D 2
DBF DO,NXTDGT
MOVE.W D7.BINNUM

(b)
F ig u re 4 -9 (a) Flowchart for BCD-to-
binary conversion routine; (b) program.

1 0 6 6 8 0 0 0 M ic ro p ro cesso r P rog ram m ing 2 Chap. 4

A ssu m e that the a r ray o f n u m b e rs is sto red at consecutive m em o ry loca tions from
addresses F 4 0 0 !6 th ro u g h F 4 F E 16 in m em ory . W rite a sort p ro g ram .

Solution. First we will develop a n a lgorithm that can be used to sort an array o f elements
A(0), A (l) , A(2), th ro u g h A(N) in to ascending o rd e r . O n e way o f do ing this is to take
the first n u m b er in the a r ray , which is A(0), and c o m p a re it to the second n u m b er A (l) .
If A(0) is greater th a n A (l) , the tw o n u m b ers a re sw apped ; otherwise, they are left alone.
Next A(0) is co m p a red to A(2) a n d based on the result o f this com par ison they are either
sw apped o r left a lone . This sequence is repea ted until A(0) has been co m p a red with all
n u m b ers up th ro u g h A(N). W h en this is co m ple te , the smallest n u m b er will be in the
A(0) posi t ion .

N o w A (l) m ust be c o m p a re d to A(2) th ro u g h A(N) in the sam e way. A f te r this
is d o n e , the second smallest n u m b e r is in the A (l) pos i t ion . U p to this p o in t , jus t two
o f the N n u m b ers have been pu t in ascending o rder. T h e re fo re , the p ro ced u re m ust be
co n tin u ed for A(2) th ro u g h A (N - 1) to com ple te th e sort .

Figure 4 .10(a) illustra tes the use o f this a lg o r i th m for an a r ra y with jus t fou r
nu m b ers . T he n u m b ers a re A(0) = 5, A (I) = 1, A(2) = 29, a n d A(3) = - 8 . During
the sort sequence , A(0) = 5 is first co m p a red to A(1) = 1. Since 5 is g rea te r th an 1,
A(0) a n d A (l) a re sw apped . N o w A(0) = 1 is c o m p a red to A(2) = 29. This t ime 1 is
less th an 29; th e re fo re , the n u m b ers a re no t sw ap p ed a n d A(0) rem a in s equal to 1. Next,
A(0) = 1 is c o m p a red with A(3) = - 8 . A(0) is g rea te r th an A(3). T h u s A(0) a n d A(3)
are sw apped a n d A(0) becom es equal to - 8 . Notice in Fig. 4 .10(a) tha t the lowest o f
the fo u r n u m b ers now resides in A(0).

The sort sequence in Fig. 4 .10(a) con tinues with A (l) = 5 being co m p a red first
to A(2) = 29 an d then to A(3) = 1. In the first c o m p a r iso n , A (l) is less th an A(2).
F o r this reason , the ir values a re n o t sw apped . But in th e second co m p a r iso n , A (l) is
g rea te r th an A(3); th e re fo re , the tw o values are sw apped . In this way, the second lowest
n u m b er , which is 1, is so r ted in to A (l) .

It ju s t rem ains to sort A(2) a n d A(3). C o m p a r in g these two values, we see tha t
29 is greater th a n 5. This causes the tw o values to be sw apped such th a t A(2) = 5 an d
A(3) = 29. A s show n in Fig. 4.10(a), the so r t ing o f the a r ra y is now complete .

1 0 1 -» 3 S ta tu s

A d) 5 1
1 1

29 - 8 O riginal array

a i d 1 5
1

29
1

- 8 A rray a l te r com paring A (0) and At 1)

A d) 1 5
1

29 - 8
1

A rray a l te r com paring A (0) and A t2)

A d) - 8 5
1

29
1

1 ArTay a f te r com paring A (0) and A t3)

A d) - 8 5
1

29 1
1

A rray a f te r c o m p an n g At 1) and At 2)

A (I) - 8 1 29
1

5
__1

A rray a f te r co m p an n g At 1) and A (3)

A (I) - 8 1 5 29 A rray a f te r com paring A t2) and A (3)

(a)

F igu re 4-10 (a) Sor t exam ple .

S ec. 4 .4 T h e T e s t C o n d it io n , D e c re m e n t, an d B ra n ch In s t ru c t io n 1 0 7

Aj = PNTRj = pointer to first element
A 2 = PNTR2 = poin ter to next elem ent
A 3 = PN TR 3 = poin ter to last elem ent

AA

BB

CC

MOVE.L
MOVE.L
MOVE.L
ADDQ.L
MOVE.W
CMP.W
BLE.S
MOVE.W
MOVE.W
ADDQ.L
CMP.L
BLE.S
ADDQ.L
CMP.L
BLT

(cl

SF400,A I
$F4FE,A3
AI ,A2
#"> A
(A2),D0
(A I),DO
CC
(AI),(A2)
D0,(A 1)
2 ,A 2
A2,A3
BB
#2,A1
A 1 ,A3
AA

(b)

Figure 4-10 fcont.) (b) Flowchart for sort algorithm; (c) program.

We will implement this algorithm for the 68000 microprocessor. The flowchart
for the sort algorithm is shown in Fig. 4.10(b).

The first block represents initialization o f pointers PNTR1 and PNTR3. They
contain addresses that point to the storage locations o f the first and last elements of
the array, respectively. Since registers A, and A 3 are used as these pointers and the

108 6 8 0 0 0 M ic ro p ro ce sso r P rog ram m ing 2 Chap. 4

addresses o f the first and last elements are SF400 a n d SF4FE, respectively, the instructions
used to p e r fo rm the init ial ization are

M O V E .L $F400,A1

M O V E .L $F 4 F E ,A 3

A ddress register A 2 con ta ins a n o th e r po in te r . It is called P N T R 2 a n d p o in ts to the next
e lem ent to be p rocessed in the a r ray . T o initialize P N T R 2 , we can load regis ter A 2 with
the con ten ts o f A , , which is P N T R 1 , a n d then increm en t this value by 2. In this way,
the next w o rd address is es tab lished fo r P N T R 2 . This is d one with the instructions

A A M O V E .L A 1 .A 2

A D D Q .L #2,A2

A s show n in the f low chart , the label A A is used to im plem ent a b ra n c h point.
Next , s ta r t ing with label BB, we firs t c o m p a re the two n u m b ers . T o implement

the com par ison , the n u m b er po in ted to by P N T R 2 can be copied into regis ter D0; next,
the value p o in ted to by PN T R 1 can be co m p a red to it; a n d then a cond it ional b ran ch
can be m ade if s ta tu s show s tha t

P N T R 1 < P N T R 2

T h e b ranch passes con tro l to the po in t in the p ro g ra m identif ied b y label C C . I f the
value p o in ted to by P N T R 1 is g rea te r th an the va lue po in ted to by P N T R 2 , the two
values m ust be sw apped . These o p e ra t io n s a re p e r fo rm e d with the instruct ions

BB M O V E .W (A 2),D 0

C M P .W (A 1) ,D 0

B L E .S C C

T o implement sw apping o f the tw o n u m b ers , the n u m b e r po in ted to by PN TR 1 is copied
in to the m em o ry loca t ion po in ted to by P N T R 2 . N ex t , the con ten ts o f D0 are copied
to the storage location pointed to by P N T R 1 . This completes the swap. The corresponding
ins truct ions are

M O V E .W (A1),(A2)

M O V E .W D0,(A1)

N ow pointer P N T R 2 is updated by incrementing it by 2 and then it is c om pared to PN T R 3
to find ou t i f th e last element has been com pared . I f the result o f this com par is ion shows
th a t

P N T R 2 £ P N T R 3

con tro l is re tu rn ed to the point in the p ro g ram identif ied by BB. O therw ise , p ro g ram
execution con tinues on to the next block in the f low chart . These o p e ra t io n s are d one
w ith the ins truct ions

C C A D D Q .L #2 ,A 2

C M P .L A 2 ,A 3

B L E .S BB

Sec 4 .5 S ubroutines and S ubroutine-H andling Ins truc tion s 1 0 9

W hen the answer to the comparison is that

PN T R 2 > PNTR3

we must update P N T R I by adding 2 and then com pare it to PN TR 3. If it turns out that

P N T R I < PNTR3

we must start all over again from AA . Otherwise, the program is complete . The
instructions for this part o f the p ro g ram are

A D D Q .L 02,A1

C M P .L A1,A3

B LT AA

The entire p rogram is shown in Fig. 4.10(c).

4.5 SUBROUTINES AND SUBROUTINE-HANDLING INSTRUCTIONS

A subroutine is a sp ec ia l s e g m e n t o f p r o g r a m t h a t c a n b e c a l led f o r e x e c u t io n f r o m
a n y p o i n t in a p r o g r a m . F ig u r e 4.11 i l lu s t r a te s th e c o n c e p t o f a s u b r o u t i n e . H e r e
w e see a p r o g r a m s t r u c tu r e w h e re o n e p a r t o f t h e p r o g r a m is c a l led th e main pro
gram. In a d d i t i o n t o th is , w e f in d a s m a l l e r s e g m e n t a t t a c h e d to th e m a i n p r o g r a m ,
k n o w n as a s u b r o u t i n e . T h e s u b r o u t i n e is w r i t te n t o p r o v i d e a f u n c t i o n th a t m u s t
b e p e r f o r m e d a t v a r io u s p o i n t s in th e m a i n p r o g r a m . I n s t e a d o f in c lu d in g th is p iece
o f c o d e in th e m a in p r o g r a m e a c h t im e th e f u n c t i o n is n e e d e d , it is p u t i n to th e p r o
g r a m j u s t o n c e as a s u b r o u t i n e .

W h e r e v e r th e f u n c t i o n m u s t b e p e r f o r m e d , a s ing le i n s t r u c t i o n is in se r te d in to
t h e m a in b o d y o f th e p r o g r a m t o “ c a l l ” th e s u b r o u t i n e . R e m e m b e r t h a t th e c o n te n t s
o f P C a lw a y s id e n t i f ie s th e n e x t i n s t r u c t io n to b e e x e c u te d . T h u s , t o b r a n c h t o a
s u b r o u t i n e t h a t s t a r t s e l s e w h e re in m e m o r y , th e v a lu e in P C m u s t b e m o d i f i e d . A f t e r
e x e c u t in g th e s u b r o u t i n e , w e w a n t t o r e tu r n c o n t r o l t o t h e i n s t r u c t i o n th a t fo l lo w s

M a m p ro g ra m

Figure 4-11 S u b ro u t in e concept.

110 6 8 0 0 0 Microprocessor Programming 2 Chap. 4

the o n e th a t called the su b ro u t in e . In this way , p r o g r a m execu tion resum es in the
m ain p ro g ram at th e po in t w here it left o f f d ue t o the su b ro u t in e call. A re tu rn
instruction must be included at the end o f the subrou t ine to initiate the return sequence
to the m ain p ro g ra m e n v iro n m en t .

T h e in s t ru c t io n s p rov ided to t ran s fe r c o n tro l f ro m the m a in p ro g ram to a
subrou tine and re tu rn contro l back to the main p ro g ram are called subroutine handling
instructions. Let us n o w exam in e the in s t ruc t ions p rov ided fo r th is pu rpose .

Subroutine Control Instructions—JSR, BSR, RTS, and RTR

T h e fo u r su b ro u t in e h and ling in s t ru c t io n s o f th e 68000 m ic ro p ro ce sso r a re show n
in Fig. 4.12. These instructions include jum p to subroutine (JSR), branch to subroutine
(BSR), return from subroutine (R T S), an d return and restore condition codes (R T R).
These in s t ru c t io n s p rov ide fo r efficient su b ro u t in e h an d lin g a n d nesting.

T h e instructions j u m p to su b rou t ine (JS R) a nd b ra n ch to sub rou t ine (BSR) serve
essentia lly the sa m e p u rp o se . T h is is to pass c o n tro l to th e s ta r t in g po in t o f a
su b ro u t in e . As sh o w n in Fig. 4 .12 , they b o th save the c u r ren t co n te n ts o f P C by
pu sh in g it to the act ive s tack . T h is preserves a re tu rn ad d ress fo r use at co m p le t io n
o f th e su b ro u t in e . T h e n they pass c o n tro l to the s ta r t in g po in t o f the su b ro u t in e .

These tw o in s t ruc t ions d if fe r in how they specify the s ta r t in g address o f the
su b ro u t in e . F o r the JS R in s t ru c t io n this ad d ress is specif ied as a n effective ad d ress
a n d on ly th e c o n t ro l address ing m odes a re a llow ed . T h e re fo re , the s ta r t ing ad d ress
can reside in a d a ta register, a d d ress register, o r in e ither p ro g r a m or d a ta s to rage
m em ory . Fo r instance, using address register indirect address ing th ro u g h register A , ,
we get

JS R (A l)

O n the o th e r h a n d , in the BSR instruct ion , the displacement between the current
in s t ruc t ion an d th e first in s t ru c t io n o f the su b ro u t in e is d e te rm in ed a n d en co d ed in to
the in s t ruc t ion . T h a t is, it is s to re d in p ro g ra m s to rage m em o ry . A n exam p le is

BSR S T A R T S U B

Mnemonic Meaning Format Operand Size Operation

JSR Jum p to subroutine JSR EA 32 PC -» “ (SP)
EA -» PC

BSR Branch to subroutine BSR Label 8, 16 PC - “ (SP)
PC + d - PC

RTS Return from subroutine RTS ----- (SP)* - PC

RTR Return and restore RTR --- (SP)+ - C C R
(SP)* - PC

Figure 4-12 Subrout ine control instructions.

Sec 4 .5 S ub rou tine s and S u b rou tine -H an d ling In s tru c tio n s

T h u s J S R p ro v id e s th e ab i l i ty to j u m p to a s u b r o u t in e th a t res ides a n y w h e re
in th e 16M -by te a d d re s s space o f th e 68000. But B S R o n ly p e rm i t s b ra n c h in g to a
s u b r o u t in e th a t is lo ca te d w ith in th e m a x im u m a l lo w a b le d is p la c e m e n t va lue . T h e
d is p la c e m e n t c a n be e i th e r 8 b its f o r th e sh o r t f o r m o f the BSR in s t ru c t io n o r 16
b its fo r th e lo n g fo r m .

T h e o th e r tw o in s t ru c t io n s re tu rn f ro m s u b r o u t in e (R T S) a n d re tu rn a n d re s to re
(R T R) p ro v id e th e m e an s fo r r e tu rn in g f ro m a s u b ro u t in e back to the calling p ro g ra m .
In Fig. 4 .12 , w e see th a t e x ec u t in g R T S s im p ly re s to re s th e p r o g r a m c o u n te r by
p o p p in g th e v a lu e th a t w as s av ed o n th e ac t iv e s t a c k w h en th e s u b r o u t in e w as ca lled .
T h e seco n d in s t ru c t io n R T R re s to re s b o th th e c o n d i t io n c o d e p a r t o f SR a n d P C
f ro m th e s tack . O n e o f these in s t ru c t io n s is a lw ays th e last in s tru c t io n o f a su b ro u t in e .

Exam ple 4.6

In a F ibonacc i series, the first n u m b e r is 0, the s econd is 1, an d each subsequen t n u m b er
is o b ta in e d by a d d in g the p rev ious tw o n u m b ers . F o r exam ple , the first 10 n u m b ers o f
the series are

0, 1, 1, 2, 3, 5, 8. 13, 21, 34

W rite a p ro g ra m to genera te the first 20 e lements o f a Fibonacc i series. T he n u m b ers
o f the series a re to be s to red at consecu tive loca t ions in m em o ry s ta r t ing at add ress
FIB S E R . Use a su b ro u t in e to im p lem en t the p a r t o f the p ro ced u re by which the next
n u m b e r o f the series is o b ta in e d f ro m the p rev ious tw o num bers .

Solution. A flowchart for this p rogram together with the assignments o f various registers
is show n in Fig. 4.13(a). T h e first p a r t o f the p ro g ra m initializes the regis ters a n d stores
the first two n u m b ers . T he inst ruc t ions used for this p u rp o se are

M O V E .L m i , D O S E T T H E C O U N T E R T O 17

L E A FIB S E R , A I S E T T H E P O I N T E R T O FIB SER

C L R .W D1 D1 = 0

M O V E Q .W tt\,D2 D2 = 1

M O V E .W D 1 ,(A 1)+ S T O R E T H E F IR S T N U M B E R

M O V E .W D 2 , (A I) + S T O R E T H E S E C O N D N U M B E R

T h e next-to-last ins t ruc t ion causes 0 to be loaded in to ad d ress F IB SER a n d increm ents
the po in te r in A , by 2 such th a t it po in ts to the s to rage loca tion o f the next n u m b er
in the series. T h en a similar in s t ruc t ion is executed to load F I B S E R + 2 with 1 a n d A ,
is again increm en ted .

W e are now ready to call the su b ro u t in e th a t does the ad d it io n to fo rm the next
n u m b er in the series. Since the su b ro u t in e will be called repea tedly , the BRS ins truction
is identif ied by a label to which the p ro g ram can lo o p back. This in s truct ion is

N X T N M BRS.S SB R T F

The subrou tine starts at the instruction with label SB R T F . The purpose o f the subroutine
is to ad d the co n ten ts o f D, an d D 2 so tha t the next n u m b e r in the series is genera ted ,

1 1 2 6 8 0 0 0 M icroprocessor Programming 2 Chap. 4

D0 = c o u n te r for the num bers
to be generated

A j = po in te r to the address at
which the n u m b er is to
be stored

Dj = first num b er used in the
generation

D2 = second num b er used in
the generation

D 3 = generated num b er

(a)

NXTNM

DONE
SBRTF

MOVE.L
LEA
CLR.W
MOVEQ.W
MOVE.W
MOVE.W
BSR.S
MOVE.W
MOVE.W
MOVE.W
DBF
BRA
ADD.W
MOVE.W
RTS

$ l l,DO
F IB SER ,A l
D1
l ,D2
D1,(A1>*
D 2 , (A i r
SBR TF
D2,Dl
D3,D2
D 3 , (A i r
DO,NXTNM
DONE
D2,Dl
D l ,D 3

< b»

Figure 4-13 (a) F low char t fo r the
F ibonacci series p ro g ra m ; (b) p rog ram .

Sec. 4 .5 S ub rou tine s and S ubrou tine -H an d ling In s tru c tio n s 1 1 3

t em porar i ly save this n u m b er in D 3, a n d then re tu rn back to the m ain p ro g ram . This
can be d o n e by the in s truct ion sequence

S B R T F A D D .W D2.D1

M O V E .W D1.D3

RTS

At this p o in t in the m ain p ro g ra m , we get ready fo r genera ting the next nu m b er .
This is d o n e by saving the co n ten ts o f D , in D, a n d th a t o f D , in D , . Next we save
the new n u m b er that was genera ted in D , by m ov ing it to m em ory . T o do this , the
ins tructions are

M O V E .W D2,D1

M O V E .W D 3,D 2

M O V E .W D3,(A1) +

N ow the co u n t in D0 is dec rem en ted a n d tested fo r - 1. If it is n o t equal to - 1, we
loop back to the label N X T N M . How ever , i f it is - 1, we are don e . T he instruction
fo r this is

DB F D O ,N X T N M

D O N E BRA D O N E

T h e entire p ro g ram is rep ea ted in Fig. 4.13(b).

Link and Unlink Instructions—LINK and UNLK

B efo re th e m a in p r o g r a m calls a s u b r o u t in e , q u i t e o f t e n it is n ecessa ry fo r th e ca ll ing
p r o g r a m to pass th e values o f s o m e variables (parameters) to th e s u b r o u t in e . It is
a c o m m o n p ra c t ic e to p u sh th ese v a r iab les o n to th e s ta ck b e fo re ca ll ing th e ro u t in e .
T h e n d u r in g th e ex e c u t io n o f th e s u b r o u t in e , th ey a r e accessed by re a d in g th e m f ro m
th e s tack a n d u sed in c o m p u t a t i o n s . T w o in s t ru c t io n s a re p ro v id e d to a l lo ca te a n d
d e a l lo c a te a d a t a a re a ca lled a frame in th e s tack p a r t o f m e m o ry . T h is d a t a a rea
is u sed fo r local s to ra g e o f p a r a m e te r s o r o th e r d a ta . T h e tw o in s t ru c t io n s , as sh o w n
in Fig. 4 .14 , a re link and allocate (L IN K) a n d unlink (U N L K). T h e y m a k e th e process
o f p a ss in g a n d re t r iev in g p a ra m e te r s m u c h easier .

T h e L IN K in s t ru c t io n is used at th e b eg in n in g o f a s u b r o u t in e to c rea te a d a t a
f r a m e . L o o k in g at th e fo r m a t o f th e in s t ru c t io n in Fig. 4 .14 , we see th a t it has tw o

M nem onic M eaning F o rm a t O p era tio n

LIN K

U N LK

L ink and a llocate

U nlink

LIN K A n , d

U N LK An

A n - _ (SP)
SP -* A n
SP - d - SP

A n - S P
(SP)* - A n

Figure 4-14 Link and unlink instructions.

114 6 8 0 0 0 M icroprocessor Programming 2 Chap. 4

o p e ran d s . T he o n e d en o te d A n is a lw ays an ad d ress regis ter. T h e ad d ress held in A n
is k n o w n as the frame pointer a n d it p o in ts to th e lowest s to rage lo ca t io n in the d a ta
f ram e . T h e o th e r o p e ra n d is an im m ed ia te o p e r a n d th a t specif ies the value o f a
d isp lacem en t. T h is d isp lacem en t specifies the size o f the d a ta space. Since it can be
as long as 16 b i ts , a frame data space can be as large as 32K words .

A n exam p le o f this in s t ru c t io n is

L IN K A 1 , - # $ A

E xecu tio n o f th is in s t ruc t ion causes the cu rren t co n te n ts o f A t to be p ushed o n to
the active s tack; th e n the u p d a te d c o n ten ts o f th e active S P register are load ed in to
A , ; finally, A 16 is su b t ra c ted f ro m th e new va lue in SP .

F igure 4.15 show s what h a p p e n s by execu ting this in s t ruc t ion . First we see th a t
p ush ing the co n te n ts o f A , to th e stack saves th e f ram e p o in te r fo r the p r io r d a ta
f ram e . This is identif ied as “ P r io r f ram e p o in te r ” a n d is s to red at A lnew. L o ad in g
A | with the c o n te n ts o f SP establishes a f ra m e p o in te r to th e new d a ta f ram e .
S u b t rac t in g the d isp lacem en t f ro m (SP) m odif ies th e stack p o in te r so th a t the active
stack is located in m e m o ry jus t below the d a ta f ram e . Since the d isp lacem ent is A !6,
the d a ta f ram e is 10 bytes in length .

T h e f ram e p o in te r A , p rov ides a fixed re fe rence in to the d a ta f ram e an d o ld
s tack . P a ra m e te r s th a t were lo ad e d in to the stack p r io r to call ing the su b ro u t in e can
be accessed using address register indirect with d isp lacem en t address ing fo r the
o p e ra n d . F o r exam p le , the in s t ruc t ion

M O V E .W 4 (A 1) ,D 0

Stack memory

New stack continuation

S P „ „ ------- --
New data frame

(10 bytes)

A 1 new Prior frame poin ter (Aj

Return address

Prior used stack

S^old

Prior data frame

A 1 old “ *

Figure 4-15 Creation o f a data frame
with the link instruction.

Sec. 4 .5 Subroutines and Subroutine-Handling Instructions 1 1 5

cau ses th e w o rd p a r a m e te r s to re d fo u r by tes f r o m f r a m e p o in te r A , to be co p ie d
in to D 0. T h is p a r a m e t e r is in th e o ld s tack .

A f t e r p e r fo r m in g th e o p e r a t io n d e f in e d b y th e s u b r o u t in e a n d ju s t b e fo re
r e tu rn in g to the ca l l ing p r o g r a m , th e p r io r d a ta f r a m e m u s t be re s to re d . T h e U N L K
in s t ru c t io n is u sed fo r th is p u r p o s e . N o t ice in Fig . 4 .14 th a t it c au ses a d d re s s reg is te r
A n, w h ich is u sed fo r th e f r a m e p o in te r , to be l o a d e d in to th e ac t ive s tack p o in te r
reg is te r . T h e n th e a d d re s s he ld a t th e t o p o f t h e s tack is p o p p e d in to A n.

F o r o u r e x a m p le , th e u n l in k in s t ru c t io n w o u ld be

E a r l ie r we p o in te d o u t th a t e x e c u t io n o f th e L I N K in s t ru c t io n sav ed th e o ld f r a m e
p o in te r o n th e s ta ck a n d th en c r e a te d a new d a t a f r a m e . E x e c u t in g U N L K A1 causes
S P to be lo a d e d f r o m A t . L o o k in g at Fig. 4 .1 5 , w e f ind th a t th e s ta ck p o in te r n o w
p o in ts to the l o c a t io n o f th e p r io r f r a m e p o in te r . T h e n A! is l o a d e d f r o m th e s tack .
T h e r e f o r e , th e p r io r f r a m e p o in te r is p u t b a c k in A j a n d th e p r io r s tack a n d d a ta
f r a m e e n v i r o n m e n t is re s to red .

T o u n d e r s t a n d th is co n ce p t b e t te r , let us c o n s id e r th e e x am p le i l lu s t ra ted in Fig.
4 .16 . A s we beg in t o execu te th e f irst in s t ru c t io n o f th e p r o g r a m se g m en t sh o w n in
Fig . 4 .1 6 (a) , we will a s su m e th a t th e ac t ive S P p o in ts t o th e t o p o f th e d a ta f r a m e
id en t i f ied in Fig. 4 .1 6 (b) as local s to ra g e a r e a fo r th e cal l ing ro u t in e . E x e c u t io n o f
th e f irst tw o in s t ru c t io n s

passes the c o n te n t s o f D 0 a n d D , as p a r a m e te r s o n to th e s ta ck . L o o k in g a t Fig.
4 .1 6 (b) , we see th a t at th e c o m p le t i o n o f th e se tw o in s t ru c t io n s S P p o in ts t o th e
lo c a t io n w h e re p a r a m e t e r 2 is s to re d .

U N L K A1

M O V E .W DO, - (SP)

M O V E .W D 1 , - (SP)

AA

MOVE.W
MOVE.W
JSR

DO, “ (SP)
D I , - (S P)
SBRT

; param eter 1 passed to stack
; param ete r 2 passed to stack
; call subrou tine SBRT

SBRT LINK AO. - = S 8 ; FP and local storage established for called routine

MOVE.W I Of AO), D5 ; param eter 1 accessed

UNLK
RTS

AO . FP for the calling rou tine established
: re tu rn to main program

(a)

Figure 4-16 (a) P rog ram example with LINK and UNLK instructions .

116 6 8 0 0 0 M ic ro p ro ce sso r P rogram m ing 2 Chap. 4

SP a l te r L IN K AO. - * $ 8

FP a l te r L IN K AO. - * 5 8 -

SP a f te r JS R SB R T

SP a f te r M O V E.W D l , ~ (S P) -

SP a f te r M OV E.W DO, - (S P)—

SP b efo re M OV E.W DO, —(S P)

F P b e fo re M OV E.W DO, (SP)

S tack m e m o ry

L ocal s to rage fo r
ca lled su b ro u tin e

(S B R T)

Calling ro u tin e FP
(A 0 c o n te n ts)

R e tu rn back add ress
(A A + 4)

P a ra m e te r 2

P a ra m e te r I

L ocal s to rag e fo r
ca lling su b ro u tin e
o r m ain p rog ram

P rev ious FP

8 b y te s

L ong w ord

SP a f te r U N LK AO

■ L o n g w ord

4f— SP a f te r R TS
W ord

W ord

FP a f te r U N LK AO

(b)

Figure 4-16 (cont.) (b) Slack for the exam ple program .

T h e nex t in s t ru c t io n ,

JS R S B R T

w h ich has th e label A A , calls th e s u b r o u t in e s t a r t in g at label S B R T . It cau ses th e
a d d re s s o f th e in s t ru c t io n th a t fo l lo w s it to be p u s h e d o n to th e s ta c k . T h is r e tu rn
ad d ress is A A + 4 s ince th e JS R in s tru c t io n tak es u p fo u r bytes o f p ro g r a m m e m o ry .
S ec o n d ly P C is lo a d e d w ith th e a d d re s s o f S B R T su ch th a t p r o g r a m c o n t ro l p icks
u p e x ecu t io n f r o m th e first in s t ru c t io n o f th e s u b r o u t in e .

T h e s u b r o u t in e s ta r ts w ith th e in s t ru c t io n

L IN K AO, - m

It causes th e c o n te n t s o f A 0 to b e saved on th e s tack a n d th e n lo ad s A 0 f ro m th e
ac tive s tack p o in t e r regis ter . T h is sets u p a new f r a m e p o in te r F P (A 0 register). T h e n
8 is s u b t r a c te d f r o m th e v a lue in S P . T h e re fo r e , it p o in t s to th e t o p o f th e d a t a a r e a
id en t if ie d in Fig. 4 .1 6 (b) as local storage fo r th e ca lled su b r o u t in e .

A s s u b r o u t in e S B R T is b e in g e x ecu ted , w e m a y need to access p a ra m e te r 1.
T h e f r a m e p o in te r serves as a re fe rence in to th e called ro u t in es d a t a f r a m e . P a ra m e te r
1 is a t a d is p la c e m e n t o f 10 b y tes f r o m th e f r a m e p o in te r ; t h e r e fo re , th e in s t ru c t io n

M O V E .W 10(A 0),D 5

Sec. 4 .6 B it-M anipula tion Instructions 117

can be used to access it. E x e c u t io n o f th is i n s t r u c t io n copies p a r a m e te r 1 in to D 5.
T h e nex t in s t ru c t io n we see is

U N L K AO

It loads S P with the c o n te n ts o f Ag a n d th en p o p s th e c o n ten ts a t th e t o p o f the s tack
in to A 0. N o w A 0 o n c e ag a in c o n ta in s th e f r a m e p o in te r fo r th e ca l l ing ro u t in e a n d
S P p o in ts t o th e lo c a t io n w h e re th e r e tu rn a d d r e s s A A + 4 is s to re d .

T h e last in s t ru c t io n

R T S

lo ad s th e r e tu r n a d d re s s in to the p r o g r a m c o u n te r so t h a t e x ecu t io n re su m es in the
cal l ing ro u t in e .

4.6 BIT-MANIPULATION INSTRUCTIONS

T h e bit m a n ip u la t i o n in s t ru c t io n s o f th e 68000 e n a b le a p r o g r a m m e r to test th e logic
level o f a bit in e i th e r a d a ta reg is te r o r s to ra g e l o c a t io n in m e m o r y . T h e tes ted bit
c a n a lso b e se t, re se t , o r c h a n g e d d u r in g the e x e c u t io n o f th e in s t ru c t io n . T h e fo u r
b it m a n ip u la t i o n in s t ru c t io n s in th e 6 8 0 0 0 ’s in s t ru c t io n set a re sh o w n in Fig. 4 .17 .
T h e y are : test a bit (B T S T) , test a bit and set (B S E T) , test a bit and clear (B C L R) ,
a n d test a bit and change (B C H G) .

Test a Bit Instruction—BTST

T h e test a bit (B T S T) in s t ru c t io n has th e ab il i ty to test a n y o n e bit in a 32-bit d a t a
reg is te r o r a n y o n e bit o f a by te s to ra g e lo c a t io n in m e m o r y . T h e logic s ta te o f th e
te s ted bit is in v e r ted a n d co p ie d in to the Z bit o f SR . T h a t is, w h e n th e bit is tes ted
as 1, Z is set to 0 o r w h en th e bit is tes ted as 0, Z is set to 1. T h e tw o valid f o rm s
o f th e B T S T in s t ru c t io n a re sh o w n in Fig. 4 .17 . In b o th f o r m s , th e d e s t in a t io n
o p e r a n d , wh ich c o n ta in s th e bit t o be te s te d , is spec if ied b y a n e ffec t ive a d d re s s .

T h ese tw o fo r m s d if fe r in the w a y th e n u m b e r o f th e bit t o be tes ted is spec if ied .
In the f irst fo r m , th e n u m b e r o f th e bit is su p p l ied as a n im m e d ia te so u rc e o p e r a n d

Mnemonic Meaning F orm at O perand Size O peration

BTST Test a bit BTST #X XX ,EA 8 ,3 2 EA bit - Z
BTST Dn,EA 8 ,3 2

BSET Test a bit and set BSET #X XX ,EA 8 ,3 2 EA bit - Z
BSET Dn,EA 8 ,3 2 1 EA bit

BCLR Test a b it and clear BCLR sX X X .E A 8 ,3 2 EA bit -* Z
BCLR Dn.EA 8 ,3 2 0 -» EA bit

BCHG Test a bit and change BCHG #X X X ,EA 8 ,3 2 EA bit - Z
BCHG Dn.EA 8 ,3 2 EA bit -* EA bit

Figure 4-17 Bil-manipula tion ins tructions.

1 1 8 6 8 0 0 0 Microprocessor Programming 2 Chap. 4

th a t gets co d ed as pa r t o f the in s t ru c t io n in p ro g ra m m em o ry . A n exam ple is the
in s t ruc t ion

B T ST #5 ,D7

Execu tio n o f this in s t ru c t io n tests bit 5 in d a ta register D 7. T h e c o m p lem en t o f the
va lue f o u n d in th is bit pos i t ion is cop ied in to Z . F o r exam ple , i f D 7 con ta ins 2 5)6,
th a t is

D 7 = 00000000000000000000000000100l012

bit 5 is logic 1. T h u s , the co m p le m e n t o f 1, which is 0, is cop ied in to the Z flag.
T h e second fo rm uses the c o n te n ts o f o n e o f the d a ta registers to specify the

bit pos i t ion . F o r in s tance , if D0 co n ta in s n u m b e r 5, then execu ting the in s t ruc t ion

BT ST D 0 ,D 7

p ro d u c es th e sam e result as the in s t ru c t io n th a t e m ployed an im m ed ia te o p e ra n d .

Other Test Bit Instructions—BSET, BCLR, and BCHG

T h e o th e r in s t ru c t io n s in Fig. 4 .17 , B SE T , B C L R , an d B C H G , o p e ra te s imilarly to
BT ST . H o w ev e r , they no t on ly co p y the c o m p le m e n t o f th e tes ted bit in to Z , bu t
also set, c lear , o r invert the bit in the d es t in a t io n o p e ra n d , respectively.

A n exam p le is th e ins t ruc t ion

B SE T #7,(A1)

W h en this in s t ru c t io n is execu ted , bit 7 o f the m e m o ry loca t ion p o in te d to by (A l)
is tes ted . T h e c o m p le m e n t o f its logic level is co p ied in to Z a n d th en bit 7 is set to
1. F o r instance, if the byte m e m o ry loca t ion p o in ted to by the ad d ress in A , con ta ins
7 F 16, which is 0 1 1 111112 in b in a ry fo rm , bit 7 is logic 0. T h e re fo re , execu tion o f
the in s t ru c t io n causes Z to be set to 1 an d the co n te n ts o f the m e m o ry loca t ion to
be c h an g e d to F F 16.

W hen a m e m o ry bit is addressed , BTST allows use o f the d a ta address ing m odes
to specify the effec tive address o f the d es t in a t io n o p e ra n d . T h e in s t ru c t io n s B SET,
B C L R , a n d B C H G allow the use o f d a ta -a l te ra b le address ing m o d es for E A .

Test and Set Operand Instruction—TAS

A n o th e r in s t ru c t io n tha t is s im ilar to the test bit ins t ruc t ion is test and set operand
(TA S). As sh o w n in Fig. 4 .18 , T A S d iffe rs f ro m B T ST in th a t it tests a byte o p e ra n d
in a d a ta register o r s to rage lo ca t io n in m em o ry . T h e test is p e r fo rm e d by c o m p a r in g
the o p e ra n d with zero an d set ting o r reset t ing co n d i t io n code bits N an d Z based
o n the result. N is set to the logic level o f the m ost s ignificant bit o f the o p e ra n d
a n d Z is set i f the o p e ra n d is zero . Second , in d ep en d en t o f the result o f the test, the
m ost s ignificant bit o f the accessed byte is set to 1. An exam p le is the in s t ruc t ion

T A S DO

Sec. 4 .6 B it-M an ipu la tion Ins truc tions 1 1 9

M nem onic M eaning F o rm at O perand Size O pera tion

TAS T est and se t an
o perand

T A S E A 8 If des tin a tio n is ze ro , 1 -* Z ;
o therw ise , 0 -» Z

I f d estina tion is negative,
1 -* N ; o the rw ise , 0 -* N
0 -*• V
0 - C
1 -* m ost significant b it o f by te

addressed by EA

F ig u re 4 -18 TAS instruction.

T h e T A S i n s t r u c t i o n is sp e c if ica l ly d e s ig n e d to s u p p o r t multiprocessing a n d
multitasking system environments. F o r i n s t a n c e , in a m u l t i p r o c e s s in g s y s te m , a bit
c a l led a s e m a p h o r e in a b y te in m e m o r y is set f o r r e so lv in g w h ic h p r o c e s s o r c a n access
a m e m o r y se c t io n r e se rv e d fo r a sp e c if ic r e s o u r c e . I f a p r o c e s s o r n e e d s t o acc es s th is
r e s o u r c e , it will f i rs t tes t a n d set th e m e m o r y b y te . I f th e r e s o u r c e is a l r e a d y in use ,
t h e tes t will i n d ic a te t h a t c o n d i t i o n a n d th e p r o c e s s o r c a n w a i t u n t i l it is a v a i l a b le .
O n c e it is d o n e u s in g th e r e s o u r c e , it re se ts th e semaphore b i t , t h u s a l lo w in g access
b y o t h e r p r o c e s s o r s . T h is is i l l u s t r a te d in F ig . 4 .1 9 .

LO O P TAS
BMI

SFO R E
LOOP

BCLR
RTS

7 , SFO R E

F ig u re 4 -19 Use of TAS for
multiprocessing.

1 2 0 6 8 0 0 0 M ic ro p ro ce sso r P rog ram m ing 2 Chap. 4

A S S I G N M E N T

Section 4 .2

1. A ssum ing th a t cond it ion codes N , Z , V, a n d C a re initially zero , specify their s ta tus as
each o f the inst ruc t ions tha t fo l low is executed.

S U B .L AO,AO

C M P 1 .W #SAOOO,AO

T S T AO

2. Use m ove, sh if t , an d logic ins t ruc t ions to c o m p u te the results o f the logic e q u a t io n

F = Z + N - V + N - V

where N, V, a n d Z are the cond it ion code bits o f the 68000. S tore the result F at a location
in m em o ry identif ied as R E S U L T as a byte o f all Is o r all Os, depend ing on w he ther F
is 1 o r 0.

Section 4 .3

3. Describe the d if fe rence between a J M P ins truct ion a n d a B R A instruction .

4. C o n s id e r the delay lo o p p ro g ram th a t follows:

M O V E .B # $ I0 ,D 7

DLY SU B Q .B #1,D7

B G T D L Y

N X T

(a) H o w m an y t imes does the ins t ruc t ion B G T D L Y get executed?
(b) C h an g e the p ro g ra m so tha t B G T D LY is execu ted just 17 times.
(c) C h a n g e the p ro g ra m so th a t B G T D LY is execu ted 232 times.

Section 4 .4

5. Given a n u m b e r N in the range 0 < N < 5, write a p ro g ram tha t co m p u te s its factoria l
a n d saves the result in the m em o ry loca t ion co rre sp o n d in g to F A C T .

6. W rite a p ro g ra m th a t co m p a res the e lem ents o f tw o a r rays , A(I) a n d B(I). Each a r ray
conta ins one h u n d re d 16-bit integer num bers . T he c o m p ar iso n is to be d o n e by c om par ing
the co rre sp o n d in g e lem ents o f the two a r ray s until e ither two elem ents a re fo u n d to be
unequal o r all e lem ents o f the a r ray s have been c o m p a re d a n d fo u n d to be equal. Assum e
th a t the a r rays s ta r t at addresses SAOOO a n d SB000, respectively. If the two arrays are
fo u n d to be u n e q u a l , save the add ress o f the first unequal e lement o f A(I) at m em o ry
loca t ion F O U N D . O n the o th e r h a n d , if all e lem ents a re equal , wri te a byte o f Os in to
F O U N D .

7. Given an a r ray A(I) with one h u n d re d 16-bit signed num bers , write a p ro g ram to generate
tw o new a r ray s , P (J) an d N(K). P (J) is to c o n ta in all the positive n u m b ers from A(I) a n d
N(K) is to c o n ta in all o f its negative num bers . A(I) s ta r ts at address SAOOO in m em o ry
a n d the two new a rrays , P (J) a n d N(K), a re to s ta r t at addresses SBOOO and SCOOO,
respectively.

Chap. 4 Assignment 121

8. Given an array A(I) o f one hundred 16-bit signed integers, write a program to generate
a new array, B(I), according to the following directions.

B(I) = A(I) for 1 = 1 ,2 , 99, and 100

and

B(l) = median o f A (I - 2) , A (l - 1), A(l), A (l+ 1), and A(I + 2) for all

other Is

Section 4 .5

9. Write a subroutine that converts a given 32-bit binary number to its equivalent BCD
number. The binary number is to be passed to the subroutine as a parameter in D7 and
the subroutine also returns the result in D7.

10. Given an array A(I) o f 100 signed 16-bit integer numbers, generate another array B(I)
given by

B(I) = A(I) for I = 1 and 100

and

B(I) = -i- (A(I - 1) + 2A(I) + A(I + 1)) for all other Is

Use a subroutine to generate the terms o f B(I). Parameters A(I - 1), A(I), and A(I + 1)
are to be passed to the subroutine on the stack and the subroutine returns the result B(I)
on the stack.

Section 4 .6

11. Write the segment o f main program and show its subroutine structure to perform the
following operations. The program is to check repeatedly the 3 least significant bits o f
D0 and depending on their settings, executes one o f three subroutines: SUBA, SUBB,
or SUBC. The subroutines are selected according to the priority that follows:

3 LSB o f D0 Execute

XXI SUBA

X10 SUBB

100 SUBC

If a subroutine is executed, before returning to the main program, the corresponding bit
or bits in register D0 are to be cleared. After returning from the subroutine, the main
program continues.

5 U s in g the MC68000
E d u c a t i o n a l M i c r o c o m p u t e r
f o r P r o g r a m D e v e l o p m e n t

5.1 INTRODUCTION

In the previous two chapters, we studied the instruction set of the 68000 microprocessor
and how to w'rite simple assembly language programs. In this chapter, we shall describe
how to use the MC68000 educational microcomputer to verify whether or not a
program correctly performs the application for which it was written. This
microcomputer is manufactured by Motorola, Inc., as an educational tool that can
be used to teach 68000 microcomputer system architecture and assembly language
programming. Here we will learn the commands of the microcomputer’s monitor
program and use them to assemble, execute, and debug programs. The following topics
are covered:

1. The 68000 microcomputer development system
2. The monitor program
3. Monitor commands
4. Register display/modify commands
5. Memory display/modify/search commands
6. Commands for control o f I /O resources
7. Assembly and disassembly of instructions and programs
8. Program execution control commands
9. Executing a program

10. Debugging a program

12 2

Sec. 5.2 The 6 8 0 0 0 M icrocomputer Development System 123

5.2 THE 68000 MICROCOMPUTER DEVELOPMENT SYSTEM

A development system is an instrument that is used to develop programs and hardware
for a microprocessor-based system. Typically, the development system is designed
to permit development work to be done for only specific microprocessors— for
instance, devices produced by a specific manufacturer. It can be a sophisticated system
that gives the microcomputer designer im portant capabilities, such as the ability to
develop programs in either assembly language or a variety o f high-level languages,
powerful tools for efficient debugging o f programs, facilities for connection to external
hardware for debugging o f circuit operation, and the ability to integrate the user’s
software and hardware together for testing and debugging. Use o f this type o f
development system is essential for major microcomputer development projects. Its
use results in much saved time and higher-quality hardware and software.

The MC68000 educational microcomputer is a simplified development system
that is intended to be used by students and designers to learn how to develop
hardware and assembly language programs for 68000-based microcomputers. Figure
5 . 1 shows the microcomputer board o f the MC68000 educational microcomputer.
Since this system is intended to serve educational needs and not a complete
microcomputer-based system design project, it provides only limited development
support. However, the microcomputer board includes all the hardware of a complete
microcomputer: 32K bytes o f RAM for data and user program storage, 16K bytes
o f PROM for storage of the monitor program, and interfaces for a variety o f
in p u t /o u tp u t (I /O) devices, such as a CRT terminal, a printer, and a cassette
player/recorder. The board also has a prototyping area that allows the user to build
custom interfaces easily into the microcomputer.

The MC68000 educational microcomputer system can be configured in a number
o f different ways. The complete system configuration, as shown in Fig. 5.2, includes
the microcomputer module (MEX68KECB), a power supply, an RS-232C compatible
terminal, an audio cassette recorder, a printer, and even a communications link to
a host computer. This complete system configuration provides greater ease and
flexibility for p rogram development. However, a more limited system configuration
can be used if necessary. For example, the host computer interface is frequently not
employed. The minimum hardware configuration is enclosed by dashed lines in Fig.
5.2. Here we see that the only items required in a minimum system are the
microcomputer module, the power supply, and the terminal.

In a minimum system configuration, the terminal acts as both the input and
ou tput device. Programs and data entered at the keyboard o f the terminal are stored
in the microcomputer’s RAM. They also are echoed back to the screen o f the terminal
so that their entry can be verified by the user. Commands, such as those used to execute
or debug a p rogram, also are issued to the microcomputer from the keyboard. These
comm ands are interpreted and executed by the monitor program that is stored in
PR OM .

The terminal communicates with the microcomputer through an RS-232Cport.
An RS-232C compatible port is an industry standard interface that defines the voltage

124 Using the M C 68 000 Educational M icrocomputer tor Program Development Chap. 5

Figure 5-1 The MC68000
educational microcomputer board
(Motorola, Inc.).

levels, data format, and control lines for an asynchronous communications interface.
Data are passed through the interface in serial fo rm —that is, one bit after the other
over a single communication line. The rate at which data is transferred over this line
is identified as the baud rate. In this case, baud rate means the number o f bits o f
data per second. The data transmission rate is jum per selectable on the microcomputer
board and can be set at a variety o f speeds from 110 to 9,600 baud.

The use o f an audio cassette recorder in the MC68000 educational
microcomputer allows the user to save information , such as programs, on audio
cassette tape. In this way, the program m er can reload the program from tape at a
later time instead o f having to retype it at the keyboard. The audio cassette recorder

Sec. 5.2 The 6 8 0 0 0 M icrocomputer Development System 125

M in im u m c o n fig u ra t io n

interface is implemented as part o f the parallel I /O interface on the microcomputer
board. Data transmissions between the microcomputer and cassette recorder are also
in serial form. However, in this case the data rate is between 1,000 and 2,000 baud,
depending on the bits being transferred through the interface.

The printer can be used to produce hard copies o f programs, results produced
by executing programs, and debug sequences. The printer interface used in the
MC68000 educational microcomputer is what is called a parallel printer interface
(Centronics interface), and it is also implemented using parallel I /O ports on the
microcomputer board.

126 Using the M C 68 000 Educational M icrocomputer fo r Program Development Chap. 5

5.3 THE MONITOR PROGRAM

In C hapter 4, we wrote a number o f programs in the 68000’s assembly language.
For instance, we wrote a block transfer program that could be used to move a block
o f da ta from one location in memory called the source location to another location
called the destination. Once a program such as this has been written, we are ready
to verify its operation by running it on a microcom puter such as the MC68000
educational microcomputer. To do this we must assemble the program into the
microcomputer’s memory and then execute it. After execution is complete, the correct
operation of the program can be verified by examining the results that it produces,
and if necessary any errors that are found can be analyzed by performing what are
known as debug operations. The Tutor monitor program that is provided with the
MC68000 educational microcomputer is what permits us to assemble, execute, and
debug programs. We pointed out earlier that the m onitor is stored in PR O M on the
microcomputer board .

T u to r is the software interface through which the user can talk to the MC68000
educational microcomputer. It is a simple monitor program that provides a set o f
com m ands for use in the entry, execution, and debugging o f assembly language
programs. The monitor program itself consists o f a number o f subroutines that are
written to perform the various operations that are needed to support assembly language
program development. When the microcom puter is being used by a programmer,
the monitor program receives a com m and that is keyed in by the programmer at the
keyboard, analyzes it to determine what operation is to be performed, initiates a
subroutine to perform the opera tion specified by the com m and, and displays the
information produced during the execution o f the comm and on the screen o f the
terminal.

The general operation o f the monitor program is overviewed by the flowchart
in Fig. 5.3. Here we find that after power is turned on and the m icrocom puter’s reset
button is depressed, the monitor program begins to run. It first initializes the memory
and I /O resources o f the microcom puter system. For instance, all o f the storage
locations in data mem ory are initially cleared. After initialization is complete, the
com m and prom pt

T U T O R 1.3 >

is displayed on the screen. Here, 1.3 stands for the revision level o f the monitor
program software. The monitor is now waiting for a com m and to be entered from
the keyboard.

When a com m and is entered, the Tutor program first verifies that it is a valid
comm and. If the comm and is invalid, the error message “ SYNTAX E R R O R ” is
displayed and software control is returned so that the command prompt is redisplayed.
The monitor is again waiting for entry o f a com m and.

On the other hand, if the com m and is valid, Tutor next determines whether
it specifies a monitor operation or execution o f the user’s program. Let us assume
for the moment that the com m and that was entered asked for the data in a certain

Sec. 5 4 The M onitor Commands 127

Power up, reset

Figure 5-3 M onitor program command
entry/execution sequence.

part o f the m ic ro co m p u te r’s m em o ry to be displayed. This represents the “ execute
c o m m a n d ” path in the flowchart. In this case, contro l is passed to the subroutine
for this m on i to r function; the co m m an d is p erfo rm ed by the m icrocom puter; and
then control is re tu rned to the point in the m o n i to r that calls fo r entry o f ano th e r
co m m and . If the c o m m a n d asked for execution o f the user p ro g ram instead o f a
monitor operation, the other path in the flowchart is taken. This time, software control
is passed to the s tarting point o f the user’s p rog ram and its execution is begun.
Depending on how the program was specified to execute, contro l m ay or may not
be re turned to the monitor . However, contro l can always be re turned to the m oni to r
if necessary by depressing the A B O R T switch.

5.4 THE MONITOR COMMANDS

In Section 5.3, we introduced the T u to r m onitor , how it p rom pts for com m and entry,
and how it processes com m and s af ter they are entered. H ere we will discuss the

1 2 8 Using the M C 6 8 0 0 0 Educational M icrocom puter fo r Program Development Chap. 5

co m m an d s that are p rovided in the m o n i to r p rogram . Figure 5.4 is a list o f the
com mand set o f the T u to r m on i to r . This list includes the mnem onic and a functional
description for each o f the m o n i to r ’s thirty-three co m m an ds . These com m an ds give
the p ro g ram m er the ability to initiate opera t ions such as to exam ine o r m odify the
conten ts o f m em ory or the registers within the 68000, contro l the execution o f a

Command mnemonic Description

MD Memory Display
MM, M Memory Modify
MS Memory Set

AO to ,A7 Display/Set Address Register
DO to .D7 Display/Set Data Register

.PC Display/Set Program Counter
SR Display/Set Status Register
SS Display/Set Supervisor Stack Pointer
US Display/Set User Stack Pointer

DF Display Formatted Registers

OF Display Offsets
R0 to .R6 Display/Set Relative Offset Register

BF Block of Memory Fill
BM Block of Memory Move
BT Block of Memory Test
BS Block of Memory Search

DC Data Conversion

BR Breakpoint Set
NOBR Breakpoint Remove
GO, G Go
GT Go Until Breakpoint
GD Go Direct
TR, T Trace
TT Temporary Breakpoint Trace

PA Printer Attach
NOPA Reset Printer Attach

PF Port Format
TM Transparent Mode
* Send Message to Port 2

•HE Help

DU Dump Memory
LO Load
V E Verify

Figure 5-4 T u to r’s com m and set (M oto ro la , Inc.).

Sec. 5.4 The M onitor Commands 129

program, trace the state o f the microprocessor as a program is executed, and control
the operation o f I /O resources.

Also included as part o f Tutor is a line-by-line assembler/disassembler.
The assembler capability lets the programmer enter programs in assembly language
form and have them automatically translated into machine code and stored into
memory. The disassembler function allows the programmer to verify that a
program has been loaded into memory correctly by translating its machine code into
assembly-language-like instructions and displaying them on the screen o f the terminal.

Syntax of a Monitor Command

When comm ands are keyed in from the keyboard o f the terminal, they must always
be entered using a special form that is understood by the monitor program. This is
known as the co m m a n d ’s syntax, and if it is not correctly followed, the comm and
entry will result in the display o f a syntax error message. The general format for a
com m and entry is

[NO] < com m and > [< parameters >] [;< options >]

Notice that there are four fields within the format: the negative form (NO) field,
the command field, the parameters field, and the options field. W'hen entered, each
o f these fields must be separated by a space.

In the general format, any field that is enclosed within square brackets is
optional. Therefore, the minimum command entry response to the Tutor prompt is just

< comm and >

A field enclosed with an angle bracket is to be replaced by a syntactical variable.
For instance, the command field can be replaced with a mnemonic from the list in
Fig. 5.4. An example o f a com m and that only requires entry o f a comm and field
is the display form atted registers comm and. It is issued by entering

T U T O R 1.3 > DF (cr)

Execution o f this com m and causes the contents o f the 68000’s internal registers to
be displayed on the screen.

Most monitor commands also require one or more entries in the parameter field.
Examples o f information that is entered as parameters are: starting and ending
addresses, data, counts, and port numbers. For instance, entry o f the GO comm and

T U T O R 1.3 > GO 100 (cr)

means begin execution o f the program that starts at address 000100|6. Notice that
numeric information that is entered as parameters is assumed to have been expressed
in hexadecimal form. However, the interpretation o f a number by the monitor can
be converted to decimal form by preceding the number with the & symbol. For
instance, the GO com m and that we just introduced can be written using a decimal
starting address as

TU TO R 1.3 > GO &256 (cr)

1 3 0 Using the M C 6 8 0 0 0 Educational M icrocom puter fo r Program Development Chap. 5

The p aram eter also may be written as an expression. In the expression, numeric
in fo rm ation can be com bined with the + and - opera tors . For example, d a ta that
are to be loaded into a m em ory location could be specified with the expression

100 + &25

This expression is in terpre ted by the m on i to r as a pa ram ete r having the hexadecimal
value

11916

Param eters that represent address in fo rm at io n can be expressed using a variety o f
special address fo rm ats . The allowed address fo rm a ts are shown in Fig. 5.5. Here,
we find that the m oni to r p rogram references all address param eters that are specified
as a numeric value or expression to the contents o f what is called an offset register.
The m oni to r defines eight offset registers tha t are identif ied as R0 th rough R 7. They
are software registers that exist in the m icrocom puter’s memory, not hardware registers
such as those within the 68000.

W hen executing a co m m an d , the m oni to r p ro g ram combines the contents o f
the specified offset register with the value specified as the address param eter to generate
a physical address . For instance, in Fig. 5.5, we see tha t if an address p aram eter is
specified simply as

140

Format Example Description

expression 140 Absolute address (Note: offset zero is
added)

expression
+ offset

130+ R5 Absolute address plus offset five (not an
assembler-accepted syntax)

expression
+ offset

150+R 7 Absolute address (Note: offset seven is
always zero) (not an assembler-accepted
syntax)

(A@| (A 5) Address register indirect
(A<S),D@I (A6.D4) Address register indirect w ith index
(A@,A@)
expression 120IA3) Address register indirect w ith displacement

<A@>
expression

(A@,D@)
1 1 0(A2,D1) Address register indirect w ith index plus

displacement
expression

(A@,A@)
lexpression) 11001 Memory indirect (not an assembler-

accepted syntax)

Figure 5-5 P aram eter field address fo rm ats (M otoro la , Inc.).

Sec. 5 .4 The M onitor Commands 131

the address parameter is automatically referenced to register R0. Therefore, the value
used as the physical address is actually

140l6 + RO

An example o f a com m and like this is

T U T O R 1.3 > GO 140

and when executed it initiates program execution at the physical address obtained
by adding 14016 and the offset value held in register R0. If an offset register other
than R0 is to be referenced in the generation o f a physical address, its register name
is simply added to the expression that specifies the value o f the address in the
comm and. For example, the com m and

T U T O R 1.3 > G O 140+ R5

references R5 instead of R0 in the generation o f the address.
At power up and whenever the reset switch is depressed, all o f the offset registers

are initialized to zero. The values held in registers R0 through R6 can be modified
with the display/set relative offset register com m and. However, the value in R7 is
fixed at zero.

The last five address formats in Fig. 5.5 show how the 68000’s internal address
and data registers can be used to specify the physical address in a monitor command.
In general, address registers Aq through A6 can be used to hold either the indirect
address or an index that is to be added to the indirect address. However, data registers
D0 through D7 can be used only to hold an index. For instance, the comm and

T U T O R 1.3 > GO (A5)

specifies that the address at which program execution is to begin is that held in address
register A s. This is an example o f what is called address register indirect addressing.
Notice that indirect addressing is specified by enclosing the register name with
parentheses.

Another example is the comm and

T U T O R 1.3 > GO (A6,D4)

In this com m and, the indirect address is held in A6 and the value in D4 is used as
an index. The index is added to the value in A 6 to obtain the starting address for
the GO com m and.

The last address format in Fig. 5.5 shows how a storage location in memory
can be referenced for an indirect address. Notice that the expression that specifies
the memory address is simply enclosed with a set o f square brackets. For example,
the comm and

T U T O R 1.3 > GO [100]

indicates that execution is to resume at the address held in memory location 00010016.
For the purpose o f our discussion, we will divide the com m ands of T u to r ’s

comm and set into four groups. These groups are the register display/modify

13 2 Using the M C 6 8 0 0 0 Educational M icrocom puter fo r Program Development Chap. 5

co m m ands , the m em ory d isp lay /m o d ify /s ea rc h com m ands , the program execution
contro l com m ands , and the I / O co n tro l com m an ds . In the sections that follow, we
will study the co m m an d s in each o f these categories.

5.5 REGISTER DISPLAY/MODIFY COMMANDS

The first g roup o f T u to r com m a n d s tha t we will exam ine in detail are those in the
register d isp lay/m odify g roup . T h e com m an ds tha t are in this g rou p are shown in
Fig. 5.6. These com m an ds give the p ro g ram m er the ability to display and modify
the contents o f the internal registers o f the 68000 as well as the software offset registers
o f the T u to r m oni to r .

The ability to exam ine the conten ts o f the 68000’s internal registers is essential
fo r debugging the execution o f p rogram s. For instance, the conten ts o f a register
can be examined p rio r to and jus t a f te r the execution o f an ins truction . In this way,
we can verify that the instruction perform ed its intended function. Moreover, we need
to use the m odify capability o f these com m an ds to initialize the contents o f in ternal
registers before executing an ins truct ion or the complete p rogram .

O ne way o f displaying the contents o f the internal registers o f the 68000 is by
using the display form atted registers (DF) c o m m an d . In Fig. 5.6, we find that this
com m an d is issued to the m on i to r by responding to the co m m an d p ro m pt by first
entering D F and then depressing the carriage re tu rn (cr) key. T ha t is,

Command Meaning Format Explanation

DF Display formatted
registers

DF Displays the contents of
the 680 00 's internal
registers

AO to A7 Display/set .<Register> Display the contents of
,D0 to .D7 registers the specified registers
.PC
SR .<RegisterXData> Loads the specified
SS register w ith the
US specified data

OF Display offset
registers

OF Display the contents of
the offset registers

RO to R6 Display/set
offset register

.RX

RX<Data>

,RX<Data> + RX

Display the specified
offset register contents
Loads the specified

offset register with
the specified data

Loads the specified
offset register with
the specified data via
RX

Figure 5-6 Register d isp lay /m od ify com m ands.

Sec. 5 .5 Register D is p la y /M o d ify C om m ands 1 3 3

TUTO R 1.3 > DF (cr)

Execution o f the DF com m and causes the contents o f all o f the registers within
the 68000 to be displayed in the format shown in Fig. 5.7. Looking at this information,
we find that the current value in the program counter (PC) is 00009C 72,6; the current
value in D0 is 0000F F 0D j6; and the current value in A 0 is 00010040l6. Notice that
the last line displayed is the address, machine code, and assem bly language version
o f the instruction pointed to by the current value in PC.

TUTOR 1.3 > DF
PC=00009C72 SR=2700=.S7..... US=FFFFFFFF SS=C>0000756
DO=OOOOFFOD D 1=00000000 D2=l2100010 03=00000000
04=00000231 D5=00000FFF D6=00000004 D7=00000000
A 0 = 0 0 0 10040 A1=FFFFFFFF A2-00000414 «3=00000554
A4=00009FAC A5=00000540 A6=00000540 A / -00000756
-------------------------009C72 41F900010040 LEA.L *00010040,AO

TUTOR 1.3 >

F ig u re 5-7 Register da ta display form at fo r the DF com m and.

Example 5.1
In Fig. 5.7 what is the value displayed for the current value held in the user’s stack pointer
register?

S olu tion . Looking at the first line o f register information in Fig. 5.7, we find that the
value o f the user’s stack pointer is that preceded with the mnemonic US and that it’s
current value is

US = f f f f f f f f 16

The DF com m and does not let us examine the contents o f just a specific register
or m odify the value held in a register. To do these types o f operations, we must use
another com m and, the display /set registers com m and. This is the second com m and
in the chart o f Fig. 5.6. As shown in the format colum n o f this chart, the display/set
register com m and can be initiated by entering a followed by the name o f the
register whose contents are to be displayed and then depressing carriage return (cr).
This form o f the comm and is used to examine the contents o f a register. For instance,
to examine the contents o f data register D 5, the keyboard entry is

TUTO R 1.3 > .D5 (cr)

The monitor responds to this com m and by displaying the value held in D5 in the form

. D5 = OOOOOFFF

Exam ple 5.2

What is the effect o f issuing the command

TU TO R 1.3 > .SS (cr)

Solution. This command causes the monitor to display the value held in the user’s stack
pointer register in the form

.SS = 00000756

1 3 4 Using the M C 6 8 0 0 0 Educationa l M icrocom pute r fo r Program D evelopm ent Chap. 5

T o m o d ify th e value in a regis ter , such as D 5, the second c o m m a n d fo rm a t in
Fig. 5 .6 is used. H e re we see th a t th e c o m m a n d is in itia ted in the sam e w ay as w'e
ju s t did to exam ine the register c o n ten ts , but this t im e the new value o f d a ta is entered
prior to depressing (cr). For example, to load the value A A A 16 into D 5, the co m m an d
is

T U T O R 1.3 > .D5 A A A (cr)

W h en this c o m m a n d is execu ted by the m o n i to r , D , is load ed with the value
0 0 0 0 0 A A A i6. T h is can be verif ied by d isp lay ing the new value in D , as follows

T U T O R 1.3 > ,D5 (cr)

. D5 = 00000A A A

Example 5.3

Show the command sequence needed to initialize PC with the value 200016 and A3 with
the value 2500,6. Verify this initialization with a DF command.

Solution. The newr values are loaded into PC and A 3 with the commands

TUTOR 1.3 > .PC 2000 (cr)

TUTOR 1.3 > .A3 2500 (cr)

and initialization is verified with the command

TUTOR 1.3 > DF (cr)

The information displayed as a result o f executing these commands is shown in Fig. 5.8.

TUTOR 1.3 > .FC 2000

TUTOR 1.3 > .A3 2500

TUTOR 1.3 > DF
PC=000020C>0 SR=2700=.S7..... US=FFFFFFFF SS=00000756
D0=000GFFOD D 1=00000000 D2=12100010 D3=00000000
D4=00000231 D5=00000FFF D6=00000004 D7=00000000
A0=00010040 A1=FFFFFFFF A2=00000414 A3=00002500
A4=00009FAC A5=00000540 A6-00000540 A7=00000756
------------------------ 002000 FF5B DC.W fFF5B

TUTOR 1.3 >

Figure 5-8 Display sequence for example 5.3.

T he last tw o c o m m an d s in Fig. 5.6, display offset registers a n d display/set offset
registers, o p e ra te similar to th e c o m m a n d s we jus t in t ro d u c ed ; how ever, these
c o m m a n d s are used to exam ine o r m o d ify th e co n ten ts o f the m o n i to r ’s so f tw are
o ffse t registers ins tead o f the 6 8000’s in ternal registers. F o r in s tance , the values in
all o f the offse t registers are d isp layed by en te r ing the co m m a n d

T U T O R 1.3 > O F (cr)

T o exam ine th e value held in a specific o ffse t register, we use the d isp lay /se t
offse t register c o m m a n d . F or exam p le , the c o m m a n d

T U T O R 1.3 > ,R 0 (cr)

Sec. 5.6 Memory D isplayM odify/Search Commands 1 3 5

displays the contents o f offset register Rq. This same command can be used to modify
the value in offset registers R0 through R6. As an example, let us change the value
held in R0 to F00016. This is done by issuing the comm and

T U T O R l . 3 > .RO F000 (cr)

It is important to note that when modifying the contents of an offset register
o ther than R0 the value held in R0 is always added to the data entered as part o f the
com m and before it is loaded into the specified register. That is, the command

TUTO R 1.3 > ,R1 FF (cr)

is really equivalent to the comm and

T UTO R 1.3 > ,R1 F F + R O (cr)

Assuming that R0 already contains F000,6, the value loaded into R, when this
com m and is executed is

R i = F F 16 + Ro
= f f 16 + fooo)6 = F 0 F F 16

Remember that the value in R 7 is always 0000000016. Therefore, it can be used
as the reference register if we want to load an offset register with a value and not
have the current value in R0 added. For instance, issuing the comm and

T U T O R 1.3 > .R l F F + R 7 (cr)

causes jus t the value F F 16 to be loaded into R,.

5.6 MEMORY DISPLAY/MODIFY/SEARCH COMMANDS

In the last section, we learned how to use Tutor com m ands to examine or modify
the contents o f the internal registers o f the 68000 microprocessor. The second group
o f comm ands we will examine, the memory display /m odify/search commands, are
the ones that allow the programmer to display or change the contents o f storage
locations in memory or search through a block o f memory locations looking for
specific data. These capabilities are essential for both debugging o f programs and
for initializing memory before executing an instruction or program. The commands
in this group are summarized in Fig. 5.9. Let us next look at each o f these commands
in detail.

Examining Memory — MD

To examine the contents o f memory, Tutor provides the memory display (MD)
comm and. In Fig. 5.9, we see that the general format for this comm and is

MD [< p o r t number >] < address > [< count >] [;< options >]

The port number field determines the output device to which the memory data that
is to be examined is output. Remember that the MC68000 educational microcomputer

1 3 6 U s ing th e M C 6 8 0 0 0 E d u ca tio n a l M ic ro c o m p u te r fo r P rog ram D e v e lo p m e n t C hap . 5

Command Meaning Format Explanation

MD Memory display M D K p o r t num ber>]
<address> K count>)
[;<options>]

Displays the contents
of the specified
number (count) of
bytes of memory
starting from the
given address, by
outputting them to
the specified port as
hexadecimal data

MM Memory modify MM <address>
[;<options>l

The byte contents of
the specified address
are displayed or
modified

M

MS Memory set

M <address>
[;<options>]

MS <address> <data> Loads the list of
data starting at the
specified address

BF Block fill BF <starting address>
<ending address>
<data>

Fills the block of
memory locations
beginning at starting
address and
continuing through
ending address w ith
the word specified as
data

BM Block move BM <starting address>
<ending address>
<destination address>

Moves the contents of
the block of memory
locations beginning
at starting address
and continuing
through ending
address to another
block of memory
locations starting at
destination address

BS Block search BS <starting address>
<ending address>
'litera l string'

BS <starting address>
<ending address>
<data> |<mask>l
(;<options>]

Scans the block of
memory locations
from starting address
through ending
address for the literal
string or data

F ig u re 5 -9 Memory display/modify/search commands.

Sec. 5.6 Memory D isplay/Modify/Search Commands 1 3 7

has three ports that can be used as outputs: port 1, which is the port where the terminal
is connected; port 2, which is the host computer interface; and port 3, which is for
the printer. Any o f these three port numbers can be specified in the port number
field. If no port number is entered, the default port , which is port 1, is used by Tutor
and the information is displayed on the screen o f the terminal.

The next field is for the address o f the storage location at which we will begin
to examine memory. In the MC68000 educational microcomputer, data storage
memory is located in the address range from 000900!6 through 007FFF16. However,
the address entry made as part o f an MD com m and does not need to be restricted
to this range. Information from the program storage memory part o f the address
space also can be displayed. The count field tells the monitor how many of the bytes
o f data that follow the specified starting address are to be displayed. This field is
also optional, and if no entry is made a default value o f 16 is used. Finally, the option
field is related to use o f the disassembler, which we will discuss in a later section.

Notice that the only field other than the com m and field that is not optional
is the address field. Let us assume that the default port is to be used and that no
count or options are to be specified. Then the com m and format simplifies to

MD < address >

and if we want to display the contents o f the first 16 bytes o f data memory the
comm and is

T U T O R 1.3 > MD 900 (cr)

Execution o f this command causes Tutor to display the data shown in Fig. 5.10. Here
we see that the starting address 000900,6 is displayed at the left margin and the 16
bytes o f data in the range 00090016 through 00090F,6 are listed one after the other
to the right.

