SmartOS

(part 1)

by Bob Woolley

Have you ever wanted one of those nice ramdisk handlers built right into your operating system? How about a high speed SIO routine hiding in your OS code that you can use with your USDoubler? Maybe you needed the 400/800 OS for a favorite oldie that will not run on the XL operating system? Redefine the function keys right in the OS on your 1200XL? Modify the OS for Nir-PAL or the 65816? Built in monitor? Basic extensions? The list goes on and on. When these types of hacks are right in the OS, they don't take up any of your memory, don't require loading from disk and work with almost any DOS. So, how come you don't have them? Well, the reason you don't have any or all of these features now is twofold: you need an EPROM burner to make the OS EPROM and you can't put everything in one set of code (and expect it to work with a reasonable number of programs). This means that you would be required to open up your computer and change OS chips or have some sort of kludge, switching thing under the covers. What the average user needs is an upgrade that allows him to easily load any OS he requires at the moment and make it permanent thru power cycling (without buying an EPROM burner and burning dozens of OS chips). If you have something like that, you can whip up any kind of OS hack you like, effortlessly! So, here it is....

The Hack

 SmartOS is a RAM chip that is powered by the Dallas Smart Socket. This "socket" is actually a small PC board with logic and a backup battery that is built into a standard IC socket. Once a low powered CMOS RAM is inserted in the socket, the battery maintains the data in the RAM for up to 10 years -- making it equivalent to an EEPROM or EPROM. Once the RAM is loaded, you can power off your computer, go on a two week vacation and everything you did will be there when you power on again. The beauty of this setup is that the RAM is just that, RAM. You need no special sequencing to write to it, no "programming", nothing. This is a perfect way to do last month's Nir-PAL OS changes without the necessity of burning a new EPROM (along with a hundred other things...).

More Features

 In addition, the creator of this hack just couldn't resist throwing a programmable internal cartridge in there -- as well as the address space from $D600 to $D7FE This gives you the ability to boot with some thing other than BASIC rev.B as your internal cartridge. Normally, you boot into BASIC when you power on your XL/XE, unless you hold down OPTION. With a programmable internal cartridge, you can boot into any 8K cartridge on power up. Just load the in ternal cartridge space with code and you're set! Your custom cartridge will survive power down as well as errant code trying to overwrite what you have loaded -- just like the ROM that it re-places. Also, the 512 bytes at memory location $D600 thru $D7FF, which are normally not available, will now func tion as persistent RAM—great for those routines that won't fit anywhere else. The SmartOS will work in any of the XLs or an XE, with a little extra work required on a 1200XL. It will not work on a 400/800 -- sorry.

What Does It Do?

 The upgrade allows you to switch select two functions. The first switch selects whether you use your OS ROM (for those functions that your new OS does not get along with) or use the SmartOS. The second switch write protects the RAM in the OS and inter nal cartridge address space ($D600 -- $D7FF are always writable). To give you a little more insight into how SmartOS functions, let me take you thru my cur rent setup. I have the standard 800XL OS in ROM in my SmartOS board (any OS may be used if it is just a 16K EPROM or ROM). I have loaded this Atari OS into my SmartOS RAM and modified the color of my default GR.0 screen to green instead of blue. I also loaded the internal cartridge space with my Atari Editor/As sembler cartridge and $D600 with the CHKSUM.OBJ code. With the SmartOS switch in the ROM posi tion, my 1200XL boots up in blue with BASIC *(unless I hold down OPTION, then it boots to DOS -- just like any other XL). In the RAM posi tion, the system boots a green screen with ED/ASM running (or DOS if I hold OPTION). Placing the SmartOS write enable switch in the "on" position will allow me to make any OS or cartridge code changes I wish while leaving it "off" protects them uncondi tionally. With CHKSUM.OBJ in per sistent RAM at $D600, anytime I want to re-calculate the OS checksum, I can $D600 from DEBUG without loading the CHKSUM.OBJ from disk. Of course, YOU can do whatever you want with your OS, internal cartridge and the 512 bytes at $D600. And, I am not limited to just my current configura tion -- a few minutes of disk action and I can have anything my little heart desires. Like the drivers for an IDE drive. A ramdisk handler. Floppy interface code. You name it. You write it. You load it. No EPROMs, no EPROM burners, no waiting.