TUTOR 1 ., 3 > MD 900
000900

TUTOR 1 ,
EE

.3 >

7B F F F F FF F F F F F F F F FF F F F F F F F F F F F F

000910 F F F F F F F F F F F F F F F F F F FF F F FF F F F F F F F F
000920 F F F F F F FF FF FF F
000930 FF F F F F FF F F F F F F F F F F F F F F F F F F FF F F F F
000940 F F F F FF F
000950 F F F F F F F F F F F F F F F F F F FF F F F F F F F F F F FF
000960 FF F F
000970 F F FF F F F F F F F F F F FF F F F F FF FF FF FF F F F F
000980 00 00 00 00 00 00 00 0 0 00 0 0 00 00 00 00 00 0 0
000990 0 0 00 00 00 00 00 00 00 0 0 00 00 00 00 00 00 00
0009A0 00 00 0 0 00 00 00 00 00 00 00 00 00 00 00 00 00
0009B0 0 0 0 0 0 0 00 00 00 0 0 00 00 00 00 00 00 00 00 00
0009C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0009D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0009E 0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0009F 0 00 00 00 0 0 00 0 0 0 0 00 00 00 00 00 00 00 00 00
OOOAOO

TUTOR 1

F F

.3 >

FF FF

Figure 5-10 Examining the contents o f m emory with the M D com m and.

138 Using the M C 68 000 Educational M icrocomputer fo r Program Development Chap. 5

Once a mem ory display com m and operation has been initiated, the next 256
consecutive bytes in memory can be displayed by simply responding to the Tutor
p rompt by depressing the return key. For instance, if the next comm and is

T U T O R 1.3 > (cr)

the data for storage locations 000910!6 through 000A0F16 are displayed, as shown
in Fig. 5.10.

Another example is the com m and

TU T O R 1.3 > MD 1000 15 (cr)

Since the count is expressed in hexadecimal form, we would expect the comm and
to cause values in the 21 storage locations from address 100016 through 1015,6 to
be displayed. However, this is not exactly what happens. The way the MD comm and
works is that it always displays groups o f 16 storage locations. Therefore, for this
com m and, the contents o f the 32 storage locations from 1000)6 through 101 F l6 are
actually displayed.

Example 5.4
H ow m any bytes o f d a ta are d isp layed when th e com m and

T U T O R 1.3 > M D 1200 40 (cr)

is executed? W hat is the range o f the addresses th a t are exam ined w ith the com m and?
R ew rite the com m and w ith the coun t specified in decim al fo rm .

Solution. T h e count in the com m and is 4 0 16. In decim al fo rm , this is the num ber 64.
T herefo re , 64 bytes o f d a ta are d isp layed with the co m m and . The sta rtin g address o f
the range o f m em ory th a t is exam ined is 1200I6 an d the ending address is 12 3 F ,6.

To use the decim al value o f the cou n t in the co m m an d , we m ust precede it with
the & sym bol. T his gives

T U T O R 1.3 > M D 1200 &64 (cr)

Modifying Memory—M M , MS, BF, and BM

The MD com m and lets us examine da ta that are stored in memory, but it does not
let us change the value o f these data. For use in modifying the contents o f memory,
Tutor is provided with four comm ands: memory modify (MM), memory set (MS),
block fill (BF), and block move (BM). In general, these comm ands give the
programmer the ability to change individually the contents o f storage locations in
memory, initialize a block of storage locations with specific data, and copy the contents
from one block o f memory locations to another block of locations in memory.

The format o f the memory modify (MM) com m and is shown in Fig. 5.9. Here
we see that it is initiated by entering MM followed by the address o f the memory
location whose value is to be changed. If no option is included as part o f the command,
its execution causes the byte o f da ta stored at < address > to be displayed on the
screen. For instance, the com m and

T U T O R 1.3 > MM 900 (cr)

Sec. 5.6 Memory Display/Modify/Search Commands 139

causes the following information to be displayed

000900 00 ? __

We have assumed that the original data held at address 900!6 is 0016. Notice that
the cursor is displayed following the question mark . This is because the comm and
is not yet complete and the monitor is waiting for another entry. If the da ta that
is displayed is already the value that is needed at address 90016, the response is simply
to depress the return key. This entry causes the contents o f the next consecutive byte
o f da ta to be displayed in the form

000901 00 ?__

Let us assume that the value at address 901,6 is to be F F 16. To make this change,
we simply enter the new value and then depress return. Therefore, the displayed
information on the screen now looks like

000901 00 ?FF

000902 00 ?__

Assume that these two memory locations are the only ones that need to have their
contents initialized. Since this has already been done, the MM com m and can now
be terminated. To do this, type in the period (.) symbol and then depress the return
key. This entry results in display o f the lines o f information that follow

000902 00 ? . (cr)

T U T O R 1.3 > ___

The monitor is now waiting for a new com m and to be entered. The series o f
information displayed for this comm and is shown in Fig. 5.11.

TUTOR 1.
000900
000901
000902

3 > MM 900
00 ?
00 ? F F
00 ?.

TUTOR 1.3

Figure 5.11 Examining and modifying
the contents o f memory with the MM
command.

By including an option as part o f the command, we can control the way in which
data are displayed and modified. In the example we just used to illustrate the operation
o f the MM com m and, memory was displayed and modified one byte at a time. This
is the default mode o f operation. However, by adding the option ;W after the address,
we can display and modify memory data as words. For instance, our earlier example
also could have been performed as

TU T O R 1.3 > MM 900;W (cr)

000900 0000 ?00FF (cr)

000902 0000 ? . (cr)

TU TO R 1.3 > _

1 4 0 Using the M C 68 000 Educational M icrocomputer fo r Program Development Chap. 5

Notice that inclusion o f the ;W option caused the word contents o f address 90016
to be displayed as 000016 and then we changed the complete word by entering 00FF16.

Another option allows us to display memory contents as long words. This is
the ;L option, and an example using it is the com m and

T U T O R 1.3 > MM 1004;L (cr)

Execution o f this com m and displays the da ta held at memory addresses 100416
through 1007,6 as a long word.

001004 00000000 ?__

With what we have learned up to this point, there are just three responses we
can issue after the ? symbol. They are: depress (cr) to display the contents o f the
next long word address; key in a new value o f da ta for the current long word address
and depress (cr); o r terminate the comm and by entering the . symbol followed by
(cr). However, the MM com m and does allow other entries. Let us now look at them
briefly. One choice is to enter the sy m b o l 'a n d then depress (cr). For instance, the
com m and entry can be

001004 00000000 ? ‘ (cr)

This causes the address to be decremented instead o f incremented to display the
contents o f the new address. Therefore, the d a ta at long word address 00100016 is
displayed

001000 00FF0000 ?__

The last way o f completing an MM entry is to enter a new value followed by
the = symbol and a (cr). This entry updates the value at the current address and
then redisplays it to verify that the change has taken place. For instance, if we load
long word address 00100016 with the value F F F F F F F F |6 the displayed response is

001000 00000000 ? F FF F F FF F = (cr)

001000 F F F F F F F F ?___

There are two other options that can be used in the MM com m and. They are
; 0 , which stands for display odd bytes only, and ;V, which stands for display even
bytes only. These commands are useful in conjunction with examining and modifying
the contents o f internal registers o f LSI I /O devices. This is because their registers
typically reside at consecutive odd or even addresses.

Exam ple 5.5

Explain w hat is being done w ith the com m and sequence tha t follow s

T U T O R 1.3 > M M 1200;L (cr)

001200 00000000 7F F F F F F F F (cr)

001204 00000000 ? FFFFFFFF (cr)

TUTOR 1.3 > __

Sec. 5.6 Memory D isplay/Modify/Search Commands 141

Solution. This series o f long w ord m em ory m odify com m ands initialize the eight bytes
o f m em ory from address 1200,6 th ro u g h 1207|6 with the value F F 16.

Another com m and that can be used to initialize memory is memory set (MS).
Looking at the general format o f the memory set com m and in Fig. 5.9, we see that
it differs from the memory modify command in that the data to be entered is included
in the comm and right after the address. This da ta can be a string o f up to eight
hexadecimal numbers or ASCII characters. In fact, multiple strings o f data with up
to eight numbers o r characters can be entered in the data field. When doing this,
the strings must be separated by a space.

An example o f an MS com m and that is used to load hexadecimal numbers is

TUTO R 1.3 > MS 2000 A BCD (cr)

Execution o f this com m and causes A B ,6 and C D !6 to be loaded into memory at
addresses 200016 and 200116, respectively. A nother example is

TUTO R 1.3 > MS 2000 ‘A B C D ’ (cr)

Here the single quote marks around the da ta field indicate that the data are ASCII
data and not numeric data. Therefore, execution o f this com m and loads the four
bytes o f memory starting at address 200016 with the codes for characters A, B, C,
and D. That is, the values 41, 42, 43, and 44 are stored starting at address 2000]6.

Example 5.6
W rite an M S com m and that perfo rm s the sam e function as the M M com m ands given
in E xam ple 5.5.

Solution. T he M M com m an d s in E xam ple 5.5 load the eight bytes o f m em ory sta rting
at address 120016 each w ith the value F F 16. This o p era tio n can be don e with the single
MS com m and

T U T O R 1.3 > M S 1200 F F F F F F F F F F F FF F F F (cr)

In Examples 5.5 and 5.6, we showed how a block o f consecutive memory
locations can be filled with the same value. This type o f operation is better performed
with the block f ill (BF) command. As shown in Fig. 5.9, the first field o f the command
is the starting address o f the block o f memory locations. It is followed by the ending
address o f the block and the word o f da ta that is to be stored into these locations.
Notice that the da ta is always entered as a word; therefore, both the starting and
ending addresses must be word addresses. That is, they both must be even. To perform
the same operation as done in our earlier examples, the BF com m and is written as

T U T O R 1.3 > BF 2000 2006 FFFF (cr)

and its execution loads word addresses 2000|6 through 200616 with the value F F F F !6.
The block fill com m and is the most efficient comm and to use when initializing

large blocks o f memory. For instance, the com m and

TUTO R 1.3 > BF 900 9FE 0000 (cr)

could be used to clear the first 256 words o f da ta memory.

142 Using the M C 68 000 Educational M icrocomputer for Program Development Chap. 5

The last com m and that can be used to modify the contents o f memory is the
block move (BM) comm and. It can be used to copy a block o f data that already exists
in one location in memory, called the source block, to another location, called the
destination block. Looking at Fig. 5.9, we see that the com m and requires three
addresses. The first two addresses identify the starting and ending points o f the source
block, while the third address identifies the starting location o f the destination block.
For instance, the comm and

T U T O R 1.3 > BM 1000 10FE 1200 (cr)

copies the contents o f the 128 word addresses in the range 1000l6 through 10FE16
to the block o f storage locations from 120016 th rough 12FE16. During the execution
o f the com m and, the data in the source block is not affected in any way.

Block Search Command—BS

The last o f the com m ands given in Fig. 5.9 is the block search (BS) com m and. This
comm and can be used to scan through a specified block of memory locations looking
for the occurrence o f a special da ta pattern or string of characters. The general format
o f the com m and is given in Fig. 5.9. Here we see that the first two fields are the
starting and ending addresses o f the block o f storage locations. The third field is
for entry o f the data pattern or character string. For example, to search for the ASCII
character string A BCD in the memory range from 100016 to 150016, the comm and is

T U T O R 1.3 > BS 1000 1500 ‘A B C D ’ (cr)

Every time a match to the character string is found , the starting address o f the string
and the character string are displayed. For instance, if the pattern ABCD was found
starting at address 103416, the information displayed is

001034 ‘A B C D ’

Looking at Fig. 5.9, we find that the block search comm and for a numeric data
pattern also can include an optional mask and option. For now, let us assume that
there is no mask and look at what options are available. The three allowed options
are ;B, ;W, and ;L, and they stand for byte, word, and long word, respectively. If
no option is entered, the default option, which is byte, is used. An example that uses
the default option is the com m and

TU T O R 1.3 > BS 1000 1500 AB (cr)

When this com m and is executed, a search is made o f all byte-wide storage locations
in the block o f memory looking for the data pattern A B 16, and the address and data
pattern are displayed for each match condition that is found. If this comm and is
modified with the ;W option, we get

T U T O R 1.3 > BS 1000 1500 ABAB ;W (cr)

The search performed by this com m and differs from that performed for the previous
com m and in that a match condition requires a word-wide occurrence o f the pattern.
That is, the search is for the pattern A B A B 16.

Sec. 5.7 Commands for Control of I/O Resources 1 4 3

The mask field makes the block search command more versatile. The
specification o f a mask allows us to ignore some o f the bits o f the data pattern. In
this case, the mask and data pattern are ANDed together and the bits that are masked
o f f are not used in the comparison with the data being searched. Therefore, all bits
that are logic 0 in the mask are set to 0 in the da ta pattern and are ignored. For
instance, in the com m and

T U T O R 1.3 > BS 1000 1500 AB F0 (cr)

ANDing the data pattern A B,6 with the mask F016 masks off the four LSBs and they
are d o n ’t-care bits. For this reason, during the search the match condition is based
on the data pattern o f A X j6. Here the X stands for a d o n ’t-care byte; therefore, all
bytes that have A l6 in their most significant byte location represent a match condition.
The original contents o f the storage location are displayed along with the address.

5.7 COMMANDS FOR CONTROL OF I/O RESOURCES

The MC68000 educational microcomputer has four I /O ports that are provided for
reception of data from or transmission o f data to peripheral devices such as a terminal
and printer. These ports are shown in Fig. 5.2. Here we find that the terminal, which
provides the keyboard input and display output o f the microcomputer, connects to
port 1; port 2 is for a modem through which the microcomputer can be connected
to a host computer; port 3 is the port that is used to attach a printer to the
microcomputer; and port 4 is provided for connection of a cassette p layer/recorder.
T u to r ’s com m and set includes four comm ands that are for control o f these I /O
resources. These comm ands are listed in Fig. 5.12.

Let us start by looking at the function o f the commands that control the printer’s
interface (port 3). The first two comm ands in Fig. 5.12, printer attach (PA) and no
printer attach (N O PA), allow the program m er to select or deselect the printer. The
PA comm and is issued as

TU T O R 1.3 > PA (cr)

and when executed it directs information that is normally output on the display at
port 1 to the printer at port 3 as well. That is, now the information is both displayed
and printed. If we no longer want the information to be printed, the N OPA command
must be issued as

T U T O R 1.3 > N O P A (cr)

After executing this com m and, data are no longer directed to the printer. They are
again only displayed at the terminal.

The two serial communication ports o f the microcomputer can be configured
with a variety o f operating characteristics. The operation o f each port is defined by
four port parameters. They are its format, character nulls, carriage return nulls, and
options. The port form at (PF) com m and can be used either to display the current
port parameters o f both port 1 and port 2 or to change the parameters to give a port
new operating characteristics.

1 4 4 Using the M C 6 8 0 0 0 Educationa l M ic rocom pute r fo r Program D evelopm ent Chap. 5

Command Meaning Format Explanation

PA Printer attach PA Attaches the printer so that
information sent to the
terminal is also printed

NOPA No printer attach NOPA Disconnects the printer
from the microcomputer
so that information
output to the terminal is
not printed

PF Port form at PF « p o r t number>] Displays or modifies the
characteristics of the
serial ports: format,
character nulls, CR
nulls, and options

TM Transparent mode TM K e x it character»
K tra iling character»

Enters the transparent
mode and specifies the
exit and trailing
characters

DU4 Dump onto
cassette tape

DU4 <starting address>
<ending address>

Dumps the contents of
the specified address
range to port 4 where it
is saved on cassette
tape

VE4 Verify cassette
tape

VE4 Verifies that the data
saved on tape matches
the contents of memory

L04 Load from
cassette tape

L04 Loads memory w ith the
data held on a cassette
tape

F igure 5-12 Com m ands for control o f the I /O resources.

T he fo rm a t p a ra m e te r specifies the n u m b e r o f s to p bits used du r ing the
transm iss ion a n d recep tion o f c h a ra c te r d a ta . E i the r o ne o r tw o s top bits can be
ass igned . O n e s to p bit is selected by m ak in g the fo rm a t p a ra m e te r equal to 15 a n d
tw o s top bits a re selected by m a k in g it 11.

Nulls a re needed w hen co m m u n ic a t in g w ith slow -reacting devices such as a
p r in te r . F o r in s tance , w hen a ca r r iage re tu rn is sent to the p r in te r , a shor t interval
o f t im e is requ ired to m ove the p r in th e a d back to the beginning o f the next line. In
such a case, nulls m ay be sent ou t to the printer b efo re any m ore charac ter in form ation
is o u tp u t . T hese are w hat are called carriage return nulls. M o reo v er , i f the b a u d rate
is very h igh, nulls m ay need to b e sent o u t a f te r each cha rac te r as well. These nulls
a re called c h a ra c te r nulls. T he n u m b e r o f carr iag e re tu rn a n d cha ra c te r nulls th a t
a re o u tp u t can b o th be set w ith the P F c o m m a n d .

T he last charac te r is t ic o f th e tw o serial p o r ts tha t can be c h an g ed with the P F
c o m m a n d is the ir o p t io n s . T h e o p t io n s specify a R A M address w here 6 bytes o f

Sec. 5.7 Commands for Control o f I/O Resources 145

information are stored. This information is used during what is called transparent
mode o f operation. When in this mode, the terminal port gets directly connected to
the host computer port.

The syntax o f the port format comm and is shown in Fig. 5.12. An example
where PF is used to display the characteristics o f both ports is

T U T O R 1.3 > P F (cr)

F O R M A T =15 15

C H A R N ULL = 00 00

C /R N U L L = 00 00

O PTIO N S = @ X XX X X

Here we see that both ports are set for one stop bit, no character nulls, and no carriage
re turn nulls.

To change the characteristics o f a port—for instance, port 2— we begin by issuing
the command

T U T O R 1.3 > PF2 (cr)

T u to r responds by displaying the current format setting and prom pts with a ? for
entry o f a new value. That is,

F O R M A T = 15?

At this point, (cr) can be depressed if the value o f format is not to be changed.
However, let us assume that it is to be changed for two stop bits. Then the entry is

F O R M A T = 15? 11 (cr)

After this entry is made, the character null parameter is displayed as

C H A R NULL = 00?

Assuming that this parameter is not to be changed, the entry is simply

C H A R NULL = 00? (cr)

and then the carriage return null parameter is displayed

C /R N ULL = 00?

We will change this parameter to 4; therefore, the entry is

C /R N U L L = 00? 4 (cr)

The next com m and in Fig. 5.12 is the transparent mode (TM) command
Transparent mode operation can be initiated by issuing the comm and

T U T O R 1.3 > TM (cr)

Execution o f this command connects the terminal port and the modem port together.
In this way, the terminal port is connected directly to a host computer; therefore,
commands can now be issued to T u to r from the host computer. When transparent
mode is initiated in this way, default values, which are CTRL A and C RTL X, are
used for what are called the exit character and trailing character parameters.

146 Using the M C 68 000 Educational M icrocomputer for Program Development Chap. 5

When operating in the transparent mode, the microcomputer accepts inputs from
the host computer just as though it was the terminal. However, it also watches the
input from the host com puter for the occurrence o f an exit character (CTRL A).
If the exit character is received, transparent mode is exited and Tutor once again
accepts inputs from the terminal at port 1.

5.8 ASSEMBLING INSTRUCTIONS AND PROGRAMS

The assembly language instructions o f a source program are not in a form that can
be executed by a 68000-based microcomputer. They first must be converted to their
equivalent machine language instructions. We pointed out earlier that the program
used to convert assembly language instructions to machine language is called an
assembler. Let us now look at how the Tutor monitor can be used to assemble and
disassemble instructions o f a program.

The Line-by-Line Assembler

The assembler provided in the Tutor monitor o f the MC68000 educational
microcomputer is what is called a line-by-line assembler. It is an assembler that
translates each line o f source code into its equivalent machine code as it is entered
from the keyboard o f the terminal and then stores the machine code in memory.

Use of a line-by-line assembler imposes a few restrictions on the writing of source
programs. For instance, it does not allow the program m er to use labels or symbols;
instead, the specific memory address or numeric data must be entered into the
instruction.

Assembly Language Statement Syntax

When entering assembly language statements into the microcomputer with the
line-by-line assembler, certain syntax must be used. Syntax is the rules that govern
how assembly language source statements are to be written. Source programs written
for the MC68000 educational microcomputer can consist o f two types o f statements.
The first type, called an instruction statement, specifies an instruction o f the program.
The other type, which is called a directive, defines a constant that is to be used by
the program. We will begin by looking at the syntax o f instruction statements.

The notations and syntax that we used for writing instructions in Chapters 3
and 4 are those required by the line-by-line assembler o f the MC68000 educational
microcomputer. Therefore, we will briefly review this format here. All instruction
statements in a source program must have the following format

__ < operation field > __[< operand field >]

Here, the first __ means that a space must be entered at the beginning o f every
source statement and the second __ means that a space must be used to separate
the operation field from the operand field. Moreover, notice that the operand field

Sec. 5.8 Assembling Instructions and Programs 147

is enclosed in square brackets ([]). This means that the field is optional in some
instructions.

The operation field part o f the instruction statement format specifies the
operation that is to be performed. That is, the mnemonic for the instruction. For
instance, when writing an addition instruction for long-word da ta , this field is filled
with A DD .L. The operand field specifies the operand or operands that are to be
processed during the execution o f the instruction. For example, the source operand
could reside in da ta register D, and the destination operand could reside in data
register D2. Therefore, the add instruction statement would be written as

A D D .L D1,D2

Now that we have reviewed instruction statement format, let us continue with
the directive. Only one directive is accepted by the line-by-line assembler. It is called
define constant (D C .W) and is used to define a constant in a word storage location
in memory. The define constant directive uses the same format as we just showed
for the instruction statement. An example is

D C.W SA000

Entry of this directive assigns the value A 000 |6 to the current memory location.
Tutor allows the programmer to specify the operands in instructions or directives

with decimal numbers (no prefix), hexadecimal numbers (S sign prefix), or ASCII
strings (enclosed in apostrophes). For instance, if the earlier directive was written as

D C .W 7000

the binary equivalent o f decimal num ber 7000 is loaded into the storage location.
Moreover, if the directive is written as

D C.W ‘A A ’

the ASCII form o f character A is loaded into both the most significant byte and least
significant byte o f the current memory location.

Assembly and Disassembly of Instructions

The line-by-line assembler function is one o f the optional modes o f operation for
the memory modify (MM) com m and. Actually the operation provided by this
command is a combined disassembler/assembler function. It is invoked by specifying
disassemble instruction (DI) as the option. Therefore, the general syntax for the
com m and is

T U T O R 1.3 > MM < a d d re s s> ;D I

The value o f address specified in the comm and is the starting address o f the machine
code instruction when it is assembled into memory.

For instance, to assemble the instruction

M OVE.B D5,D0

1 4 8 Using the M C 68 000 Educational M icrocomputer for Program Development Chap. 5

into memory starting at address 00200016, we bring up the assembler with the
comm and

T U T O R 1.3 > MM 2000;DI (cr)

T u to r responds to this com m and by displaying

002000 2248 M O VE.L A0,A1 ?

This demonstrates the disassembler mode o f operation. Notice that the current
contents held at address 00200016 are displayed as 224816 and that this is the machine
code for the instruction

M O V E .L A0.A1

T o replace this instruction with the new instruction, we must assemble the instruction
into memory. This is done by simply typing it following the ? prompt and then
depressing the carriage return key. That is,

002000 2248 M O V E .L A0.A1 ? MOVE.B D5,D0 (cr)

Remember that for correct syntax a space must be entered before MOVE.B and
another before D5. T u to r responds to this entry by displaying the information that
follows:

002000 1005 M OVE.B D5,D0

002002 4EF81012 JM P .S $00001012 ?

Here we find that the first line o f displayed information consists o f the starting address
o f the instruction, which is 00200016, followed by the machine code form o f the
instruction, 100516, and the assembly language instruction statement

MOVE.B D5,D0

This completes the assembly operation . However, notice that the next sequential
instruction has been disassembled and displayed as a second line o f information. It
is again followed by the ? prom pt. We can now either enter ano ther instruction or
terminate instruction disassembly/assembly by entering period (.) followed by carriage
return (cr). Let us assume that instruction assembly is to be terminated, then the entry
is

002002 4EF81012 JM P .S $00001012 ? . (cr)

and Tutor responds by prom pting for a new comm and

T U T O R 1.3 >

The assembly o f this instruction is shown in Fig. 5.13.

TUTOR 1.3 > MM 20Ù0 ; D I
002000 1005 MOVE.B D5 ,D 0
002002 4E F 81012 JM P .S *00001012 ? .

TUTOR 1 . 3 >

Figure 5-13 Assembly o f an instruction.

Sec. 5.8 Assembling Instructions and Programs 149

When a source statement is entered, the line-by-line assembler first checks it
for correct syntax. If invalid syntax is encountered, the assembler responds by
displaying an error message and then prompts for reentry of the statement. The error
conditions may be due to an attempt to access a location at which no memory exists,
use o f improper characters or symbols, use o f too large a number, use of an invalid
opcode, or even a missing space where one is required. In most cases, the error
condition can be rectified simply by reentering the instruction. The error messages
and the conditions which generate them are discussed in the MC68000 educational
m icrocom puter’s user’s manual.

Let us assume that we want to assemble the instruction

OR.B D5,(A6)

at address 006000|6. Using the memory modify comm and, we enter

T U T O R 1.3 > MM 6000;DI (cr)

06000 FFFF D C.W SFFFF ?O R.B D5, (A6) (cr)

Notice that we forgot to leave a space after the prom pt before beginning to type in
the instruction’s mnemonic. This is a syntax error. Therefore, T u to r responds with

X?

which means that a syntax error has been identified. To correct the syntax error,
we just reenter the complete instruction after the ? this time preceding OR with a
space. That is,

X? OR.B D5, (A6) (cr)

After this entry is made, Tutor responds with

006000 8B16 O R .B D5, (A6)

006002 00000000 OR.B W, DO ?

Here 006000,6 is the address at which the instruction is entered into memory and
8B16)6 is the machine code for the OR instruction. This operation o f the assembler
is shown in Fig. 5.14.

T U T O R 1.3 > MM 6000;D1
006000 1005 M OVE.B D5,D0 ?OR.B D5,(A6)

(a)

006000 X? OR.B D5,(A6)
(b)

006000 8B16 O R.B D5,(A6)
006002 00000000 O R.B W,D0?

(c)

Figure 5-14 (a) Syntax erro r in the entry o f an instruction; (b) T u to r's response
to a syntax error; (c) corrected instruction entry.

150 Using the M C 68 000 Educational M icrocomputer for Program Development Chap. 5

The disassembly capability o f the MM com m and also can be used to view
instructions stored in memory without modifying them. To do this, we initiate the
disassemble/assembly mode o f operation and then respond to the prompt for a new
instruction by simply depressing (cr). In this way, the machine code and assembly
language statement is displayed for one instruction after the other. Figure 5.15 shows
the disassembly o f three instructions.

TUTOR 1.3 > MM 6000 ; D I
006000 B B 16 O R .Ei D 5 , (A6) ?
006002 00000000 O R .B #0 , DO ?
006006 00000000 O R .B #0 , DO ? .

Figure 5-15 Disassembly o f an
TUTOR 1.3 > instruction.

Assembly/Disassembly of a Complete Program

Now that we have shown how to assemble an instruction into the memory o f the
MC68000 educational microcomputer and also disassemble it to verify its loading,
let us look at how a complete program is loaded with the line-by-line assembler. The
assemble option of the MM comm and allows for easy entry o f a series o f instructions.
The starting address o f the program is first set up as part o f calling up the
line-by-line assembler. Then one instruction after the other is typed in and after each
instruction the carriage return key is depressed. When the last instruction o f the
program has been entered, the assembly process is terminated by entering . and then
(cr).

Here we will show how to enter the program in Fig. 5.16 into the memory o f
the microcomputer. Let us begin by briefly describing the operation o f this p rogram.
The program in Fig. 5.16 implements what is known as a block-move data transfer
operation. Its function is to move a block o f da ta called the source block from one
location in memory to another location called the destination block. The source block
o f data starts at memory address 00100016 and is 16 words in length. It is to be moved
to a destination block, which starts at address 00200016. That is, execution o f the
program causes the contents o f each address in the source block to be copied into
the corresponding address in the destination block. For instance, if before the program
was executed all storage locations in the source block contained F F F F 16 and all
storage locations in the destination block contained 000016, at completion of executing
the program all storage locations in both blocks would contain F F F F 16.

Let us assume that the program in Fig. 5.16 is to be entered into memory starting
at address 00300016. To do this, a memory modify (MM) com m and with the Dl
option specified is first used to bring up the assembler. This is done by issuing the
comm and

T U T O R 1.3 > MM 3000;DI

T uto r responds with

003000 1005 M O VE.B D 5,D0 ?

Sec. 5 .8 Assem bling Instructions and Programs 151

L E A $1000,A1 S O U R C E B L O C K S T A R T S A T $1000
L E A $2000,A2 D E S T IN A T IO N BLO CK S T A R T S A T $2000
M O V E .L 0 1 6 ,DO B LO C K L E N G T H E Q U A L S 16 W O R D S

N X T P T M O V E .W (A 1) + ,(A 2) + M O V E W O R D A N D P O IN T T O N E X T W O R D
S U B Q .L 01, DO U P D A T E C O U N T
BNE N X T P T R E P E A T F O R N E X T W O R D

H E R E BRA H E R E

Figure 5-16 Block transfer program.

Here we have assumed that the m em ory location 003000 j6 originally contains 1005)6>
which when disassembled is the instruction

M O V E .B D 5 ,D 0

The ? displayed at the end o f the disassembled ins truction is a p ro m p t for us to enter
the new ins truction . Now we en ter the first ins truct ion o f the p ro g ram preceded by
a space. The display appears

003000 1005 M O V E .B D5,D0 ? L E A $1000,A1 (cr)

Execution o f this co m m an d replaces the current con ten ts o f address 00300016 and
p ro m p ts for entry o f the next ins truction. The response displayed on the screen o f
the terminal is

003000 43F 8 1000 L E A $1000,A1

003004 D C .W $ F F F F ?

The next ins truction is now entered followed by (cr):

003004 D C .W $ F F F F ? L EA $2000,A2 (cr)

In the same way, the rest o f the instructions o f the program are entered as follows:

003008 D C .W $ F F F F ? M O V E .L 016,DO (cr)

003014 D C .W $ F F F F ? BRA * . (cr)

Notice that the last instruction is followed by a period and a carr iage return . This
entry is required to exit the line-by-line assembler. The results produced by assembling
this program a re shown in Fig. 5.17.

Since the p rogram is entered using a line-by-line assembler, symbols and labels
canno t be used. F o r instance, the label N X T P T in the BNE ins truction is replaced
by the starting address o f the ins truction M O V E .W (A l) + , (A 2)+ , which is 30016.
W hen a forward label reference is encounte red , the corresponding addresses may not
be available as yet. In this case, the label can be entered as a **’ as a first step. W hen
the rest o f the program has been entered, the addresses will be known and the
instructions that contain asterisks can be reentered with the correct values o f addresses.

15 2 Using the M C 6 8 0 0 0 Educational M icrocom puter fo r Program Development Chap. 5

TUTOR 1.3 > MM 3000;D1
003000 43FB1000 LEA *1000,A1
003004 45F82000 LEA *2000,A2
003008 203C00000010 MOVE.L # 16, DO
00300E 34D9 MOVE.W <A1)+ ,<A2> +
003010 5380 SUBQ.L #1 ,D0
003012 66FA BNE *300E
003014 60FE BRA *
003016 FFFF DC. W *FFFF ?.

TUTOR 1..3 >

Figure 5-17 A ssem bling the block transfer p rogram in to m em ory.

We can disassemble a series o f instructions tha t are stored at sequential m em ory
addresses by initiating the disassemble process by using the m em ory display (M D)
co m m and . A ssum ing tha t the in fo rm at io n is to be displayed on the terminal, the
general fo rm at o f the disassemble co m m an d is

M D < ad d re ss> [< coun t>] ;D I

In this co m m an d sta tem ent, < a d d re s s> is the s tarting address o f the first instruction
in the group o f instructions tha t a re to be disassembled; the op tiona l count specifies
the num ber o f consecutive bytes that are to be disassembled; and DI selects disassemble
m o de o f opera t ion . F o r instance, to disassemble the instructions o f the program we
just loaded into the mem ory range from address 00300016 to 00301416, the com m and
is issued as

T U T O R 1.3 > M D 3000 16;DI

The in fo rm at ion th a t is displayed for this co m m a n d is show n in Fig. 5.18.

TUTOR 1.3 > MD 3000 16 ; D I
003000 43F 81000 L E A . L * 0 0 0 0 1 0 0 0 , A 1
003004 45F 82000 L E A . L * 0 0 0 0 2 0 0 0 ,A2
003008 203COOOOOO10 M O V E .L # 16 , DO
00300E 34D9 MOVE.W <A1> + , (A 2) +
003010 5380 S U B Q .L # 1 , DO
003012 66FA B N E. S * 00300E
003014 60F E B R A . S *003014

TUTOR 1 .3 >

Figure 5-18 D isassem bly o f the b lock-m ove d a ta transfer program .

Saving and Loading Programs with the Cassette
Recorder/Player

The block-move program that we just entered into memory would be lost if we turned
o f f the m ic ro com p u te r’s power. T he cassette reco rde r /p laye r in terface is provided
as part o f the M C68000 educat ional m icrocom puter so that a perm anen t record can
be made o f a p rogram by recording it on a magnetic tape. In this way, the programmer
can simply reload the p rogram f ro m tape the next time it is to be run , instead o f
having to reenter it f rom the keyboard .

Sec. 5.8 Assembling Instructions and Programs 153

Three com m ands are provided for saving, verifying, and loading machine code
programs with the cassette recorder/player. These commands are dump memory (DU),
verify (VE), and load (LO). Let us now look at how these comm ands can be used
to save the block-move program on cassette and then reload it into the
m icrocom puter’s memory.

Earlier, we found that the block-move program was assembled into word
addresses in the range 003000|6 through 0030 l4]6. To save this program, we type
in the comm and

T U T O R 1.3 > DU 3000 3014

but do not yet depress the carriage return key. Notice that the com m and mnemonic
is followed by the starting address and ending address o f the program. Next the cassette
recorder/p layer must be set up for recording and then started. After the m otor o f
the tape player is up to speed, the carriage return key is depressed. T u to r now reads
the program out o f memory, formats it for recording, and ou tputs it to the tape.
When the dum p memory comm and is complete, T u to r signals that fact by prompting
for another com m and.

It is a good practice to verify that the program has been correctly recorded on
tape. This is one o f the intended uses o f the verify comm and. Before issuing a verify
com m and, the tape should be rewound to a point somewhat before the place where
the program was recorded. Then the verify com m and is typed in as

T U T O R 1.3 > VE4

Again, the carriage return key is not yet depressed; instead, the tape is rewound and
then the cassette recorder/player is set up to play instead o f record and started. When
the motor is up to speed, the carriage return key is depressed. Now the microcomputer
reads the machine code o f the program from tape and compares it to what is held
in memory. If no differences are found, the Tutor prom pt is simply displayed when
the verify operation is complete. However, if any differences are identified, the errors
are displayed below the verify command statement. Assuming that the verify operation
is performed without detecting any error, a permanent record o f the block-move
program now exists on tape.

Now that we know how to save machine code programs on cassette tape, let
us look into how they can be reloaded from tape into the microcomputer. First, the
tape with the program is inserted into the cassette recorder/player and the tape is
rewound to a point just prior to the spot where the program was recorded. Next,
the load comm and is typed in as

T U T O R 1.3 > L 0 4

Now the tape player is set to play mode, and as the motor comes up to full speed
the carriage return key is depressed. The microcomputer proceeds to read the program
from tape and load it into the appropria te location in memory. The loading o f the
program can be verified by rewinding the tape and issuing the command

TU T O R 1.3 > VE4 (cr)

1 5 4 Using the M C 6 8 0 0 0 Educationa l M icrocom pute r fo r Program D evelopm ent Chap. 5

A ssum ing th a t it verifies co rrec tly , we now can d isassem ble th e p ro g ra m with the
c o m m a n d

T U T O R l .3 > M D 3000 16;D1 (cr)

T h is c o m m a n d causes the a ssem bly language so u rce s ta tem en ts to be d isplayed on
the screen o f the te rm in a l .

5.9 PROGRAM EXECUTION CONTROL C O M M A N D S

O n ce a p ro g ra m has been load ed in to the m e m o ry o f the M C 68000 edu ca t io na l
m ic ro c o m p u te r , it is ready to be executed . By executing th e p ro g ra m an d then
exam in in g th e resu lts th a t it p ro d u ce s , we can verify th a t it o p e ra te s correc tly . T u to r
co n ta in s th ree g ro u p s o f c o m m a n d s th a t a re specifically p ro v id ed for con tro ll ing the
execu tion o f p ro g ra m s : the trace com m ands, the go com mands, a n d the breakpoint
commands. These c o m m a n d s are show n in Fig. 5.19. Let us now look at the o pera t ion
o f the c o m m a n d s in each o f these g ro u p s an d ho w they can be used to co n tro l
execu tion o f p ro g ra m s .

Command Meaning Format Explanation

TR Trace TR |<count>] Execute and trace the
operation of the specified
number of instructions
starting w ith the instruction

T T [<count>] pointed to by the current
value in PC.

TT Trace to
temporary
breakpoint

TT <breakpoint address> Executes and traces the
operation of instructions
starting from the current
value in PC and continues
until either the specified
breakpoint address or a
prior set breakpoint address
is encountered.

GO Go execute GO K a d d ress» Initiates execution of the
program from the specified
address or if no address is

G G K a d d ress» included from the current
value in PC. Trace
information related to
instruction execution is
displayed and execution is
terminated if a set
breakpoint address is
encountered.

Figure 5-19 Commands fo r program execution contro l.

Sec. 5 .9 P rogram E xecution C o n tro l C om m ands 1 5 5

GD Go execute
direct

GD |<address>] In itiates execution of the
program directly from the
specified address or if no
address is included from
the current value in PC. No
trace inform ation related to
instruction execution is
displayed and execution is
not term inated if a set
breakpoint address is
encountered.

GT Go until
breakpoint

GT <breakpoint address> Initiates execution of the
program from the current
value in PC. Trace
in form ation related to
instruction execution is
displayed and execution is
term inated when either the
specified breakpoint
address or a prior set
breakpoint address is
encountered.

BR Breakpoint
set

BR |<address>
[;< c o u n t» l. . .

Sets one or more breakpoints
by pu tting the specified
addresses into the
breakpoint address table.

NOBR Breakpoint
remove

NOBR |<address>
<address>. . .1

Removes the breakpoints for
the specified addresses.

Figure 5-19 (Cont.)

Trace Com m ands—TR (T) and TT

D u rin g the ea r ly s tages o f p r o g r a m d e v e lo p m e n t , an o p e r a t io n k n o w n as
single-stepping th e p r o g r a m is very usefu l. By single s tep p in g , we m ea n th a t o n e
in s t ru c t io n o f th e p r o g r a m is ex ecu ted at a t im e . T h e s ta te o f th e m ic ro p ro c e s s o r ’s
in te rn a l reg is ters a n d d a ta in m e m o r y th a t a re a f f e c te d by th e in s t ru c t io n can be
e x a m in e d ju s t b e fo r e a n d ju s t a f t e r it is ex ecu ted . In th is w ay , th e o p e ra t io n o f th e
p r o g r a m can be verif ied in s t ru c t io n by in s t ru c t io n . T h e tr a ce c o m m a n d s a re th e
c o m m a n d s p ro v id e d in T u to r fo r s ing le -s tep p ing th r o u g h a p ro g r a m .

T u to r has tw o t r ace c o m m a n d s ca lled trace (T R o r T) a n d trace to tem porary
breakpoin t (T T) . W e will beg in w ith th e T R c o m m a n d . T h is c o m m a n d c an be used
to execute e ither o n e o r several in s truc t ion s . T o execute o n e in s tru c t io n , the c o m m a n d
is issued as e i th e r

T U T O R 1.3 > T R (cr)

o r ju s t

T U T O R 1.3 > T (cr)

1 5 6 Using the M C 6 8 0 0 0 Educational M icrocom puter fo r Program Development Chap. 5

In response to this com m and, the microcomputer executes the instruction pointed
to by the current value in PC and then it displays the contents o f the 68000’s internal
registers.

In Fig. 5.20, we have initialized PC to the address 003000l6 and then executed
the instruction

LEA .L $1000,A1

with a TR com m and. The form at in which the trace inform ation is displayed for
the TR com m and is shown in Fig. 5.20. Notice that the original value in PC is
0000300016. After executing the TR com m and, we find that the new value in PC is
0000300416 and that Aj has been loaded with 0000100016. Moreover, the disassembled
form o f the instruction that starts at this address, which is

LEA .L $2000,A2

is displayed in the last line o f information. This type o f information allows the
program mer to verify easily that the instruction performed the correct operation.

Once a TR command has been issued, Tutor enters what is called the trace mode.
When in this mode, the prom pt is issued as

TU TO R 1.3 :>

Here we see that it now includes a : before the > symbol. This colon tells the
programmer that the m onitor is in the trace mode. While in trace mode, the next
instruction is executed by simply depressing the return key. That is, by making the
entry

T U T O R 1.3 : > (cr)

the instruction at address 00003004,6 is executed and the new contents o f the registers
and next instruction are again displayed. To get out o f trace mode, just enter any

TUTOR 1.3 > .PC 3000

TUTOR 1.3 > DF
P 0 0 0 0 0 3 0 0 0 SR=2700=.S7..... US=FFFFFFFF SS=00000756
DO=OOOOFFOD D 1=00000000 D 2 = 12100010 D3=00000000
D4=00000231 D5=00000FFF D6=00000004 D7=00000000
A0 =0 0010040 A 1=00001000 A2=00000414 A3=00002500
A4=00009FAC A5=00000540 A6=00000540 A7=00000756
-------------------------003000 43F81000 LEA.L $00001000,A 1

TUTOR 1.3 > TR
PHYSICAL ADDRESS=00003000
PC=00003004 SR=2700=.S7..... US=FFFFFFFF SS=00000756
DO=OOOOFFOD D 1=00000000 02=12100010 D3=00000000
D4=00000231 D5=00000FFF D6-00000004 D7=00000000
A0-00010040 A 1=00001000 A2=00000414 A3=00002500
A4=00009FAC A5=00000540 A6=00000540 A7=00000756
------------------------ 003004 45F82000 LEA.L $00002000,A2

TUTOR 1.3 :> .PC
.PC=00003004

TUTOR 1.3 >

Figure 5-20 Executing an instruction with the trace command.

Sec. 5.9 Program Execution Control Commands 157

comm and after :> and then depress the return key. This entry causes the specified
com m and to be performed and the prom pt to be redisplayed as

T U T O R 1.3 >

Notice in the TR com m and format in Fig. 5.19 that an optional count field
can be specified as part o f the com m and. This count is what lets the TR comm and
execute more than one instruction. For instance, the comm and

T U T O R 1.3 > TR 5 (cr)

executes five instructions. After execution o f each instruction, the internal state o f
the 68000 is displayed.

The second trace com m and, trace to tem porary breakpoint (TT), is used to
execute and trace the operation o f instructions until what is called a breakpoint is
reached. A breakpoint is an address that identifies a point in the program where
execution is to be stopped. Looking at the format o f the TT com m and in Fig. 5.19,
we see that the breakpoint address is specified in the field that follows the com m and’s
mnemonic. An example is the com m and

T U T O R 1.3 > T T 1000 (cr)

This causes all instructions starting from the current value in PC and up to breakpoint
address 1000|6 to be executed. The name o f the comm and implies that the breakpoint
is temporary. By this we mean that the breakpoint that is set up by the address specified
in the com m and is automatically cleared after the address is reached and execution
stopped.

Go Commands—GD, GO, and GT

The go comm ands allow us to execute either a whole program or a program as several
segments o f instructions. For this reason, they are typically used to execute programs
that are completely functional o r to aid in the later stages o f the debugging process.
For example, if the early part o f a program is already operating correctly, a go
command can be used to execute through this group of instructions and stop execution
at the point in the program where additional debugging is to begin. The point at which
execution is to stop and debugging is to continue is identified by a breakpoint address.

Let us begin with the go direct (GD) com m and. The general format o f the GD
com m and is shown in Fig. 5.19. Here we see that the command can be used to begin
program execution directly from the current value o f PC or from an optional address
that is specified in the com m and. To initiate program execution from the current
value in PC, the comm and is issued as

T U T O R 1.3 > GD (cr)

After entering this comm and, the program begins execution and runs to completion
or until either the ABORT or RESET switch is depressed. No trace information is
displayed as the program runs.

158 Using the M C 68 000 Educational M icrocomputer fo r Program Development Chap. 5

Alternately, the com m and can be issued with an address in the starting address
field. For instance, to start program execution at address 00200016> the comm and
is issued as

TU T O R 1.3 > GD 2000 (cr)

Looking at Fig. 5.19, we see that the format o f the go (GO or G) comm and
is identical to that o f the GD com m and. However, its operation differs in two ways
from that o f the G D comm and. First, trace in form ation is displayed after execution
o f the first instruction, and second execution automatically stops if a breakpoint is
encountered. Two examples o f the GO com m and are

T U T O R 1.3 > GO (cr)

and

T U T O R 1.3 > G 2000 (cr)

The address, 200016, which is specified in the second go command, is not a breakpoint
address. It specifies the point at which program execution is to start. We pointed
out earlier that execution initiated with the go com m and will stop when a breakpoint
is reached. This breakpoint must have been set up already by a special breakpoint
com m and.

The last go com m and, go until (GT), has the ability to set a temporary
breakpoint and then initiate program execution with the instruction pointed to by
the current value in PC. Program execution continues until the tem porary breakpoint
address is reached, another breakpoint is encountered, or the A BO RT or RESET
switch is depressed. When execution stops, the temporary breakpoint is cleared.

For example, if we have already set up breakpoints at addresses 00100A16,
00101016, and 00102016, execution o f the com m and

TU T O R 1.3 > G T 1006 (cr)

when PC equals 00100016 initiates program execution and it continues until address
001006)6 is reached. At this point in the program, instruction execution stops. By
next issuing the com m and

T U T O R 1.3 > GT 100C (cr)

program execution resumes down through breakpoint address 00100A|6. In this case,
a breakpoint was encountered before reaching the temporary breakpoint. Even though
the temporary breakpoint did not cause the break in program execution, it is cleared.

Breakpoint Commands—BR and NOBR

In our description o f the trace and go comm ands, we found that the operation o f
certain comm ands in both groups were affected by breakpoints. Remember that a
breakpoint is the address o f the end o f a program segment; that is, the addresss o f
the first byte o f the instruction at which execution is to stop. We found that a

Sec. 5.9 Program Execution Control Commands 1 5 9

temporary breakpoint must be specified directly in both the TT and GT commands.
Moreover, if any additional breakpoints already existed, they also would affect the
operation o f these two comm ands. On the other hand, we found that the GO
com m and did not specify a tem porary breakpoint; instead, it was only affected by
breakpoints that were already defined when the com m and was issued. Comm ands
are provided in T u to r for setting and clearing o f breakpoints. Let us next look at
the operation o f these comm ands.

The com m and that is used to set up breakpoints is called breakpoint set (BR).
The format for this comm and is shown in Fig. 5.19. Here we find that the address
o f the breakpoint is simply included after the co m m an d ’s mnemonic. In fact, up to
eight breakpoint addresses can be specified and, if desired, they all could be defined
with one BR com m and. An example is the com m and

T U T O R 1.3 > BR 100A 1010 1020 (cr)

Execution o f this com m and causes addresses 00100A |6, 001010|6, and 001020,6 to
be placed into a table called the breakpoint address table.

Another way o f using the breakpoint com m and is to enter it as

T U T O R 1.3 > BR (cr)

In this form, the com m and causes the locations of all o f the currently defined
breakpoints to be displayed.

In programs that involve loops, we may want to stop execution at a breakpoint
address only after that address has been encountered a specific number o f times. For
instance, the last time that the loop is repeated. In Fig. 5.19, we find that an optional
count can be specified with each breakpoint address in a BR com m and. This count
gives the programmer the ability to execute a program in this way. For instance, the
comm and

T UTOR 1.3 > BR 1200;5 (cr)

sets up a breakpoint at address 001200)6 and configures the breakpoint such that
it will stop program execution the fifth time the address is encountered.

Unlike the temporary breakpoints defined in a TT or GT comm and, breakpoint
addresses set up with the BR com m and are not cleared when encountered during the
execution o f a program with the TT, GO, or G T comm and. The only way that they
may be cleared is if the p rogram m er uses a remove breakpoint (NOBR) comm and.
For instance, to remove all breakpoint addresses from the breakpoint table, the
comm and is issued as

T UTO R 1.3 > NOBR (cr)

However, the NOBR command also can be used to remove specific breakpoints that
are no longer needed. For example, to remove just the breakpoints at addresses
001010,6 and 001020|6, the command

TU T O R 1.3 > NOBR 1010 1020 (cr)

is used.

160 Using the M C 68 000 Educational M icrocomputer for Program Development Chap. 5

5.10 EXECUTING A PROGRAM

By executing a program and examining the results that it produces, we can tell whether
or not it performs the operation for which it was written. As discussed earlier, Tutor
provides GO and T R A C E com m ands for use in executing programs. Let us now
demonstrate how programs can be run on the microcomputer by using the
block-move program we assembled into memory in Section 5.8.

Before going any further, let us disassemble the program to verify that it still
resides in memory. In Fig. 5.18, we find that the program resides in the address range
3000|6 through 301416. Therefore, the program is disassembled with the comm and

T U T O R 1.3 > MD 3000 16;DI

We will assume that the sequence o f assembly language instructions displayed by
execution o f this com m and is the same as that shown in Fig. 5.18. Therefore, the
complete block-move program is still held in memory.

We still are not ready to run the program on the microcomputer. The internal
registers and storage locations in memory that are used by the program must first
be initialized. For instance, the status register, the selected stack pointer register, the
program counter, and the blocks o f data in memory must all be assigned initial values.
Let us first display the current contents o f all registers with the comm and

T U T O R 1.3 > DF (cr)

The information displayed with this com m and is shown in Fig. 5.21.
Next, we choose to execute the program in the user state. To accomplish this,

bit 13 o f the status register must be reset. This is done with the comm and

TUTO R 1.3 > .SR 0704 (cr)

Next, the user stack must be located in mem ory just below address 004000)6. The
com m and needed to do this is

T U T O R 1.3 > .US 4000 (cr)

Remember that the program starts at address 00300016. Therefore, PC is initialized as

T U T O R 1.3 > .PC 3000 (cr)

To verify that the register initialization has been done correctly, we again use the
DF comm and to display the current contents o f all o f the 68000’s registers.

T U T O R 1.3 > DF (cr)

From the displayed information in Fig. 5.21, we see that the values in SR, US, and
PC have been loaded correctly.

We are not yet finished initializing the m icrocom puter—the blocks o f storage
locations in memory must still be loaded. The sixteen words in the source block are
to be filled with the value F F F F !6. This is done with the comm and

T U TO R 1.3 > BF 1000 101E F FFF (cr)

Sec. 5 .1 0 Executing a Program 161

TUTOR 1.3 > DF
P0 00 00 30 04 SR=2700=.S7..... US=FFFFFFFF SS=00000756
DO-OOOOFFOD D 1-00000000 D2=12100010 03=00000000
D4*00000231 D5=00000FFF D6=00000004 D7=00000000
A0»00010040 A 1=00001000 A2=00000414 A3=00002500
A4=00009FAC A5-00000540 A6=00000540 A7-00000756
----------------------- 003004 45F82000 LEA.L *00002000fA2

TUTOR 1.3 > . SR 0704

TUTOR 1. 3 > .US 4000

TUTOR 1.3 > .PC 3000

TUTOR 1. 3 > DF
PC=00003000 SR=0704=..7..Z.. US=00004000 SS=00000756
DO=»OOOOFFOO D 1 -00000000 D2= 12100010 D3=00000000
04=00000231 D5-00000FFF D6=00000004 D7=00000000
A0=00010040 A 1=00001000 A2=00000414 A3=00002500
A4=00009FAC A5=00000540 A6=00000540 A7=00004000
----------------------- 003000 43F81000 LEA.L *00001000,A1

TUTOR 1.3 BF 1000 10IE FFFF
PHYSICAL ADDRESS=00001000 0000101E

TUTOR 1.3 > BF 2000 2 0 IE 0000
PHYSICAL ADDRESS=00002000 000020IE

TUTOR 1.3 > MD J000 IE
001000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
001010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

TUTOR 1.3 > MD 2000 IE
002000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
002010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

TUTOR 1.3 > BR 3014

BREAKPOINTS
003014 003014

TUTOR 1.3 > GO
PHYSICAL ADDRESS=00003000

AT B R E A K P O IN T
PC=00003014 SR=0704=..7..Z.. US=00004000 SS=00000756
00=00000000 D 1=00000000 02=12100010 D3=00000000
04=00000231 D5=00000FFF D6=00000004 D7=00000000
AO=00010040 A 1=00001020 A2=00002020 A3=00002500
A4=00009FAC A5=00000540 A6=00000540 A7=00004000
----------------------- 003014 60FE BRA.S *003014

TUTOR
001000

1.3 :
FF

MD
FF

1000 IE
FF FF FF FF FF FF FF FF FF FF FF FF FF FF

001010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

TUTOR
002000

1.3 >
FF

MD
FF

2000 IE
FF FF FF FF FF FF FF FF FF FF FF FF FF FF

002010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

TUTOR 1.3 >

F igure 5-21 Executing the block-move data transfer program.

162 Using the M C 68000 Educational M icrocomputer for Program Development Chap. 5

On the other hand, the storage locations in the destination block are all to be cleared
to zero. To do this, we issue the com m and

T U T O R 1.3 > BF 2000 201E 0000 (cr)

Finally, the initialization o f the blocks o f d a ta can be verified by executing the
comm ands

T U T O R 1.3 > MD 1000 IE (cr)

T U T O R 1.3 > MD 2000 IE (cr)

By again looking at the displayed information in Fig. 5.21, we find that memory
initialization also was correctly done.

Now we are ready to execute the program. Since PC has already been loaded
with 003000|6, the go comm and that we use to initiate program execution will not
need to specify the starting address o f the program. However, to return to the monitor
at the end o f the program, we must specify the address o f the last instruction o f the
program as a breakpoint address. From the disassembled version o f the program in
Fig. 5.18, we find that the last instruction is at address 00301416. A breakpoint is
set up at this address with the comm and

T U T O R 1.3 > BR 3014 (cr)

Now the program is executed by issuing the com m and

T U T O R 1.3 > GO (cr)

and it runs to completion.
The operation o f the program can be verified by looking at the blocks o f data

in memory. This is done by entering the comm ands.

TUTO R 1.3 > MD 1000 IE (cr)

TUTO R 1.3 > MD 2000 IE (cr)

Looking at the displayed information in Fig. 5.21, we find that all storage locations
in both blocks now contain F F F F |6. Therefore, the contents o f the source block have
been copied into the destination block.

5.11 DEBUGGING A PROGRAM

In Sections 5.8 and 5.10, we showed how to load a program into the memory o f the
MC68000 educational microcomputer and how to execute it. Moreover, we verified
that when executed the program did perform the block-move data transfer operation
for which it was written. However, in practice it is common to have errors in programs,
and even a single error can render the program useless. For instance, if the address
to which a branch instruction passes control is wrong, the program may get hung
up. Errors in a program are also referred to as bugs. The process o f removing them
is called debugging.

Sec. 5.11 Debugging a Program 163

The two types o f errors that can be made by a programmer are syntax errors
and execution errors. A syntax error is an error caused by not following the rules
for coding or entering an instruction. These types o f errors are typically identified
by the m icrocom puter’s assembler or monitor and signaled to the user with error
messages. For this reason, they are usually easy to find and correct.

For example, if an instruction is entered as

BEQU.S $3012

an error condition exists. This is because the mnemonic BEQU.S is invalid. The correct
instruction is written as

BEQ.S $3012

This incorrect entry is signaled by the Tutor monitor with an error message during
assembly.

An execution error is an error in the logic behind the development o f the
program. That is, the program is correctly coded and entered, but it does not perform
the operation for which it was planned. This type o f error can be identified by entering
the program into the microcomputer and executing it. Even when an execution error
problem has been identified, it can be difficult to find the exact cause o f the problem.

O ur ability to debug execution errors in a program is aided by the commands
o f the Tutor monitor. For instance, the TR com m and allows us to step through the
program by executing just one instruction at a time. In this way, we can use the register
and memory display comm ands to determine the state o f the microcomputer prior
to execution o f an instruction and again just after its execution. This information
will tell us whether the instruction has performed the operation planned for it. If
an error is found, the cause can be determined and corrected.

T o illustrate the process o f debugging a p rogram , let us once again consider
the program in Fig. 5.16. Its assembled version is given in Fig. 5.18 and we showed
how to enter the program into the microcomputer in Sec. 5.8. Remember that this
program implements a block-move data transfer operation. The block of data that
is to be moved starts at memory address 001000)6 and is sixteen words in length.
It is to be moved to another block location starting at address 00200016. We will
assume that the program already resides in memory starting at address 00300016.

Before executing the program, let us issue comm ands to initialize the block o f
memory locations from address 001000|6 through 00101 E i6 with the value F F F F 16
and those from 002000,6 through 00201 E]f) with zero. As shown in Fig. 5.22, this
is done with the comm and sequence

T U T O R 1.3 > BF 1000 101E FFFF (cr)

T U T O R 1.3 > BF 2000 201E 0 (cr)

Furthermore, we must initialize the status register, user stack pointer, and the program
counter to the values 0704)6, 4000 |6, and 3000)6, respectively. To do this, the
commands

164 Using the M C 6 8 0 0 0 Educational Microcomputer for Program Development Chap

TUTOR 1.3 BF 1000 101E FFFF
PHYSICAL ADDRESS=00001000 000010IE

TUTOR 1.3 > BF 2000 201E 0
PHYSICAL ADDRESS=00002000 000020IE

TUTOR 1.3 > .SR 0704

TUTOR 1.3 > .US 4000

TUTOR 1.3 > .PC 3000

TUTOR 1.3 > MD 1000 IE
001000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
001010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

TUTOR 1.3 > MD 2000 IE
002000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
002010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

TUTOR 1.3 > DF
PC—00003000 SR=0704=..7..Z.. US=OOOOAOOO SS=00000786
D0=0000FF00 D 1=00000002 D2=10BC5380 D3=00000000
04=00005330 D5=FFFFFF2C D6=00000002 D7=00000000
A0=00010040 A1=000000C0 A2=00000414 A3=00000554
A4=00009F86 A5-00000540 A6=00000540 A7=00004000
------------------------003000 43F81000 LEA.L

TUTOR 1.3 > BR 300E

BREAKPOINTS
00300E 00300E

TUTOR 1.3 > 60
PHYSICAL ADDRESS=00003000

AT BREAKPOINT
PC=0000300E SR=0700=..7..... US=00004000 SS=00000786
D0=00000010 D 1=00000002 D2=10BC5380 D3=00000000
D4=00005330 D5=FFFFFF2C D6=00000002 D7=00000000
A0=00010040 A 1=00001000 A2=00002000 A3=00000554
A4=00009FB6 A5=00000540 A6=00000540 A7=00004000
----------------------- 00300E 34D9 MOVE.W

TUTOR 1.3 > T
PHYSICAL ADDRESS=0000300E
PC=00003010 SR=0708=..7.N . .. US=00004000 SS=00000786
D0=00000010 D 1=00000002 D2=10BC5380 D3=00000000
D4=00005330 D5=FFFFFF2C D6=00000002 D7=00000000
A0=00010040 A 1=00001002 A2=00002002 A3*00000554
A4=00009F86 A5=00000540 A6=00000540 A7=00004000
------------------------003010 5380 SUBQ.L

TUTOR 1.3 b > T
PHYSICAL ADDRESS=00003010
PC=00003012 SR=0700=. . 7 US=00004000 SS=00000786
D0«=0000000F D 1=00000002 D2=10BC5380 D3=00000000
D4=00005330 D5=FFFFFF2C D6=00000002 D7=00000000
A0=00010040 A 1=00001002 A2=00002002 A3=00000554
A4=00009F86 A5=00000540 A6=00000540 A7=00004000
----------------------- 003012 66FA BNE. S

*00001000,A1

<A1>+,(A2)+

1 , D 0

*0 0 3 0 0 E

F igure 5-22 Demonstration of program debugging.

Sec. 5.11 Debugging a Program 165

TUTOR 1.3 :> T
PHYSICAL ADDRESS=00003012

AT BREAKPOINT
PC=0000300E SR=0700=..7..... US=00004000 SS=00000786
DO=OOOOOOOF D 1=00000002 D2=10BC5380 D3=00000000
04=00005330 D5=FFFFFF2C D6=u0000002 D7=00000000
A0*00010040 A 1=00001002 A2=00002002 A3=00000554
A4=00009F86 A5=00000540 A6=00000540 A7=00004000
------------------------00300E 34D9 MOVE.W <A1)+,(A2)+

TUTOR 1.3 s MD 2000 IE
002000 FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00 00
002010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

TUTOR 1.3 > GO
PHYSICAL ADDRESS=0000300E

AT BREAKPOINT
PC=0000300E SR=0700=..7..... US=00004000 SS=00000786
D0=0000000E D1=00000002 D2=10BC5380 D3=00000000
D4=00005330 D5=FFFFFF2C D6=00000002 07=00000000
A0=00010040 A 1=00001004 A2=00002004 A3=00000554
A4=00009F86 A5=00000540 A6=00000540 A7*00004000
------------------------00300E 34D9 MOVE.W <A l)+,(A2)+

TUTOR 1.3 > MD 2000
002000 FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00

TUTOR 1.3 > NOBR

BREAKPOINTS

TUTOR 1.3 > BR 3014

BREAKPOINTS
003014 003014

TUTOR 1.3 > GO
PHYSICAL ADDRESS=0000300E

AT BREAKPOINT
PC=00003014 SR=0704=..7..Z.. US=00004000 SS=00000786
D0=00000000 D 1*00000002 D2=10BC5380 D3=0000000u
04-00005330 D5=FFFFFF2C D6=00000002 D7=00000000
A0-00010040 A 1=00001020 A2=00002020 A3=00000554
A4=00009F86 A5=00000540 A6=00000540 A7=00004000
----------------------- 003014 60FE BRA.S *003014

TUTOR 1.3 > MD 2000 IE
002000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
002010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

F igure 5-22 (Com.)

TUTOR 1.3 > .SR 0704 (cr)

TUTOR 1.3 > .US 4000 (cr)

TUTOR 1.3 > .PC 3000 (cr)

are issued. The initialization o f the microcomputer can be verified using the following
memory display and register display com m ands.

166 Using the M C 68 000 Educational M icrocomputer for Program Development Chap. 5

T U T O R 1.3 > MD 1000 IE (cr)

TUTO R 1.3 > MD 2000 IE (cr)

TUTO R 1.3 > DF (cr)

The displayed information in Fig. 5.22 shows that the initialization is correct.
Let us now execute the first three instructions o f the program. To do this, we

first set a breakpoint at the address o f the fourth instruction. In Fig. 5.18, we find
that this instruction starts at address 300E16. The breakpoint is set by issuing the
com m and

T U T O R 1.3 > BR 300E (cr)

The Tutor response shown in Fig. 5.22 verifies that the breakpoint address has been
set. Now the three instructions are executed by issuing the GO com m and

T U T O R 1.3 > G O (cr)

At this point, we can verify that registers A , , A2, and D0 have been loaded with
0000100016, 00002000l6, and 0000001016, respectively.

The following trace com m ands are used to execute the next three instructions.

T U T O R 1.3 > T (cr)

T U T O R 1.3 > T (cr)

T U T O R 1.3 > T (cr)

From Fig. 5.22, we find that the first T com m and executes the instruction

M O V E .W (A l) + , (A2) +

and then displays the contents o f the 68000’s internal registers. Notice that A , now
contains 00001002|6 and A 2 contains 0000200216. Therefore, they point to the second
word in the source block and destination block, respectively. The displayed
information for the second trace com m and shows that the contents o f D0 have been
decremented by one and that for the third command shows that PC has been reloaded
with the address o f the instruction

M O VE.W (A 1) + , (A 2) +

This completes one iteration o f the block transfer loop.
To verify that the source word at 00100016 has moved to the destination location

at 00200016, we use the memory display com m and

T U T O R 1.3 > MD 2000 IE (cr)

The displayed information in Fig. 5.22 shows that word address 2000)6 now contains
F F F F |6. This confirms that the data transfer has taken place.

At this point the rest o f the iterations o f the loop can be executed by issuing
G O comm ands. Figure 5.22 shows that first a GO com m and was issued followed by
an MD com m and. This com m and sequence did not run the program to completion;
instead, the displayed information shows that just the second word o f data has been
moved into the destination block.

Chap. 5 A ssignm ent 167

T o run the p ro g ra m to c o m p le t io n , we m ust first rem ove the b reak p o in t th a t
exists at address 3 0 0 E)6 an d then set a new one at the address o f the last in s truc t ion
in the p ro g ra m , w h ich is 301416. T h is is d o n e w ith the c o m m a n d s

T U T O R 1.3 > N O B R (cr)

T U T O R 1.3 > BR 3014 (cr)

N ow the rest o f the p ro g ra m is executed by issuing the c o m m a n d

T U T O R 1.3 > G O (cr)

T o verify th a t all o f the co n ten ts o f the sou rce b lock have been m ov ed to the
des t ina t ion b lo ck , we use the c o m m a n d

T U T O R 1.3 M D 2000 IE (cr)

As show n in Fig. 5.22, all w ord loca t ions in the d e s t in a t ion b lock c o n ta in F F F F !6
the reby verifying th a t the p ro g ra m func t ions correc tly .

A S S I G N M E N T

Section 5.2

1. What purpose is served by a development system?
2. How much RAM is provided on the MC68000 educational microcomputer for storage

of user programs?
3. How many ports are provided on the MC68000 educational microcomputer board for

connection of I /O devices?
4. Which I /O port implements the Centronics parallel printer interface? Which port

implements a serial communications interface for connection of the terminal?

Section 5 .3

5. What is a monitor program? Where is it stored?
6. List the main functions of the Tutor monitor.
7. What size is the MC68000 educational microcomputer’s monitor program?

Section 5 .4

8. What is meant by a line-by-line assembler/disassembler?
9. Which field o f the monitor’s command syntax is always required in a command?

10. Describe the difference between an offset register o f the monitor and an internal register
o f the 68000.

11. If A0 = 100,6, D0 = 200|6, R0 = 1000,6, and R3 = 2000,6, specify the memory addresses
at which execution starts when the commands that follow are issued.

(a) TUTOR 1.3 > GO 1000
(b) TUTOR 1.3 > GO 100 + R3

168 U sing the M C 6 8 0 0 0 E duca tiona l M ic ro c o m p u te r fo r P rogram D eve lo pm e n t Chap. 5

(c) TU T O R 1.3 > GO (AO)
(d) TU T O R 1.3 > GO (AO,DO)

Section 5 .5

12. Write a series o f comm ands that will load PC, A0, D 3, and D7, with decimal numbers
100, 200, 500, and 800, respectively.

13. If R() contains 100016, what is loaded into R5 as a result o f executing the following
commands.
(a) TU T O R 1.3 > .R0 1000
(b) TU T O R 1.3 > .R5 1000 + R7

Section 5 .6

14. What happens when we issue the following series o f commands?
T U T O R 1.3 > MD 1000 (cr)
T U T O R 1.3 > (cr)

15. Write a comm and sequence that will fill the block o f memory locations from 100016
through 10FEi6 with the ASCII string ABCD and the block o f locations from 200016
through 20F E |6 with data 555516. Verify the initialization o f these two blocks and then
move the contents o f the block o f locations from 100016 through 100F16 to the block o f
locations starting at 3000|6.

Section 5 .7

16. Write a comm and sequence to set port 2 for one stop bit, two character nulls, and ten
carriage return nulls.

17. Wite a comm and that when issued will set up the MC68000 educational microcomputer
so that a host computer can be used to send commands to it.

Section 5 .8

18. List two limitations experienced when working with a line-by-line assembler.
19. Show how directives can be used to initialize consecutive memory locations starting at

address 100016 with word data A B C D |6 and 1234,6.

20. Which com m and is used to assemble/disassemble instructions into the memory o f the
MC68000 educational microcomputer?

Section 5 .9

21. Which command is best used to:
(a) Execute one instruction o f a program?
(b) Execute an entire program?
(c) Execute a group o f instructions in a program?

22. What is the use o f a breakpoint during program execution? How can a breakpoint be set?
23. Write a command that will set up a breakpoint at address 115016 so that execution will

stop on the tenth occurrence o f this address.

Chap. 5 A ss ig n m e n t 1 6 9

Section 5 . 10

24. Why must some registers be initialized before executing a program?

25. Write a com m and sequence that when executed initializes PC to point to the beginning
o f a program which starts at address 2000l6 and executes the program until the address
201416 is encountered three times. Before beginning execution, the appropriate breakpoint
should be set up.

Section 5.11

26. What is the difference between a syntax error and an execution error?
27. How does Tutor provide debugging support?
28. Repeat the debug demonstration presented in Section 5.11, but this time use the TT and

GD commands to execute the program.

M emory
a n d Input/O utput Interfaces
of the 68000 M icroprocessor

6.1 INTRODUCTION

The preceding four chapters were devoted to the architecture of the 68000, its
instruction set, and assembly language programming. In this chapter we study the
memory and input/output interfaces o f this microprocessor together with the
instructions that are provided to implement stack and I /O operations. In particular,
the following topics are the subject of this chapter:

1. The asynchronous memory and I /O interface
2. Address space
3. Data organization
4. Dedicated and general use of memory
5. Program and data storage memory
6. Memory function codes
7. Memory and I /O read and write cycles
8. User and supervisor stacks
9. 64K-byte software refreshed dynamic RAM subsystem

10. I /O instruction—MOVEP
11. 6821 peripheral interface adapter
12. Asynchronous bus interface I /O circuitry
13. Synchronous memory and I /O interface
14. Synchronous bus I /O interface circuitry

170

Sec. 6 .3 Address Space and Data Organization 171

15. Serial communication interface
16. The 6850 asynchronous communications interface adapter
17. Special purpose interface controllers

6.2 ASYNCHRONOUS MEMORY AND I/O INTERFACE

The asynchronous memory and input/output interface o f the 68000 is shown in Fig.
6.1. It consists o f the address bus, da ta bus, function code bus, and control bus.
The address and data buses o f the 68000 are demultiplexed. That is, they do not share
pins on the package of the IC. The advantage o f this is that the interface circuitry
between microprocessor and mem ory is simplified.

Moreover, in the 68000 microcomputer I /O devices are always memory-mapped.
By this, we mean that memory and I /O do not have separate address spaces. Instead,
the designer allocates a part o f the memory address space to the I /O devices.
Therefore, both mem ory and I / O are accessed in the same way through the
asynchronous bus interface.

We have indicated several times that the bus between the 68000 and memory
or I /O is asynchronous. By “ asynchronous” we mean that once a bus cycle is initiated
to read (input) or write (output) instructions or da ta , it is not completed until a
response is provided by the memory or I /O subsystem. This response is an
acknowledge signal that tells the 68000 that it should complete its current bus cycle.
For this reason, the timing o f the bus cycle in a 68000 microcomputer system can
be easily matched to slow memories or I /O devices. This results in efficient use of
the system bus.

6.3 ADDRESS SPACE AND DATA ORGANIZATION

Notice in Fig. 6.1 that the address bus of the 68000 consists o f 23 independent address
lines, which are labeled A, through A 23. The address information output on these
lines selects the storage location in memory or the I / O device that is to be accessed.
With this large 23-bit address, the 68000 is capable o f generating 8M unique addresses.
As shown in Fig. 6.2, they represent a word address space in the address range
00000016 through F FF F F E 16. Here we see that word information such as instructions,
word operands, or long-word operands must always be aligned at even address
boundaries.

Coupling the upper data strobe (UDS) and lower data strobe (LDS) control
signals with this address bus gives the 68000 the ability to access bytes o f data. Figure
6.3 illustrates how these two signals can be used to enable byte-wide upper and lower
data banks in memory. Address lines A, through A 23 are applied in parallel to both
memory banks.

From an address point o f view, memory can now be considered to be organized
as bytes, and as shown in Fig. 6.4, bytes o f data can be stored at odd o r even addresses.

172 M emory and Input/O u tput Interfaces o f the 6 8 0 0 0 M icroprocessor Chap. 6

68000

A ,-A ,

Pq~P|s

FCq-FC;

AS

R/W

UDS

LDS

Î>

- N
V

Memory and I/O

DTACK

Figure 6-1 A synchronous m em ory and
I /O interface.

Word Addresses Memory Contents

000000,,16

000002,,
000004,,

FFFFFC,,

FFFFFE,,

Word 0

Word I

Word 2

Word 8,388,606

Word 8,388,607
Figure 6-2 W ord address space.

W hen expressed in this way, the size o f the physical address space is said to be 16M
bytes.

The address s trobe (AS) contro l signal is o u tp u t by the 68000 along with the
address on A | th rough A 23. It is used to signal m em ory and I / O devices that valid
address in fo rm at ion is available on the bus.

In Fig. 6.1 we find a second bus between the 68000 and the m em ory or I /O
device. It is the da ta bus and consists o f the 16 bidirectional da ta lines D0 th rough
D)5. D ata are input to the microprocessor over these lines during read (input)
opera t ions and are o u tpu t by the processor over these lines during write (output)
opera tions.

Sec. 6 .3 Address Space and Data Organization 173

Even Byte
Addresses

00000016

00000216

000004

F igure 6-3 M em ory organized as upper and lower d a ta banks.

Memory Contents
Odd Byte
Addresses

FFFFFE.

Byte 0 Byte 1

Byte 2 Byte 3

Byte 4 Byte 5

Byte 16,777,214 Byte 16,777,215

00000116

000003

000005.

FFFFFF 16 Figure 6-4 Byte address space.

The contro l signals that co o rd in a te the da ta transfers that take place between
the 68000 a n d j n e m o r y o r I / O devices are also show n in Fig. 6.1. They are the
read /w r i te (R /W) o u tp u t and the d a ta transfer acknow ledge (D T A C K) input. The
68000 sets R /W to the ap p ro p r ia te logic level to tell external circuitry whether
d a ta are being input o r o u tpu t by the m icroprocessor during the current bus cycle.

1 7 4 Mem ory and Input/O u tpu t Interfaces o f the 6 8 0 0 0 M icroprocessor Chap. 6

O n the o ther hand , D T A C K acknowledges tha t the transfe r between
m icroprocessor and m em ory or I / O subsystem has taken place. W hen the 68000
executes a read opera t io n , it always waits until the D TA C K input goes active before
completing the bus cycle. D TA C K is asserted by the m em ory or I / O device when
the d a ta it has put on the bus are valid. In response to D TA C K equal to 0, the 68000
latches in the da ta from the bus and completes the read cycle. During a write operation,
D TA C K indicates to the 68000 that da ta have been written; therefore , it te rm inates
the bus cycle.

7 6 5 4 3 2 1 0

(a)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB B v te 0 LSB Byte 1

Byte 2 Byte 3

lb)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1

MSB___ W ord 0___ LSB

W ord 1

W ord 2

(c)

15 14 13 12 11 10 9 3 7 6 5 4 3 2 1 0
MSB

— — Long W ord 0 — — — -
High Order

Low Order LSB

— — Long W ord 1— — — -

— — Long W ord 2 — — — -

(d)

Figure 6-5 D ata o rgan ization in m em ory (M oto ro la , Inc.).

Sec. 6 .3 Address Space and Data Organization 175

Remember that most o f the instructions in the instruction set o f the 68000 have
the ability to process operands expressed in byte, word, or long-word form ats. Let
us now look at how data expressed in these forms are stored in memory. From Fig.
6.5(a), we see that within a byte o f da ta bit 0 represents the least significant bit and
bit 7 represents the most significant bit. Next, Fig. 6.5(b) shows that two bytes o f
da ta can be stored at each word address. Notice that even-addressed bytes such as
byte 0 and byte 2 are stored in most significant byte locations and odd-addressed
bytes such as byte 1 and byte 3 are stored in least significant byte locations. Figure
6.5(c) and (d) show that a word is simply stored at each word address and that a
long word is stored at two consecutive word addresses.

Looking at the mem ory subsystem hardw are configuration in Fig. 6.3, we see
that for an addressed word storage location the upper 8 bits o f the word are in the
upper data bank. This is the even byte and it is transferred between memory and
microprocessor over data bus lines D8 through D 15. The lower 8 bits o f the word,
the odd byte, are in the lower data bank. They are transferred between microprocessor
and memory over D0 through D 7.

For a word transfer to take place over the bus, both UDS and LDS must be
active at the same time. Therefore, they are both switched to the 0 logic level.
Moreover, the direction in which data are transferred is identified by the logic level o f
R /W . For instance, if the word o f da ta is to be written into memory, R /W is set
to logic 0. UDS and LDS c a n also be set to access just the upper byte or lower byte
ot data. In this case, either UDS or LDS remains at its inactive 1 logic level.

Figure 6.6 summarizes the types o f da ta transfers that can take place over the
data bus and the corresponding control signal logic levels. For example, when an
even byte is read from the high memory bank UDS = 0, LDS = 1, R /W = 1 and
data are transferred from mem ory to the 68000 over da ta lines Dg through D 15.

UDS LDS R /W D8-D15 D0-D7
High High No valid data No valid data

Low Low High Valid data bits
8-15

Valid data bits
0-7

High Low High No valid data Valid data bits
0-7

Low High High Valid data bits
8-15 No valid data

Low Low Low Valid data bits
8 15

Valid data bits
0-7

High Low Low Valid data bits
0-7

Valid data bits
0-7

Low High Low Valid data bits
8-15

Valid data bits
8-15

Figure 6-6 Relationship between bus
contro l signals and data bus transfers
(M otorola, Inc.).

1 7 6 Memory and Input/O utput Interfaces o f the 6 8 0 0 0 M icroprocessor Chap. 6

6.4 DEDICATED AND GENERAL USE MEMORY

Now that we have introduced the memory interface o f the 68000, its address space,
and data organization, let us continue by looking at which parts o f the address space
have dedicated uses and which parts are for general use. In Fig. 6.7 we see that the
lower end o f the address space has a dedicated function. That is, the word storage
locations over the address range from 000000l6 to 0003FEl6 are allocated for storage
o f an address vector table. As shown, it contains the 68000’s exception vector table.
Each vector address is 24 bits long and takes up two words o f memory. An example
o f 68000 exceptions are its hardware interrupts. The exception processing capability
o f the 68000 is the subject o f Chapter 7.

From the memory map in Fig. 6.7 we see that the rest o f the address space is
for general use. Therefore, it can be used to store instructions o f the program, data
operands, or address information.

oooooo 16

0003FE |6
000400,,,

Exception vector
table

General use
memory

Figure 6-7 M em ory map.

6.5 PROGRAM AND DATA STORAGE MEMORY
AND THE FUNCTION CODES

In the preceding section, we showed how the memory address space o f the 68000
is partitioned into a dedicated use area and a general use area. A nother way o f
partitioning the memory subsystem in a 68000 microcom puter system is in terms of
program and data storage memory. In general, the program segment o f memory
contains the opcodes o f the instructions in the program, direct addresses o f operands,
and data o f immediate source operands. It can be implemented with ROM or RAM.

On the other hand, the data segment is generally implemented with RAM. This
is because it contains da ta operands that are to be processed by the instructions.
Therefore, it must be able to be read from or written into.

During all bus cycles to memory, the 68000 ou tputs bus status codes to indicate
whether it is accessing program or da ta memory. The bus status code is known as
the function code and is ou tput on function code bus lines FC0 through F C 2. The

Sec. 6 .5 Program and Data Storage M emory and the Function Codes 1 7 7

Function code output
Reference class

FCj FC, FC0

0 0 0 (Unassigned)

0

0

0

1

1

0

User data

User program

0

I

1

0

1

0

(Unassigned)

(Unassigned)

1

1

0

1

1

0

Supervisor data

Supervisor program

1 1 1 Interrupt acknowledge Figure 6-8 Memory funciion codes
(M otorola, Inc.).

table in Fig. 6.8 lists all function codes ou tpu t by the 68000 and the corresponding
type o f bus cycle. Notice tha t program and d a ta m em ory accesses are fu r ther
categorized based on whether they occur w'hen the 68000 is in the user state or
supervisor state. For instance, an instruction acquisit ion bus cycle perform ed when
the 68000 is in the user state is accompanied by the function code FC 2F C ,F C 0 = 010,
but the same type o f access when in the supervisor state is accom panied by
F C 2F C ,F C 0 = 110.

One use o f the function codes is to part it ion the m em ory subsystem hardw are.
This can be done by decoding the funct ion codes in external logic to produce enable
signals for the user program segment, user data segment, supervisor program segment,
and supervisor data segment.

O ne ap p ro ach is il lustrated in Fig. 6.9. H ere the m em ory subsystem has been
part it ioned into a user m em ory segment and a supervisor m em ory segment. Looking

oooooo 16

Supervisor
memory

7FFFFE16
80000016

User
memory

FFFFFE,,

Memory map

Figure 6-9 P artition ing m em ory into user and supervisor segm ents (M otoro la , Inc.).

178 Memory and Input/Output Interfaces of the 6 8 0 0 0 M icroprocessor Chap. 6

at Fig. 6.8, we see that the logic level o f function code line FC 2 indicates whether
the 68000 is in the user or supervisor state. Notice that in this circuit F C 2 is gated
with address strobe AS to produce select input S t for the supervisor memory bank.
In this way, the 68000 can access either the user or supervisor memory banks when
it is in the supervisor state, but when it is in the user state the supervisor memory
bank is locked out.

Another approach would be to partition the memory subsystem such that it
has an independent l6M-byte program memory segment and a 16M-byte data memory
segment. This expands the address space o f the 68000 to 32M bytes in a segmented
fashion.

6.6 MEMORY AND I/O READ CYCLE TIMING

To read a word or byte from an input device or memory, the signal lines that are
used are address lines Aj through A23, da ta lines D0 through D)5, and asynchronous
control lines: address strobe (AS), upper and lower da ta s trobes (UDS and LDS),
read/write (R /W), and data transfer acknowledge (DTACK). Figure 6.10(a) is a
flowchart that shows the sequence of events that take place in order to read a byte
o f da ta f rom the memory subsystem in Fig. 6.3. A timing diagram for an upper bank
read bus cycle is shown in Fig. 6.10(b).

From the timing diagram, we see that a read cycle can be completed in as few
as four clock cycles. Each clock cycle consists o f a high and low state for a total
o f eight states. They are labeled S0 through S7 in the timing diagram. With the 100-ns
clock cycle o f the 10-MHz 68000, this gives a minimum read bus cycle time of 400 ns.

In Fig. 6.10(a) we see that the read bus cycle begins with R /W being switched
to logic 1. As shown in Fig. 6.10(b), this happens at the leading edge o f state S0.
During S0, a function code FC2F C ,F C 0 is output and address lines A (through A 23
are put in the high-Z state. Next the address is ou tput during the S, state followed
by address strobe AS and the appropria te da ta strobes during S2. In our example,
we are to read only the upper byte; therefore, UDS is switched to its active 0 logic
level. The address phase o f the bus cycle is now complete.

Next the memory or I /O subsystem must decode the address and put the selected
data on bus lines Dg through D 15. This must happen during S3. Then in S4 it must
assert DTACK by switching it to logic 0. This signals the 68000 that valid data are
on the bus and that the bus cycle should be continued through to completion.

DTACK is tested by the 68000 during Ss . If it is active (logic 0), da ta are read
o ff the bus at the end o f S6. During S7, the 68000 returns AS and UDS to their
inactive logic levels and the address bus and data lines to the high-Z state. Moreover,
the memory or I /O subsystem must return DTACK to the 1 level before another bus
cycle can be initiated.

Sec. 6 .6 Memory and I/O Read Cycle Timing 1 7 9

BUS MASTER SLAVE

Address Device
1) Set R ' W to Read
2) Place Function Code on FC0-FC2
3) Place Address on A1-A23
4) Assert Address Strobe (AS)__
5) Assert Upper Data Strobe (UDS) or Lower

Data Strobe (LDS> (based on AO)

Input Data
1) Decode Address
2) Place Data on D0-D7 or D8-D15 (based on

UDS or LDS)
3) Assert Data Transfer Acknowledge

(DTACK)

Acquire Data
1) Latch Data
2) Negate UDS or LDS
3) Negate AS

I_________ ,

I
Terminate Cycle

1) Remove Data from D0-D7 or D8-D15
2) Negate DTACK

Stan Next Cycle

(a)

Figure 6-10 (a) Byte read cycle flowchart (Motorola, Inc.).

If the 680 0 0 find s D T A C K not asserted during S 5, it inserts w ait c lock cycles
until D T A C K g o es low to in d icate that valid data are on the data bus.

A ccesses o f byte or w ord d ata require execu tion o f o n e bus cyc le by the 68000 .
O n the other h an d , lon g-w ord accesses require tw o w ord s o f data to be transferred
over the bus. T h erefore , they take tw o bus cyc les.

180 Memory and Input/Output Interfaces of the 6 8 0 0 0 M icroprocessor Chap. 6

CLK I S0 I S, I S2 I S, I S4 Ss S6 S7 I S0

FC.-PC,) (X

A 23'A I | ^ h-
/AS

/TOS \

R/W j T

DTACK ^ 1
R I5_D8

(b)

Figure 6-10 (com.) (b) Upper byte read timing diagram .

6.7 MEMORY AND I/O WRITE CYCLE TIMING

To write a word or a byte o f data to memory or an I /O device, the same basic interface
signals we identified for the read operation are used. The flowchart and timing diagram
for a bus cycle that writes a word of data are shown in Fig. 6 .11(a) and (b), respectively.
Here we see that a minimum o f five clock cycles, which equals 10 states S0 through
S9, are required to perform a write bus cycle. At 10 M H z this takes 500 ns.

Looking at Fig. 6 .1 1(a), we see that the bus cycle begins with a function code
being output on the FC bus during S0. The address lines that_are floating during S0
are asserted with a valid address during S, and AS and R /W go active during S2.

Sec. 6.7 Memory and I/O Write Cycle Timing 181

BUS MASTER SLAVE

Address Device
1) Place function Code on FC0-FC2
2) Place Address on A1-A23
3) Assert Address Strobe (AS)
4) Set R/W to Write
5) Place Data on D0-D15
6) Assert Upper Data Strobe (UDS) and

Lower Data Strobe (LDS)

Input Data
1) Decode Address
2) Store Data on D0-D15
3) Assert Data Transfer Acknowledge

(DTACK)

Terminate Output Transfer
1) Negate UDS and LDS
2) Negate AS
3) Remove Data from D0-D15
4) Set R/W to Read

♦
Terminate Cycle

1) Negate DTACK

Start Next Cycle

(a)

Figure 6-11 (a) W o rd w rite cycle flow chart (M o to ro la , Inc.).

This tim e, R /W is set to 0 to indicate that a write operation is to take place and data
are output on the com plete bus D 0 through D ,5 during S3.

Selection o f byte or word data is m ade by the 68000 asserting the data strobe
signals. For a word access, both U D S and LD S are sw itched to their active 0 logic
level. This is d one during the S4 state.

Up to this p o in t, the 68000 has output the address o f the storage location and
put the data on the bus. External circuitry must now decode the address to select
the m em ory location or I /O device. Then the data, w hich were put on the bus during

182 Memory and Input/O utput Interfaces o f the 6 8 0 0 0 M icroprocessor Chap. 6

CLK

FC 2-F C 0

A ,,—A.

AS

UDS

LDS

DTACK

I S0 I Sj I s2 I s3 I s4 1 s5 I s6 S7 1 Sg I Sg I S0

X X

H H
\ /

V 1
\

/ \ r
__________ r

(b)

Figure 6-11 (cont.) (b) Timing diagram .

S3, are written into the enabled device during S4. After the write o f da ta has been
completed, the memory or I /O device must inform the 68000 o f this condition by
pulling DTACK to its active 0 logic level. DTACK is tested by the 68000 at the
beginning o f S7 and if it is not asserted, wait clock cycles are inserted between the
S6 and S7 states. This extends the du ra t ion o f the write cycle. However, if DTACK
is found to be at its active 0 level, UDS, LDS, and AS are returned to their inactive
1 logic levels at the beginning o f the S9 state. Furthermore, a n h e end o f S9, the
address and data lines are returned to the high-Z state and R /W is switched to 1.

Sec. 6 .8 The User and Supervisor Stacks 1 8 3

Before the S0 state o f the next bus cycle, DTACK must be returned to logic
1. However, this is done by the memory or I /O subsystem, not the 68000.

6.8 THE USER AND SUPERVISOR STACKS

The 68000 employs a stack-oriented architecture. In Chapter 2 we indicated that the
68000 has two internal stack pointer registers and that these stack pointers are called
the user stack pointer (USP) and supervisor stack pointer (SSP). As shown in Fig.
6 . 1 2 , the addresses held in these registers point to the top storage locations in their
respective stacks: that is, their tops o f stacks. The storage locations identified as
bottom o f stack represent the locations pointed to by the initial values loaded into
the stack pointers. When the stacks are empty, the stack pointers point to these
locations. The user stack is active whenever the 68000 is in the user state and the
supervisor stack is active whenever it is in the supervisor state. Both stacks can be
located in memory anywhere in the address space o f the 68000, and they are not limited
in size.

o o o o o o 16
M emory

Top o f stack

Bottom o f stack

Top o f stack

Bottom o f stack

► User stack

Supervisor stack

Figure 6-12 User an d supervisor stacks.

184 Memory and Input/Output Interfaces of the 6 8 0 0 0 M icroprocessor Chap. 6

During exception processing or subroutine calls, the contents o f certain internal
registers o f the 68000 are saved on the stack. For instance, when exception processing
is initiated for a hardware interrupt, the current contents o f the program counter
(PC) and status register (SR) are automatically pushed to the stack. In this way, they
are temporarily saved.

Additional stack operations are usually performed as part o f the exception
processing service routine or subroutine. These are push operations that save the
contents o f registers that are to be used within the service routine on the stack. For
instance, instructions in a hardware interrupt service routine can cause the contents
o f data registers D0, D ,, and D 2 to be pushed to the user stack. One way o f doing
this is with the instruction sequence

M O V E.W D2, - (USP)

M O V E.W D l , - (USP)

M O V E.W D O ,- (U S P)

These examples all push word data to the user stack. Byte da ta also can be pushed
to the stack. However, each byte also consumes one word o f stack. The byte o f data
is stored in the most significant byte location o f the word storage location and the
least significant byte is not affected.

At the completion o f processing o f the exception routine, the saved contents
o f internal registers can be restored by popping them from the stack. When pushing
or popping a number o f registers, the move multiple (M OVEM) instruction can be
used to perform the operation efficiently. For example, the instruction

M OVEM (USP) + ,D 0 /D 1 /D 2

would restore the contents o f D0, D j, and D2 from the user stack.
Moreover, the return instructions for exception processing and subroutines cause

autom atic reloading o f some internal registers. An example is the return from
exception (RTE) instruction. It causes the contents o f both PC and SR to be restored
from the top o f the stack.

6.9 64K-BYTE SOFTWARE-REFRESHED DYNAMIC RAM
SUBSYSTEM

The circuit diagram in Fig. 6.13 shows one way o f implementing a dynamic RAM
subsystem for a 68000 microcomputer system. This circuit is designed to provide 64K
bytes o f memory which are mapped into the address range 00800016 through
017FFF16 of the 68000’s address space.

Due to the large memory support capability o f the 68000, it is essential to buffer
all o f the memory interface signals. This is done by the leftmost group o f circuits
in Fig. 6.13. For example, two 74245 devices are used to buffer bidirectional data
bus lines D0 through D) 5 and two 74LS244 devices are used to buffer address lines
A | through A 16. These buffers increase the drive capability o f the address and data
buses over that supplied directly by the lines o f the 68000.

Sec. 6 .9 64K Byte Software-Refreshed Dynamic RAM Subsystem 185

Figure 6-13 Software-refreshed dynamic RAM subsystem (Motorola, Inc.).

1 8 6 Memory and Input/O u tpu t Interfaces o f the 6 8 0 0 0 M icroprocessor Chap. 6

Figure 6-13 (com.)

Let us next look at the storage a rray o f the m em ory subsystem. It is located
at the right o f the circuit d iagram and employs th irty-tw o 16K by 1 dynam ic RAM s.
The type o f m em ory device used is the M C M 4 1 16. T he circuit is set up to implement
a st ructure similar to tha t show n in Fig. 6.3. The upper 16 devices fo rm a 32K-byte
upper d a ta bank . This ban k is used to store even-addressed bytes o f d a ta and they
are transferred between microprocessor and m em ory over da ta bus lines D 8 through
D 15. The lower 16 devices form a 32K-byte lower d a ta b ank . It stores o d d bytes o f
da ta which are carried between the 68000 and m em ory over d a ta lines D0 through D7.

Sec. 6 .1 0 An I/O Instruction —MOVEP 187

Since dynamic RAMs are in use instead o f static RAMs, the address output
by the 68000 on A! through A 14 must be multiplexed into separate row and column
addresses before it can be applied to the mem ory devices. In Fig. 6.13 we see that
these address lines are input to two 74LS157 multiplexers which produce 7-bit row
and column addresses at their outputs , A, th rough A 7. The timing o f the address
output on these lines is determined by the PT N D output o f a 74LS74 flip-flop in
IC U9.

Both bank and byte/word selection is performed through the generation o f RAS
signals. Notice that the control logic implemented with ICs U 2 , U4, U 5 , and U9

p rod uces four RAS signals. T h ey a re denoted as R A S 1L|, R A S2U, R A S IL, and
RAS2L. Also, two CAS signals, C A Sy and C A S L, are produced by this section of
circuitry. The inputs from which the row select and column select signals are derived
are address bits A 14 th rough A 16, upper and lower data select UDS and LDS, and
the system clock SYSTEM 0.

For example, to perform a word access from the group 1 RAMs, both LDS
and UDS are logic 0. This makes both the R A SL and RASy signals active. At the
same time, the ad dress code A 16A I5A 14 is decoded by ICs U 2 and U 5 to enable both
RASili and R A SU to the memory array. These signals are synchronized to the output
o f the row address from the multiplexer. A short time later, the C A Sy and C A SL
signals are produced. They are synchronized to the ou tput of the column address
from the multiplexer.

Notice that the da ta acknowledge (DTACK) signal is also produced by this
section of control logic. It is buffered and then sent to the 68000.

This memory subsystem employs software refresh and not hardware refresh.
The 6840 device is provided for this purpose. It contains a timer that is set up to
initiate an interrupt to the 68000 every 1.9 ms. This interrupt has a priority level o f
7 and execution o f its service routine performs the software-refresh function. The
advantage o f software refresh is that the interface hardware is simplified. However,
it also has a disadvantage—the software and time overhead required to perform the
refresh operation.

6.10 AN I/O INSTRUCTION—MOVEP

The 68000 microprocessor has one instruction that is specifically designed for
communicating with LSI peripherals that interface over an 8 -bit data bus. It is the
move peripheral data (M OV EP) instruction. An example o f an LSI peripheral that
can be used in the 68000 microcomputer system is the 6821 peripheral interface adapter
(PIA). Internal to this device is a group o f byte-wide control registers. When the device
is built into the microcomputer system, these registers will all reside at either odd
addresses or even addresses. This poses a problem if we attempt to make multibyte
transfers by specifying word or long-word data operands. For instance, a MOVE
instruction for word data would cause the two bytes to be transferred to consecutive
byte addresses, one o f which is even and the other is odd. This problem is overcome
by using the M O V E P instruction.

188 Memory and Input/O utput Interfaces o f the 6 8 0 0 0 M icroprocessor Chap. 6

The general formats o f the instruction are

M O V E P Dn,d(An)

and

M O V E P d(An),Dn

The first form o f the instruction is for ou tput o f data. It copies the contents o f a
source operand that is in data register Dn to the location at the effective address
specified by the destination operand. Notice that the destination operand must always
be specified using address register indirect with displacement addressing.

As an example, let us write an instruction that will transfer a word of data that
is in D0 to two consecutive output ports. Assume that the contents o f A 0 are 16000,5
and it is a pointer to the first o f a group o f eight byte-wide registers in an LSI
peripheral. These registers are at consecutive even addresses. That is, register 0 is
at address 1600016, register 1 at 16002,6, and so on. We want to transfer da ta to
the last two o f these registers, registers 6 and 7. The displacement o f register 6 from
the address in A 0 is C ,6; therefore, the instruction is

M O V E P.W D0,12(A0)

Execution o f this instruction causes the bytes o f the word contents o f D0 to
be output to two consecutive even-byte addresses. The most significant byte is output
to the effective destination address, which is 1600C)6. This is register 6 . Then the
address is incremented by 2 to give 1600E16 and the least significant byte is ou tput
to register 7. The pointer address in A 0 remains unchanged.

A M O V EP instruction that employs long-word operands operates in a similar
way except that it would output four bytes to consecutive odd or even addresses.
As an example, let us assume that four byte-wide input ports are located at odd-byte
addresses 1600116, 1600316, 16005J6, and 16007,6. The data at these 32 input lines
can be read into a data register by executing a single M O V E P instruction. If A,
contains a pointer to the first input port , the long word o f da ta can be input to D (
with the instruction

M O V E P.L 0(A1),D1

6.11 THE 6821 PERIPHERAL INTERFACE ADAPTER

In the 68000 microcom puter system, parallel inpu t /ou tpu t ports can be implemented
by using the 6821 peripheral interface adapter (PIA). The 6821 is one o f the simpler
LSI peripherals that is designed for implementing parallel in p u t /ou tp u t . It has two
byte-wide I /O ports called A and B. Each line at both of these ports can be
independently configured as an input o r output.

Figure 6.14 is a block diagram that shows the internal architecture o f the 6821
device. Here we find six programmable registers. They include an output register (OR),
data direction register (DDR), and control register (CR) for each o f the I /O ports.
Let us overview the function o f each o f these registers before going on.

Sec. 6.1 1 The 6821 Peripheral Interface Adapter 189

Figure 6-14 B lock d ia g ram o f the 6821 (M o to ro la . Inc .).

All inpu t /ou tpu t data transfers between the microprocessor and PIA take place
through the ou tpu t da ta registers. These registers are 8 bits wide and their bits
correspond to the I / O port lines. For example, to set the logic level o f an ou tput
line at port A to logic 1, we simply write logic 1 into the corresponding bit in port
A ’s output register.

Each I /O line o f the 6821 also has a bit corresponding to it in the A or B data
direction register. The logic level o f this bit decides whether the corresponding line
works as an input or an ou tpu t . Logic 0 in a bit position selects input mode o f
operation for the corresponding I /O line and logic 1 selects ou tpu t operation. For
instance, port A can be configured as a byte-wide ou tpu t port by initializing its data
direction register with the value F F]6.

The control register (CR) serves three main functions. First, it is used to configure
the operation o f control inputs C A | , C A 2, C B ,, and CB2. A second function is that
it can be read by the 68000 to identify control status. However, its third function
is what we are interested in right now. This is how it is used to select between the

Determine Actfrv* CA1 ICB1) TreneWon foe Setting
Interrupt Reg IRQA(B)1 - (bh 71
b1 - 0 IRQA(B)1 set by high-to-low transition on CA1

(CB1 >
b1 * 1 IRQA(B)1 set by low-to-high transition on CA1

ICB1)

IRQA(B) 1 Interrupt Reg (btt 71
Goes high on active transition of CA1 (CB1I, Automa
tically cleared by MPU Read of Output Register A lBI
May also be cleared by hardware Reset

CA1 (CB1) Interrupt Request Enable Doable
b 0 * 0 Disables IRQAIB) MPU interrupt by CA1

(CB1) active transition 1
b0= 1 Enable IRQAIB) MPU Interrupt by CA1 ICB1)

active transition
1 IRQAIB) will occur on next (MPU generated) positive

transition of bO if CA1 (CB1) active transition oc
curred while interrupt was disabled

Control Register
b7 b6 b5 1 * 1 b3 b2 ^ 1 a*

IRQAIB) 1
Flag

IRQA(B)2
Flag

CA2 (CB2)
Control

DDR
Access

CA1 (CBD
Control

T

IRQA(B)2 Interrupt Flag (bit 6)
When CA2 ICB2) is an input, IRQAIB) goes high on ac
tive transition CA2 (CB2). Automatically cleared by
MPU Read of Output Register A(B) May also be
cleared by hardware Reset
CA2 (CB2I Established as Output (b5=1) IRQA(B)
2 = 0, not affected by CA2 ICB2) transitions

Determine« Whether Data Direction Regiater Or Output
Register is Addreeeed
b2 « 0 Data Direction Register selected
b2 = 1 Output Register selected

CA2 (CB2) Established as Output by b5 * 1
(Note that operation of CA2 and CB2 output

b5 b4 b3 functions are not identical)
— ^ C A 2

1 0 b3 = 0 Reed Strobe with CA1 Restore
CA2 goes low on first high-to-low
E transition following an MPU read
of Output Register A, returned high
by next active CA1 transition, as
specified by bit 1

b3 = 1 Reed Strobe with E Restore
CA2 goes low on first high-to-low
E transition following an MPU read
of Output Register A. returned high
by next high-to-low E transition dur
ing a deselect

CB2
b3 = 0 Write Strobe with CB1 Restore

CB2 goes low on first low-to-high
E transition following an MPU write
into Output Register B. returned
high by the next active CB1 transi
tion as specified by bit 1 CRB-b7
must first be cleared by a read of
data

b3 = 1 Write Strobe with E Restore
CB2 goes low on first low-to-high
E transition following an MPU write
into Output Register B. returned

b6 b4 b3 high by the next low-to-high E tran
sition following an E pulse which
occurred while the part was de
selected

1 1 I-----Set/Reeet CA2 (CB2)
CA2 ICB2) goes low as MPU writes
b 3 - 0 into Control Register
CA2 ICB2) goes high as MPU writes
b 3 - 1 in to Control Register

L

CA2 (CB2) Established as Input by b6= 0

& £4

0 " L CA2 (CB2) Interrupt Request Enable/Disable
b3 = 0 Disables IRQA(A) MPU Interrupt by

CA2 (CB2) active transition *
b3=1 Enables IRQAIB) MPU Interrupt by

CA2 ICB2I active transition
•IRQA(B) will occur on next IMPU generat-
led) positive transition of b3 if CA2 (CB2)
active transition occurred while interrupt
was disabled

Determines Active CA2 (CB2) Transition for
Setting Interrupt Rag IRQA(B)2 — (Bit b6)
b4 = 0 IRQAIBI2 set by high to-low transi

tion on CA2 (CB2)
b4= 1 IRQAIB)2 set by low-to-high transi

tion on CA2 (CB2)

Figure 6-15 C o n t ro l register bit fu n c tio n s (M o to ro la , Inc.).

190
i

Sec. 6.1 1 The 6821 Peripheral Interface Adapter 191

DDR and OR registers when they are loaded or read by the 68000. In Fig. 6 . 15 we
see that the logic level o f bit b-> in CR selects DDR when it is zero and OR when it is l .

Looking at Fig. 6.14, we find that the microprocessor interface of the 6821 is
shown on the left. The key signals here are the eight data bus lines D0 through D7.
It is over these lines that the 68000 can initialize the registers o f the 6821, write
comm ands to the control registers, read status from the control registers, and read
from or write into the peripheral da ta registers. The direction in which data are to
be transferred is signaled to the 6821 by the logic level o f R /W . For example, logic
0 on R /W indicates that data are to be written into one o f its registers.

Even though the 6821 has six addressable registers, only two register select lines
have been provided. They are labeled RS0 and RS,. The table in Fig. 6.16 shows
how they are used together with bit b2 o f the control registers to select the internal
registers. Notice tha t if both RS, and RS0 are logic 0, the data direction register and
ou tput register for port A are selected. As we pointed out earlier, the setting o f b 2

in the A control register selects between the two registers. For instance, if this bit
is logic 0, the data transfer takes place between the microprocessor and the DDR
for port A. In this way we see that bit 2 in control register A must be set to select
the appropriate register before initiating the data transfer.

F igu re 6-16 U ser-accessib le reg ister
se lec tion (M o to ro la , In c .).

As part o f the microprocessor interface, there are also three chip select inputs.
They are labeled CS0, C S p and CS2 and must be 1, 1, and 0, respectively, to enable
the microprocessor interface.

At the right side of the 6821 block diagram in Fig. 6.14, we find the A and
B byte-wide I /O ports. The individual I /O lines at these ports are labeled PA 0 through
P A 7 and PB0 through PB7, respectively.

Two more lines are associated with each I /O port. They are control lines. For
instance, looking at the A port, we find control lines CA, and C A 2. Notice that CA,
is a dedicated ou tpu t , but C A 2 is bidirectional and can be configured to operate as
either an input or an output. The mode o f operation o f these control lines are
determined by the settings o f the bits in port A ’s control register.

These control lines permit the user o f the 6821 to implement a variety o f different
I/O handshake mechanisms. For example, port A could be configured for a strobed
mode o f operation. If this is the case, a pulse is ou tput at C A 2 whenever new data
are available at P A 0 through P A 7. Moreover, the 6821 can be configured such that
the pulse at C A 2 is automatically produced by the 6821 or is generated under software

R S I R S 0

C o n t r o l
R eg is te - B-t

L o c « lion S e le c tedC R A ? C R B ?

0 0 1 X P e r ip h e ra l R eg is te r A

0 0 O X D a ta D ire c t io n R e g is te ' A

0 1 X X C o n ir o i R e g is te r A

1 0 X 1 P e r ip h e ra l Reg>ster B

1 0 X 0 O a ta D r e c t io n R e g is te r B

1 1 X X C o n t r o l R e g is ie r B

X D o n t C are

192 Memory and Input/O utput Interfaces of the 6 8 0 0 0 M icroprocessor Chap. 6

control from the 68000. In the automatic mode, the pulse that is output is o f a fixed
duration. But if the pulse is initiated by the 68000, it can be set to any duration.

6.12 DUAL 16-BIT PORTS FOR THE 68000 MICROCOMPUTER USING
6821s

The circuit in Fig. 6.17 shows how 6821 PIAs can be used to implement a parallel
I /O interface for a 68000 microcom puter system. At the left o f the circuit diagram,
we find the asynchronous interface bus signals. Included are address lines A | through
A 16, da ta lines D0 through D 15, and control signals AS, R /W , and DTACK.

In order to construct two 16-bit ports, we use two 6821 ICs, U 14 and U 15. The
A ports on the two 6821 ICs are cascaded to m ake a word-wide ou tput port . On the
other hand, the B ports on the two devices are cascaded to make a word-wide input
port.

This circuit has been designed such that the registers o f the PIAs reside in the
address range 18000)6 through 18007,6. The chart in Fig. 6.18(a) shows the address
for each register. Notice that the data direction registers corresponding to the bytes
o f the 16-bit output port are at addresses 1800016 and 18001)6. Those o f the 16-bit
input port are at 18004|6 and 1800516.

The address decoding for selecting between the two chips and their internal
registers is shown in Fig. 6 . 18(b). Notice that bits A, and A 2 o f the address are applied
to register select inputs RS0 and R St , respectively. Moreover, A , and A 4 are applied
to the CS, and CS0 chip select inputs o f both 6821 devices. The rest o f the address
lines, A 5 to A)6, and AS are decoded by gates U9A, U9B, U | 0E, U 11A, and U n B .
Their ou tpu t is synchronized with a 2-M Hz externally generated clock signal by
flip-flops U 13A and U ,3B. The output o f this circuit is the third chip select signal, CS2,
for the PIAs.

The data bus lines are simply buffered and then applied to both PIAs in parallel.
Notice that the upper P IA device is coupled to the 68000 over the lower eight data
bus lines and the lower P IA by the upper eight da ta lines. Therefore, as shown in
Fig. 6.18(a), the registers o f the upper device reside at odd byte addresses and those
o f the lower device are at even byte addresses.

To use the B ports on the two 6821 devices as inputs, their B port DDRs must
be initialized with all zeros. These two registers are located at addresses 18004l6 and
1800516, respectively. However, to select these DDRs, bit 2 in the corresponding
control registers must be loaded with logic 0. These control registers are located at
addresses 1800616 and 1800716. Thus, to configure the B ports as inputs, we can
execute the following instruction sequence:

M O V E.W m ,$18006 SE LE C T D A T A -D IR E C TIO N REGISTERS B

M O V E.W m ,$18004 P O R T B IS IN P U T -P O R T

Execution o f these instructions loads the word-wide memory locations at addresses
18006|f) and 18004)6 with 0000 |6.

Sec. 6.1 2 Dual 16 -B it Ports fo r the 6 8 0 0 0 M icrocom pute r Using 6 8 2 1 s 1 9 3

Fi
gu

re

6-
17

D

ua
l

16
-b

it
I/O

po

rt
s

us
in

g
th

e
68

21

(M
o

to
ro

la
,

In
c.

).

194

Device Type

U l U2 U3 MC8T97
J4 M IS 0 9
U5 UG Ub, u a /4LSJ73
,i9 741S260
U lO /4lS l>a
u i t /4 L S T
U l? /4 t sa>
U l3 74Ś114
U14 IMS MC6BB2I
U '6 0 1 / M C 8 Ï2 6

M c e t 26

D15

Figure 6-17 (cont.)

_ J

-
3
*J

6

-
•

18

O uiou t M SBs

Input

RESET i5 .

Sec. 6 .12 Dual 1 6-Bit Ports for the 6 8 0 0 0 M icrocomputer Using 68 21 s 195

18000 P erip h e ra l D a ta /D D R A IU15I
i8001 P erip h e ra l D a ta /D D R A IU14I
18002 CRA IU15I
18003 CRA (U14)
18004 P erip h e ra l D a ta /D D R B IU15I
18005 P erip h e ra l D a ta /D D R B IU14)
18006 CRB (U15I
18007 CRB (U141

(a)

'^23^22^21^20 Ai9A,8A i7A16 A ^ A ^ A ^ A ^ A u A |0A9A8 AJAJA5A4 A3A2A,A 0
_/V_________Jv_________)

0000 0001 1000 0000 0000 0000

(b)

F ig u re 6-18 (a) 6821 reg ister a d d re s s m a p (M o to ro la , In c .) ; (b) ad d re s s d e c o d in g fo r
p o r t se le c tio n .

To configure the A ports on the two chips, we first select the DDRs for port
A by clearing bit 2 in their con tro l registers. These CRs are located at addresses
18002l6 and 18003|6. The DDRs a re located at 1800016 and 18001 !6. T o configure
the A ports as o u tpu ts , we must load their D DRs with all Is. This gives the following
instruction sequence:

M O V E .W #$0,$18002 S E L E C T D A T A -D IR E C T IO N R E G IS T E R S A

M O V E .W # $ F F F F ,$18000 P O R T A IS O U T P U T -P O R T

Now to use the ports for inputting or ou tp u t t in g o f data , we must select the
peripheral da ta (ou tpu t) registers. T o select the two ou tpu t registers for port A, we

1 9 6 Memory and Input/Output Interfaces of the 6 8 0 0 0 M icroprocessor Chap. 6

must load their control registers so that bit 2 is logic l. A similar configuration is
needed for port B. To do this, the following instructions can be executed:

M O V E.W #$0404,$18002 SELECT D ATA REGISTERS A

M O VE.W #$0404,$18006 SELEC T DATA REGISTERS B

Now the two ports are ready to perform I /O operations.
As an example o f how data are input and outpu t , let us show how to read a

16-bit word from the input port , increment it by 1 , and ou tpu t the new value to the
ou tput port. This can be accomplished by the following instructions:

M O VE.W $18004,D1

A D D Q .W #1,D1

M O VE.W D l , $18000

The first instruction moves the contents o f the input port to D t . Then we increment
the value in D , by 1. Finally, the third instruction outputs the value in D, to the
ou tput port.

6.13 SYNCHRONOUS MEMORY AND I/O INTERFACE

Up to this point in the chapter, we have been considering the asynchronous bus
interface o f the 68000 microprocessor. However, the 68000 also provides a
synchronous bus interface. This capability is provided primarily for interface with
slower 8 -bit LSI peripherals such as those in the 6800 family. The synchronous
interface is shown in Fig. 6.19. This interface looks quite similar to the asynchronous

Figure 6-19 Synchronous memory and I /O interface.

Sec. 6 .1 3 Synchronous Memory and I/O Interface 197

interface o f Fig. 6.1. It includes the complete address bus A ^ th ro ug h A_2.v the 16-bit
data bus D0 through D 15, and control signals UDS, LDS, AS, and R /W . Notice that
DTACK is not part o f this interface. Instead, it is replaced by three synchronous
bus control signals. They are valid peripheral address (VPA), valid memory address
(VMA), and enable (E).

Let us look briefly at the function o f each o f these control signals. VPA is an
input to the 68000. It must be switched to the 0 logic level to tell the 68000 to perform
a synchronous bus cycle. As shown in Fig. 6.19, external decoder circuitry is supplied
in the interface to detect that the address o n the bus is in the address space o f the
synchronous peripherals. On the other hand, VMA is an output produced by the 68000
only during synchronous bus cycles. It signals that a valid address is on the bus.

E is an enable clock that is produced within the 68000. It is at a rate equal to
1/10 that o f the system clock. For instance, in a 10-Mz 68000 microcomputer system,
E is at 1 MHz. The duty cycle o f this signal is such that the pulse is at the 1 logic
level for four clock states and at the 0 logic level for six clock states. This signal is
applied to the E clock input o f 6800 LSI peripherals.

Synchronous Bus Cycle

A flowchart o f the 68000’s synchronous bus cycle is shown in Fig. 6.20(a). Moreover,
a general timing diagram for the key interface signals involved in a synchronous
r e a d /write operation is shown in Fig. 6.20(b). Notice that the waveforms of the FC,
R /W , UDS, and LDS signals are not shown. They have the same function and timing
as in the asynchronous bus cycle.

The synchronous bus cycle starts out just like an asynchronous bus cycle with
a function code being output on the FC bus during state S0. It is followed by the
address on A, through A23 during S|. When the address is stable in S2, AS is switched
to the 0 logic level. At this time R /W is set to 0 if a write cycle is in progress; otherwise,
it stays at the 1 logic level. Moreover, if a write operation is in progress, the data
are ou tput on D0 through D j 5 and it is maintained valid during the rest o f the bus
cycle.

By the end o f S4, external circuitry must have decoded the address on the bus.
At this time, it asserts VPA by switching it to the 0 logic level. In response to this,
the 68000 begins to assert wait states to extend the bus cycle. At the end o f the next
clock state, the VMA output is switched to the 0 level. This signals external circuitry
that an address is on the bus. The peripheral transfers the data after E is active. For
a read cycle, the M PU reads the da ta when E goes low. The data t ransfer cycle is
terminated by the processor by negating control signals VMA, AS, UDS, and LDS.

Interfacing the 6821 PIA to the Synchronous Interface Bus

The circuit diagram o f Fig. 6.17 illustrates how 6821 PIAs are interfaced to the 68000’s
asynchronous bus. This circuit can be easily modified so that the LSI peripherals

198 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

PROCESSOR SLAVE
Initiate Cycle

II The processor starts a normal Read or
W rite cycle

t
Define M6800 Cycle

II External hardware asserts Valid Peripheral
Address (VPA)

f
Synchronize W ith Enable

1) The processor monitors Enable (El until it is
low (Phase 1)

2) The processor asserts Valid Memory Ad
dress (VMA)

Transfer Data
1) The peripheral waits until E is active and

then transfers the data

T
Terminate Cycle

1) The processor waits until E goes low (On a
Read cycle the data is latched as E goes
low internally)

2) The processor negates VMA__
3) The processor negates AS. UDS. and ID S

I
Start Next Cycle

(a)

Figure 6-20 (a) Synchronous bus cycle flowchart (Motorola, Inc.).

w o rk o f f a s y n c h r o n o u s b u s cycle in s te a d o f a n a s y n c h r o n o u s b u s cycle . F ig u re 6.21
sh o w s a s im p le c ircu it th a t m a k e s th is m o d i f ic a t io n . F irs t , the IC s U l iA , U j 2B, U 13a .
a n d U 13B a re r e m o v e d f r o m th e c i rcu it o f F ig . 6 .17 . T h is is b e c a u s e D T A C K is no t
re q u ir e d to s u p p o r t th e s y n c h r o n o u s b u s . M o r e o v e r , th e E o u tp u t o f th e 68000 n o w
gets d i rec t ly c o n n e c t e d to th e E in p u t o f b o th 6821 dev ices in p a ra l le l .

1
9

9

CLK

A ,-Al _ / 23

SO SI S2 S3 S4 w w w w w w yv w w w w w S5 S6 S7 SO

AS \ /

L \ \
VPA \ /

VMA \

Data out X X
Data in

(b)

Figure 6-20 (com.) (b) T im in g d ia g ra m (M o t o r o l a , Inc.).

20 0 Memory and Input/Output Interfaces of the 6 8 0 0 0 M icroprocessor Chap. 6

F igure 6-21 C o n v ers io n circu it fo r im p lem en ting sy n ch ro n o u s bus cycle (M o to ro la ,
Inc .).

Looking at Fig. 6.21, we see that the chip select (CS) output at pin 6 o f U 11B
gets connected to one input o f the 74LS00 N AN D gate. The other input o f this gate
is supplied by the VMA outpu t o f the 68000 after it is inverted. The ou tput o f the
NAN D gate goes to the CS2 input o f both 6821 devices in parallel. In this way, we
see that the 6821s get chip-selected only when one o f their addresses is on the bus
and the 68000 has signaled that a valid address is on the bus during a synchronous
bus cycle.

The upper N AN D gate in this circuit also has CS as one o f its inputs and AS
as the other. Therefore, it detects when an address corresponding to one o f the LSI
peripherals is on the bus. When this condition occurs, it switches VPA to logic 0,
thereby signaling to the processor that a synchronous bus cycle should be performed.

6.14 SERIAL COMMUNICATIONS INTERFACE

Another type o f I /O interface that is widely used in microcomputer systems is known
as a serial communications port. This is the type o f interface that is used to connect
peripheral units, such as C R T terminals and printers , to a microcomputer. It permits
da ta to be transferred between the various units o f the system. For instance, data
input at the keyboard o f a terminal are passed to the M PU part o f the microcomputer
through this type o f interface. Let us now look into the different types o f serial
interfaces that are implemented in microcom puter systems.

Synchronous and Asynchronous Data Communications

Two types of serial data communications are widely used in microcomputer systems.
They are called asynchronous communications and synchronous communications.
By synchronous, we mean that the receiver and transmitter sections o f the two pieces
o f equipment that are communicating with each other must run synchronously. For
this reason, as shown in Fig. 6.22(a), the interface includes a Clock line as well as
Transmit Data, Receive Data, and Signal C om m on lines. It is the clock signal that
synchronizes both the transmission and reception o f data.

Sec- 6 .1 4 Serial Communications Interface 201

(a)

i i i i i i i i i i r ~i n__ n _ n j “
'------------------------- .-------------------------/v----------- .------------ '>-------------«------------- '

Data SYN SYN
CHAR # 2 CHAR #1

(bl

F igure 6-22 (a) S y n ch ro n o u s co m m u n ic a tio n s in te rface ; (b) sy n ch ro n o u s d a ta
tran sm issio n fo rm a t.

The format used for synchronous communication o f data is shown in Fig.
6.22(b). To initiate synchronous transmission, the transmitter first sends out
synchronization characters to the receiver. The receiver reads the synchronization
bit pattern and compares it to a known sync pattern. Once they are identified as being
the same, the receiver begins to read character da ta o ff the communications line.
Transfer o f da ta continues until the complete block o f da ta is received or
synchronization is lost between the receiver and transmitter. If large blocks o f data
are being sent, the synchronization characters may be periodically resent to assure
that synchronization is maintained. The synchronous type o f communications is
typically used in applications where high-speed data transfer is required.

The asynchronous method o f communications eliminates the need for the Clock
signal. As shown in Fig. 6.23(a), the simplest form of an asynchronous communication
interface could consist o f a Receive Data, Transmit Data, and Signal C om m on
communication lines. In this case, the data to be transmitted are sent out one character
at a time and at the receiver end o f the communication line synchronization is
performed by examining synchronization bits that are included at the beginning and
end o f each character.

The format o f a typical asynchronous character is shown in Fig. 6.23(b). Here
we see that the synchronization bit at the beginning o f the character is called the start
bit and that at the end o f the character the stop bit. Depending on the communications
scheme and device used, 1, l ÿ , or 2 STOP bits can be used. The bits o f the character
are embedded between the start and stop bits. Notice that the start bit is always input
or output first. It is followed in the serial bit stream by the LSB o f the character,
the other 6 bits o f the character, a parity bit, and the stop bits. For instance, 7-bit
ASCII can be used and parity added as an eighth bit for higher reliability in
transmission. The duration o f each bit in the format is called a bit time.

202 Memory and Input/O utput Interfaces of the 6 8 0 0 0 Microprocessor Chap. 6

Transm it data

Receive data

System 1 Signal common System 2

(a)

MSB LSB

Stop
bit

t '
P arity

b it

Data

Start
bit

(b)

F igu re 6-23 (a) A sy c h ro n o u s c o m m u n ic a tio n s in te rface ; (b) a s y n ch ro n o u s d a ta
tra n sm iss io n fo rm a t.

The fact that an 0 or 1 logic level is being transferred over the communication
line is identified by whether the voltage level on the line corresponds to that o f a
mark or a space. The start bit is always to the mark level. It synchronizes the receiver
to the transmitter and signals that the unit receiving data should start assembling
the character. Stop bits are to the space level. This assures that the receiving unit
sees a transition o f logic level at the start bit o f the next character.

The USART and UART

Since serial communication interfaces are so widely used in modern electronic
equipment, special LSI peripheral devices have been developed to permit easy
implementation o f these types o f interfaces. Some o f the names that these devices
go by are UART (universal asynchronous receiver/transmitter) and USART (universal
synchronous/asynchronous receiver/transmitter).

Both U ARTs and USARTs have the ability to perform the parellel-to-serial
conversions needed in the transmission o f data and the serial-to-parallel conversions
needed in the reception o f data . For da ta that are transmitted asynchronously, they
also have the ability to frame the character automatically with a start bit, parity bit,
and the appropriate stop bits.

Moreover, for reception o f data, UARTs and USARTs typically have the ability
to check characters automatically as they are received for correct parity, and for two
other errors, known as framing error and overrun error. A framing error means that
after the detection o f the beginning o f a character with a start bit the appropriate
number o f stop bits were not detected. This means that the character that was
transmitted was not received correctly and should be resent. An overrun error means

Sec. 6 .1 4 Serial Communications Interface 203

that the prior character that was received was not read out o f the UARTs receive
data register by the microprocessor before another character was received. Therefore,
the first character was lost and should be retransmitted.

A block diagram o f a typical U A R T is shown in Fig. 6.24. Here we see that
it has four key signal interfaces: the microprocessor interface, the transmitter interface,
the receiver interface, and the handshake control interface. Let us now look at each
o f these interfaces in more detail.

Microprocessor
interface

Transm itter
interlace

Receiver
interlace

Handshake
control

interlace

F igu re 6-24 B lock d ia g ram o f a U A R T .

LSI USARTs and UARTs cannot stand alone in a communication system. Their
operation must be controlled by a general-purpose processor such as a microprocessor.
The microprocessor interface is the interface that is used to connect the U ART to
an M PU . Looking at Figure 6.24, we see tha t this interface consists o f an 8 -bit
bidirectional da ta bus (D0 - D7) and a minimum o f three control lines, CS, RD, and
W R .

All da ta transfers between the U AR T and M PU take place over the 8 -bit data
bus. Two uses o f this bus are for the input o f character da ta from the receiver o f
the U AR T and for the output o f character data to its transmitter. Other types o f
information are also passed between the MPU and UART. Examples are mode control
information, operation comm ands, and status.

LSI UARTs, just like the 6821 LSI peripheral we discussed earlier in the chapter,
can be configured for various modes o f operation through software. Mode control
instructions are what must be issued to a U AR T to initialize its control registers for
the desired mode o f operation. For example, the format o f the da ta frame used for
transmitted or received data can be configured through software. Typical options
are character length equal to from 5 to 8 bits; even, odd, or no parity; and 1, l y ,
or 2 stop bits.

We pointed out earlier that a U AR T cannot perform the communication
function on its own. Instead, the sequence o f events that is needed to initiate
transmission and reception is controlled by com m ands issued to the U AR T by the
MPU. For instance, the MPU can initiate a request for transmission of data to another

204 M emory and Input/O u tpu t Interfaces o f the 6 8 0 0 0 M icroprocessor Chap. 6

unit by writing a com m and to the U A R T that forces its RTS control outpu t to its active
0 logic level. The logic 0 at RTS signals the system at the o ther end o f the
com m u n ica t io n line to p repare to receive d a ta . At the receiver end o f the
co m m unica t ion line, the M P U can acknow ledge tha t it is ready to receive da ta by
sending a c o m m a n d to its U A R T tha t forces the D TR contro l o u tp u t to logic 0.

M ost U A R T s have a status register tha t con ta ins in fo rm at io n related to its
current state. For example, it m ay conta in flag bits tha t represent the current logic
state o f signal lines such as CTS. This perm its the M P U to examine the logic state
o f the line th rou gh softw are.

Besides in fo rm at io n a b o u t the logic level o f con tro l lines, the sta tus register
typically con ta ins flag bits for e rro r conditions such as parity e rror, overrun e rror,
and fram ing erro r . A fte r reception o f a character , the M P U can first read these bits
to assure that a valid charac te r has been received, and if the bits are at their inactive
levels, the charac te r should be read from the receive da ta register within the U A R T .

At the o th e r side o f the block in Fig. 6.24, we find the transmitter and receiver
interfaces. T he t ransm itte r interface has two signal lines: transm it da ta (TxD) and
transm itter ready (T xRDY). T x D is the line over which the t ransm itte r section o f the
U A R T o u tpu ts serial character d a ta . As show n in Fig. 6.25, this o u tp u t line is
connected to the receive d a ta (R xD) input o f the receiver section in the system at the
o th e r end o f the com m u n ica t ion line.

F ig u re 6-25 S im p le a s y n c h ro n o u s c o m
m u n ic a t io n s in te r fa c e b e tw e en a
m ic ro c o m p u te r a n d te rm in a l.

Usually, the transm it te r section o f an LSI U A R T can hold only one character
at a time. This character d a tu m is held in the transmit data register within the U A R T.
Since only one charac te r can be held within the U A R T , it must signal the M P U when
it has completed transm ission o f this charac ter. T he T x RDY line is provided for this
purpose. As soon as transmission o f the character is complete, the transmitter switches
T x RDY to its active logic level. This signal should be re tu rned to an in terrup t input
o f the M PU . In this way, its occurrence can cause program control to be passed quickly
to a service rou tine that will o u tp u t an o th e r charac te r to the t ransm itte r d a ta register
and then reinitiate transmission. In som e U A R T s, the t ransm itte r em pty condition
is identified by a sta tus bit instead o f an external signal. In this case the status bit
can be polled th rou gh software.

The receiver section is similar to the t ransm itte r we just described. However,
here the receive da ta (R xD) line is the input tha t accepts bit-serial character da ta that

Sec. 6 .1 4 Serial Communications Interface 205

are transmitted from the other system’s transmitter. Moreover, the receiver ready
(R x r DY) output is again used as an interrupt to the M PU. But this time it signals
the M PU that a character has been received. The service routine that is initiated must
first determine whether or not the character is valid, and if it is, it must read the
character out o f the U A R T ’s receive data register. Here again a status bit instead
o f a signal bit can be used to signal the receiver fu ll condition.

Using the handshake control signals RTS, DSR, DTR, and CTS, different types
o f asynchronous communication protocols can be implemented through the serial
I /O interface. By protocol we mean a handshake sequence by which two systems
signal each other that they are ready to communicate.

A simple asynchronous comm unication interface that uses these control lines
is shown in Fig. 6.25. In this example, a protocol can be set up such that when the
terminal wants to send data to the microcomputer it will issue a request at its request
to sent (RTS) outpu t . To do this, the M PU o f the terminal must issue a com m and
to the U AR T that causes it to set the RTS line to its active 0 logic level. RTS o f the
terminal is applied to the da ta terminal ready (DTR) input o f the microcomputer.
In this way, it tells the microcomputer that the terminal wants to transmit da ta to it.

When the microcomputer is ready to receive data , it acknowledges this fact to
the terminal by activating the da ta set ready (DSR) output o f its UART. The M PU
in the microcomputer does this by issuing a com m and to the U A R T that switches
DSR to its active 0 logic level. This signal is returned to the clear to send (CTS) input
o f the te rm inal’s U AR T and tells the U A R T in the terminal to start outputting data
on TxD. At the same time, the receiver section in the UART within the microcomputer
begins to read da ta from its R xD input.

If a U A R T does not have true DSR, DTR, or CTS signal lines, external logic
circuitry can be used to generate these signal functions from the provided signals.

Baud Rate and the Baud Rate Generator

The rate at which data transfers take place over the receive and transmit lines is known
as the baud rate. By baud rate we mean the number o f bits o f data that are transferred
per second o f time. For instance, some o f the com m on data transfer rates are 300
baud, 1200 baud, and 9600 baud. They correspond to 300 bits/second (bps), 1200
bps, and 9600 bps, respectively.

The baud rate at which da ta are transferred determines the bit time. That is,
the amount o f time each bit o f da ta is on the comm unication line. At 300 baud, the
bit time is found to be

t BT = 1/300 bps - 3.33 ms

Baud rate is set by a part o f the serial comm unication interface called the baud
rate generator. This part o f the interface generates the clock signal that is used to
drive the receiver and transmitter parts of the UART. Some LSI UARTs have a built-in
baud rate generator; others need an external circuit to provide this function.

206 Memory and Input/O utput Interfaces of the 6 8 0 0 0 Microprocessor Chap. 6

The RS-232C Interface

The RS-232C interface is a s tandard hardware interface for implementing
asynchronous serial da ta communication ports on devices such as printers, CRT
terminals, keyboards, and modems. The pin definitions and electrical characteristics
o f this interface are defined by the Electronic Industries Association (EIA). The aim
behind publishing standards such as the RS-232C is to assure compatibility between
equipment made by different manufacturers.

Peripherals that connect to a microcom puter can be located anywhere from
several feet to many feet from the system. For instance, in large systems it is common
to have the microcomputer part o f the system in a separate room from the terminals
and printers. This leads us to the main advantage o f using a serial interface to connect
peripherals to a microcomputer, which is that as few as three signal lines can be used
to connect the peripheral to the M PU : a Receive Data line, a Transmit Data line,
and a C om m on G round . This results in a large savings in wiring costs and the small
number o f lines that need to be put in place also leads to higher reliability.

The RS-232C s tandard defines a 25-pin interface. Figure 6.26 lists each pin and
its function. Note that the three signals that we mentioned earlier, Transmit Data,
Receive Data, and Signal C om m on, are located at pins 2, 3, and 7, respectively. Pins
are also provided for additional control functions. For instance, pins 4 and 5 are
the Request To Send and Clear To Send control signals. These two signals are also
frequently used when implementing an asynchronous comm unication interface.

The RS-232C interface is specified to operate correctly over a maximum distance
o f 100 feet. To satisfy this distance specification, a bus driver is used to buffer the
transmit line to provide the appropria te drive current and a bus receiver is used at
the receive line. RS-232C drivers and receivers are available as standard ICs. These
buffers do both the voltage-level translation needed to convert the TTL-compatible
outputs o f the U A R T to the mark and space voltage levels defined for the RS-232C
interface. The voltage levels that are normally transmitted for a mark and a space
are + 12 V dc and - 12 V dc, respectively. For the RS-232C interface, all voltages
below - 3 V dc are equal to a mark and all voltages above + 3 V dc are considered
a space.

The RS-232C interface is specified to support baud rates o f up to 20,000 bps.
In general, the receive and transmit baud rates do not have to be the same; however,
in most simpler systems they are set to the same value. For instance, a baud rate
that is widely used in communication between an M PU and a printer is 1200 bps.
This corresponds to a bit time equal to .833 ms.

Simplex, Half-Duplex, and Full-Duplex Communication Links

Applications require different types o f asynchronous links to be implemented. For
instance, the communication link needed to connect a printer to a microcomputer
just needs to support communications in one direction. That is, the printer is an

Sec. 6 .1 4 Serial Com m unications Interface 20 7

Pin Signal

1 Protective Ground
2 Transm itted Data
3 Received Data
4 Request to Send
5 Clear to Send
6 Data Set Ready
7 Signal Ground (Common Return)
8 Received Line Signal Detector
9 Reserved for Data Set Testing

10 Reserved for Data Set Testing
1 1 Unassigned
12 Secondary Received Line Signal Detector
13 Secondary Clear to Send
14 Secondary Transm itted Data
15 Transmission Signal Element Timing
16 Secondary Received Data
17 Receiver Signal Element Timing
18 Unassigned
19 Secondary Request to Send
20 Data Terminal Ready
21 Signal Quality Detector
22 Ring Indicator
23 Data Signal Rate Selector
24 Transm it Signal Element Tim ing
25 Unassigned

Figure 6-26 RS-232C interface pins and functions.

o u tp u t - o n ly dev ice ; th e re fo r e , th e M P U o n ly n e e d s to t r a n s m i t d a t a to th e p r in te r .
D a ta a re n o t t r a n s m i t t e d b a c k . In th is case , a s sh o w n in F ig . 6 .27 (a) , a single
u n id i r e c t io n a l c o m m u n ic a t i o n line c a n be u se d to c o n n e c t th e p r in te r a n d
m ic r o c o m p u te r to g e th e r . T h is ty p e o f c o n n e c t io n is k n o w n as a sim plex
communication link.

O th e r dev ices , su c h as th e C R T te rm in a l w ith k e y b o a r d s h o w n in Fig. 6 .2 7 (b) ,
need to b o th t r a n s m i t d a t a to a n d receive d a t a f r o m th e M P U . T h a t is, th e y m u s t
b o th in p u t a n d o u t p u t d a t a . T h is r e q u i r e m e n t c a n a l so be sa t is f ie d w ith a s ing le
c o m m u n ic a t io n line by se tt ing u p a half-duplex communication link. In a h a l f -d u p le x
l ink , d a t a a re t r a n s m i t t e d a n d rece ived o v e r th e s a m e line; th e re fo r e , a sys tem c a n n o t
t r a n s m i t a n d receive d a t a at th e s a m e t im e .

I f h ig h e r -p e r fo rm a n c e c o m m u n ic a t io n is r e q u ire d , s e p a ra te t ra n sm it a n d receive
lines can be used to c o n n e c t th e p e r ip h e ra l a n d m ic r o c o m p u te r . W h e n th is is d o n e ,
d a t a c a n be t r a n s f e r r e d in b o th d i r e c t io n s a t th e sa m e t im e . T h is ty p e o f link is
i l lu s t ra te d in F ig . 6 .27(c). It is ca l led a fu ll-duplex communication link.

208 Memory and Input/O utput Interfaces o f the 6 8 0 0 0 M icroprocessor Chap. 6

Transmit line

la)

CRT

M icrocomputer
r J r*-, Transmit Receive line rr, terminal

with
OH keyboard

lh»

M icrocomputer

Transmit line

Receive line

<c)

CRT
terminal

with
keyboard F igure 6-27 (a) S im plex

c o m m u n ic a tio n s lin k ; (b) h a lf-dup lex
c o m m u n ic a tio n s lin k ; (c) fu ll-dup lex
c o m m u n ic a tio n s link .

6.15 THE 6850 ASYNCHRONOUS COMMUNICATIONS INTERFACE
ADAPTER

The 6850 asynchronous communications interface adapter is another important LSI
peripheral that is frequently used in 68000 microcomputer systems. It permits simple
im plementation o f a serial data communications interface. As its name implies, the
6850 is capable o f implementing an asynchronous communication interface. For
instance, the 6850 can be used to implement an RS-232C port. This is the type o f
interface that is used to connect a C R T terminal or printer to a microcomputer. To
support connection o f these two peripheral devices, the microcomputer would need
two independent RS-232C I /O ports.

The programmability o f the 6850 provides for implementation o f a very flexible
asynchronous communication interface. It contains a full-duplex receiver and
transmitter that can be configured through software for communication of data using
formats with character lengths o f 7 or 8 bits, with either even or odd parity and 1
or 2 stop bits. Moreover, the 6850 has the ability to detect automatically the occurrence
o f parity, framing, and overrun errors during data reception.

A block diagram showing the internal architecture o f the 6850 is shown in Fig.
6.28. From this d iagram, we find that it includes four key sections: the bus interface
section, which consists o f the data bus buffers block and the chip select and read/write
control block; the transmit section, which consists o f the transmit data register,

Sec. 6 .1 5 The 6 8 5 0 Asynchronous Com m unications Interface Adapter 2 0 9

F ig u re 6-28 B lock d ia g ra m o f (he 6850 A C IA d ev ice (M o to ro la , In c .) .

transmit shift register, and transmit control blocks; the receive section, which consists
o f the receive d a ta register, receive shift register, and receive contro l blocks; and the
contro l section, which consists o f the control register, sta tus register, and interrupt
logic blocks. Let us now look at each o f these sections in m ore detail.

The bus interface section is used to connect the 6850 to a m icroprocessor such
as the 68000. Notice tha t the interface includes an 8 -bit bidirectional d a ta bus D 0

th rough D 7 tha t is driven by the da ta bus buffers . It is over these lines tha t the
microprocessor transfers configura t ion in fo rm at ion to the 6850’s contro l register,
reads its sta tus register, and inputs or ou tpu ts character da ta .

__D ata transfers take place over the bus under control o f the signals read /w rite
(R /W) , register select (RS), enable (E), and chip selects CS0, C S , , and C S2. All o f
these signals are inputs to the chip select an d read /w rite contro l block. Typically,
the 6850 is located at a specific address in the m icrocom puter’s memory address space.
W hen the m icroprocessor is to access registers within the 6850, it puts this address
on the address bus. The address is decoded by external circuitry and must p roduce
logic 1 at the C S 0 and CS, inputs and logic 0 at the CS 2 input. These three inputs
must be at these logic levels for a read or write bus cycle to take place to the 6850.