Operating Secrets

 OK, so how does this work? As I mentioned, the heart of this project is a Dallas SmartSocket. This intelligent device watches the power supply for any low voltage conditions. When it "sees" the +5 volts beading towards zero (which means the power has been turned off), it disables writing to the RAM and switches in it's internal back up battery. This keeps a glitch from writing garbage as the power falls and you lose logic integrity (as well as during power up, for the same reason). On powerup, once power is stable, the SmartSocket enables writing to the RAM, disconnects his battery and off you go. The socket does not come with a RAM chip installed -- you provide that. There are versions that include the chip in an integrated package, but I like the ability to replace a bad RAM without throwing away the whole pack age. You also may need to dump the contents of the RAM and the only way to do that may be to unplug it from the SmartSocket! I used a 32Kx8 RAM on SmartOS, which gives me an extra 16K bytes to put things in, like the internal cartridge and $D6xx. TheseSmartSockets come in capacities up to 512K bytes -- maybe a nice permanent ramdisk for some future hack?

Techie Talk

 So, this SmartSocket is wired in parallel with the existing OS ROM socket -- pin for pin. Except for the -CS, R/W lines and the A14 address bit (refer to the schematic in Figure 1). The remaining circuitry has two sec tions, chip select and write enable. Chip select is generated at Ul, pin 8 and switched to either the RAM or ROM thru the SPDT switch. See the - OS line from the board that used to go directly to pins 20 and 22 on the OS ROM? This connection needs to be opened and re-routed to pin 12 of U 1 where it will be ANDed with the inter nal cartridge and $D6xx memory selects. From there, notice that 02 clock enables -CS to the memories (pin 9 of Ul). Running fast RAM without 02 gating will cause subtle errors due to ad dress bit skew. Pins 1,2 and 13 of U2 supply the remainder of the -CS logic. If either -$D6xx, -$D7xx or -BASIC are active, A14 of the RAM is driven high, and -CS is generated. This has the effect of reading the OS ROM when you are switched to ROM and you read any of those three areas (inter nal BASIC, $D6xx or $D7xx). You can verify this with ED/ASM . At $D600, you will see the code from the OS ROM at $F600! For this reason, the BlackBox and any other hacks that enable $D6xx will probably not work on SmartOS -- regardless of where you place the RAM/ROM switch. If you face this problem, disable $D6xx (and $D7xx, if necessary) by disconnecting U2, pin 1 (and 2 -$D7xx) and wiring it to pin 13 (don't just leave it open...!) Also disconnect the corresponding pin on U2, pins 9 and 10 (connect them to pin 11). The write enable section controls the R/W line to the SmartOS and in ternal BASIC portions of the RAM. You need to be able to modify or load code in these addresses, but once loaded, they must not be allowed to be altered. $D600 - $D7FF are enabled for writing thru pins 9 and 10 of U2, while the switch wired to pin 11 of U2 enables all of RAM to be written. R/W is gated at pin 5 of Ul.

Wiring It Up
OK, enough theory stuff -- let's list some source pins. As stated earlier, all the lines from the OS ROM are con nected to the Smartsocket except for pins 1, 20, 22, and 27. On my upgrade, I used the second ROM site on a 1 200XL for the SmartSocket, cutting away the pins that were altered and ad ding point to point wiring. I have also used a rip-off board on an 800XL, plug ging into the OS ROM site. Either way, the wiring is similar (and will be covered next issue). The remaining connections to the computer are:

Line Name Source -OS
pin 15
CO61618

-$D6xx
pin 9
74LS138

-$D7xx
pin 7
74LS138

-BASIC
pin 13
CO61618

-R/W
pin 36
CO14806

-02
pin 39
CO14806

 And, of course, you need +5 volts and ground. Don't forget to pull the in ternal BASIC ROM, if you have one. I have used the Atari part numbers for the chips, although a 1 200XL does not have a C061618 chip (it's C060609). To do this hack on a 1 200XL requires you to replace your 60609 with a 61618 (as well as a little more wiring), OK? If you haven't done this to your 1 200XL, check in next issue or write to me.

Parts list: 74HC00
4x2 NAND

74HC10
3x3 NAND

switches
SPST and SPDT

4.7k
1/4 w resistors

DS1213C
Dallas SmartSocket

60L256/43256
32Kx8 low power static RAM

Making It Work -- the OS

 Once you complete construction, it takes a little fooling around to get the RAM loaded. Since you will be starting with random data in RAM, you obviously cannot boot your computer with the switch set to RAM -- you must start off in the ROM position. So, place the RAM/ROM switch in the ROM position and the R/W switch in the disable (writing inhibited). The computer should boot OK in this configuration, no matter what youhave in the RAM. You will not have an internal cartridge. The first step is to propare an OS to load into the RAM. Let's just use the OS that's in your existing ROM.