The o ther two contro l signals, R /W and RS, tell the 6850 what type o f da ta
transfer is to take place over the bus. Figure 6.29 shows the various types o f read/write

210 M e m o ry and In p u t/O u tp u t In te rfa ces o f th e 6 8 0 0 0 M ic ro p ro ce sso r Chap. 6

B u ffe r Address

Data RS • R/W RS • R /W RS • R7W RS • R/W

Bus Transm it Receive
L ine Data Data C o n tro l Status

Number Register Register Register Register

(W rite O n ly) (Read O nly) (W rite O nly) (Read O nly)
0 Data B i t O* Da ta B i t O C o u n t e r D iv i d e

Select 1 (CRO)
Receive Da ta Register

F u l l I R D R F 1

1 D a ta B i t 1 Da ta B i t 1 C o u n t e r D iv i d e
Select 2 i C R I)

T ra n s m i t Da ta Register
E m p t y l T DR E)

2 Data B i t 2 Da ta B i t 2 W o rd Se lect 1
ICR21

Da ta C a rn er D e tec t
ID C D I

3 D a ta B i t 3 D a ta B i t 3 W o rd Select 2
(C R 3)

Clear t o Send
(C TS)

4 Da ta B i t 4 D a ta B i t 4 W o rd Se lect 3
(C R 4 I

F r a m in g E r ro r
IF E)

5 Da ta B i t 5 Da ta B i t 5 T ra n s m i t C o n t r o l 1
(C R 5)

Receiver O v e r ru n
l O V R N l

6 D a ta B i t 6 Da ta B i t 6 T ra n s m i t C o n t r o l 2
(CR6>

P ar . t y E r ro r (PE)

7 Da ta B i t 7 * • * Da ta B n 7 * * Receive I n t e r r u p t
Ena b le (C R 7 I

I n t e r r u p t Re quest
i Tr q i

• Lea d ing b i t LSB B i t 0
* ’ D a ta b i t w i l l be zero m 7 b i t p lu s p a r i t y m o d e s

* * * D a ta b i t is d o n ' t care in 7 b i t p lu s p a r i t y m o d e s

Figure 6-29 C on tro l signals and corresponding bus data transfers (M otoro la , Inc.).

o p e ra t io n s th a t c a n o c c u r . F o r e x a m p le , th e first s ta te in th e ta b le , RS • R / W ,
c o r r e s p o n d s to a w ri te o f c h a r a c t e r d a t a f ro m th e m ic ro p ro c e s s o r to th e t r a n sm i t
d a t a reg is ter w i th in th e 6850. N o t ice t h a t in gen e ra l R / W = 0 s ignals th a t th e
m ic ro p ro c e s s o r is w ri t in g d a t a t o th e 6850, R / W = 1 in d ica te s th a t d a t a a re b e ing
read f ro m th e 6850, a n d the logic level o f RS ind ica tes w h e th e r c h a ra c te r d a ta , co n tro l
in f o r m a t io n , o r s ta tu s in f o r m a t io n is o n th e d a t a bus .

Example 6.1
What type o f data transfer is taking place over the bus if the control signals are RS =
0 and R /W = 1?

Solution. Looking at the table in Fig. 6.29, we see that RS = 0 and R /W = I correspond
to the condition RS • R /W ; therefore, status information is being read from within the
6850.

T h e rece iver sec t ion o f th e 6850 is re s p o n s ib le fo r r e a d in g th e serial b i t - s t re am
o f d a t a at the receive d a t a (R ^ d a t a) >n P ut a n d c o n v e r t in g it to p a ra l le l fo rm . W h e n
a m a r k vo ltag e level is d e tec ted o n th is line, th e rece iver e n a b le s a c o u n te r . A s the
c o u n te r in c r e m e n ts to a va lue e q u a l to 1 /2 a bit t im e , th e logic level at th e R x DATA
line is sam p led aga in . I f it is still a t th e m a rk level, a valid s tart pu lse has been detec ted .
T h e n R x DATA is e x a m in e d ev e ry t im e th e c o u n te r in c rem en ts th r o u g h a n o th e r bit
t im e. T h is co n tin u es unti l a c o m p le te c h a ra c te r is a ssem b led in the receive shift register
a n d th e s to p bit is r e a d . A f te r th is , th e co m p le te c h a ra c t e r is t r a n s fe r r e d in para l le l
in to th e receive d a t a regis ter .

Sec. 6 .1 5 The 6 8 5 0 Asynchronous Communications Interface Adapter 211

During reception o f a character, the receiver automatically checks the character
da ta for parity, framing, or overrun errors. If one o f these error conditions occurs,
it is flagged by setting a corresponding bit in the status register. Then the receive
data register full (RDRF) status bit is set to 1 and, assuming tha t the receive interrupt
enable bit in the control register is set to 1, the interrupt request (IRQ) output switches
to logic 0. This signal can be sent to the microprocessor to tell it that a character
is available and should be read from the receive da ta register. RDRF is automatically
reset to logic 0 when the M PU reads the contents o f the receive da ta register.

The 6850 does not have a built in baud rate generator. For this reason, the clock
signal that is used to set the baud rate must be externally generated and applied to
the receive clock (R xCLk;) >n P u t of the receiver. T hrough software the 6850 can be
set up to internally divide the clock signal input at R xc l k by 1, 16, o r 64.

The 6850’s transmitter section does the opposite o f the receiver section. The
M PU loads its transmit data register with parallel character data by writing data to
it over the da ta bus. The character is automatically framed with the start bit, the
appropriate parity bit, and the correct number o f stop bits, and then is put into the
transmit da ta register. It is then shifted through the transmit shift register to produce
a bit-serial output on the transmit (T x d a t a) line. When the transmit data register
becomes empty, the transmit data register empty (TDRE) bit o f the status register
is set to logic 1 and, assuming that the interrupt on transmitter da ta register empty
function is enabled with its control bit, the IRQ o u tpu t is switched to logic 0. This
signal can be returned to the M P U to tell it that another character should be output
to the transmitter section. When the MPU writes another character out to the transmit
data register, the T D R E status bit is reset automatically.

Data are ou tpu t on the transmit da ta (T xd a t a) line at a baud rate set by the
external transmit clock signal that is input at T x CLK. In most applications, the
transmitter and receiver operate at the same baud rate. Therefore, both RxCLK and
TxCLk are supplied by the same baud rate generator. The diagram in Fig. 6.30 shows
this type o f system configuration.

The operation of the 6850 is controlled through the setting o f bits in two internal
registers: the control register and the status register. For instance, the way in which
the 6850’s receiver and transmitter operate is determined by the contents of the control
register. The control register has eight bits, which are labeled C R 0 through C R 7.
Figure 6.31(a) through (d) shows the function o f each of the control register’s bits.

The two least significant bits, CR 0 and C R , , are the counter divide select bits.
Notice in Fig. 6.31(a) that these two bits determine how the signals applied to the
external baud rate inputs, RxCLK and TxCLK, are divided within the 6850. For
example, if these two bits are C R |C R 0 = 10, it is set for divide-by-64 operation. The
three bits that follow, CR-, through C R 4, are called the word select bits. In Fig.
6.31(b), we find that they select the length of the character, the type of parity, and
the number o f stop bits. For instance, when information is to be transmitted and
received as 7-bit ASCII characters, with odd parity, and one stop bit, these bits must
be loaded with C R 4 C R 3C R 2 = 0 1 1 .

212 Memory and Input/Output Interfaces of the 6 8 0 0 0 Microprocessor Chap. 6

Figure 6-30 Receiver an d tran sm itte r
d riven at the sam e b au d rate.

The next tw o bits, C R 5 and C R6, are the transmitter control bits and are used
to set the active logic level o f RTS, enable or disable the IRQ output for transmitter
operation, and select the transmission o f a break logic level (SPA C E) at the T x d a t a
output. L o o king at Fig. 6 .31(c), we see that selecting C R 6 C RS = 01 sets the active
level o f RTS to logic 0, enables the autom atic assertion o f the IRQ output when the
transmit data register is empty, and does not cause transmission o f a break level at
the T x d a t a output.

The last bit, C R 7, is the receiver control bit. By m aking it logic 1, we enable
the automatic assertion o f the IRQ output whenever the receive data register becomes
full, an overrun error occurs, or on the low-to-high transition o f the data carrier detect
(D C D) signal.

Example 6 . 2

W hat value must be written into the contro l register in o rder to configure the 6850 such
that it works with the baud clock internally divided by 16, character size equal to eight
bits for E B C D IC , even parity, one s top bit, RTS active high, and the transm itter and
receiver interrupts are to be disabled?

Solution. F rom Fig. 6.31(a), we find that C R ,C R 0 must be set to 01 in o rder to select
divide by 16 for the external b au d rate inputs.

C R ,C R 0 = 01

To select a character length o f eight bits, even parity , and one stop bit, the next three
bits in the contro l register must be made 110. This gives

C R 4 C R 3C R 2 = 110

To set up the 6850 for RTS active high with the transm itter interrupt disabled, we make
the next two CR bits

C R 6C R 5 = 10

Sec. 6 .1 5 The 6 8 5 0 Asynchronous C om m unications Interface Adapter 2 1 3

C R | C R 0 F u n c tio n

0 0 + 1
0 1 + 16
1 0 + 6 4
1 1 M aster reset

(a)

c r 4 c k 3 c r 2 F u n c tio n

0 0 0 7 b its + even p a rity + 2 s to p b its
0 0 1 7 b its + o d d parity + 2 s to p b its
0 1 0 7 b its + even p a rity + 1 s to p bit
0 1 1 7 b its + o d d p a rity + 1 s to p b it
1 0 0 8 b its + 2 s to p b its
1 0 1 8 b its + 1 s to p b it
1 1 0 8 b its 4- even parity + 1 s to p bit
1 1 1 8 b its + o d d p a rity + 1 s to p bit

C R 6 c r 5 F u n c tio n

0 0 RTS = low . tra n sm ittin g in te r ru p t d isab led
0 1 RTS = low . tra n sm ittin g in te r ru p t enab led
1 0 RTS = high, tra n sm ittin g in te r ru p t d isabled
1 1 RTS = low , tra n sm its a b reak level o n th e tran sm it

d a ta o u tp u t . T ran sm ittin g in te rru p t disabled .

(c)

c r 7 F u n c tio n

0
1

R eceiving in te rru p t d isabled
R eceiving in te rru p t d isabled

(d >

Figure 6-31 C ontro l register bit functions (M otoro la , Inc.).

Finally , th e receiver in te r ru p t is d isa b le d by m a k in g

C R 7 = 0

T h e re fo re , th e co m p le te c o n t ro l w o rd is

C R 7C R 6 C R () = 01011001 ,

= 5 9 16

Before the 6850 can be used to receive o r t ran sm it ch a rac te rs , its co n tro l register
m ust be in itialized. A s the m ic ro c o m p u te r pow ers u p , it sh o u ld issue a so f tw a re reset
to the 6850. T h is is d o n e by w rit ing a by te to th e co n tro l reg is ter w ith bits C R 0 an d
C R j b o th one . L o o k in g at Fig. 6 .31(a), we see th a t this rep resen ts a m as te r reset

21 4 Memory and Input/O utput Interfaces of the 6 8 0 0 0 M icroprocessor Chap. 6

comm and. This com m and causes the status register to be cleared and initializes both
the receiver and transmitter sections. After this, another write operation is performed
to load the configuration byte into the control register. Assuming that the 6850 is
at address 00F00016 o f the 68000’s address space, the com m and byte formed in
Example 6.2 can be written to the com m and register with the instruction sequence

M O VE.B 0SC9.DO

M O V E .L #$0F000,A0

M OVE.B DO,(AO)

Now that the configuration for asynchronous communications has been set up
in the control register, the 6850 is ready for operation.

The status register o f the 6850 is shown in Fig. 6.32. We already looked briefly
at the function o f bits 0 and 1 o f the status register. The first bit R D R F (receive data
register full) is set to 1 to indicate that a character has been received in the receiver
section. That is, the receive data register is full. If the interrupt request (IRQ) line
is disabled, the microprocessor must poll (read) this bit through software to determine
if character da ta has been received through the communication interface. When it
is 1 , the character held in the receive data register must be read by the microprocessor.
On the other hand, the second bit, T D R E (transmit da ta register empty), is set to
1 when the transmit da ta register is empty. This means that ano ther character can
be written to the transmit data register.

b 7 B* BS B, b 3 B, B, Bo

IRQ PE OVRN FE CTS DC 5 TDRH RDRF F igure 6-32 S ta tu s reg ister bit
fu n c tio n s .

Notice in Fig. 6.32 that bits FE, OVRN, and PE are the error flags for the
receiver. If the incoming character is found to have a parity error, the PE (parity
error) bit gets set. On the other hand, if an overrun or framing error condition occurs,
the OVRN (overrun error) or FE (framing error) flag is set, respectively. The M PU
should always examine these e rror bits before reading a character from the receive
data register. If an error is found to have occurred, a software routine can be initiated
to cause the character to be retransmitted.

The other three bits in the status register, bit 2, bit 3, and bit 7, represent the
logic level o f input signals DCD, CTS, and fRQ, respectively. The fact that these
three signals are represented by bits in the status register permits the MPU to examine
their current logic levels through software.

6.16 SPECIAL PURPOSE INTERFACE CONTROLLERS

Up to this point in the chapter, we have introduced LSI controllers for two o f the
most widely used I /O interfaces. They are the 6821, which is used to implement parallel
inp u t /ou tp u t ports, and the 6850, which is used to implement asynchronous

Sec. 6 .1 6 Special-Purpose Interface Controllers 215

communication ports. A large num ber o f other LSI devices are available to simplify
the implementation o f complex I /O interfaces. Some examples are CRT controllers,
floppy disk controllers, Winchester disk controllers, and IEEE-488 bus controllers.
Here we will introduce just one o f these types o f devices, the 68230 parallel
in terface/timer controller.

The 68230 Parallel Interface/Timer

Earlier in this chapter, we examined the 6821 parallel interface adapte r IC. Here we
will examine a more general-purpose LSI device, the 68230, which has I /O ports that
provide for im plementation o f parallel I /O interfaces and a timer that can be used
as an interval timer or event counter. We will concentrate on its use in implementing
parallel I /O ports.

The block diagram in Fig. 6.33 shows the internal architecture o f the 68230
device. From this diagram, we find that there are four key sections o f circuitry. They
are the microprocessor interface, which consists o f the data bus interface and interrupt
vector registers; I /O interfaces for port A, port B, port C, and the handshake interface
logic; the timer; and control logic sections for the port interrupt, D M A , handshake
lines, and mode o f operation.

Microprocessor Interface o f the 68230

Let us now look at how' the 68230 is interfaced to an M PU . Figure 6.34 shows a
68230 connected to a 68000 microprocessor. The 68000 communicates with the 68230
by reading or writing to its internal control registers bytes o f data, control information,
and status information . Data transfers between the 68000 and the internal registers
o f the 68230 take place over bidirectional da ta bus lines D0 through D7. The 68000
te lls jhe 68230 whether data are to be written into or read from its registers with the
R /W signal. Logic 0 at R /W means that the 68000 is writing information to the
68230, and logic l means that in form ation is being read from the 68230.

The 68230 does not receive data during all bus cycles performed by the M PU .
Instead, its microprocessor interface is active only when the chip select (CS) input
is at the 0 logic level. Notice in Fig. 6.34 that the address decoder circuit decodes
part o f the address ou tput by the M PU along with LDS and function code FC 0

through FC 2 to produce CS whenever an address corresponding to a register within
the 68230 is on the address bus. The register select inputs, RS, through RSs, o f the
68230 are supplied by another part o f the address. The 5-bit code applied to these
inputs determines which one o f the 68230’s registers is to be accessed during the current
bus cycle. Figure 6.35 shows that the 68230 has 23 internal registers. Each o f these
registers is assigned to a unique register select code. For instance, if the code applied
to the RS inputs is

RS5 RS4 RS 3 RS2 RS, = 000102

register R2, which is also known as the port A da ta direction register, is accessed.
Notice that each o f the registers also can be identified with its mnemonic name. For

21 6 Mem ory and Input/O utpu t Interfaces of the 6 8 0 0 0 M icroprocessor Chap. 6

18

PC7. PC6/ PC5/
tlACk PIACK PÏÏÏft DMAREQ 33 32 31 30

RSI
29

RS2
28

RS3
27

RS4 RS5
26 25

37 36 35 34

Figure 6-33 Block diagram of the 68230 PI T device (Motorola, Inc.).

e x a m p le , th e p o r t A d a t a d i r e c t io n reg is te r th a t w e ju s t i n t r o d u c e d is d e n o te d by th e
m n e m o n ic P A D D R .

T h e ty p e o f access th a t th e 68000 h a s to th e 6 8 2 3 0 ’s in te rn a l reg is te rs is s h o w n
in F ig . 6 .35 . L o o k in g a t th e c o lu m n labe led “ a c c e s s ib le ,” we see th a t all reg is ters
c a n b e r e a d f ro m b u t n o t all c a n b e w r i t te n in to . F o r in s tan c e , th e P A D D R reg is te r
th a t we h a v e bee n u s in g as a n e x a m p le c a n be ac ce sse d e i th e r t h r o u g h a r e a d o r w r i te
o p e r a t io n . O n th e o th e r h a n d , R 10 (P A A R) a n d R n (P B A R) a re r e a d -o n ly regis ters .

E x am ple 6.3
W hat code must be applied to the RS inputs o f the 68230 during a bus cycle in which
the contents o f the port status register are read by the M PU ? W hat is the mnemonic

Sec. 6 .1 6 Special-Purpose Interface Controllers 217

F ig u re 6-34 C o n n e c tin g th e 68230 P I / T to th e 68000 M P U (M o to ro la , In c .) .

used to identify the port status register? Could this register also be accessed with a write
bus cycle?

S o lu tio n . Looking at Fig. 6.35, we find that to select the port status register the register
select code

RS5RS4 RS,RS,RS, = 0 l l 0 l 2

must be applied to the 68230. Moreover, in the table of Fig. 6.35 we see that the port
status register is identified by the mnemonic PSR and that it also can be written into.

Rem em ber th a t the 68000 pe rfo rm s asynchronous bus cycles. That is, once
s tarted a bus cycle is not completed until the d a ta acknowledge (D T A C K) input is
switched to logic 0. Since the 68230 is a 68000 family LSI periphera l , it is designed
to produce the D T A C K signal autom atica lly . For this reason, as sh o wn in Fig . 6.34,
the D TA C K o u tpu t o f the 68230 is simply re turned directly to the D TA C K input
o f the 68000.

I/O Port Configurations

From Fig. 6.34, we see that ports A , B, and C o f the 68230 are bidirectional and
are all byte wide. T oge ther , they give 24 in p u t /o u tp u t lines, which are labeled P A 0

th rough P A 7, P B 0 th rough P B 7, and P C 0 th ro u g h P C 7. There are also four
h andshake lines, H , th rough H 4, th a t can be used to implement input and ou tpu t

218 Mem ory and inpu t O utpu t ''te rfaces o f the 6 8 0 0 0 M icroprocessor Chap 6

Register Regjster ñame
Register select code

Accessible
5 4 3 2 1

R0 Port General Control Reg.ster iPGCR' 0 0 0 0 0 R W

R. Port Sen «e Requesî Registe’ (PSRR) 0 0 0 0 1 R W

: R : Port A Data Direction Register IPADOR' 0 0 0 1 0 R W

R2 P onB Data Direction Register >P3DDR> 0 0 0 1 1 R W

Port C Data Direction Recaer >PCDDR i 0 0 1 0 0 R W

RS Port In tem ip t Vector Registe r iPIVR 0 0 1 0 1 R W

R6 Pon A Control Register (PACR.) 0 0 1 1 0 R W

R7 Pon B Control Register (PBCR) 0 0 1 1 1 R W

«S Pon A Data Register (PADR) 0 1 0 0 0 R W

Pon B Data Registe' P3DR) 0 1 0 0 1 R W

R.-•V Pon A Alternats Register iPAAR) 0 1 0 1 0 R

« i l Pon B A-temate Regrster (PBAR 0 \ 0 1 1 R

Pon C Data Register <PCDR) 0 1 1 0 0 R W

i R , Port St2îus Reg.ster - PSR) 0 1 1 0 1 R W

T.mer Control Register iTCR 1 0 0 1 0 0 R W

RB Time*- In tem jp t Vector Reg¡ster <T!VR 1 0 0 0 1 R W

R * Counter Pretoad Register H .gn {CPRHi 1 0 0 1 1 1
-

R W

R,7 Counter Pre>oad Reg:ster MkMJe (CPRV) 1 0 1 0 0 R W

R * Counter PreSoad Reg;Sîer Low <CPRL! 1 0 1 0 1 R W

R * Coun; Register High (CNTRH) 1 0 1 1 1 R

Rao C our: Register V ôdie iCNTRV 1 1 0 0 0 R

C ourt Register Lw* >CNiTRL 1 1 0 0 1 R

Tsmer Status Register (TSR 1 1 0 1 0 R W

•A vírne to ttiis rëÇ;Ster may perform a speoai status resetting operation. R = Read
W = Write

Figure 6-35 Registers and their select codes (Motorola. Inc.).

h a n d s h a k e p ro to co ls . A n ex am p le o f a s im ple h a n d s h a k e p ro to c o l fo r inpu t o f d a ta
is to h ave the ex te rna l I O device th a t is supp ly ing d a ta to th e in p u t p o r t signal the
68230 th a t new d a ta is av a ilab le a t the p o r t by setting H : to its active logic level.
T h e n a f te r th e 68000 reads d a ta f ro m the p o r t , th e H 2 o u tp u t o f the 68230 can be
set to its active logic level to s ignal the I O device th a t the d a ta h as been read an d
th a t it m ay n o w app ly a n o th e r by te o f d a ta to th e p o r t .

N otice in Fig. 6.33 th a t six o f the lines at po rt C can be configured u nder softw are
co n tro l to serve specia l fu n c tio n s . F o r instance , th e P C 2 line a lso can be set u p to
w ork as a tim er in p u t (T jN). W h en th e 68230‘s tim er is being used as an event counter ,
pulses app lied to th is in p u t by ex te rn a l c ircu itry a re used to d ec rem en t the value in
the co u n te r . T h a t is. T IN is the c lock in p u t o f th e t im e r . T IN also ca n be co n f ig u red
to o p e ra te as a r u n halt in p u t fo r th e t im er. W h e n o p e ra te d in th is w ay , logic 1 at
T in enables th e in te rn a l t im e r c lock o f the 68230 to th e inpu t o f th e t im e r circuit.

Sec. 6 .1 6 Special-Purpose Interface Controllers 219

That is, the timer is running when T)N equals 1. On the other hand, logic 0 at T 1N
turns off the clock and halts the timer. Another example is PC 6. This line has a second
label PIRQ, which stands for parallel interrupt request. This signal is an output that
is used when the 68230 implements an interrupt-driven parallel I /O configuration.
In this way, we see that lines P C 2 through PC 7 at port C may or may not be available
for use as general-purpose inputs or outputs.

Kxample 6.4
W hat is the special function p erfo rm ed by the P C 6 line at port C o f the 68230?

Solution. In Fig. 6 .33, we see th a t P C 6 is also labeled P IA C K . T his m nem onic stands
for parallel in terrup t acknow ledge and is an input with which the 68000 can tell the 68230
tha t it h a s been g ran ted service in response to a paralle l I /O in terrup t request in itiated
w ith the P IR Q o u tp u t.

Internal Registers o f the 68230

We pointed out earlier that the 68230 P I /T has 23 internal registers, R0 through R22.
The register model in Fig. 6.36 identifies each of these registers along with the function
o f each of their bits. In general, these registers are used to configure the mode o f
operation o f the I /O ports and timer, input and output da ta , and input status
information about the I /O ports and timer.

The I /O ports o f the 68230 are very versatile and can be programmed for a
wide variety o f different modes o f operation. Let us begin our study o f these registers
and how they control the operation o f the 68230 by just briefly looking at some of
the ways in which ports A and B can be configured.

Ports A and B o f the 68230 can be configured to work in one o f four general
ways called modes. The first two o f these modes correspond to the use of ports A
and B separately as byte-wide unidirectional or bidirectional ports. In the other two
modes, ports A and B are used together to form a single word-wide unidirectional
or bidirectional port. Ports that are set up for unidirectional operation must be further
configured with what is called a submode o f operation. The submode defines whether
the lines o f the port all work as inputs, all work as outputs, or act as bit addressable
inputs or outputs. In addition to the modes and submodes o f operation, the ports
can also be set up for latched input operation , interrupt driven operation, direct
memory accessed operation, and with a number o f input/output handshake protocols.
The operation o f the ports is defined and controlled by the contents o f registers R0

through R j , o f the 68230’s register set. For this reason, we will now look at the
function of the bits in each o f these control registers in more detail.

Register R 0 is called the port general control register and is identified by the
mnemonic PG CR for short. Figure 6.37(a) shows the control functions o f its bits.
Notice that the two most significant bits are used together as a 2-bit port mode control
code. The binary combination in these bits select one o f four modes o f operation
for both port A and port B. These modes of operation are called mode 0, mode 1,
mode 2, and mode 3. For instance, in Fig. 6.37(b), we find that if B7 B6 equals 00

220 M em ory and Inpu t/O utpu t Interfaces o f the 6 8 0 0 0 M icroprocessor Chap. 6

R e 9 is ter .. 7 6 5 4 3 2 1 0

Ro
Pom Mode H34 H12 H4 H3 H2 HI Pori General

Control Enable Enable Sense Sense Sense Sense Control Register

R ,
• SVCRQ

Select
Interrupt

FFS
PoM Interrupt

Pr.only Control
Port Service
Request Register

r 2
Bn
7

B.t
6

B>t
5

B.t
4

Bn
3

Bit
2

Bn
1

Bn
0

Pom A Data
Direction Register

r 3
Bn
7

B.t
6

B.t
5

Bit
4

Bit
3

Bn
2

Bn
1

Bn
0

Pom B Data
Direction Register

r 4 B'l
7

B.t
6

B.i
5

B.t
4

B.t
3

Bn
2

Bn
1

Bn
0

Pom C Data
Direction Register

r 5 Interrupt Vector Number • • Pom Interrupt
Vector Register

H2 HI HI

R 6 Pom A H2 Control Ini SVCRQ Stat Port A Control
Submode Enable Enable cm Register

r 7 Port B H4 Control
H4
Int

H3
SVCRQ

H3
Stai Port B Control Register

Submode Enable Enable Ctrl

r 8
Bit B.t B.t B.t Bn B.t Bn B.i Pom A Data
7 6 5 4 3 2 1 0 Register

r 9 Bit
7

B.t
6

B.t
5

Bit
4

B<t
3

Bn
2

Bn
1

Bn
0

Port B Data
Register

R io
B.t
7

B.t
6

Bn
5

Bn
4

B.t
3

Bn
2

Bn
1

Bn
0

Port A Alternate
Register

R , i
Bn
7

B.t
6

B.t
5

B.t
4

Bn
3

Bn
2

Bn
1

Bn
0

Pom B Alternate
Register
Pom C Data
RegisterR 12 Bn

7
Bn
'

B>t
5

8<t
4

B.i
3

Bn
2

Bn
1

Bn
0

R 13
H4

Level
H3

Level
H2

Level
HI

Level H4S H3S H2S HIS
Port Status
Register

• • • • • • • • (null)
• • • • • • • • (null)

R 14
t o u t / t ia c k

Control
I D
Ctrl

• ClOCk
Co: >tr 01

T ime>
E nabie

Timer Control
Register

R 15
B.t Bn B.t B.t B.t B.t Bn Bn Timer Interrupt
7 6 c. 4 3 2 1 0 Vector Register

• • • • • ■ • •

R 16
Bn
23

B.t
22

B.t
21

Bn
20

B.t
19

Bn
18

Bn
17

B.i
16

Counter Preload
Register (Highl

R , B11 Bn Bn B.t Bn Bn Bn Bn
n 17 15 14 13 12 11 10 9 8 (Mid)

R 18
Bit
7

Bn
6

Bit
5

B.i
4

B.i
3

Bn
2

Bn
1

B.i
0 iLowi

• • • • • • • • (null)

R 19
Bn
23

B.t
22

Bn
21

B.i
20

B.t
19

Bn
18

Bn
17

B.i
16

Count Register
(High)

R »
Bn
15

B.t
14

B.t
13

Bn
12

Bn
11

B 'i
10

Bn
9

Bn
8 lM.d)

R 2 1
B.t
7

B.t
6

B.t
5

B.i
4

B.t
3

Bn
2

B.i
1

B.t
0

(Low)

R 22 • • • • • • • ZDS Timer Status
Register

• • • • • • • • (null)
• • • • • • • • (null)
• • • • • • • • (null)
• • • • • • 0 • (null)
• • • • • • • • (null)

Figure 6-36 Register Model o f the 68230 (M otorola , Inc.).

Sec. 6 .1 6 S pecia l-Purpose In te rfa ce C on tro lle rs 221

7 6 5 4 3 2 1 0

Port M ode
C ontro l

H34
Enabi«

H12
Enable

H4
Sense

H3
Sense

H2
Sense

H I
Sense

(a)

PGCR
1 A
0 0

0 1

1 0

1 1

PGCR
5 H34 Enable
0 D isabled
1 Enabled

PGCR
4 H12 Enable
0 D isabled

1 Enabled

PGCR
3-0 Handshake Pin Sense
0 T he a s so c ia ted pin is a t th e h igh -vo ltage level w hen

n e g a ted an d a t th e l.pw -vo ltag e level w h en .asserted
1 The asso c ia ted pm is at th e low -voltage level w h en F ig u r e 6 -3 7 (a) P o rt general contro l

n e g a ted and a t th e tuotL-voltage level w hen a s s e r te d ^ register (PG C R) fo rm at; (b) contro l bit
(b) functions (M oto ro la , Inc.).

the A and B ports a re configured for m ode 0 (unidirectional 8-bit m ode) opera tion .
T ha t is, they are set up to work as either byte-wide input or byte-wide o u tp u t ports .
The fact th a t the port lines are inputs o r o u tp u ts is determ ined by what is called
a subm ode. The submodes o f opera tion are selected by bits in ano ther control register.

The rest o f the bits in P G C R are used to enable and set the active logic levels
o f handshake lines H | th rough H 4. For exam ple , bit B4 is the H 12 enable bit. As
show n in Fig. 6 .37(b), it m ust be set to logic 1 to enable the H , and H 2 lines for
opera tion . The sense (active logic level) o f the h andshake lines is also program m able .
This is done with bits B0 th rough B, o f P G C R . N otice that the value in bits B0 and
B, sets the active logic level o f H , and H 2, respectively. For instance, making B0 logic
1 sets the h igh-voltage level as the active state for hand sh ak e line H , . O n the o ther
han d , if B, is set to logic 0, the low-voltage level is set as the active state for H 2.

Example 6.5

What value will need to be written into PGCR if mode 1 operation is to be selected for
ports A and B; H , 2 is to be disabled and H J 4 is to be enabled; and all o f ihe handshake
lines are to be set up with the low-voltage level as their active logic level?

Solution. In Fig. 6.37(b), we find that mode 1 operation is selected by making the mode
select code equal to 0 1 .

Port Mode Control
M ode 0 (U nidirectional 8-Bit M ode)

M ode 1 (U nidirectional 16-Bij M ode)
M ode 2 (B idirectional 8 Bit M ode)

M ode 3 (B idirectional 16-Bit M ode)

b 7b 6 = 01

222 Memory and Input/O utput Interfaces of the 6 8 0 0 0 Microprocessor Chap. 6

N ext, H 34 is enab led by setting bit 5 to logic 1 an d H p is d isabled by m aking bit 4 logic
0 .

B4 = 0

Finally , to set the active logic levels o f th e H lines fo r the low -voltage level, sense bits
0 th ro u g h 3 are all set to logic 0.

B3 B , B, B0 = 0000

T herefo re , the con tro l byte tha t is to be loaded in to PG C R as

B7 Bfi B s B4 B , B2 B, B0 = 01100000-,

= 6015

It m ust be n o ted th a t th is con tro l byte can n o t be directly loaded in to P G C R . This
is because the m ode co n tro l bits shou ld only be altered when bits H]2 and H 14 are
bo th logic 0. F or th is reason , P G C R should be loaded in tw o steps. F or in stance , first
the byte

B7 B6 B5 B4 B , B2 B, B0 = 01000000-,

= 40.6
can be loaded to initialize the m ode an d d isable the h an d sh ak e lines. T hen the reg ister’s
s ta te is finalized by w riting the byte

B7 b 6 B5 B4 B3 B , B, B0 = 01100000,

= 60 16

Now that we have described the control functions performed by the bits o f R0,
let us continue with another register that controls general operations o f the A and
B ports: register R ,, the port service request register (PSRR). Earlier in this section
we indicated that the parallel I /O ports o f the 68230 can be operated in a way that
involves the interrupt interface o f the 68000. When using interrupt-driven mode of
operation for I /O , control bits in PSRR are used to configure signal lines o f port
C as interrupt request and interrupt acknowledge lines instead o f as I /O lines and
to assign a priority scheme to the handshake lines. Ports A and B of the 68230 also
can be operated in a direct mem ory access (DM A) mode. This mode o f operation
is configured with control bits in R,.

Figure 6.38(a) shows the format o f the control bits in PSRR. The * in bit position
7 means that it is not in use. It is followed in bit positions 5 and 6 with a two-bit
service request (SVCRQ) select code. This code determines whether the
P C 4/D M A R E Q pin at port C is configured as an I /O pin (PC 4) or as the DMA
request output (D M A REQ). Notice in Fig. 6.38(b) that making bit 6 logic 0 selects
I /O mode o f operation and making it 1 selects the DM A mode. Moreover, we find
that bit 5 determines whether DMA operations are associated with the port

Sec. 6 .16 Special-Purpose Interface Controllers 223

7 6 5 4 3 2 1 0

#
SVCRQ
Select

Interrupt
PFS

Port Interrupt
Priority Control

(a)

PSRR
6 5 SVCRQ Select

X The PC4 DMAREQ pm carries the PC4 function, DMA
is not used

0 The PC4 DMAREQ pin carries the DMAREQ function
and is associated w ith double buffered transfers con
trolled bv H I H1 is removed from the P l/T ‘s interrupt
structure, and thus, does not cause interrupt requests
to be generated To obtain DMAREQ pulses. Port A
Control Register bit 1 (H I SVCRQ Enable! must be a 1

1 The PC4 DMAREQ pm carries the DMAREQ function
and is associated w ith double-buffered transfers con
trolled bv H3 H3 is removed from the P l/T 's interrupt
structure, and thus, does not cause in terrupt requests
to be generated To obtain DMAREQ pulses. Port B
Control Register bit 1 (H3 SVCRQ Enable! must be 1

PSRR
4 3 Interrupt Pin Function Select

0 The PC 5/PIRQ pm carries the PC5 function
The R(E6/PIACK pm carries the PC6 function

1 The PC5/PIRQ pin carries the PIRQ function
The PC6/PIACK pin carries the PC6 function

0 The PC 5/PIRQ pm carries the PC5 function
The PC6/PIACK pin carries the PIACK function.

1 The PC5/PIRQ pm carries the PIRQ function
The PC6/PIACK pm carries the PIACK function

PSRR Port In te rru p t P rio r ity C on tro l
2 1 0 H ighest.... ... Lowest
0 Ö 0 H1S H2S H3S H4S
0 0 1 H2S H IS H3S H4S
0 1 0 H IS H2S H4S H3S
0 1 1 H2S H IS H4S H3S
1 0 0 H3S H4S H1S H2S
1 0 1 H3S H4S H2S H IS
1 1 0 H4S H3S H IS H2S Figure 6-38 (a) P o r t service request
1 1 1 H4S H3S H2S H1S register (PS R R) fo rm a t; (b) contro l bit

(b) functions (M oto ro la , Inc.).

ding to the H, or H 3 handshake line. For instance, the code

10

selects DMA operation associated with H, and port A.
The next two bits in PSRR, bits 3 and 4, define the operation of the PC5/P IR Q

and PC6/PIA CK pins of the 68230. In Fig. 6.38(b), we see that making them both
logic 0

b 4b 3 = 00

22 4 Memory and Input/O utput Interfaces o f the 6 8 0 0 0 M icroprocessor Chap. 6

sets up both P C 5 and P C 6 to operate as I /O lines. On the other hand, setting these
control bits to

B4 B3 = 01

selects the interrupt request ou tpu t (PIRQ) mode o f operation for the P C 5/P I R Q
pin and leaves P C 6 as an I / O line.

The three least significant bits in P SR R, B0, Bj, and B2, assign interrupt
priorities to handshake lines H , th rough H4. The table in Fig. 6.38(b) shows all o f
the allowed priority schemes. Notice that making

B ^ B q = 000

assigns priorities in what is called ascending order. That is, H (has the lowest priority,
it is followed by H 2 with the next higher priority, H , follows H 2 with still higher
priority, and finally H 4 has the highest priority. In Fig. 6.38(b), we find that changing
the port in terrupt priority control code to

B; B,B 0 = 1 1 1

assigns priorities in the reverse order; that is, descending order.

E xam ple 6.6

W ith w hat value should P S R R be initialized in o rder to con figu re the 68230 such tha t
P C j / D M A R EQ acts as an I /O line, P C 5/P IR Q acts as an in te rru p t request o u tp u t,
P C 6/P 1A C K acts as an in terrup t acknow ledge in p u t, an d h an dshake lines H (th rough
H 4 are con figu red in descending p rio rity o rd er (H , has the highest p rio rity and H 4 has
the lowest p rio rity).

S o lu tion . F rom the in fo rm atio n in Fig. 6 .38(b), we see th a t m aking b its 5 and 6 bo th
logic 0 configures P C 4/D M A R E Q to act as an I /O line

b 6b 5 = 00

Then by m aking b its 3 and 4 bo th logic 1, P C 5/P 1R Q acts as an in terrupt request o u tpu t
a n d P C 6/P IA C K acts as an in te rru p t acknow ledge inpu t.

B4B3 = 11

Finally , the h an d sh ak e lines are assigned priorities in descending o rd er by m aking bits
2 th ro u g h 0 all logic 0.

B ,B ,B 0 = 000

A ssum ing th a t b it 7 is set to logic 0 , the com plete co n tro l byte is

B7B6B5B4B ,B 2B ,B 0 = 00011000,

= 1816

The next three registers in Fig. 6.36, R2 through R4, are the port A data
direction register (PADDR), port B data direction register (PBDDR), and port C data
direction register (PC D D R). The logic level o f the bits in these registers control the
direction o f the I / O lines at the respective I /O port when the ports are configured
for unidirectional mode o f operation. The format o f the bits in PA DD R is shown in
Fig. 6.39. Each o f the eight bits in P A D D R corresponds to one o f the I /O lines at

Sec. 6 .1 6 Special-Purpose Interface Controllers 225

F igu re 6-39 P o ri A d a la d irec tio n
reg ister (P A D D R).

port A. That is, the logic level o f bit 0 in PA DD R sets the direction of I /O line PA 0;
the logic level o f bit 1 sets the direction of P A ,; and so on. If an I /O line in port
A is to be used as an input, its corresponding bit in P A D D R is initialized to logic
0. On the other hand, if it is to operate as an ou tpu t , the bit is set to 1 instead o f
0. Therefore, to configure all o f the I /O lines at port B as ou tpu ts , PBDDR must
be loaded with F F)6.

F.xample 6.7

W hat value m ust be loaded in to P C D D R to con figu re all lines o f port C as inputs?

S olu tion . T he lines o f an I /O p o rt are con figu red as inpu ts by se tting the bits in the
correspond ing port d a ta d irection register to logic 0. T h ere fo re , all lines o f port C
are configured as inpu ts by m aking all bits o f the P C D D R register logic 0.

Register R5 in Fig. 6.36 is used in conjunction with interrupt-driven mode of
operation for the parallel I /O ports. It is the port in terrupt vector register (PIVR).
Looking at the format diagram in Fig. 6.40, we see that jus t six o f its bits are
implemented and that they are loaded under software control with the upper six bits
o f an interrupt vector number. The two least significant bits of the vector are supplied
by the prioritization logic within the 68230 and represent the priority o f the active
handshake line.

F igu re 6-40 P o r t in te rru p t vec to r
reg ister (P IV R) fo rm a t (M o to ro la . Inc .).

Before introducing the port A and B control registers, let us look at the two
groups o f registers that follow them in Fig. 6.36. The first group, Rg and R9, are
the port A and B da ta registers, P A D R and PBDR. Each bit in these registers
corresponds to one o f the lines at the corresponding I /O port. The format o f the
port A data register (PADR) is shown in Fig. 6.41. Here bit 0 corresponds to signal
line P A 0 at port A and bit 7 corresponds to signal line PA 7.

These are the registers through which the 68000 inputs or ou tputs da ta to the
I /O ports of the P I /T . If port A is configured as an input port , the logic levels applied
to the PA inputs can be latched into the PA D R register and then read out o f the
register by the 68000 M PU. In the case o f port A configured as an output port, data
are output by the M PU to PA D R instead o f directly to the ou tput ports.

As shown in Fig. 6.36, the next group, R 10 and R u , are the alternate data
registers: the port A alternate data register (PAADR) and port B alternate data register

7 6 5 4 3 2 1 0

In te rru p t V ecto r N um ber ★ *

7 6 5 4 3 1 0

Bit Bit Bit Bn Bit Bit Bit Bit
7 6 5 4 3 1 0

226 Memory and Input/O utput Interfaces of the 6 8 0 0 0 M icroprocessor Chap. 6

Figu re 6-41 P o rt A d a ta reg ister
(P A D R) fo rm a t.

(PABDR). These registers are similar to the data register we just described in that
they contain a bit for each bit o f the corresponding I /O port. However, these registers
can only be read and when read the da ta received by the M PU represents the
instantaneous logic levels at the I / O pins o f the port.

Now we will continue with the port A and B control registers (PACR and PBCR)
that we skipped earlier. In Fig. 6.36, they are identified as registers R6 and R7. Figure
6.42(a) shows the formats o f P A C R and PBCR. Notice that corresponding bits in
the two registers serve the same basic function; however, for their respective ports.

Earlier in this section we found that two o f the bits in the port general control
register (R0) are used to select between mode 0, mode 1, mode 2, or mode 3 operation
for the A and B ports and that submodes of operation exist within each of the general
modes. It is the function of control bits within P A C R and PBCR to select the
submodes o f operation. In the format o f PA CR and PBCR in Fig. 6.42(a), we see
that the two most significant bits o f each register define the subm ode of operation
for the corresponding port. For example, if the mode select bits in P G C R configure
port A for mode 0 operation and the submode bits in PACR are set to 00 for submode
00, the I /O configuration is as shown in Fig. 6.42(b). Notice that port lines PA 0

through P A 7 act as a byte-wide latched double-buffered input port . By latched, we
mean that da ta applied to the P A input pins are latched into flip-flops within the
68230 synchronously with the transition of the logic level o f the H , input. Remember
that the active level o f the H , handshake input can be set to logic 1 or logic 0 by
the sense bit in PG CR . For this reason, data can be latched into the port A data
register on a positive-going transition or negative-going transition at the H , input.

Let us now look just briefly at what is meant by double buffered. This means
that the I /O ports o f the 68230 have dual latches. Use of this double buffering permits
an overlapping mode of operation in which the current data in the port A data register
can be read by the M PU and at the same time external circuitry can strobe new data
into the register. This capability o f the 68230 results in a higher maximum input/output
da ta rate.

E xam ple 6.8

H ow w ould po rt B opera te if the m ode con tro l bits in P G C R are 00 and the subm ode
b its in PB C R are 01?

S o lu tion . 00 in the m ode con tro l b its o f PG C R selects m ode 0 opera tion for bo th port
A and port B, and 01 in the subm ode bits o f PB C R selects subm ode 01 o p era tio n for
p o rt B. L ooking at Fig. 6 .42(b), we see tha t th is selects the I /O con figu ra tion labeled
m ode 0 subm ode 01. Notice tha t in this case the B po rt is configured as a double-buffered
byte-w ide o u tp u t port w ith H , an d H 4 as its h andshake lines. H , is an input by w hich
the external device that is read ing d a ta from the PB ou tp u t lines can signal the 68230

7 6 5 4 3 7 1 0

Hit Bit Bit Bit Bit Bit Bit Bit
7 6 5 4 3 2 1 0

Port A Control Register (PACR) port 0 ConM Register {PBCR) _

Sec. 6 .1 6 Special-Purpose In terface Controllers 2 2 7

7 6 5 4 3 2 1 0

Port A
Submode H2 Control

H2
Int

Enable

HI
SVCRQ
Enable

HI
Stat
Ctrl

7 6 5 4 3 2 1 0

Port B
Submode H4 Control

H4
Int

Enable

H3
SVCRQ
Enable

H3
Stat
Ctrl

(a)

Mode 0 Submode 00 ’/ode 0 Submode O' Mode 0 Subcode IX

< ^ v
Latched Double
Buffered inpul

*■«-----) a t
----- / 8

Double Buttered
Output

^ —► H j 1 H4 '

A i Bi
8

B it i O

■ H I |H 3 ‘
• H 2 (H 4)

(b)

Mode 0 (Unidirectional 8-Bn Mode)
Port A

Submode 00 - Double-Buffered Input
HI - Latches input data
H2 - Status/mterrupt generating input, general-purpose

output, or operation with HI in the interlocked or
pulsed input handshake protocols

Submode 01 - Double-Buffered Output
HI - Indicates data received by peripheral
H2 - Status/interrupt generating input, general purpose

output, or operation with HI in the interlocked or
pulsed output handshake protocols

Submode IX - Bit I/O
HI - Status/interrupt generating input
H2 - Status/interrupt generating input or general-purpose

output
Port B. H3 and H4 - Identical to Port A. HI and H2

Mode 1 Port B Submode X0
----- Hi

Mode 1 Port B Submode XI

A and B
(16i

Latcned. Double
B u t t e r e d i n p u t

m---------- H -

* —► -• .

Mode 1 (Unidirectional 16-Bit Mode)
Port A - Double-Buffered Data (Most significant!

Submode XX (not used!
HI - Status/mterrupt generating input
H2 - Status/interrupt generating input or general purpose

ou tpu t
Port B - Double-Buffered Data I Least significant)

Submode X0 — Unidirectional 16-Bit Input
H3 - Latches input data
H4 - Status/mterrupt generating input, general-purpose

output, or operation with H3 in the interlocked or
pulsed input handshake protocols

Submode XI - Unidirectional 16 Bit Output
H3 - Indicates data received by peripheral
H4 - Status/interrupt generating input, general-purpose

output, or operation with H3 in the interlocked or
pulsed output handshake protocols

(c)

F igure 6-42 (a) P A C R a n d P B C R f o rm a ts ; (b) M o d e 0 I 'O c o n f ig u ra t io n s ; (c) M o d e 1 I / O
co n f ig u ra t io n s .

th a t it is re ad y to receive new d a t a . M o re o v e r , th e H 4 line can be c o n f ig u re d to o p e r a te
in a n u m b e r o f d i f fe ren t w ays using o th e r b its in P B C R .

I /O configurations and pin function descriptions for mode 1, mode 2, and mode
3 and their corresponding submodes are given in Fig. 6.42(c), (d), and (e), respectively.

Let us now look at the functions served by other control bits in PACR and
PBCR. From the format o f PA CR in Fig. 6.42(a), we find that the next three bits,
bits 5, 4, and 3, form a 3-bit code that selects a mode o f operation for the H 2 control
line. However, the type o f operation depends on the mode and submode of operation
selected for the port. The allowed configuration for all submodes of mode 0 operation

2 2 8 M em ory and Inpu t/O u tpu t Interfaces o f the 6 8 0 0 0 M icroprocessor Chap. 6

Mode 2

Mode 3

A and B

Bidirectional 16 Bit

Mode 2 (Bidirectional 8-Bit Mode)
Port A Bit I/O (with no handshaking pins)

Submode XX (not used)
Port B - Bidirectional 8-Bit Data (Double-Buffered)

Submode XX (not used)
HI Indicates output data received by peripheral
H2 - Operation with H1 m the interlocked or pulsed output

handshake protocols
H3 — Latches input data
H4 - Operation with H3 in the interlocked or pulsed input

handshake protocols

(d)
Mode 3 (Bidirectional 16-Bit Mode)

Port A - Double-Buffered Data (Most significant)
Submode XX (not used)

Port B - Double-Buffered Data (Least significant)
Submode XX (not used)

• H1\ Output
-H 2 ' Transfers
■ v nput
H4 Transteis

HI
H2

H3
H4

H2 Interrupt Enable
PACR

2
0 The H2 in terrup t is disabled
1 The H2 in terrupt is enabled

H1 SVCRQ Enable
PACR

1 __________________________________

0 The H1 in terrupt and D M A request are disabled.
1 The H1 in terrupt and D M A request are enabled

PACR Mode 0 Port A Submode 00

PACR
5 4 3 H2 Control

0 X X Input pin - status only
1 0 0 O utpu t pm - always negated
1 0 1 O utpu t pm — always asserted
1 1 0 O utput pin - in terlocked inpu t handshake pro

toco l
1 1 1 O utpu t pm - pulsed inpu t handshake pro tocol

PACR
_0

X

HI Status Control
Not Used

indicates output data received by peripheral
Operation with H1 in the interlocked or pulsed output
handshake protocols
Latches input data
Operation with H3 in the interlocked or pulsed input
handshake protocols

(e)

PACR
5 4 3

X
0

0

1

PACR Mode 0 Port a Submode 01

H2 Control

1 1

PACR
0

0

X Input pin - status only
0 O utpu t pm - always negated
1 O utpu t pm - always asserted
0 O utpu t pm — interlocked ou tpu t handshake pro

tocol
1 O utpu t pm — pulsed ou tpu t handshake pro tocol

HI Status Control
The HIS status b it is 1 when either the Port A in itial or
final ou tpu t latch can accept new data It is 0 when
both latches are full and cannot accept new data

1 The H1S status bit is 1 when both o f the Port A output
latches are em pty It is 0 when at least one latch is full

PACR Mode 0 Port A Submode 1X
PCR

5 4 3 H2 Control
0 X X Input pm - status only
1 X 0 O utput pm - always negated
1 X 1 O utpu t pm - always asserted

PACR
0

X Not used
HI Status Control

(f)

F igure 6-42 (cant.) (d) M o d e 2 I / O c o n f ig u r a t io n ; (e) M o d e 3 I / O c o n f ig u ra t io n ; (0 M o d e 0 co n tro l b it func tions .

Sec. 6 .16 Special-Purpose Interface Controllers 229

PACR Mode 1 Port A Submode XX Port B Submode XO
PACR

5 4 3 H2 Control
0 X X Inpul pm - status only
1 X 0 Output pm - always negated
1 X 1 Output pm — always asserted

PACR
0

X Not used
H1 Status Control

PACR Mode 1 Port A Submode XX Port B Submode X1
PACR

5 4 3 H2 Control
0 X X Input pm - status only
1 X 0 Output pm always negated
1 X 1 Output pm — always asserted

PACR
0

X Not used
H1 Status Control

5 4 3
0 X X
1 0 0
1 0 1
1 1 0

1 1 1

PBCR

PBCR Mode 1 Port B Submode XO

H4 Control
)ut pm - status only
itput pm — always negated
itput pm - always asserted
itput pm — interlocked input handshake pro-

tocol
pulsed input handshake protocol

H3 Status Control
Not used

PBCR
5 4 3
0 X X
1 0 0
1 0 1
1 1 0

1 1 1

PBCR Mode 1 Port B Submode X1

H4 Control

tocol

status only
- always negated
- always asserted
- interlocked output handshake pro

- pulsed output handshake protocol

PBCR
0

0

H3 Status Control
The H3S status bit is 1 when either the initial or final
output latch of Port A and B can accept new data It is
0 when both latches are full and cannot accept new
data
The H3S status bit is 1 when both the initial and final
output latches of Ports A and B are empty It is 0 when
neither the initial or final latch of Ports A and B is full

(g)

PACR Mode 2 PBCR Mode 2

PACR PBCR
5 4 3 H2 Control 5 4 3 H4 Control

X X 0 Output pin - interlocked output handshake pro- X X 0 Output pm — interlocked input handshake pro
tocol tocol

X X 1 Output pin -- pulsed output handshake protocol X X 1 Output pm - pulsed input handshake protocol

PACR PBCR
0 H1 Status Control 0 H3 Status Control

0 The H1S status bit is 1 when either the Port B initial or X Not used
final output latch can accept new data It is 0 when
both latches are full and cannot accept new data
The H IS status bit is 1 when both of the Port B output
latches are empty It is 0 when at least one latch is full.

(h)

Figure 6-42 (com.) (g) M ode I con tro l bit functions; (h) M o d e 2 contro l bit functions.

are given in Fig. 6.42(0- Although this information is represented relative to port
A ’s handshake signals, it also is valid for programming port B’s handshake signals,
H 3 and H4, through the port B control register. Notice that for our earlier mode
0 submode 00 example H 2 can be configured in five different ways. For instance,
if these three bits are set to

B5B4B3 = 1 1 0

2 3 0 M em ory and Input/O u tpu t Interfaces o f the 6 8 0 0 0 M icroprocessor Chap. 6

PACR M ode 3 PBCR Mode 3
PACR

5 4 3 H2 Control
X X 0 O utput pin — interlocked output handshake pro

tocol
X X 1 O utput pin - pulsed output handshake protocol

PACR
0 H1 S ta tus Control
0 The H1S s ta tu s bit is 1 w hen either the initial or final

output latch of Port A and B can accept new data It is
0 w hen both latches are lull and cannot accept new
data

1 The H IS s ta tu s bit is 1 w hen both the initial and final
ou tpu t latches of Ports A and B are em pty It is 0 when
either the initial or final latch of Ports A and B is full

0)

F ig u re 6-42 (com.) (i) M o d e 3 c o n tro l b it fu n c tio n s (M o to ro la , In c .) .

H 2 is set up as an ou tpu t and implements what is called the interlock input handshake
protocol.

In this case, its opera t ion is interlocked with tha t o f the H t pin. In fact, the
H 2 ou tp u t will be at its active logic level whenever the port A d a ta register is ready
to accept new' d a ta . In this way, it can signal the input device tha t supplies P A 0

th rough P A 7 tha t the 68230 is ready to accept d a ta from this port . T he active logic
level (sense) o f H 2 is defined by a bit in PG C R . Therefore, the input device can apply
a byte o f da ta to the PA lines and then switches H , to its active logic level. In response
to an active H | , the 68230 latches the data at P A q -P A 7 into P A D R and then switches
H-, to its inactive logic level. This signals the input device that the 68230 is no longer
ready to accept d a ta . The port remains in this state until the M P U reads the byte
o f d a ta from P A D R .

In practical applications, H 4 can be used in con junc t ion with H 3 to implement
an interlocked o u tp u t handsh ake pro toco l for port B. Let us look ju s t briefly at how
this can be done when port B is configured for m od e 0 subm ode 01 opera t ion . In
Fig. 6 .4 2 (0 , we find that the kinds o f opera t ions tha t can be perfo rm ed by H 2 for
m o de 0 subm ode 0 1 ou tpu t ports a re similar to those available for m ode 0 subm ode
00 input ports . We will now describe the o u tp u t opera t ion for H 4 contro l code

B5B4 B3 = 1 1 0

In this case, H 3 and H 4 again opera te in an interlocked m ode o f opera t ion , but this
time the M P U sends d a ta to the o u tpu t port by writing it into PB D R . W hen P B D R
is loaded, the H 4 ou tpu t switches to its active logic level. This signal line can be used
to tell the o u tp u t device a ttached to port B tha t a new byte o f d a ta is available at
PB 0 - P B 7. In response, the o u tp u t device can read the byte o f d a ta from the port
and then signal the 68230 tha t it is ready to accept new da ta by switching the H 3

input to its active logic level. The occurrence o f the active logic level at H , causes
H 4 to re turn to its inactive logic level. H 4 remains at its inactive level until the M PU
writes ano ther byte o f da ta into P B D R .

PBCR
5 4 3 H4 Control
X X 0 O utput pm — interlocked input handshake pro

tocol
X X 1 Output pm - pulsed input handshake protocol

PBCR
0 H3 S ta tus Control
X Not used

Sec. 6 .1 6 Special-Purpose Interface Controllers 231

A question that may arise from our description o f the interlocked output
handshake protocol is, How does the M PU know that new data needs to be sent to
the output p o r t’s da ta register. It turns out that there are status bits for H, through
H 4 in a register within the 68230. Therefore, the M PU can poll these bits through
software to determine when data are to be outpu t . Alternately, the 68230 can be
configured to operate in an interrupt-driven mode o f operation. When operated in
this way, the 68230 automatically produces the P1REQ signal whenever the M PU
needs to output new data to the port. This mode o f operation eliminates the need
for the software polling routine.

Bit 0 o f PA CR and PBCR are control bits for the H , and H 3 status bits,
H 1S and H 3S, respectively. As shown in Fig. 6.42(0 for mode 0 submode 01 operation
at port A, this bit can configure the operation o f H]S two different ways. For
instance, if bit 0 is set to logic 1, H 1S will be logic 0 unless both o f the port B data
latches are empty.

The functions o f the control bits o f PA CR and PBCR for mode 1, mode 2,
and mode 3 operation at port A and port B are given in Figs. 6.42(g), (h), and (i),
respectively. For these modes, separate bit functions are given for port A and port B.

We just mentioned that a register exists inside the 68230 that contains the status
o f the handshake lines. This is register R 13, the port status register (PSR). As shown
in Fig. 6.43, the logic levels o f the bits o f this register represent the handshake pin
signal’s current logic levels and handshake status information . The four most
significant bits in PSR are labeled H 4, H 3, H 2, and H lt and if read by the M PU
they represent the current logic levels at the respective handshake line. The 68000
can examine the state o f the handshake lines th rough software by reading the values
in these bits. The other four bits, H 1S, H 2S, H 3S, H 4S, are also handshake status
bits. However, their logic levels are set or reset differently based on the port A and
port B mode and subm ode and handshake signal activity.

F igure 6-43 P o rt s ta tu s reg iste r (P S R)
fo rm a t (M o to ro la . Inc .).

Exam ple 6.9

H ow is port A configured if th e value in P A C R is 78 I6? A ssum e th a t m ode 0 opera tion
was selected fo r ports A and B in PG C R .

S o lu tion . In b inary fo rm , th e con tro l byte is

P A C R = 01111000,

From Fig. 6 .42(b), we find th a t the port is configured for m ode 0 subm ode 01 opera tion .

B-B6 = 01 = S ubm ode 0

T he next th ree b its in the register set the m ode o f opera tio n for H 2. In Fig. 6 .4 2 (0 we
find tha t the code 111 sets up H 2 for pulsed o u tp u t h an dshake p ro to co l.

7 6 5 4 3 2 1 0

H4
Level

H3
Level

H2
Level

HI
Level H4S H3S H2S HIS

2 3 2 M e m o ry and In p u t/O u tp u t In te rfa ces o f th e 6 8 0 0 0 M ic ro p ro ce sso r Chap. 6

B5B4 B3 = 1 1 1 = Pulsed output handshake protocol

The next two bits are both 0 and disable the H , interrupt request and H, interrupt and
DMA service request functions, respectively.

B-, = 0 = H , interrupt request disabled

B, = 0 = H, interrupt and DMA request disabled

Finally, bit 0 sets the operation o f the H 1S status bit such that it is logic 0 if both the
port A initial and final output latches are full and logic 1 if either latch is empty.

B0 = H , s is 0 if both port A output latches are full
and 1 if either is empty

A S S I G N M E N T

Section 6 .2

1. Does the 68000 employ separate memory and I / O address spaces?

Section 6 .3

2. Can an instruction access word data that starts at an odd memory address?
3. Write a sequence of instructions to store the long-word contents o f D0 in memory starting

at address SA001.

Section 6 .4

4. In which address range can interrupt service routine vectors be stored?

Section 6 .5

5. What function code would be anticipated on the FC lines when the result o f an ADD
instruction is being written to the destination location in memory? Assume that the 68000
is in the user state.

6 . Why would a user/supervisor system environment be employed?
7. Draw a circuit similar to the one in Fig. 6.9 in which a 16M-byte memory address space

is implemented as four 4M-byte blocks: the user program memory, user data memory,
supervisor program memory, and supervisor data memory. The supervisor is to have access
to all memory areas.

Section 6 .6

8 . Give an overview o f the sequence o f events that occur when an instruction word is read
from address SA000.

Section 6 .7

9. Give an overview o f the sequence o f events that occur when a byte o f data is written to
address SA001.

Chap. 6 Assignment 233

Section 6 .8

10. Write a single instruction to push the long-word contents o f registers A0, A ,, and A , onto
the supervisor stack.

11. Restore the contents o f the registers saved in problem 10 by individually popping them
from the stack.

Section 6 .9

12. Give an overview o f the operation o f the circuit in Fig. 6.13 for an upper byte access from
the group 2 RAMs.

Section 6 .1 0

13. Write an instruction sequence that will output the long-word contents o f D0 to four-byte-
wide output ports starting at address SI6000. The output ports are located at consecutive
even addresses.

14. Write an instruction that will input a word o f da ta from two byte-wide input ports and
store it in D,. Assume that the input ports are located at consecutive odd addresses which
are displaced by 1 0 bytes in the positive direction from an input address pointer held in
register A,.

Section 6 .11

15. Referring to the table in Fig. 6.15, give an overview' o f each o f the different modes o f
I /O operation for which a byte-w'ide port on the 6821 can be configured.

Section 6 .1 2

16. For the circuit in Fig. 6.17 and the address map in Fig. 6.18(a), write instructions that
do the following:
(a) Configure the B port o f both U |4 and U 15 as output ports.
(b) Configure the A port o f both U 14 and U , 5 as input ports.
(c) Configure the B output ports such that they produce a fixed duration strobe pulse

at their C B , ou tpu t and select its da ta ou tpu t register.
(d) Configure the A input ports such that they initiate an interrupt request through their

CA, inputs; the interrupt is to be initiated by a high-to-low' transition at C A ,; and
the ou tpu t register is to be selected.

17. Write a program that moves five bytes o f data from a table in memory starting at address
$A000 to the B port o f U , 4 in the circuit of Fig. 6.17. Assume that the B port is configured
as defined in problem 16(c).

Section 6 .1 3

18. What is meant by synchronous bus operation for the 68000?
19. How does the synchronous bus cycle o f Fig. 6.20(a) differ from the asynchronous bus

cycle in Fig. 6.10(a)?

2 3 4 M e m o ry and In p u t/O u tp u t In te rfa ces o f th e 6 8 0 0 0 M ic ro p ro ce sso r Chap. 6

Section 6 .1 4

20. Name a signal line that distinguishes an asynchronous communication interface from that
o f a synchronous communication interface.

21. Describe the sequence o f signals that become active in Fig. 6.5 when the microcomputer
transfers a character to the terminal.

22. Define a simplex, a half-duplex, and a full-duplex communication link.

Section 6 .1 5

23. If the control inputs o f a 6850 are RS = 1 and R /W = 1, w hat type o f operation is taking
place over the microprocessor bus?

24. Describe the internal operation o f the receiver section of the 6850 as a serial data character
is read from the RxpATA input. How does the 6850 signal the microprocessor that a valid
character has been received?

25. Overview the operation o f the 6850 as it accepts a byte o f character data from the
microprocessor and then transmits it over the T xdata line.

26. If the control register o f the 6850 contains B E i6, how is the device configured for
operation?

27. Write an instruction sequence that will reset the 6850. Assume that the device resides at
address Q 0A B C D |6.

28. If the contents o f the 6850’s status register are read as 0000001016, in which state o f data
communications is the device?

Section 6 .1 6

29. If RS5 RS4 RS3 RS, RS, = 8 l 6 is applied to the 68230, which o f its internal registers is
selected?

30. The PGCR register o f a 68230 is found to contain 00010010,. What mode o f operation
is selected for the I /O ports, which handshake lines are enabled, and what active logic
levels are selected for the enabled handshake lines?

31. Write a sequence o f instructions to load PGCR with 60)6. Assume that the 68230 is
located at address A00116.

32. The contents o f the 68230’s PSRR are 03 What functions are selected for the PC4, P C 5 ,
and P C 6 lines? How is interrupt priority assigned to the handshake lines?

33. Write a sequence o f instructions to configure ports A, B, and C as input, output, and
input ports, respectively. Assume that register PA DD R is located at address A005)6;
PBDDR is at address A00716; and PCDD R is at address A00916.

34. Specify the mode bits in PGCR and the submode bits in PBCR that are needed to configure
the B port as a 16-bit input port and so that H 3 is used to latch the input data.

Exc e p tio n Processing
of the 6 8 0 0 0 M icroprocessor

7.1 INTRODUCTION

In the last chapter, we covered the memory and input/output interfaces for the
68000-based microcomputer. Here we will consider the exception processing capability
o f the 68000 and a special input interface, the external hardware interrupt interface.
The topics covered are as follows:

1. Types of exceptions
2. Exception vector table
3. Exception group priorities
4. External hardware interrupt interface
5. External interrupt priorities and the interrupt mask
6 . General interrupt processing sequence
7. General interrupt interface circuit
8 . Autovector interrupt mechanism
9. Autovector interrupt interface circuit

10. Exception instructions
11. Bus error
12. Reset
13. Internal exception functions

235

2 3 6 Exception Processing o f the 6 8 0 0 0 M icroprocessor Chap. 7

7.2 TYPES OF EXCEPTIONS

For the 68000 microcomputer system, M otorola , Inc., has defined the concept o f
exception processing. Exception processing is similar to what is more generally known
as in terrupt processing. Just like the interrupt capabilities o f other microprocessors ,
the exception mechanism allows the 68000 to respond quickly to special internal or
external events. Based on the occurrence o f this type o f event, the main program
is terminated and a context switch is initiated to a new program environment. This
new program environment, the exception service routine, is a segment o f program
designed to service the requesting condition. At completion o f exception processing,
program control can be returned to the point at which the exception occurred in the
main program.

The 68000 has a broad variety o f methods by which exception processing can
be initiated. They include the external exception functions, hardware reset, bus error,
and user defined interrupts. Furthermore, the 68000 has a num ber o f instructions
that can initiate exception processing. Some examples o f these instructions are TR A P,
T RA PV , and C H K . The 68000 also has extensive internal exception capability. It
includes exceptions for internal error conditions (address error, illegal/unimplemented
opcodes, and privilege violation) and internal functions (trace and spurious interrupt).

7.3 EXCEPTION VECTOR TABLE

Each o f the exception functions tha t is performed by the 68000 has a number called
the vector number assigned to it. For external interrupts, the interrupting device
supplies the vector number to the 68000. On the other hand, for other types o f
interrupts, the vector number is generated within the microprocessor. The 68000
converts the vector number to the address o f a corresponding long-word storage
location in memory. Held at this memory location is a 24-bit address known as the
vector address o f the exception. It defines the starting point o f the service routine
in program storage memory. Figure 7.1 shows the format in which the address vector
is stored in memory. As shown, it takes up two word locations. The lower addressed
word is the high word o f the new program counter and the higher addressed word
is the low word o f PC. Only the 8 LSBs o f the high word are used.

The vector addresses are stored in a part o f the 68000’s mem ory system known
as the exception vector table. As shown in Fig. 7.2, the vector table contains up to
256 vectors, which are labeled with vector numbers 0 through 255. Notice that the
table must reside in the address range 000000 | 6 through 0003FF16, which is the first

W ord 0

W ord 1

New Program Counter (High)

New Program Counter (Low)

A0 = 0. A1 = 0

A0 = 0, AT = 1

Figure 7-1 Exception vector organization (M otorola , Inc.).

Sec. 7 .3 Exception Vector Table 23 7

Vector

Number(s)
Address

Assignment
Dec Hex Space

0 0 000 SP Reset Initial SSP
- 4 004 SP Reset Initial PC
2 8 008 SD Bus Error
3 12 OOC SD Address Error
4 16 010 SD Illegal Instruction
5 20 014 SD Zero Divide
6 24 018 SD CHK Instruction
7 28 01C SD TRAPV Instruction
8 32 020 SD Privilege Violation
9 36 024 SD Trace
10 40 028 SD Line 1010 Emulator
11 44 02 C SD Line 1111 Emulator

12* 48 030 SD (Unassigned, reserved)
13" 52 034 SD (Unassigned, reserved)
14* 56 038 SD (Unassigned, reserved)
15 60 03C SD Uninitialized Interrupt Vector

16-23* 64 04C SD (Unassigned, reserved)
95 05F

24 96 060 SD Spurious Interrupt
25 100 064 SD Level 1 Interrupt Autovector
26 104 068 SD Level 2 Interrupt Autovector
27 108 06C SD Level 3 Interrupt Autovector
28 112 070 SD Level 4 Interrupt Autovector
29 116 074 SD Level 5 Interrupt Autovector
30 120 078 SD Level 6 Interrupt Autovector
31 124 07C SD Level 7 Interrupt Autovector

32-47 128 080 SD TRAP Instruction Vectors
191 0BF

48-63' 192 OCO SD (Unassigned, reserved)
255 OFF

64-255 256 100 SD User Interrupt Vectors
1023 3FF

Figure 7-2 Vector table (Motorola, Inc.).

1024 by tes o f th e 6 8 0 0 0 ’s 16M -by te a d d re s s sp a ce . All v ec to rs o t h e r th a n v ec to r 0
m u s t reside in su p e rv is o r d a t a m e m o r y . V e c to r 0 , w h ic h is a s s ig n ed to th e h a r d w a r e
reset fu n c t io n , m u s t be s to re d in su p e rv is o r p r o g r a m m e m o r y .

T h e h e x a d e c im a l a d d re s s a t w h ich ea ch v e c to r is lo c a te d in m e m o r y is a lso
p r o v id e d in th e ta b le o f F ig . 7 .2 . T h e a d d r e s s o f th e m o s t s ig n i f ic a n t w o rd o f a n y
v e c to r can be d e t e r m in e d by m u l t ip ly in g its v e c to r n u m b e r by 4. F o r in s tan c e , v e c to r
8 is s to re d s t a r t in g a t a d d re s s 4 10 x 8 10 = 3 2 10 = 0 0 0 0 2 0 16.