MVROM.OBJ

 Plug in your ED/ASM cart and boot DOS 2.0. Do not use any other DOS unless you are positive that it will not overwrite $4000 and above! It would be nice to be able to just go to DEBUG and move the OS to $4000 from $C000, but that will certainly not work. The OS hides some code in $5000 that you need along with the $C000 data. For this function, I have included a short M/L program called MVROM.OBJ. This routine properly copies your OS code into location $4000 where it can be modified and/or written back into SmartOS RAM.

0100 ; ***MVROM.ASM 8/02/95***

0360 ;

0110 ; MOVES ROM INTO MEMORY

0370
LDA #$$D8

0120 ;

0380
STA $CC

0130
*= $0600

0390
BNE LP1

0140 ;

0400 ;

0150
LDA #$00

0410 MOVEPAGE LDA #$7D

0150
STA $CB

0420
STA $D301

0160
STA $CD

0430
LDA ($CB),Y

0180
LDA #$C0

0440
STX $D301

0190
STA $CC

0450
STA ($CD),Y

0200
LDA #$40

0460
INY

0210
STA $CE

0470
BNE MOVEPAGE

0220
LDX #$FD

0480 ;

0230
LDY #$00

0490
INC $CE

0240 ;

0500
INC $CC

0250 LP1 JSR MOVEPAGE

0510
LDA $CC

0260
BEQ COMPLETE

0520
RTS

0270
CMP #$D0

0530 ;

0280
BNE LP1

0540 COMPLETE BRK

0290 ;

0300
LDA #$50

0310
STA $CC

0320 ;

0330 LP2 JSR MOVEPAGE

0340
CMP #$58

0350
BNE LP2

 To use the program from EDIT, Load MVROM.OBJ. Go to DEBUG and run MVROM.OBJ with G600. At this point, you can verify that your OS is now sitting in $4000 thru $7000. If you are going to make any changes to the Atari OS, you must re-calculate the checksum values stored in the code (see CHKSUM.OBJ). For now, just use the OS without modifying it.

MVRAM.OBJ

 To copy the OS back into the SmartOS RAM, you need to use MVRAM.OBJ. This routine not only allows the OS to be returned to its proper addresses, but allows for you to transfer control of $C000 - $FFFF to RAM while you are running.

0100 ; ***MVRAM.ASM 8/02/95***

0410
STA $CC

0110 ; MOVES MEMORY INTO RAM
0420 ;

0120 ;

0430 LP2 JSR MOVEPAGE

0130
*= $0600

0440
CMP #$58

0140 ;

0450
BNE LP2

0150
PHP

0460 ;

0160
SEI

0470
LDA #$D8

0170
LDA $D40E

0480
STA $CC

0180
PHA

0490
BNE LP1

0190
LDA #$00

0500 ;

0200
STA $D40E

0510 MOVEPAGE LDA #$FD

0210 ;

0520
STA $D301

0220 LPSTART LDA $D01F

0530
LDA ($CD),Y

0230
CMP #$06

0540
STX $D301

0240
BNE LPSTART

0550 STA ($CB),Y

0250 ;

0560
INY

0260
LDA #$00

0570
BNE MOVEPAGE

0270
STA $CB

0580 ;

0280
STA $CD

0590
INC $CE

0290
LDA #$C0

0600
INC $CC

0300
STA $CC

0610
LDA $CC

0310
LDA #$40

0620
RTS

0320
STA $CE

0630 ;

0330
LDX #$7D

0640 COMPLETE PLA

0340
LDY #$00

0650
STA $D40E

0350 ;

0660
PLP

0360 LP1 JSR MOVEPAGE

0670
LDA #$FD

0370
BEQ COMPLETE

0680
STA $D301

0380
CMP COMPLETE

0690 LOOP JMP LOOP

0390
BNE LP1

0700
.END

0400
LDA #$50

0410
STA $CC

0420
;

 This routine is basically the opposite of the MVROM.ASM code except for the initial setup from lines 150 thru 240. Lines 150 thru 200 disable all in terrupts. We need to switch off the ex isting OS and there will be no code for an interrupt to execute -- so, off they go. Lines 220 thru 240 wait forever for us to push the STAR key. This gives you an opportunity to set the ROM/RAM and write enable switches before you load the RAM. Once you push START, the code from $4000 - $7000 is loaded into $C000 - $FFFF and the computer is locked in a ticht loop. This final loop is to allow you to disable writing to the RAM. Be sure that you do this or you may find some of your code overlayed when you re-boot.

 So, from ED/ASM again, you should have loaded something into $4000 - $7FFF (hopefully a valid OS). Load MVRAM.OBJ and go to DEBUG. G600 to execute MVRAM—the com puter will hang, waiting for the START key. Set the switches to enable write and RAM. Ignore the screen garbage.... Push the START key. Disable write! Re boot on RAM -- you should boot OK. Notice that you do not need to use MVROM to load the OS code for MVRAM. If you have a ROM image on disk, you can load it into $4000 directly. In fact, this would be your normal pro cedure once you create a number of OS images that meet your needs. In this case, the MVRAM,OBJ code could be appended to the OS image, with a run address of $600 -- making an OS change a one step operation.

SETCART.ASM

 To load the internal cartridge, you must be able to boot with the internal cartridge enabled and no cartridge plugged in. If the current contents of the internal cartridge will not allow you to boot (see below), use ED/ASM and run SETCART.OBJ as follows:

 Boot ED/ASM cartridge. Load SET CART.OBJ -- screen will go off. Enable write. Push the START key. Disable write! You should now be able to boot from RAM with no cartridge and the internal cartridge enabled.

0100 ; **SETCART.ASM 8/09/95**

0110 ; LOADS SBFFC IN CART.

0120 ;

0130
*= $0600

0140 ;

0150
SEI

0160
LDA #$00

0170
STA $D40E

0180
LDA #$FD

0190
STA $D301

0200 ;

0210 LPSTART LDA $D01F

0220
CMP #$06

0230
BNE LPSTART

0240 ;

0250
LDA #$FF

0260
STA $BFFC

0270 LOOP JMP LOOP

0280
.END

Loading a Cartridge

 Once you are ready to load the inter nal cartridge RAM:

 Boot to DOS, no external cartridge. Enable write. Load the cartridge image directly into $AOOO with DOS. Disable write. When you boot your computer, the internal cartridge should be func tional if you did not press OPTION while booting.

Permanent RAM

 The last operation that you may wish to do is load code into the new RAM at $D600 tbru $D7FE This RAM is used just like any other RAM loca tion as long as you have the ROM/RAM switch in the RAM posi tion. These addresses are always enabled for writing and no special precautions must be taken to load them. Use them for data, tables or. code any time you want -- the data will survive power off and cold boots forever (or, your money back...:)

Things to Ponder

 Some quirks to be considered when using SmartRAM:

 The OS tests all 48K of lower memory when you do a cold boot. If the SmartRAM is write enabled during a cold boot, this memory test will zero the entire internal cartridge RAM area. This not only wipes out your internal cartridge, but also causes any subsequent cold boots to fail. It seems that the OS checks for a cartridge by two methods, one of which is to look for $00 at loca tion $BFFC. If you have written a $00 in there (from the RAM test), you set. the cartridge flag. This branches you into the checksum routines for the cartridge (which has been wiped out!). No matter if you hold down OPTION or not, the code tries to checksum a non-existent cartridge. Rats—you now cannot boot with SmartRAM selected unless you have a real cartridge plugged into the cartridge port. And, with a cartridge plugged in, you cannot write into the SmartRAM cartridge area... Hmmmmm.... This is the reason you need SETCART.ASM. This little routine does nothing other than store $FF into the SmartRAM cartridge area at $BFFC. This allows you to boot with SmartRAM enabled and no cartridge plugged in -- which you need to do in order to load code into the SmartRAM cartridge area ($AOOO-$BFFF).

 The OS code calculates the check sum of all the bytes in ROM every time you boot your computer. When you are making modifications to the OS, you must therefore re-calculate this check sum and store it in the appropriate loca tions of the OS. Otherwise, you will be presented with the self-test screen every time you power on. To make it easier to re-calculate and store the checksum, I have included some .OBJ code that does a nice .job of automatically correcting your checksum. It was given to me by Tim Patrick and has been very useful over the years, so I hope he doesn't mind if I pass it along to the rest of the users. Unfortunately for you subscribers. that did not order disks, I do not have the CHKSUM.ASM code, only the .OBJ, so you will need to D/L it from CIS or your local BBS (if they have it). For disk subscribers, there are two ver sions of GHKSUM—one that uses $600 and one that resides in $D600 (per manent SmartRAM). CHKSUM.OBJ runs from $600, while CSUMD6.OBJ runs from $D600.

Coming Attractions

 OK -- that's about all for this issue. There should be enough information here to get some of you guys up and run ning. Next issue, I'll go over in some depth just how to build one of these upgrades. I'll cover the use of the tools . you will need, special 1200XL modifications, PCB layout, construction tech niques and integrating this hack with the IDE interface (IDE interface... what IDE interface?)

NOTE: *These projects tend to remain unfinished. Proceed at your own risk.