238 Exception Processing of the 6 8 0 0 0 M icroprocessor Chap. 7

All o f the low-numbered vectors serve special functions o f the 68000
microcomputer system. Examples are the bus error exception vector at address
00000816, address error exception vector at OOOOOC16, CHK instruction vector at
000018 16, and spurious interrupt vector at 00006016. Within this group we also find
a small number o f reserved vector locations. For instance, vectors 12 through 14 are
unassigned and reserved for future use.

The next group, vectors 25 through 31 at addresses 000064,6 through 00007C16,
is dedicated to what are known as the autovector interrupts. They are followed by
the trap instruction vectors in the address range 000080)6 through 0000BF , 6 and some
more reserved vector locations. The last 192 vectors, which are said to be user
definable, are used for the external hardware interrupts.

Since the addresses that are held in this table are defined by the programmer,
the corresponding exception service routines can reside anywhere in the 68000’s 16M-
byte address space.

Exam ple 7.1

A t w hat add ress is the vecto r fo r T R A P #5 sto red in the m em ory? If the service rou tine
fo r th is exception is to s ta rt at address 01020016, w hat will be the sto red vector?

S o lu tion . T he T R A P #5 in struction co rresponds to vector num ber 37. T h erefo re , its
address is calcu lated as

4 io x 37,o = 14f510 = 000094 |6

T he vector add ress 010200|6 is b ro k en in to tw o w ords fo r storage in m em ory. T hese
w ords are

M ost sign ifican t w ord = 0 00116

Least sign ifican t w ord = 0 200 |6

They get sto red as

0001,6 at address 000094)6

0200]6 a t address 000096|6

7.4 EXCEPTION PRIORITIES

The exception processing o f the 68000 is handled on a priority basis. The priority
level o f an exception or interrupt function determines whether or not its operation
can be interrupted by another exception. In general, the 68000 will acknowledge a
request for service by an exception only if there is no other exception already in
progress or if the requesting function is at a higher-priority level then the currently
active exception.

Figure 7.3 shows that the exception functions are divided into three basic priority
groups and then assigned additional priority levels within these groups. Here group
0 represents the highest-priority group. It includes the exception functions of external
events such as reset and bus e rror, as well as the internal address error detection

Sec. 7 .5 External Hardware Interrupts 239

F igu re 7-3 E x cep tio n p rio rity g ro u p s
(M o to ro la , In c .).

condition. Within group 0, reset has the highest priority. It is followed by bus error
and address error in that order.

Exception functions from group 0 always overr ide an active exception from
group I or group 2. Moreover, a g roup 0 function does not wait for completion of
execution o f the current instruction; instead, it is initiated at the completion o f the
bus cycle that is in progress.

The next-to-highest priority group, group 1, includes the external hardware
interrupts and internal functions: trace, il legal/unimplemented opcode, and privilege
violation. In this g roup, trace has the highest priority and it is followed in order of
descending priority by external in terrupts, i l legal/unimplemented instruction, and
privilege violation.

In all four cases in group 1, exception processing is initiated with the completion
o f the current instruction. If a g roup 1 exception is in progress, its service routine
can be interrupted only by a g roup 0 exception or another exception from group 1

with higher priority. For instance, if an in terrupt service routine is in progress when
an illegal instruction is detected, the interrupt service routine will run to completion
before service is initiated for the illegal opcode.

G roup 2 is the lowest-priority group and its exceptions will be interrupted by
any group 0 or group 1 exception request. This group includes the software exception
functions, T R A P , T RA PV , CHK, and divide by zero. These exceptions differ from
those in the other groups in that they are initiated through execution of an instruction.
Therefore, there are no individual priority levels within group 2.

Let us assume that a T R A P exception is in progress when an external device
requests service using an interrupt input. In this case the hardware interrupt is o f
higher priority. Therefore, the trap routine is suspended and execution resumes with
the first instruction o f the interrupt service routine.

7.5 EXTERNAL HARDWARE INTERRUPTS

The first type o f 68000 exception that we shall consider in detail is the external
hardware interrupts. The external hardware in terrupt interface can be considered to
be a special-purpose input interface. It allows the 68000 to respond quickly and

G roup Excep tion P ro cess in g

0
R eset

B us Error
A d d ress Error

E xcep tion p ro cess in g b eg in s
w ith in tw o clock cyc les

1

T race
In te rrup t

Illegal
P rivilege

E xcep tion p ro c e ss in g b eg in s b e fo re
th e n ex t in s tru c tio n

2
TRA P. TRAPV.

CHK.
Z ero Divide

E xcep tion p ro c e ss in g is s ta r te d by
no rm al in s tru c tio n ex e cu tio n

240 Exception Processing of the 6 8 0 0 0 Microprocessor Chap. 7

efficiently to events that occur in its external hardware. T hrough it, external devices
can signal the 68000 whenever they need to be serviced. For this reason, the processor
does not have to dedicate any o f its processing time for checking to determine which
o f the external devices needs service. For example, the occurrence o f a power failure
is typically detected by an external power failure detection circuit and signaled to
the microprocessor as an interrupt.

The General Interrupt Interface

Figure 7.4 shows the general interrupt interface o f the 68000. Here we have shown
the signals that are involved in the interface and see that some circuitry is required
to interface external devices to the interrupt request inputs o f the 68000. Notice that
as many as 192 unique devices could apply interrupt requests to the 68000. However,
few applications require this many.

F igure 7-4 G en era l in te rru p t in te rface .

Let us now look just briefly at the function o f each o f the signals involved in
the interrupt interface. First we find that three address lines, A] through A j, are in
use. They carry an interrupt priority number that is output during the interrupt
acknowledge bus cycle. The logic level o f AS signals external circuitry when this code
is available at A 3A 2 A 1 . Accompanying this priority-level num ber is the interrupt
acknowledge (1ACK) function code at outputs F C 2 through FC 0.

During the interrupt acknowledge bus cycle, external circuitry must return an
8 -bit vector num ber to the 68000. Data bus lines D0 through D7 are used to input
this vector number. The external device signals that the vector number is available
on the bus with the data transfer acknowledge (DTACK) signal. R /W and LDS
control the direction and timing o f data transfer over the bus.

Sec. 7.5 External Hardware Interrupts 241

External devices must issue a request fo r service to the 68000. The external
interrupt request inputs of the 68000 are labeled IPL2, 1PL|, and IPL0. The code 0002

at these inputs represents no interrupt request. On the other hand, a nonzero input
represents an active interrupt request.

External Hardware Interrupt Priorities

The external hardware interrupts o f the 68000 have another priority scheme within
their group 1 priority assignment. The number o f priority levels that can be assigned
is determined by the number o f interrupt inputs. As shown in Fig. 7.5, for three
interrupt inputs we get seven independent priority levels. They are identified as 1
through 7 and correspond to interrupt codes IPLoIPLjIPLq equal 0012 through 1112,
respectively. Here 7 represents the highest priority level and 1 the lowest priority level.

Priority Level
In terrupt Code

i p l 2 IPL, IPL0

None 0 0 0
1 0 0 1
2 0 I 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

F igu re 7-5 E x te rn a l in te rrp u t p rio ritie s .

The external interrupt circuitry can be designed to allow a large number o f
devices to respond at each o f these interrupt levels. It is for this reason that we have
identified 192 external devices in Fig. 7.4. Any num ber o f these 192 devices can be
assigned to any one o f the interrupt levels. Moreover, additional external priority
logic circuitry can be added to prioritize the interrupts into 192 unique priority levels.

Interrupt Mask

Bits 8 through 10 in the system byte o f the status register are used as a mask for
the external hardware in terrupts. Figure 7.6 shows that these bits are labeled I0

through 12, respectively. Only active interrupts with a priority level higher than the
current value o f the mask are enabled for operation. Those o f equal or lower priority
level are masked out.

When the 68000 is reset at power-up, the mask is automatically set to 1112.
This disables interrupts from occurring. For the interrupt interface to be enabled,
the mask must be modified to a lower priority level through software. For instance,
it could be set to 0002. This would enable all interrupts for operation.

Whenever a higher-priority interrupt occurs, the mask is automatically changed
so that equal- or lower-priority interrupts are masked out. For instance, with initiation
o f a level 5 interrupt it is changed to 1012. This masks out from level 5 down through
level 1 .

242 Exception Processing of the 6 8 0 0 0 Microprocessor Chap. 7

S y s te m Byte
_____ / \ _____

U ser B yte

In te rru p t
M ask

F igure 7-6 In te r rp u t m ask b its in the
s ta tu s reg ister (M o to ro la , Inc.).

The level 7 in terrupt request code is not actually masked out with the interrupt
mask. Even if the mask is set to 1112, it remains enabled. For this reason, it can
be used to implement a nonmaskable in terrupt for the 68000 microcomputer system.

7.6 GENERAL INTERRUPT PROCESSING SEQUENCE

Whenever the code at interrupt inputs IPL 2 I P L | I P L 0 is nonzero, an external device
is requesting service. It is said tha t an interrupt is pending. At the completion of the
current instruction, the 68000 compares this code to the contents o f the interrupt
mask, I2 I j I0 in bits 10 through 8 o f the status register. If the priority level o f the
active request is higher than that already in the mask, the request for service is
accepted. Otherwise, execution continues with the next instruction in the currently
active exception processing service routine.

Upon accepting the exception service request, the 68000 initiates a sequence by
which it passes contro l to the service routine located at the address specified by the
interrupt’s vector. First, the contents o f the status register are temporarily saved. Next,
the S-bit, bit 13, o f the status register is set to 1 and the T-bit , bit 15, is cleared to
0. They enable the supervisor mode o f operation and disable the trace function,
respectively. Then interrupt mask M j lo is set to the priority level o f the interrupt
request just granted.

Now the 68000 initiates an interrupt acknowledge (IACK) bus cycle. The
sequence of events that occur during this bus cycle are summarized in Fig. 7.7(a)
and are shown by waveforms in Fig. 7.7(b). Here we see that it first signals external
devices that service has been granted. It does this by outputting the interrupt code
o f the device to which service was granted on address bus lines A | through A 3 and
then makes control signals R /W = 1, AS = 0, and LDS = 0. When R /W = 1 and
LDS = 0, a byte o f data will be transferred over da ta bus lines D0 through D7. At
the same time, it outputs the in terrupt acknowledge function code. This code is
FC 2 F C jF C 0 equal to 111. In this way, it tells the external circuitry w'hich priority-
level interrupt is being processed.

In response to the interrupt acknowledge function code, the external device that
corresponds to the interrupt code on A | through A 3 must put an 8 -bit vector number
on data bus lines D0 through D7. Then it must switch DTACK to logic 0 to signal
the 68000 that the vector number is available on the bus. The 68000 reads the vector
number o ff the bus and then returns both LDS and AS to logic 1.

Sec. 7.6 General Interrupt Processing Sequence 2 4 3

Request Interrupt

Grant Interrupt
1) Compare interrupt level in status register

and wait for current instruction to complete
2) Place interrupt level on A l. A2. A3
3) Set R 'W to read
4) Set function code to interrupt acknowledge
5) Assert address strobe lASJ__
6) Assert lower data strobe (LDS)

Provide Vector Number
1) Place vector number of D0-D7 _______
2) Assert data transfer acknowledge (DTACK)

Acquire Vector Number
1) Latch vector number
2) Negate LDS
3) Negate AS

1 ♦
Release

1) Negate DTACK

Stan Interrupt Processing
Figure 7-7(a) IACK bus cycle flowchart

(a) (Motorola, Inc.).

It is this 8-bit code th a t tells the 68000 which o f the devices assoc ia ted w ith
the active in te r ru p t level is r eques t ing service. N o tice in Fig. 7 .2 th a t no t all o f the
256 vectors in the tab le are to be used with the u se r-def ined ex te rna l h a rd w a re
in te r ru p ts . O nly the 192 vec tors f ro m vec to r 64 th r o u g h 255 sh o u ld be used fo r th is
p u rp o se .

Finally, the in te rrup t know ledge bus cycle is com ple ted when the external device
re tu rn s D T A C K to th e 1 logic level.

N ext, the 68000 pushes the cu r re n t co n ten ts o f its p ro g ra m c o u n te r o n to the
to p o f the supe rv iso r s tack . Since P C is 24 bits long, it requ ires tw o w ords o f s tack
a n d takes tw o write bus cycles. T h e n the c o n ten ts o f the o ld s ta tu s register, which

2
4

4

CLK

A4-A23

A 1 - A3

AS

n _ n _

i k

I X
)----- N----- C
>

\ /

UDS

LDS

R / W

/

LDS V \ /

DTACK

D8-D15

DO D7

FCO-2

IPLO-2

7
y

>

>

: x

A t

■ v

\
At

At
K

\

Ar
At

*

<

\
\
\

y v

y v
/ v

\
/

\ /

< >— (
X

7
Last Bus Cycle of Instruct ion Stack

h IRead or Wr i te) i PCL i
(SSP>

IACK Cycle
(Vector Number Acquisi t ion)

Stack and
Vector Fetch

(b)

Figure 7-7 (cont.) (b) IACK bus cycle waveforms (M otoro la , Inc.).

Sec. 7.7 General Interrupt Interface of the 68000 245

were saved earlier, are also pushed to the supervisor stack. It takes just one word
o f memory and is accomplished with one write cycle.

Now the address o f the in te rrup t’s vector, which the 68000 calculates from the
interrupt vector num ber, is put on the address bus. The value at this address in the
vector table is read over the data bus and loaded into PC. It takes two read bus cycles
to fetch the complete vector. During the first bus cycle, the most significant word
is carried over the bus and during the second bus cycle, the least significant word.
The 68000 now has the new address at which it begins executing the routine that
services the interrupt.

A return from exception (RTE) instruction must be included at the end o f the
service routine. Its execution initiates return o f software control to the original
program environment.

Figure 7.8 shows how the 68000 internally generates a vector address from an
8-bit vector number. As shown in Fig. 7.8(a), the vector number was read off o f the
lower eight data bus lines, D0 through D7. First, the 68000 multiples the vector
number by 4. This is done by performing a shift left by two bit positions. Then it
fills the upper 14 bits with 0s to form a 24-bit address. This gives the address shown
in Fig. 7.8(b), which points to the vector in the table.

015______________________________ 08 D7_____________________________________DO

ignored v7 v6 v5 v4 v3 v2 v l vO

Where
v7 is the M SB of the Vector Number
vO is the LSB of the Vector Number

(a)

A23 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

All Zeroes v7 v6 v5 v4 v3 v2 vl vO 0 0

(b)

Figure 7-8 (a) V ecto r for add ress g en e ra tio n (M o to ro la , Inc .); (b) gene ra ted ad d ress
(M o to ro la , Inc .).

7.7 GENERAL INTERRUPT INTERFACE OF THE 68000

The block diagram o f Fig. 7.9 illustrates the type o f circuitry needed to support a
general interrupt interface for the 68000 microcomputer system. This circuit has 192
interrupt request inputs, which are labeled IRQ0 through IR Q 19j . These inputs are
synchronized by latching them into an interrupt latch circuit.

The 192 outputs o f the interrupt latch circuit are applied to inputs o f the interrupt
absolute priority encoder circuit. Here they are prioritized and encoded to produce
an 8-bit output code which identifies the highest-priority active interrupt request. These
codes are in the range IRQ0 equal to 00000000-, = 0 10 to IR Q | 91 equal to
10111111l6 = 19110.

246 Exception Processing of the 68000 Microprocessor Chap. 7

IRQ 191 IRQO

Set Latch

Clear Latch

500 ns
Delay

¡ÄÜK

>
1----- 1

Interrupt
LE Latches

11

• • • •

Interrupt
Absolute Priority

Encoder

8 Bn
Encoded
Priority

Add 64

Vector
Number

Three-State
LE Vector Number

Latch #2
OE

D0-D7

- O j

\ 7

FC0-FC1
IPL0

MC68000 IPL2

MC6I
Inter
Encc

3000
rupt
)der

/
/
3

D Flip
To Syn
to 8 Mt-
IXC68(X

-Flops
: Inputs
tz Clock
X) Onlyl

/

Figure 7-9 Typical general interrput interface circuit (Motorola, Inc.).

R em em ber tha t in the vec tor table o f Fig. 7.2, the vectors assigned to the user-
defined external in te rrup ts are in the range 64 th rough 255, no t 0 to 191. F o r this
reason, the pr iori ty codes tha t a re p roduced by the encoder circuit must be displaced
by 64 before they are applied to the da ta bus o f the 68000 during the IACK bus cycle.
T he circuit labeled add 64 is p rov ided for this purpose . It simply adds 64 to the 8-bit
code at its input.

Sec. 7.8 Autovector Interrupt Mechanism 2 4 7

The o u tpu t o f the add 64 circuit, which is the correct vector number, is latched
into the three-state output vector number latch circuit. Notice that the outputs of
this latch are enabled by IACK. In this way, the vector number is put on data bus
lines D0 through D7 only during the interrupt acknowledge bus cycle. At all other
times, the ou tputs o f the latch are in the high-Z state.

Up to this point, we have just described the part o f the interrupt interface circuit
that is used to generate the vector number. But at the same time, another circuit path,
which includes the interrupt encoder and synchronization flip-flops , must produce
an interrupt request to the 68000.

Notice that the interrupt absolute priority encoder circuit ou tpu ts a 7-bit code
in addition to the 8-bit priority code. The 7-bit code is input to the interrupt encoder
circuit. In this code, just one bit is set to 0 and it identifies the priority level o f the
interrupt request. In response, the encoder produces a 3-bit request code for this
priority level at its output. This code is latched onto the IPL2 through IPL0 inputs of
the 68000, where it represents an in terrupt request.

7.8 A U TO VEC TO R INTERRUPT M ECHANISM

In 68000 microcomputer systems that do not require more than seven interrupt inputs,
a modified interrupt interface configuration can be used. This interface decreases
the amount o f external support circuits and at the same time shortens the response
time from interrupt request to initiation of the service routine. This simplified interrupt
mechanism uses what is known as the autovector mode o f operation.

The autovector interrupt interface is shown in Fig. 7.10. It simplifies the interface
requirements between external devices and the 68000. In this case, external hardware

Figure 7-10 A utovector interrput interface.

248 Exception Processing of the 68000 Microprocessor Chap. 7

need just recognize the IACK function code at F C 2F C ,F C 0 and respond by switching
VPA to logic 0. This signals the 68000 to follow its autovector interrupt sequence.

When using autovector exception processing, the source o f the interrupt vector
is determined in a different way. Instead o f external circuitry supplying an 8-bit vector
number on D7 through Dn, the 68000 generates the vector address internally from
the interrupt request code IP I^ IP L ^IP L q and the address o f the service routine is
fetched from the autovector section o f the vector table in Fig. 7.2. In this way, we
see that the in terrupt acknowledge sequence is shortened. This is the reason that the
response time between interrupt request and entry o f the service routine is decreased.

As an example, assume that autovector interrupt request code 1012 is applied
to IPL 2 through IPL0. Looking at the table in Fig. 7.2, we see that vector 29 is fetched
from addresses 000074,6 and 000076,6 and loaded into the PC o f the 68000.

7.9 A U TO VEC TO R INTERFACE SUPPORT C IR CUIT

Now that we have introduced the autovector interrupt mechanism o f the 68000, let
us look at a simple circuit that can be used to implement the external hardware
interface.

The circuit o f Fig. 7.11 can be used to implement the autovector interface in
a 68000 microcom puter system. Here we find the seven interrupt request inputs
identified as level 1 through level 7. The logic levels at these inputs are latched into
the 74LS273 octal latch synchronously with the CLK signal from the 68000. This
latch is provided to synchronize the application o f interrupt inputs to the priority
encoder.

Interrupt requests must be prioritized and encoded into a 3-bit interrupt request
code for input to the 68000. This is done by the 74LS348 8-line to 3-line priority
encoder. Notice that the inputs of this device are active low, with input 7 corresponding
to the highest-priority input and 0 to the lowest-priority input. The binary code
corresponding to the highest-priority active input is output at A i A ^ q . This interrupt
code is latched in a 74LS175 latch and its outputs applied to the IP L 2 through IPL 0
inputs o f the 68000.

In addition to this interrupt request code interface circuit, another circuit is
required to support the autovector interrupt interface. This circuit is required to detect
the IACK code when it is output by the 68000 and in response assert the VPA signal.
Typically, this is done by the function decoder circuit o f the 68000 microcomputer
system. Alternatively, a single three-input N A N D gate can be used.

7.10 EXCEPTION INSTRUCTIONS

The instruction set o f the 68000 includes a num ber o f instructions that use the
exception processing mechanism. They differ from the hardware-initiated exceptions
that we have covered up to this point in that they are initiated as the result o f the

In
te

rr
up

t
in

pu
ts

+ 5

lig u r e 7-11 T ypical autovector interrupt interface circuit (M otoro la , Inc.).

NJ

CD

2 5 0 Exception Processing of the 68000 Microprocessor Chap. 7

68000 executing an instruction. S om e o f these instructions m ake a condit ional test
to determine w hether o r not to initiate exception processing.

There are five such instructions. They are trap (T R A P) , trap on overflow
(T R A PV), check register against bounds (CHK), signed divide (D1VS), and unsigned
divide (D1VU). T he opera t ion o f these instructions is sum m arized in Fig. 7.12. Let
us now look at the exception processing for each o f these ins tructions in m ore detail.

Instruction C ondition O peration

TRA P # n

TRAPV

CHK EA,Dn

DIVS EA,Dn
DIVU EA.Dn

RTE

None

V = I

Dn < 0 or Dn > (EA)

(EA) = 0

Trap sequence using trap vector n

T rap sequence using TRAPV vector

T rap sequence using CHK vector

T rap sequence using zero divide vector

R eturn from excep tion rou tine to the
program in which excep tion occurred

Figure 7-12 Exception instructions.

Trap Instruction— TRAP

The T R A P ins truct ion can be considered to be the softw are in terrup t instruction o f
the 68000. It permits the p rogram m er to perform a vectored call o f an exception service
routine. We can call this routine the trap service routine and it is typically used to
pe rfo rm vectored subroutine calls such as supervisory calls.

The trap ins truc t ion is simply written as

T R A P th\

Here n represents the trap vector number tha t is to be used to locate the starting point
o f the exception processing rou t ine in p rogram m em ory . L ooking at the vector table
in Fig. 7.2, we see that the 24-bit starting addresses for the trap instructions are located
at addresses in the range 00008016 th rough 0000B F 16. This gives a total o f 32 words
o f m em ory allocated to storage o f t rap vectors. Since each vector requires two words
o f m em ory , there is room for 16 vectors, which co rrespond to instructions T R A P
m th rough T R A P tt\5.

For instance, the most significant word o f the vector for T R A P ttO is held at
00008016 and its least significant word at 00008216. Execution o f the T R A P #0
instruction causes the 24-bit value stored at these locations to be loaded into the P C
o f the 68000. T herefore , p ro g ram execution resumes with the first instruction o f the
T R A P #0 service routine.

Let us look m ore closely at the series o f events tha t takes place to pass contro l
to the exception service rou tine o f a t rap ins truction. A fter the 68000 executes the
tr ap instruction , it first saves the curren t contents o f its status register in a tem porary
holding register. T hen the S-bit o f SR is set. This enables the supervisor system

Sec. 7.10 Exception Instructions 2 5 1

environm ent. Next, bit T o f SR is cleared to disable the trace m ode o f opera t ion .
Now the 68000 preserves the current p rog ram environm ent such that it can be

reentered at com ple tion o f exception processing. It does this by pushing the current
contents o f P C o n to the supervisor stack. This value o f PC points to the instruction
following the T R A P instruction tha t just initiated exception processing. Then the
sta tus word is pushed o n to the supervisor stack.

We are now ready to enter the exception service routine. T h e address o f the
t r ap vector is au tom atica lly calculated by the 68000 from the t rap n um ber . The t rap
vector is read from this location and loaded in to PC . Execution picks up with the
first instruction o f the service routine.

Notice tha t jus t the old P C and SR are autom atica lly saved on the supervisor
stack by the exception-processing mechanism. Frequently, the exception service routine
will require use o f the 68000’s da ta o r address registers. For this reason, their contents
may also be saved on the stack. T he 68000 does not have PU SH or P O P instructions
for this purpose. Instead , its M O V E instruction is used to p erfo rm these types o f
opera t ions. For example, the instruction

M O V E .L DO, - (SP)

will effectively push the 32-bit con ten ts o f D0 o n to the top o f the supervisor stack.
Typically, this is done with the first few instructions o f the service routine.

Just as fo r interrupts, the return m echanism o f the T R A P instruction is the
return from exception (RTE) ins truction . Execution o f this ins truction at the end o f
the service routine causes the saved values o f P C and SR to be p opped from the
supervisor stack. Prio r to executing the RTE instruction, the contents o f any additional
registers saved on the stack must also be popped back into the 68000. Again, this
can be done with the M O V E instruction. For example,

M O V E .L (SP) + ,D0

causes the 32-bit value at the top o f the stack to effectively be popped into register D0.

TR APV, CH K, and DIVU/DIVS Instructions

T he rest o f the exception instructions initiate a trap to an exception service routine
only upon detection o f an ab no rm al processing cond it ion . For instance, the trap on
overflow (T R A P V) instruction checks overflow bit V, bit l o f the status register,
to determine w hether o r not an overf low has resulted from execution o f the previous
instruction. If V is found to be set, an overf low has occurred and exception processing
is initiated with an overflow service routine. In this case contro l is passed to the
overflow service routine pointed to by the T R A P V vector at addresses 0 0 0 0 lC]6 and
OOOOlEl6 o f the vector table. O n the o ther hand , if V is not set, execution continues
with the next sequential ins truction in the p rogram .

The check register against boundaries (C H K) instruction, as its name implies,
can determine if the contents o f a register lie within a set o f m in im u m /m ax im u m
values. The m in im um value (boundary) is always 0000,6. O n the o ther hand , the

252 Exception Processing of the 68000 Microprocessor Chap. 7

maximum value (boundary), is specified as a source operand and can
reside in an internal register or a location in external memory.

An example is the instruction

CHK #$5A,D0

Here register D 0 contains the param eter under test and $5A is the maximum
boundary. If during execution o f the instruction, the contents o f D0 are found to
be within the range 000016 to the value 5 A !6, the parameter is within bounds and
exception processing is not initiated. On the o ther hand, if it is negative or greater
than 5 A |6, it is out o f bounds and exception processing is initiated. The change in
program environment is to the address defined by vector 6 at addresses 00001816 and
00001A 16 in the vector table.

The last two exception instructions, DIVU and DIVS, cause a trap to a
service routine if the division they perform involves a divisor equal to zero. This
divide-by-zero exception is initiated through the vector at addresses 000014 16 and
00001616.

7.11 BUS ERROR

It is possible with the asynchronous bus o f the 68000 to get into a situation where
a bus cycle is not completed. This would be due to the fact that the data acknowledge
(DTACK) signal is not received by the 68000. If this happens, execution o f the current
instruction would not be completed; instead, the M PU would be hung up at the
instruction. This represents what is known as a bus error condition.

To resolve this problem, bus error exception capability is provided on the 68000.
This exception provides a way o f assuring that bus cycles initiated by the 68000 are
carried through to completion. The bus error condition is not detected automatically
by the 68000 itself; instead, it must be detected with external circuitry and signaled
to the 68000. External logic would d o this b y switching the BERR (bus error) input
o f the 68000 to logic 0. In fact, BERR and H A L T can be used together to
automatically rerun bus cycles that result in a bus error.

Remember that earlier we indicated that the only exception with higher-priority
than the bus error function is reset. Therefore, the bus error exception takes precedence
and occurs as long as the reset exception is not already in progress. Moreover, we
found that it does not wait for the completion o f the current instruction before it
is initiated. This is also im portant because when a bus error occurs, execution o f the
instruction that is in progress will not be completed.

When BERR is switched to the 0 level, the M PU aborts the current bus cycle
and initiates exception processing. A change in program environment is initiated to
a service routine for the bus error condition. The location of this service routine is
defined by vector 2 in the table o f Fig. 7.2. Execution o f this service routine can
attempt to correct the bus error by rerunning the bus cycle or signal its occurrence
by displaying or printing information such as the address at which the error occurred
and the type o f bus cycle that was in progress.

Sec. 7.11 Bus Error 253

A n exam ple o f a type o f circuit th a t can be used to d e te rm ine w hether o r not
bus cycles a re com p le ted is a watchdog timer. T h is t im er can be s ta r ted as each bus
cycle is in i t ia ted an d then the 68000’s bus co n tro l signals observed to assure tha t the
cycle is co m p le ted befo re a m ax im u m period o f t im e has e lapsed . If the t im er times
ou t befo re the bus cycle is f in ished , the circuit sets B E R R to logic 0 signaling the
68000 o f the bu s e r ro r co n d i t io n .

T he sequence o f events by which the 68000 passes co n tro l to the bus e r ro r
excep tion service ro u t in e is a lm os t th e sam e as th a t described ear l ier for the T R A P
ins tru c t io n . F o r th is reason , we will ju s t look at how they dif fer .

T h e only d if fe ren ce betw een the tw o excep tion -p rocess ing con tro l t ran sfe r
sequences is tha t several ad d it io n a l p a ram e te r s a re p ushed to the superv iso r stack
in the case o f a bus e r ro r . F igure 7 .13 show s this in fo rm a t io n a n d th e o rd e r in which
they are pu t o n to th e stack . N otice th a t , aga in , SR a n d P C are p u sh e d to the s tack .
But this time they are followed by the first w ord o f the ins truction tha t was in progress
w hen the bus e r ro r occu rred , th e address used in the bus cycle tha t resulted in the
bus e r ro r , an d a special access-type error word.

15 14 13 12 I I 10 9 8 7 6 5 4 3 2 1 0

L ow er address

High
------- A ccess ad d re ss ---

Low

A ccess e rro r w ord

In s tru c tio n register

S ta tu s register

High
------ Program c o u n te r ---

Low

Figure 7-13 Information pushed to the stack during a bus error exception (Motorola,
In c .) .

In Fig. 7 .14 we have sh ow n the im p lem en ted bits o f the e r ro r w ord an d their
meanings. Just 5 bits are in use. Bit 4 identifies w hether the bus cycle tha t w'as abor ted
d ue to the bus e r r o r con d it io n w as a read o r a w rite cycle. It is reset if the bus cycle
was for a write o p e ra t io n and is set if it was fo r a read o p e ra t io n .

15 14 13 12 11 10 9 8 7 6 5 4 3 2 I 0

R/W I/N F u n c tio n code

Figure 7-14 Access error word (Motorola. Inc.).

T h e next bit , bit 3, ind ica tes w hether th e bus cycle w as related to no rm a l
ins truction execution or exception processing. Logic 0 represents ins truction execution
a n d logic 1 m eans excep tion process ing . T he 68000 considers the occurren ce o f a bus

254 Exception Processing of the 68000 Microprocessor Chap. 7

erro r for any g ro u p 2 exception, tha t is, during the execution o f an exception
ins truction , to be a norm al ins truct ion execution bus error. For this reason, bit 3
is set to logic 0 fo r this type o f occurrence.

T he last 3 bits are used to s to re the code, F C 2F C 1F C 0, that was ou tpu t on the
function code bus during the bus e r ro r cycle. This code tells w hat type o f m em ory
reference was in process when the bus e rro r too k place, tha t is, whether user or
supervisor m em ory was being accessed o r if it was an interrupt acknowledge reference.

The bus e r ro r service rou t ine can access this bus error in fo rm at io n in the stack.
In this way, it can identify the type o f e rror m ade and initiate an ap propr ia te response
in an a ttem pt to recover from the condit ion or simply signal tha t the e rror condition
has occurred.

Example 7.2
If the access-type error word pushed to the stack as the result of a bus error condition
is 000516, what type of bus cycle was in progress when the error occurred?

Solution. To identify how the bus error bits are set, let us first express the error word
in binary form. This gives

000516 = 00000000000001012

Looking at bit 4, we see that it is set to 0. This stands for a write cycle. Bit 3 is also
0 and means that a normal instruction was being executed when the error took place.
Finally, the function code that was output for the bus cycle was 1012 or 510. This
represents an access of supervisor data memory. Thus the bus error occurred when the
68000 was writing to supervisor data memory.

7.12 RESET EXCEPTIO N

Typically, a m icrocom puter system must be reset e ither at pow er-up or to recover
from a system failure condition . A n example o f a system failure tha t may require
a reset to be performed is the bus error condition we discussed in the preceding section.
A reset will cause the m icroco m pu te r to be initialized.

The R ESE T line is provided on the 68000 for initiating initialization. Actually,
R ESET is a bidirectional line that provides for 68000 initialization when a reset signal
is applied to it by the external h a rdw are , and system initialization when the 68000
applies a reset signal to external hardw are . Let us look first at its opera t ion for 68000
initialization. ________

A reset exception at pow er-up is initiated by switching the R E S E T input o f the
68000 to the 0 logic level. It must be m ain ta ined at this level for a min im um o f 100
ms. Earlier we indicated that reset is the highest-priority exception function. Therefore,
its exception processing sequence is always initiated and cannot be in terrupted by
any o f the o ther exception functions.

The reset exception processing sequence begins just like o ther exception
processing sequences, with the S-bit o f the status register being set and the T-bit being
cleared. This puts the 68000 in the supervisor m ode and disables its trace function .
But this is where the similarity ends. Next, the interrupt mask bits o f the status register,

Sec. 7.13 Internal Exception Functions 255

bits 8 through 10, are all set to 1. This makes the interrupt mask equal to 7, which
is the highest-priority level, and masks out all external interrupts other than level
7 (nonmaskable interrupt), preventing them from being serviced.

It is at this point in the control transfer sequence of an exception that the contents
o f the status register and program counter should be pushed to the stack. However,
when the M PU is being reinitialized, control would never be returned to the program
environment that existed prior to the reset. Therefore, the reset sequence does not
save these values on the stack. Instead, it initiates autom atic loading o f the internal
supervisor stack pointer (SSP) register and program counter from supervisor program
memory and supervisor data memory, respectively.

First, the SSP register is loaded with vector 0 at addresses 000000l6 and
000002|6. This defines a supervisor stack in supervisor data memory. Next, PC is
loaded with vector 1 at addresses 00000416 and 000006]6 and then execution begins
with the first instruction o f the reset exception service routine.

The reset exception service routine is normally a power-up routine for the
microcomputer system. It is used to initialize all o f the system’s resources. For instance,
it could clear the M P U ’s internal data and address registers, load its user stack pointer
(USP) register, and modify the contents o f the system byte o f the status register to
enable in terrupts.

The ou tpu t function o f RESET is initiated through software by the RESET
instruction. When a RESET instruction is executed by the 68000, its internal registers
are not affected; instead, the RESET line is set to act as an output and a pulse is
generated. The pulse produced at RESET is to the 0 logic level and has a duration
o f 124 clock periods. This pulse can be applied to the reset, clear, or preset inputs
o f external devices, such as LSI peripherals or flip-flops, to initialize their operation.

The reset instruction can be included as part o f the power-up service routine.
In this way, external devices can be initialized and then their internal registers loaded
to configure their m ode o f operation .

7.13 INTERNAL EXCEPTION FUNCTIONS

The 68000 also has a number o f internally initiated exception functions. In fact, it
has four such funct ions: address e r ro r , privilege v io la tion , trace , and
il legal/unimplemented opcode detection. We will look next at each o f these internal
exception functions in detail.

Address Error Exception

In Chapter 6 we discussed how da ta are organized in the mem ory o f a 68000
microcomputer system. At that time, we pointed out that instructions, words o f data,
and long words o f da ta all must always reside at even-address boundaries. However,
software can be written that incorrectly attempts to access one o f these types of
information from an odd-address boundary . It is to detect and correct for this error
condition that the address error feature is provided on the 68000.

2 5 6 Exception Processing of the 68000 Microprocessor Chap. 7

Address error detection does not have to be done with external circuitry as we
saw earlier for bus error detection. Instead, this capability is built within the 68000
as an internal exception function. Whenever an attempt is made to read or write
word-wide data from an odd-address boundary , the 68000 automatically recognizes
the memory access as an address error condition. Upon detection, the exception
processing sequence is initiated and control is passed to the address error exception
service routine. This routine can attempt to correct the error condition, or if correction
is not possible, its occurrence can be signaled in some way. For instance, the address
and type of access could be displayed on a panel o f LEDs.

T he control transfer sequence that takes place for address error exceptions is
identical to that performed for the bus error condition. As mentioned in Section 7.11,
the information pushed to the stack includes the contents of SR and PC, the first
word o f the current instruction, the address that was in error, and an access-type
error word. The format o f the access-type error word saved on the stack during an
address error exception is identical to that shown for the bus error in Fig. 7.14.
One difference is that vector 3 instead o f vector 2 is used to locate the service routine.
As shown in Fig. 7.2, this vector resides at addresses 00000C16 and 00000E16 o f the
vector table.

Privilege Violation Exception

In earlier chapters, we found tha t the 68000 has the ability to easily implement a
user/supervisor microcomputer system environment and that the state o f operation
can be selected under software control. The importance o f this capability lies in that
it permits certain system resources to be accessible only by the supervisor. In this
way, it provides a level o f security in the system design.

Another internal exception feature o f the 68000 that we have not yet considered
gives it the ability to identify when a user a ttempts to use a supervisor resource. These
illegal accesses are referred to as privilege state violations.

Remember tha t the S-bit in the system byte o f the status register determines
whether the 68000 is in the user state or the supervisor state. For instance, when S
is set to logic 0, the user state o f operation is selected. The user state is the lower
security level. Switching S to logic 1 under software control puts the microprocessor
at the higher security level or supervisor state.

When in the supervisor state, the 68000 can execute all o f the instructions of
its instruction set. However, when in the user mode, certain instructions are considered
privileged and cannot be executed. For example, instructions that AND, OR, or
exclusive-OR an immediate word operand with the contents o f the status register are
not permitted. Any attempt to execute one o f these privileged instructions, while in
the user state, results in a privileged state violation exception. The privilege violation
exception service routine can signal the occurrence o f the violation and provide a
means o f recovery.

Sec. 7.13 Internal Exception Functions 257

Figure 7.2 shows that the privilege mode violation uses vector 8 at addresses
000020|6 and 000022l6 o f the vector table.

Trace Exception

The 68000 has a trace option that allows for implementation o f the single-step mode
o f operation. Just like the privileged state, this option can be enabled or disabled
under software control by toggling a bit in the status register. Trace is controlled
by the T-bit in the system byte o f SR. Trace is turned on by setting T to logic 1 and
turned o ff by clearing it to 0 .

When trace mode is enabled, the 68000 initiates a trace exception through vector
9 at completion o f execution o f each instruction. This exception routine can pass
control to a monitor that allows examination o f the M P U ’s internal registers or
external memory. This type of information is necessary for debugging software. The
monitor can also be used to initiate execution o f the next instruction. In this way,
the instructions o f the program can be stepped through one after the other and their
operations verified.

Illegal/Unimplemented Instructions

The last internal exception function of the 68000 is its illegal/unimplemented
instruction detection capability. This feature o f the 68000 permits it to detect
automatically whether or not the opcode fetched as an instruction corresponds to
one of the instructions in the instruction set. If it does not, execution is not attempted;
instead, the opcode is identified as being illegal and exception processing is initiated.
This illegal opcode detection mechanism permits the 68000 to detect errors in its
instruction stream.

Occurrence o f an illegal opcode initiates a change of p rogram context through
the illegal instruction vector, vector 4 in the table of Fig. 7.2. The exception service
routine that gets initiated can signal the occurrence of the error condition.

The unimplemented instruction concept is an extension o f the illegal instruction
detection mechanism by which the instruction set o f the 68000 can be expanded. It
lets us use two ranges of unused opcodes to define new instructions. They correspond
to all opcodes o f the form F X X X 16 and A X X X]6. Here the X ’s stand for d o n ’t-care
digits and can be any hexadecimal numbers.

Whenever an opcode o f the form F X X X !6 is detected by the 68000, control
is passed to an exception-processing routine through vector 11 at addresses 00002C16
and 00002E| 6 o f the exception vector table. The service routine pointed to by this
vector should be a macroinstruction emulation routine for the new instruction. For
example, floating-point arithmetic o r double-precision arithmetic emulation routines
could be implemented. The emulation routine is written and debugged in assembly
language and then stored in main memory as machine code. To use the new instruction

258 Exception Processing of the 680 00 Microprocessor Chap. 7

in a p rog ram , we just insert th is opcode , F X X X 16, as an instruction sta tem ent.
As shown in Fig. 7.2, the o the r un im plem ented instruction opcode , A X X X 16,

vectors ou t o f addresses 000028 j6 and 00002A 16.

A S S I G N M E N T

Section 7.2

1. What are the different types o f exceptions available on the 68000?

Section 7.3

2. Where in memory must the exception vector table be stored?
3. The illegal instruction exception service routine starts at address SBOOO. Show where and

how its vector will be stored in the exception vector table.

Section 7.4

4. If the service routine for TRA PV is in progress when an external interrupt occurs, what
happens?

Section 7.5

5. What is the highest priority level for external hardware interrupts?
6 . If the interrupt mask value is 5 when the 68000 receives an external hardware interrupt

request with code 100-,, will the request be acknowledged or ignored?
7. Write an instruction to load the interrupt mask with the value 0 1 12 without changing any

o f the other bits in the status register. Assume that the 68000 is in the supervisor state.

Section 7.6

8. Give an overview o f the events that take place during the IACK bus cycle.

Section 7.7

9. Overview the response o f the circuit in Fig. 7.9 to an active IRQ«) input.

Sections 7.8 and 7.9

10. Overview the operation o f the autovector interrupt interface circuit in Fig. 7.11 when a
level 2 request for service is received.

Section 7.10

11. Show the general structure o f a T R A P service routine. Assume that the service routine
uses registers D0, D ,, and A,.

12. Write an instruction sequence tha t will check the index o f an array. The index is stored
in memory location INDEX and the upper bound o f the array is stored at UBD.

Chap. 7 Assignment 259

Section 7.11

13. What is a bus error in the 68000 microcomputer system?
14. Explain how a bus error condition is handled by the 68000.

Section 7.12

15. Write a reset service routine that will clear the da ta registers, address registers, and set
the supervisor stack pointer to SFFFFFE. Then branch to SAOOO, where the application
program begins.

Section 7.13

16. What internal exceptions are implemented in the 68000?
17. Explain what is meant by an address error exception.
18. What happens when the unused opcode F100,6 is encountered during instruction

execution?

T he H a r d w a r e
o f th e MC68000
E d u c a t io n a l M ic r o c o m p u t e r

8.1 INTRODUCTION

In the previous two chapters, we presented in detail the memory, I /O , and interrupt
interfaces of the 68000 microprocessor and its microcomputer system. In this chapter,
we will examine how these interfaces are implemented in a simple microcomputer
system. The microcomputer used for this purpose is that employed in Motorola’s
MC68000 educational microcomputer board. The topics presented in the chapter are:

1. The microcomputer of the MC68000 educational microcomputer board
2. Clock generator circuitry
3. Interrupt interface
4. Program storage memory
5. Data storage memory
6 . Parallel I / O —the 68230
7. Serial I /O —the 6850

8.2 THE M ICROCOM PUTER OF THE MC68000 EDUCATIONAL
MICROCOMPUTER BOARD

The circuitry of the MC68000 educational microcomputer board represents the
implementation of a complete 68000-based microcomputer system. A block diagram
of this microcomputer is shown in Fig. 8.1. The heart of the microcomputer, the

260

Sec. 8.2 The Microcomputer of the MC68000 Educational Microcomputer Board 2 6 1

Figure 8-1 Block d ia g ra m o f th e M C 6 8 0 0 0 e d u c a tio n a l m ic ro c o m p u te r .

M P U , is an 68000L4 m icroprocessor. It is this device tha t perfo rm s the ari thm etic ,
logic, and contro l opera t ions.

The o pera t ion o f the microprocessor and o th e r devices in the m icrocom puter
system are synchronized by the clock signals produced by the clock generator section.
The 68000 m icroprocessor in this m icrocom puter is set up to opera te at a frequency
o f 4 M H z.

The program memory section stores the ins tructions o f the m oni to r p rogram .
P rogram m em ory in the M C68000 educational m icroco m pu te r is im plem ented with
P R O M s and has a to tal storage capacity o f 16K bytes. Use o f P R O M s makes the
program storage nonvolatile. T h a t is, the m o n i to r p rogram is m ain ta ined within the
P R O M s even when power is rem oved from the system. The p ro g ram tha t is run on
the MC68000 educat ional m icrocom puter is called the Tutor monitor. The 68000
fetches the instructions o f the monitor program over the system bus and executes them.

Data that is being processed by the microcomputer are stored in the data memory
section. For instance, during the execution o f an instruction, the 68000 accesses source

or destination operands that reside in da ta m em ory over the system’s bus. This section
o f m em ory is im plem ented with 4116 dynam ic R A M s and is 64K bytes in size. This
part o f the m em ory subsystem is actually volatile; therefore , any in fo rm at ion stored
in it is lost when pow er is tu rned off .

262 The Hardware of the MC68000 Educational Microcomputer Chap. 8

NOTES:
l FOR R EFER EN C E DRAWINGS R E F E R TO

BILL OF M ATERIAL 0 1 - W 31118*?»»
2 . UN LESS OTHERW ISE SPEC IF IED :

A L L RES ISTO RS ARE IN O H M S,* * PCT .
1/4 WATT.
A L L CAPACITORS ARE IN UF.
A L L VOLTAGES A RE DC.

3. W T E R R ’JP T E O L IN ES CODED WITH THE
SAME L E T T E R OR L E T T E R COMBINATIONS
A RE ELEC T R IC A LLY CONNECTED.
DEVICE T Y PE NUMBER IS FOR R EFER EN C E
ONLY. THE NUM BER VAR IES W ITH THE
MANUFACTURER.

5 J l6 CUSTOMER USE OP T I ON (5 0 P IN S).
DEVICE TYPE NUMBERS AND CONNECTIONS
NOT SHOWN ON SYMBOL ARE LISTEO
BELOW UNDERLINED PORTION OF TYPE
NUMBER IS USED AS A CODE TO IDENTIFY
DEVICES ON DIAGRAM

REF
DES T YPEA GND • 3 V - 5V • e v -t2V

U 1 74 t e l 7 I 4
02 74L532 7 1 4
u3 74^5 Î2 7 1 4
U 4 MC 33C2 1 2 3
Ob MC 148ft 7 1 4 1
0 6 MC14Ô9A 7 1 4
U7 MC 14 88 7 1 4 I
u e 7 4 1 S0 0 7 1 4
U 9 UC68230 38 1 2
U I0 '.‘OMAJGA 12 24
u i 1 MCM6Ô764 12 2 ■»
U l ? MC6ftS0 i • 2
U I3 **C 6850 i 12
U 1 4 M C I4 4 II 12 2 4
U I5 7 4 L59 3 |0 3
U'fe 7 1 4
U I7 7 4 l S 2 ® 7 1 4
Ulft 7 « 4
U<9 74 M2J 7 1 4
02Q> u €>.53 4.49
021 74ŁSI75 ft i£
022 74t5 i75 ft 16
02 i 741SGÔ 7 I*
024 7 4 l5 l I 7 1 4
02 5 7 4 L S 0 0 7 1 4
U2b 7 4 LS3 9 3 7 14
02 7 741 Si 53 e 16
U2fl T4L5IS3 ft 16
U 29 7 4 lS ?6 0 7 14
U 3 ® 74L*>l3ft e 16
U3i 74L527 7 1 4
U32 74 L 5 0 4 7 >4
U33 741502 7 1 4
U34 7 4 LS3 2 7 1 4
U35 741 515 3 8 • 6
U36 741SI53 ft 16
U37 7415260 7 14
U 36174 L S J0 7 I 4
U 3 9 p 4 |£ i7 5 e 16
U 4 0 741 S I 48 e »6
u 4 r y 4 i g T T i® 22
U42 MC 3456 7 1 A
U 43 W C7405 7 1 4
U 4 4 741 S ® 0 7 1 4
U 4 5 I7 4 L S II 7 1 4
U4fe|74L574 [7 1 4

POWER/GROUND TABLE CONT'D
PA R T O F

J l
REF
DES ,YPEA GND •5V • 5 V • e v -I2V

U47 MCM4II6 •G 9 1 8
U48 MCM4II& 'G 9 I f l
U49ÎMCM4II6 ife 9 1 0
U50 MCM4HG 16 9 1 8
u5l IMCM4II6 • G 9 1 8
U52,MCM4;lfe IG 9 1 8
U53(MCM4i 'G • to 9 1 0
U54 MCM4116 IG 9 1 8
U55 V C M 4 II6 IG 9 1 8
U56 MCM4II6 iG 9 i 8
U57 MCM4II6 IG 9 1 8
U58 MCV4II6 »G 9 1 8
U59 MCM4MG IG 3 1 8
U60 MCv 411(0 iG 9 1 8
U&i MCM4II6 IG 9 1 8
U62 WCM4ll£ 'G 3 1 9

V

z
3
4
G
7
8

• 2
•4
•6
i8
20
21
24
¿6
28
3C
32
34
36
38
4 0
41
42
44
45
4fe
<38
49
50

V

- GND

y ;
V P i
U * l
52
R3e
JI7
11
CR3
CG2
HIGHEST
NUMBER

USED
NOT USED

REFEREN C E DESIGNATIONS

PART OF
J2
t
4
G
6
>0
12
14
iG
'8
20{7

NC — ?
NC — 11
NC — i3
NC — 15
NC — 17
NC — 19

L£l

-GNO

-NC

Figure 8-2 68(XX) E d u c a t io n a l M ic ro c o m p u te r B oard S chem atic D iagram (M o to ro la , Inc.) . SH 1 o f 3

Sec. 8.2 The Microcomputer of the MC 68000 Educational Microcomputer Board 263

PA R T O f

J 3

AC —
NC--
NC --

NC
NC
NC —
NC —
NC —
NC —
NC —
NC —
NC —
NC —|

>NC

GND

NC

12V
J*

I
C60
22
2 5 v

JIS
- I 2 V < -

•X* C 6 sLCG z
22 ~ .33

25V

l c 0 j_C29_l_C3 l l C33 J_ C35 J_ C36 _L C2

m n _ r v
.C4E J C45 C<9_Lc52_Lc55l C50

.1

•M2V

V V V I" I" I"
VRl

MC7&105

C59
IN OUT

CUD

35V

V V V V

i

V i ' I " I" i

-I2V

- 5 v

. l e v i e s # 1 C53I c;

' V V V i" V
PART OF

J4
N C---
NC---
nC ------

f l
NC --
NC —
NC ----

NC —
NC -H
NC —■<
NC —

NC —
NC —
NC --
NC --

}
GND

NC

+ 5V «-
J»3

J l ?
GND «—

I CG, I
I&v

7

r a C5 -L C7 1 C9 l c » 0 1 CH 1 Cl

I T I" I" V I" I" V
CH _Lci5 I Cl, J.CI7 _L C»8 _L0 9 l a

V l - 1 " j " j - x j -

C23 1 C2A 1 C38 1 C4. _L C «< a lc< JB_Lc5 f 1 C54 1 C!

" V V V V I" V V V

♦ 5V

u 3 8 a U38C
L5ig 9)lS 'g

s O * Scc ^ ^

U'3*
LÖ04

NC

0 ^0
MC 3 3 0 Z

U4C
MC 3 302

NC
NC NC

NOT U5E0

Ri2C
NC -'2* —'-<v*— sc

Figure 8-2 (com.) SH 1 of 3

264 The Hardware of the M C 68000 Educational Microcomputer

* S V r u t

- r " * r
R i4 6

4 7 0 0

- r ^ r -
Ri4H

4 7 0 0

R I-» J
4 7 0 0

- W e —I 10
4 7 0 0

R lbC
470®

~ T ^ T
R lSD

4 7 0 0

R l5 £
4 7 0 0

---VSA^—-
I g

RI5F
4 7 0 0

R i S G
4 7 0 ®

T ^ H T
RWB

4-70 0
— W y

3
P30A

4 7 0 0
v ^ -l ' 2
Rl7

4 700
45V - J V A -----

R29B
4 7 0 0
T ^ T

R29C
4 700

- W v 4
R290

4 70 0
r

R 2 9 f
4 7 0 0

--W i , ---|WVfê
R29̂

4700
r ^ r

R29M
4 700

— V / v —I 9
R29G

4 7 0 0
- - v » ve

R 2 9 J
4 70 0
—A/W-
I 10

0 0 4

D0G

0 0 7

DO©

- 009

D10

Die

DI3

i- 011.

AlS

A I4

AI2

All

A 10

A09

V0 8

A0Æ

A 0 7

J«7
I 2

3 4
-o o- 0 0 ? z'

5 & 4M H Z CLK
-O & ■ ' ■ - — ■ v

7 6-o o- -

9 I® -o o—

I 3 |4
- o O —

IS >£— o o -

17 IB — o o—

19 2 0
—c o—

Z \ 2 2 —o o—

23 24 — o o—

2 5 2 ft
—O O—

27 28
—o o—

3i 32 —o o—

33 34 —o o—

36 3fe
—c o—

37 38
—o o—

39 40
—o o—

014

DU

" 12 RESET# —c o

D 0i

AS*

WPS»

LO S«

R / W *
\

AI3

FC2

F C i

F C 0

A02

A 0 3

A® 4

402 Q l A C H *

6 M H Z O .K 4-? G800 I R Q *

Ri4E ♦ S V
4 7 0 0
-WV-G I

R I4D 4700
- r ^ r

RI5M
4 7 0 0

—^VSA.—9 t
P l S J

4 7 0 0
-Tri^V^-r 10 I

R i4C
4 7 0 0

—AA/V-
I

R I3 S
4 7 0 0

- T e n
a is A

4 7 0 0
-*S\Ar-

2 I
R l4 A

4 7 0 0

T ^ T
RI3D

4 700
“*TVVVT

R29A
4 7 0 0

——'W'—-

R 3 0 F
4 7 0 0

- ^ A v V —
I I

R30£
4 70 0

— - v w ---
G I

R 3 0 C
4 7 0 0

--- W v ----4 I
R 3 0 P

4 700
-—- W v l

V A 02
s.. A 03
y A04

A05
_ A ¿ 4»
V â 0 - r
<v A08
y A0 ?
. A I 0

A l 1
s. A 12

A i 3
A 14

\ A .5

s _ . 000
CXZÎI

\ D02
\ __ 05*3
\ 0̂ 4
V 005.
_ O 0G
\ 007
\ 028
V CJ09
\ O' z
\ D M
\ 0i 2
\ Di 3

014
D i5

401

V MA A
¿ ô Â ? iR a *

/ l CL^
f 4MHZCLA
/ e w ^ a x
/ KESET A
/ E
/ AS */ UDS*

LOS *
f P/y. *
/ F .0
/ " FC 1f r c 2
f D IA L **

Chap. 8

rR SM 2 (f -»8)

FR SM 2 (G-lb)

Ffl 3W 2 (6 - 8^

Figure 8-2 f c o n i j S h 1 of 3 (c o n t .)

Sec. 8 .2 The Microcomputer of the M C 6 8 0 0 0 Educational Microcomputer Board 2 6 5

DO® „ /
00' /
002 .
Mi /

T /
ids • /
Me 7 /oSr - /-ve .
V*> ,
O'* -5" /
012 /

" 0 .3 * j014 y

' oi3 -
401 /

*02403 y
404
A?5 ,

a-> c*¿7
4(2 8
*¿9 I _Al®
411 y

A.2 -
A.3 •4'« ,
415

♦ 3v
I

15 V
1

«3 5B «33E
4700 ' 4700

b - ~

<»
lg [

S i
A SOOT

i rV 1 12.
is]

«30G
470(8

0 4 1
L5Z.73

TfXTT« 14
/ m a i m

taftjg I«C* *

• '

03 03
04 Q4
02 02
03 05
06 Qbor Q7
00 ao
01 Qi>CK

CLP

u * ^
LS'46

•3

WifeC
4 7 0 0

I
♦ 5 v

&

0
I * 0
2
3 A 1
*
5 4 2
b
7 C S
n CO

14

♦ 3v

VM»»
bfeOO IRQ*

. - wm; Cl*
. W Cl*

c l *
. -RLSLT » ___
_£_________
. AS*______

— u D i* ________

- sa r-
-ra—

Figure 8-2 (cont.) SH 2 of 3

2 6 6 The Hardware of the M C 6 8 0 0 0 Educational Microcomputer Chap. 8

Figure 8-2 (cont.) SH 2 of 3 (c o n t .)

(¡UOO) z *0 z H S Cmod)z-%9JnSjj

(«I «» C M* 01 -

STD Zm* 9

5x153»

•SDl id
■ n e r

• b e t a
•75vTd~
*■'-■%! i
• Ś 3 T
Î M 73V
IS3 »I *

• 5 Ö 0

(« i -O îçm<;
(» QiÇHÇ
18« 0 > fH4
i » 91 tHS Ox
* 81 CWS 0 1
f » - 8 l CHS OX

¡ai-a c*s o x

Si- 0>C*s ox

ï c s n r r
” * >rOB »3*1 Q
S i *ł -1 a » i< r~

v » 0

0 3

• S*B

♦ • - a n

* - 31 £*S OX -

» I V
C i w

TTV-

0 1 »

x p v

» C *
f ł " »
2 0 »
1 0 »

* J) Ck ç o x -

S 1 0
M O
c ia
2 ia
■ ■ o

0 | Q
b (g o
9 00
¿ 0 0

3 0 0
_ ip a

» 0 0
C 0 O

l O O
<Z«0C

191-0) O x
(91-OiCMS OX
c9i-0»C «S Ox
t#i- u c h ç o x
191- jiÇmÇ O x
i « - ! > i Ç mÇ o x
« 9 I - 0 I C H S O X

- t : SCn
t i - ^ n
C -q ç n
l n 3 I D .
C - 9 2 0

T w i n :
C - L Z n

i9i-MiCKe o x
l« - M)CHÇ o x
19>- MiCMÇ OX

..i ¿ ? n
S3WOB

AA*b
C 2 B

t e g
« S i

: > » c o

n o X*
S2b

21

2CST
0 * c n

Ci

1 3
- A W -

X *
2 2 «

t < 3
TFT
» K n

*S »b
■-W V-

* 2 b
o c c n

* * > l x

2 0 »

c
ÖTTO
8 i m

1L
Ci v O i-

1 0 »

* * > I d c
» ¿ m

0 9 (0

T í
O i . 0i

0!>j

♦S» c »~D>° i r
* 3 T i
J 9 m

2i 3Qbin

T 7
o

<

Í S T
Oí 2'

11
0 ¡

T T T
3S»n

v a
j m
9 K O

2
♦ C'H

- l l l ü

°*ÏT
=E

* f

•L
m 3

> o <
o

21

7 0
90S1
DC 20

0 0 X »
9001

SlTTT
b c n

i
AS*

«dOd

¿ 9 2 pjeog jaindiuoDOJOii/yj |8uoi;eonpg 000890VM aM* jo jaindujODOJDi^ am z Q oaS

268 The Hardware of the MC68000 Educational Microcomputer Chap. 8

F R 3 H 2 (H - 4)
F R SM 2 IH - 4)

F R S M 2 (U -4)

F R S M 2 < 0 4)
F R S M 2 (0 4)

P O « *
W O M EN

' R 5M 2 (F - 4) —i

F R W 2 (E - 4) - 1

F B 5 H 2 IB-41 -

U 2 6 -3
U26-4

DOC
t » l
0 0 2
0 ® 3
DÖ4
CÖS
D o e
D®7
D®S j

0 0 9
Ol®
° " y

0 1 2
° ' 3 y
D i4
Dl 5

F R 5*4 2 (0 -4)

F R S H 2 < G -4)

U 2 6 -5

U26-I*
A d i
A ® 2
A ® 3

A®4
_*•*

A ® 6
A ® 7
A«a
AI®
A I I

_ A I ¿ _
A I 3
A I4

F R S H 2 <G~4>

F R SM 2 ÍO -4 »

n i 5 M 2 (0 < '

F R S H 2 < 6 -4 >

TO 5M 3 < C -4 >
TO SM 3 f C -4)

1/Z6 -I«

U 2 6 - 9

U39-II

U 2 6 - 6

DTACK HOW «
X
ACÜRO •
.ypg«
-« O jCSL
AC2 IRQ *

T I A C K «

P I R O
TQüT *
P IT C S *

ReSCT »
4 M H Z C L K
5 MHE C L K ~

TO 5H i (C •41

P R S H 2 <C-■4)
F R SM 2 (C - 4)
Í H SM 2 <D 4)
FR SH 2 (O 4>

OTACK PIT *
R A W

SSL
CL
R A S »

A » l

A09
_A®2

A10
ass.

A l l
A ® 4

A I2
A 0 5

A I3

U 2 7
C S «S 3

6

< h f

< H i
0 - a .

A
e
C i

IC®
ICI
IC2 IV
I C 3
2C®
2 0 2 Y
zcz
2 C 3
E 2

R I9
4 7

R2I47

U 2 8
LS'53

<H<
6

O r
J®

<K§-

A
B
E l

iC®
ICI

•Y
7

R2®
4 7

I C 3
2C® 9 4 7

ZCZ
2 C 3
E 2

U3Ä
L S 133

<H<
6

<JJS«

A
8
El

iC 0
■CI
IC2 IY
IC3
2C®
2C 1 2Y
ZCZ
2 C 3
E 2

RZ£>
4 7

RA®
R A I
S 3 u
Æ&3L
R A A
R A ¿

RA§

RZfl4"»

U 3 5
L S I5 3

<H«
6

4 ±
I®

A
B
El

I C «
ICI
IC2 IY
iC 3
2 C 0
2 0 2Y
2 C 2
2 C 3
E 2

R 2 7
4 7

- V A -

* 2
d i

V

V Ifo

Figure 8-2 fconi.) SH 3 of 3

Sec. 8 .2 The Microcomputer of the M C 6 8 0 0 0 Educational Microcomputer Board 2 6 9

UH
MCM«e*>b4

'
. a? 5 if
v * 2 * •-
' * 2 *

4
. A&> 3
. 407 2
, A.’ 6
, A09 2^
v A lC Z2

' n
. A 12 i&

k * '3 Z\

* M ft ,
C O S ,

•! DiC ,
•* 611 , y

¿>2 /
-

- 6*4 ,

(»4

A0
Al
kZ
A3
A4
A5
AC.
A7
* e
A9
a «
A ll
AI2

U I8 0

9 i \ . a{ > '

010
WCW*C>8A34>«

. A0* 6

. A02 7
„ i Z $ w

3
„ A®3 4

3

*<Jr
. a®=5 23
«. 4 .0 22
V. A ll 19
. Ai2 ie

A'3 21

DC
0i
02
05
CM
***.

Cfe
C7

AO
Al
A ?
*5
A4
» 1
A is
A7
A©
A9
AI0
All
A12

f

.0 O0i
I I 002
3 DP5

*4 004
«4 005
lb SCfc
17 ¡>07

00«

2 0

US* l>53 US2 US I US0 U49 U48 U47
MCM4II6 UCM4H6 MCM4M6 MCMdi« MCU4II6 MCW4116 UCM4H6 MC*J4 life

10

»AW

_L5

AO
A l
A2
A 3
A4
AS
Afc

W

DI

40
Al

AO
Al

40
Al

A0
Al

AO
Al

AO
Al

AO
Al

A2A3
A4

A2A3
A4

AZ
AS
A4

AZ
AS
A4

A2AS
A4

AZAS
A4

AZAS
A4

AS
46

AS
46 AS

46
AS
«6

AS
AO

AS
AO A5M>

W
g §

W

a
»
8

W
TO

w
to®
TO

W
fiAS
TO

W
TO

01 oo 01 oo o i oo 01 oo 01 00 OZ DO 01 DO

2 ^ 2 •4 14 2 14 z Id 2 14 2 14

§ J § §
2 g

§
X

§
„

§
N

8
_

M

2
<

8 8 1

14

s
7
♦->

• 2
11
10

. ... ?
RAW 3
RA - i* 4
C U I S

U62
WCW4II6

U6I
MCM4U6

060
MCM4II6

U5S U56
UCM4U6 MCM4H6

US 7
MCM4H6

US6
MCM4I 16

USS
MCM4I 16

A O 40 AO AO AO AO AO 40
Al Al A l Al Al Al Al AtA2 A2 A2 AZ A2 A2 AZ A2
AS A3 A3 A3 AS A3 A3 AS

A 4 A 4 A4 4 4 A4 A-4 A4
AS AS AS AS AS AS AS ASAfo A€> A6 A6 46 A6 A6 A6
W W w VV W w W w
«AS RAS ftSS PJS £55*> ftAS &AS
C.a5> TO T O T O TO T O css C K S

D I D O D I D O D I D O D I D O 0 1 D O D I D O D I D O 0 1 o o

14 14 14 14
?
O

14 14 14

Ifc

Figure 8-2 (com.) S h 3 o f 3 /cont.)

2 7 0 The Hardware of the M C 6 8 0 0 0 Educational Microcomputer Chap. 8

16

Figure 8-2 (cont.) SH 3 of 3 (cont.)

Sec. 8.2 The Microcomputer of the M C 6 8 00 0 Educational Microcomputer Board 271

gm
HEZ
Pi 2 Oi±_

> P>4
> 0 'S

A3'
ACIA C5I
u ° L 2 ____

0 68crea <— 1 9 6 »

I ' * ’- « «

J9 JO

f & o ' 2

* S t
= ; * c e ? & V

4 1200
s e & e ¡1 1 3 « ’ «
7 50?

1 ^ : 5 0
W . f *

7 ^ . 5 J

- 2 *
f j x

6-o
* 0 »4

i «
4700 U'2

MC6«50

■- . CO« 22
. DC 2'
v 0©2

19
9

OS
:o 6 - 16037
A«l I '

0
AOAC5I 1»
LO S* 9
C -4
Byw * 13

T O
00
01
02
03
04

TIO
s ?
CT3

05
06

DU>
TXC

RS
CSC
CSl
es*
E
R/«W

k
? - t >

3*

use
MC'Aee

usa
m o a s»

í 1^

PART O f
J4

O

o RIZD
Z7K

US©
U C I4 6 6

USA
U 0 4 6 S A

CTS

TO
MODEM
(M OST)

Figure 8-2 fcont.J SH 3 of 3 (cont.)

272 The Hardware of the MC68000 Educational Microcomputer Chap. 8

When using the educational microcomputer to enter, execute, and debug 68000
assembly language programs, the instructions o f the program are stored and executed
from data storage memory, not from program memory. This permits the program
to be loaded and modified by the user from the keyboard. Only the Tutor monitor
program resides in program storage memory.

The microcom puter in the educational microcomputer also has a number o f
I/O resources. Looking at the block diagram in Fig. 8 .1, we see that there is a parallel
I/O section and RS-232C serial communication ports.

The parallel I / O section o f the microcomputer provides 24 individual I /O lines.
This part o f the I / O interface is implemented with the 68230 parallel in terface/timer
device and can be configured under software control to work as inputs or outputs
and with a variety o f different modes of operation. These parallel I /O ports are
designed to interface to a parallel printer (Centronics interface) and a tape recorder.

The serial comm unication ports permit a C R T terminal to be connected to the
microcomputer and also provide for connection to a host computer. The serial ports
are implemented with 6850 asynchronous communications interface adapters.

The keyboard o f the terminal allows the user to input information to the
microcomputer. For example, in Chapter 5, we showed that monitor commands such
as DU or DF are issued from the keyboard. Com m ands like these allow the
programmer to modify the contents o f data memory, single step executive programs,
and implement program debug operations by giving the ability to examine the contents
o f registers or memory.

The terminal, which connects to one o f the RS-232C ports, is also an output
device. On the screen, it provides the user with a visual representation o f data related
to the monitor com m ands that are entered through the keyboard. For instance, as
the MM com m and is used to enter a byte o f data , the current contents o f the memory
location are first displayed and then the new value is displayed digit by digit as it
is entered from the keyboard. Similarly, when a DF comm and is issued to examine
the contents o f the 68000’s internal registers, their descriptors and contents are
displayed.

Figure 8.2 shows schematic diagrams that detail the circuits used to implement
each o f the functional blocks o f the microcomputer in the MC68000 educational
microcomputer board .

8.3 CLOCK GENERATOR CIRCUITRY

Now that we have introduced the architecture and functions o f the fundamental blocks
in the MC68000 educational microcomputer, let us continue by examining the
operation o f the circuitry used to implement these blocks. We will begin in this section
with the clock generator circuit. Figure 8.3 shows this segment o f circuitry.

Looking at Fig. 8.3, we find that clock signals are generated by an 8-MHz crystal
controlled oscillator and a 74LS93 binary counter IC. This circuit produces three
different frequency clock signals— 8 MHz, 4 M H z, and 1 M Hz.

Sec. 8.4 Interrupt Interface 273

8 MHz for distribution

F igure 8-3 C lock g e n e ra to r c ircu itry .

The 8-M H z clock is directly produced by the crystal controlled oscillator U l6.
One use o f the 8-M H z output at pin 8 o f this oscillator is that it is distributed to
control logic circuitry within the microcomputer. Notice that the 8-M Hz clock is also
applied to the CKA input o f 74LS93 counter. Here it is divided by 2 to produce
a 4-M Hz clock at the Q A output. This is the clock signal that is applied to the CLK
input at pin 15 o f the 68000 microprocessor. In Fig. 8.3, we see that the 4-M Hz clock
is also distributed to other parts o f the microcom puter system. For instance, it is
required to synchronize the operation of all 68000 family LSI peripherals. For this
reason, one place that it is supplied is to the 68230 P I /T device.

The 4-M Hz clock signal is also supplied to the CKB input o f the 74LS93. CKB
is the input to the other three stages o f the counter. It is divided by 2 to produce
the QB output, by 4 to give the Q C outpu t , and by 8 to give the QD outpu t . Notice
that just the divide-by-4 ou tput (1 M Hz) at pin 8 o f U 15 is in use. This 1-MHz clock
is required by 6800 family LSI peripherals within the microcomputer system, such
as the 6850 ACIA.

8.4 INTERRUPT INTERFACE

The interrupts o f the MC68000 educational microcomputer can be categorized into
three groups: the reset interrupt, the nonmaskable interrupt, and the maskable
hardware in terrupts. The circuitry needed to support these three parts o f the 68000’s
interrupt interface is shown in Fig. 8.4. In this section, we will examine the operation
o f the interrupt interface circuits for each o f these interrupts.

Reset Interrupt

The reset interrupt is used to initialize the operation of the 68000 microcomputer
at power-up. This section o f circuitry is located in the upper left corner o f the circuit

2 7 4 The H ard w a re of the M C 6 8 0 0 0 Educational M ic ro co m p u ter Chap. 8

LSOO
*5 V

LSOO

F igu re 8-4 In terru p t in ter fa ce c ircu itry .

Sec. 8.4 Interrupt Interface 275

•5 V

R37
ISO

*5 V
CR3

F igu re 8-4 (cont.)

276 The Hardware of the MC68000 Educational Microcomputer Chap. 8

diagram o f Fig. 8.4 and consists o f a reset flip-flop constructed from two o f the AND
gates on the 74LS00 1C and a monostable and multivibrator formed with the
MC3456 timer IC U 42.

The monostable multivibrator circuit is used to initialize the complete
microcomputer system at power on. When the power switch is turned on, capacitor
C 26, which is connected from p in 8 o f U42 to ground, acts like a short circuit to
ground and forces the trigger. (TRG) input o f the MC3456 timer to logic 0. This
causes the O P ou tpu t at pin 9 to switch to the 1 logic level. As time elapses, C 26
charges toward the 1 logic level threshold o f the TRG input. As it exceeds this value,
the O P output returns to the 0 logic level. In this way, we see that a single pulse to
the 1 logic level is produced at the t im er’s O P output.

The pulse ou tpu t at O P is buffered with 7405 inverts to give signals: power on
reset (POR), halt (HALT), and reset (RESET). RESET is applied to both the 68000
microprocessor and the 68230 parallel interface/timer IC. As it switches to logic 0,
the operation o f these devices is initialized. Initialization causes the S bit in the 68000’s
status register to be set and the T bit to be cleared. In this way, it is put into the
supervisor mode and the trace mode o f operation is disabled. Then the interrupt mask,
which is also in the status register o f the 68000, is set to 7. This masks out all external
hardware in terrupts. Moreover, the supervisor stack pointer register is loaded with
vector 0 from addresses 00000016 and 00000216. This creates a supervisor stack in
data memory. Next the program counter is loaded with vector 1 (actually the second
half o f vector 0) from addresses 00000416 and 00000616. The new value o f PC points
to the beginning o f the T u to r firmware package in program memory.

At the same time, the pulse at O P produces a pulse to logic 0 at POR. This
stands for power on reset and is used to initialize some o f the on-board logic circuits.
For instance, it is used to clear or preset a num ber o f fl ip-flop circuits.

Notice that the H ALT signal is also generated from O P at power-on. It is applied
to the H A L T input at pin 17 o f the 68000. This halts the operation o f the M PU and
lights the LED labeled C R 3 to indicate this fact. As the reset pulse is completed, the
H A L T line o f the M PU is also released. Therefore, the 68000 begins execution of
the Tutor program. The early part o f this program is an initialization routine for
the microcomputer’s resources. For instance, it causes initial values to be loaded into
the internal registers o f the 68000 M PU as well as the 68230 and 6850 LSI peripherals.
Besides this, it causes all storage locations in the microcomputer’s data storage memory
to be initialized.

The m icrocomputer can also be reset without turning o ff the main power. This
is done by depressing the reset switch on the microcomputer board. Looking at Fig.
8.4, we find that the reset switch is the input o f the reset flip-flop. Notice that this
flip-flop is formed from two N A N D gates o f IC U ^ . When the switch is depressed,
the output o f the flip-flop at pin 6 o f U 44 is set to 1 and as it is released the output
is reset to 0. The reset pulse ou tpu t at pin 6 is inverted by U43F and applied to the
reset inputs o f the 68000 and 68230. This reset mechanism represents what is called
a warm start and does not cause the POR or H A L T outputs to be produced.

Sec. 8.4 Interrupt Interface 277

Maskable Hardware Interrupts

The next part o f the interrupt interface that we will look at is the part that provides
what are called maskable hardware interrupts. By hardware interrupt, we mean that
it represents a device external to the 68000 microprocessor that requests service by
the M PU by asserting a hardware signal called an interrupt request. By maskable
interrupt, we mean that the interrupt input is accepted on a priority basis. That is,
when a device issues a request for service to the M P U by issuing an interrupt request,
the 68000 first compares its priority to the setting o f the interrupt mask in the status
register. If the value already in the mask is that o f an equal or higher priority interrupt,
the request for service is ignored. Otherwise, the request for service is granted.

In Fig. 8.4, the 74LS148 priority encoder U40 and 74LS273 interrupt latch U41,
which are located just to the left o f the M PU , as well as all o f the circuitry located
to the right o f the M PU are used to implement the maskable interrupt interface. The
circuitry on the left is for input o f interrupt requests. Notice that there are five
maskable hardware interrupt inputs: TOUT, PIRQ, 6800IRQ, AC1IRQ, and AC2IRQ.
Figure 8.5 lists the priority level, function, and autovector num ber for each o f these
interrupts. For instance, AC2IRQ stands for asynchronous communications controller
2 interrupt request. It has a priority level o f 6 and uses autovector 30 at address
00007816 to define the starting point o f its service routine.

Signal Priority AutoVector
Mnemonic Level Function Number

ABORT 7 Abort logic request 31
AC2IRQ 6 Asynchronous communication

controller 2 request
30

AC1 IRQ 5 Asynchronous communication
controller 1 request

29

6800IRQ 4 6800 device request 28
PIRQ 3 PI/T parallel ports request Not used
TOUT 2 PI/T timer request Not used
--- 1 Not used Not used

F igure 8-5 M ask ab le in ie rru p ts .

Also notice in Fig. 8.5 that the T O U T and PIR Q interrupt requests are for the
timer and parallel ports o f the 68230 P I / T device, respectively, and that they do not
use autovector interrupt levels. Instead, their in terrupt vectors are stored in registers
within the P I / T device and are output to the 68000 over the data bus during an
interrupt acknowledge bus cycle.

Let us now look at what happens when an interrupt request becomes active.
Assume that the AC1IRQ input at pin 3 o f U4! has been switched to logic 0. This
means that the 6850 device U 13 in Fig. 8.2(b) is requesting service. On the next pulse

278 The Hardware of the MC68000 Educational Microcomputer Chap. 8

o f 4M H ZCLK (pin 11 o f U 4|), the logic levels o f the interrupt request inputs are
latched at the ou tpu ts o f the 74LS273 interrupt latch. The latched interrupt requests
are applied to inputs 2 through 6 o f the 74LS148 priority encoder. Since just AC1IRQ
is active, only the 5 input at pin 2 o f the priority encoder (U40) is at logic 0. This
input makes the encoder ou tpu t equal to A 2A ,A 0 = 101. This output is returned
to inputs D2 through D4 o f the interrupt latch. On the next pulse at 4M H ZCLK ,
the code is latched at ou tpu ts Q 2 through Q 4 and is applied to the interrupt request
inputs (IP L 2I P L | I P L 0) o f the microprocessor.

Earlier we pointed ou t that interrupt requests, A BO RT, AC21RQ, AC11RQ,
and 68001RQ, are serviced as autovector interrupts. For this reason, when one o f them
is acknowledged for service by the 68000, the external logic circuitry must switch the
VPA input o f the 68000 to logic 0. This signals the MPU that an autovector operation
is in progress. In this case, it internally generates the vector addresses and fetches
the vector from external memory. The circuitry that produces the VPA signal is located
to the right o f the 68000 in Fig. 8.4.

Let us now look in more detail at how VPA is generated. For our earlier example,
A C1IRQ , the interrupt code is IP L 2I P L | I P L 0 = 101. During the interrupt
acknowledge bus cycle, the interrupt acknowledge function code 111 is output on
function code lines F C 2F C ,F C 0. At the same time, the interrupt code 101 is output
on address lines A2A ,A 0. Looking at the circuits in Fig. 8.4, we see that the function
code is gated together with AS by the 74LS21 A N D gate U j9B. Since all o f its inputs
are logic 1, the outpu t at pin 8 o f the AND gate switches to logic 1. This ou tput is
an enable input to the 74LS00 N A N D gate U25D. Here it is gated with the logic level
on the A 3 address line. This signal is also 1; therefore, output VPA1RQ switches to
logic 0 to indicate that the current interrupt bus cycle is to use autovectoring. The
logic 0 at V P A IR Q is input to the 74LS11 A N D gate U45C at pin 11 and causes the
VPA input o f the 68000 to switch to logic 0. This completes the signaling sequence
required to initiate an autovector interrupt response.

Earlier we pointed out that the parallel I / O ports and timer within the 68230
device are not serviced using autovector in terrupts. This is because it has internal
vector registers that can be program m ed by the user with a vector number. During
the interrupt acknowledge bus cycle, the 68230 supplies the vector number to the 68000
by ou tpu t t ing it on da ta bus lines D 0 through D7. For instance, let us assume that
the T O U T interrupt request input is active. This causes the code 010 to be applied
to the IPL inputs o f the 68000. As the interrupt acknowledge bus cycle is initiated,
the function code FC 2F C |F C 0 = 111 is again output and the outpu t at pin 8 o f
A N D gate U |9B switches to logic 0. However, this time the code output on address
lines A 3 through A (is 010. This makes all inputs on NAND gate U 17B 1 and its
output, TIACK at pin 8, switches to logic 0. TIACK signals the 68230 that the timer’s
request for service has been granted and that it should put the timer’s interrupt vector
on the bus. Later in the bus cycle, the 68000 reads the vector number o ff the data
bus and then passes control to the address held in this vector location.

Sec. 8.5 Program and Data Storage Memory 279

Nonmaskable Interrupt— ABORT

The A BO R T switch, which is located by the R ESET switch on the
microcomputer board, when depressed causes software to be returned to the monitor
program. For instance, if the microcom puter became hung up during execution o f
a user-written program , control can be returned to the monitor by simply depressing
the ABORT switch. The ABORT service routine does not reinitialize the M PU, it just
returns control to the monitor without changing the contents o f internal registers or
da ta memory. _ _ _ _ _

The abort request signal (ABT1RQ) is generated by a flip-flop similar to the one
described earlier in this section for the reset switch. In fact, as shown in Fig. 8.4,
this flip-flop is made with the other two AND gates o f IC U ^ .

When the ABORT switch is depressed, the ABTIRQ, which is output at pin 8
o f U ^ , switches to logic 0 and as it is released, this ou tput returns to logic 1. The
pulse to logic 0 at A BTIRQ is applied to the 7 input at pin 4 o f the 74LS148 priority
encoder. This is the highest-priority input and causes the code 111 to be ou tput on
A 2A | Aq. This code is latched into the 74LS273 latch U41 synchronously with
4M H ZCLK . From the ou tput o f the latch, it is supplied to in terrupt request inputs
IP L 2I P L , IP L 0 o f the 68000. Here code 111 represents a nonmaskable interrupt
request and is serviced by the routine pointed to by autovector in terrupt vector 31
at address 00007016. When executed, this routine returns software control to the
monitor program.

8.5 PROGRAM AND D ATA STORAGE M EMORY

In Section 8.4, we covered the in terrupt interface o f the MC68000 educational
microcomputer. Here we will continue with the circuitry used to implement the
memory interfaces. This represents three separate sections o f circuitry, the program
storage memory, da ta storage memory, and the watchdog timer.

Program Storage Memory

Figure 8.6 shows the 68000 M PU and the program storage part the MC68000
educational m icrocom puter’s mem ory subsystem. Notice that it involves three key
elements o f circuitry: the ROM address decoder, the read-only memories, and the
ROM DTACK circuit. The storage array is formed from two MC68A364 ROMs.
These devices are organized as 8K x 8-bits and are connected together to give an
8K x 16 bank of memory for a total o f 16K bytes o f program storage memory. Notice
that the M PU supplies address information to bo th ROMs in parallel over address
lines A, through A 13. Device U)0 supplies the lower bits o f the instruction word to
the M PU over da ta bus lines D0 through D7, while U n supplies it with the upper
byte over Dg th rough D)5.

o
o

2 8 0 The Hardware of the M C 6 8 0 0 0 Educational Microcomputer Chap. 8

U20

Figure 8-6 Program storage memory.

Sec. 8 .5 Program and Data Storage Memory 2 8 1

Figure 8-6 (cont.)

282 The Hardware of the M C68000 Educational Microcomputer Chap. 8

The address m ap in Fig. 8.7 shows that R O M resides in two pages o f the 68000’s
address space. O ne part is the page in the address range from 00800016 to 0 0 B F F F !6.
It is in this section o f m em ory tha t the instructions o f the T u to r m o n i to r p rogram
are stored. The o th e r part o f the R O M address space is the eight bytes from address
000000)6 th rough 00000716. This part o f m em ory stores the reset in terrupt vector.

Function Type Address

Exception vector table ROM 0 0 0 0 0 0 ,6 to 0 0 0 0 0 7 ,6
RAM 00 0 0 0 8 ,6 to 0 0 0 3 FF ,6

Tutor scratchpad RAM 0 0 0 4 0 0 ,6 to 0 0 0 8 FF ,6
User memory RAM 0 0 0 9 0 0 ,6 to 007FFF16
Tutor firmware ROM 0 0 8 0 0 0 ,6 to 0 0 BFFF ,6
Not used 0 0 C 0 0 0 ,6 to o o f f f f , 6
Pl/T I/O 0 1 0 0 0 0 ,6 to 010 0 3 F16
ACIA2 (lower byte) I/O 0 1 0 0 4 0 ,6 to 0 1 0 0 4 3 ,6
ACIA1 (upper byte)
Redundant mapping I/O 0 1 0 0 4 4 ,6 to 01 FFFF ,6
Not used 0 2 0 0 0 0 ,6 to 02 FFFF ,6
6800 page (E6) 0 3 0 0 0 0 ,6 to 03 FFFF ,6
Not used 0 4 0 0 0 0 ,6 to FFFFFF ,6

F ig u re 8-7 M em o ry a d d re s s m a p (M o to ro la , In c .) .

W henever an address in these ranges is o u tp u t on address bus lines A | th rough
A 23, the address decoder circuit detects its occurrence and produces the R O M enable
(R O M EN) signal. R O M E N is supplied by the o u tpu t o f the 74LS260 NOR gate U 29B.
For this o u tpu t to be logic 1, all o f its inputs must be logic 0. Notice in Fig. 8.6 tha t
switching R O M E N to logic 1 enables bo th the R O M D TA C K circuit and the two
R OM ICs. ______________

The R OM D T A C K circuit is used to produce the D TA C K R O M signal that tells
the M P U to com plete a synchronous bus cycles tha t are perfo rm ed to the program
mem ory . This circuit is actually a counter constructed from the D-type flip-flops o f
the 74LS175 IC U 22. The flip-flops on this IC are connected to fo rm a 4-bit binary
counter . The CK inpu t at pin 5 o f this counter is supplied by the 8-M H z clock signal.
W henever a R O M bus cycle is not in progress, the o u tpu t o f the 74LS21 A N D gate
U)9A is logic 0 and the ou tpu t o f the counter is cleared. As a m em ory bus cycle is
initiated to p rogram m em ory , R O M E N is switched to 1 and the coun te r increments
tow ard a count o f 1000. W hen this coun t is reached, the Q o u tpu t at pin 14 switches
to the 0 logic level. This makes the signal D T A C K ROM logic 0 and the ou tpu t o f
the 7 4 L S 11 A N D gate U 24A signals the 68000 tha t the bus cycle can be completed
by switching D T A C K to logic 0.

Let us now look m ore closely at the address decoding that takes place at the
address decoder to produce the R O M E N signal. Assume that the address ou tpu t on

Sec. 8.5 Program and Data Storage Memory 283

the address bus during an instruction acquisition bus cycle is 00800016. Expressing
this address in binary form, we get

A 23A 22. . . .A , = 000000001000000000000002

To make ROM EN equal to 1, this address must cause all inputs to the 74LS260 NOR
gate U29B logic 0. Looking at this gate, we see that its first input is A u and that
this bit is at logic 0 in the address. The next input o f the gate is supplied by the random
logic section o f the address decoder. The address inputs to this section o f circuitry are:

A 7A 6A 5A 4 = 00002

which makes the output at pin 6 o f the 74LS260 NOR gate U 37B equal to 1,

^ 12̂ 11̂ 10^9 = 0^ 00->
which makes the ou tput at pin 5 o f NOR gate U 37A equal to 1, and

A |4A | 3 = 002

which makes the ou tpu t at pin 10 o f NOR gate U 33C equal to 1. These three outputs
are inputs from the 74LS10 N A N D gate U38B. Since all o f its inputs are logic 1, the
output at pin 6 is logic 0. This signal is combined with A 15, which is logic 0, by the
74LS08 AND gate U 23B. This outpu t , which is at pin 6, gives a second input o f NOR
gate U29B, which is also 0. Next, R /W , which is at logic 1 during read bus cycles o f
p rogram memory, is inverted by U 33B to give logic 0 at ou tput pin 4 and applied
to the third input o f NOR gate U29B. Finally

^18A 17^I6 = 00^2
selects the Y0 ou tpu t at pin 15 o f the 74LS138 three-line to 8-line decoder.

A ->3 A 22A 2 j A2qA 19 = 00000,

causes the output at pin 5 o f U29A to switch to logic 1 and supplies one of the enable
inputs at pin 6 o f U 30. AS = 0 at pin 4 supplies the last signal needed to enable the
decoder for operation. Therefore, Y0 switches to logic 0 to produce the last input
o f NOR gate U 29B. Since all inputs o f U29B are now at logic 0, this address causes
the ROM EN output to switch to the 1 logic level.

Data Storage Memory

The data storage memory interface o f the MC68000 educational microcomputer is
quite different than that just described for program storage memory. Looking at Fig.
8 .8 , we see that it includes the address decoder, the RAM tim ing/D T A C K circuit,
the address multiplexer, the RAM storage array, and the RAM refresh control circuit.

The RAM storage array is 32K bytes in size and is organized as 16K words.
In Fig. 8 .8 , we find that it is formed with sixteen 4116 dynamic RAM ICs. Each of
these devices is organized 16K x 1-bit. It is this part o f the mem ory subsystem that
is used as a scratchpad memory for the Tutor program and to store data and programs
that are keyed in for execution and debugging.

284 The Hardware of the M C68000 Educational Microcomputer Chap. 8

Figure 8-8 D ata storage m em ory.

Sec. 8 . 5 Program and D a ta Storage M e m o ry 2 8 5

.. -6

F igu re 8-8 (cont.)

The Hardware of the M C 6 8 0 0 0 Educational Microcomputer Chap.

A*-

/ —

N

V îi

Add'rn

LS1S3

t§252

A
B
E,

1C,

’C, IV
1C,
2C0
X,
2C,
2C,

E,

A
e
E,

1C,

1C. IV
ICj

2C, 2v
2C,
2C.

Figure 8-8 (cont.)

Sec. 8.5 Program and Data Storage Memory 287

X

AAV «lo'wjr fir.

y 54
MCM4116

uU
VCV«> 'b

UH
MCM4116

v i t
MCM4I1»

U50
MCU4116

U4«
MCV411U

U4B
WCU4116

U47
MCM4116

A,
A,

A,

N

RÄS

S 3

01 oo

A.

A,

A,

W

« S

¡55

01 oo

A.
A,
A|

A,

A,

A,

W

«AS

0 3

01 oo

A*
A,

A1

A<

A*

A,
Ä

« 3

0 3

01 00

A,
A,

A,
A,

*w

«ÄS

ca5

01 00

Ao
A.

A}
A,

A.

A,

A.

W

Ris

CAS

01 00

A,
A.
A,

A,

A,

A»
a

ÄÄS

CAS

01 00

A,
A,

A]
A,

A.
A,

A.
Ä

ÄÄS

CAS

0! 00
Ï u 3 14 7 1« 3 «« 2 14 2 14 : 14 ? •4

o, 0, 0. 0, O. 0 , 04 Dt ° i 0, 0; 0. 0 , 0« t>o

\ \ \ \ \ \ \ \ \

A,, A« A, A« Ag A, A, A,
A. A, A, A, A, A. A, A,
A, Aj A, A, A) A, A, A.'
A, A, A, A. A, A, A, A,
A. A. A. A. A. A, A. A4
A> A, A, A, A, A, A* A,
». A, A. A, A. A. A. A.
W W W W Ä Ä Ä W
iis «5 RSS ÜÂS ¡OS TO Ras «5
S3 CÄS CAS 03 CAS cB ¿ a 03

01 DO 01 00 01 00 01 00 01 00 01 00 01 00 01 00

\ ___ \ \ ___\ \ ___\ \ ___\ \ ___\ \ ___S______ X .
F ig u re 8-8 (cont.)

288 The Hardware of the MC68000 Educational Microcomputer Chap. 8

The data input (DI) leads and data ou tput (DO) leads o f the individual RAMs
are wired together and then tied to the corresponding data bus lines of the 68000.
For instance, DI and DO from IC U47 are connected together and supplied to the
D0 line of the d a ta bus.

Unlike the ROM s used in the program storage part o f the memory subsystem,
these DRAMs require a multiplexed address. That is, a 14-bit address is input to the
address multiplexer circuit over address lines A (th rough A !4 and under control o f
the RAM tim ing /D T A C K circuit, it is multiplexed into a 7-bit row select address
(RAS) and 7-bit column select address (CAS). These two parts o f the address are
ou tput one after the other in time on the RA0 through RA6 lines and applied to
address inputs A 0 through A 6 o f all memory devices in parallel.

The application o f these two addresses are synchronized with the ROW address
select (RAS) signal and column address select signal, column upper (CU) and column
lower (CL). Looking at Fig. 8 .8 , we find that these signals are applied to the RAS
and CAS inputs o f the RAMs, respectively.

The last control signal that is applied to the memory devices in the RAM storage
array is RAW . Note that it is applied to the W input o f all RAM lCs in parallel.
This line is used to signal to the da ta storage mem ory subsystem whether a read or
write bus cycle is in progress.

The same address decoder that we discussed relative to program storage memory
is shown in Fig. 8.8 to decode the 68000’s address to give the RAM enable (RAMEN)
signal. Again address bits A 3 th rough A ,4 must all be logic 0 to make the output
at pin 6 o f U 38B switch to logic 0; A)5 must be logic 0, instead o f 1, to make the
output at pin 6 o f U 32C logic L ar>d finally A]6 through A 23 must equal 0 to make
the Y0 ou tput at pin 15 o f U 30 equal to 0. This ou tput is inverted by U 32E to give
logic 1 at the ou tpu t at pin 11. Therefore, all three inputs o f A N D gate U24C are
logic 1 and R A M EN switches to the active 1 logic level.

RAM EN does not directly enable the memory array. Instead, it is applied along
with the output o f N A N D gate U25C to inputs o f A ND gate U ?3 r . The output o f
U25c is generated from lower data select (LDS) and upper data select (UDS). If either
or both of these signals are logic 0, the ou tput at pin 8 o f U 25C is logic 1. This
condition makes both inputs o f U 23C logic 1 and its ou tput at pin 8 switches to the
1 level, thereby releasing the clear input o f the 74LS175 device (U39). U39 contains
four D-type flip-flops that are interconnected to form a 4-bit binary counter.
Therefore, as C LR is released, the ou tput o f the counter begins to increment through
its count sequence synchronously with the 8-M Hz clock signal that is applied to its
CK input.

After the first clock pulse, o u tpu t Q a t pin 15 is logic 1. This makes the RAS
output at pin 13 o f U33D switch to logic 0. RAS signals the devices in the memory
array that a row address is available at address inputs A0 through A6. On the next
clock pulse, the Q output at pin 11 o f U 39 switches to logic 0 and enables the R /W
signal to the RAW output at pin 8 o f U 34C and signals the memory array whether

Sec. 8.5 Program and Data Storage Memory 289

data will be read from or written into da ta memory during the current bus cycle.
The fourth clock pulse causes Q at pin 6 o f U39 to switch to the 0 logic level and
enables LDS and UDS to the CL and CU outputs, respectively. This tells the RAMs
in the memory array that a column address is applied at inputs A0 through A6. In
this way, we find that the counter controls the timing o f memory bus control signals
RAS, C U , CL, and RAW .

As the fifth clock pulse occurs, Q at pin 3 of U 39 switches to logic 0. This
produces the signal DTACK RAM, which is returned by way of AND gate U->4A to
the DTACK input o f the 68000. When the DTACK RAM input at pin 1 o f this gate
switches to logic 0, the output at pin 12 and DTACK input o f the 68000 are also
switched to logic 0. This signals the 68000 that the current data memory bus cycle
can be completed.

From the memory map o f Fig. 8.7 we see that RAM is located from address
000008l6 through 007FF F 16. Notice that the addresses in the range from 000008|6
through 0003FF16 are used to store exception vectors. This area of memory is
followed by a 2K-byte segment o f RAM at addresses 000400)6 through 0008FF |6,
which is used as a scratchpad by the Tutor program. The rest o f the RAM, which
resides from address 00090016 through 007F F F |6, provides user mem ory for storage
o f programs and data. In this way, we see that RAM is located at the lower part
o f the 68000’s address space.

Now that we know how the W, RAS, and CAS signals are generated for the
RAMs, let us look more closely at how the address on A! through A I4 is multiplexed
to the A 0 through A 6 inputs o f the RAMs in the RAM storage array. The address
multiplexer is formed with four dual 4-line to 1-line mutliplexer ICs. These are devices
U27, U 28, U 35, and U36 in Fig. 8 .8 . Notice that address bits A ,, A3, A 5, and A7 are
applied to the 1C0 inputs o f the multiplexer devices and A9, A , , and A 13 are applied
to their 2C, inputs. These seven address bits form the row address (RAS) part o f
the memory address. Moreover, we find that address bits A g, A |0, A 12, and A 14 are
applied to the 1C0 inputs o f the multiplexer devices and A 9, A u , and A 13 are applied
to their 2C0 input. This is the 7-bit column address (CAS) part o f the memory address.
The two bit code applied to the BA select inputs o f the multiplexer determines whether
the RAS or CAS part o f the address is passed to the RA lines at the outputs o f the
multiplexers. These outputs are supplied to address inputs A0 through A6 of all RAMs
in parallel. For instance, when BA = 01, address bits A, through A7 are ou tput on
lines RA0 through RA 7, respectively. This address is accompanied by a logic 0 at
the RAS input.

Now that we have described the operation o f the circuits involved in the memory
interface, let us trace through their operation as the 68000 writes a word of da ta to
memory. The write bus cycle that is performed to write da ta to the data storage
memory begins with the 68000 outputting the address o f the storage location that
is to be accessed on address bus lines A, through A23. Then it switches the AS output
to its active 0 logic level. This signal tells external circuitry that a valid address is

2 9 0 The Hardware of the MC68000 Educational Microcomputer Chap. 8

available on the bus. We will assume that this address is for a storage location in
the data storage memory part o f the mejnory subsystem.

At the same time, the 68000 sets R /W to logic 0 to signal that a write bus cycle
is in progress. Morever, it sets both UDS and LDS to their active 0 logic level
to signal that a word data transfer is to take place over the data bus. Finally, the
word o f data that is to be written into memory is output on data bus lines D0 through
D,5-

Address bits A 3 through A 15 and A |6 through A23 are decoded by the address
decoder circuit. Since we have assumed that the address on the bus corresponds to
a storage location in data memory, the RAM EN output o f AND gate U24C becomes
active (logic 1). This makes the pin 9 input o f A N D gate U23C logic 1. At the same
moment, both inputs (LDS and UDS) of N A N D gate U 25C are logic 0; therefore, its
output switches to logic 1. This makes the other input (pin 10) o f U23C logic 1 and
its ou tput switches to the 1 level. As the ou tput switches to 1, the CLR input o f the
RAM tim ing/D T A C K counter circuit is released.

Now the counter begins to increment at a rate set by the 8 MHz clock and as
it increments through its counting sequence, signals RAS, RAW , CL, CU, and
DTACK RAM are generated in that order. When RAS is switched to logic 0, the
control input o f the address multiplexer is logic 1 and B is logic 0. This causes the
RAS part o f the address, A , through A 7, to be multiplexed to RA0 through RA 7
and then applied to the A0 through A6 inputs o f the RAMs.

As the counter continues to increment, the A multiplexer control signal is
switched to logic 0, while B remains at logic 0. This causes the CAS part o f the address,
A g through A |4, to be output on R A 0 through R A 6. Then memory control signals
CL and CU are switched to logic 0 to signal the memory devices that the CAS address
is available at their A 0 through A 6 inputs.

Each RAM 1C inputs the bit o f the data word that is applied to its data input
(Dl) line and stores the corresponding logic level into the storage location selected
by the RAS and CAS address.

At this point, the da ta has already been written into memory. However, the
68000 does not yet know that the bus cycle can be completed. But as the RAM
tim ing/D T A C K circuit continues to count it next switches DTACK RAM to logic 0.
This signal is returned to one input of AND gate U24A and makes the ou tpu t at pin
12 switch to logic 0. This output is applied directly to the DTACK input o f the 68000.
Switching DTACK to logic 0 signals the 68000 that it can terminate the current bus
cycle. In response to DTACK, it returns outputs UDS, LDS, and AS to their inactive
1 logic level; R /W is returned to the 1 logic level; and the da ta word is removed from
bus lines D0 through D l5. As the counter continues to increment, DTACK RAM is
returned to logic 1. This represents the end o f the write bus cycle.

Example 8.1
W rite an in struction sequence tha t can be used to clear T u to r ’s sc ra tchpad m em ory.

Sec. 8.5 Program and Data Storage Memory 291

Solution. As shown in Fig. 8.7, the T u to r ’s scratchpad RAM resides in the address
range from 000400|6 to 0008FF,6. This range is

0008FF 16 00040016+ 1 50016 bytes

= 280,6 words

= 140|6 long words

in length.
Let us use A, as an address pointer to the scratchpad RAM and D0 as a counter

o f the number o f word addresses to be initialized. Furthermore, D, will be loaded with
the value 0 ,6. This is the value that will be written to each word storage location in the
scratchpad RAM. To initialize these three registers, the following sequence of instructions
can be executed

M O VE.L #$400, A 1

M O VE.L #$280,DO

M O VE.L 00, D1

Next we need to execute instructions that write the word contents o f D, (0000!6) to the
memory location pointed to by A ,; increment the address in A ,; decrement the count
in D0, and test the count in D0 to determine if it is 0. If the value in D0 is not 0, the
data write, address increment, count decrement, and zero test operations must be repeated.
However, when the count in D0 becomes equal to 0, all storage locations in the
scratchpad RAM have been cleared and initialization is done. These operations are
performed with the instruction sequence that follows

NXT M O VE.W D1,(A1) +

SUBQ.L *1,D0

BNZ NXT

D O N E B DONE

The complete program is repeated in Fig. 8.9.

M O V E .L #$400, A 1
M O V E .L #$280, DO
M O V E .L #0,D1

N X T M O V E .W D1,(A1) +
S U B Q .L 01,DO
BNZ N X T

D O N E B D O N E
F ig u re 8 -9 S c r a t c h p a d m e m o ry

in i t ia l iz a t i o n r o u t in e .

W atchdog Tim er C ircu it

T he 68000 system bus is asynchronous . That is, once a bus cycle is s tarted , the d a ta
t ransfer is not com plete until the external circuitry indicates th a t the bus cycle is to
be finished. We have found in o u r descrip tion o f the p rog ram and da ta storage

292 The Hardware of the M C 68000 Educational Microcomputer Chap. 8

U20
MC68000 L4

Sec. 8.6 Parallel and Serial I/O Interfaces 2 9 3

memory subsystems that external circuitry is provided to switch the DTACK input o f
the 68000 to logic 0. Notice in Fig. 8.10 that three different signals drive the DTACK
input through the 74LS11 AND gate U ^ . These signals, DTACK PIT, DTACK RAM,
and DTACK ROM , correspond to bus cycles initiated to the 68230 P l / T device, data
memory (RAM), and program memory (ROM), respectively. If none of these signals
is received to indicate that the bus cycle is to be completed, a bus error condition exists.

A watchdog timer circuit is provided in the MC68000 educational microcomputer
to detect a bus error condition. This circuit, as shown in Fig. 8.10, is constructed
with U 7), a 74LS175 D-type flip-flop IC. Looking at the circuit diagram, we see that
the flip-flops in this device are cascaded to form a 4-bit binary counter. When a bus
cycle is not in progress, the data input D at pin 4 and CLR input at pin 1 are at logic
0. Therefore, the flip-flops are all reset and the Q output at pin 14 is at logic 1. This
output is applied to the bus error (BERR) input o f the 68000 and signals that a bus
error has not occurred.

When a bus cycle is initiated, the AS output o f the M PU is switched to logic 0
and maintained at that level th roughout the bus cycle. AS is inverted by U lgF and
supplies logic 1 to the CLR and D inputs. The counter is now released and begins
to count through its binary sequence at a rate set by the clock pulse at the E output
o f the 68000. As long as DTACK becomes active before t his c ount reaches 10002 no
bus error occurs; however, if DTACK is not received, the BERR input is switched to
logic 0 and a bus error exception has occurred. In this way, we see that the watchdog
timer observes all bus activities and assures that all bus cycles that are initiated are
also completed.

8.6 PARALLEL AND SERIAL I/O INTERFACES

There are four I /O interfaces provided in the MC68000 educational microcomputer.
Looking at the block diagram in Fig. 8.1, we find that there are two RS-232C serial
ports, one for connection to the terminal and the other for connection to a host
computer, and two parallel I/O interfaces, one for connection to a printer and the
other for connection of an audio cassette. Let us now look at how each o f these
interfaces is implemented in the microcomputer system.

Parallel I/O Interfaces

The parallel I /O circuitry o f the MC68000 educational microcomputer is shown in
Fig. 8.11. Here we see that a single 68230 parallel interface/timer (P I /T) IC has been
used to implement the printer and audio cassette interfaces. This device has three
byte-wide I /O ports, port A (PA 0- P A 7), port B (PB0- P B 7), and port C (PC0- P C 7)
and four programmable handshake lines, H , through H 4. This gives a total o f 28
I /O lines for im plementation o f the printer and audio cassette interfaces.

Input or ou tput data transfers between the 68000 and the A, B, and C ports
are performed by reading from or writing to a corresponding data register within

294 The H ardw are of the M C 6 8 0 0 0 Educational M icrocom puter Chap. 8

Figure 8-11 Parallel I /O in terface— prin te r and audio cassette.

Sec . 8 .6 Parallel and Serial I/O Interfaces

Figure 8 -1 1 (cont.)

295

296 T h e H ard w a re o f the M C 6 8 0 0 0 Educational M ic ro co m p u ter Chap. 8

P n n w >nl«r(«c<

L .

44 n
4S 0
46 r,
47

u :
n

48
°J
n

1 n
2 n

____ 3
us
n

29
u >

RS,
DC

28

__ 2J_
Mi,
RS.

ss4
RS.

26

25

40 Cl if
43 R W
39 RESET

P C ,T O U T

PC .'D M A R E Q

PC. P iR Q

PC , P IA C X

34

35 PIRQ

36 PÏÂCK

37 TIACK

To .ntrrrvjpi
mtçMacr

F igu re 8-11 (com .)

Sec. 8.6 Parallel and Serial I/O Interfaces 2 9 7

the 68230. F igure 8.12 lists th e loca t ion o f all o f the 68230’s registers in the
m ic ro c o m p u te r ’s address space . F o r exam ple , the port A I / O lines are accessed
th ro u g h the p o r t A d a ta register (P A D R) at ad d ress 0 1 00 11|6 .

R em em ber th a t the I / O lines on a 68230 c a n be con f igu red for m an y d if fe ren t
m odes o f o p e ra t io n . In general , they can be set u p to w ork as bit ad d ressab le inputs
o r o u tp u ts , byte-wide u n id irec t iona l inpu ts o r o u tp u t s , o r byte-wide b id irec t ional
i n p u t s /o u tp u t s . M o reo v er , the A a n d B por ts can be conf igu red to w ork tog e the r
as a w ord-w ide un id irec t iona l o r b id irec t ional po r t . In C h ap te r 6 , we fo u n d tha t four
con tro l registers m u s t be loaded with ap p ro p r ia te co n tro l bytes to co n f igu re the I / O
lines o f the A po r t as inputs o r o u tp u t s , select be tw een m od e 0, m o d e 1, m o d e 2,
o r m o de 3 o p e ra t io n , select the su b m o d e o f o p e ra t io n , def ine the o p e ra t io n o f the
h a n d sh a k e s ignals , an d assign h a n d sh a k e pin in te r ru p t prio ri t ies . T hese registers are
called the port genera l co n tro l register (P G C R) , the p o r t service request register
(P S R R), and p o r t A d a ta d irec tion register (P A D D R) , and the p o r t A contro l register
(P A C R) . F ro m Fig. 8 .12, we f ind th a t they a re located at addresses 01000116,
0 1000316, 0 1000516, an d 0 1 0 0 0 D 16, respectively, o f the 68000’s address space.

Let us co n tin u e by look ing at how the 68000 is in te r faced to th e P I / T device.
T he m icroprocessor interface is show n to the left o f the P I / T device (U 9) in Fig. 8.11.
L ook in g at the circuit d iag ram , we find tha t th e 68230 is loca ted on the lower eight

Address Register

01000116 Port général control register (PGCR)
010003,g Port service request register (PSRR)
010005lg Port A data direction register (PADDR)
01000716 Port B data direction register (PBDDR)
010009lg Port C data direction register (PCDDR)
01000B,g Port interrupt vector register (PIVR)
01000D16 Port A control register (PACR)
01000F16 Port B control register (PBCR)
010011,6 Port A data register (PADR)
010013,g Port B data register (PBDR)
010015,g Port A alternate register (PAAR)
010017 ,g Port B alternate register (PBAR)
010019,g Port C data register (PCDR)
01001 B,g Port status register (PSR)
010021,6 Timer control register (TCR)
01002316 Timer interrupt vector register (TIVR)
010027,6 Counter preload register high (CPRH)
010029,6 Counter preload register middle (CPRM)
01002B,g Counter preload register low (CPRL)
01002F,g Count register high (CNTRH)
010031,6 Count register middle (CNTRM)
010033,6 Count register low (CNTRU
010035,6 Timer status register (TSR)

Figure 8-12 A ddresses o f th e 68230 's in te rna l registers.

298 The Hardware of the MC68000 Educational Microcomputer Chap. 8

data bus lines D0 through D7. It is over these lines that the 68000 accesses the internal
registers o f the P I / T to input or ou tput data, load or read configuration information,
or read status information.

The next g roup o f inputs at the microprocessor interface is the register select
lines RS| through RS5. The binary code applied at these inputs determines which
o f the 68230’s 23 internal registers is accessed. They are supplied directly by address
bus lines Aj th rough A 5. Other bits o f the address are decoded by the 74LS138
address decoder (U30) to produce the P I / T chip select signal P1TCS. This signal is
applied to the CS input o f the P I / T and when it is switched to logic 0, the 68230’s
microprocessor interface is enabled for operation.

The P I / T is a 68000 family peripheral. For this reason, it is designed so that
its internal registers are to be accessed with asynchronous bus cycles. A data transfer
acknowledge (DTACK) output is provided on the 68230 for this purpose. During write
cycles, the logic level o f DTACK is switched to logic 0 just after the 68230 has accepted
the data o ff the bus. In this way, it tells the 68000 to complete th e current bus cycle.
On the other hand, when data is being read from within the 68230, DTACK is switched
to 0 when valid data is available at D0 through D7. This time it signals the 68000
to first read the data o ff the bus and then complete the bus cycle.

Now that we have introduced the parallel I /O interface let us trace through
the operation o f the circuitry in Fig. 8.11 as the 68000 w-rites a byte o f data to the
port A data register. Since the 68230 is located in the memory address space, this
represents a write bus cycle and could be initiated by executing a M OVE instruction.

As the write bus cycle begins, the address o f the port A data register, which
is 01001116, is output on address bus lines Aj through A 23 and lower data strobe LDS
is switched to its active (logic 0) level. This gives the binary address

a 23a 22............A , = 000000100000000000100012

and

LDS = 0

At the same time, address strobe (AS) is asserted (logic 0) and R /W is set to logic 0
to signal that a write operation is to take place.

Address lines A 6 and A)6 through A23 are inputs to the address decoder circuit.
From the binary form o f the address, we find that bits A 19 through A23 are all logic
0; therefore, the output o f the 74LS260 NOR gate U29A is logic 1. At the same time,
AS is at the 0 logic level. These two signals enable the 74LS138 3-line to 8-line decoder
(U30) for operation. Now that the decoder is enabled address lines A)6 through A lg
at the A through C inputs, which are 001, causes the Y! output to switch to logic
0. A logic 0 on this line signals that an I /O operation is in p rogress.

Next, the logic 0 at Yj is combined with the logic 0 at LDS and the logic 0 at
A6 by the 74LS27 NOR gate on IC U3IA. Since all three inputs are logic 0, the output
o f the NOR gate switches to the 1 logic level. This output is inverted by U32B to give
an 0 logic level at PITCS. This logic 0 is applied to the CS input o f the 68230, thereby
enabling it for operation.

Sec. 8.6 Parallel and Serial I/O Interfaces 299

The 68230 is now enabled for operation and the logic 0 at R /W has signaled
that the 68000 is going to write data into one o f its registers. Moreover, this data
also has already been output on data bus lines D0 through D7 and the register select
code o f 01000 on A! through A 5 has selected the port A data register. The 68230
reads the data o f f the bus; enters it into PADR; and then switches the DTACK output
to logic 0. DTACK is carried over the DTACK PIT line to one input o f AND gate
U24A and causes the output at pin 12 to switch to logic 0. This ou tput is connected
to the DTACK input o f the 68000 and signals it to complete the current write cycle. In
response, the M P U returns LDS, AS, D0 through D7, and R /W to their inactive
logic levels.

Having examined the microprocessor interface in detail, let us now look at the
circuitry on the I / O port side o f the 68230. Here we find that all o f port A and B
and the handshake lines are used to implement a parallel (Centronics) printer interface
at connector J , . Notice that the port A lines, P A 0 through P A 7 are buffered to
produce printer da ta lines P D 0 through P D 7. It is on these lines that the
microcomputer outputs character data to the printer. The handshake lines H, through
H 4 at PB0 through PB 2 are used to implement control signals for the Centronics
interface. For instance, H 2 is buffered by IC U lg and then output to the printer as
the DATA STROBE signal. This line signals the printer tha t there is data available
to it on da ta lines PDo through P D 7. Moreover, H, is supplied by an input signal
called A C K N O W L E D G E , with which the printer can tell the microcomputer that
it has read the character da ta from the PD lines.

Looking at port C o f the 68230 in Fig. 8.11, we find that lines P C 0 through
P C 2 are used to implement the interface to the audio cassette at connector J 2. Data
o r other information that is to be recorded are ou tpu t in bit serial form to the audio
cassette recorder over line P C ,. Notice that the voltage at PC, is first divided between
resistors R, and R2 and then A .C. coupled to the D ATA line at pin 3 o f J 2 through
capacitor C 3. The 0 and 1 logic levels output at DATA OUT are encoded as a I-kHz
50 percent-duty cycle square wave and a 2-kHz 50 percent-duty cycle square wave,
respectively.

When loading information such as programs from the tape player, data are input
to the microcomputer from the DATA IN line at pin 1 o f J 2. Diodes CR, and C R 2
and the MC3302 com para tor IC (U4g) square and clip the analog signal input from
the tape. The microprocessor reads this signal at PC0 and by evaluating its frequency
through software determines whether the input data is at logic 0 or logic 1.

E x a m p le 8 .2

W rite a sequence o f in structions th a t will set up the 68230 in the M C 68000 educational
m icrocom puter to w ork as follow s:
(a) U nid irectional 8-bit po rts o p era te w ith active handshake lines
(b) DM A a n d in terrup ts no t used
(c) P o rt A is an 8-bit o u tp u t port
(d) P o rt B is an 8-bit input po rt
(e) Initialize the prin ter

300 The Hardware of the M C68000 Educational Microcomputer Chap. 8

Solution. In Chapter 6 , we studied the 68230 and how the bits in its internal registers
are used to configure various modes of operation. Here we will just list the registers
and the values with which they must be loaded to achieve the modes of operation described
in steps a through e.

To configure the 68230 as described in step a, the PGCR register must be loaded
with

PGCR = 00000000, = 0016

followed by

PGCR = 00110000, = 3016

Next to configure the 68230 for no DMA or interrupts as described in step b, PSRR
must be loaded with

PSRR = 00000000, = 00,6

To configure port A as described in step c, PADDR is loaded with

PADDR = 111111112 = F F 16

and PACR must be initialized with

PACR = 01100000, = 60]6

Now port B is configured as described in step d by loading PBDDR with the value

PBDDR = 000000002 = 0016

and PBCR with

PBCR = 101000002 = A016

Finally, to initialize the printer for step e, bit 3 o f PBCR is first set and then reset. This
sends out an initialization pulse to the printer. To do this, we must first load PBCR with

PBCR = 10101000, = A 816

and then reload it with

PBCR = 10100000, = A 0 16

T o initialize the 68230, we m ust write the values jus t given in to the identif ied
registers. F igure 8 .13(a) lists the in i tia liza tion p a ra m e te r s as a b lock o f d a ta . Notice
tha t the p a ra m e te r table begins in m em o ry at address X and has o n e p a ram e te r s tored
at each w o rd a d d ress u p th ro u g h X + 16. N o tice th a t the value o f each pa ram e te r ,
the m n em o n ic fo r the register to which it is to be w rit ten , a n d the address o f the
register a re listed in the table .

Let us now write the sequence o f instructions th a t are needed to load the 68230’s
registers. W e begin by load ing ad d ress register A (w ith the address X . In this way,
it ac ts as a p o in te r to the beg inn ing o f the tab le in m e m o ry . This is d o n e by executing
the ins truc t ion

M O V E . L # X , A 1

Sec. 8.6 Parallel and Serial I/O Interfaces 301

Address Contents Register Register address

X 0 0 ,6 PGCR 10001, 6
X + 2 0 0 ,6 PSRR 10 0 0 3 16
X + 4 FF16 PADDR 10005 ,6
X + 6 oo16 PBDDR 10007,6
X + 8 60,6 PACR 1000D,6
X+ 10 AO,6 PBCR 1000F,6
X+ 12 3 0 ,6 PGCR 10001, 6
X+ 14 a 8 ,6 PBCR 1000F,g
X+ 16 AO,6 PBCR io o o f , 6

(a)

M O V E .L #X,A1
M O V E P (A1),D0
M O V E .L # $ 10001,A 2
M O V E P D0,(A2)
M O V E .B #$00, DO
M O V E .B D0,$7(A2)
M O V E .B #$60, DO
M O V E .B D0,$D(A2)
M O V E .B #$A0 ,D0
M O V E .B D0,$F(A2)
M O V E .B #$30, DO
M O V E .B D0,$1(A2)
M O V E .B #$A 8,D0
M O V E .B D0,$F(A2)
M O V E .B #$A0 ,D0
M O V E .B D0,$F(A2)

(b)

F ig u re 8-13 (a) P a ra m e te r ta b le fo r in itia liz in g th e 68230; (b) in i tia liz a tio n in s tru c

tio n seq u en ce .

Next we read the first four byte wide param eters in the table as a long word into
da ta register D0. T o do this we use the instruction

M O V E P (A1),D0

N ow we load a poin ter to the first o f the four registers into A 2 and then write them
into the registers o f the 68230 with the instruction

M O V E .L #$10001,A2

M O V E P D 0,(A 2)

3 0 2 The Hardware of the MC68000 Educational Microcomputer Chap. 8

The rest o f the parameters in the table are written to their respective register within
the 68230 with the instructions that follow:

M OVE.B #$00, DO

M OVE.B D0,$7(A2)

MOVE.B #$60, DO

MOVE.B D0,$D(A2)

MOVE.B #$A0,D0

MOVE.B D0,$F(A2)

MOVE.B #$30, DO

MOVE.B D0,$1(A2)

MOVE.B #$A8,D0

MOVE.B D0,$F(A2)

MOVE.B #$A0 ,D0

MOVE.B D0,$F(A2)

The complete sequence o f instructions is repeated in Fig. 8.13(b).

RS-232C Communications Interface

A nother im portant I /O interface in the MC68000 educational microcomputer is its
RS-232C serial I / O ports. In Fig. 8.1, we find that the microcom puter has two serial
ports. One o f these ports permits a C RT terminal to be connected to the
microcomputer. In this way, the user can input information to the microcomputer
from the keyboard o f the terminal and the microcomputer ou tpu ts results on the
display for the user to read. The other serial port is provided for a modem
communication link to a host computer.

The circuitry involved in implementing the serial ports is shown in detail in Fig.
8.14. Here we will concentrate on the port 1 U A R T , which is the one that is used
to connect the terminal to the microcomputer. Looking at the circuit diagram, we
find that this port is implemented at connector J 3. Notice that the 6850 ACIA device
is the communications controller that is used. In Chapter 6 we introduced this LSI
device.

At power up, the control register within the port 1 A CIA (U 13) is loaded by
the Tutor software to configure the serial port to operate as follows: 8-bit character
length, even parity, and one stop bit. Moreover, it sets up the internal clock divider
circuitry such that the externally generated baud clock signal that is applied to the
receiver and transmitter clock inputs is divided by 16 within the device; RTS is set for
an active low logic level; and the transmitter interrupt is disabled.

Sec. 8.6 Parallel and Serial I/O Interfaces 303

MPU

Figure 8-14 Serial I / O in te rface— the te rm ina l a n d host c o m p u te r ports .

304 The Hardware of the M C 68000 Educational Microcomputer Chap. 8

Pon inwflace logic
-12 V

3 0 6 The Hardware of the MC68000 Educational Microcomputer Chap. 8

The table in Fig. 8.15 shows that the registers within the 6850 that implements
RS-232C port 1 in the MC68000 educational microcomputer are located on even byte
address boundaries starting at address 01004016. For instance, execution of a MOVE
instruction with a source operand at address 010040)6 lets the 68000 read the contents
o f the 6850’s status register. Executing a similar instruction with the destination
operand at address 01004016 would let us write a byte o f control information into
its control register. Moreover, executing a M OVE instruction to address 010042]6
permits either reading o f a byte o f da ta from the receive data register or loading of
a byte o f da ta into the transmit data register.

Address R/W Register

010040lg Write ACIA1 control register
Read ACIA1 status register

01004116 Write ACIA2 control register
Read ACIA2 status register

010042lg Write ACIA1 transmit data register
Read ACIA1 receive data register

010043 ,6 Write ACIA2 transmit data register
Read ACIA2 receive data register

F igu re 8-15 A d d resse s o f th e 6850’s in te rn a l reg isters (M o to ro la , Inc.).

Now that we know where the registers o f the 6850 are located in the 68000’s
address space, let us trace through the operation o f the circuitry as the 68000 reads
a byte o f da ta from the receive data register o f ACIA1 (U 13).

Looking at Fig. 8.14, we find that chip select inputs, CS0, CS,, and CS2, o f the
6850 are driven by the signals A 6, A CIA CS1, and UDS, respectively. These inputs
must be set to the 1, 1, and 0 logic levels, respectively, to enable the 6850 for operation.
Let us assume that the instruction

MOVE.B A CIA 1 D ATA, DO

which is correctly written to access the receiver da ta register o f the ACIA for serial
port 1, is executed by the 68000. When the instruction is executed, it initiates a memory
read bus cycle. During the bus cycle, the 68000 sets UDS to logic 0 to signal external
circuitry that a byte o f da ta is to be transferred over the upper part o f the da ta bus,
Dg through D 15. In the circuit diagram, we see that UDS is applied directly to the
C$2 input o f U 13. At the same time, the logic level applied to the CS0 input o f the
ACIA is bit A6 o f the address. Since we are accessing the receive data register within
A C IA |, the address is

A C IA -D A T A = 010004216

and in binary form it is

A23A 22............A , = 000000100000000000010000102

Notice that in the binary form o f the address A6 is at the 1 logic level. This is the
level needed at CS0 to enable the 6850 for operation.

Sec. 8 .6 Parallel and Serial I/O Interfaces 307

The third chip select input, CS|, of 6850 U 13 is supplied by signal A C IA CS1.

This signal is produced by decoding address bits A]6 through A23 in the 3-line to

8-line decoder U30. From the binary form of the address, we see that bits A)9 through

A23 are all at logic 0. Therefore, all inputs of the 74LS260 NOR gate U29A are logic

0. This makes its output, which is applied to pin 6 of U30, logic I. This signal and

the logic 0 that is output at AS whenever an address is on the system bus are used

to enable decoder U30 for operation. Again looking at the binary form of the address,

we see that bits A 16 through A lg are 001. Applying this binary combination to the

inputs of the decoder causes output Y, to be switched to the 0 logic level.

The 6850 is one of the LSI peripherals produced by Motorola for use with its

older 6800 family of microprocessors. For this reason, read/write transfers that take

place to it must be performed using synchronous instead of asynchronous memory

bus cycles. Notice in Fig. 8.14 that the logic 1 at bit A6 of the address is inverted

to logic 0 and then gated with the logic 0 at the Y, output of the decoder by the

74LS32 NOR gate U34B. Since both inputs are at the 0 logic level, the output of the

gate switches to logic 0 and forces the VPA output of the 74LS11 AND gate U45C

to the 0 level. This signal is returned to pin 2 of the 68000, which is the valid peripheral

address (VPA) input. Logic 0 at VPA signals the 68000 that the current bus cycle is

to be synchronous, instead of asynchronous.

In response to the logic 0 at VPA, the 68000 switches its valid memory address

(VMA) output to the 0 logic level. In Fig. 8.14 we see that VMA is input along with

Y, to the 74LS02 NOR gate U33A. Both of these signals are now logic 0; therefore,

output A C IA CS1 switches to logic 1. Now the chip select inputs o f U)3 are:

c s 0 = A6 = 1

CS, = A C IA CS1 = 1

and

CS2 = U d s = 0

Therefore, A C IA device U 13 is enabled for operation.

The 68000 sets memory control signal R /W to logic 1 to tell the 6850 that a read

bus cycle is in progress. At the same time, the register select (RS) input o f the 6850

is supplied by bit A (of the address and in our example it is logic 1. This tells the

6850 that the receive data register, not the status register, is to be accessed. Next,

the 68000 switches its enable (E) output to logic 0. This signals the 6850 to put the

byte of data held in the receive data register onto the data bus lines Dg through D !5.

Then the 68000 completes the bus cycle by reading the data o ff the bus and returning

the VMA, AS, and UDS signal lines to their inactive logic levels.

Now that we have examined the operation of the microprocessor’s interface

to the 6850 let us continue by looking at how the clock signal that sets the baud rate

of the receiver and transmitter sections of the UART is generated. In Fig. 8.14, we

see that the baud rate generator is formed by a M C I4411 oscillator/clock generator

device. The clock rate of this oscillator is set by the 1.8432-MHz crystal Y, that is

connected between pins X I and XO . Once power is applied to the MC14411, the

308 The Hardware of the M C68000 Educational Microcomputer Chap. 8

oscillator circuit begins to run and the counters within the device generate sixteen

different clock signals at parallel outputs F 1 through F 16. To select the baud for port

1, we simply install a jumper between one set of the terminal pairs at J 10. For

instance, putting the jumper in position 5-6 selects clock output F5 and sets the data

communication rate at 2,400 baud. Figure 8.16 summarizes all of the jumper settings

and their corresponding baud rates.

Jumper pins Baud rate

1-2 9600
3 -4 4800
5 -6 2400001r* 1200
9 -1 0 600

11 -12 300
1 3 -1 4 1 50
1 5 -1 6 1 10 Figure 8-16 Baud rate selection table

(M otoro la , Inc.).

In the circuit o f Fig. 8.14, both the receiver and transmitter are run at the same

baud rate; therefore, the Txc and Rxc inputs of U 13 are connected together by jumper

J 8. This common baud rate input is connected through the jumper at 5-6 to the F5

output of the baud rate generator.

Example 8.3

If a jumper is installed in position 15-16 o f J ,0, what baud rate is selected for A C IA U)2?

Solution. Looking at Fig. 8.14, we see that installing a jumper at position 15-16 of

J |0 selects a baud rate o f 110 baud for U p .

The last part o f the port 1 serial communications interface in Fig. 8.14 is the

RS-232C port interface itself. Here we see that this part of the circuit involves the

receive data (RxD) and transmit data (TxD) lines of the 6850 and interface control

signals request-to-send (RTS) and clear-to-send (CTS). The logic included at this

interface sets the transmission and reception voltage levels for signals T x d a t a and

R xd a t a ; gates data from the TxD output of the 6850 onto the RxDATA output; and

creates three additional communication interface signals, data terminal ready (DTR),

data set ready (DSR), and data carrier detect (DCD), from CTS.

The microcomputer receives character data from the terminal over the T x d a t a

line and sends character data to it over the RxDATA line. Moreover, the handshake

control for these data transfers is provided by control lines DTR, CTS, DSR, and

DCD. For instance, to write data to the terminal, the port 1 AC IA produces the CTS,

DSR, and DCD signals by outputting logic 0 at CTS. All o f these signals are available

to the terminal through its RS-232C interface. Therefore, any of them can be tested

by the terminal to determine if it needs to read data from the RxDATA line.

Chap. 8 Assignment 309

A S S I G N M E N T

Section 8 .2

1. What is the capacity of the program storage memory in the MC68000 educational

microcomputer system? What is its function?

2. How much RAM is supplied in the data storage part of the MC68000 educational

microcomputer’s memory?

3. What happens to the contents of program storage memory when power is turned off?

What would happen to the contents of the data storage memory?

4. Where are user-written programs that are typed in at the keyboard of the terminal stored

by the microcomputer?

5. What I/O resources are supplied on the MC68000 educational microcomputer?

6. What LSI device is used to interface the terminal to the 68000 microprocessor?

7. What does the 68230 device implement in the MC68000 educational microcomputer?

Section 8 .3

8. At what frequency is the microprocessor in the MC68000 educational microcomputer run?

9. Name a peripheral device in the educational microcomputer that is operated with the 1-MHz

clock.

10. What clock frequency is output at QB and QD o f U 15 in Fig. 8.3?

Section 8 .4

11 . Which devices in the educational microcomputer are initialized with the RESET signal?

12. What happens within the 68000 microprocessor when a reset pulse is applied to its RESET

input?

13. What purpose is served by the POR signal?

14. Why is a HALT pulse generated along with the RESET pulse when the microcomputer’s

power is turned on?

1 5 . What is meant by a warm start?

16. What interrupt priority code (IPLU PL^PLp) is applied to the 68000 in Fig. 8.4 if

the maskable interrupt signal 6800IRQ becomes active?

17. Assuming that the request for service by the 6800IRQ interrupt signal is granted by the

68000 in Fig. 8.4, specify the logic states produced at F C jF C ^C q , A ,A 2A ,, V PA IRQ ,

PIACK, TIACK, and VPA during the interrupt acknowledge sequence. How is the

exception vector produced?

18. What is the difference between the response of the 68000 to the closure of the ABORT

switch in Fig. 8.4 and closure of the RESET switch?

Section 8 .5

19. What time elapses between the occurrence of a valid ROM address on the bus and the

return of the DTACK signal to the MPU in Fig. 8.6?

3 1 0 The Hardware of the MC 6 8 0 0 0 Educational Microcomputer Chap. 8

20. In Fig. 8.6 what will be the logic state of signals ROM EN , DTACK, and R /W in response

to an instruction fetch from address 9000|6?

21. What signals are generated by the tim ing/RAM DTACK circuit in Fig. 8.8? In what order

are they produced during a read cycle to a valid RAM address?

22. Trace the operation of the circuit in Fig. 8.8 for a bus cycle in which data are read from

an address in RAM .

23. What is the function of the watchdog timer in Fig. 8.10?

Section 8 .6

24. Trace the sequence of events that take place as a bus cycle is performed to read the contents

of the 68230’s port B data register in Fig. 8.11.

25. Describe the functions of the DATA STROBE and ACKNOW LEDGE control signals of

the printer interface in Fig 8.11.

26. What frequency signals are used to record logic 0 and logic 1 on cassette tape?

27. What is the maximum baud rate for the terminal port of the educational microcomputer?

The minimum baud rate?

28. What is the difference between the terminal and host computer ports?

B i b l i o g r a p h y

B ry ce . H e a t h e r , Microprogramming Makes the MC68000 a Processor for the Future,

Electronic Design 22, Oct. 25, 1979.

D av is , Rex . Prioritized Individually Vectored Interrupts for Multiple Peripheral Systems with
the 68000. Austin, Tex.: Motorola Inc., 1981.

G r a d e n , D u a n e , Software Refreshed Memory Card for the MC68000 (AN-816). Austin, Tex.:

Motorola Inc., 1981.

K an e , G erry , D o u g H a w k in s , a n d L a n c e L e v e n t h a l , 68000 Assembly Language

Programming. Berkeley, Calif.: Osborne/McGraw-Hill, 1981.

M c K e n z ie , Jam es, Dual 16-Bit Ports for the MC68000 Using Two MC6821s (AN-810). Austin,

Tex.: Motorola Inc., 1981.

M o t o r o l a Inc . MC68000 16-Bit Microprocessor User’s Manual, 3rd ed. Englewood Cliffs,

N .J.: Prentice-Hall, Inc., 1982.

M o t o r o l a In c ., MC68000 Educational Computer Board User’s Manual. A us tin , Tex.:

M o to ro la In c ., 1982.

M o t o r o l a Inc . Motorola Microprocessors Data Manual. Austin, Tex.: Motorola Inc., 1981.

S c a n lo n . L e o J., The 68000: Principles and Programming. Indianapolis, Ind.: Howard W.

Sams & Company, Inc., Publishers, 1981.

S ta r n e s . T ho m as W ., Compact Instructions Give the MC68000 Power While Simplifying Its

Operation, Electronic Design 20, Sept. 27, 1979.

S ta r n e s , T h o m as W ., Handling Exceptions Gracefully Enhances Software Reliability,

Electronics, Sept. 11, 1980.

S ta r n e s , T ho m as W ., Powerful Instructions and Flexible Registers of the MC68000 Make

Programming Easy, Electronic Design 9, Apr. 26, 1980.

311

312 Bibliography

S t r i t t n e r , S k ip , a n d T o m G u n t e r , A Microprocessor Architecture for a Changing World:

The Motorola 68000, Computer, Feb. 1979.

S t r i t t n e r , S k ip , a n d N ic k T r e d e n n ic k , Microprogrammed Implementation of a Single Chip

Microprocessor, Proceedings, 11th Annual Microprogramming Workshop, Dec. 1978.

T r ie b e l , W a l t e r A., Integrated Digital Electronics 2nd ed. Englewood Cliffs, N.J.: Prentice-

Hall, Inc., 1985.

T r ie b e l , W a l t e r A . , a n d A l f r e d E. Chu, Handbook of Semiconductor and Bubble

Memories. Englewood Cliffs, N .J.: Prentice-Hall, Inc., 1982.

A n s w e r s
t o S e l e c t e d P r o b l e m s

Chapter 1

Section 1.2

1. Computer program.

Section 1.3 •

5. A computer that has been tailored to meet the needs of a specific application.

Section 1.4

7. Secondary storage is for long-term storage of data that are not in use. On the other hand,

the data that are currently being processed are held temporarily in primary storage memory.

Section 1.5

9. Program storage memory is the part of the memory subsystem that contains the program

that is executed by the microcomputer. On the other hand, the data that are processed

during execution of the program are held in the data storage part of memory.

Section 1.6

11. 4-bit, 8-bit, 16-bit, and 32-bit.

Chapter 2

Section 2.2

1. High-density N-channel MOS (HMOS).

3 1 3

3 1 4 Answers to Selected Problems

3. 16 general-purpose registers, 8 data registers D0 through D7 and 8 address registers A0

through A 7, and all are 32 bits in length.

Section 2.3

5. 23 address lines A j through A 23, 223 unique addresses.

7. For an asynchronous bus, once the bus cycle is initiated, it is not completed until external

circuitry returns a signal to the processor.

9. The address lines A , through A ,j present a word address and the upper and lower bytes

of that word are accessed using the UDS and LDS signals.

11. FC2FC,FC, = 110.

13. The code value applied at the interrupt priority inputs is compared to the internal mask.

If its value is more than that in the mask, the interrupt is serviced; otherwise, it is ignored.

15. To provide interface signals so that low-speed 6800 synchronous peripheral devices can

be used with the high-speed 68000 CPU.

Section 2.5

17. In general, the address registers are meant for use in storing memory addresses such as

pointers, while the data registers are to be used to store data that are to be processed by

the CPU. However, their functions can be interchanged according to the need.

19. The program counter provides the address of the next instruction to be executed.

Section 2.6

21. Macroinstructions are the basic assembly language instructions defined by the instruction

set of the 68000. Microinstructions are the internal machine instructions which are executed

by the CPU in order to perform the function defined by a macroinstruction.

Chapter 3

Section 3.2

1. No, all words of data must be at even-address boundaries.

3. Bit, byte, word, long word, and BCD.

Section 3.4

7. Instruction Source Addressing Destination Addressing

(c) MOVE.B D3.SABCD

(d) MOVE.L XYZ.D2

(e) M OVE.W XYZ(A0.L),D2

(a) M OVE.W D3,D2

(b) MOVE.B D3,A2

Mode

Data register direct

Data register direct

Data register direct

Immediate/absolute

Register indirect

Mode

Data register direct

Address register direct

Absolute short

Data register direct

Data register direct

(f) MOVE.B D3,(A2)

(g) M OVE.L A 1,(A2) +

with offset

Data register direct

Address register

Register indirect

Postincrement register

(h) MOVE.L - (A2),D3

direct

Predecrement register

indirect

Data register direct

indirect

A n sw e rs to Selected Prob lem s 315

(i) MOVE.W 10(A2),D3 Register indirect with Data register direct

offset

(j) MOVE.B 10(A2,A3.L),SA123 Indexed register

indirect with offset

(k) M OVE.W #$ABCD,$1122 Immediate

9. SABCD = $10 + A1 = $100 + A2 + D1 = A3.

Section 3.6

11. MOVEM $BOOO,D5/D6/D7

Section 3. 7

Absolute short

Absolute short

13. MOVE.L 0$COOO,A1

MOVE.L $A000,D0

ADD.L $B000,D0

MOVE.L D0,(A1)

MOVE.L $A000,D0

SUB.L $BOOO,DO

MOVE.L D0,4(A1)

MOVE.L SA000.D0

MULU $BOOO,DO

MOVE.L D0,8(A1)

M OVE.L $AOOO,DO

DIVU $B000.D0

M OVE.W D0,12(A1)

Section 3.9

15. MOVE.B D0.D7

AND.B NUM1.D7

MOVE.B NUM2.D6

NOT.B D6

AND.B D0.D6

O R B D1,D6

OR.B D6.D7

MOVE.B D7,RESULT

Section 3.10

17. MOVE.B D0,$B00l

ROR.L #8, DO

M OVE.W D0,$B002

ROR.L #8, DO

ROR.L #8, DO

MOVE.B D0,$B004

R O R .L #8, DO

¡QUOTIENT

31 24 23 16 IS 8 7

$B00l

$B002

JB003

»B004

Section 4.2

31 6

Chapter 4

Instruction N z V c

Initial value 0 0 0 0

SUB.L AO,AO 0 1 0 0

CM P I.W #$AOOO,AO 0 0 0 1

TST AO 0 1 0 0

A n sw e rs to S elected P rob lem s

Section 4.3

3. The JM P instruction encodes the address of the location to which the jump is to take

place into the instruction. On the other hand, the BRA instruction encodes the displacement,

the number o f bytes, of the “ branch to address” from the BRA instruction, into the

instruction word. Therefore, BRA both encodes in fewer bytes and executes faster than

JMP.

Section 4.4

5.

LOOP

DONE

M OVEQ

CLR .W

CM P.B

BEQ

A D D Q .W

MULU

BRA

M OVE.L

01 ,D7

D6

N,D6

DONE

#1 ,D6

D6,D7

LOOP

D7,FACT

A n s w e rs to S e lec te d P rob le m s

M O VE .B *100, D7

M O V E .L $A000,A6

M O V E .L SB000.A5

M O VE.L $C000,A4

LOO P C M P I.W #0,(A6)

BMI NEGTV

POSTV M O V E .W (A6) + ,(A5) +

BRA NXT

NEGTV M O V E .W (A6) + ,(A4) +

NXT SUBI *1,D7

BNE LOO P

DONE BRA DONE

31 8 A n sw e rs to Selected P rob lem s

Section 4.6

11. A G A IN

SUBA

SUBB

SUBC

BTST.B

BNE

BTST.B

BNE

BTST.B

BNE

BRA

EORI.B

RTS

00, DO

SUBA

01,DO

SUBB

02, DO

SUBC

AG A IN

01,DO

EO R I.B 02,DO

EORI.B

RTS

04,DO

Chapter 5

Section 5.2

1. Software and hardware development and debugging for a project involving one of the

microprocessors that the development system supports.

3. Four ports: one each for the cassette player/recorder, printer, CRT terminal, and a host

computer communications link.