[image: image1.png]
 This is a hardware modification that will give you the ability to easily modify the code in your OS and save it permanently in a RAM module. The key element of this upgrade is a clever piece of hardware from Dallas Semiconductor called a SmartSocket, from which I shamelessly stole the name of this hack, SmartOS. The project will be presented in two parts, overview and detail. The first installment will contain enough information for an experienced hardware buff to build a SmartOS along with the code segments required to set it up. The second half of the series will be more of a primer for you less handy folks out there. It will include tools and test equipment use, construction techniques, general sources for parts and goodies, and have lots of pictures to follow. With them, you should be able to get yourself into real trouble!

Dallas "ROMs"

(part 2 of SmartOS)

by Bob Woolley

In the SmartOS modification that we had last year, the core of the project was a non-volatile static RAM. The stock Atari is built with either an EPROM or ROM for the storage of die operating system code. These devices retain whatever data is written to diem without die aid of external circuitry or power. The problem is, you cannot alter their contents once they are programmed. Any changes you would like to make in the OS require die removal and replacement of the chip. The cartridge, MIO interfaces, the 1050 and 850, also have ROMs or EPROMs that score code. Changing code in any of these devices is difficult. The static RAM devices, such as the 62256, have the same pinoucs as an EPROM of equal size and can be altered just like any RAM memory. Unfortunately, the data in a RAM will not survive a power down, Once the power is turned off, all data is lost. The SmartOS presented a method of retaining data in one of these RAM chips through numerous power cycles, giving us the ability to alter our OS as often as we like.

 Never being content to leave something alone, I have made a few modifications to the SmartOS modification. The alteration I will describe here is to the method used to retain data in our static RAM chip. In the first design, I used a Dallas Smart Socket to provide all the necessary components. All you did was plug in a static RAM and you were up and running. This makes for a simple project but it left something to be desired from my point of view. First, the battery was internal and not replaceable. Sure, they last 10 years. Usually. I can just imagine my RAM chip blowing it's brains out and shorting out the battery in the Smart Socket. No more Smart Socket. I can also see wanting to use a larger RAM (128K or 512K). Can't use a single Smart Socket for that either... Or multiple RAMs. What was needed was a little more flexible setup. And, if it's a few bucks cheaper - great!

 Take a look at the Smart IDE schematic. The lower right hand corner is a sketch of the data retention circuit. Again, we use a Dallas Semiconductor part, but instead of the whole assembly, we only use the controller chip - a DS1210 This chip provides the sensing and control circuits to prevent data loss while power is being cycled, completing any write cycles and switching in the battery when needed The battery may be either a PC style 3.6 volt lithium cell or three ordinary penlight batteries (4.5 volts). Either battery will supply much more power than is available in the Smart Socket and can be replaced easily and cheaply. As an added benefit, the cost of the DS1210 is only about five bucks.

 The DS121O has three main functions. Although you may chink that the power goes off instantaneously when you turn off your computer, in computer time, it takes quite a while. The DS1210 watches the +5 volts from your computer (connected at pin 8) for a drop of more than .25 volts. If it sees such a dip, it assumes that the power is going off and prepares the RAM for data retention. First, it checks to see if you are selecting RAM with the chip select line from the computer logic (connected at pin 5). If RAM is being used, the DS1210 waits for it to finish (chip select at pin 5 goes high). It then holds the chip select output to the RAM (pin 6) at a high level, ignoring any more changes at the chip select input. This prevents the RAM from being "glitched" while power is going down. The DS1210 also connects it's battery (connected at pin 2) to the VCC pin of the RAM (connected to pin 1), to supply enough power for the RAM to retain all the data currently stored in the chip. On powerup, the DS1210 disconnects it's battery, allows chip selects from die computer and you're back in business with all of your original data intact. You may even connect a second battery to pin 7 if you are really worried about losing your data. The DS1210 will then switch to this backup battery if the main battery goes dead (seems like overkill in this application - I didn't use this feature).

 All in all, the DS1210 is just perfect for this application. Many, many power cycles have been executed on my RAM with no problems whatsoever. Although I show a 32Kx8 RAM in the schematic, I actually used a 128Kx8 bit unit in my controller. With the DS1210 I could use any size RAM I wanted - may even do a 5l2Kx8 bit ramdisk with this guy. The DS1210 worked fine and, it's a little bit cheaper than a Smart Socket. There are also other versions of this controller chip that will control up to 8 RAM chips - for those really big projects. Now, you have two ways to replace your EPROMs and ROMs, so get busy and hack a new 1050 or something!
[image: image2.png]