Section 5.3

5. A monitor program provides the programmer with the ability to enter (assemble), store,

execute, and debug assembly language programs. It is stored in PROMs on the MC68000

educational microcomputer board.

7. 32K bytes

Section 5.4

9. Command field.

11. (a) 100|6 + R0 = 1100|6

(b) 10016 + R3 = 2100lf)

(c) AO + R0 = 1100,6

(d) AO + DO + R0 = 1300|6

A n sw e rs to S e lec ted P rob lem s 319

Section 5.5

13. (a) R5 = 100016 + RO = 2000|6

(b) R5 = 100016 + 0 = 1000|6

Section 5.6

15. TUTOR 1.3 > BF 1000 10FE ‘A B C D ’ (cr)

TUTOR 1.3 > BF 2000 20FE 5555 (cr)

TUTOR 1.3 > M D 1000 FE (cr)

TUTOR 1.3 > M D 2000 FE (cr)

TUTOR 1.3 > BM 1000 100F 3000 (cr)

Section 5.7

17. TUTOR 1.3 > TM (cr)

Section 5.8

19. TUTOR 1.3 > MM 1000;DI

001000 DC .W SABCD (cr)

001002 DC .W $1234 . (cr)

Section 5.9

21. To execute a single instruction in a program the command is TR (T); to execute the entire

program the command is GD; and to execute a block of instructions in a program the

commands are TT, GO , or GT.

23. TUTOR 1.3 > BR 1150 10 (cr)

Section 5.11

27. TUTOR supports debugging of programs by providing commands that give the programmer

the ability to display/modify registers, display/modify memory locations, control program

execution (trace, breakpoint, etc.), and assemble/disassemble instructions.

Chapter 6

Section 6.2

1. No, both memor> and I/O are located in the same address space.

Section 6.3

3. See Problem 17, Section 3.10.

Section 6.5

5. FC2FC,FC0 = 001.

7.

32 0 Answers to Selected Problems

User data memory

Section 6.7

9. (a) 68000 outputs FC,FC|FC0 = 001 in user mode or 101 in supervisor mode.

(b) 68000 places address SA001 on A23 through A ,.

(c) 68000 asserts AS (logic 0).

(d) 68000 sets R /W to logic 0.

(e) 68000 places the byte o f data on D7 through D0.

(f) 68000 asserts LDS (logic 0).

(g) Memory interface decodes the address and enables memory devices.

(h) Memory stores data available at D7 through D0 in SA001 using LDS.

(i) Memory interface asserts DTACK (logic 0).

(j) 68000 negates LDS and AS (logic 1).

(k) 68000 removes data from D7 through D0.

(1) 68000 returns R /W to logic 1.

(m) Memory interface negates DTACK (logic 1).

A n sw e rs to S e lec ted Problem s 321

Section 6.8

11. MOVE.L (SSP) + ,A2

MOVE.L (SSP) + ,A1

MOVE.L (SSP) + ,A0

Section 6.10

13. MOVE.L 0S16OOO.AO

M OVEP.L D0,0(A0)

Section 6.12

17. MOVE.L #$AOOO,A1

M OVE.L #$18007,A2

M OVE.L #5, DO

NXT MOVE.B (A 1), D 1

MOVE.B D1,(A2)

SUBQ.L 01,DO

BNZ NXT

DONE B DONE

Section 6.13

19. In a synchronous bus cycle, the data transfers are synchronized with the enable (E) clock

signal. In an asynchronous bus cycle, the microprocessor waits for the DTACK to be

returned by the peripheral device to terminate the write bus cycle or to read data off the

bus and then terminate the read bus cycle.

Section 6.15

23. These inputs represent the control state identified as RS ■ R /W in Fig. 6.29. From the

table, we find that character data is being read from the 6850 over the bus.

25. (a) The MPU outputs the address of the 6850 on the address bus. This address is decoded

in external circuitry to select the 6850 for operation.

(b) At the same time, the MPU puts a byte of character data on the data bus and signals

the 6850 that a write bus cycle is in progress with R /W .

(c) The 6850 accepts the data off the bus.

(d) The 6850 frames the byte of character data with a start bit, parity bit, and stop bits

and then loads it into the transmit data register.

(e) The framed character is converted to serial form by shifting it through the transmit

shift register and output over the Txd a ta line.

(f) When the transmit data register becomes empty, the 6850 sets the transmit data register

empty (TDRE) flag in the status register.

(g) If the interrupt on TDRE function is enabled, the IRQ output becomes active. This

signal can be applied to an interrupt input of the 68000 to tell it that the character

has been transmitted.

(h) The MPU must next output another character to the 6850.

32 2 A n sw e rs to S e lected Problem s

27. MOVE.B

MOVE.L

MOVE.B

03, DO

0$OABCD,AO

DO,(AO)

Section 6.16

29. r s 5r s 4r s , r s 2r s , = 8|6 = 01000,

Looking at the table in Fig. 6.35, we see that register Rg (PADR) is selected.

31.

33.

MOVE.L

MOVE.B

MOVE.B

MOVE.L

MOVE.B

MOVE.B

MOVE.B

Chapter 7

0ÎOAOO1 ,A1

m o ,(A i)

0$6O,(A1)

0$OAOO1,A1

0O,(A1)
0$FF,2(A1)

0O,4(A1)

Section 7.2

1. External exceptions:

Internal exceptions:

Section 7.3

3.

reset, interrupts, and bus error.

instructions (TRAP, TRAPV, CHK, D1VS, DIVU), privilege

violation, trace, illegal address, illegal instruction, and

unimplemented instruction.

Vector Address Contents

$10 $0

$12 $B000

Section 7.5

5. 7

7. OR I 0SO3OO.SR

Section 7.10

11
Save registers

D0, D ,, and A ,

Service

routine body

Restore registers

D0, D p and A ,

Return to calling

program

A n sw e rs to S e lec ted Problem s 3 2 3

Section 7.11

13. “ Bus error” means that an error has occurred during the execution of a bus cycle. For

instance, external circuitry has detected a parity error or a watchdog timer has timed out

before DTACK was asserted.

Section 7.12

CLR.L DO

CLR.L D1
• •

• •

• •

CLR.L D7

CLR.L A0

CLR.L A1
• •

• •

• •

CLR.L A6

MOVE.L SFFFFFE.SSP

BRA SA000

Section 7.13

17. An attempt is made to access a word or long word that resides at an odd-numbered address.

Chapter 8

Section 8.2

1. 16K bytes; stores the Tutor monitor.

3. Program storage memory is nonvolatile; therefore, its contents remain intact even when

power is turned off. Data storage memory is volatile and if power is turned off its contents

are lost.

5. Parallel I /O — 24 I/O lines that are used to implement the parallel printer (Centronics)

and cassette player/recorder interfaces.

RS-232C serial communication ports— 2: one for connection of a CRT terminal and the

second for implementing a communication link to a host computer.

7. Parallel I/O interfaces for the printer and cassette player/recorder.

Section 8.3

9. 6850 ACIA .

Section 8.4

11. 68000 microprocessor and 68230 parallel interface/timer.

13. POR is used to reset on-board logic circuits such as flip-flops.

3 2 4 A n sw e rs to S e lected Problem s

15. When the microcomputer is reset by pressing the reset button, it is called a warm reset.

In this case, only the 68000 and 68230 devices receive pulses at their reset inputs.

Furthermore, the HALT and POR signals are not produced as they are when power is

turned on.

17. FC2FC|FC0 =111 , A 3A 2A , = 100, V PA IRQ = 0, P1ACK = 1, TIACK = 1, and

VPA = 0. In this case, the 68000 uses its autovector capability to generate an interrupt

vector from the code IPL2 IPL, 1PL0. As shown in Fig. 8.5, the autovector number is 28.

21. RAS, RAW , CL, CU, and DTACK RAM.

23. If the data transfer acknowledge (DTACK) signal is not received by the 68000 during a

read or write bus cycle prior to the watchdog timer timing out, the watchdog timer circuit

outputs the BERR signal. BERR is returned to the 68000 to tell it that a bus error condition

has occurred.

Section 8.6

25. DATA STROBE is an output by which the P l/T tells the printer that valid character data

is available on data lines PD0 through PD7; ACKNOW LEDGE is an input by which the

printer tells the P l/T that it has read the character data from the data lines.

27. Maximum baud rate = 9,600, minimum baud rate = 110.

APPENDIX:
68230 D a t a Shee t*

•Data Sheets Courtesy of Motorola, Inc.

(M) MOTOROLA

SEMICONDUCTORS
3501 ED BLUESTEIN BLVD . AUSTIN. TEXAS 78721

Advance Information

MC68230 PARALLEL INTERFACE/TIMER

The MC68230 Parallel Interface/Timer provides versatile double buf
fered parallel interfaces and an operating system oriented timer to
MC68000 systems The parallel interfaces operate in unidirectional or
bidirectional modes, either 8 or 16 bus wide In the unidirectional
modes, an associated data direction register determines whether the
port pins are inputs or outputs In the bidirectional modes the data
direction registers are ignored and the direction is determined
dynamically by the state of four handshake pins These programmable
handshake pins provide an interface flexible enough for connection to a
wide variety of low. medium, or high speed peripherals or other com
puter systems The PI/T ports allow use of vectored or autovectored in
terrupts, and also provide a DMA Request pin for connection to the
MC68450 Direct Memory Access Controller or a similar circuit The PI T
timer contains a 24 bit wide counter and a 5-bit prescaler The timer
may be clocked by the system clock (PI/T CLK pin! or by an external
clock (TIN pin!, and a 5-bit prescaler can be used It can generate
periodic interrupts, a square wave, or a single interrupt after a pro
grammed time period Also it can be used for elapsed time measure
ment or as a device watchdog

• MC68000 Bus Compatible
• Port Modes Include

Bit I/O
Umdirecionai 8-Bit and 16-Bit
Bidirectional 8- Bn and 16-Bit

• Selectable Handshaking Options
• 24-Bit Programmable Timer
• Software Programmable Timer Modes
• Contains Interrupt Vector Generation Logic
• Separate Port and Timer Interrupt Service Requests
• Registers are Read Write and Directly Addressable
• Registers are Addressed for MOVEP (Move Peripherall and DM AC

Compatibility

MC68230L8
MC68230L10

HMOS
(HIGH-DENSITY N-CHANNEL

SILICON-GATE)

P A R A L L E L IN T E R F A C E /T IM E R

u M lI I 11 ■
i L SUFFIX

CERAMIC PACKAGE
P SUFFIX CASE 740

PLASTIC PACKAGE
AVAILABLE 2082

PIN ASSIGNMENT

05 [1 48 JD4

D6[2 47 JD3

07 [3 46)D2

PAO C 4 45 JD1

PA1 [5 44 J DO

PA2 [6 43]R 'W

PA3 [7 42 JDTACK
PA4 [8 41 ICS

PA5 C 9 40]CLK

PA6 C 10 39] RESET

PA7 [11 38] VSS

vcc C 12 37]PC7 TiACK

HI C 13 36 J PC6 PlACK

H2C 14 35 J PC5' PÎRQ

H3C 15 34] PC4 DMAREQ

H4C 16 33 JPC3/T0UT

PB0[17 32 J PC2 TIN

PB1 [18 31] PCI

PB2 C 19 30 J PCO

PB3[20 29 J RSI
P84(21 28] RS2

PB5[22 27 JRS3

PB6 C 23 26)RS4

PB7 C 24 25 JRS5

326
©MOTOROLA INC 1981 ADi-860

M C68230L8# M C68230L10

FIGURE 1 - P l/T SYSTEM BLOCK DIAGRAMc
s i

00-015 A1-A23B W
FC2-0

LDS

MC68000

IPL2
ip [l
ÎPLÔ

DTACK

if
Address and

iACk Decode

LS348
+ 5 V

311
R W RS1-RS5Û0-D7

CS
PAO-7

PC6 PIACK -•-•►PBO 7
H1

PC7 TlACK 4 H

MC68230 — H 3

PC5.PÎRQ PC4
PC3/T O U T

Pl/T
— DMAREQ

PU,; TiN
-m » Pr 1

PCO
DTACK
RTsT * ■ -

TTTl
POWER CONSIDERATIONS

The average chip-junction temperature, T j, in °C can be obtained from

Tj = Ta + (Pd *#j a > l1)
Where

Ta * Ambient Temperature. °C
0 jA *P ackage Thermal Resistance. Juncnon-to-Ambient. °C/W

P D " PINT+ PPORT
P |N T " 'C C X VCC- Watts - Chip Internal Power
PPORT*Port Power Dissipation. Watts — User Determined

For most applications PpORT<P|NT and can be neglected PpoRT rnay become significant if the device >s configured to
drive Darlington bases or sink LED loads

An approximate relationship between Pq and T j (if PpORT 'S neglected) is
PD = K - t T j + 273°C) <2)

Solving equations 1 and 2 for K gives

K = PD«iTA^273°D +0ja«Pd2 (3)
Where K is a constant pertaining to the particular part K can be determined from equation 3 by measuring Pq (at equilibrium!

for a known T a Using this value of K the values of Pq and T j can be obtained by solving equations < 1 > and (2) iteratively for any
value of Ta

M O T O R O L A Semiconductor Products Inc.

327

MAXIMUM RATINGS
Characteristics Symbol Value Unit

Supply Voltage VCC - 0 3 to + 7.0 V

Input Voltage Vin -0 .3 to + 7 0 V

Operating Temperature Range t a 0 to 70 °C

Storage Temperature Tstg -5 5 to +150 °C

THERMAL CHARACTERISTICS
Characteristics Symbol Value Rating

Thermal Resistance
Ceramic 0JA 50 °C/W

This device contains circuitry to protect the
inputs against damage due to high static
voltages or electric fields, however, it is ad
vised that normal precuations be taken to
avoid application of any voltage higher than
maximum-rated voltages to this high-
impedance circuit Reliability of operation is
enhanced if unused inputs are tied to an ap
propriate logic voltage level (e g . either V$s
or Vcc)

DC ELECTRICAL CHARACTERISTICS <VCC - 5 0 Vdc ± 5%. Ta = 0 to 70°C unless otherw.se noted!
Characteristics Symbol Min Max Unit

input High Voltage All Inputs V|H VSS + 20 vcc V
Input Low Voltage All Inputs VlL VSS-0.3 Vss + 08 V
Input Leakage Current (V,n = 0 to 5 25 V) H1, H3. P/W. RESET, CLK. RS1-RS5, CS •in 10 0 „A

Three-State (Off State) Input Current IV,n = 0 4 to 2 41 DTACK. PC0-PC7. 00-D7
H2. H4, PA0-PA7, PB0-PB7 •tsi -0 .1

20
-1 0

1
1

Output High Voltage
(lLoad= -400*1 A, Vcc = mini
nLoad= " 150 |»A. Vcc = mm>
(lLoad= ” I00#*A. VCC = nrn»

DTACK. D0-D7
H2. H4. PB0-PB7. PA0-PA7

PC0-PC7
VOH Vss + 2 4 - V

Output Low Voltage ____
llLo3i} = 8 8rnA V r r = mm) PC3/TOUT. PC5/PIRQ
(lLoad = 5 3mA. Vcc = min) D0-D7. DTACK
I'Load = 2 4 mA. VCC = mini PA0-PA7, PB0-PB7. H2. H4. PC0-PC2. PC4. PC6. PC7

VOL - 05 V

Internal Power Dissipation (Measured at Ta = 0°C) Pint 500 mW

Input Capacitance (Vtn = 0, Ta = 25°C. f= 1 MHz» Cm 15 pF

CLOCK TIMING (See Figure 2)

Characteristic Symbol
8 MHz

MC68230L8
10 MHz

MC68230L10 Unit
Min Max Min Max

Frequency of Operation f 20 80 20 100 MHz

Cycle Time !cvc 125 500 100 500 ns
55 250 45 250

Clock Pulse Width
»CH 55 250 45 250 ns

Clock Rise and Fall Times <Cr
»Cf -

10
10 - o

o ns

FIGURE 2 - INPUT CLOCK WAVEFORM

2 0 V
08 V i

«cTH
/ ------------------------- X

-- ------------------- «C y c -----------------------

t— H

1- 4 R T — ^f 1

M O T O R O L A Sem iconductor Products Inc.

M C68230L8# M C68230L10

AC ELECTRICAL CHARACTERISTICS (VCc = 5 0 Vdc ± 5 % . V s - 0 Vdc T a ~ 0°C to 70°C)

Number Characteristic
8 MHz

MC68230L8
10 MHi

MC68230L10 Unit
Min Max Min Max

1 R/W, RS1-RS5 Valid to CS Low (Setup Time) 0 0 ns

2(101 CS Low to R/W and RS1-RS5 Invalid (Hold Time) 100 65 ns

3(11 CS Low to CLK Low (Setup Time) 30 20 ns

4(21 C5 Low to data Out Valid (Delay) 75 60 ns

5 RSI RS5 Valid to Data Out Valid (Delay) 140 100 ns

6 CLK Low to DTACK Low iRead/Write Cycle) (Delay) 0 70 0 60 ns

7(3) DTACK Low to CS High (Hold Time) 0 0 ns

8 CS or PIACK or TIACK High to Data Out Invalid (Hold Time) 0 0 ns

9 CS or PIACK or TIACK High to D0-D7 High Impedance (Delay) 50 45 ns

10 CS or PIACK or TIACK Hiqh to DTACK High (Delay) 50 - • 30 ns

11 CS or PIACK or TIACK High to DTACK High Impedance (Delay) 100 55 ns

12 Data Invalid to CS Low (Setup Time) 0 0 ns

13 CS Low to Data In INvalid (Hold Time) 100 65 ns

14 Input Data Valid to HHH3) Asserted (Setup Time) 100 — 60 ns

15 HHH3) Asserted to Input Data Invalid (Hold Time) 20 — 20 ns

16 Handshake Input HKH4) Pulse Width Asserted 40 40 ns

17 Handshake Input (H1-H4I Pulse Width Negated 40 40 ns

18 HKH3) Asserted to H2(H4> Negated (Delay) - 150 120 ns

19 CLK Low to H2IH4) Asserted (Dela^) 100 100 ns

20(4) H2IH4) Asserted to HKH3) Asserted 0 0 ns

21(5) CLK Low to H2(H4) Pulse Negated (Delay) 125 125 ns

22(9, 111 Synchronized HHH3) to CLK Low on which DMAREQ is Asserted
(See Figures 13 and 14)

25 3 5 2 5 35 CLK Per

23 CLK Low DMAREQ is Asserted to CLK Low on which DMAREQ is Negated 3 3 3 3 CLK Per

24 CLK Low to Output Data Valid (Delayl (Modes 0. 1) - 150 120 ns

25(9. 11) Synchronized HKH3) to Output Data Invalid (Modes 0. 1) 1 5 2.5 15 2 5 CLK Per

26 HI Negated to Output Data Valid (Modes 2. 3) 70 50 ns

27 H1 Asserted to Output Data High Impedance (Modes 2. 3) 0 70 0 70 ns

28 Read Data Valid to DTACK Low 1 Setup Time) 0 0 ns

29 CLK Low to Data Output Valid (Interrupt Acknowledge Cycle) 120 100 ns

30(7) HHH3) Assertea to CLK High (Setup Time) 50 40 ns

31 PIACK or TIACK Low to CLK Low (Setup Time) 50 40 ns

32(11) Synchronized CS to CLK Low on which DMAREQ is Asserted
(See Fiqures 13 and 14)

3 3 3 3 CLK Per

33(9. 11) Synchronized HKH3) to CLK Low on which H2IH4) is Asserted 35 4 5 35 4 5 CLK Per

34 CLK Low to DTACK Low (Interrupt Acknowledge Cycle (Delay) 75 60 ns

35 CLK Low to DMAREQ Low (Delay) 0 120 0 100 ns

36 CLK Low to DMAREQ High (Delay) 0 120 0 100 ns

CLK Low to PIRQ Low or Hiqh Impedance 200 150 ns

-(8) TIN Frequency (External Clock) - Prescaler Used 0 1 0 1 Fclk(Hz)(6)

_ TIN Frequency (External Clock) Prescaler Not used 0 1/32 0 1/32 Fclk(Hz)(6l
_ TIN Pulse Width Hiqh or Low (External Clock) 55 45 ns
_ TIN Pulse Width Low (Run/Halt Control) 1 1 CLK
_ CLK Low to TOUT Hiqh. Low. or Hiqh Impedance 0 200 0 150 ns

CS. PIACK. or TIACK Hiqh to CS. PIACK. or TIACK Low 50 30 ns

NOTES _
1 This specification only applies if the PI / T had completed all operations initiated by the previous bus cycle when CS was asserted Follow

mg a normal read or write bus cycle, all operations are complete within three CLKs after the failing edge of the CLK pin on which DT ACK
was asserted If CS is asserted prior to completion of these operations, the new bus cycle, and hence. DTACK is postponed

If all operations of the previous bus cycle were complete when CS was asserted, this specification is made only to insure that DT ACK is as
serted with respect to the falling edge of the CLK pm as shown in the timing diagram, not to guarantee operation of the part If the C§
setup time is violated. DTACK may be asserted as shown, or may be asserted one clock cycle later

2 Assuming the RSI RS5 to Data Valid time has also expired

M O T O R O L A S em iconducto r Products Inc.
329

M C68230L8» M C68230 L10

3 This specification imposes a lower bound on CS low time, guaranteeing that CS will be low for at least 1 CLK period

4 This specification assures recognition of the asserted edge of H1IH3)

5 This specification applies only when a pulsed handshake option is chosen and the pulse is not shortened due to an early asserted edge of
HHH3)

6 CLK refers to the actual frequency of the CLK pin. not the maximum allowable CLK frequency

7 If the setup time on the rising edge of the clock is violated. H11H3) may not be recognized until the next rising of the clock

8 This limit applies to the frequency of the signal at TIN compared to the frequency of the CLK signal during each clock cycle If any period of
the waveform at TIN is smaller than the period of the CLK signal at that instant, then it is likely that the timer circuit will completely ignore
one cycle of the TIN signal

If these two signals are derived from different sources they will have different instantaneous frequency variations In this case the frequency
applied to the TIN pm must be distinctly less than the frequency at the CLK pin to avoid lost cycles of the TIN signal With signals derived
from different crystal oscillators applied to the TIN and CLK pins with fast rise and fall times, the TIN frequency can approach 80 to 90% of
the frequency of the CLK signal without a loss of a cycle of the TIN signal

If these two signals are derived from the same frequency source then the frequency of the signal applied to TIN can be 100% of the fre
quency at the CLK pin They may be generated by different buffers from the same signal or one may be an inverted version of the other
The TIN signal may be generated by an AND' function of the clock and a control signal

9 The maximum value is caused by a peripheral access (HHH3) assertedl and bus access asserted) occurring at the same time

10 See BUS INTERFACE CONNECTION section for exception

11 Synchronized means that the input signal has been seen by the Pi T on the appropriate edge of the clock I rising edge for H}(H3I and falling
edge to rTS i iRefer to the BUS INTERFACE CONNECTION section for the exception concerning cS >

FIGURE 3 - BUS READ CYCLE TIMING

NOTE Timing measurements are referenced to and from a low voltage of 0 8 volts and a high voltage of 2.0 volts, unless otherwise noted

330

M O T O R O L A S em iconducto r Products Inc.

M C68230L8* M C68230L10

FIGURE 4 BUS WRITE CYCLE TIMING

Xa XXSTS

XXXXXX3

GSXXSXSX5SXXXX

wwwwwwmm

0 - * 1

xxxxx

J -

FIGURE 5 - INTERRUPT ACKNOWLEDGE
FUNCTIONAL TIMING DIAGRAM

Note Timing measurements are referenced to and from a low voltage oJ 0 8 volts and a high voltage o* 2 0 volts, unless otherw«se noted

M O T O R O L A Semiconductor Products Inc.
331

FIGURE 6 - PERIPHERAL INTERFACE INPUT TIMING

FIGURE 7 - PERIPHERAL INTERFACE OUTPUT TIMING

3 3 2

M O T O R O L A Semiconductor Products Inc.

M C68230L8« M C68230L10

GENERAL DESCRIPTION

The Pl/T consists of two logically independent sections
the ports and the timer The port section consists of Pon A
(PAO-7). Port B (PB0-7), four handshake pins (H I. H2. H3.
and H4), two general I/O pins, and six dual-function pins
The dual-function pins can individually operate as a third
port (Port C) or an alternate function related to either Ports A
and B, or the timer The four programmable handshake pins,
depending on the mode, can control data transfer to and
from the ports, or can be used as interrupt generating inputs,
or I/O pins

The timer consists of a 24-bit counter, optionally clocked
by a 5-bit prescaler Three pins provide complete timer I/O
PC2/TIN. PC3/T0UT, and PC7/TIACK Of course, only the
ones needed for the given configuration perform the timer
function, while the others remain Port C I/O

The system bus interface provides for asynchronous
transfer of data from the P l/T to a bus master over the data
bus ID0-D7) Data transfer acknowledge (DTACK). register
selects IRS1-RS5). chip select, the read /w rite line (R/W).
and Port Interrup Acknowledge (PIACK) or Timer Interrupt
Acknowledge (TIACK) control data transfer between the
P l/T and the MC68000

FIGURE 8 MC68230 BLOCK DIAGRAM
38

VSS
39 40

RESET CLK
41 42 43 44
CS DTACK R/W DO

45
D1

46
D2

47
D3

48
D4

1 2 3
D5 D6 D7

I I I t t) I I I H t I I
Daia Bus Interface and

Interrupt Vector Registers

PBO 17
PB1 18
PB2 19
PB3 20
PB4 21
PB5 22
PB6 23
PB7 24

1
PC7/

1
PC6/

t
PC5/

TiACk PIACK
37 36 35

PC4/ PC3/TOUT PC2/TIN PCI PCO
DMAREQ 33 32 31 30

34

♦
RSI
29

♦
RS2
28

♦
RS3
27

♦ ♦
RS4 RS5
26 25

M O T O R O L A Semiconductor Products Inc.
333

M C68230L8# M C68230L10

P l/T PIN DESCRIPTION

Throughout the data sheet, signals are presented using
the terms active and inactive or asserted and negated in
dependent of whether the signal is active in the high-voltage
state or low-voltage state. (The active state of each logic pin
is given below) Active low signals are denoted by a
superscript bar R /W indicates a write is active low and a
read active high

FIGURE 9 - LOGICAL PIN ASSIGNMENT

00- D7-

RS1-RS5

R/W

CS

DTACK-

RESET

CLK

vcc
GND

— ■
— -m m

Pl/T —

——

m B -

PAO-7
PBO-7

HI
-H2
■H3
-H4

-PC7/TIACK*
»PC6/P1ACK-
-PC5/PIRQ*
■PC4, DMAREQ*
-PC3/T0UT*
-PC2/TIN*
-PCI
-PCO

‘ Individually Programmable Dual-Function Pin

D0-D7 - Bidirectional Data Bus. The data bus pins D0-D7
form an 8-bit bidirectional data bus to /from the MC68000 or
other bus master These pins are active high

RS1-RS5 - Register Selects RS1-RS5 are active high
high-impedance inputs that determine which of the 25 possi
bie registers is being addressed They are provided by the
MC68000 or other bus master

R /W - Read/Write Input - R /W is the high-impedance
Read/Write signal from the MC68000 or bus master, in
dicating whether the current bus cycle is a read (high) or
write (low) cycle.

CS - Chip Select Input CS is a high-impedance input
that selects the PI/T registers for the current bus cycle Ad
dress strobe and the data strobe (upper or lower) of the bus
master, along with the appropriate address bits, must be in
cluded in the chip select equation. A low level corresponds
to an asserted chip select

DTACK - Data Transfer Acknowledge Output DTACK is
an active low output that signals the completion of the bus
cycle During read or interrupt acknowledge cycles, DTACK
is asserted by the MC68230 after data has been provided on
the data bus, during write cycles it is asserted after data has
been accepted at the data bus Data transfer acknowledge is
compatible with the MC68000 and w ith other Motorola bus
masters such as the MC68450 DMA controller A holding
resistor is required to maintain DTACK high between bus
cycles

RESET - Reset Input RESET is a high-impedance input
used to initialize all P l/T functions All control and data
direction registers are cleared and most internal operations
are disabled by the assertion of RESET (low)

CLK - Clock Input. The clock pin is a high-impedance TTL-
compatible signal with the same specifications as the
MC68000 The Pl/T contains dynamic logic throughout, and
hence this clock must not be gated off at any time. It is not
necessary that this clock maintain any particular phase rela
tionship with the MC68000 clock It may be connected to an
independent frequency source (faster or slower) as long as
all bus specifications are met

PA0-PA7 and PB0-PB7 - Port A and Port B Ports A and
B are 8-bit ports that may be concatenated to form a 16-bit
port in certain modes. The ports may be controlled in con
junction with the handshake pins H1-H4 For stabilization
during system power up. Ports A and B have internal pullup
resistors to Vq c All port pins are active high

H1-H4 - Handshake pins (I/O depending on the Mode
and Submode) Handshake pins H1-H4 are multi-purpose
pins that (depending on the operational mode) may provide
an interlocked handshake, a pulsed handshake, an interrupt
input (independent of data transfers), or simple I/O pins. For
stabilization during system power-up. H2 and H4 have inter
nal pullup resistors to Vqc Their sense (active high or low)
may be programmed in the Port General Control Register
bits 3-0 Independent of the mode, the instantaneous level of
the handshake pins can be read from the Port Status
Register

Port C - IPC0-PC7/Alternate function) This port can be
used as eight general purpose I/O pins (PC0-PC7) or any
combination of six special function pins and two general pur
pose I/O pins (PC0-PC1) (Each dual function pm can be
standard I/O or a special function independent of the other
port C pins) The dual function pins are defined in the follow
ing paragraphs When used as a port C pm. these pins are
active high They may be individually programmed as inputs
or outputs by the Port C Data Direction Register

The alternate functions (TIN. TOUT, and TIACK) are timer
I/O pins TIN may be used as a nsing-edge triggered external
clock input or an external run/halt control pin (the timer is in
the run state if run/halt is high and m the halt state if
run/ halt is low) TOUT may provide an active low timer inter
rupt request output or a general-purpose square-wave out
put. initially high TIACK is an active low high-impedance in
put used for timer interrupt acknowledge

Port A and B functions have an independent pair of active
low interrupt request (PIRQ) and interrupt acknowledge
(PIACK) pins

The DMAREQ (Direct Memory Access Request) pin pro
vides an active low Direct Memory Access Controller
(DMAC) request pulse of 3 clock cycles, completely com
patible with the MC68450 DMAC.

REGISTER MODEL
A register model that includes the corresponding Register

Selects is shown in Table 1

334

M O T O R O L A Semiconductor Products Inc.

M C68230L8# M C68230L10

Register
Select Bits

TABLE 1 - REGISTER MODEL

5 4 3 2 1 7 6 5 4 3 2 1 0

0 0 0 0 0 Port Mode H34 H12 H4 H3 H2 H1 Port General
Control Enable Enable Sense Sense Sense Sense Conlrol Reg.ster

0 0 0 0 1 • SVCRQ
Select

Interrupt
PFS

Port Interrupt
Priority Conlrol

Port Service
Request Regisier

0 0 0 1 0 Bn Bit
6

Bn
5

Bit
4

B.t
3

Bn
2

Bn Bn
0

Port A Data
Direction Regisier

0 0 0 1 1 Bit Bit
6

Bit
5

Bit
4

B.t
3

Bn
2

Bn
1

Bn
0

Port B Data
Direction Regisier

0 0 1 0 0 Bit
7

B.t
6

B.t
5

Bit
4

B.t
3

Bn
2

Bn
1

B.t
0

Port C Data
Direction RegiSter

0 0 1 0 1 Interrupt Vector Number * ♦ Port Interrupt
Vecior Registei

H2 HI HI
n n 1 1 0 Port A H2 Control Ini SVCRQ Stat Port A Control

Submode Enable Enable Ctrl Register

0 0 1 1 1 Port B H4 Control
H4
Int

H3
SVCRQ

H3
Stat Port B Control Register

Submode Enable Enable Ctf

0 o o 0 Bit Bit B.t B.t B.t Bit Bn Bn Port A Data
7 6 5 4 3 2 1 0 Register

0 •1 0 0 1 B.t Bit
6

Bn
5

B.t
4

Bn
3

Bn
2

Bn
1

Bn
0

Port B Data
Register

0 1 0 1 0 Bit
7

Bit
6

B.t
5

B.t
4

Bn
3

Bn
2

Bit
1

Bn
0

Port A Alternate
Register

0 1 0 1 1 Bn
7

Bit
6

Bit
5

Bit
4

B.t
3

Bn
2

Bn Bn
0

Port B Alternate
Register
Port C Data
Register0 1 1 0 0 8it B.t

6
B.t
5

B»t
4

B.t
3

Bn
2

Bn
1

Bn
0

0 1 1 0 1 H4
Level

H3
I eve>

H2
Level

H1
Level H4S H3S H2S HIS Register

u 1 1 1 0 * • * » • • • • Inulll
0 1 1 1 1 • • • « • ♦ # # «nulD

o n 0 o TOUT T!ACK Z U * Clock Timer Timer Control
Control Ctrl Control mabie Register

1 0 0 0 1 Bit Bit
6

B.t
5

Bit
4

Bn
3

Bn
2

Bn
1

Bn Timer Interrupt
Vector Register

1 0 0 1 Ü • • • • • • • •

1 0 0 1 1
Sit
23

Bn
22

Bit
21

Bit
20

Bn
19

Bn
18

Bn
17

Bn
15

Counter Preioad
Register IHigh)

fMid)1 0 1 0 0
B.t
15

Bit
14

Bit
13

B.t
12

Bn
11

Bn
10

Bn
9

Bn
8

1 0 1 0 1
Bit Bn

6
Bit
5

Bit
4

Bn B.t
2

Bn
1

Bn
ILowl

1 0 1 1 0 • • • • • • ♦ • Inulll

1 0 1 1 1
B.t
23

Bit
22

Bn
21

Bit
20

Bn
19

Bn
18

Bn
17

Bn
16

Count Register
«Hignl

1 1 0 0 0
Bit
15

B.t
14

B.t
13

Bn
12

Bn
11

Bn
10

Bn
9

Bn
8 (Midi

1 1 0 0 1 Bn B.t
6

Bit
5

Bn
4

Bn Bn
2

Bn
1

Bn (Lowl

1 1 0 1 0 • • • * • • • ZDS Timer Status
Register

1 1 0 1 1 • • « * • • • • Inulll
1 1 1 0 0 • • ♦ # • • • • (null)
1 1 1 0 1 • • • • • • • • Inulll
1 1 1 1 0 • • * • • • • • Inulll
1 1 1 1 1 ♦ • • • • ♦ * • (null!

•Unused. read as zero

M O T O R O L A Semiconductor Products Inc.
335

M C6823L8* M C68230L10

PORT CONTROL STRUCTURE
The primary focus of most applications w ill be on Ports A

and B. the handshake pins, the port interrupt pins, and the
DMA request pm They are controlled in the following way
the Port General Control Register contains a 2-bit field that
specifies a set of four operation modes These govern the
overall operation of the ports and determine their interrela
tionships Some modes require additional information from
each port's control register to further define its operation In
each port control register, there is a 2-bit submode field that
serves this purpose Each port mode/submode combination
specifies a set of programmable characteristics that fully
define the behavior of that port and two of the handshake
pins. This structure is summarized in Table 2 and Figure 10

TABLE 2 - PORT MODE CONTROL SUMMARY

Mode 0 (Unidirectional 8-Bit Model
Port A

Submode 00 - Double-Buffered Input
HI - Latches input data
H2 - Status/interrupt generating input, general purpose

output, or operation with HI in the interlocked or
pulsed mput handshake protocols

Submode 01 — Double-Buffered Output
HI — Indicates data received by peripheral
H2 - Status/interrupt generating input, general-purpose

output, or operation with HI m the interlocked or
pulsed output handshake protocols

Submode IX — Bit I/O
HI - Status/interrupt generating input
H2 - Status/interrupt generating input or general-purpose

output
Port B. H3 and H4 - Identical to Port A. HI and H2

FIGURE 10 - PORT MODE LAYOUT

Mode 0 Submode 00 Mode 0 Submode 01 Mode 0 Submode l X

Mode i Poi» B Submode X0
!------- Hi
}— ► H2

Mode i Po*t B Submode xt

A and B
1161

Latcned. Double
Buttered Inpul

• ------H3
«—► «4

•HI
H2

A and B
116)

Double Bulleted
Output

• ------------h 3

m------- a»»M4

Mode 2 Mode 3

Mode 1 (Unidirectional 16 Bit Model
Port A - Double Buffered Data I Most significant)

Submode XX (not used)
HI - Status/interrupt generating input
H2 - Status/interrupt generating input or general-purpose

output
Port B - Double-Buffered Data (Least significant)

Submode X0 - Unidirectional 16-Bit Input
H3 - Latches input data
H4 - Status/interrupt generating input, general-purpose

output, or operation with H3 in the interlocked or
pulsed input handshake protocols

Submode XI - Unidirectional 16-Bit Output
H3 - indicates data received by peripheral
H4 - Status/interrupt generating input, general-purpose

output, or operation with H3 m the interlocked or
pulsed output handshake protocols

Mode 2 I Bidirectional 8-Bit Model
Port A - Bit I/O (with no handshaking pins)

Submode XX (not used)
Port B Bidirectional 8-Bit Data (Double-Buffered)

Submode XX (not used)
H1 - Indicates output data received by peripheral
H2 - Operation with HI in the interlocked or pulsed output

handshake protocols
H3 - Latches input data
H4 - Operation with H3 in the interlocked or pulsed input

handshake protocols

Mode 3 (Bidirectional 16-Bit Mode)
Port A Double-Buffered Data (Most significant)

Submode XX (not used)
Port B - Double-Buffered Dat3 (Least significant)

Submode XX (not usedl
H1 - Indicates output data received by peripheral
H2 - Operation with H1 m the interlocked or pulsed output

handshake protocols
H3 - Latches mput data
H4 - Operation with H3 in the interlocked or pulsed input

handshake protocols

3 36

M O T O R O L A S em iconducto r Products Inc.

M C68230L8* M C68230L10

PORT GENERAL INFORMATION AND CONVENTIONS
The following paragraphs introduce concepts that are

generally applicable to the Pl/T ports independent of the
chosen mode and submode For this reason, no particular
port or handshake pins are mentioned, the notation HI (H3)
indicates that, depending on the chosen mode and sub
mode. the statement given may be true for either the H I or
H3 handshake pm

Unidirectional vs Bidirectional Figure 10 shows the con
figuration of Ports A and B and each of the handshake pins
in each port mode and submode In Modes 0 and 1. a data
direction register is associated with each of the ports These
registers contain one bit for each port pin to determine
whether that pm is an input or an output Modes 0 and 1 are.
thus, called unidirectional modes because each pm assumes
a constant direction, changeable only by a reset condition or
a programming change These modes allow double-buffered
data transfers in one direction This direction, determined by
the mode and submode definition, is known as the primary
direction Data transfers in the primary direction are con
trolled by the handshake pins Data transfers not in the
primary direction are generally unrelated, and single or un
buffered data paths exist

In Modes 2 and 3 there is no concept of primary direction
as in Modes 0 and 1 Except for Port A m Mode 2 (Bit I/O),
the data direction registers have no effect These modes are
bidirectional, m that the direction of each transfer (always 8
or 16 bits, double-buffered) is determined dynamically by the
state of the handshake pins Thus, for example, data may be
transferred out of the ports, followed very shortly by a
transfer into the same port pins Transfers to and from the
ports are independent and may occur in any sequence Since
the instantaneous direction is always determined by the ex
ternal system, a small amount of arbitration logic may be re
quired

Control of Double-Buffered Data Paths Genera11 v
speaking, tne P l/T is a double-buffered device In the
primary direction, double-buffering allows orderly transfers
by using the handshake pins in any of several programmable
protocols (When Bit I/O is used, double-buffering is not
available and the handshake pins are used as outputs or
status/interrupt inputs)

Use of double-buffering is most beneficial in situations
where a peripheral device and the computer system are
capable of transferring data at roughly the same speed
Double-buffering allows the fetch operation of the data
transmitter to be overlapped with the store operation of the
data receiver Thus, throughput measured in bytes or words
per-second may be greatly enhanced if there is a large
mismatch in transfer capability between the computer and
the peripheral, little or no benefit is obtained in these cases
there is no penalty in using double-buffering

Double-Buffered Input Transfers - In all modes, the PI T
supports double-buffered input transfers Data that meets
the port setup and hold times is latched on the asserted edge

of HKH3I HKH3) is edge-sensitive, and may assume any
duty-cycle as long as both high and low minimum times are
observed The Pl/T contains a Port Status Register whose
H1S(H3S> status bit is set anytime any input data is present
in the double-buffered latches that has not been read by the
bus master The action of H2(H4) is programmable; it may
indicate whether there is room for more data m the Pl/T
latches or it may serve other purposes The following options
are available, depending on the mode

1 H2(H4) may be an edge-sensmve input that is in
dependent of HKH3) and the transfer of port data
On the asserted edge of H2(H4). the H2S(H4S)
status bit is set It is cleared by the direct method
(refer to Direct Method of Resetting Status), the
RESET pm being asserted, or when the H12 Enable
(H34 Enablel bit of the Port General Control Register
is 0.

2 H2(H4) may be a general purpose output pm that is
always negated The H2S(H4S) status bn is
always 0

3 H2IH4) may be a general purpose output pm that is
always asserted The H2SIH4S) status bit is always
0

4 H2(H4l may be an output pm in the interlocked input
handshake protocol It is asserted when the port in
put latches are ready to accept new data It is
negated asynchronously following the asserted edge
of the H1(H3) input As soon as the input latches
become ready. H2(H4) is agam asserted When the
input double-buffered latches are full. H2(H4) re
mains negated until data is removed Thus, anytime
the H2IH4I output is asserted, new input data may
be entered by asserting H11H3) At other times tran
sitions on HKH3) are ignored The H2S(H4S) status
bit is always 0 When H12 Enable (H34 Enable) is 0.
H2(H4) is held negated

5 H2(H4) may be an output pin in the pulsed input
handshake protocol It is asserted exactly as in the
interlocked input protocol, but never remains
asserted longer than 4 clock cycles Typically, a four
clock cycle pulse is generated But in the case that a
subsequent H1(H3) asserted edge occurs before ter
mmation of the pulse. H2(H4) is negated asyn
chronously Thus, anytime after the leading edge of
the H2IH4) pulse, new data may be entered in the
Pl/T double-buffered input latches The H2SIH4S)
status bit is always 0 When H12 Enable (H34 Enable)
isO. H2(H4) is held negated

A sample timing diagram is shown in Figure 11 The
H2(H4) interlocked and pulsed input handshake protocols
are shown The DMAREQ pin is also shown assuming it is
enabled All handshake pm sense bits are assumed to be 0
(refer to Port General Control Register), thus, the pins are in
the low state when asserted Due to the great similarity be
tween modes, this timing diagram is applicable to all double-
buffered input transfers

M O T O R O L A Semiconductor Products Inc.
337

FIGURE 11 - DOUBLE-BUFFERED INPUT TRANSFERS

Port Data

H1IH3)

Read Read

H2(H4) Interlocked

H2(H4I Pulse

M M H H l

DMAREQ

"A ____
A ______ f

/

Double-Buffered Output Transfers The Pl/T supports
double-buffered output transfers in all modes. Data, written
by the bus master to the P l/T, is stored in the port's output
latch The peripheral accepts the data by asserting H1IH3),
which causes the next data to be moved to the port's output
latch as soon as it is available The function of H2(H4> is pro
grammable, it may indicate whether new data has been mov
ed to the output latch or it may serve other purposes The
H1S(H3S) status bn may be programmed for two interpreta
tions Normally the status bit is a 1 when there is at least one
latch in the double-buffered data path that can accept new
data After writing one byte/word of data to the ports, an in
terrupt service routine could check this bit to determine if it
could store another byte/word, thus, filling both latches
When the bus master is finished, it is often useful to be able
to check whether all of the data has been transferred to the
peripheral The H1S(H3S) Status Control bn of the Port A
and B Control Registers provide this flexibility The program
mable options of the H2(H4) pin are given below, depending
on the mode

1 H2(H4) may be an edge-sensitive input pin indepen
dent of H1(H3) and the transfer of port data On the
asserted edge of H2IH4), the H2S(H4S) status bit is
set It is reset by the direct method (refer to Direct
Method of Resetting Status), the RESET pm being
asserted, or when the H12 Enable (H34 Enable) bit of
the Port General Control Register is 0

2 H2IH4) may be a general-purpose output pm that is
always negated The H2S(H4S) status bit is
always 0

3 H2(H4) may be a general-purpose output pin that is
always asserted The H2SIH4S) status bit is always
0

\
"A ____a__r

/

4 H2(H4) may be an output pm in the interlocked out
put handshake protocol H2(H4) is asserted two
clock cycles after data is transferred to the double-
buffered output latches The data remains stable and
H2(H4) remains asserted until the next asserted edge
of the HUH3) input At that time. H2(H4) is asyn-
chronously negated As soon as the next data is
available, it is transferred to the output latches
When H2(H4) is negated, asserted transitions on
HKH3) have no effect on the data paths As is ex
plained later, however, in Modes 2 and 3 they do
control the three-state output buffers of the bidirec
tional port(s) The H2S(H4S) status bit is always 0
When H12 Enable (H34 Enable) is 0. H2(H4) is held
negated

5 H2(H4) may be an output pm m the pulsed output
handshake protocol It is asserted exactly as in the
interlocked output protocol above, but never re
mains asserted longer than four clock cycles
Typically, a four clock pulse is generated But in the
case that a subsequent HKH3) asserted edge occurs
before termination of the pulse, H21H4) is negated
asynchronously shortening the pulse The H2S(H4S)
status bit is always 0 When H 12 Enable < H34 Enable)
is 0 H2(H4) is held negated

A sample timing diagram is shown in Figure 12 The
H2IH4) interlocked and pulsed output handshake protocols
are shown The DMAREQ pm is also shown assuming it is
enabled All handshake pm sense bits are assumed to be 0.
thus, the pins are in the low state when asserted Due to the
great similarity between modes, this timing diagram is ap
plicable to all double-buffered output transfer

Write

FIGURE 12 - DOUBLE BUFFERED OUTPUT TRANSFERS

Write

338

M O T O R O L A Semiconductor Products Inc.

MC68230L8» MC68230L10

Requesting Bus Master Service The PI T has several
means of indicating a need for service by a bus master First,
the processor may poll the Port Status Register It contains a
status bit for each handshake pm, plus a level bit that always
reflects the instantaneous state of that handshake pin A
status bit is 1 when the P l/T needs servicing. i e . generally
when the bus master needs to read or w rite data to the ports,
or when a handshake pm used as a simple status input has
been asserted The interpretation of these bits is dependent
on the chosen mode and submode

Second, the P l/T may be placed in the processor's inter
rupt structure As mentioned previously, the P l/T contains
Port A and B Control Registers that configure the handshake
pins. Other bits in these registers enable an interrupt
associated w ith each handshake pin This interrupt is made
available through the PG5/PIRQ pm. if the PIRQ function is
selected Three additional conditions are required for PIRQ
to be asserted ID the handshake pm status bit set. 12) the
corresponding interrupt (service request) enable bit is set. (3)
and DMA requests are not associated w ith that data transfer
(H I and H3 only) The conditions from each of the four
handshake pins and corresponding status bits are ORed to
determine PIRQ

The third method of requesting service is via the
PC4/DMAREQ pm This pin can be associated w ith double-
buffered transfers in each mode If it is used as a DMA con
troller request, it can initiate requests to keep the P l/T ’s
input/output double-buffering em pty/fu ll as much as possi

ble It will not overrun the DMA controller The pin is com
patible w ith the MC68450 Direct Memory Access Controller
(DMACI

Vectored, Prioritized Port Interrupts Use of MC68000-
compatible vectored interrupts w ith the P l/T requires the
PIRQ and PIACK pins When PIACK is asserted, the P l/T
places an 8-bit vector on the data pins DO D7 Under normal
conditions, this vector corresponds to highest priority.
enabled, active port interrupt source with which the
DMAREQ pm is not currently associated The most-
sigmficant six bits are provided by the Port Interrupt Vector
Register (PIVRI. w ith the lower two bus supplied by
prioritization logic according to conditions present when
PIACK is asserted. It is important to note that the only affect
on the P l/T caused by interrupt acknowledge cycles is that
the vector is placed on the data bus Specifically, no
registers, data, status, or other internal states of the P l/T are
affected by the cycle _____

Several conditions may be present when the PIACK input
is asserted to the P l/T These conditions affect the P l/T 's
response and the termination of the bus cycle If the P l/T
has no interrupt function selected, or is not asserting PIRQ.
the P l/T will make no response to PIACK (DTACK will not be
asserted) If the P l/T is asserting PIRQ when PIACK is
received, the P l/T will output the contents of the Port Inter
rupt Vector Register and the prioritization bits If the PIVR
has not been initialized, $0F will be read from this register
These conditions are summarized in Table 3

TABLE 3 RESPONSE TO PORT INTERRUPT ACKNOWLEDGE

Conditions
PIRQ negated OR interrupt
request function not selected PIRQ assened

PIVR has not been initialized
smce RESET

No response from Pl/T.
No DTACK

Pl/T provides $0F. the
Unmmaltzed Vector *

PIVR has been initialized
smce RESET

No response from Pl/T
No DTACK

Pl/T provides PIVR contents
wiih prioritization bits

’ The uninitialized vector is the value returned from an interrupt vector register before it has been initialized

The vector table entries for the P l/T appear as a con
tiguous block of four vector numbers whose common upper
six bus are programmed in the PIVR The following table
pairs each interrupt source w ith the 2-bit value provided by
the prioritization logic, when interrupt acknowledge is
asserted

HI source - 00
H2 source — 01
H3 source - 10
H4 source — 11

Autovectored Port Interrupts Autovecored interrupts
use only the PIRQ pm The operation of the P l/T w ith vec
tored and autovectored interrupts is identical except that no
vectors are supplied and the PC6/PIACK pm can be used as
a Port C pin.

Direct Method of Resetting Status In certain modes
one or more handshake pins can be used as edge-sensitive
inputs for sole purpose of setting bits in the Port Status
Register These bits consist of simple flip-flops They are set
(to 1) by the occurrence of the asserted edge of the hand

shake pm input Resetting a handshake status bit can be
done by writing an 8-bit mask to the Port Status Register
This is called the direct method of resetting To reset a status
bit that is resettable by the direct method, the mask must
contain a 1 in the bit position of the Port Status Register cor
responding to the desired bit Other positions must contain
0’s For status bus that are not resettable by the direct
method m the chosen mode, the data written to the port
status register has no effect For status bits that are reset
table by the direct method m the chosen mode, a 0 in the
mask has no effect

Handshake Pin Sense Control - The P l/T contains
exclusive-OR gates to control the sense of each of the hand
shake pins, whether used as inputs or outputs Four bus m
the Port General Control Register may b t programmed to
determine whether the pins are asserted in the low or high
voltage state As w ith other control registers, these bits are
reset to 0 when the RESET pm is asserted, defaulting the
asserted level to be low

Enabling Ports A and B Certain functions involved with
double-buffered data transfers, the handshake pins, and the
status bits, may be disabled by the external system or by the

M O T O R O L A Semiconductor Products Inc.

339

M C68230L8# M C68230L10

programmer during initialization. The Port General Control
Register contains two bits. H12 Enable and H34 Enable,
which control these functions These bits are cleared to the o
state when the RESET pm is asserted, and the functions are
disabled The functions are the following

1 Independent of other actions by the bus master or
peripheral (via the handshake pins), the P l/T 's
disabled handshake controller is held to the ' empty'’
state, i.e., no data is present in the double-buffered
data path

2 When any handshake pin is used to set a simple status
flip flop, unrelated to double-buffered transfers, these
flip-flops are held reset to 0. (See Table 2)

3 When H2(H4) is used in an interlocked or pulsed hand
shake with H1IH3). H2(H4) is held negated, regardless
of the chosen mode, submode, and primary direction
Thus, for double-buffered input transfers, the pro
grammer may signal a peripheral when the Pl/T is
ready to begin transfers by setting the associated
handshake enable bit to 1

The Port A and B Alternate Registers - In addition to the
Port A and B Data Registers, the P l/T contains Port A and B
Alternate Registers These registers are read-only, and
simply provide the instantaneous level of each port pin. They
have no effect on the operation of the handshake pins,
double-buffered transfers, status bits, or any other aspect of
the Pl/T. and they are mode/submode independent

PORT MODES

This section contains information that distinguishes the
various port modes and submodes General characteristics,
common to all modes, have been defined previously

MODE 0 - UNIDIRECTIONAL 8-BIT MODE
In Mode 0. Ports A and B operate independently Each

may be configured in any of us three possible submodes
Submode 00 - Double-Buffered Input
Submode 01 - Double-Buffered Output
Submode IX - Bit I/O

Handshake pins H1 and H2 are associated with Port A and
configured by programming the Port A Control Register
(The H12 Enable bit of the Port General Control Register
enables Port A transfers > Handshake pins H3 and H4 are
associated with Port B and configured by programming the
Port B Control Register (The H34 Enable bit of the Port
General Control Register enables Port B transfers) The Port
A and B Data Direction Registers operate in all three sub
modes Along with the submode, they affect the data read
and written at the associated data register according to Table
4 They also enable the output buffer associated with each
port pin The DMAREQ pin may be associated with either
(not both) Port A or Port B. but does not function if the Bit
I/O submode is programmed for the chosen port

TABLE 4 - MODE 0 PORT DATA PATHS

Mode
Read Port A/B
Data Register

Write Port A/B
Data Register

DDR = 0 DDR - 1 DDR = X
0 Submode 00
0 Submode 01
0 Submode 1X

FIL. D B
Pm
Pin

FOL Note 3
FOL Note 3
FOL Note 3

FOL. S B Note 1
lOL/FOL. D B Note 2

FOL. S B Note 1
Abbreviations
IOL - Initial Output Latch
FOL - Final Output Latch
FIL - Final Input Latch

S B - Single Buffered
D B - Double Buffered
DDR - Data Direction Register

Note 1 Data is latched in the output data registers (final output latch) and will be
single buffered at the pm if the DDR is 1 The output buffers will be turned
off if the DDR is 0

Note 2 Data is latched in the double-buffered output data registers The data in the
final output latch will appear on the port pin if the DDR is a 1

Note 3 The output drivers that connect the final output latch to the pins are turned
on

340

M O T O R O L A Semiconductor Products Inc.

M C68230L8# M C68230L10

Port A or B Submode 00 (8-Bit Double-Buffered Input)

Mode 0 Submode 00

Latched. Ooubie
Buffered Input
-------- H I IH 3 '

^ H2 'H4t

In Mode 0. double-buffered input transfers of up to 8-bits are
available by programming Submode 00 in the desired port's
control register The operation of H2 and H4 may be selected
by programming the Port A and Port B Control Registers,
respectively All five double-buffered input handshake op
tions. previously mentioned in the Port General Information
and Conventions section, are available

For pins used as outputs, the data path consists of a single
latch driving the output buffer Data written to the port’s
data register does not affect the operation of any handshake
pm. status bit. or any other aspect of the Pl/T Output pins
may be used independently of the input transfer However,
read bus cycles to the data register do remove data from the
port Therefore, care should be taken to avoid processor in
structions that perform unwanted read cycles

Refer to PARALLEL PORTS Double-Buffered Input
Transfers for a sample timing diagram (Figure 11)

Port A or B Submode 1X <Bit I/O) -
Mode 0 Submode 1X

In ModeO, simple Bit I/O is available by programming Sub
mode 1X m the desired port's control register This submode
is intended for applications in which several independent
devices must be controlled or monitored Data written to the
associated data register is single-buffered If the data direc
tion register bit for that pin is a 1 (output), the output buffer
is enabled. If it is 0 (input), data written is still latched, but is
not available at the pin Data read from the data register is
the instantaneous value of the pin or what was written to the
data register, depending on the contents of the data direc
tion register H11H3) is an edge-sensitive status input pm
only and it controls no data-related function The H1S(H3S)
status bit is set following the asserted edge of the input
waveform It is reset by the direct method, the RESET pm
being asserted, or when the H12 Enable (H34 Enable) bn isO

H2IH4) can be programmed as a simple status input (iden
tical to HKH3H. or as an asserted or negated output The in
terlocked or pulsed handshake configurations are not
available

MODE 1 - UNIDIRECTIONAL 16-BIT MODE
In Mode 1. Ports A and B are concatenated to form a

single 16-bit port The Port B Submode field controls the
configuration of both ports The possible submodes are

Port A or B Submode 01 (8-Bit Double-Buffered
Output) -

Port B Submode X0 - Double-Buffered Input
Port B Submode XI — Double-Buffered Output

Mode 0 Submode 01

A IB)

Double 8u(1ered
Output

m------- h ’ iH3l
► H.1 i H 41

In Mode 0. double-buffered output transfers of up to 8 bits
are available by programming submode 01 in the desired
port's control register The operation of H2 and H4 may be
selected by programming the Port A and Port B Control
Registers, respectively All five double-buffered output
handshake options, previously mentioned in the Port
General Information and Conventions section, are available

For pins used as inputs, data written to the associated
data register is double-buffered and passed to the initial or
final output latch, as usual, but the output buffer is disabled

Refer to PARALLEL PORTS Double-Buffered Output
Transfers for a sample timing diagram (Figure 12)

Handshake pins H3 and H4, configured by programming the
Port B Control Register, are associated with the 16-bit
double-buffered transfer These 16-bit transfers, are enabled
by the H34 Enable bit of the Port General Control Register
Handshake pins HI and H2 may be used as simple status in
puts not related to the 16-bit data transfer or H2 may be an
output Enabling of the HI and H2 handshake pins is done by
the H12 Enable bn of the Port General Control Register The
Port A and B Data Direction Registers operate m each sub
mode Along with the submode, they affect the data read
and written at the data register according to Table 5 They
also enable the output buffer associated with each port pm
The DMAREQ pm may be associated only with H3

Mode 1 can provide convenient, high-speed 16-bit
transfers The Port A and B data registers are addressed for
compatibility with the MC68000 Move Peripheral IMOVEP)
instruction and with the MC68450 DMAC To take advan
tage of this. Port A should contain the most-significant byte
of data and always be read or written by the bus master first
The interlocked and pulsed handshake protocols are keyed
to accesses to the Port B Data Register m Mode 1 If it is ac
cessed last, the 16-bit double-buffered transfers proceed
smoothly

M O T O R O L A Semiconductor Products Inc.
341

M C68230 L8* M C68230L10

TABLE 5 - MODE 1 PORT DATA PATHS

Mode
Read Port A /B

Register
Write Port A /B

Register
DDR = 0 DDR = 1 DDR = 0 DDR = 1

1. Port B
Submode XO

1. Port B
Submode XI

FIL. D B

Pin

FOL
Note 3

FOL
Note 3

FOL, S B
Note 2

IOL/FOL,
D B .

Note 1

FOL. S B
Note 2

IOL/FOL,
D B .

Note 1
Note 1 Data written to Port A goes to a temporary latch When the Port B data

register is later written, Port A data is transferred to IOL/FOL
Note 2 Data is latched in the output data registers (final output latch) and will be

single buffered at the pm if the DDR is 1 The output buffers w ill be turned
o ff if the DDR is 0

Note 3 The output drivers that connect the final output latch to the pins are turned
on

Abbreviations
IOL - Initial Output Latch
FOL - Final Output Latch
FIL - Final Input Latch

S B - Single Buffered
D B - Double Buffered
DDR - Data Direction Register

Port B Submode XO (16-Bit Double-Buffered Input)

Mode 1 Port B Submode XO

HI
H2

A and B
U6I

Latched. Double
Buffered Input

« --------H3
m— ► H4

Port B Submode X1 (16-Bit Double-Buffered Output)

Mode 1 Port B Submode X 1

-H I
■ H2

A and B
116)

Double Buffered
Output

m--------- H3
m --------H 4

In Mode 1 Port B Submode XO. double-buffered input
transfers of up to 16 bits may be obtained The level of all 16
pins is asynchronously latched with the asserted edge of H3
The processor may check H3S status bit to determine if new
data is present The DMAREQ pin may be used to signal a
DMA controller to empty the input buffers Regardless of the
bus master, Port A data should be read first (Actually, Port
A data need not be read at all) Port B data should be read
last The operation of the internal handshake controller, the
H3S bit. and DMAREC) are keyed to the reading of the Port B
data register (The MC68450 DMAC can be programmed to
perform the exact transfers needed for compatibility with the
P l/T) H4 may be programmed for all five of the handshake
options mentioned in the Port General Information and Con
ventions section

For pins used as outputs, the data path consists of a single
latch driving the output buffer Data written to the port's
data register does not affect the operation of any handshake
pm, status bit, or any other aspect of the Pl/T Thus, output
pins may be used independently of the input transfer
However, read bus cycles to the Port B Data Register do
remove data, so care should be taken to avoid unwanted
read cycles

Refer to PARALLEL PORTS Double-Buffered Input
Transfers for a sample timing diagram (Figure 11)
In Mode 1 Port B Submode X I, double-buffered output
transfers of up to 16 bits may be obtained Data is written by
the bus master (processor or DMA controller) in two bytes
The first byte (most-significant) is written to the Port A Data
Register It is stored in a temporary latch until the next byte
is written to the Port B Data Register Then all 16 bus are
transferred to the final output latches of Ports A and B Both
options for interpretation of the H3S status bit, mentioned in
Port General Information and Comments section, are
available and apply to the 16-bit port as a whole. The
DMAREQ pin may be used to Signal a DMA controller to
transfer another word to the port output latches. (The
MC68450 DMAC can be programmed to perform the exact
transfers needed for compatibility with the Pl/T) H4 may be
programmed for all five of the handshake options mentioned
in the Port General Information and Comments section

For pins used as inputs, data written to either data register
is double-buffered and passed to the initial or final output
latch, as usual, but the output buffer is disabled

Refer to PARALLEL PORTS Double-Buffered Input/Out
put Transfer for a sample timing diagram (Figure 12)

342
M O T O R O L A Semiconductor Products Inc.

MODE 2 - BIDIRECTIONAL 8-BIT MODE

Mode 2

In Mode 2. Pori A is used for simple bit I/O with no
associated handshake pins Port B is used for bidirectional
8-bit double-buffered transfers H1 and H2, enabled by the
H12 Enable bit in the Port General Control Register, control
output transfers, while H3 and H4. enabled by the Port
General Control Register bit H34 Enable, control input
transfers The instantaneous direction of the data is deter
mined by the HI handshake pin The Port B Data Direction
Register is noi used The Port A and Port B submode fields
do not affect Pl/T operation in Mode 2

Double-Buffered I/O (Port B) The only aspect of
bidirectional double-buffered transfers that differs from the
unidirectional modes lies in controlling the Port B output buf
fers They are controlled by the level of HI When HI is
negated, the Port B output buffers (all 8) are enabled and the
pins drive the bidirectional bus Generally. HI is negated in
response to an asserted H2. which indicates that new output
data is present in the double-buffered latches Following ac
ceptance of the data, the peripheral asserts H1. disabling the
Port B output buffers Other than controlling the output buf
fer, HI is edge-sensitive as in other modes Input transfers
proceed identically to the double-buffered input protocol
described in the Port General Information and Conventions
Section In Mode 2. only the interlocked and pulsed hand
shake pm options are available on H2 and H4 The DMAREQ

pm may be associated with either input transfers (H3) or out
put transfers (HI), but not both Refer to Table6 for a sum
mary of the Port B Data Register responses in Mode 2

Bit I/O (Port A) - Mode 2, Port A performs simple bn I/O
with no associated handshake pins This configuration is in
tended for applications in which several independent devices
must be controlled or monitored. Data written to the Port A
data register is single-buffered If the Port A Data Direction
Register bit for that pm is 1 (output), the output buffer is
enabled If it is 0. data written is still latched but not available
at the pm Data read from the data register is either the in
stantaneous value of the pm or what was written to the data
register, depending on the contents of the Port A Data
Direction Register This is summarized m Table 7

MODE 3 - BIDIRECTIONAL 16-BIT DOUBLE-
BUFFERED I/O

Mode 3

A and B
116)

Bidirectional 16-B<t

■ h i v Output
' H 2 ' Transfers
' H3 v Input
H4 Transfers

In Mode 3, Ports A and B are used for bidirectional 16-bit
double-buffered transfers H1 and H2 control output
transfers, while H3 and H4 control input transfers (HI and
H2 are enabled by the H12 Enable bit while H3 and H4 are
enabled by the H34 Enable bit of the Port General Control
Register) The instantaneous direction of the data is deter
mined by the H1 handshake pm, and thus, the data direction
registers are not used The Port A and Port B submode fields
do not affect Pl/T operation in Mode 3

The only aspect of bidirectional double-buffered transfers
that differs from the unidirectional modes lies in controlling
the Port A and B output buffers They are controlled by the
level of HI When HI is negated, the output buffers (all 16)
are enabled and the pins drive the bidirectional bus General

TABLE 6 - MODE 2 PORT B DATA PATHS

Mode
Read Port B

Data Register
Write Port B
Data Register

2 FIL. D B IOL/FOL. D B
Abbreviations
IOL - Initial Output Latch
FOL — Final Output Latch D B - Double Buffered
FIL - Final Input Latch

TABLE 7 - MODE 2 PORT A DATA PATHS

Mode
Read Port A

Data Register
Write P<
Data Re<

jr t A
aister

DDR = 0 DDR 1 DDR = 0 DDR 1

2 Pm FOL FOL FOL. S B

Abbreviations
S B - Single Buffered
FOL - Final Output Latch
DDR - Data Direction Register

M O T O R O L A Semiconductor Products Inc.
343

l y . HI is negated in response to an asserted H2. which in
dicates that new output data is present in the double-
buffered latches Following acceptance of the data, the
peripheral asserts H I, disabling the output buffers Other
than controlling the output buffers, H1 is edge-sensitive as in
other modes Input transfers proceed identically to the
double-buffered input protocol described in the Port General
Information and Conventions section Port A and B data is
latched with the asserted edge of H3 In Mode 3. only the in
terlocked and pulsed handshake pin options are available to
H2 and H4 The DMAREQ pm may be associated with either
input transfers (H3) or output transfers (H I), but not both
H2 indicates when new data is available in the Port B (and
implicitly Port A) output latches, but unless the buffer is
enabled by H1, the data is not driving the pins

Mode 3 can provide convenient high-speed 16-bit
transfers The Port A and B Data Registers are addressed for
compatibility with the MC68000's Move Peripheral (MOVEP)
instruction and with the MC68450 DM AC To take advan
tage of this. Port A should contain the most-significant data
and always be read or written by the bus master first The
interlocked and pulsed handshake protocols are keyed to
accesses to the Port B Data Register in Mode 3 If it is
accessed last, the 16-bit double-buffered transfer proceed

smoothly. Refer to Table 8 for a summary of the Port A and
B data paths in Mode 3

DMA REQUEST OPERATION
The Direct Memory Access Request (DMAREQ) pulse

(when enabled) is associated with output or input transfers
to keep the initial and final output latches full or initial and
final input latches empty, respectively Figures 13 and 14
show all the possible paths in generating DMA requests

DMAREQ is generated on the bus side of the MC68230 by
the synchronized* Chip Select If the conditions of Figures
13 and 14 are met . an access of the bus (assertion of CS) will
cause DMAREQ to be asserted 3 Pl/T clocks (plus the delay
time from the clock edge) after "£5 is synchronized *
DMAREQ remains asserted 3 clock cycles (plus the delay
time from the clock edge) and is then negated

The DMAREQ pulse associated with a peripheral or port
side of the Pl/T is caused by the synchronized* HKH3) in
put. If the conditions of Figures 13 and 14 are met, a port ac-
cess (assertion of the HKH3) input) will cause DMAREQ to
be asserted 2 5 P l/T clock cycles (plus the delay time from
clock edge) after HKH3) is sycnhronized * DMAREQ re
mains asserted 3 clock cycles (plus the delay time from the
clock edge) and is then negated

TABLE 8 MODE 3 PORT A AND B DATA PATHS

Mode
Read Port A and B

Data Register
Write Port A and B

Data Register

FIL. D B IOL/FOL. D B . Note 1
Note 1 Data written to Port A goes to a temporary latch When the Port B data

__________ r e g is te r is la te r w r i t t e n . P o r t A d a t a is t r a n s fe r r e d t o I Q L / F Q L ______________

Abbreviations
IOL - Initial Output Latch S B - Single Buffered
FOL - Final Output Latch D B - Double Buffered
FIL - Final Input Latch

FIGURE 13 - DMAREQ ASSOCIATED
WITH OUTPUT TRANSFERS

Data m Output Latches

FIGURE 14 - DMAREQ ASSOCIATED
WITH INPUT TRANSFERS

Data m Input Latches

Bus Write No DMA Request

Peripheral Provides Data

<
No DMA Request

DMA Request

)
Bus Read

* Synchronized means that the input signal has been seen by the Pl/T on the appropriate edge of the clock (rising edge for HKH3) and falling
edge for CS) (Refer to the BUS INTERFACE CONNECTION section for the exception concerning CS) If a bus access (assertion of CSI and
a port access (assertion of HKH3I) occur at the same time. Ü? will be recognized without any delay H1IH3) will be recognized one clock cycle
later

344
M O T O R O L A Semiconductor Products Inc.

T IM E R
The MC68230 timer can provide several facilities needed

by MC68000 operating systems It can generate periodic in
terrupts. a square wave, or a single interrupt after a pro
grammed time period Also, it can be used for elapsed time
measurement or as a device watchdog This section
describes the programmable options available, capabilities,
and restrictions that apply to the timer

The Pl/T timer contains a 24-bit synchronous down
counter that is loaded from three 8-bit Counter Preload
Registers The 24-bit counter may be clocked by the output
of a 5-bit <divide-by-32) prescaler or by an external timer in
put TIN If the prescaler is used, it may be clocked by the
system clock (CLK pin! or by the TIN external input The
counter signals the occurrence of an event primarily through
zero detection IA zero is when the counter of the 24-bit
timer is equal to zero.) This sets the zero detect status (ZDS)
bit in the Timer Status Register It may be checked by the
processor or may be used to generate a timer interrupt The
ZDS bit is reset by writing a 1 to the Timer Status Register in
that bit position

The general operation of the timer is flexible and easily
programmable The timer is fully configured and controlled
by programming the 8 bit Timer Control Register It controls
(1) the choice between the Port C operation and the timer
operation of three timer pins, (2) whether the counter is load
ed from the Counter Preload Register or rolls over when zero
detect is reach, (3) the clock input, (4) whether the prescaler
is used, and (5) whether the timer is enabled

RUN/HALT DEFINITION
The overall operation of the timer is described in terms of

the run or halt slates The control of the current state is
determined by programming the Timer Control Register
When in the halt state, all of the following occur

1 The prior contents of the counter is not altered and is
reliably readable via the Count Registers

2 The prescaler is forced to $1F whether or not it is used
3 The ZDS status bit is forced to 0. regardless of the

possible zero contents of the 24-bit counter
The run state is characterized by

1. The counter is clocked by the source programmed in
the Timer Control Register

2. The counter is not reliably readable
3 The prescaler is allowed to decrement if programmed

for use
4 The ZDS status bn is set when the 24 bit counter iran

sitions from $000001 to $000000
TIMER RULES

This section provides a set of rules that allow easy applica
tion of the timer

1 Refer to ’lhe Run/Halt Definition above
2 When the RESET pin is asserted, al! bits of the Timer

Control Register go loO, configuring the dual function
pins as Port C inputs

3 The contents of the Counter Preload Registers and
counter are not affected by the RESET pm

4 The Count Registers provide a direct read data path
from each portion of the 24 bit counter, but data writ
ten to their addresses is ignored (This results in a nor
mal bus cycle.) These registers are readable at any
time, but their contents are never latched Unreliable
data may be read when the timer is in the run state

5 The Counter Preload Registers are readable and
writable at any time and this occurs independently of
any timer operation No protection mechanisms are
provided against ill-timed writes

6 The input frequency to the 24-bit counter from the TIN
pin or prescaler output, must be between 0 and the in
put frequency at CLK pm divided by 32 regardless of
the configuration chosen

7 For configurations in which the prescaler is used (with
the CLK pin or TIN pin as an input), the contents of
the Counter Preload Register (CPR) is transferred to
the counter the first time that the prescaler passes
from $00 to $1F (rolls over) after entering the run state
Thereafter, the counter decrements or is loaded from
the Counter Preload Register when the prescaler rolls
over

8 For configurations in which the prescaler is not used,
the contents of the Counter Preload Registers are
transferred to the counter on the first asserted edge of
the TIN input after entering the run state On subse
quent asserted edges the counter decrements or is
loaded from the Counter Preload Registers

9 The lowest value allowed in the Counter Preload
Register for use with the counter is $000001

TIMER INTERRUPT ACKNOWLEDGE CYCLES
Several conditions may be present when the timer inter

rupt acknowledge pin (TIACK) is asserted These conditions
affect the P l/T 's response and the termination of the bus cy
cle (See Table 9)

TABLE 9 - RESPONSE TO TIMER INTERRUPT ACKNOWLEDGE

PC3/TOUT Function Response to Asserted TIACK

PC3 - Port C Pm No response
No DTACK

TOUT - Square Wave No response
No DTACK

TOUT - Negated Timer No response.
interrupt Request No DTACK
TOUT - Asserted Timer Timer Interrupt Vector Contents
Interrupt Request DTACK Asserted

PROGRAMMER'S MODEL
The internal accessible register organization is represented

in Table 10 Address space within the address map is re
served for future expansion Throughout the Pl/T data sheet
the following conventions are maintained

1 A read from a reserved location in the map results in a
read from the “ null register " The null register returns
all zeros for data and results in a normal bus cycle A
write to one of these locations results in a normal bus
cycle but no write occurs.

2 Unused bits of a defined register are denoted by *'*"
and are read as zeroes

3 Bits that are unused in the chosen mode/submode but
are used in others, are denoted by "X ". and are
readable and writeable Their content, however, is ig
nored in the chosen mode/submode

4 All registers are addressable as 8-bit quantities To
facilitate operation with the MOVEP instruction and
the DMAC, addresses are ordered such that certain
sets of registers may also be accessed as words (2
bytes) or long words (4 bytes)

M O T O R O L A Semiconductor Products Inc.
345

MC68230L8» M C68230 L10

TABLE 10 - P l/T REGISTER ADDRESSING ASSIGNMENTS

Register
Register

Select Bits Accessible
Affected

by
Reset

AHected
by Read

Cycle5 4 3 2 1

Port General Controi Register IPGCR) 0 0 0 0 0 R W Yes No

Port Service Request Register IPSRRI 0 0 0 0 1 R W Yes No

Port A Data Direction Register (PADDRt 0 0 0 ' 0 R W Yes No

Port B Data Direction Register (PBDDR) 0 0 0 1 1 R W Yes No

Port C Data Direction Register (PCDDR) 0 0 1 0 0 R W Yes No

Port Interrupi Vector Register (PIVR) 0 0 1 0 1 R W Yes No

Port A Control Register (PACRI 0 0 1 1 0 R W Yes No

Port B Control Register (PBCR) 0 0 ' 1 1 R W Yes No

Port A Data Register (PADR) 0 1 0 0 0 R W No * *

Port B Data Register IPBDRI 0 1 0 0 1 R W No * *

Port A Aiternate Register (PAARi 0 1 0 1 0 R No No

Port B Aiternate Register (PBAR) 0 1 0 1 1 R No No

Port C Data Register (PCDRI 0 1 t 0 0 R W No No

Port Status Register IPSR) 0 1 1 0 1 R W * Yes No

Timer Control Register (TCR) 1 0 0 0 0 R W Yes No

Timer Interrupt Vector Reqister ITIVR) 1 0 0 0 1 R W Yes No

Counter Preload Register High (CPRH) 1 0 0 1 1 R W No No

Counter Preload Register Middle (CPRM) 1 0 1 0 0 R W No No

Counter Preload Register Low (CPRL) 1 0 1 0 1 R W No No

Count Register High (CNTRH) 1 0 1 1 1 R No No

Count Register Middle ICNTRMi t 1 0 0 0 R No No

Count Register Low (CNTRL) 1 1 0 0 1 R No No

Timer Status Register (TSR) 1 1 0 1 0 R W * Yes No

* A write to this register may perform a special stati » resetting operation R Read
* * Mode dependent

Port General Control Register (PGCR)

7 6 5 4 3 2 1 0

Port Mode
Control

H34
Enable

H12
Enable

H4
Sense

H3
Sense

H2
Sense

HI
Sense

The Port General Control Register controls many of the func
tions that are common to the overall operation of the ports
The PGCR is composed of three major fields: bits 7 and 6
define the operational mode of Ports A and B and affect
operation of the handshake pins and status bus; bits 5 and 4
allow a software controlled disabling of particular hardware
associated with the handshake pins of each port, and bits 3-0
define the sense of the handshake pins. The PGCR is always
readable and wnteable

All bus are reset to 0 when the RESET pin is asserted
The Port Mode Control field should be altered only when

the H12 Enable and H34 Enable bits are 0 Except when
Mode 0 is desired, the Port General Control register must be
written once to establish the mode, and again to enable the
respective operation(s)

W = Write

PGCR
2. J> Port Mode Control
0 0 Mode 0 (Unidirectional 8-Bit Mode)
0 1 Mode 1 (Unidirectional 16-Bit Mode)
1 0 Mode 2 (Bidirectional 8-Bit Mode)
1 1 Mode 3 (Bidirectional 16-Bn Mode)

PGCR
.5 H34 Enable
0 Disabled
1 Enabled

PGCR
4 H12 Enable
0 Disabled
1 Enabled

PGCR
3-0 Handshake Pin Sense
0 The associated pm is at the high-voltage level when

negated and at the low-voltage level when asserted
1 The associated pm is at the low-voltage level when

negated and at the high-voltage level when asserted

M O T O R O L A Semiconductor Products Inc.

346

MC68230L8* MC68230L10

Port Service Request Register (PSRR)

7 6 5 4 3 2 1 0

*
SVCRQ
Select

Interrupt
PFS

Port Interrupt
Priority Control

The Port Service Request Register controls other functions
that are common to the overall operation to the ports It is
composed of four major fields bit 7 is unused and is always
read as 0. bus 6 and 5 define whether interrupt or DMA re
quests are generated from activity on the HI and H3 hand
shake pins; bits 4 and 3 determine whether two dual function
pins operate as Port C or port interrupt request/-
acknowledge pins, and bus 2. 1. and 0 control the priority
among all port interrupt sources Since bits 2. 1. and 0 affect
interrupt operation, it is recommended that they be changed
only when the affected interrupi(s) is (are) disabled or known
to remain inactive The PSRR is always readable and
writeable

All bus are reset to 0 when the RESET pm is asserted

PSRR
6 5 SVCRQ Select
0 X The PC4/DMAREQ pm carries the PC4 function. DMA

is not used
1 0 The PC4/DMAREQ pin carries the DMAREQ function

and is associated with double-buffered transfers con
trolled by HI HI is removed from the Pl/T's interrupt
structure, and thus, does not cause interrupt requests
to be generated To obtain DMAREQ pulses. Port A
Control Register bit 1 iH I SVCRQ Enable' must be a 1

1 1 The PC4/DMAREQ pin carries the DMAREQ function
and is associated with double-buffered transfers con
trolled by H3 H3 is removed from the P l/T ’s interrupt
structure, and thus, does not cause interrupt requests
to be generated To obtain DMAREQ pulses. Port B
Control Register bit 1 (H3 SVCRQ Enable) must be 1

PSRR
4 3 Interrupt Pin Function Select
0 0 The PC5/PIRQ pin carries the PC5 function

The PC6/PIACK pin carries the PC6 function
0 1 The PC5/PIRQ pm carries the PIRQ function

The PC6/PIACK pm carries the PC6 function
1 0 The PC5/PIRQ pm carries the PC5 function

The PC6/PIACK pm carries the PIACK function
1 1 The PC5/PIRQ pm carries the PIRQ function

The PC6/PIAĆK pm carries the PIACK function
Bus 2, 1. and 0 determine port interrupt p'lorny The priority
is shown in descending order left to right

PSRR Port Interrupt Priority Control
2 1 0 Highest.. ... Lowe
0 0 0 HIS H2S H3S H4S
0 0 1 H2S HIS H3S H4S
0 1 0 H1S H2S H4S H3S
0 1 1 H2S HIS H4S H3S
1 0 0 H3S H4S H1S H2S
1 0 1 H3S H4S H2S HIS
1 1 0 H4S H3S HIS H2S
1 1 1 H4S H3S H2S HIS

Port A Data Direction Register (PADDR) The Port A
Data Direction Register determines the direction and buffer
mg characteristics of each of the Port A pins One bit in the
PADDR is assigned to each pm A 0 indicates that the pm is
used as an input, while a 1 indicates it is used as an output
The PADDR is always readable and writeable This register is
ignored in Mode 3 _____

All bus are reset to the 0 (input) state when the RESET pm
is asserted

Port B Data Direction Register (PBDDR) The PBDDR is
identical to the PADDR for the Port B pins and the Port B
Data Register, except that this register is ignored in Modes 2
and 3

Port C Data Direction Register (PCDDR) The Port C
Data Direction Register specifies whether each dual function
pm that is chosen for Port C operation is an input (0) or an
output (1) pin The PCDDR. along with bits that determine
the respective pin's function, also specify the exact hardware
to be accessed at the Port C Data Register address (See the
Port C Data Register description for more details) The
PCDDR is an 8-bu register that is readable and writeable at all
times Its operation is independent of the chosen Pl/T mode

These bus are cleared to 0 when the RESET pin is
asserted

Port Interrupt Vector Register (PIVR)

7 6 5 4 3 2 1 0

Interrupt Vector Number ♦ *

The Port Interrupt Vector Register contains the upper order
six bits of the four port interrupt vectors. The contents of
this register may be read two ways by an ordinary read cy
cle, or by a port interrupt acknowledge bus cycle The exact
data read depends on how the cycle was initiated and other
factors Behavior during a port interrupt acknowledge cycle
is summarized above in Table 3

M O T O R O L A Semiconductor Products Inc.
347

M C68230L8* M C68230L10

From a normal read cycle (CS). there is never a conse
quence to reading this register Following negation of the
RESET pm, but prior to writing to the PIVR, a $0F will be
read After writing to the register, the upper 6 bits may be
read and the lower 2 bits are forced to 0 No prioritization
computation is performed

Port A Control Register (PACR)

7 6 5 4 3 2 1 0

Port A
Submode H2 Control

H2
Int

Enable

H1
SVCRQ
Enable

H1
Siat
Ctrl

The Port A Control Register, in conjunction with the pro
grammed mode and the Port B submode, control the opera
tion of Port A and the handshake pins HI and H2 The Port A
Control Register contains five fields bits 7 and 6 specify the
Port A submode, bits 5, 4. and 3 control the operation of the
H2 handshake pm and H2S status bit. bit 2 determines
whether an interrupt will be generated when the H2S status
bn goes to 1. bit 1 determines whether a service request (in
terrupt request or DMA request) will occur, bit 0 controls the
operation of the H IS status bit The PACR is always
readable and wnteable _____

All bits are cleared to 0 when the RESET pm is asserted
When the Port A submode field is relevant in a mode/sub

mode definition, it must not be altered unless the H12 Enable
bit in the Port General Control Register is 0 (See Table 2)

The operation of HI and H2 and their related status bits is
given below, for each of the modes specified by Port General
Control Register bits 7 and 6 This description is organized
such that for each mode/submode all programmable options
of each pm and status bn are given

Bits 2 and 1 carry the same meaning in each mode/sub
mode, and thus are specified only once.

H2 Interrupt Enable
PACR
2
0 The H2 interrupt is disabled
1 The H2 interrupt is enabled

H1 SVCRQ Enable
PACR

1
0 The H1 interrupt and DMA request are disabled
1 The H1 interrupt and DMA request are enabled

PACR Mode 0 Port A Submode 00

H2 Control
PACR

5 4 3

0 X X
1 0 0
1 0 1
1 1 0

1 1 1
toco!

PACR
0̂
X

PACR
5 4 3

X
0
0
1

HI Status Control
Not Used

PACR Mode 0 Port a Submode 01

H2 Control
0
1

1
1

1 1

PACR
0
0

X Input pm - status only
0 Output pm - always negated
1 Output pm - always asserted
0 Output pm - interlocked output handshake pro

tocol.
1 Output pm - pulsed output handshake protocol

HI Status Control
The H IS status bit is 1 when either the Port A initial or
final output latch can accept new data It is 0 when
both latches are full and cannot accept new data
The H1S status bit is 1 when both of the Port A output
latches are empty It is 0 when at least one latch is full.

PACR Mode 0 Port A Submode 1X
PCR

5 4 3 H2 Control
0 X X Input pm - status only
1 X 0 Output pm - always negated
1 X 1 Output pm - always asserted

PACR
0
X Not used

H1 Status Control

PACR Mode 1 Port A Submode XX Port B Submode X0
PACR

5 4 3 H2 Control
0 X X Input pm — status only.
1 X 0 Output pm - always negated
1 X 1 Output pm - always asserted

PACR
0
X Not used

H1 Status Control

PACR Mode 1 Port A Submode XX Port B Submode X1
PACR

5 4 3 H2 Control
0 X X Input pm — status only
1 X 0 Output pm - always negated
1 X 1 Output pm — always asserted

PACR
0
X Not used

H1 Status Control

348

M O T O R O L A Semiconductor Products Inc.

MC68230L8»MC68230L10

PACR Mode 2
PACR

5 4 3 H2 Control
X X 0 Output pin — interlocked output handshake pro

tocol
X X 1 Output pin — pulsed output handshake protocol

PACR
0 HI Status Control
0 The H IS status bit is 1 when either the Port B initial or

final output latch can accept new data It is 0 when
both latches are full and cannot accept new data

1 The HIS status bn is 1 when both of the Port B output
latches are empty It is 0 when at least one latch is full

PACR Mode 3
PACR

5 4 3 H2 Control
X X 0 Output pin - interlocked output handshake pro

tocol
X X 1 Output pin — pulsed output handshake protocol

PACR
0 HI Status Control
0 The HIS status bit is 1 when either the initial or final

output latch of Port A and B can accept new data It is
0 when both latches are full and cannot accept new
data

1 The HIS status bit is 1 when both the initial and final
output latches of Ports A and B are empty It is 0 when
either the initial or final latch of Ports A and B is full

Port B Control Register (PBCR) -

7 6 5 4 3 2 1 0

Port B
Submocłe H4 Contro*

H4
Int

Enable

H3
SVCRQ
Enable

H3
Slat
Ctrl

The Port B Control Register specifies the operation of Port B
and the handshake pins H3 and H4 The Port B control
register contains five fields bus 7 and 6 specify the Port B
submode, bits 5. 4 and 3 control the operation of the H4
handshake pm and H4S status bit. bit 2 determines whether
an interrupt will be generated when the H4S status bit goes
to 1. bit 1 determines whether a service request (interrupt re
quest or DMA request) will occur, bit 0 controls the opera
tion of the H3S status bn The PACR is always readable and
writeable There is never a consequence to reading the
register _____

All bits are cleared to 0 when the RESET pm is asserted
When the Port B submode field is relevant m a mode/sub

mode definition, t must not be altered unless the H34 Enable
bn in the Port General Control Register is 0 (See Table 2.)

The operation of H3 and H4 and their related status bus is
given below, for each of the modes specified by Port General
Control Register bus 7 and 6 This description is organized
such that for each mode/submode all programmable options
of each pm and status bit are given

Bits 2 and 1 carry the same meaning m each mode/sub
mode. and thus are specified only once

PBCR
2 H4 Interrupt Enable
0 The
1 The

PBCR
1
0 The
1 The

PBCR
5 4 3
0 X X Input pm - status only
1 0 0 Output pm - always negated
1 0 1 Output pm - always asserted
1 1 0 Output pm - interlocked input handshake pro

tocol
1 1 1 Output pm — pulsed input handshake protocol

PBCR
0 H3 Status Control
X Not used

PBCR Mode 0 Port B Submode 01
PBCR

5 4 3 H4 Control
0 X X Input pm — status only
1 0 0 Output pm - always negated
1 0 1 Output pm - always asserted
1 1 0 Output pm - interlocked output handshake pro

tocol
1 1 1 Output pm - pulsed output handshake protocol

PBCR
0 H3 Status Control
0 The H3S status bit is 1 when either the Port B initial or

final output latch can accept new data It is 0 when
both latches are full and cannot accept new data

1 The H3S status bn is 1 when both of the Port B output
latches are empty It is 0 when at least one latch is full

PBCR Mode 0 Port B Submode IX
PBCR

5 4 3 H4 Control
0 X X Input Pm - status only
1 X 0 Output pm - always negated
1 X 1 Output pm - always asserted

PBCR
0 H3 Status Control
X Not used

PBCR Mode 1 Port B Submode X0

5 4 3 H4 Control
6 X X Input pm — status only
1 0 0 Output pm - always negated
1 0 1 Output pm - always asserted
1 1 0 Output pm - interlocked input handshake pro

tocol
1 1 1 Output pm - pulsed input handshake protocol

H4 interrupt is disabled
H4 interrupt is enabled

H3 SVCRQ Enable
H3 interrupt and DMA request are disabled
H3 interrupt and DMA request are enabled

PBCR Mode 0 Port B Submode 00

H4 Control

M O T O R O L A Semiconductor Products Inc.
349

MC68230L8« MC68230 L10

PBCR
0 H3 Status Control
X Not used

PBCR Mode 1 Port B Submode X1
PBCR

5 4 3 H4 Control
0 X X Input pin - status only
1 0 0 Output pin - always negated
1 0 1 Output pm - always asserted
1 1 0 Output pm interlocked output handshake pro

tocol
1 1 1 Output pm — pulsed output handshake protocol

PBCR
0 H3 Status Control
0 The H3S status bn is 1 when either the initial or final

output latch of Port A and B can accept new data It is
0 when both latches are full and cannot accept new
data

1 The H3S status bit is 1 when both the initial and final
output latches of Ports A and B are empty It is 0 when
neither the mmal or final latch of Ports A and B is full

PBCR Mode 2
PBCR

5 4 3 H4 Control
X X 0 Output pm - interlocked input handshake pro

tocol
X X 1 Output pm - pulsed input handshake protocol

PBCR
0 H3 Status Control
X Not used

PBCR Mode 3
PBCR

5 4 3 H4 Control
X X 0 Output pm - interlocked input handshake pro

tocol
X X 1 Output pm - pulsed input handshake protocol

PBCR
0 H3 Status Control
X Not used

Port A Data Register (PADR) The Port A Data Register
is an address for moving data to and from the Port A pins
The Port A Data Direction Register determines whether each
pm is an input (01 or an output (1). and is used in configuring
the actual data paths This is mode dependent and is
described with the modes above

This register is readable and writeable at all times Depend
ing on the chosen mode/submode, reading or writing may
affect the double-buffered handshake mechanism The Port
A Data Register is not affected by the assertion of the
RESET pin

Port B Data Register (PBDR) The Port B Data Register
is an address for moving data to and from the Port B pins
The Port B Data Direction Register determines whether each
pm is an input (0)or an output (1). and is used in configuring
the actual data paths This is mode dependent and is
described with the modes, above

This register is readable and writeable at all times Depend
ing on the chosen mode/submode, reading or writing may
affect the double-buffered handshake mechanism The Port
B Data Register is not affected by the assertion of the RESET
pm

Port A Alternate Register (PAAR) The Port A Alternate
Register is an alternate address for reading the Port A pins It
is a read-only address and no other Pl/T condition is af
fected In all modes and the instantaneous pm level is read
and no input latching is performed except at the data bus in
terface (see Bus Interface Connection). Writes to this ad
dress are answered with DTACK. but the data is ignored

Port B Alternate Register (PBAR) The Port B Alternate
Register is an alternate address for reading the Port B pins It
is a read-only address and no other P l/T condition is af
fected In all modes the instantaneous pm level is read and
no input latching is performed except at the data bus inter
face (see Bus Interface Connection) Writes to this address
are answered with DTACK, but the data is ignored

Port C Data Register (PCDR) The Port C Data Register
is an address for moving data to and from each of the eight
Port C/alternate function pins The exact hardware
accessed is determined by the type of bus cycle I read or
write) and individual conditions affecting each pm These
conditions are (1) whether the pm is used for the Port C or
alternate function, and (2) whether the Port C Data Direction
Register indicates the input or output direction The Port C
Data Register is single buffered for output pins and not buf
fered for input pins These conditions are summarized in
Table 11

The Port C Data Register is not affected by the assertion
of the RESET pm

The operation of the PCDR is independent of the chosen
Pl/T mode

TABLE 11 - PCDR HARDWARE ACCESSES

Read Port C Data Register

Port C function
PCDDR- 0

Port C function
PCDDR=1

Alternate
function
PCDDR =0

Alternate
function
PCDDR = 1

pm
Port C
output
register

pm
Port C
output
regisier

Write Port C Data Register

Port C Function
PCDDR 0

Port C Function
PCDDR 1

Alternate
function
PCDDR= 0

Alternate
function
PCDDR = 1

Port C
output register,
buffer disabled

Port C
outpul register
buffer enabled

Port C
output regisier

Port C
outpul register

350

M O T O R O L A Semiconductor Products Inc.

M C68230L8# M C68230L10

Note that two additional useful benefits result from this
structure First, it is possible to directly read the state of a
dual-funcnon pm while used for the non-Port C function Se
cond, it is possible to generate program controlled transi
tions on alternate-function pins by switching back to the
Port C function, and writing to the PCDR

This register is readable and writeable at all times

Pori Status Register (PSR)

7 6 5 4 3 2 1 0

H4
Level

H3
Level

H2
Level

HI
Level H4S H3S H2S HIS

The Port Status Register contains information about hand
shake pm activity Bits 7-4 show the instantaneous level of
the respective handshake pm. and is independent of the
handshake pin sense bits in the Port General Control
Register Bit 3 0 are the respective, status bits referred to
throughout this data sheet Their interpretation depends on
the programmed mode/submode of the P i' T For B its 3 0 a
1 is the active or asserted state

Timer Control Register (TCR>

7 6 5 4 3 2 1 0

TOUT/TIACK
Control

Z D
Ctrl

* Clock
Control

Timer
Enable

The Timer Control Register (TCR) determines all operations
of the timer Bits 7-5 configure the PC3/TOUT and
PC7/TIACK pins for Port C. square wave, vectored inter
rupt, or autovectored interrupt operation, bit 4 specifies
whether the counter receives data from the Counter Preload
Register or continues counting when zero detect is reached,
bit 3 is unused and is read as 0. bus 2 and 1 configure the
path from the CLK and TIN pins to the counter controller; bit
0 enables the timer This register is readable and writeable at
all times _____

All bits are cleared to 0 when the RESET pm is asserted

TCR _____
7 6 5 TOUT/TIACK Control
0 0 X The dual-function pins PC3/TOUT and PC7/TIACK

carry the Port C function
0 1 X The dual-function pm PC3/TOUT carries the TOUT

function In the run state it is used as a square wave
output and is toggled on zero detect The TOUT
pm is high while in the halt state The dual-function
pm PC7/TIACK carries the PC7 function

1 0 0 The dual function pm PC3/TOUT carries the TOUT
function In the run or halt state it is used as a timer
interrupt request output The timer interrupt is
disabled, thus, the pm is always three-stated The
dual-function pm PC7/TIACK carries the TIACK
function, however, since interrupt request is
negated, the Pl/T produces no response, i e . no
data or DTACK. to an asserted TIACK Refer to
Timer Interrupt Cycle section for details This com
bmation and the 101 state below support vectored
timer interrupts

1 0 1 The dual-function pm PC3/TOUT carries the TOUT
function and is used as a timer interrupt request
output The timer interrupt is enabled, thus, the pm
is low when the timer ZDS status bit is 1 The dual
function pm PC7/TIACK carries the TIACK func
non and is used as a timer interrupt acknowledge
input Refer to the Timer Interrupt Acknowledge
Cycle section for details This combination and the
100 state above support vectored timer interrupts

1 1 0 The dual-function pm PC3/TOUT carries the TOUT
function In the run or halt state it is used as a timer
interrupt request output The timer interrupt is
disabled, thus, the pm is always three-stated The
dual-function pm PC7/TIACK carries the PC7 func
tion

1 1 1 The dual-function pm PC3/TOUT carries the TOUT
function and is used as a timer interrupt request
output The timer interrupt is enabled, thus, the pm
is low when the timer ZDS status bit is 1 The dual-
function pm PC7/TIACK carries the PC7 function
and autovectored interrupts are supported

TCR
4 Zero Detect Control
0 The counter is loaded from the Counter Preload

Register on the first clock to the 24-bit counter after
zero detect, and resumes counting

1 The counter rolls over on zero detect, then continues
counting

Bit 3 is unused and is always read as 0

TCR
2 2 Clock Control
0 0 The PC2/TIN input pm carries the Port C function and

the CLK pm and prescaler are used The prescaler is
decremented on the falling transition of the CLK pm.
the 24 bit counter is decremented or loaded from the
Counter Preload Registers when the prescaler rolls
over from $00 to $1F The Timer Enable bit determines
whether the timer is in the run or halt state

0 1 The PC2/TIN pm serves as a timer input and the CLK
pm and prescaler are used The prescaler is
decremented on the falling transition of the CLK pm;
the 24-bit counter is decremented or loaded from the
Counter Preload Registers when the prescaler rolls
over from $00 to $1F The timer is in the run state
when the Timer Enable bit is 1 and the TIN pm is high,
otherwise the timer is in the halt state

1 0 The PC2/TIN pm serves as a timer input and the
prescaler is used The prescaler is decremented follow
ing the nsrng transition of the TIN pm after syncing
with the internal clock The 24-bit counter is
decremented or loaded from the counter preload
registers when the prescaler rolls over from $00 to SIF
The Timer Enable bit determines whether the timer is
in the run or halt state

1 1 The PC2/TIN pm serves as a timer input and the
prescaler is unused The 24-bit counter is decremented
or loaded from the Counter Preload Registers follow
ing the rising edge of the TIN pm after syncing with
the internal clock The Timer Enable bn determines
whether the timer is in the run or halt state

M O T O R O L A Semiconductor Products Inc.
351

M C68230L8# M C68230L10

TCR
0 Timer Enable
0 Disabled
1 Enabled

Timer Interrupt Vector Register (TIVR) The timer inter
rupt vector register contains the 8-bit vector supplied when
the timer interrupt acknowledge pin TIACK is asserted The
register is readable and writeable at all times, and the S3me
value is always obtained from a normal read cycle and a timer
interrupt acknowledge bus cycle (TIACK) When the RESET
pm is asserted the value of $0F is automatically loaded into
the register Refer to Timer Interrupt Acknowledge Cycle
section for more details

Counter Preload Register H, M, L (CPRH-L)

state (Bits 2. 1, and 0 of the Timer Control Register specify
the state) W rite operations to these addresses result m a
normal bus cycle but the data is ignored

Each of the registers is individually addressable, or the
group may be accessed w ith the MOVEP L or the MOVEP W
instructions The address one less than the address of
CNTRH is the null register, and is reserved so that zeros are
read in the upper 8 bits o f the destination data register when
a MOVEP I is used Data written to this address is ignored

Timer Status Register (TSR)

7 6 5 4 3 2 1 0

* * * * * * •* ZDS

CPRH

CPRM

CPRL

The Counter Preload Registers are a group of three 8-bit
registers used for storing data to be transferred to the
counter Each of the registers is individually addressable, or
the group may be accessed w ith the MOVEP L or the
MOVEP W instructions The address one less than the ad
dress of CPRH is the null register, and is reserved so that
zeros are read in the upper 8 bits of the destination data
register when a MOVEP L is used Data written to this ad
dress is ignored

The registers are readable and writeable at all times A
read cycle proceeds independently o f any transfer to the
counter, which may be occuring simultaneously

To insure proper operation of the P l/T Timer, a value of
$000000 may not be stored in the Counter Preload Registers
for use w ith the counter

The RESET pm does not affect the contents of these
registers

CNTRH

CNTRM

CNTRL

The count registers are a group of three 8-bit addresses at
which the counter can be read The contents o f the counter
are not latched during a read bus cycle, thus, the data read at
these addresses is not guaranteed if the timer is in the run

Count Register H, M, L (CNTRH-L)

7 6 5 4 3 2 1 0

Bn Bn Bn Bn Bn Bit Bn Bn
23 22 21 20 19 18 17 16

Bn Bn Bn Bn Bn Bn Bn Bn
15 14 13 12 11 10 9 8

Bn Bn Bn Bn Bit Bn Bn Bn
7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0
Bn Bn Bn Bn Bn Bn Bn Bn
23 22 21 20 19 18 17 16

Bn Bn Bn Bn Bn Bn Bn Bn
15 14 13 12 11 10 9 8

Bn Bn Bn Bir Bn Bn Bn Bn
7 6 5 4 3 2 1 0

The Timer Status Register contains one bit from which the
zero detect status can be determined The ZDS status bit (bit
0) is an edge sensitive flip flop that is set to 1 when the 24 bn
counter decrements from $000001 to $000000 The ZDS
status bn is cleared to 0 following the direct clear operation
(Similar to that of the ports), or when the timer is halted
Note also that when the RESET pm is asserted the timer is
disabled, and thus enters the halt state

This register is always readable w ithout consequence A
write access performs a direct clear operation if bit 0 m the
written data is 1 Following that, the ZDS bit is 0

This register is constructed w ith a reset dominant S-R flip-
flop so that all clearing conditions prevail over the possible
zero detect condition

Bits 7-1 are unused and are read as 0

TIMER APPLICATIONS SU M M AR Y

This section outlines programming of the Timer Control
Register for several typical examples

Periodic Interrupt Generator

1 • I * 4 3 ^ 1
TOUT TIACK

Control
2 D
Ctrl * Clock

Control
Timer
Enable

X 1 0 0 00 or IX changed

In this configuration the timer generates a periodic inter
rupt The TOUT pm is connected to the system's interrupt
request circuitry and the TIACK pm may be used as an inter
rupt acknowledge input to the timer The TIN pin may be
used as a clock input

The processor loads the Counter Preload Registers and
Timer Control Register, and then enables the timer When
the 24 bit counter passes from $000001 to $000000 the ZDS
status bu is set and the TOUT (interrupt request) pm is
asserted At the next clock to the 24 bit counter it is again
loaded w ith the contents of the CPR's, and thereafter
decrements In normal operation, the processor must direct
clear the status bn to negate the interrupt request (see
Figure 15)

352

M O T O R O L A Sem iconductor Products Inc.

MC68230L8» MC68230L10

FIGURE 15 - PERIODIC INTERRUPT GENERATOR
----------------------- r?ur -- -

Interrupt After Timeout

Time»
Enable

TOUT

TiACK

A n,y j re p re s e M a i i 1 valu*?

YJ
“ IT

\ J
" IT ¥

Square Wave Generator

1 6 | J 1
TOUT TIACK

Control Ctn *
Clock

Control
Timer

Enable
X 00 ûr IX Ranged

In this configuration the timer produces a square wave at
the TOUT pm The TOUT pm is connected to the user s cir
cuitry and the TIACK pm is not used The TIN pm may be us
ed as a clock input

The processor loads the Counter Preload Registers and
Timer Control Register, and then enables the timer When
the 24 bn counter passes from $000001 to $000000 the ZDS
status bit is set and the TOUT 'square wave outputi pm is
toggled At the next clock to the 24 b>t counter • ? is again
loaded w ith the contents ol the CPRs. and thereafter
decrements In this application there is no need tor the pro
cessor to direct clear the ZDS status bit, however it is possi
ble for the processor to sync itself w ith the square wave by
clearing the ZDS status bit. then polling it The processor
may also read the TOUT level at the Port C address

Note that the PC3/TQUT pm functions as PC3 following
the negation of RESET If used m the square wave con
figuration a pullup resistor may be required to keep a knowr
level prior to programming Prior to enabling the timer
TOUT is high Isee Figure 16)

FIGURE 16 - SQUARE WAVE GENERATOR
k -------------------------------- Ru-----------------------------------

TlTTOf
Enable

S FFFFFF

J

SOOÛOA =

TOUT J \ _
H - -Squa»e Wave-

1 6 4 - 1 -
TOUT 'TIACK

Control
I D
Ctrl

lOCK
Control

T imer
En

X 1 1 0 00 o r 1X changed

In this configuration the timer generates an interrupt after
a programmed time period has expired The TOUT pm is
connected to the system's interrupt request circuitry and the
TIACK pm may be an mterrupl acknowledge input to the
timer The TIN pm may be used as a clock mpul

This configuration is similar to the periodic interrupt
generator except that the Zero Delect Control bit is set This
forces the counter toll over after Zero Detect is reached,
rather than reloading from the CPRs When the processor
lakes the interrupt it can halt the timer and read the counter
This allows the processor to measure the delay time from
Zero Delect i interrupt request) to entering the service
routine Accurate knowledge of the interrupt latency may be
useful m some applications Isee Figure 17)

FIGURE 17 - SINGLE INTERRUPT AFTER TIMEOUT
M H --------------------------- M

Timer
Enable

SFFFFFF

J
24-Bit

Counter* _ _

T IA C K

* Analog representation of counter value

Elapsed Time Measurement
Elapsed time measurement takes several forms, two are

described below

System Clock

7 | 6 | 5 4 3 2 | 1 0
TOUT TIACK

Control
Z D
Ctrl ♦

Clock
Control

Timer
Enable

0 1 0 0 changed

This configuration allows time interval measurement by
software No timer pins are used

The processor loads ihe Counter Preload Registers
(generally w ith all Is ! and Timer Control Register, and then
enables the timer The counter decrements until the ending
event takes place When it is desired to read the time inter
vai. the processor must halt the timer then read the counter

For applications in which the interval could have exceeded
that programmable m this timer, interrupts can be counted
to provide the equivalent of additional timer bits At the end.
the timer can be halted and read isee Figure 18)

SFFFFFF

Bit
Counie*

5000000

M O T O R O L A Semiconductor Products Inc.
353

M C68230L8* M C68230L10

FIGURE 18 - ELAPSED TIME MEASUREMENT
--------------------Run--------------------->

FIGURE 19 - DEVICE WATCHDOG

1 «me»
Enab.e

SFFFFFF

$000000=3

‘ Analog representation ol counter values

External Clock

7 | 6 | 6 4 3 2 I - 0
TOUT/TIACK

Control
Z D
Ctrl *

Clock
Control

Timer
Enable

Xoo

1 0 X changed

This configuration allows measurement (counting) of the
number of input pulses occurring in an interval in which the
counter is enabled The TIN input pin provides the input
pulses Generally the TOUT and TIACK pms are not used

This configuration is identical to the Elapsed Time
Measurement/System Clock configuration except that the
TIN pin is used to provide the input frequency It can be con
nected to a simple oscillator, and the same methods could be
used Alternately, it could be gated off and on externally and
the number of cycles occurring while in the run state can be
counted However, minimum pulse width high and low
specifications must be met

Device Watchdog
1 6 I 5 4 3 2 1 1 0

t o u t /T ia £ k

Control
Z D
Ctrl *

ClOCk
Control

Timer
Enable

1 1 1 0 1 changed

This configuration provides the watchdog function need
ed in many systems The TIN pm is the timer input whose
period at the high (1) level is to be checked Once allowed by
the processor, the TIN input pm controls the run/halt mode
The TOUT pm is connected to external circuitry requiring
notification when the TIN pm has been asserted longer than
the programmed time The TIACK pin (interrupt
acknowledge) is only needed if the TOUT pm is connected to
interrupt circuitry

The processor loads the Counter Preload Register and
Timer Control Register, and then enables the timer When
the TIN input is asserted 11, high) Die timer transfers the con
tents of the Counter Preload Register to the counter and
begins counting If the TIN input is negated before Zero
Detect is reached, the TOUT output and the ZDS status bit
remain negated If Zero Detect is reached while the TIN input
is still asserted the ZDS status bit is set and the TOUT output
is asserted (The counter rolls over and keeps on counting)

In either case, when the TIN input is negated the ZDS
status bit is 0. the TOUT output is negated, the counting
stops, and the prescaler is forced to all 1s (see Figure 19)

Timer
EnableJ

TIN

(*-Ru ------ Run-

r ~ \ j \ J ~

TOUT

’ Analog representation ot counter value
\J

BUS INTERFACE CONNECTION

The Pl/T has an asynchronous bus interface, primarily
designed for use w ith the MC68000 microprocessor With
care, however, it can be connected to synchronous
microprocessor buses. This section completely describes the
P l/T 's bus interface, and is intended for the asynchronous
bus designer unless otherwise mentioned

In an asynchronous system the Pl/T CLK may operate at a
significantly different frequency, either higher or lower, than
the bus master and other system components, as long as all
bus specifications are met The MC68230 CLK pm has the
same specifications as the MC68000 CLK. and must not be
gated off at any time

The following signals generate normal read and write
cycles to the Pl/T: CS (Chip Select). R /W (Read/Write).
RS1-RS5 (five Register Select bits). D0-D7 (the 8-bit bidirec
tional data bus), and DTACK (Data Transfer Acknowledge)
To generate interrupt acknowledge cycles PC6/PIACK or
PC7/TIACK is used instead of CS. and the Register Select
pms are ignored No combination of the following pins may
be asserted simultaneously CS. PIACK, or TIACK

READ CYCLES VIA CHIP SELECT
This category includes all register reads, except port or

timer interrupt acknowledge cycles When CS is asserted,
the Register Select and R /W inputs are latched internallly.
They must meet small setup and hold_time requirements with
respect to the asserted edge of CS (See the AC ELEC
TRICAL CHARACTERISTICS table) The P l/T is not pro
tected against aborted (shortened) bus cycles generated by
an Address Error or Bus Error exception in which it is
addressed

Certain operations triggered by normal read (or write) bus
cycles are not complete within the time allotted to the bus
cycle. One example is transfers to/from the double-buffered
latches that occur as a result of the bus cycle. If the bus
master's CLK is significantly faster than the P l/T ’s the
possibility exists that, following the bus cycle, CS can be

<8> M O T O R O L A Semiconductor Products Inc.
354

M C68230L8* M C68230L10

negated then re-asserted before completion of these internal
operations. In this situation the Pl/T does not recognize the
re-assertion of CS until these operations are complete Only
at that time does it begin the internal sequencing necessary
to react to the asserted CS Since CS also controls the
DTACK response, this "bus cycle recovery time" can be
related to the CLK edge on which DTACK is asserted for that
cycle The P l/T will recognize the subsequent assertion of
CS three (3) CLK periods after the CLK edge on which
DTACK was previously asserted_

The Register Select and R /W inputs pass through an
internal latch that^ is transparent when the PI T can
recognize a new CS pulse (see above paragraph) Since the
internal data bus of the Pl/T is continuously enabled for read
transfers, the read access time (to the data bus buffers)
begins when the Register Selects are stabilized internally.
Also, when the Pl/T is ready to begin a new bus cycle, the
assertion of CS enables the data bus buffers within a short
propagation delay This does not contribute to the overall
read access time unlessCS is asserted significantly after the
Register Select and R W inputs are stabilized (as may occur
w ith synchronous bus microprocessors)

In addition to Chip Select's previously mentioned duties, it
controls the assertion of DTACK and latching of read data at
the data bus interface Except for controlling input latches
and enabling the_data bus buffers, all of these functions
occur only after CS has been recognized internally and syn
chronized with the internal clock Chip Select is recognized
on the falling edge of the CLK if the setup time is met.
DTACK is asserted (low) on the next falling edge of the CLK
Read data is latched at the Pl/T s data bus interface at the
same time DTACK is asserted It is stable as long as Chip
Select remains asserted independent of other external condi
tions

From the above discussion it >s clear that if the CS setup
time prior to the falling edge of the CLK is met. the Pl/T can
consistently respond to a new read or write bus cycle every
four (4) CLK cycles This fact is especially useful in designing
the P l/T's clock in synchronous bus systems not using
DTACK I An extra CLK period is required in interrupt
acknowledge cycles, see Read Cycles via Interrupt
Acknowledge)

In asynchronous bus systems in which the PI T's CLK dif
fers from that of the bus master, generally there is no way to
guarantee that the CS setup time with respect to the PI T

CLK is met Thus, the only way to determine that the Pl/T
recognized the assertion of CS is to wait for the assertion of
DTACK In this situation, all latched bus inputs to the Pl/T
must be held stable_unnl DTACK is asserted These include
Register Select, R/W. and write data inputs (see belowl

System specifications impose a maximum delay from the
trailing (negated) edge of Chip Select to the negated edge of
DTACK As system speeds increase this becomes more dif-
ficult to meet with a simple pullup resistor tied to the DTACK
line Therefore, the P l/T provides an internal active pullup
device to reduce the rise time, and a level-sensitive circuit
that later turns this device off DTACK is negated asyn-
chronously as fast as possible following the rising edge of
Chip Select, then three-stated to avoid interference with the
next bus cycle

The system designer must take care that DTACK is
negated and three-stated quickly enough after each bus
cycle to avoid interference with the next one W ith the
MC68000 this necessitates a relatively fast external path from
the data strobe to CS going negated

WRITE CYCLES
In many ways write cycles are similar to normal read cycles

(see above) On write cycles, data at the D0-D7 pins must
meet the same setup specifications as the Register Select
and R/W lines Like these signals, write data is latched on
the asserted edge of CS. and must meet small setup and
hold time requirements with respect to that edge The same
bus cycle recovery conditions exist as for normal read cycles
No other differences exist

READ CYCLES VIA INTERRUPT ACKNOWLEDGE

Special internal operations take place on P l/T interrupt
acknowledge cycles The Port Interrupt Vector Register or
the Timer Interrupt Vector Register are implicitly addressed
by the assertion of PC6/PIACK or PC7/TIACK. respectively
The signals are first synchronized with the falling edge of the
CLK One clock period after they are recognized the data bus
buffers are enabled and the vector is driven onto the bus
DTACK is asserted after another clock period to allow the
vector some setup time prior to DT ACK DT ACK is negated.
then three-stated as with normal read or write cycle, when
PIACK or TIACK is negated

M O T O R O L A Semiconductor Products Inc.
355

NDEX

Access-type error word, 253, 256

Address, 24, 171, 197, 256

base, 24

bus, 16, 17, 19, 22, 171, 176, 178,

186, 192, 197, 240, 245

physical, 172

Addressing mode groups (of the

68000), 37

absolute data, 37, 39-42

address register indirect, 37, 44-45

immediate data, 37, 55-56

implied, 37, 56

program counter relative, 37, 42-43

register direct, 37-39

Addressing modes (of the 68000),

37-57

absolute long, 40, 42

absolute short, 40-42

address register direct, 38, 56, 60,

66, 68, 77, 81, 82

data register direct, 38, 57, 60, 75,

81

immediate, 55, 56, 57

implied register, 56

indexed register indirect with offset,

44, 50-55

postincrement register indirect,

46-48, 64

predecrement register indirect,

46-48, 63, 64, 69

program counter relative with index

and offset, 42-43

program counter relative with offset,

42

quick immediate, 55

register indirect, 44, 63

register indirect with offset, 44,

49-50

ALU (arithmetic logic unit), 29

Arithmetic shift, 82

Array, 52-55

Assembler, 36, 41, 42, 43, 98, 146

line by line, 146

Assembly language, 35, 36, 129, 146,

257

Asynchronous, 18, 171

357

358 Index

Asynchronous communications

interface, 124

Asynchronous communications

interface adapter (6850), 171,

208-14, 306, 307

control register, 211, 213, 214

receiver, 210, 214

status register, 211

transmitter, 211, 214

Asynchronous control bus signals (of

the 68000), YU 18, 19, 171

address strobe (AS), 18, 22, 172,

178, 182, 192, 197, 242_______

data transfer acknowledge (DTACK),

18, 19, 22, 173, 178, 182, 192,

240, 243, 252 ____

lower data strobe (LDS), 18, 19,

171, 175, 178, 182, 197, 240,

242

read/write (R/W), 18, 19, 171, 175,

178, 182, 192, 191̂ 240, 242

upper data strobe (UDS), 18, 19,

171, 175, 178, 182, 197

Asynchronous data communications,

200, 201
Asynchronous data communications

signals, 201-6, 308

clear to send (CTS), 204, 206, 308

data set ready (DSR), 205, 308

data terminal ready (DTR), 204,

205, 206, 308

ready to send (RTS), 204, 205, 206,

211, 308

receive data (RX D), 201, 206

transmit data (TXp), 201, 206

Asynchronous memory I/O interface

(of the 68000), 170, 171-96

Autoindexing:

postincrement, 44

predecrement, 44

Average calculation program, 101-2

B

Baud rate, 124, 205

Baud rate generator, 205, 211, 307

BCD to binary conversion program,

102-4

Bit manipulation instructions (of the

68000), 117-19

test a bit (BTST), 117-18

test a bit and change (BCHG), 118

test a bit and clear (BCLR), 118

test a bit and set (BSET), 118

test and set an operand (TAS),

118-19

Bit time, 201, 205

Block move program, 99-100

Block transfer, 48

Borrow, 26

Bus arbitration control bus (of the

68000)^ J J , 21-22

bus grant (BG), 22 ________

bus grant acknowledge (BGACK),

22
bus request (BR), 22

Bus arbitration handshake, 22

Bus cycle, 17, 19, 20, 21, 22, 171, 177,

178, 243, 252, 298

duration, 178, 180

I/O read (input), 18

instruction acquisition memory (code

fetch), 20, 177

interrupt acknowledge, 242-45

read, 18, 19, 20, 178-79, 197

synchronous, 197, 339

write, 20, 180-83, 243

Bus master, 22

Bus status (codes), 176

Byte, 17, 19, 23, 24, 46, 60, 66, 69,

72, 91, 94, 118, 171, 175, 179,

184

even-addressed, 171, 175, 186

odd-addressed, 171, 175

C

Call, 25, 184

Carry, 26

Index 359

Clock (of the 68000):

clock input (CLK), 23

fall time, 23

frequency, 23

Clock generator, 260, 261, 272-73

pulse width, 23

rise time, 23

Code (program), 35-36

object, 36

source, 36

Compare and test instructions (of the

68000), 90-95, 100

compare (CMP), 91

compare address (CMPA), 92

compare immediate (CMPI), 92-93

compare memory (CMPM), 93

set according to condition code

(See), 94-95

test (TST), 94

Computer, 2-11

block diagram, 7-11

central processing unit (CPU), 7, 8-9

definition, 2

external memory, 7, 8, 9

general-purpose, 2, 6, 8, 12

input unit, 7, 8, 9

internal memory, 7, 8, 9

mainframe, 2, 4, 8, 9

memory unit, 7, 8-9

microcomputer, 1, 5, 6, 8-12

minicomputer, 5, 7, 8, 9

output unit, 7, 8, 9

primary storage, 7

secondary storage, 7

special-purpose, 4, 6, 8, 11

Condition-code relationship, 94-95,

98, 101

Count (counter), 83, 84, 85, 101

D

Data, 2, 9, 17, 19, 24, 46, 55, 92, 171,

175, 176, 184, 197

bus, 16, 17, 19, 22, 171, 178, 186,

192, 197, 240, 242, 245

storage memory, 9, 12, 62, 66, 70,

110, 176-77

Data formats (of the 68000), 17

bit, 17, 82

byte, 17, 19, 23, 24, 33, 46, 60, 66,

67, 69, 72, 91, 94, 118, 175,

179

long word, 17, 24, 33, 39, 40, 45,

55, 60, 63, 66, 67, 69, 70, 72,

73, 91, 94, 175, 187, 188
packed BCD, 17, 34, 74-79

signed number, 67, 72, 73

unsigned number, 67, 72, 73

word, 17, 19, 23, 24, 33, 46, 52, 60,

66, 67, 69, 70, 72, 91, 94, 175,

179, 186, 187

Data storage memory, 261, 272,

283-90

Data transfer instructions (of the

68000), 57-66

clear (CLR), 59, 66

exchange (EXG), 59, 65-66

load effective address (LEA), 59, 65

move (MOVE), 17, 24, 38, 40, 42,

43, 45, 49, 51, 59-63, 114, 115,

116, 184, 192, 195, 196, 251

move address (MOVEA), 62-63

move multiple register (MOVEM),

59, 63-64, 184

move quick (MOVEQ), 55, 63

swap (SWAP), 59, 66

Decimal arithmetic instructions (of the

68000), 57, 74-79

add binary-coded decimal (ABCD),

74-75

negate binary-coded decimal

(NBCD), 74, 76-77

subtract binary-coded decimal

(SBCD), 74, 76

Dedicated memory, 176

Destination operand, 24, 38, 45, 59,

60, 62, 63, 65, 68, 70, 72, 75,

79, 80, 82, 90, 91, 94, 117

360 Index

Development system, 123

Direct memory access (DM A), 222,

223

Disassembly (of a program), 129,

147-52

Displacement, 43, 97, 98, 110, 114,

116

Double-precision arithmetic, 257

Dual 16-bit ports using 6821s, 192

E

Educational microcomputer, 260-308

block diagram, 260

clock generator circuitry, 260, 272

data storage memory, 260, 279,

283-90

interrupt interface, 260, 273-79

parallel I/O , 260, 293-302

program storage memory, 260,

279-83

serial I/O , 260, 302-8

Effective address, 37, 40, 43, 49, 50,

53, 55, 60, 62, 65, 68, 69, 70,

79, 80, 110, 117

Emulation routine, 29, 257

Even-addressed boundary, 171, 255

Exception instructions (of the 68000),

248-52

check register against bounds

(CHK), 236, 238, 250, 251-52

divide-by-zero (D IVU /D IVS),

251-52

return from exception (RTE), 184,

250, 251

trap (TRAP), 236, 238, 250-51

trap on overflow (TRAPV), 236,

238, 250, 251

Exceptions, 25, 245-58

autovector interrupt, 238, 247

autovector interrupt interface,

247-55

autovector interrupt sequence, 248

autovector mode, 247

bus error, 236, 238, 252-61

instructions, 236, 248-52

internal, 25, 236, 238, 255-58

interrupt, 25, 27, 176, 184, 235, 236,

238, 239-42

interrupt interface, 240-41, 245-47,

248

interrupt sequence, 242-45

mask, 241-42

nonmaskable, 242, 255

priority, 21, 27, 238-39, 240, 241,

252, 254

priority level, 238, 241, 242, 255

processing, 184, 235, 236

reset, 236, 237, 238, 254-55

service routine, 27, 184, 236, 238,

242, 245, 248, 250, 251, 252,

255, 256

software, 25, 238, 250

vector, 176, 236-38, 245, 251, 252,

255

vector address, 236-38, 245, 248

vector number, 236, 238, 242, 245,

248

vector table, 176, 236-38, 245, 248,

250, 251, 252, 256, 257

Execution control architecture (of the

68000), 27-29

ALU , 28

control store, 28

control unit, 28

control word, 29

execution unit, 28

instruction decoder, 28, 29

instruction register, 28

micro-control store, 29

nano-control store, 29

Frame, 114

Frame data space, 114

Frame pointer, 114, 115, 116

Index 361

Framing error, 202, 208, 211, 214

Full duplex communications link, 207,

208

Functional addressing categories (of

the 68000), 56-57

alterable addressing, 56, 57, 60, 62,

66, 68, 72, 77, 80, 82, 93, 94

control addressing, 56, 63, 64, 65

data addressing, 56, 72, 79, 81

memory addressing, 56

Function codes, 20, 171, 177, 178,

197, 240, 242, 248, 253

G

General use memory, 176

H

Half duplex communications link, 207

Hardware refresh, 187

HM OS (high-performance metal-oxide-

semiconductor) technology, 212

I

Illegal instruction, 257

Illegal opcode detection, 257

Immediate operand, 25, 55, 56, 63, 69,

80, 83, 85, 92, 114, 117

Index (registers), 24, 32, 43, 50-53

Initialization, 21, 61

I/O (input/output), 7, 9, 17, 170

address space, 17, 171, 176, 184

asynchronous I/O interface (of the

68000), 170, 171

port, 188

synchronous I/O interface (of the

68000), 196-200

I/O control commands (of Tutor

monitor), 143-46

dump onto cassette (DU4), 153

load from cassette (L04), 153

no printer attach (NOPA), 143

port format (PF), 144-45

printer attach (PA), 143

transparent mode (TM), 145, 146

verify cassette (VE4), 153

I/O instruction (of the 68000), 187-88

move peripheral data (MOVEP),

187-88

Instruction, 2, 7, 9, 24, 28, 29, 32-86,

90-119, 171, 176, 238, 248-52,

255, 256

decode, 29

execution, 28-29

fetch, 29

Instruction set, 29, 34, 57, 67, 79, 90

Integer arithmetic instructions (of the

68000), 57, 67-74

add (ADD), 67, 68

add address (ADDA), 68, 70

add immediate (ADDI), 29

add quick (ADDQ), 69, 196

add with extend (ADDX), 69

negate (NEG), 67, 71-72

negate with extend (NEGX), 72

signed divide (DIVS), 73

signed multiply (MULS), 72

sign extend (EXT), 67, 73

subtract (SUB), 67, 70

subtract address (SUBA), 71

subtract immediate (SUBI), 71

subtract quick (SUBQ), 71

subtract with extend (SUBX), 71

unsigned divide (DIVU), 73

unsigned multiply (MULU), 72

Integrated circuit (IC), 2

Interfacing the 6821 PIA to the

synchronous interface bus,

197-200

Interlocked input handshake protocol,

230

Interlocked output handshake

protocol, 231

362 Index

Internal exceptions (of the 68000),

236, 255-58

address error, 236, 238, 255-56

illegal/unimplemented opcode, 238,

255, 257

privilege violation, 236, 238, 255,

256

spurious interrupt, 236, 238

trace interrupt, 236, 238, 242, 251,

254, 255, 257

Internal registers (of the 68000), 17,

23-37, 31-35

address registers (A), 17, 23, 24, 29,

32, 34, 39, 44, 45, 49-53, 60,

62, 63, 64, 65, 66, 68, 70, 80,

91, 92, 97, 113, 255

data registers (D), 17, 23-24, 29, 32,

34, 38, 40, 51, 60, 62, 63, 64,

66, 68, 69, 70, 71, 72, 73, 75,

79, 80, 83, 91, 92, 101, 110,

118, 188, 255

mask, 27

program counter (PC), 23, 25-26,

32-34, 42-43, 56, 95, 98, 110,

184, 236, 250, 251, 253, 255

stack pointers (SP), 23, 24, 32, 56,

62, 114-17, 183, 255

status register (SR), 21, 23, 26-27,

90-92, 56, 60, 61, 62, 67, 68,

69, 72, 76, 80, 83, 84, 90, 94,

98, 111, 117, 184, 241, 242,

245, 253, 254, 255, 256, 257

Internal registers (of the 68230),

219-231

port A alternate register (PAAR),

225

port B alternate register (PBAR),

226

port A control register (PACR),

226, 227, 231, 297

port B control register (PBCR), 226,

227, 231

port A data register (PADR), 225,

230, 297

port B data register (PBDR), 225,

230

port A data direction register

(PADDR), 224, 225, 297

port B data direction register

(PBDDR), 224, 225

port C data direction register

(PCDDR), 224

port general control register

(PGCR), 219, 220, 230, 297

port service request register (PSRR),

222, 223, 224, 297

port status register (PSR), 231

Interrupt acknowledge bus status code,

20
Interrupt interface signals (of the

68000), 21, 240-41, 247-48

bus error (BERR), 21, 252, 253

halt (HALT), 21, 252

interrupt request lines (IPL2 IPL,

IPLp), 21, 240-41, 242, 248

reset (RESET), 21, 254 ____

valid peripheral address (VPA), 248

Interval/event timer, 12

Jump (branch), 96-97

conditional, 96-97

unconditional, 96

Jump and branch instructions (of the

68000), 95-101

branch always (BRA), 97-98

branch conditionally (Bcc), 98

jump (JMP), 97

test condition, decrement, and

branch (DBcc), 100-101

Label, 42, 43, 98, 100

LED (light emitting diode), 9, 256

Logical shift, 82

Index 363

Logic instructions (of the 68000),

79-82

AND (AND), 79-80

AND immediate (ANDI), 80-81

exclusive-OR (EOR), 81-82

exclusive-OR immediate (EORI),

81-82

NOT (NOT), 82

OR (OR), 81

OR immediate (ORI), 81

Long word, 17, 24, 32, 39, 40, 45, 55,

60, 63, 66, 67, 69, 70, 72, 73,

91, 94, 175, 179, 187, 188, 255

Loop, 100

LSI (large scale integration), 1, 2, 4,

273

LSI peripheral, 15, 21, 22, 187, 188,

196, 197, 255

M

Machine code instruction, 36

Macroinstruction, 29

Macroinstruction static, 28

Main program, 109

Mark, 202

Mask, 64

Memory address space, 17, 26, 34, 41,

42, 171, 176, 184, 197, 344

Memory display/modify/search

commands (of Tutor monitor),

135-43

block fill (BF), 141

block move (BM), 142

block search (BS), 142-43

memory display (MD), 135-38

memory modify (MM), 138-40

memory search (MS), 141

Memory interface, 170-87

Memory map, 176

Memory-mapped I/O , 171

Memory organization (of the 68000),

175

lower (odd) data bank, 171, 175,

186

upper (even) data bank, 171, 175,

178, 186

Microcode, 29

Microcomputer, 1, 5, 6, 8-12, 260

architecture, 8-11

8-bit, 11-12

4-bit, 11-12

multichip, 9, 11-12

single-chip, 9-11

16-bit, 11-12

Microinstructions, 29

Microprocessor, 1, 5, 6, 9-12, 256

Microsequence starting address, 28

Mnemonic, 36, 57, 79, 94, 128

Monitor commands, 126, 127-59

Monitor command syntax, 129-32, 146

Monitor program, 123, 126-27, 261

MPU (microprocessor unit), 8-9

MSI (medium scale integration), 4, 9

Multiplexed, 16

Multiprocessor, 17, 119

Multitasking, 17, 119

N

Nibble, 11

Nonmaskable interrupt (exception),

242, 255

Nonvolatile, 9

O

Odd-addressed boundary, 255, 256

Offset, 24, 43, 49-51

Opcode (operation code), 36, 41, 97,

176

Operand, 23, 24, 29, 36, 37, 39, 43,

57, 82, 90, 175, 176, 187

Orthogonality, 57

Overrun error, 202, 208, 211, 214

364 Index

Parallel I/O , 272, 293

Parallel printer interface, 125, 299

Parameters, 24, 113, 115, 116, 252,

253

Parity error, 208, 211, 214

Peripheral interface adapter (6821

PIA), 187, 188-92

automatic mode, 192

chip select inputs, 191, 192

control lines, 189, 191

control register (CR), 188, 189-91,

196

data bus, 191

data direction register (DDR), 188,

189, 190, 192, 195

handshake mechanism, 191

I/O port lines, 189

output register (OR), 188-89

R /W line, 191

register select lines, 191, 192

strobed mode, 191

Pointer, 24, 32

Priority encoder, 245, 248

Privileged instructions, 61, 62, 81, 256

Processor status bus, 17, 216

function code lines (FC^FC jFCq),

20, 177, 178, 240, 242, 248, 253

Program, 9, 32, 94, 95, 98, 109, 113,

117, 176, 236, 245, 252

Program counter (PC), 23, 25-26,

32-34, 42-43, 56, 95, 98, 110,

184, 236, 250, 251, 253, 255

Program development, 122-67

assembly/disassembly, 122, 147-52

debugging, 122, 162-67

execution, 122, 160-62

loading, 152-54

saving, 152-54

Program execution control commands

(of Tutor monitor), 154-59

breakpoint (BR), 158-59

breakpoint remove (NOBR), 159

go (G, GO), 129, 158

go direct (GD), 157-58

go until break (GT), 158

trace (TR, T), 155-57

trace to temporary breakpoint (TT),

155, 157

Programmer, 2, 17, 32, 62, 98, 238,

256

Programming, 2

Program storage memory, 9, 26, 32,

41, 69, 71, 80, 110, 116, 118,

176-78, 236, 237, 250, 261, 272,

279-83

R

RAM (random access read/write

memory), 8, 9, 176, 184-87

dynamic, 184

Register display/modify commands (of

Tutor monitor), 132-35

display formatted registers (DF),

129, 132-33

display offset registers (OF), 134

display/set offset registers, 134-35

display/set registers, 133

Register list, 63

Register list mask, 64

Reset, 21, 236, 237, 238, 254-55

Reset (RESET) instructions (of the

68000), 21

ROM (read only memory), 8, 9, 176

Rotate instructions (of the 68000), 82,

84-86

rotate left (ROL), 84-85

rotate left with extend (ROXL), 84,

86

rotate right (ROR), 84, 86

rotate right with extend (ROXR),

84, 86

RS-232C port, 123-24, 206, 208, 272,

293, 302, 306, 308

Index 365

Segment (register), 177

Semaphore, 119

Serial communications interface, 171,

200-201
Serial communications port, 200, 272

Shift instructions (of the 68000), 82-84

arithmetic shift left (ASL), 84

arithmetic shift right (ASR), 84

logical shift left (LSL), 82-84

logical shift right (LSR), 82, 84

Sign bit, 27, 73, 84

Sign extension, 41, 49, 55, 62, 73, 92

Simplex communications link, 207

68000 microprocessor, 1, 15-17

address bus, 16, 17

address registers, 17, 23, 24, 29, 34,

39, 44, 45, 49, 60, 62, 63, 64,

65, 66, 68, 70, 80, 91, 92, 114,

255

asynchronous control bus, 15, 17, 18

block diagram, 17

bus arbitration, 21-22

data bus, 16, 17, 18

data registers, 17, 23-24, 29, 34, 39,

40, 51, 60, 62, 63, 64, 66, 68,

69, 70, 71, 72, 73, 75, 79, 80,

83, 91, 92, 101, 110, 118, 188,

255

instruction execution, 27-29

interrupt control bus, 17, 21

package, 16

processor status bus, 17, 20

software model, 21-35

synchronous control bus, 17, 22

system control bus, 17, 21

68230 parallel interface/timer, 215-31,

293, 297, 298, 299, 302

block diagram, 215

internal registers, 219-31

microprocessor interface, 215-19

64K-byte software refreshed dynamic

RAM subsystem, 184-87

Sort program, 104-9

Source operand, 23, 24, 38, 41, 43,

45, 49, 51, 56, 59, 60, 62, 64,

65, 68, 69, 70, 71, 72, 75, 79,

80, 90, 91, 94, 188, 252

Source program, 146

Space, 202

SSI (small scale integration), 4, 9

Stack, 34, 111, 114-17, 170, 251, 253,

255

bottom of, 183

supervisor, 24, 34, 183, 243, 251,

253

top of, 24, 34, 115, 116, 183, 184,

251

user, 34, 183, 184

Stack pointers (of the 68000), 32, 56,

62, 114-17, 183, 255

supervisor stack pointer (SSP), 24,

32, 183, 255

user stack pointer (USP), 24, 32, 62,

183, 255

Start bit, 201

Status register (SR) (of the 68000), 32,

56, 60, 61, 62, 67, 68, 69, 72,

76, 80, 83, 84, 90, 94, 98, 111,

117, 184, 241, 242, 245, 253,

254, 255, 256, 257

carry (C), 26, 34, 60, 64, 66, 67, 72,

73, 76, 79, 83, 86, 90

extended carry (X), 26, 27, 34, 61,

66, 67, 69, 72, 73, 75, 76, 83, 84

interrupt mask (I2I 1I0), 27, 256

negative (N), 26, 27, 34, 60, 61, 66,

67, 72, 73, 79, 90, 92, 94

overflow (V), 26, 34, 60, 61, 66, 67,

72, 73, 79, 84, 90, 92, 98, 251

supervisor state (S), 27, 34, 242,

250, 254, 256

system byte, 26, 27, 61, 241, 255,

256, 257

trace mode (T), 27, 242, 251, 254,

257

Software refresh, 187

366 Index

user byte, 26, 60, 254

zero (Z), 26, 34, 60, 61, 66, 67, 72,

73, 76, 79, 90, 92, 94, 98, 117,

118

Stop bit, 201, 211

String comparison, 93

String search, 48

Subroutine, 24, 56, 63, 109-16, 184

Subroutine handling instructions (of

the 68000), 109-17

branch to subroutine (BSR), 56,

110-11
jump to subroutine (JSR), 110-11,

116

link and allocate (LINK), 113-17

return and restore condition codes

(RTR), 111

return from subroutine (RTS), 111,

117

unlink (UNLK), 113-17

Supervisor call, 25, 250

Supervisor data memory, 237, 254,

255

Supervisor program memory, 20, 237,

254, 255

Supervisor state, 20, 25, 27, 61, 62,

81, 177, 178, 237, 242, 250,

254, 256

Synchronous control bus (of the

68000), 17, 22

enable (E), 22, 197 _____

valid memory address (VMA), 22,

197
valid peripheral address (VPA), 22,

197, 200, 248

Synchronous data communications,

200-201
Synchronous data communications

signals, 200

receive data, 200

signal common, 200

transmit data, 200

Synchronous memory I/O interface (of

the 68000), 196-200

Syntax error, 126

System control bus (of the 68000), 17,

21
bus error (BERR), 21, 252, 253

halt (HALT), 21, 252

reset (RESET), 21, 254

T

Table, 43, 63

Tag, 42

Trace, 27, 257

U

UART (universal asynchronous re

ceiver/transmitter), 12, 202

Unimplemented instruction, 257

USART (universal synchronous/asyn

chronous receiver/transmitter),

202

User state, 20, 24, 27, 62, 256

User/supervisor system environment,

17, 256

V

Vectored subroutine call, 250

W

Watchdog timer, 253, 291-93

Word, 17, 19, 23, 24, 34, 46, 52, 60,

66, 67, 69, 70, 72, 91, 94, 175,

179, 184, 187, 255, 256

THE

MICROPROCESSOR
ARCHITECTURE,

SOFTWARE,
AND INTERFACING

TECHNIQUES
WALTER A.TRIEBEL

AVTAR SINGH
Representing an in-depth study of the architecture, software, and
interfacing techniques used in the design of 68000 base
m icrocom puters, th is practical new book:

develops an understanding of the internal architecture of the 68000
m icroprocessor
includes 68000 instruction execution control
details software issues such as addressing modes, the instruction
set, and the analysis and w riting of assembly language programs
illustrates practical applications through example programs
covers hardware and architectural features and c ircu it design
techniques for the memory, input-output, and interrupt interfaces of
the 68000 m icrocom puter
introduces M otoro la ’s MC68000 Educational M icrocom puter
demonstrates how programs are assembled, verified, executed, and
debugged w ith the MC68000 Educational M icrocom puter’s Tutor
m onitor program
discusses bus cycles, address maps, program storage memory sub
systems, data storage memory subsystems, input-output interface
c ircu its , and interrupt interface c ircu its of the MC68000’s
Educational M icrocom puter

PRENTICE-H ALL
Englewood C liffs, N.J. 07632 ISBN D-13-flll3S7-2

